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Abstract—Directed energy deposition (DED) stands as a pivotal
additive manufacturing technique, revolutionizing the landscape
of modern manufacturing. However, process-related defects hin-
der its broad application across different sectors. In this paper,
we propose a novel methodology for the in-situ prediction of
defects in DED processes based on the thermal images of the melt
pools. Initially, multiple features, summarizing the thermal and
geometric characteristics of the melt pool, were extracted. Based
on these features, an ensemble of unsupervised clustering models
was constructed to distinguish anomalies – images with defects –
from the defect-free images. Roughly 3% of the acquired images
were predicted to include defects. Upon visual inspection, these
images exhibited distinctive thermal distributions and geometric
configurations compared to the remaining dataset. Furthermore,
a 2D approximate visualization of the feature space revealed
the clustering structure of the thermal images in their feature
space. This visualization showed that the anomalies could be
distinguished from the majority of normal images, which further
validates the prediction model’s effectiveness.

Index Terms—additive manufacturing, DBSCAN clustering,
defect detection, directed energy deposition, IN718 superalloy

I. INTRODUCTION

Directed energy deposition (DED) is one of the promising
additive manufacturing processes that can additively man-
ufacture dense metal parts with functional geometries and
enhanced mechanical properties. This digital manufacturing
technology is particularly suitable for prototyping, repairing,
and modifying metal parts [1]. It is also known for its short
manufacturing times and high material utilization. Due to these
unparalleled characteristics, DED finds widespread application
across diverse industries, including aerospace, automotive,
medical, and beyond.

Based on computer-aided design (CAD) files, DED pro-
cesses utilize a high-energy heat source to melt the deposition
feedstock and print the ultimate part incrementally, track-by-
track and layer-by-layer. The heat source typically affixed to
a multi-axis computer numerical control (CNC) head can be
a laser, a plasma arc, or an electron beam. Conversely, the
feedstock delivered via a nozzle is available in either powder
or wire forms. The feedstock material can be metals, ceramics,
or even a composite of both; however, DED is widely used for
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printing metals and is alternatively known as directed metal
deposition accordingly.

The main limitation of DED processes, which impedes its
widespread adoption across different sectors, stems from in-
situ evolving defects such as lack of fusion, cracking, porosity,
and surface roughness. Such defects lead to poor mechanical
properties and reduced quality of final parts [2]. The prime
root causes of these defects are due to feedstock quality
(like impurity or feedstock porosity), non-optimized process
variables (e.g., the laser power and scan spacing/speed), the
high thermal gradients, and rapid cooling rates [3].

Comprehension of the intricate physics underlying DED
processes remains a significant challenge due to their intrinsic
complexity. This hampers the construction of a prior physics-
based model summarizing the correlation between the process
variables and the potential formulation of defects. As a tra-
ditional approach, these defects are identified through post-
process inspection methods, such as metallurgical analysis or
computed tomography (CT); nonetheless, these methods are
expensive and time-consuming.

Alternatively, the detection and subsequent elimination (or
at least reduction) of the developed defects can be conducted
through real-time monitoring of the melt pool, combined with
feedback control and process optimization [3]. To this end,
thermal cameras and temperature sensors have been commonly
employed in the literature to capture the thermal distribution
and geometry of the melt pool. The formulation of microstruc-
tural defects is expected to be manifested in the melt pool’s
thermal dynamics captured by its thermal image. Therefore,
this close relation between the melt pool characteristics and
defect formulation can be modeled using machine learning
(ML) techniques.

Khanzadeh et al. [4] implemented multiple classical ML
methods; namely linear discriminant analysis, quadratic dis-
criminant analysis, k-nearest neighbors (KNN), decision trees,
and support vector machine (SVM); for in-situ porosity predic-
tion. On the other hand, Gaja et al. [5] used classifiers based
on artificial neural networks (ANN) and logistic regression
to detect developed defects such as cracks and porosity. In
addition, various convolutional neural network (CNN) archi-
tectures; e.g., AlexNet, VGG16, ResNet, and GoogleNet; have



been proposed to detect defects including rough texture, lack
of fusion, porosity, and cracks [6]–[9]. Tian et al. [10], on the
other hand, proposed the combination of CNN and recurrent
neural network (RNN) classifiers for porosity detection by
fusing thermal images acquired by the built-in pyrometer and
thermal camera.

Nevertheless, the existing studies in this research line have
tackled this problem as a supervised classification problem.
This formulation has many drawbacks. For instance, it suffers
from an imbalanced data issue that significantly affects the
classifier performance. Additionally, in this formulation, defect
detection is not generic with respect to all defect classes since
the defect class used for training represents only a single class
(or a few classes in the case of multiclass classification). An
alternative yet effective approach is to formulate defect detec-
tion as an unsupervised (or at least semi-supervised) problem
in accordance with its inherent nature as a subcategory of
anomaly detection. As one of a few works in this direction,
K-means [11] and self-organizing maps (SOM) [12], [13] have
been utilized to detect porosities and cracks.

In this paper, we propose an ensemble of unsupervised
clustering models to predict defects in laser directed energy
deposition (L-DED). The main contributions of this work, in
addition to data collection and preparation, are as follows:

1) Extraction of relevant features summarizing the thermal
dynamics and geometric properties of the melt pools.

2) A generic framework, irrespective of defect class, for
predicting defects developed in DED samples, approach-
ing the defect detection problem from an anomaly
detection perspective. This framework can also serve
as an automatic tool for (weakly) labeling data without
the need for post-process inspection techniques, such as
micro CT.

3) Validation of the results by investigating a 2D approxi-
mate visualization of the feature space.

The rest of this paper is organized as follows: The proposed
methodology for defect detection is detailed in Section II, and
the obtained results are presented and discussed in Section
III. Finally, Section IV offers the concluding remarks for the
paper.

II. DEFECT DETECTION METHODOLOGY

In this section, the proposed methodology for defect de-
tection in DED-manufactured parts is explained in detail. An
overview of the methodology is shown in Fig. 1. This approach
comprises five main steps, namely threshold segmentation,
feature extraction, normalization, clustering, and visualization.
These steps are illustrated further in the subsequent subsec-
tions.

A. Threshold Segmentation

As the first step, the melt pool was extracted from each
input thermal image. The threshold temperature of the melt
pool is specified as 1560 °C. Accordingly, the biggest region
in the image whose temperature is at least the same as the
threshold temperature was extracted. This region corresponds

to the melt pool in that image. Fig. 2 shows a sample image
with its segmented binary and thermal images. The binary
image is used for extracting the shape features, as explained
in detail later. In contrast, histogram-based color and texture
features are extracted from the segmented thermal image.

B. Feature Extraction

From each image, three sets of features were extracted.
These sets are shape features, histogram-based color features,
and texture features, as listed in Table I and illustrated further
in the following subsections.

1) Shape features: As shape features, the area, major axis
length, eccentricity, and circularity were extracted from the
binary image that was segmented from the input thermal
image as explained in the previous subsection. These features
summarize the melt pool geometry, and they help in detecting
defects like lack of fusion, underheating, and distorted shapes
of melt pools.

2) Color features: Color features, on the other hand, were
extracted from the segmented thermal image of the melt pool.
These features rely on the histogram of that extracted region
(i.e., the temperature distribution of the melt pool), and they
may detect defects that shape features alone fail to detect,
e.g., overheating. These features include the mean, standard
deviation, skewness, and entropy of the extracted melt poot
temperatures.

3) Texture features: Texture features are extracted based
on the gray-level co-occurrence matrix (GLCM). The GLCM
summarizes the spatial relationship between pairs of pixels.
It is formed by computing how often pairs of pixels with
particular values and predefined spatial relationships occur in
the image. These spatial relationships between pairs of pixels
are determined by two user-chosen parameters, the distance
and angle of the relationship. After the GLCM has been
formed, four statistical measures – namely, energy, correlation,
contrast, and homogeneity – will be extracted from the GLCM
matrix.

C. Normalization

The extracted features have inconsistent scales, leading to
the dominance of the high-scale features. To address this
concern, these features were normalized by initially subtract-
ing their means and subsequently dividing by their standard
deviations. This normalization scheme (see [14]) results in
the different features having consistent scales. As a result,
the contributions of the features during the training process
become equalized. This most frequently leads to a significant

TABLE I
LIST OF EXTRACTED FEATURES

Shape features Color features Texture features
Area Mean Energy

Major axis length Standard deviation Correlation
Eccentricity Skewness Contrast
Circularity Entropy Homogeneity



Fig. 1. The block diagram of the proposed methodology.

Fig. 2. Segmentation of a sample image into its corresponding segmented
binary and thermal images.

improvement in the numerical stability and accuracy of the
ML algorithm.

D. Clustering

The main purpose of the defect detection framework is to
distinguish anomaly images (i.e., images with defects) from
normal (i.e., defect-free) images based on their normalized
extracted features. To that end, an unsupervised clustering
approach was proposed in this study, given the advantages
associated with the unsupervised formulation of the problem,
as detailed in Section I. The proposed clustering approach is
an ensemble of DBSCAN (density-based spatial clustering of
applications with noise) models. DBSCAN is an unsupervised
clustering algorithm with a high ability to identify outliers
(or anomalies). Compared to other ML clustering algorithms
such as K-means and SOM, DBSCAN does not require
specifying the number of clusters beforehand. It separates the
data into one or more normal clusters besides outliers, i.e.,
data instances not belonging to any cluster. The algorithm
has the following two parameters (for more details about this
algorithm and its parameters, the reader is recommended to
refer to [15]):

1) Eps (ϵ): indicates the maximum distance between neigh-
bor points (Eps is also known as the neighborhood
search radius and it is the key parameter).

2) MinPts: indicates the minimum number of neighbor
points for a core point (it determines the minimum size
of any cluster)

According to these parameters, the data points can be catego-
rized into:

1) Core point: a point which has at least MinPts points in
its ϵ-neighborhood (core points lie inside clusters).

2) Border point: a point which is in the ϵ-neighborhood
of a core point (border points lie at the boundaries of
the clusters).

3) Noise point: a point which is neither a core point nor
a border point (noise points are also known as outlier
points or anomalies).

Different values of these two parameters lead to different
DBSCAN models. In this work, four different values of
Eps ({1, 1.5, 2, 2.5}) and four different values of MinPts
({11, 16, 21, 26}) were selected in light of the guidelines
proposed in [15] while maintaining sufficient distance among
themselves to increase the independence of their corresponding
models. Therefore, an ensemble of 16 DBSCAN models was
constructed based on a voting scheme. That is, a data point
(an image) will be considered as an outlier only if it is labeled
as such by at least nine models. This approach helps to deal
with the unlabeled data with unknown ground-truth labels. The
basic intuition is that if most models give a data point the same
label, then the ground-truth label for that data point is most
likely to be the same as the predicted label. That is because it
is less probable for most models to simultaneously mislabel a
data point, especially if these models are independent.

E. Visualization

As a postprocessing step, the extracted features were visual-
ized in a 2D space while highlighting the anomalies detected
by the DBSCAN ensemble; the main goal is to search for
spatial separability between these anomalies and the normal
data. Additionally, we aim to investigate the clustering nature



of all data in this 2D embedding, which serves as a good
approximation of the original feature space. To do so, we im-
plement t-SNE (t-distributed Stochastic Neighbor Embedding)
[16], a nonlinear dimensionality reduction algorithm. While
projecting the data into a 2D space, t-SNE attempts to preserve
the spatial arrangement of the data in their original feature
space. In other words, the clustering nature of the projected
data in the 2D space is assumed to reflect the real clustering
nature of the data in its original feature space. Therefore, this
postprocessing step can be also used to validate the results of
the DBSCAN ensemble.

III. EXPERIMENTAL RESULTS

The collected dataset consists of thermal images of melt
pools acquired by a LASERTEC 65 DED hybrid machine.
As shown in Fig. 3, this DMG MORI-manufactured machine
is equipped with a co-axial nozzle, laser/optic system, and
powder delivery. The thermal camera monitors the DED pro-
cess by capturing the temperature distribution of the melt pool
whereas the co-axial nozzle facilitates the flow of the powder
feedstock carried by argon gas. In this paper, the feedstock
material is Inconel 718 (IN718), a corrosion-resistant, high-
strength nickel-chromium superalloy. IN718 has been widely
used in critical applications, such as nuclear reactors and
aerospace engines, due to its favorable mechanical properties,
high-temperature oxidation resistance, and good weldability
[17], [18].

The total collected dataset comprises 2295 thermal images,
each of which has a standard resolution of 164 x 218. A sample
thermal image of the melt pool is provided in Fig. 4, alongside
its 3D temperature distribution and histogram. The temperature
histogram appears to be multimodal. Its first mode is at around
1200 °C, which represents the background, the second mode
is at nearly 1550 °C, representing the heat-affected nozzle tip
and boundary of the melt pool, while the last mode is at almost
1750 °C, which is the core of the melt pool.

Lastly, it is worth mentioning that the collected data are
unlabeled, without any prior knowledge of the ground-truth
labels. Like any other additive manufacturing processes, the
accurate labeling of the data collected from DED processes is
highly expensive and cumbersome.

Fig. 3. LASERTEC 65 DED hybrid machine [19].
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Fig. 4. A sample thermal image with its temperature distribution and
histogram.

A. DBSCAN clustering

As stated in the previous section, an ensemble of 16 DB-
SCAN models was implemented as the clustering algorithm.
These 16 models were constructed by choosing four different
values of both MinPts and Eps whilst the distance measure
was set as Euclidian distance. As presented in Table II, the
DBSCAN ensemble detected two structured clusters besides
some anomalies (i.e., outliers) in the feature space. Most of the
images (2228 images) were assigned to Cluster 1 while only 25
images were assigned to Cluster 2. The remaining 42 images,
not having been assigned to either cluster, were labeled as
anomalies. As most of the images were assigned to Cluster
1, it represents the normal cluster (i.e., the cluster of defect-
free images). On the other hand, Cluster 2 may correspond
to group anomalies (images with defects) instead of normal
images owing to the small size of this cluster. Therefore, it
will be investigated more below.

To visually inspect the achieved results, four sample images
from each cluster as well as four sample images from the
detected anomalies were randomly selected and displayed in
Fig. 5. Below each image, the number of models labeling that
image as such is given for each cluster. By scrutinizing the
images, detected anomalies are clearly distinctive from the
sample normal images (Cluster 1 images). These anomalies
suffer from either overheating (see the second image in the
anomalies row in Fig. 5) or underheating with distorted shapes
of their melt pools (see the remaining images in the same
row). While underheating leads to a lack of fusion which
in turn contributes to the porosity formulation, overheating
is another issue resulting in increased surface roughness and
inferior mechanical [20]. The sample images from Cluster 2
have melt pools with slightly distorted shapes or a moderate
overheating issue. Interestingly, these samples were labeled

TABLE II
RESULTS OF DBSCAN ENSEMBLE

Cluster Cluster 1 Cluster 2 Anomalies

# images 2228 25 42
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Fig. 5. Sample images from both clusters and detected anomalies (the number of votes for each cluster is shown below each image where -1 corresponds to
anomalies).

as anomalies by at least six models. Therefore, Cluster 2
is expected to represent group anomalies (i.e., anomalies
constructing a cluster among themselves) as opposed to the
point anomalies, that are not belonging to any cluster.

B. 2D visualization

As a postprocessing step, the clustering structure of thermal
images is investigated. As shown in Fig. 6, the images, rep-
resented by their extracted features in the feature space, were
projected into a 2D space using the dimensionality reduction
algorithm, t-SNE. The structure of the projected data approxi-
mates the original structure in the feature space. According to
Fig. 6, Cluster 1 and Cluster 2 are mostly separatable from
one another while anomalies lie at the boundaries of both
clusters. In addition to the visual inspection of the sample
images in Fig. 5, this also validates the obtained results where
the detected point and group anomalies (Cluster 2) are located
far away from the vast majority of normal data (Cluster 1).

IV. CONCLUSION

Despite its favorable advantages, directed energy deposition
(DED) still suffers from the in-process evolution of defects,
a key limitation impeding its widespread application. Unde-
tected defects result in final parts with inferior mechanical

properties and reduced quality. This work proposed an unsu-
pervised framework for defect detection, regardless of defect
class. This framework is based on an ensemble of DBSCAN
models applied to relevant features extracted from thermal
images of the melt pools. The unsupervised formulation of
the problem enabled a generic approach and simultaneously
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mitigated the notorious imbalanced data issue, an inherent
characteristic of defect detection. The obtained results were
validated by the visual inspection of some sample images
and investigation of a 2D approximate visualization of the
feature space. According to both, the detected anomalies
appear distinctive from the vast majority of normal images.

The proposed methodology can be utilized for (weakly)
labeling defect detection datasets in an automatic manner with-
out the need for post-process inspection techniques, known for
their high cost and time consumption. Another future research
direction is the development of an end-to-end defect detection
approach, in which the DBSCAN ensemble is applied to
features extracted by a deep learning technique, e.g., deep
autoencoders.
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