
TESTING CONNECTIVITY TO SAFE LOCATIONS AFTER A

DISASTER USING DRONES

by

GÜLNIHAL ÖZCAN

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University

December 2023

Gülnihal Özcan 2023 ©

All Rights Reserved

iv

ABSTRACT

TESTING CONNECTIVITY TO SAFE LOCATIONS

AFTER A DISASTER USING DRONES

GÜLNIHAL ÖZCAN

INDUSTRIAL ENGINEERING M.S. THESIS, DECEMBER 2023

Thesis Supervisor: Prof. Dr. Tonguç Ünlüyurt

Keywords: Disaster Management, Drone Technology, Post-Disaster Recovery,

Connectivity Analysis, Safe Route Identification, Simulated Annealing, Sequential

Testing

In this thesis, we develop a model in order to evaluate post-disaster infrastructure

using drones. The study focuses on optimizing drone routes for assessing the

connectivity of population centers to safe locations. The routes consist of elements

that may fail including bridges, viaducts and road segments. We solve the resulting

model using Simulated Annealing approach. With the right parameter settings, the

method provides reasonable results in terms of speed and efficiency in completing the

assessments. The research explores scenarios involving drones with varied battery

constraints and assesses single-route efficiency. In order to assess the effectiveness of

the Simulated Annealing approach, we compare the results with Local Search by

considering practical constraints like battery life and recharging needs. This study

introduces a relevant framework to disaster management and emergency response

strategies, offering a scalable framework for rapid infrastructure evaluation in crisis

situations.

v

ÖZET

AFET SONRASINDA GÜVENLİ KONUMLARA

BAĞLANTININ DRON KULLANILARAK TEST

EDİLMESİ

GÜLNIHAL ÖZCAN

ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, ARALIK 2023

Tez Danışmanı: Prof. Dr. Tonguç Ünlüyurt

Anahtar Kelimeler: Afet Yönetimi, Drone Teknolojisi, Afet Sonrası İyileşme, Bağlantı

Analizi, Güvenli Rota Tanımlama, Simüle Tavlama, Ardışık Test

Bu tezde, droneları kullanarak afet sonrası altyapıyı değerlendirmek için bir model

geliştiriyoruz. Çalışma, nüfus merkezlerinin güvenli konumlara bağlanabilirliğini

değerlendirmek için drone rotalarının optimize edilmesine odaklanmaktadır. Rotalar,

köprüler, viyadükler ve yol segmentleri gibi arızalanabilecek unsurlardan

oluşmaktadır. Ortaya çıkan modeli Benzetilmiş Tavlama yaklaşımı kullanarak

çözüyoruz. Doğru parametre ayarları ile yöntem, değerlendirmelerin

tamamlanmasında hız ve verimlilik açısından makul sonuçlar vermektedir. Araştırma,

çeşitli batarya kısıtlamalarına sahip dronları içeren senaryoları inceliyor ve tek rota

verimliliğini değerlendiriyor. Benzetimli Tavlama yaklaşımının etkinliğini

değerlendirmek için, pil ömrü ve şarj ihtiyaçları gibi pratik kısıtlamaları göz önünde

bulundurarak sonuçları Yerel Arama ile karşılaştırıyoruz. Bu çalışma, kriz

durumlarında hızlı altyapı değerlendirmesi için ölçeklenebilir bir çerçeve sunarak afet

yönetimi ve acil durum müdahale stratejilerine uygun bir çerçeve sunmaktadır.

vi

ACKNOWLEDGEMENTS

I extend my deepest gratitude to my advisor, Prof. Tonguç Ünlüyurt, whose

guidance, patience, and wisdom were invaluable throughout this challenging journey.

His support and belief in me have been instrumental, and I am confident that they will

continue to inspire my future endeavors.

I am also grateful to Assist. Prof. Tonguç Yavuz for being a member of my thesis

jury. Special thanks go to Assoc. Prof. Kemal Kılıç, whose courses at Sabancı Univer-

sity have been exceptionally enriching for me and who honored me by participating in

my jury as well. I would also like to thank all my other professors at Bilkent University

and Sabancı University who always inspired me throughout this process and made me

feel how lucky I was to study at such valuable universities.

My heartfelt thanks go to my dear brother, Alperen, and my precious friend,

Gökçen, who stood closest to me during these times. They have always been the first

hand to reach out when I was about to fall, even in the most difficult moments. Also, to

my beloved parents, Ruhi Özcan and Bilgehan Özcan, whose unwavering support has

been my stronghold. They have never withheld their support and have shown respect

and faith in me and my decisions. I also hold dear the memory of Nazlı Özkalp, whose

spirit and strength continue to be a guiding light in my life. I can never leave out my

friends who have embraced me with love and warmth in Turkey and all over the world,

especially Hatice, Irem, Nihan, Fatma, Gökhan and all my dears whose names I can’t

even begin to include.

“A person lives as long as they dream in this world.” - Yahya Kemal Beyatli

May we always find the excitement to dream and the strength to strive for it.

vii

This thesis is dedicated to the memory of those who lost their lives in the tragic earth-

quake on February 6, 2023, in my hometown Osmaniye and the surrounding region. I

wish that such disasters are prevented in our beautiful beloved country Turkey and the

world and that we are better prepared to minimize the impact of such disasters.

viii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZET . v

ACKNOWLEDGEMENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES . x

LIST OF ACRONYMS/ABBREVIATIONS . xi

1. INTRODUCTION AND LITERATURE REVIEW 1

2. PROBLEM DEFINITION AND MATHEMATICAL MODEL 4

2.1. General Problem Definition and Objective 4

2.2. Computing Expected Time . 6

2.2.1. Without Charging Capacity . 6

2.2.2. With Charging Capacity . 7

2.2.3. Approximate Expected Cost by Simulation 9

2.3. Example . 11

3. SOLUTION METHODOLOGY . 16

3.1. Brute Force Approach . 16

3.2. Local Search . 17

3.3. Simulated Annealing . 24

4. EXPERIMENTS AND RESULTS . 28

4.1. Data Generation . 28

4.2. Parameter Selection . 30

4.3. Results . 32

5. CONCLUSION . 35

REFERENCES . 37

APPENDIX A: Algorithms and Results . 40

ix

LIST OF FIGURES

Figure 2.1. Example - all possible roads. 12

Figure 2.2. Example - single road G to check. 12

Figure 2.3. Example - sequences with charging station in each point. 13

Figure 4.1. Data set generation visualization 30

x

LIST OF TABLES

Table 4.1. Parameter selection for Simulated Annealing - shortened. 31

Table 4.2. Algorithm comparison without charging case - Prob Type 1. 32

Table 4.3. Algorithm comparison without charging case - Prob Type 2. 32

Table 4.4. Algorithm comparison without charging case - Prob Type 3. 33

Table 4.5. Algorithm comparison with charging case - Prob Type 1. 33

Table 4.6. Algorithm comparison with charging case - Prob Type 2. 34

Table 4.7. Algorithm comparison with charging case - Prob Type 3. 34

Table A.1. Parameter selection for Simulated Annealing - extended. 42

xi

LIST OF ACRONYMS/ABBREVIATIONS

UAV Unmanned Aerial Vehicles

SA Simulated Annealing

LS Local Search

1

1. INTRODUCTION AND LITERATURE REVIEW

Following natural disasters such as earthquakes, hurricanes, floods or fires, it may

be necessary to evacuate many people to safe locations. For this reason, the structural

integrity of bridges, viaducts and roads often becomes a critical concern. These vital

transportation infrastructures play a crucial role in connecting communities and facili-

tating the flow of goods and services. However, the impact of these catastrophic events

can cause significant damage and jeopardize the safety of bridge structures, viaducts

and road structures in general. It is therefore crucial to quickly and efficiently assess

the condition and functionality of these to ensure the safety of both rescue teams and

the affected population. The rapid identification of safe routes for both human safety

and the transportation of rescue and relief teams enables rapid post-disaster planning

and coordination immediately after these events [1].

Traditionally, infrastructure assessment in post-disaster scenarios relies on man-

ual inspections, often constrained by accessibility issues, security risks, and time con-

straints. The extensive nature of the damage and the urgency for information increase

these challenges further, making traditional methods less feasible. Recent advances in

drone technology offer a new solution to these challenges [2]. Drones equipped with

advanced imaging and sensing technologies can quickly and safely access and assess

damaged infrastructure and provide critical data in real time [3]. This capability is

particularly useful for inspecting areas that are otherwise inaccessible or dangerous for

human inspectors [4].

This thesis aims to develop a comprehensive framework for drone-based assess-

ment of bridges, viaducts, and road integrity in general following earthquakes. The

focus is on minimizing the expected time spent for determining whether a given route

is operating or not by utilizing the efficiency of drones in collecting and analyzing

structural data to facilitate rapid decision making for emergency response and subse-

quent restoration efforts. Chowdhury et al. introduces insights into the optimization of

drone navigation paths for post-disaster inspection, including minimizing post-disaster

2

inspection costs and taking into account factors specific to the drone trajectory. The

research proposes a mixed-integer linear programming model for a Heterogeneous Fixed

Fleet Drone Routing problem (HFFDRP) to design a safe, reliable, and cost-efficient

disaster-affected region inspection plan using battery-driven drones [5]. Additionally,

Pimentel et al. provides insights into drone usage for agricultural optimization, with

broader implications for route planning in various scenarios, including disaster man-

agement. The dissertation focuses on finding efficient routes for agricultural drones,

considering factors like terrain elevation and obstacles [6].

In general terms, in this thesis we discussed the use of drones in post-disaster

processes and combined this process with Sequential Testing literature and aimed to

develop models that incorporate the use of drones with and without battery restrictions.

In addition to the above-mentioned situations, it is aimed to make the fastest and safest

path integrity decision in the post-disaster depending on the pre-disaster analysis to

be made rather than determining a path.

The problem definition is an extension of the very well studied Sequential Test-

ing problem. In general terms, the Sequential Testing problem tries to find out the

correct state (functionality) of a system with the minimum expected cost. The system

consists of different components and the state of the system depends on the state of

the components through a defined function. There is an associated cost of learning

the functionality of the individual components and the probability that a component

functions is also known. Then the goal is to determine a strategy that describes the

which component to test depending on the states of previously tested components while

minimizing the expected cost. More information about the Sequential Testing problem

can be found in [7].

In this thesis, the connectivity is defined as all the elements connecting the pop-

ulation center and the safe location being operational. So this corresponds to a simple

series system where the system functions if and only if all the components function.

This is essentially the simplest system that one can consider and it has been studied in

the literature since 1960’s (see e.g. [8]). On the other hand, the simple series system is

3

the building block in more complicated systems such as k-out-of-n systems [9], series

parallel systems [10] and the results obtained for series systems can be adapted for

these systems. In addition, others models have been proposed with different problem

settings, incorporating different assumptions regarding feasibility, different cost func-

tions and different types of testing policies. For instance, the possibility of performing

some tests as a batch is considered in [11].

In the problem studied in this thesis, the cost correspond to the time it takes to

find out whether a route is safe or not. There are two factors that makes this problem

different that the Sequential Testing problem is that there are two types of costs (time

spent) incurred. One is for the drone to go from one location to another. So this

duration depends on the order that locations are visited. So this is different than

the standard sequential testing problem where the testing costs are fixed apriori. This

version of the problem has also been studied in the literature. In [12], the authors show

that the problem is NP-complete and propose exact and heuristic methods to solve the

problem. The second one is the duration that the drone spends at each location. This

latter one is similar to the case in Sequential testing problem. The other is that the

drones have limited power and this needs to be taken into consideration. Various

frameworks can be considered for modeling this important factor. In particular, we

consider two different scenarios for this. In one of them, we assume the drone has

enough energy to complete the route. In the other one, we assume that the drone will

spend sometime to recharge if it does not have enough energy to go to the next location

in the solution.

4

2. PROBLEM DEFINITION AND MATHEMATICAL

MODEL

In this chapter, the problem of testing the connectivity of two points on a path

by using a drone will be described in detail. The whole section will be divided into two

parts according to whether the drone has charging restrictions or not. We will provide

illustrative examples and describe the computation of the expected cost.

2.1. General Problem Definition and Objective

In the aftermath of a disaster, it becomes essential to determine the feasibility

of moving from one location to another. As mentioned in Chapter 1, our primary

focus is on scenarios following seismic events, particularly the feasibility of getting

from a starting point X representing population centers to a point Y representing a

predetermined safe location. This research includes routes that are critical for logistical

operations or routes that take populations to safe areas. The aim of this thesis is to

utilize UAVs, commonly known as drones, to accelerate this assessment, thus enabling

rapid assessment of specified routes or networks.

This study envisions two different scenarios: one where the drone operates with-

out limitations on battery capacity, and another where battery capacity constraints

require periodic recharging at the current location in case the power reserve is insuf-

ficient to proceed to the next assessment point. The route or network under study is

assumed to consist of various way points, which may include elements such as roads,

bridges or viaducts. These components are an integral part of the overall analysis

as they potentially affect the drone’s flight path and the feasibility of reaching the

designated endpoints.

The goal is to find out if it is possible to safely get from X to Y in the shortest

expected time. The solution is a permutation of the elements that make up the route

5

from the population center to the safe location. And the order of elements is the order

that the drone will inspect these elements to figure out whether they are functional

or not. If all the elements are functional the route is assumed to be safe, otherwise

the current route is not safe and one has to test other routes to transfer people to safe

locations.

Parameters:

• Let G be the set of points representing rode segments, bridges, viaducts etc on

the route.

• Let si be the point i in the given sequence based on the route.

• Let pi be the probability of point si being functional.

• Let ti be spending time to check if point si is working or not.

• Let wi be the time required by the drone to go from the starting point X to point

si.

An important point for the problem that needs to be mentioned here is how the

probabilities (pi) and inspection times (ti) can be considered as parameters. As it

will be mentioned later in the Data Generation part (section 4.1), the reason why the

probabilities are fixed is that especially elements such as bridges and viaducts have

a lifetime that is determined from the moment they are built, and at the same time,

depending on their age, the damage they have endured, a certain probabilistic value

can be assigned to describe the post-disaster situation depending on these analyses.

For this work, we assume that the status of the different elements on the route are

independent from each other.

For the ti value, where the drone tests the viaduct road integrity and bridge

condition, it can make a comparison between before and after the disaster by using

image processing based on the pre-analysis process. The time it can perform can be

expressed in an estimated fixed value depending on the capacity of the drone, the area

it is testing and other environmental conditions.

6

2.2. Computing Expected Time

The objective is to determine the optimal path for a drone to navigate from a

starting point X to a safe point Y through a set of intermediate points G, where the

drone has unlimited or limited battery life.

2.2.1. Without Charging Capacity

The parameters are stated in the section 2.1 above. The sequence S of length n

is represented as S = [X, sπ(1), sπ(2), . . . , sπ(n), Y] where X is the starting point and Y

is the last destination. For each sequence S, the arrangement of the points can change,

but X and Y are fixed. sπ(i) represents the i-th intermediate point in the journey as

ordered by the permutation π.

The expected time Es to traverse the path S is given by:

Es =
n∑

i=1

(
|wπ(i) − wπ(i−1)|+ tπ(i)

)
×

i−1∏
j=1

pπ(j) (2.1)

Where;

• |wπ(i) − wπ(i−1)| represents the distance (in terms of time) traveled from point

i− 1 to point i. For i = 1. this would be the time from the starting point X to

sπ(1).

• tπ(i) is the time spent to check if i-th point in the sequence is operational.

•
∏i−1

j=1 pπ(j) is the product term to represent the cumulative probability of all points

until the i-th point being operational in the given order.

Given the route and the properties of each point, the optimization problem can

7

be represented as:

Minimize Es =
n∑

i=1

(
|wπ(i) − wπ(i−1)|+ tπ(i)

)
×

i−1∏
j=1

pπ(j)

Subject to sπ(i) ∈ N, ∀i = 1, 2, . . . , n π is a permutation of 1, 2, . . . , n

This optimization problem seeks the sequence S that minimizes the expected

time Es for traversing the route.

2.2.2. With Charging Capacity

When considering a drone with limited charging capacity, we need to take into

account the energy consumption for traveling between points and the time and cost as-

sociated with recharging the battery. This introduces an additional layer of complexity

to our optimization problem.

Definitions:

• Let B be the total battery capacity of the drone.

• Let bi represent the battery consumption to travel from point si−1 to point si in

terms of time and plus ti the time spent to check the point si.

• Let C denote the charging cost for the drone, incorporating both the time and

monetary cost of recharging.

• Let ci indicate whether charging is required after reaching point si (1 if charging

is needed, 0 otherwise).

Sequence Representation The sequence S of length n, including charging consid-

erations, is represented as S = [X, sπ(1), sπ(2), . . . , sπ(n), Y] with the same constraints

8

as before, but now including battery considerations.

Modified Expected Time Calculation The expected time Es to traverse the path

S, considering charging needs, is given by:

Es =
n∑

i=1

(
|wπ(i) − wπ(i−1)|+ tπ(i) + ci × C

)
×

i−1∏
j=1

pπ(j) (2.2)

Where;

• ci is determined based on the remaining battery after reaching point si. If the

remaining battery B−
∑i

k=1 bk is less than or equal to bi+1, then ci = 1; otherwise,

ci = 0. And bi+1 calculation can be made as follows: bi+1 = |w(i+1) − w(i)|+ ti+1.

• C is added to the cost whenever charging is required (i.e., ci = 1).

Optimization Problem with Charging Capacity Given the route, the properties

of each point, and the drone’s limited battery capacity, the optimization problem can

be represented as:

Minimize Es =
n∑

i=1

(
|wπ(i) − wπ(i−1)|+ tπ(i) + ci × C

)
×

i∏
j=1

pπ(j)

Subject to sπ(i) ∈ N, ∀i = 1, 2, . . . , n π is a permutation of 1, 2, . . . , n

0 ≤ pi ≤ 1, ∀i

ti, wi, bi ≥ 0, ∀i

B ≥ 0 (total battery capacity)

9

This revised optimization problem seeks the sequence S that minimizes the ex-

pected time Es to traverse the route, while also taking into account the limitations of

the drone’s battery life and the associated recharging costs.

2.2.3. Approximate Expected Cost by Simulation

In this thesis, we deal with a single line and represent it with points on the route

and in this context we calculate each permutational expected cost. Here, the cost is

defined as the time required to test the route with given sequence. This approach, pri-

marily focused on permutational expected costs, is sufficient for the current analysis.

However, it can be expanded to the case where multiple routes are considered simulta-

neously or in a different context. In these cases, it may not be possible to come up with

a closed form expression that gives the total expected cost of a particular solution. In

such a case, we can utilize a simulation approach to approximate the expected cost. In

the rest of this subsection below, the methodology for approximating expected costs

through simulation will be explained.

Expected Time Calculation for a Single Repetition

For a single repetition of the given sequence S, the expected time Es is calculated

as follows:

Es =
n∑

i=1

(
wsi − wsi−1

+ tsi
)

(2.3)

Where:

• the relationship between a random number generated and the probability indi-

cating whether it is working or not is checked. If the random number generated

is greater than the probability rand() > pi, it is assumed that the node is not

10

working and the test stops at that point, otherwise the drone moves to the next

node.

• wsi −wsi−1
represents the distance (in terms of time) traveled from point si−1 to

point si.

• tsi is the time taken to check point si.

Total Expected Time

For the number of repetitions R, the total expected time ET to traverse the given

sequence S is:

ET =
1

R

R∑
r=1

Es,r (2.4)

Where Es,r is the expected time for repetition r of sequence S.

To account for the variability, method of calculating the expected time using

multiple iterations is employed. The number of iterations, denoted as R, is given as

input so that different calculations and scenarios can be taken into account. In addition,

randomness is also incorporated into the calculation, thus enhancing the robustness.

In each iteration of the expected duration calculation, probability is integrated

as a key factor. In the sequence, the probability of a given point functioning or not

functioning is taken as a parameter, i.e. as data. A uniform random number between 0

and 1 is then generated for each point in the sequence and this random number is then

compared with the operational probability of the corresponding point. If the random

number is less than or equal to the point’s operational probability, the test is considered

successful, which means that the point is working. Conversely, if the random number

exceeds the probability, the point is considered to be not operational and the test is

terminated at that point.

By repeating this process R times, each iteration giving a potential scenario

11

of operational and non-operational points, it is possible to simulate a wide range of

outcomes. The average of these results gives us the simulated expected duration.

This methodology aligns with the principles of Monte Carlo simulation, a widely used

technique for understanding the impact of risk and uncertainty in forecasting and

modeling scenarios. Through this Monte Carlo simulation approach, we are able to

effectively estimate the expected time, taking into account the probabilistic nature of

point functionality and the inherent randomness of the system.

Optimization Problem

Given the route and the properties of each point, the optimization problem can

be represented as:

Minimize ET

Subject to si ∈ N, ∀i

This optimization problem seeks the sequence S that minimizes the expected

time ET for traversing the route.

2.3. Example

Let’s assume that there is a starting point X, last point which is represented as

safe point Y and there are points in between. We need to verify if the points in between

are functioning/working or not to be able to determine if it is safe to go from X to Y

for a certain route. The decision should be done to give a sequence which minimizes

the checking the situation of the route in terms of time.

To be more specific, we can actually support this with real-life examples. For

example, let’s say that there is an earthquake. This means that in the aftermath of

12

the earthquake, people have gathered at a certain first meeting point. However, in case

of an earthquake, there are predetermined final safe points outside the initial meeting

points, even if they differ for cities, countries and regions. The important issue here is

which route a group of people can take from point X to point Y, which is the main safe

point. This decision must be made as quickly as possible and the evacuation process

must begin.

Different routing examples that can be used to go from one point to another point

as seen in this Figure 4.1. For example, there can be 5 different ways to go from point

X to point Y and two of them stated in the figure below.

Figure 2.1. Example - all possible roads.

The main point discussed in this thesis is to take one of the existing routes, which

is called route G, from X to Y and determine as quickly as possible whether it works

or not. Therefore, the drone departing from point X should test whether this given

route G, which contains 4 different points, is suitable or not. In this example, let’s

assume that all 4 points are bridges, as seen in Figure 4.1. The main question is in

what sequential order the drone will test this system after taking off and how it can

quickly decide whether route G works or not.

Figure 2.2. Example - single road G to check.

For this reason, the sequential testing approach mentioned in chapter 1 of the

13

literature will be used. We will discuss in what order this test should be conducted

and the results given, considering the probabilities of these bridges being destroyed or

not, in order to minimize the time spent.

As we discussed in the previous sections 2.1 and 2.2, this study focuses on two

different cases. One is the case where the drone does not have a battery capacity

restriction and the battery is not taken into account, and the other is the case where

the battery is taken into account and the drone operates with a certain capacity of

battery and can be recharged when necessary, which is reflected in the total cost. In

this second case, it is assumed that there are charging points at each of the points to

be tested and that the drone can charge itself if necessary based on the condition we

defined.

Different routing examples that can be used to go from one point to another point

as seen in this Figure 4.1. For example, there can be 5 different ways to go from point

X to point Y and two of them stated in the figure below.

Figure 2.3. Example - sequences with charging station in each point.

In the aftermath of a disaster, such as an earthquake, it becomes crucial to assess

the safety of routes for evacuation or relief efforts. We consider a simplified model for

such a scenario, where a drone is tasked with verifying the safety of a route from a

starting point X to a safe endpoint Y , with intermediate checkpoints. For our example,

14

we define the sequence of points as [X, 1, 2, 3, 4, Y].

Given this setup, there are 4! (24) possible permutations of the points (1, 2, 3,

4). These permutations represent different routes the drone could follow to assess the

safety of the route.

Example of Expected Cost Calculation with Charging Capacity

Let’s consider the sequence [X, 1, 3, 4, 2, Y] as an example. To calculate the

expected cost for this sequence, with the consideration of the drone’s charging capacity,

we use the following parameters and formulation as explained in the previous sub

sections:

• B - total battery capacity of the drone: B = 30

• bi - battery consumption to travel from point si−1 to point si and plus ti to check

the point if it is working or not time-wise.

• C - charging cost for the drone, incorporating both time and monetary cost:

C = 15

• ci - indicator whether charging is required after reaching point si (1 if yes, 0

otherwise).

• pi - probability of point si being operational: p = [0.3, 0.5, 0.4, 0.2]

• ti - time to check if point si is operational: t = [5, 8, 3, 4]

• wi - time to travel from the starting point X to point si: w = [12, 15, 17, 23]

The expected time Es for the sequence [X, 1, 3, 4, 2, Y] is calculated as (by using

the formula 2.2):

E[1,3,4,2] =
4∑

i=1

(
|wπ(i) − wπ(i−1)|+ tπ(i) + ci × C

)
×

i∏
j=1

pπ(j) (2.5)

15

The expected cost for this example can be calculated as follows:

Es = (12 + 5) + ((|12 − 17| + 3) + 15)(0.3) + (|17 − 23| + 4)(0.3 ∗ 0.4)+ (|23 −

15|+ 8)(0.3 ∗ 0.4 ∗ 0.2) = 25.484

Through this calculation, we can determine the most efficient sequence to follow

for the drone, considering both the need to verify the safety of the route and the

limitations of the drone’s battery life.

Additional important aspect that needs to be mentioned as a note is that when

considering all these calculations, we never actually think about going from the last

point to point Y, it is ignored. Because at the last point we are actually done testing

whether the system works in general or not. For this reason, it is important to assume

that we go from the starting point to the first point and then travel to the other points

in the given sequence but not to the final destination.

16

3. SOLUTION METHODOLOGY

In this section, we summarize the algorithms used to obtain the sequence in which

the drone test can be performed in the shortest time. Two strategies were considered:

Local Search and Simulated Annealing. Both strategies have been applied to scenarios

without and with consideration of battery. In addition, the brute force approach is

also mentioned.

3.1. Brute Force Approach

The Brute Force Approach involves generating all possible sequence permutations

of the points on the route. For each permutation, the algorithm calculates the total

time cost associated with testing the points in that sequence. This time cost includes

the travel time between points and the time spent testing each point. After evaluating

all permutations, the algorithm selects the sequence with the minimum total time cost.

The primary challenge of this approach is the computational complexity. The

number of permutations increases exponentially with the number of points in the route

n! for n points, which makes this method impractical for larger routes due to the

exponential growth in computation time and resource requirements [13].

Despite its limitations, the Brute Force Approach can be valuable in scenarios

with a small number of points, where exhaustive enumeration is possible. It provides

a benchmark for evaluating the effectiveness of heuristic methods such as simulated

annealing and local search.

• Initialization: The algorithm starts by initializing variables to store the mini-

mum cost found and the corresponding sequence so far.

• Permutation Generation: It then generates each possible permutation of the

points in the route and add them into the list as sequences.

• Cost Calculation: For each permutation, the algorithm calculates the total

17

Algorithm 1 Brute Force Approach Algorithm

1: Initialize minCost to infinity

2: Initialize bestSequence to an empty sequence

3: Calculate all possible n! many sequences with points in G as permSequence list

4: for each permSequence do

5: currentCost ← ExpectedCostCalculation(permSequence)

6: if currentCost < minCost then

7: minCost ← currentCost

8: bestSequence ← permSequence

9: end if

10: end for

time cost by adding up the times between consecutive points and the checking

times at each point.

• Comparison and Update: If the total time cost for a permutation is less than

the current minimum, the algorithm updates the minimum cost and the best

sequence.

• Result: After evaluating all permutations with for loop, the algorithm returns

the sequence with the lowest total time cost.

3.2. Local Search

Building on the foundational problem definition and mathematical model pre-

sented in the previous chapter 2, this section focuses on algorithmic strategies to deter-

mine the optimal set of test points for drone navigation in a post-disaster scenario. For

each methodology, scenarios with and without battery constraints will be considered.

In this section, well known heuristic Local search algorithm will be considered.

The Local Search Heuristic is a technique that starts with an initial sequence and

iteratively improves it by making local modifications [14]. In general, the local search

algorithm searches for an initial solution and then continuously seeks its neighborhood

for a better solution. If such a neighbor is found, it substitutes the current solution.

18

The algorithm stops as soon as there is no better neighbor of the current solution [15].

This approach is particularly effective in scenarios where it is computationally infeasible

to find an exact solution due to the complexity of the problem [16]. The algorithm

uses a swapping scheme to discover neighboring sequences of the current sequence and

then evaluates each one to find the sequence that minimizes the expected duration of

the drone’s route.

• Initialization: Starts with a specific initial sequence. In our case, a randomly

created initial sequence is given in order to increase the performance of the algo-

rithm.

• Evaluation: At per step, calculates the expected time for the current and neigh-

boring sequences.

• Iteration: Recursively swaps elements in the sequence to explore neighboring

configurations.

• Optimization: Seeks to continuously optimize the sequence according to the

calculated expected time.

• Termination: Terminates when no further optimization is found by considering

also the given stopping condition.

In this section, we present different pseudo-codes for the with and without charg-

ing cases. The expected time calculation algorithm, the local search algorithm and the

swap sequence for the local search algorithm are shown in 3 different pseudo-codes.

19

Algorithm 2 Calculate Expected Time for a Network Visit Without Charging

Require: A network represented as a route, a sequence of nodes to visit.

Ensure: The expected time to visit the given sequence of nodes in the route.

1: function CalculateExpectedTime(network, sequence)

2: total time sequence← 0

3: current node← ’X’ ▷ Start from node ’X’

4: probAll← 1

5: for each node in sequence do

6: p← properties[′p′] ▷ Probability

7: t← properties[′t′] ▷ Time to check if the point is working or not

8: w ← properties[′w′] ▷ Distance to node X

9: distance← |distanceNow − distancePrevious| ▷ Calculate the distance

between the current node and previous node

10: probPrevious← network.nodes[previous node][′p′]

11: probAll← probAll × probPrevious

12: total time sequence← total time sequence+ ((distance+ t)× probAll)

13: previous node← node

14: end for

15: return total time sequence

16: end function

20

Algorithm 3 Local Search Without Charging

Require: A network represented as a route and an initial sequence of nodes.

Ensure: The best sequence of nodes with the lowest expected cost.

1: function LocalSearch(network, initialSeq)

2: currentSeq ← initialSeq

3: currentCost← CalculateExpectedTime(network, currentSeq)

4: swappedBestSeq, swappedBestCost← SwapSequence(network, currentSeq)

5: while currentCost ≥ swappedBestCost and swappedBestSeq ̸= initialSeq

and swappedBestSeq ̸= currentSeq do

6: currentCost← swappedBestCost

7: currentSeq ← swappedBestSeq

8: swappedBestSeq, swappedBestCost← SwapSequence(network, swappedBestSeq)

9: end while

10: return swappedBestSeq, swappedBestCost

11: end function

Algorithm 1: Calculate Expected Time for a Network Visit.

• Initialization: It sets the total duration and the start node ’X’. This initializa-

tion is essential to establish a reference point in the network.

• Node Properties: It derives the key features (probability, inspection time,

distance) that are critical in calculating the expected time for each node.

• Distance Calculation: Calculates the distance between consecutive nodes, an

important factor in time estimation.

• Probability Accumulation: It updates the cumulative probability of reaching

each node, an integral part of the probabilistic nature of the model.

• Time Accumulation: Taking into account distance, inspection time and cu-

mulative probabilities, it sums the total time and provides the expected time for

the sequence.

Algorithm 2: Local Search.

21

• Initialization and Cost Calculation: Starts with an initial sequence and

calculates its cost, determines the baseline for improvement.

• Best Sequence Identification: Determines the best sequence after the swap

operation, which is critical for iterative improvement.

• Iterative Improvement: It continuously updates the sequence and cost by

searching for a local optimum. Loop termination criteria prevent the algorithm

from stagnating.

Algorithm 3: Swap Sequence for Local Search (Algorithm 7 in Appendix A).

• Initialization: Sets the initial best cost and sequence, preparing for the swap

operations.

• Iterative Swapping: Examines pairs of nodes for potential swaps, a key mech-

anism for exploring neighboring configurations.

• Cost Evaluation and Update: Evaluates and records the cost of each swapped

sequence, updating the best found sequence based on the lowest cost.

Local Search with Charging

Local Search is extended to include charging for drone navigation in a post-

disaster scenario. The algorithms are modified to account for the battery life of the

drone, making the approach more realistic for real-world applications. Charging consid-

erations are embedded into the expected time calculation and the local search process.

In this part, as described in section 2, the possibility that your drone can recharge itself

when it needs to be charged is assumed, thanks to the wireless charge stations on the

points.

The following algorithm calculates the expected time for a drone to traverse a

given sequence of nodes, considering the drone’s need to recharge its battery. The only

change in the local search and swapping algorithms will be the use of the CalculateEx-

pectedTimeWithCharging function, so that when calculating the cost during the local

22

search, the charge state is taken into account. As described in the CalculateExpect-

edTimeWithCharging algorithm below, the drone’s state of charge is checked and if it

does not have enough battery to reach the next node and test it, then it recharges itself

without traveling beyond the current node, so the cost of recharging is added to the

cost in units of time and at the same time the total battery is updated to be recharged

repeatedly.

In the annealing simulation section, section 3.3, Calculate Expected Time with

and without charging algorithms will be used and be directly referenced.

23

Algorithm 4 Calculate Expected Time with Charging

Require: A network represented as a route, a sequence of nodes to visit, and initial

charge C.

Ensure: The expected time to visit the given sequence of nodes in the route, account-

ing for charging time.

1: function CalculateExpectedTimeWithCharging(network, sequence, C))

2: ReChargingT ime← RC

3: total time sequence← 0

4: currentNode← ’X’ ▷ Start from node ’X’.

5: probAll← 1

6: currentCharge← C

7: for index, node in enumerate(sequence) do

8: properties← network.nodes[node]

9: p← properties[′p′] , t← properties[′t′] and w ← properties[′w′]

10: distance← |distanceNow − distancePrevious|

11: if index+ 1 < len(sequence) then

12: nextNode← sequence[index+ 1] ▷ Verify the next node to visit.

13: nextDistance← |network.nodes[nextNode][′w′]− distanceNow|

14: nextT ← network.nodes[nextNode][′t′]

15: currentCost← distance+ t

16: if currentCharge < (distance+ t+ nextDistance+ nextT) then ▷

Check if the charge is enough to travel to the next node and testing it.

17: currentCost← currentCost+RC and currentCharge← C

18: else

19: currentCharge← currentCharge− currentCost

20: end if

21: end if

22: total time sequence← total time sequence+ (currentCost)× probAll ▷

Update probAll and previousNode.

23: end for

24: return total time sequence

25: end function

24

3.3. Simulated Annealing

In parallel to the Local Search approach presented in the previous section, this

section focuses on the application of Simulated Annealing to optimize drone routing

in post-disaster scenarios. Simulated Annealing is an heuristic inspired by the process

of physical annealing in metallurgy. Its ability to systematically avoid sub-optimal

solutions and discover the most effective overall solutions makes it particularly suitable

for our specific problem context. The adaptability of this method and its effectiveness

in finding optimal solutions in challenging cases is key to its application in operational

research. [17].

Similar to the Local Search algorithm, Simulated Annealing will be considered

in scenarios with and without charging constraints. The algorithm uses the Compute

Expected Time algorithm to calculate the cost of drone routes (see Algorithms 2 and

4).

Overview of the Simulated Annealing Process:

(i) Initialization: It starts with an initial sequence and a high ’temperature’ that

makes it easy to explore.

(ii) Exploration and Acceptance: The algorithm searches for neighboring solu-

tions at each step (Annealing Swap Operation - Algorithm 8 in Appendix A).

Lower cost solutions are always accepted, while higher cost solutions can be ac-

cepted based on a probability that decreases with temperature.

(iii) Cooling Schedule: By gradually reducing the temperature according to a cool-

ing scheme, the probability of accepting higher cost solutions is reduced and

convergence towards the optimum solution is achieved.

(iv) Termination: The process continues until the system ’cools down’ to a pre-

defined lower temperature limit, at which point it returns to the best solution

found.

The following pseudo-code describes in detail the implementation of the Simulated

25

Annealing algorithm for routing drone, both without and with charging in considera-

tion.

26

Algorithm 5 Simulated Annealing Without Charging

Require: A network represented as a route, an initial sequence of nodes, initial tem-

perature initialTemp, cooling rate coolingRate, number of iterations per temper-

ature tempIteration, and stopping temperature stopTemp.

Ensure: The best sequence of nodes with the lowest expected cost.

1: function SimulatedAnnealing(network, initialSeq, initialTemp, coolingRate,

tempIteration, stopTemp)

2: currentSeq ← initialSeq

3: currentCost← CalculateExpectedTime(network, currentSeq)

4: bestSeq ← currentSeq

5: bestCost← currentCost

6: temperature← initialTemp

7: while temperature > stopTemp do

8: for i← 0 to tempIteration− 1 do

9: swappedSeq, swappedCost← AnnealingSwap(network, currentSeq)

10: if swappedCost < currentCost then

11: currentSeq ← swappedSeq

12: currentCost← swappedCost

13: if swappedCost < bestCost then

14: bestSeq ← swappedSeq

15: bestCost← swappedCost

16: end if

17: else

18: deltaCost← swappedCost− currentCost

19: if Exp(−deltaCost/temperature) > Random(0, 1) then

20: currentSeq ← swappedSeq

21: currentCost← swappedCost

22: end if

23: end if

24: end for

25: temperature← temperature× coolingRate

26: end while

27: return bestSeq, bestCost

28: end function

27

Simulated Annealing with Charging

The adaptation of Simulated Annealing for charged scenarios involves integrating

charging restrictions into the cost assessment process. The algorithm follows a similar

procedure as above but uses the Calculate Expected Time With Charging algorithm

(Algorithm 4) for cost evaluation. By applying these methodologies, the study aims to

find the most efficient pathways for drones under different operational constraints and

thus improve the effectiveness of post-disaster management efforts.

When the charge restriction is introduced in simulated annealing, both in simu-

lated annealing and in the annealing swap algorithms, the calculate expected time with

charging algorithm, where the charge was considered in the previous section 3.2, comes

into play, which only causes the cost evolution to change. In both cases, with or with-

out charging, the main theme for simulated annealing remains the same temperature

and cooling concept.

28

4. EXPERIMENTS AND RESULTS

In this chapter, it will be firstly explained the data generation process, which

assumptions are made in relation to the subject matter. It will then present how the

choice of the parameter for the SA algorithm is made and the results of the fixing of the

parameters will be presented. Finally, the results and comparisons of the algorithms

described in chapter 3 will be presented based on the generated data.

4.1. Data Generation

During data generation, first the data size is determined and then the parameters

to be used in the algorithms are randomly generated according to certain data sizes.

As explained in the Problem Definition part of the thesis (Chapter 2), the parameters

that will be given to the model as constants are: the probability, the distance of the

point from the starting point, and the time it takes the drone to test the point to see

if it works. The distance and test time are randomly generated and the unit of time is

minutes for both.

Where charging comes into play, the total charging capacity of the drone and

the re-charge time at the point where it will re-charge itself if necessary is also created

in advance as a constant. Again, these values are also measured in time (min). The

charge capacity is always assigned based on the data set created so that the drone

always has at least enough time to go to the farthest point from the starting point and

test it: max(|x to each point|+ testing).

At this point, in order to increase the contribution of the problem, data sizes have

been selected where the performance of the algorithms will make significant improve-

ments. This selection was based on the Brute Force Approach described in section

3.1. As we have already mentioned, since the Brute Force Approach is mainly an enu-

merative approach, and since it generates sequences to be tried as many times as the

permutation of the size, a threshold has been set at which the Brute Force Approach

29

cannot make a computational contribution.

• Brute Force Approach data size = 10, running time 12592.05ms and optimal

value is 57.67 where simulated annealing algorithim can find the optimal value in

half time.

• Brute Force Approach data size = 20, time limit 10min and no result.

For this reason, the data size is set to 10, 20, 30, 50 in this framework.

Another important aspect here is the assumptions that go into the creation of

the probabilities. The basis for creating this is as follows: first of all, as mentioned

earlier (in Chapter 2), these probabilities are a value assigned based on the stability

of the point where the drone is going to test, be it a bridge, a certain point on the

road or a viaduct. At this point, if this is taken, for example, especially on the bridge

case, there is a life time assigned from the moment the bridge was built, as well as the

damage caused by natural disasters, accidents, etc. [18] [19] Considering all these, the

probability assignment for these points has been done in 3 different ways:

• Prob type 1 - Uniform probability (0, 1),

• Prob type 2 - Low range probability (0, 0.5) assuming routes with high attrition,

• Prob type 3 - High range probability [0.5, 1) assuming routes with low attrition.

As you can see in the Figure 4.1 below, data generation is categorized based

on instances and probabilities. 10 different data are generated for each instance and

probability type intersection. In total 120 different data are generated as shown in the

figure.

It should be noted that this is done as 120 data for the without charging case and

120 data for the with charging case. The data sets for testing the with and without

charging cases are created independently of each other. In total 240 data are studied.

30

Figure 4.1. Data set generation visualization

4.2. Parameter Selection

This section describes in general terms how parameter selection is done. As

explained in section 3.2, the Local Search algorithm has no input parameters, so the

focus in this section is on simulated annealing. In general, SA is a method that becomes

efficient when certain criteria and parameters are taken into account. For this reason,

the parameter selection is of great influence and importance for the performance of the

algorithm.

First of all, the critical parameters for the SA algorithm are: initial tempera-

ture, cooling rate, temperature iteration and stop temperature. In selecting

the parameters to be fixed, certain values from the literature that are recommended

to be used for SA were considered and various combinations of these parameters were

created and the parameters that gave the best solution in the best time were fixed

according to the results of the SA algorithm run with these parameters on the same

data set [20] [21].

As can shown in the table, the values considered are as follows:

• Initial Temperature (InitialTemp): 800, 900, 1000,

• Cooling Rate (CoolRate): 0.8, 0.9, 0.95, 0.99,

• Temperature Iteration (TempIter): 750, 1000, 1500.

31

After the results and time comparisons, the values selected and fixed for the SA

algorithm to be used in the next section are indicated in the table. In order to make

this comparison, we have chosen data size as 10 where the Brute Force Approach gives

the optimal value. Therefore, the best result and time to make a choice is controlled.

Selection is showed in the following table (extended version of the table is Table A.1

in Appendix):

Inst. Alg. Time (ms) Result InitialTemp CoolRate TempIter StopTemp

10 SA 890.52 57.99 800 0.95 750 10

10 SA 4345.19 58.01 800 0.99 750 10

10 SA 5747.78 58.08 800 0.99 1000 10

10 SA 8933.19 57.98 800 0.99 1500 10

10 SA 444.61 58.35 900 0.8 1500 10

10 SA 875.765 58.08 900 0.9 1500 10

10 SA 1206.49 58.82 900 0.95 1000 10

10 SA 4422.04 57.98 900 0.99 750 10

10 SA 5800.96 57.69 900 0.99 1000 10

10 SA 8977.97 58.06 900 0.99 1500 10

10 SA 306.33 58.33 1000 0.8 1000 10

10 SA 434.91 58.08 1000 0.8 1500 10

10 SA 607.93 58.15 1000 0.9 1000 10

10 SA 894.55 58.32 1000 0.9 1500 10

10 SA 1779.64 58.08 1000 0.95 1500 10

10 SA 4528.01 58.33 1000 0.99 750 10

10 SA 5995.72 57.67 1000 0.99 1000 10

10 SA 10664.06 57.67 1000 0.99 1500 10

Table 4.1. Parameter selection for Simulated Annealing - shortened.

32

4.3. Results

This section presents a summary of the solutions obtained by using the solution

methodologies described in Chapter 3 to solve the problem described in Chapter 2 of

this thesis. These results are obtained by using the generated data and the parameters

chosen for SA as described in the previous sections (4.1 and 4.2). The main purpose of

this section is to reflect these results for specific data sets through tables and to allow

comparisons between the algorithms based on the results obtained.

As explained in section 4.1, data generation is based on data size and probability

types. In this results section, we will run the algorithms with different data sizes

generated in each probability type by clustering on the probability type. Then, the

reflection of this in the table will be presented as the average of the results of 10

different data for each instance.

As a consequence of all these descriptions, there are 6 different tables in total in

this section. 3 for the with-charge case and 3 for the without-charge case and in each

case different probability type datasets are considered.

Inst. Alg. Time (ms) Result InitialTemp CoolRate TempIter StopTemp

10 LS 3.31 58.07 - - - -

10 SA 8182.60 58.01 1000 0.99 1000 10

20 LS 77.11 123.43 - - - -

20 SA 13917.89 115.15 1000 0.99 1000 10

30 LS 352.13 76.06 - - - -

30 SA 18883.01 71.56 1000 0.99 1000 10

50 LS 3294.47 102.52 - - - -

50 SA 28938.53 83.11 1000 0.99 1000 10

Table 4.2. Algorithm comparison without charging case - Prob Type 1.

Inst. Alg. Time (ms) Result InitialTemp CoolRate TempIter StopTemp

10 LS 8.54 20.34 - - - -

10 SA 6458.01 20.34 1000 0.99 1000 10

20 LS 76.73 16.30 - - - -

20 SA 10949.81 16.10 1000 0.99 1000 10

30 LS 282.95 12.78 - - - -

30 SA 16214.04 12.77 1000 0.99 1000 10

50 LS 1342.86 12.17 - - - -

50 SA 22041.46 12.12 1000 0.99 1000 10

Table 4.3. Algorithm comparison without charging case - Prob Type 2.

33

Inst. Alg. Time (ms) Result InitialTemp CoolRate TempIter StopTemp

10 LS 5.10 56.90 - - - -

10 SA 6368.67 50.11 1000 0.99 1000 10

20 LS 82.26 32.27 - - - -

20 SA 11752.13 34.24 1000 0.99 1000 10

30 LS 444.07 32.81 - - - -

30 SA 17114.33 34.01 1000 0.99 1000 10

50 LS 2171.35 23.56 - - - -

50 SA 25464.91 31.03 1000 0.99 1000 10

Table 4.4. Algorithm comparison without charging case - Prob Type 3.

In the comparative analysis between LS and SA for with and without charging

cases, while LS often yields smaller results indicating a small advantage, the subtle

effectiveness of SA especially in complex problem scenarios cannot be ignored. Partic-

ularly in Problem Type 1, SA demonstrates its strong ability to explore a wider solution

space leading to marginally better results, as seen in the 20 dimensions example where

SA scores 115.15 versus 123.43 for LS (without charging) and SA scores 25.67 versus

29.61 for LS. This subtle advantage is indicative of SA’s sophisticated exploration mech-

anism, which is particularly useful in uniformly distributed-probability scenarios where

LS’s simplistic approach may miss more subtle solutions. While LS shows a numerical

superiority in Problem Types 2 and 3, SA’s approach of methodically searching over

a wider range of probabilities demonstrates its potential to uncover more optimized

solutions in scenarios with complex constraints. Thus, while LS may be preferable in

simpler situations due to its speed and directness, SA’s strategic depth makes it a valu-

able tool for more complex problems where exploring a variety of potential solutions

is crucial.

Inst. Alg. Time (ms) Result InitialTemp CoolRate TempIter StopTemp

10 LS 5.86 27.14 - - - -

10 SA 6910.52 21.47 1000 0.99 1000 10

20 LS 85.62 29.61 - - - -

20 SA 9447.68 25.67 1000 0.99 1000 10

30 LS 586.14 23.72 - - - -

30 SA 15664.02 23.69 1000 0.99 1000 10

50 LS 2586.54 21.21 - - - -

50 SA 20694.06 21.08 1000 0.99 1000 10

Table 4.5. Algorithm comparison with charging case - Prob Type 1.

34

Inst. Alg. Time (ms) Result InitialTemp CoolRate TempIter StopTemp

10 LS 6.90 24.52 - - - -

10 SA 5890.52 24.52 800 0.95 750 10

20 LS 86.49 15.36 - - - -

20 SA 10747.71 14.73 800 0.99 1000 10

30 LS 566.23 11.13 - - - -

30 SA 14654.19 11.13 1000 0.99 1500 10

50 LS 2327.46 12.01 - - - -

50 SA 21564.45 12.03 1000 0.99 1500 10

Table 4.6. Algorithm comparison with charging case - Prob Type 2.

Inst. Alg. Time (ms) Result InitialTemp CoolRate TempIter StopTemp

10 LS 6.45 68.01 - - - -

10 SA 5901.45 68.01 1000 0.99 1000 10

20 LS 91.51 30.88 - - - -

20 SA 12741.23 33.07 1000 0.99 1000 10

30 LS 489.49 25.54 - - - -

30 SA 15144.33 30.24 1000 0.99 1000 10

50 LS 2311.36 35.81 - - - -

50 SA 22457.09 41.30 1000 0.99 1000 10

Table 4.7. Algorithm comparison with charging case - Prob Type 3.

35

5. CONCLUSION

In general terms, the research presented in this thesis has shown that drone

technology has the potential to be used in post-disaster infrastructure assessment and

that this can be extended to a wider scope by considering the charging status of the

drone. By integrating the sequential testing approach to post-disaster situations, the

drone was also included to identify safe roads as soon as possible. To this end, we used

local search and simulated annealing approaches to show how they work with the right

parameters and data-set setups.

In this research, we assume that a certain amount of research has been done in

advance of the post-disaster and that it has been determined which routes will be in-

cluded in this testing process. In principle, safe points have already been identified in

the pre-disaster and the routes to these safe points have been determined. Correspond-

ingly, the points on the road where the drone will be tested, bridges, viaducts, etc.,

are assumed to be already known in the pre-disaster through specific surveys and their

current state, and their analysis and data are assumed to be available to allow image

processing to test the drone’s integrity later on. If the charging status is included, it

is known at which points it can be charged and charging stations are set up at those

points in the pre-disaster. In fact, with all these assumptions, the drone starts testing

in post disaster. In this study, the drone develops a strategy to test only a given path,

even though there might be multiple other possibilities. Another restrictive assump-

tion is the independence of the status of the elements that constitutes the routes. In

a post-disaster situation, this will not be typically true if for close by segments of the

route and needs to be taken into consideration.

Looking forward, the scope for expanding this research is vast and multifaceted.

One major restrictive assumption in this research is that we assume that a route is safe if

and only if all the elements on the route are safe. In real life, the road networks are more

general. It would be quite difficult to consider the most general road networks. It would

be a promising idea to study some more general but still special networks and try to

36

adapt the results for these networks to the general case. One promising direction is the

enhancement of the decision-making process in choosing the most strategic routes for

drone assessment. This could involve developing algorithms that not only determine the

best paths for initial assessment but also dynamically adapt to changing circumstances,

such as newly discovered impassable routes or changing priorities in the disaster area.

Further, the integration of other heuristic methods, such as Tabu Search, or

exploring exact optimization techniques could add depth to this research. Such ad-

vancements could refine the balance between speed and accuracy, ensuring that the

most critical areas are assessed first in a disaster scenario. Additionally, extending the

research to consider multi-route assessments could offer a more holistic view of the

disaster impact, enabling a more comprehensive response strategy.

Another significant area for future exploration is the detailed consideration of

drone operational parameters, such as battery life, charging conditions, and the es-

tablishment of potential charging stations in the field. Addressing these logistical

challenges would not only improve the effectiveness of drone usage in post-disaster sce-

narios but also enhance the overall resilience of emergency response systems. Moreover,

the methodologies developed in this thesis can be adapted beyond the realm of disaster

response. Applications in areas such as facility management, urban planning, and envi-

ronmental monitoring are conceivable, where rapid, efficient, and accurate assessments

are equally crucial.

In conclusion, this thesis lays a robust foundation for future research and practical

application in drone technology for post-disaster assessment and beyond. It is an

important step towards creating more resilient, efficient, and responsive emergency

management systems, capable of addressing the complex challenges posed by natural

disasters and other crises.

37

REFERENCES

1. Omenzetter P., Ramhormozian S., Mangabhai P., Singh R., “A framework for

rapid post-earthquake assessment of bridges and restoration of transportation net-

work functionality using structural heatlh monitoring”, Proceedings of SPIE - The

International Society for Optical Engineering 8692 , 2013.

2. Mohd Daud, S.M.S., Mohd Yusof, M.Y.P., Heo, C.C., Khoo, L.S., Singh, M.K.C.,

Mahmood, M.S., Nawawi, H., “Applications of drone in disaster management: A

scoping review”, Science Justice, Volume 62, Issue 1, 30-42 , 2022.

3. Chowdhury, S., Emelogu, A., Marufuzzaman, M., Nurre, S. G., Bian, L.,

“Drones for Disaster Response and Relief Operations: A Continuous Ap-

proximation Model”, International Journal of Production Economics, 188,

167–184., 2017.

4. Gupta, S. J., Ghonge, M. M., Jawandhiya, P. M., “Review of Unmanned Aircraft

System (UAS)”, International Journal of Advanced Research in Computer Engi-

neering and Technology, 2(4), 1646–1658., 2013.

5. Chowdhury, S., Shahvari, O., Marufuzzaman, M., Li, X., Bian, L., “Drone rout-

ing and optimization for post-disaster inspection”, Computers Industrial Engi-

neering, Volume 159 , 2021.

6. Pimentel, S.B., “Drone Route Optimization using Constrained Based Local

Search”, Thesis (MSc), Universidade Nova de Lisboa, 2018.

7. Ünlüyurt, T., “Sequential Testing of Complex Systems: A Review”, Discrete Ap-

plied Mathematics , Vol. 142,(1-3), pp. 189–205, 2004.

8. Mitten, L., “An Analytic Solution to the Least Cost Testing Sequence Problem”,

The Journal of Industrial Engineering , p. 17, January-February 1960.

38

9. Ben-Dov, Y., “A Branch and Bound Algorithm for Minimizing the Expected Cost

of testing Coherent Systems”, Vol. 7, pp. 284–289, 1981.

10. Boros, E. and T. Ünlüyurt, “Sequential testing of series-parallel systems of small

depth”, M. Laguna and J. Velarde (Editors), Computing Tools for Modeling, Op-

timization and Simulation, pp. 39–74, Kluwer, 2000.

11. Segev, D. and Y. Shaposhnik, “A Polynomial-Time Approximation Scheme for

Sequential Batch Testing of Series Systems”, Operations Research, Vol. 70, pp.

1153–1165, 2022.

12. Teller, R., M. Zofi and M. Kaspi, “Minimizing the average searching time for an

object within a graph”, Computational Optimization and Applications , Vol. 74, pp.

517–545, 2019.

13. Arora, S. and B. Barak, Computational Complexity: A Modern Approach, Cam-

bridge University Press, New York, NY, USA, 2009.

14. H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local search”, Handbook

of Metaheuristics (International Series in Operations Research Management Sci-

ence), vol.57 , 2003.

15. Vaessens R.J.M., Aarts E.H.L. and Lenstra J.K., “A local search template”, Com-

puters & Operations Research, 25(11), 969-979 , 1998.

16. Talbi E., Metaheuristics: from design to implementation, John Wiley Sons, Hobo-

keny, 2009.

17. Eglese, R.W., “Simulated annealing: A tool for operational research”, European

Journal of Operational Research 46, 271–281 , 1990.

18. Stewart MG, “Reliability-based assessment of ageing bridges using risk ranking

and life cycle cost decision analyses”, Reliability Engineering & System Safety

39

74(3):263–73 , 2001.

19. Omenzetter P., “Identification of unusual events in multi-channel bridge monitor-

ing data”, Mech Syst Sig Process , 2004.

20. H Shakouri G.K Shojaee, and B. T M., “Investigation on the choice of the initial

temperature in the Simulated Annealing: A mushy state SA for TSP[C]”, Mediter-

ranean Conference on Control and Automation IEEE Computer Society, 1050-

1055 , 2009.

21. M.-W. Park, Y.-D. Kim, “A systematic procedure for setting parameters in simu-

lated annealing algorithms”, Computers & Operations Research, 25(3), 207–217 ,

1998.

40

APPENDIX A: Algorithms and Results

Algorithm 6 Local Search - Swap Sequence

Require: A network and a current sequence of nodes.

Ensure: The best swapped sequence with its corresponding expected cost.

1: function SwapSequence(network, currentSeq)

2: seqCosts← {}

3: swappedBestCost←∞

4: swappedBestSeq ← None

5: i← 1

6: while i ≤ length(currentSeq)− 3 do

7: j ← i+ 1

8: while j ≤ length(currentSeq)− 2 do

9: switchedSeq ← currentSeq

10: Swap switchedSeq[i] and switchedSeq[j]

11: switchedCost← CalculateExpectedTime(network, switchedSeq)

12: seqCosts[tuple(switchedSeq)]← switchedCost

13: if switchedCost < swappedBestCost then

14: swappedBestCost← switchedCost

15: swappedBestSeq ← switchedSeq

16: end if

17: j ← j + 1

18: end while

19: i← i+ 1

20: end while

21: return swappedBestSeq, swappedBestCost

22: end function

41

Algorithm 7 Simulated Annealing - Annealing Swap Operation

Require: A network represented as a route and a current sequence of nodes

currentSeq.

Ensure: A swapped sequence of nodes and its corresponding expected cost.

1: function AnnealingSwap(network, currentSeq)

2: i← RandomRange{1, LengthcurrentSeq − 1}

3: j ← RandomRange{1, LengthcurrentSeq − 1}

4: while i = j do

5: j ← RandomRange{1, LengthcurrentSeq − 1}

6: end while

7: swappedSeq ← currentSeq

8: Swap swappedSeq[i] and swappedSeq[j]

9: swappedCost← CalculateExpectedT ime{network, swappedSeq}

10: return swappedSeq, swappedCost

11: end function

42

Inst. Alg. Time (ms) Result InitialTemp CoolRate TempIter StopTemp

10 SA 224.21 60.47 800 0.8 750 10

10 SA 295.92 59.01 800 0.8 1000 10

10 SA 430.02 58.47 800 0.8 1500 10

10 SA 441.20 59.66 800 0.9 750 10

10 SA 586.44 58.67 800 0.9 1000 10

10 SA 861.77 58.77 800 0.9 1500 10

10 SA 890.52 57.99 800 0.95 750 10

10 SA 1160.79 58.63 800 0.95 1000 10

10 SA 1753.61 58.49 800 0.95 1500 10

10 SA 4345.19 58.01 800 0.99 750 10

10 SA 5747.78 58.08 800 0.99 1000 10

10 SA 8933.19 57.98 800 0.99 1500 10

10 SA 241.93 60.58 900 0.8 750 10

10 SA 304.28 58.61 900 0.8 1000 10

10 SA 444.61 58.35 900 0.8 1500 10

10 SA 457.14 59.09 900 0.9 750 10

10 SA 595.28 59.13 900 0.9 1000 10

10 SA 875.765 58.08 900 0.9 1500 10

10 SA 907.31 59.77 900 0.95 750 10

10 SA 1206.49 58.82 900 0.95 1000 10

10 SA 1777.98 59.40 900 0.95 1500 10

10 SA 4422.04 57.98 900 0.99 750 10

10 SA 5800.96 57.69 900 0.99 1000 10

10 SA 8977.97 58.06 900 0.99 1500 10

10 SA 234.94 60.30 1000 0.8 750 10

10 SA 306.33 58.33 1000 0.8 1000 10

10 SA 434.91 58.08 1000 0.8 1500 10

10 SA 457.92 58.82 1000 0.9 750 10

10 SA 607.93 58.15 1000 0.9 1000 10

10 SA 894.55 58.32 1000 0.9 1500 10

10 SA 917.97 59.13 1000 0.95 750 10

10 SA 1193.24 58.37 1000 0.95 1000 10

10 SA 1779.64 58.08 1000 0.95 1500 10

10 SA 4528.01 58.33 1000 0.99 750 10

10 SA 5995.72 57.67 1000 0.99 1000 10

10 SA 10664.06 57.67 1000 0.99 1500 10

Table A.1. Parameter selection for Simulated Annealing - extended.

