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Abstract—Despite the increasing computing power of shared
memory systems with high core counts, parallel graph processing
frameworks cannot exploit it effectively. The reason behind
this is the inherent challenges in parallel graph algorithms,
which are efficient management of dynamically created tasks
and irregular data access patterns. In this paper, we categorize
several popular design choices into three design dimensions: (i)
execution mode, (ii) data access pattern, and (iii) work activation.
We provide their high-level parallel implementations and analyze
various implementations of three representative iterative graph
algorithms by considering these design dimensions. To gain a
better understanding of design choices, we examine their impacts
on performance, communication, scalability, and work efficiency.
We also investigate the communication characteristics of the de-
sign choices on two state-of-the-art shared-memory platforms by
performing micro-architectural analysis. Our microarchitectural
analysis reveals that a topology-driven, pull-based model gives
up to 20x better performance.

Index Terms—Graph Analytics, Shared Memory Systems,
Parallel Frameworks, Performance, Communication.

I. INTRODUCTION

Graphs are widely used to represent large amounts of
unstructured data such as biological, road, social, and item-
product networks. Many applications are designed to extract
useful information from these graphs. For example, PageRank
is a popular graph analytics application used to rank web pages
and evaluate sentence similarity [1]. Traversal algorithms such
as Breadth-First Search (BFS) and Single-Source Shortest Path
(SSSP) are exercised in domains such as cognitive systems and
artificial intelligence. Furthermore, collaborative filtering algo-
rithms, namely, Stochastic Gradient Descent and Alternating
Least Squares, are used in recommendation systems [2].

Designing an efficient graph algorithm executed on various
graphs has many challenges due to the irregular computation
patterns and data access in graph analytics applications, large
graph sizes, and diversity of graph structures [3]. The underly-
ing hardware also affects performance [4]. With the advent of
big data and underlying communication requirements, these
challenges are amplified, which makes designing efficient
parallel graph algorithms more critical.

Shared memory implementations perform well when these
graphs fit into the main memory of the system [5]–[7], whereas
distributed memory settings need to amortize communication
costs effectively. However, input graphs with more than a
billion edges could not easily fit into the main memory of
current shared memory machines. Therefore, it is necessary
to understand how parallel graph applications can be imple-
mented efficiently on shared-memory systems with large data
volumes and irregular communication patterns in mind.

Due to these challenges and the popularity of graph al-
gorithms, many parallel graph processing frameworks for
shared memory systems have been proposed to lessen the
programming effort when designing an efficient graph appli-
cation [8]–[10]. These frameworks are powerful toolboxes that
provide multiple design choices to develop graph algorithms
quickly. However, designing the most performant parallel
graph algorithm is still a daunting task. Each framework
either implements a specific execution model or comes with
a set of design choices for optimization. The best set of
design decisions depends on the characteristics of the input
graph, the communication requirements, the algorithm, and
the underlying hardware. Often, an uninformed selection of
design choices results in subpar performance. Therefore, un-
derstanding the effect of these design choices on performance
and communication in graph applications is crucial.

For instance, Graphlab [8] and Pregel [10] are designed
for distributed systems, but they adopt different execution
models. Pregel uses synchronous execution, where data is
propagated across time steps with clearly separated barriers,
while Graphlab adopts asynchronous parallel execution, where
the most up-to-date information is always used. From an
information flow perspective, Galois [9] moves data in the
outgoing direction, i.e., a push, where each node performs
update operations on its outgoing neighbors. In contrast,
in [11], [12], data moves in the incoming direction, i.e., pull,
where each node gathers data from its incoming neighbors
and performs an update operation only on itself. Furthermore,
some frameworks [5], [9], [13], [14] leverage a worklist



structure to drive computations via active nodes eliminating
unnecessary processing for the nodes that will not contribute
to the end result.

In this work, we perform a systematic analysis of these
design choices on performance and communication. We imple-
ment multiple algorithms and execute on a diverse set of input
graphs to test different design parameters. More specifically,
we categorize the aforementioned popular design choices on
shared memory systems into three orthogonal design dimen-
sions: (i) execution mode, (ii) data activation pattern, and
(iii) work activation. We discuss high-level implementations
of these design decisions and implement different versions
of three representative iterative graph algorithms, namely
PageRank, Breadth-First Search, and Single-Source Shortest
Path.

To have a better understanding of the effectiveness of
different design choices, we examine their impact on perfor-
mance, communication, and scalability by using both synthetic
and real-world graphs. We also assess their work efficiency
by considering the amount of data propagation throughout
the application execution. Finally, to analyze communication
characteristics, we also perform a micro-architectural analysis
to investigate these design choices further. Our analysis reveals
the bottlenecks of different design choices and exposes the
interplay between the input graphs and the design choices.

In the rest of this paper, we first describe the basic design
choices in graph frameworks in Section II.We give the graph
application details in Section III. Experimental evaluation
setup and results are given in Section IV and Section V,
respectively. Finally, we conclude in Section VI.

II. DESIGN CHOICES IN GRAPH FRAMEWORKS

We focus on vertex-centric parallel graph processing, where
a graph is the primary data structure. A graph comprises a
set of vertices and edges in which edges connect vertices to
represent a relationship between them. For example, in a web
graph, vertices represent web pages, while edges represent the
links between web pages.

In vertex-centric graph processing, applications are paral-
lelized across vertices where the operation of a single vertex is
an indivisible task. Each vertex performs a local computation
by employing its value and the values of its neighbors. At the
end of local computations, a vertex may update its data and/or
neighbors. Such an abstraction provides easy programming. A
programmer can often think of implementing these indivisible
tasks as a serial program and pays very little attention to
the intricacies and complexities of parallelization. Instead, a
parallel graph processing framework handles parallelism for
them.

A. Preliminaries

Graphs are the first-class citizens in a graph framework. A
graph consists of vertices and edges where vertices connected
via an edge are considered neighbors. Edges can also have
directions, such as incoming edges or outgoing edges. A vertex
can perform a local computation only in its neighborhood by

iterating over its incoming and/or outgoing edges and neighbor
vertices. Without loss of generality, we can assume that a graph
framework provides a mechanism for iterating over edges and
neighbor vertices of a vertex.

In this work, we focus on sparse graphs. Due to their high
sparsity, they are often represented with compact data struc-
tures such as Compressed Sparse Row (CSR) or Compressed
Sparse Column (CSC) representations to reduce memory foot-
print. We construct graphs in our implementations with CSR
format because of its popularity, thanks to its minimal memory
consumption. In cases where both directions are needed, we
also store the transpose of the graph, which corresponds to the
Compressed Sparse Column (CSC) format. Finally, a parallel
graph processing framework may need to provide a worklist
data structure for driving computations.

B. Design Choices

Parallel graph frameworks are an excellent toolbox for
implementing graph applications without worrying about the
complexities of parallel programming. Although they make
programming easy by offering high-level functionalities, they
either adopt different execution models or offer many execu-
tion models. However, this introduces an ample design space
for optimization. A comprehensive comparison of those design
choices becomes very important to make effective design
choices. For this purpose, we classify several design choices
that are widely used in popular frameworks in three orthogonal
dimensions: (1) execution mode, (2) data access pattern, and
(3) work activation. We explain those choices in the following.

TABLE I: Summary of design choices
Design
Choices

Explanation

Execution
Mode

Synchronous Updates are only visible at the
next iteration, and barriers are
used between iterations.

Asynchronous Updates are visible immedi-
ately, and atomic operations are
used to enforce correctness.

Data Access
Pattern

Pull-Style Each vertex iterates over its in-
neighbors and update only itself

Push-Style Updates itself, and can also up-
date its out-neighbors

Work Acti-
vation

Topology-
Driven

Perform operations on all ver-
tices at every iteration

Data-Driven Perform operations on only a
list of vertices activated in the
previous iteration

The execution mode is the first design dimension, which
determines the order of computations and visibility of data.
We can categorize execution modes into synchronous mode
and asynchronous mode. In synchronous mode, all updates
computed per iteration for each vertex are only visible for
computations in the next iteration, whereas, in asynchronous
mode, all updates can be used immediately in the current
iteration. PageRank, for example, can be implemented with
synchronous mode by employing Jacobi iterations or it can be
implemented with asynchronous mode by using Gauss-Seidel
iterations [15].



The second design dimension is the data access pattern
in which we have two choices: pull and push. Pull-based
implementations iterate over incoming or outgoing edges (or
neighbors) to gather data and execute a reduction operation.
Note that this is a read-only operation. On the other hand,
in push-based implementations, neighbors are updated by
the vertex being processed. These write operations can be
implemented with atomic operations such as a compare-and-
swap (CAS) primitive.

The final design dimension is work activation, which de-
termines whether to process all vertices at every iteration or
only a subset of updated vertices. In terms of work activation,
we can classify implementations into topology-driven and
data-driven. Topology-driven implementations assume that all
vertices in the graph are active. Thus, they process each node
in every iteration without considering whether the vertices are
updated. As expected, no filtering results in more computations
and irregular memory accesses, causing inefficiencies. On the
other hand, a data-driven model keeps a list of recently up-
dated vertices, called active vertices, and only these active ver-
tices perform local computations. This optimization typically
prevents unnecessary computations and memory accesses. A
summary of different design choices is presented in I.

III. GRAPH APPLICATIONS

We implement three different graph applications: PageRank
(PR), Breadth-First Search (BFS), and Single-Source Shortest
Path (SSSP). Table II summarizes the design search space for
three orthogonal design decisions for selected applications. We
use NA, where specific combinations of design choices are not
applicable or known to be inefficient for the application under
consideration. We develop six versions of the PR algorithm by
considering three design choices: the order of computations,
data access patterns, and work activation. We implement four
versions of SSSP and BFS by considering different combi-
nations of data access patterns and work activations. In this
section, we describe the details of these implementations.

TABLE II: Design search space for selected applications.
Work

Activation
Execution

Mode
Access
Pattern PageRank SSSP

BFS

Topology
Driven

(td)

Synchronous
(syn)

Pull tp syn pull NA
Push NA NA

Asynchronous
(async)

Pull tp asyn pull tp pull
Push tp asyn push tp push

Data
Driven

(dd)

Synchronous
(syn)

Pull dd syn pull NA
Push NA NA

Asynchronous
(async)

Pull dd asyn pull dd pull
Push dd asyn push dd push

A. Pagerank (PR)

PR is a widely adopted benchmark in many frameworks
[5]–[7], [9], [12], [16] since it captures the irregular memory
access, work scheduling, and load imbalance characteristics of
many graph algorithms.

We first describe the topology-driven pull-based algorithms
for PR. In topology-driven pull algorithms, PR can be per-
formed in either synchronous mode or asynchronous mode.
Equation 1 shows the calculation of a rank in a synchronous

manner by using Power method [1]. In a synchronous imple-
mentation, it stores the current and previous vertex ranks. A
vertex calculates its new rank using ranks calculated for its
neighbors in the previous iteration. In this case, Prt+1 and
Prt are two separate data structures.

Prt+1[u] = α×
∑

u∈IN(u)

Prt[u]

Tu
+ (1− α) (1)

An asynchronous implementation of PR can be realized by
leveraging Gauss-Seidel method [15], as shown in Equation 2.
For each vertex, only the most up-to-date rank is stored; thus,
a vertex updates its rank by accessing the most recent ranks
for its neighbors. Moreover, unlike the synchronous mode,
there is no clear separation between iterations in asynchronous
execution. In Equation 2, neighbors that are already processed
and updated their PageRanks are shown with INn set, and
vertices that have the Pr values from the previous iteration
are shown with INp set. Note that, for vertex u, IN(u) is the
union of INn(u) and INp(u).

Prt+1[u] = α×

 ∑
w∈INn(u)

Prt[w]

Tw
+

∑
v∈INp(u)

Prt+1[v]

Tv

+(1−α)

(2)
We need a worklist implementation to convert topology-

driven pull-based algorithms to data-driven. For this work,
we implement a worklist as a bit-vector. In addition to
computations in Equations 1 and 2, each vertex checks its
convergence. If the last calculation of its rank exceeds a
threshold, it changes its out-neighbors’ activation status by
setting the corresponding bits.

The decision in which direction information flows dictates
the execution mode. Synchronous and asynchronous modes
can implement pull-based methods, whereas push-based meth-
ods can only be performed by asynchronous mode. Since a
push-based implementation updates its outgoing neighbors’
values, many vertices can try to update the same neighbor’s
value simultaneously when their computations overlap. We im-
plement a push-based PR using the PR formulation described
in [17]. For each vertex, we store a PR score and a residual. A
vertex being processed updates uses the residual to calculate its
new rank and updates its outgoing neighbors’ residuals. The
residual data of each vertex is transferred in each iteration
instead of its score. After each node sends its residual value
to its outgoing neighbors, the residual is set to zero.

B. Single-Source Shortest Path (SSSP)

SSSP aims to find a minimum cost path from a single
source node to all other nodes in a weighted directed graph. In
our SSSP implementations, we modify the Bellman-Ford [18]
algorithm due to its adaptability to different data access
patterns.

We implement four different versions of the SSSP algorithm
by considering two design dimensions with different data
access pattern and work activation. SSSP is implemented
in only asynchronous mode since their synchronous mode



implementations are expected to show poor performance [19],
[20].

In topology driven pull-based implementations, shown in
Equation 3, a node updates its distance by reading data (i.e.,
pulling) from its in-neighbors.

dist[v] = min

(
dist[v], min

u∈IN(v)
(dist[u] + weight(u → v)

)
(3)

On the other hand, in push-based variants, data flows in OUT
direction. A node updates its outgoing neighbor’s distances by
transferring (i.e., pushing) its distance value to its outgoing
neighbors. Push-based applications usually generate more
frequent updates. Note that updates to outgoing neighbors need
to be executed atomically.

dist[v] = min (dist[v], dist[u] + weight(u → v)) , ∀v ∈ OUT (u) (4)

To obtain data-driven implementations, SSSP must be
slightly modified. As in PR, we use a bit-vector data structure
to implement a worklist. If a vertex updates its distance, it
sets the bits of its outgoing neighbors. In the push version,
setting outgoing neighbor’s bit and distance updates can be
combined.

C. Breadth-First Search (BFS)

In Breadth-First Search (BFS), the goal is to find the
breadth-first order traversal of the graph vertices. Similar to
SSSP, our BFS implementations follow a similar logic to
Bellman-Ford [18]. However, in BFS, edges in a graph do
not have associated data (i.e., weight in SSSP).

We implement all different combinations of data access
patterns and work activation in asynchronous mode. In a pull-
based method, a vertex executes a reduction over data of in-
neighbors and finds the closest node, then updates its data
accordingly. On the other hand, in a push-based version of
BFS, it updates the distances of its out-neighbors atomically.

IV. EXPERIMENTAL SETUP

A. Evaluation Platforms and Methodology

We perform experiments on two dual-socket server ma-
chines, Haswell and Skylake. Both of them have 12 cores
per socket. However, memory hierarchy differs. Haswell has
smaller cache sizes, 32 KB, 256KB, and 30MB caches for L1,
L2, and L3 respectively. Skylake has 32KB, 1MB, and 19KB
L1, L2, and L3 cache respectively. Furthermore, Skylake has
non-inclusive last-level caches, while Haswell has an inclusive
last-level cache.

We implement all applications in C++ and OpenMP by
modifying the graph structure provided in GAPS [12]. We
compile them using g++-4.8.5 with -O3 optimization level on
CentOS Linux 7. During the experiments, we bind each thread
to separate cores. If the number of threads running exceeds
the number of cores in a single socket, we allocate the first
half of the threads to the cores on the first socket and the
remaining threads to the cores on the second socket. In the
latter case, we also change the default memory interleaving
policy to interleave all with numactl tool. The execution times
reported are the average values of 10 runs when Turbo Boost

and Hyper-threading are disabled, and each execution time
only includes time for graph application and does not include
time for reading the input files and constructing the graph in
memory.

Input graphs are stored in the Compressed Sparse Row
(CSR) format. For each vertex, we store their in-neighbors and
out-neighbors in two different structures to improve locality.
We use Likwid 4.3.4 [21] to collect performance counters for
micro-architectural analysis.

B. Input Graphs

We use five large real-world graphs and generate two
synthetic graphs to evaluate the impact of different design
choices on the performance of the graph algorithms. Table
III gives input graph details. Kronecker (kron) [12] and
RMAT [22] graphs are generated synthetically with scale factor
25 and edge factor 16 by using graph converters available in
GAP [12] and Ligra [5] suites, respectively. Pay-Level Domain
(pld) [23], First-Level Subdomain (sd1-arc) [24], and sk-2005
(sk) [25] are hyperlink graphs which exhibit a power-law
behavior. The first two graphs are extracted by the Common
Crawl 2012 web corpus, and the third is obtained by the
2005 crawl of the .sk domain. We use Twitter (tw) graph to
represent a social network. Unlike other graphs used, USA
Road (road) [26] is a low-degree and a high-diameter graph.
All input graphs are directed, and duplicate edges are removed.
We use the abbreviations for the names of the graphs in all
figures, which can be found in Table III.

TABLE III: Graphs used for evaluation.
Graphs Abbr. Edges

(Billions)
Vertices (Mil-
lions)

USA Road road 0.06 B 23.95 M
RMAT rmat 0.54 B 33.55 M
Kronecker kron 0.54 B 33.55 M
Pay-Level-Domain pld 0.62 B 42.89 M
Twitter tw 1.47 B 61.58 M
sk-2005 sk 1.93 B 50.64 M
First-Level Domain sd1 1.94 B 94.95 M

V. EXPERIMENTAL RESULTS

In this section, we analyze and compare the performance of
different design choices. First, we analyze runtime and scal-
ability behavior. Secondly, we discuss the work efficiency of
various implementations and their effect on performance. Fi-
nally, we provide a microarchitectural analysis of the Haswell
and Skylake systems.

A. Runtime

Figures. 1 and 2 show the runtime of various implementa-
tions of PR, BFS, and SSSP by considering the different design
choices on two systems.

For PR application (Figures. 1a and 1b), the data-driven
implementations (dd) perform better than their topology-driven
alternatives for all graphs except the road. In contrast, for the
road graph, we observe that topology-driven implementation
(td) is the best performer.
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Fig. 1: Normalized execution times with 24 threads for PR application. The runtimes are normalized to dd asyn push
implementation’s execution time. Lower is better.

Specifically, we can group these graphs into three cate-
gories: (1) pld, tw, sd1, rmat (2) sk, and (3) road. A data-
driven asynchronous push-based model is the fastest for the
first group, while its pull-based counterpart gives the second-
highest performance. For the sk graph, the two highest per-
formances are delivered by data-driven pull-based models,
whereas their push-based alternatives, especially a topology-
driven one, perform very poorly. Therefore, pull-based meth-
ods (which are read-heavy) are significantly faster because
read operations are much cheaper than synchronization. Fur-
thermore, sk graph has a higher skew regarding the degree
distribution of incoming edges.

Figure 2a and 2b show the performance of 4 different
implementations of BFS and SSSP using all the cores in the
system. Our experiments showed that runtime characteristics
BFS and SSSP are similar on both Haswell and Skylake
systems. For this reason, we only show the results for the
Skylake system.

We observe that for BFS and SSSP, the data-driven imple-
mentations outperform topology-driven implementations for
all graphs except the road. Note that in BFS and SSSP, the
worklists start with a single active vertex (i.e., source vertex)
and gradually increase in size up to a certain point. Therefore,
topology-driven implementations perform many extra tasks.
On the other hand, for the road graph, data-driven implemen-
tation performs poorly due to a lack of tasks to execute in
parallel, as we will discuss shortly.

For BFS and SSSP, data propagation speed is also essential.

Push-based methods for data-driven implementations outper-
form pull-based methods in data-driven implementation. In
this case, push-based methods propagate the updates to the
outgoing neighbors as soon as possible, while in the pull-
based method, a vertex needs to wait until it is scheduled for
execution to receive the most up-to-date value. Increasing the
speed of update propagation provides significant benefits and
improves convergence; thus, the overhead of synchronization
is hidden.

Overall, data-driven methods outperform their topology-
driven alternatives. Similar to PR, the data-driven push-based
method runs fastest, and the data-driven pull-based delivers the
second-best performance for all graphs except for the road
graph. For the road graph, topology-driven implementations
improve performance compared to data-driven ones. In terms
of the worst performance, the topology-driven push-based
method gives the worst performance for pld, tw, sd1, and sk,,
whereas its pull-based variant delivers the worst performance
for rmat and kron.

B. Work Efficiency

Work efficiency is a significant factor in analyzing the
impact of different design choices on the performance of
algorithms. We define work efficiency as the number of useful
updates propagated during execution. This metric can be used
as a proxy for both the number of tasks that need execution
and the convergence speed.
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For PR as shown in Figure 3, we observe significant gains
from utilizing a worklist. The number of updates that need to
be propagated decreases significantly when we move to data-
driven implementations. The second factor in work efficiency
is the speed of update propagation. Asynchronous and push-
based implementations can leverage faster propagation to get
better work efficiency. For PR, work efficiency pays off, as we
have seen in Figures 1a and 1b, data-driven push algorithms
are significantly faster.

BFS and SSSP significantly differ in their interactions with
the worklist. As stated, these applications start with a single
active vertex and gradually increase their worklist size. There-
fore, the difference in work efficiency between a topology-
driven and data-driven implementation is very significant.For
example, we are switching to push-based implementations

with topology-driven yields 48x better efficiency, while for
data-driven, we can obtain 2.4x.

VI. CONCLUSIONS

In this work, we systematically analyzed popular design
choices for parallel graph applications using three represen-
tative iterative graph algorithms, namely PageRank, Breadth-
First Search, and Single-Source Shortest Path. We have an-
alyzed their scalability, work efficiency, and communication
behavior. Unlike previous work, our methodology is inde-
pendent of specific benchmark suites and graph frameworks.
Our analysis showed that there is no one-fits-all solution.
However, it points to the importance of optimizing on-chip
communication latency and throughput.
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