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ABSTRACT

TORSION STRUCTURE OF ELLIPTIC CURVES OVER SMALL NUMBER
FIELDS

MUSTAFA UMUT KAZANCIOGLU
Mathematics, Master Thesis, December 2023

Thesis Supervisor: Assoc. Prof. Mohammad Sadek

Keywords: elliptic curves, hyperelliptic curves, modular curves, torsion subgroup,

cubic number fields, quartic number fields, quintic number fields, sextic number

fields

Although it is well known which groups appear as torsion subgroup of an elliptic
curve over a number field K where [K : Q] = 1,2,3, a similar classification is not
known for number fields of higher degrees. On the other hand, it is well known which
groups can arise as a torsion subgroup for infinitely many Q-isomorphism classes of
elliptic curves over a number field K where [K : Q] =4,5,6. In this thesis, we focus
on the torsion subgroups of elliptic curves occurring over a fixed number field K
with [K : Q] =4,5,6. Our approach relies on analyzing the arithmetic structure of
the modular curves Xj(m,mn), m > 1. First, we investigate the possibility of the
growth in torsion subgroups of Xj(m,mn) over quartic, quintic and sextic number
fields. In the case of growth in torsion, we check the new points and try to answer the
following question: "Do new points give an elliptic curve with the desired torsion?”.
Secondly, we check the existence of torsion subgroups over cubic, quartic and quintic
number fields with the smallest discriminant and having different Galois groups.
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OZET

KUCUK SAYI CISIMLERI UZERINE ELIPTIK EGRILERIN BURULMA
YAPISI

MUSTAFA UMUT KAZANCIOGLU
Matematik, Yiiksek Lisans Tezi, Aralik 2023

Tez Danigmani: Assoc. Prof. Mohammad Sadek

Anahtar Kelimeler: eliptik egri, hipereliptik egri, moduler egri , burulma alt grubu,
ii¢iincii dereceden say1 cisimleri, dordiincii dereceden say1 cismi, beginci dereceden

say1 cismi, altinci dereceden say1 cismi

Hangi gruplarin [K : Q] = 1,2,3 kogulunu saglayan K sayi cismi tizerindeki bir eliptik
egrinin burulmali alt grubu olarak ortaya ¢iktigi bilinmesine ragmen, daha yiiksek
dereceli say1 cisimleri icin benzer bir simflandirma bilinmemektedir. Ote yandan,
[K : Q] =4,5,6 kogulunu saglayan K say1 cismi tizerindeki eliptik egrilerin sonsuz
sayida Q-izomorfizm smiflar1 icin hangi gruplarm burulmalh alt grubu olarak ortaya
gikabilecegi bilinmektedir. Bu tezde, [K : Q] =4,5,6 olan sabit bir K say1 cismi tiz-
erinde olugan eliptik egrilerin burulmali alt gruplarina odaklaniyoruz. Yaklagimimiz
X1(m,mn), m > 1 modiiler egrilerinin aritmetik yapisin1 analiz etmeye dayanmak-
tadir. Ilk olarak, derecesi 4, 5 ve 6 olan say1 cisimleri iizerinde Xi(m,mn) ’in
burulmali alt gruplarinda biiytime olasiligini arastiriyoruz. Burulmali alt grubunda
bir biiyiime olmasi durumunda yeni noktalar: kontrol ediyoruz ve asagidaki soruyu
cevaplamaya calisiyoruz: "Yeni noktalar istenen burulmali alt gruba sahip bir elip-
tik egri veriyor mu?". Ikinci olarak, derecesi 3, 4 ve 5 olan say1 cisimleri iizerinde
en kiiciik diskriminanta ve farkli Galois gruplarina sahip burulmali alt gruplarinin
varligini kontrol ediyoruz.
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Algebra is the offer made by the devil to the mathematician.
Michael Francis Atiyah
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1. Introduction

The celebrated theorem of Mordell-Weil asserts the set E(K') of K-rationals points
on an elliptic curve E over a number field K is a finitely generated abelian group.
In particular, F(K) can be expressed as Z" @ T where r € ZZ% and T is the torsion
subgroup of E(K).

The following theorem of Mazur [20], [21] classifies the possible torsion groups of

elliptic curves over Q.

Theorem 1.0.1. If K =Q, then the torsion subgroup of E(K) is isomorphic to
one of the 15 groups in the following list:

O(1)={(1,n):1<n<12;n#11}U{(2,2n): 1 <n <4}

The following theorem of Kenku, Momose [17] and Kamienny [16] classifies the

possible torsion groups of elliptic curves over quadratic fields.

Theorem 1.0.2. Let K be a quadratic field and E be an elliptic curve over K.
Then the torsion subgroup of E(K) is isomorphic to one of the 26 groups in the
following list:

O12)={(1,n):1<n<18n#17rU{(2,2n): 1 <n <6}U{(3,3),(3,6),(4,4)}.
In addition, infinitely many Q- isomorphism classes exist for each of these torsion
subgroups.

We also have the complete classification of torsion subgroups of elliptic curves over

cubic number fields. This was recently achieved in [7].

Theorem 1.0.3. Let K be a cubic field and E be an elliptic curve over K. Then
the torsion subgroup of E(K) is isomorphic to one of the 26 groups in the
following list:

O@3)={(1,n):1<n<21,n#17,19 0{(2,2n) : 1< n < 7}
1



There are infinitely many Q-isomorphism classes that possess each of these torsion
subgroups, except for Z./217 where the elliptic curve 16201 over Q({o)™ is the

unique elliptic curve with 7./217Z-torsion.

In [18], Kubert provided parametrization of elliptic curves over Q realizing a given
group from Theorem 1.0.1 as a torsion subgroup. For example, consider the
following modular curve X1(9) of genus 0. The general equation of the elliptic
curve with torsion subgroup Z/9Z,[1], is the following:

2 2

Y2+ (s —rs+)ay+ (rs —r2s)y = 23 + (rs — rs)z?

where r =u? —u+1, s:=u and u € Q.

Similar work was done by Rabarison in [25] for elliptic curves over quadratic

number fields.

The work of Najman [22] on cubic number field investigated the following

questions:

Q1: How many non-isomorphic curves does each of the groups from ®(3) appear

as a torsion subgroup for any fired cubic number field K ?

Q2: Can we check existence of all the torsion subgroups from ®(3) as torsion
subgroup of an elliptic curve over the number fields with smallest

discriminant and having Galois group S3 and Z/3Z.

Q3: Can we find the field with smallest discriminant field for every group from

®(3) such that that group occur as a torsion subgroup of an elliptic curve?

For a number field K, where [K : Q] =4,5,6, we still do not have a complete
classification of possible torsion subgroup of E(K). However, the following
theorems of Derickx and Sutherland [6] classifies the possible torsion groups that
occur for infinitely many Q-isomorphism classes of elliptic curves defined over

quartic, quintic and sextic number fields.

Theorem 1.0.4. Let K be a quartic field and E be an elliptic curve over K. Then
the torsion subgroup of E(K) that arise for infinitely many Q-isomorphism classes

is isomorphic to one of the groups in the following list:

O>*(4)={(1,n): 1 <n<24,n#19,23} U{(2,2n): 1 <n <9}
U{(3,3n):1<n<3}uU{(4,4),(4,8),(5,5),(6,6)}.

Theorem 1.0.5. Let K be a quintic field and E be an elliptic curve over K. Then
2



the torsion subgroup of E(K) that arise for infinitely many Q-isomorphism classes

is isomorphic to one of the groups in the following list:

O*(B)={(1,n):1<n<25n#23}U{(2,2n):1 <n <8}

Theorem 1.0.6. Let K be a sextic field and E be an elliptic curve over K. Then
the torsion subgroup of E(K) that arise for infinitely many Q-isomorphism classes

is isomorphic to one of the groups in the following list:

O>°(6) ={(1,n): 1 <n<30,n#23,25,29} U{(2,2n): 1 <n <10}
U{(3,3n):1<n<4}uU{(4,4),(4,8),(6,6)}.

In this thesis, for every possible G € ®*°(d), d =4,5,6, and every number field K,
[K : Q] =d, we investigate whether there are infinitely many non-isomorphic
elliptic curves with the torsion G over K. For this reason we will study the possible
group structure of X1(m,mn) over the number field K, [K : Q] =d, for the
modular curves with genus g < 1. The reason why we only look at curves with
genus g <1 is quite simple because genus 1 curves are elliptic curves and we have
a group structure on them, whereas it is straight forward how to find rational points
on genus 0 curves. As for the curves C' with genus g > 1, we already have

| C(K) |< oo for any number field K, Falting’s theorem, [8].

In order to motivate over fundings, we briefly discuss the existence of elliptic

curves over quartic number field with torsion subgroup 7Z/15Z.

Example 1.0.7. Let K be a quartic number field. Then

7.)16Z if K~ Ly =
7.)16Z if K~ Ly :=

Q ot — 723 — 622 4+ 22+ 1),

Q
Z)22XZJ8Z if K~L3:=Q

Q

Q

Q

o+ 323 + 4% + 22+ 1),
ot — 22 +4),
Tors(X1(15),K) ~ S 7Z/2Z x Z.JAZ if K D Ly :=
7,/8Z if KD Ls:=
Z/87Z if K2 Lg:=
ZJAZ otherwise.

22+ 17+ 1),

2 —x—1),

o~ o~ o~ o~~~

2 +a+1),

X1(15) has rank 0 over the number fields in the above examples. This implies that
we can have only finitely many elliptic curves with torsion subgroup Z /157 over

the number fields in the above examples. It is possible to obtain positive rank over



the number fields that contains Ly, Ls and Lg. For example, Rank(X1(15),L) is
positive where L is the number field generated by the polynomial
a4 %SEB’ + %xQ +2x+1,and L contains the number field Ly. In this case, we have

infinitely many elliptic curve over the number field L with torsion Z/157.

In the second part of this thesis we try to answer the following question: Can we
check the existence of all the torsion subgroups from ®*°(d), d =3,4,5 as torsion
subgroup of an elliptic curve over the number field with smallest discriminant and
different Galois groups? We were only able to partially answer this question. For
d =3 we did not encounter any problem, but for d = 4,5 we could not answer the
existence question in some cases. It is easier to check the existence of torsion
subgroup over some number field for d =3 than d = 4,5 for two reasons. The first

reason is that there are fewer number fields with different Galois groups.

In the following tables we list the cubic and quartic number fields with different
Galois group and smallest discriminant. In the table, D is the discriminant of the
field, G its Galois group, and the last column is the generating polynomial of field
K; where 1 <i<5.

Field | D G Polynomial
Ky | -23 Ss r?— 1?41
Ky |49 Cs 2?3 — 2?2241

Table 1.1 Cubic Number Fields with Smallest Discriminant

Field | D G Polynomial

K 125 Cy = —r+1
Ko 144 Vi vt — 2?41

Ks 117 Dy ot — 2?41
K, 3136 Ay 4203 4+ 222 +2
K 229 Sy rt—x+1

Table 1.2 Quartic Number Fields with Smallest Discriminant

The second reason is that there are fewer cases where we need to check the existence
of rational points over number fields. For example we could not produce a method
to check the existence of rational points over on X1(17), X1(21) and X1(22) over
quartic, quintic and sextic number field, but we do not face these modular curves
over cubic number number fields since Z/1TZ and Z/227 cannot occur as a torsion
subgroups of an elliptic curve over a cubic number field and there is only one

elliptic curve with torsion subgroup 7Z./217 over a cubic number field. For instance,
4



the method that we used to check the existence of torsion group Z/16Z over quartic
number field did not work for the quartic number fields Ko and K4 but we did not

encounter such a problem when we are working over cubic number fields.

For the torsion subgroups T' corresponding to modular curves with genus <1, we
are able to answer the question of the realization of the group T as a torsion

subgroup of elliptic curves over a fized number field of degree d =4,5.

Throughout this paper, we use MAGMA to compute rank and torsion computations

on elliptic curves.



2. Elliptic Curves

2.1 Preliminaries

Let K be a number field. We define an elliptic curve as a non-singular abelian
variety of dimension 1 with a K -rational point O called the point at infinity. It is

possible to express any elliptic curve with a Weierstrass equation of the form
E:y® +aizy+asy = 3 + aox® + agx + ag

with ay,...,ag € K together with the point O = (0:1:0).

In the case of char K # 2,3 we can write an elliptic in the following form,
E(A,B):y* =2+ Az + B

where A,B € K.

Let A(E) be a discriminant of the elliptic curve E, then
A(E) = —b3bg — 8b3 — 27b + 9babybs,
where
by = CL% +4as
by = 2a4 +ajas
bg = a% +4ag
bg = a%a6 +4aoag — aijazaq + a2a§ - ai.

In the case E(A,B), the discriminant A(E(A, B)) is —16(4A3 +27B?). Since the
elliptic curve E is non-singular, we know that A(E) # 0.



It is well-known that elliptic curves have a group structure and it is possible to
explain the group law using a geometric description, namely the chord and tangent

process.
In what follows, we geometrically describe the group law on E(A,B).

Let Py, Py be two distinct points on the elliptic curve E. Let L be the line passing
through Py, P>. By Bézout Theorem we know the existence of a third intersection
point between elliptic curve E and line L. Let P3 be the third intersection point.
Then Py @ P is the reflection of Ps respect the x-axis. In case Py = Py, the line L
is the tangent to E at Py. Since process does not affected by the order of the

points, it is clear that E is an abelian group.

—

Figure 1: > =234+ Az + B, A,BeQ.

Let E(K) be the set of K- rational points of E defined as follow:

B(K)={(z,y) € K*:y* + a1zy + azy = 2° + asa” + a4z + ag} U {O}.

Remark 2.1.1. By definition the set E(K) is a subgroup of the elliptic curve E
with the binary operation &. We call E(K) the Mordell-Weil group of E over K.

Theorem 2.1.2 (Mordell-Weil). (/28]) The group E(K) is finitely generated.

According to the Fundamental Theorem of Finitely Generated Abelian group, we
obtain the following Corollary.

Corollary 2.1.3. There is a integer r > 0 such that
EK)=2Tx7"

where 1 is the rank of the group E(K), T is the torsion subgroup of the elliptic

curve & and T is finite.



2.2 Torsion Subgroup and Modular Curves

Definition 2.2.1. Let P = (xy,yn) be a rational point in E(K). We say that P is

an n-torsion point if nP = O.
To find n-torsion points P on E(K), we need division polynomials of E.

Let E - y? 4+ a12y + asy = 2 + asx® + asx + ag be an elliptic curve defined over K.

The division polynomials of E are:
U =1,
Uy =2y,
U3 = 32* + 6az? 4 12bz — a?,

Wy = 4y(25 + 5axt 4 20023 — 5a%2? — 4abx — 8b* — a?),

qj?m—l—l = \Pm—l—Z\Ij%l - lIjm—lqjgn-y-l fO’f’ m2>2,
Wom = (%2) - (Vg2 W2,y = Uy 9W2,.,) form > 3.
The polynomials above are defined over Z[x,y,a,b).

We call P as an n-torsion point if and only if P is the root of n-division

polynomial of E.

Example 2.2.2. Let E :y?> =23+ 1 be an elliptic curve over Q. Then the
2-division polynomial of E is Wo(x) = (x+1)(2%2 —2+1). We can say that (—1,0)
is a point of order 2 in E(Q), since —1 is a root of Wa(z) and (—1,0) € E(Q).

We do not have a complete classification of all torsion subgroups of an elliptic
curve E over any number field K. But if [K : Q] =1,2,3 then we have complete
classification of all torsion subgroups of an elliptic curve E over number field K .
Although it is not a complete classification, It is well known such a groups can
arise for infinitely many Q-isomorphism classes as a torsion subgroups of an
elliptic curve over a number field K when [K : Q] =4,5,6. In what follows, we

describe these classifications.

Theorem 2.2.3 (Mazur). (/20/, [21]) If K = Q, then the torsion subgroup of



E(K) is isomorphic to one of the 15 groups in the following list:

O(1)={(1,n):1<n<12,n#11}U{(2,2n): 1 <n <4}

Theorem 2.2.4 (Kenku, Momose, Kamienny). (/16/,/17]) Let K be a quadratic
field and E be an elliptic curve over K. Then the torsion subgroup of E(K) is

isomorphic to one of the 26 groups in the following list:
O2)={(1,n):1<n<12n#11}U{(2,2n): 1 <n <6}U{(3,3),(3,6),(4,4)}.

In addition, infinitely many Q- isomorphism classes exist for each of these torsion

subgroups.

Theorem 2.2.5. ([7]) Let K be a cubic field and E be an elliptic curve over K.
Then the torsion subgroup of E(K) is isomorphic to one of the 26 groups in the
following list:

OB3)={(1,n):1<n<21,n#17,19}U{(2,2n): 1 <n < T}.

Theorem 2.2.6. ([6/) Let K be a quartic field and E be an elliptic curve over K.
Then the torsion subgroup of E(K) that arise for infinitely many Q-isomorphism

classes is isomorphic to one of the groups in the following list:

O*(4)={(1,n): 1 <n<24,n+#19,23} U{(2,2n): 1 <n <9}
U{(3,3n):1<n<3}u{(4,4),(4,8),(5,5),(6,6)}.

Theorem 2.2.7. ([6]) Let K be a quintic field and E be an elliptic curve over K.
Then the torsion subgroup of E(K) that arise for infinitely many Q-isomorphism

classes is isomorphic to one of the groups in the following list:
O*°(B)={(1,n):1<n<25n#23}U{(2,2n):1<n <8}
Theorem 2.2.8. ([6]) Let K be a sextic field and E be an elliptic curve over K.

Then the torsion subgroup of E(K) that arise for infinitely many Q-isomorphism

classes is isomorphic to one of the groups in the following list:

O>(6)={(1,n): 1 <n<30,n#23,25,29}U{(2,2n) : 1 <n <10}
U{(3,3n):1<n<4}yU{(4,4),(4,8),(6,6)}.



Assume that the curve
E: y2+a1xy+a3y = 2%+ apz® + agr +ag
has a non-trivial rational point on K. Then we can obtain curve
E(b,c) : y* + (1 —c)zy+ by = 23 + ba?
from E and we call E(b,c) an elliptic curve in Tate-Normal form. Clearly, the
point P = (0,0) is on the E(b,c) curve.

Definition 2.2.9. Let K be a number field. We define Yi(m,mn) as the affine
modular curve such that its K-rational points determine isomorphism classes of
triples (E, Py, Pyy,), where E is an elliptic curve over K, Py, and P, generators

of the subgroup of E which is isomorphic to Z/mZ x Z/mnZ.

In the case m =1, instead of Y1(1,n), we write Y1(n). We define X1(m,mn) as a

compactification of Y1(m,mn) derived by adjoining its cusps.

Similarly, we define Yo(n) as the affine curve whose K-rational points determine
isomorphism classes of pairs (E,C), where E is an elliptic curve over K and C' is

a n-cycle. Analogously, Xo(n) is obtained by adjoining the cusps to Yp(n).

Remark 2.2.10. For the construction of X1(n), where 4 <n, we use curve
E(b,c). Since the point P = (0,0) is on the curve E(b,c), we assume P = (0,0) is

the torsion point and by using the group law we obtain following relation:
o Ifn is even we use the relation [n/2|P = [—n/2]P.
o Ifn is odd we use the relation [(n+1)/2|P = [—(n—1)/2|P.

Then from these relation we obtain elliptic curve E(b,c) = [1—¢,b,0,0,0].

Remark 2.2.11. Note that by construction the modular curve Xi(m,mn) is
defined over the cyclotomic field Q((n,), though we can have points on the equation
over smaller fields, these points do not give an elliptic curve with desired torsion
over smaller fields. Models of X1(n) and X1(m,mn) can be found in the website of
Professor Andrew Sutherland [1].

Example 2.2.12. The modular curve

X1(13) =% =225 4 2 — 223 4 622 — 42 41

10


https://math.mit.edu/~drew/

1s a genus 2 curve. The modular curve
X1(2,10) 192 =2® + 2% 2

s a genus 1 curve.

Definition 2.2.13. We call point P new torsion point if P ¢ Tors(Xi(m,mn)(Q))
but P € Tors(X1(m,mn)(K)) where [K : Q] > 2.

Throughout this thesis a will be the primitive element of the given field extension.

11



3. Torsion Structure of Elliptic Curves over Cubic Number Fields

Throughout this thesis f; will denote a irreducible polynomial of degree i and in
each chapter we focus on the torsion parts occurring over a cubic, quartic, quintic
and sextic number field but not over Q. Since if a torsion occurs over Q, it occurs

over all number fields.

In this chapter, K will be a number field with [K : Q] = 3. The results in this
chapter can be found in [22].

Remark 3.0.1. If the modular curve Xi(m,mn), where m > 1, n > 2, has genus

g > 1, then by Falting’s theorem, [8], | X1(m,mn)(K) |< oo for any number field.

Remark 3.0.2. We notice that the modular curves X1(13), X1(16), X1(18),
X1(20) and X1(2,14) are curves of genus 2,2,2,3 and 4, respectively.

Question Are there infinitely many cubic points on any of the curves Xi(m,mn)

in Remark 3.0.2 when the genus is g > 17
The following theorem from [1]] answers this question.

Theorem 3.0.3. (a) The modular curve X1(N) has infinitely many cubic points
if and only if N =1,...,16,18,20.

(b) The modular curve X1(2,2N) has infinitely many cubic points if and only if
N=1,..T.

We use the following lemma from [23] in this chapter.

Lemma 3.0.4. /23] Let K be a number field where [K : Q] =3. E(K) can not
have subgroups isomorphic to 727 X ZJ10Z, Z/27 x 2127 or 727 x Z/18Z.

In what follows, we only consider the curves Xi(m,mn) of genus 1.

Case 1: Z/11Z C Tors(E,K).

12



Consider the following modular curves
X1(11) 2 —y=a3—2a?
We have
Z/5Z ~Tors(X1(11),Q) C Tors(X1(11), K).

By Theorem 2.2.5 Tors(X1(11), K) must be one of the following groups:

Z/nZ, n=>5,10,15,20

Z]27. x 7./ 10Z.

Theorem 3.0.5. Let K be a cubic number field. Then

Z/10Z if K ~ L:=Q[x]/{x -2+ 1),

Tors(X1(11),K) ~
Z/5Z  otherwise.

Proof: Notice that Tors(X1(11), K) cannot be Z/27 x Z./10Z, by Lemma 3.0.4.

The 3 and 4 division polynomial of X1(11) are
W3(z) =32 —da® + 32— 1

and . .

Uy (z) = ( 3—x2+1)(a:6—2x5+5w3—5a:2+23:— 5).
It is easy to see that a cubic number field can not contain a root of Vs(x) since if it
contains a root of W3(x), it must also contain the number field obtained by
adjoining the root of Ws(x), but this is not possible. Hence we can not have Z/15Z

as a torsion subgroup of X1(11) over a cubic number field.

In the case V4(x) we can have a cubic number field containing a root of Wy(x). By
MAGMA Tors(X1(11),L) ~ Z/10Z where L is the number field generated by
23—+ i. Notice that since we cannot have a point of order 4, So, we could not

obtain 7./20Z as a torsion subgroup of X1(11) over a cubic number field.

Point from X (11) Corresponding Elliptic Curve with torsion Z/11Z
y? + (—8a® + 6a)y + (136a° — 192a +80)y = 27 +
(48a* — 68a 4 28)z?

(—2a+2,4a% — 4a+2)

Table 3.1 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(11) over the number field generated by a3 — 2%+ 1

13



Case 2: 7./14Z C Tors(E,K).

Consider the following modular curve
X1(14) 2+ ay+y=2° —x.

We have
Z7)67 ~Tors(X1(14),Q) C Tors(X;(14), K).

By Theorem 2.2.5, Tors(X1(14),K) must be one of the following groups:
Z/nZ, n=06,12,18
7,/27. % 7.)207, n = 3,6

Theorem 3.0.6. Let K be a cubic number field. Then

ZJ187 if K ~ L :=Q[z]/{(z3 —2? — 22+ 1),

Tors(X1(14),K) ~
ZJ6Z  otherwise.

Proof: First we will show that the cases 7./27 X Z)6Z and Z.)27 X Z/12Z are not
possibly. First, notice that (—1,0) is a 2-torsion point. Now we will show that
there is no other 2- torsion point. By [28] if there is a 2-torsion point it must be of
the form P = (x0,0). So x coordinate of point P must be a root of x> —1 and

22 —1 is a degree 2 polynomial. But if a cubic field contains a root of x> —1, then
it must also contain the field generated with the polynomial x> —1 which is degree
2. But this is not possible since 243. Thus Z /27 X Z/6Z and 7 /27 x Z.]127Z

cannot occur as a torsion subgroup of X1(14) over a cubic number field.
The 4 division polynomial of X1(14) is

3 1 3 3 1 1
Uy(a) = (z+1)(22 = 2o+ )2+ 20— 1) (e — 203+ 222 4 S+ o).
a(x)=(x+1)(z 4x+4)(3c +22—1)(x 57 +2:L‘ +2x+2)

Clearly, a cubic number field cannot contain a root of Wy(x), so we cannot obtain
ZJ127Z as a torsion subgroup of X1(14) over a cubic number field. The 9-division
polynomial of X1(14) is

1
Ug(z) = x(z® —22% —x+1) (2% + ng —x+1)fefor
By MAGMA, Tors(X1(14),L) ~Z/6Z where L is the number field generated by
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x3+%x2—$+1.

By MAGMA, Tors(X1(14), L) ~ Z/18Z where L is the number field generated by
23— 222 — x4 1.

Point from X(14) Corresponding Elliptic Curve with torsion Z /147
v+ 1(4a® — 17a + 15)2y + 2 (—4a® + 1)y = 23 +
%(—4@2 +1)?

y?+ 1(5a? — 2a+ 3)ay + (7a® + a — )y = 23 +
1(Ta’+a—3)a?

(2a® — 6a+ 3,64 — 16a + 6)

(—a®+a+2,2a> —3a—4)

Table 3.2 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(14) over the number field generated by 2® — 222 — 241

]

Remark 3.0.7. By MAGMA, Rank(X1(14),L) is positive where L is the number
field generated by x>+ %x2 —x+1, so we have infinitely many elliptic curve over
the number field L with torsion Z/147.

Case 3: Z/15Z C Tors(E,K).
Consider the following modular curve
X1(15) 2 +ay+y = a3+ 22

We have
ZJAZ ~ Tors(X1(15),Q) C Tors(X1(15), K).

By Theorem 2.2.5, Tors(X1(15),K) must be one of the following groups:
Z/nZ, n=4,8,12,16,20
Z)2Z % Z)2nT, n=2,4,6

Theorem 3.0.8. Let K be a cubic number field. Then

Tors(X1(15),K) ~Z/AZ.

Proof: The cases )27 x L.]AZ, 7.J]27. x 7|87, 1|27 x 7./ 127 are not possible like

in previous case. Just notice that there is no 2-torsion point other than (—1,0).

15



The 3-division polynomial of X1(15) is
WU3(z) = 30t + 52 + 322 + 32+ 1.

It is clear that a cubic number field can not contain a root of Vz(x) since a cubic
number field cannot contain quartic number field Hence we can not obtain Z /127

as a torsion subgroup of X1(15) over a cubic number field.

The 5-division polynomial of X1(15) is

W5 (z) = 5r'2 + 252 + 562" + 14527 4 3302° + 48027 + 43520 + 2492° + 902
+ 1023 — 1022 — 52— 1

Similarly, a cubic number field can not contain a root of degree 12 irreducible
polynomial. Thus we cannot have 7/207 as a torsion subgroup of X1(15) over a

cubic number field.

The 8-division polynomial of X1(15) is

Ug(z) = a:(:c+1)(x+2)(x2 T 1)(x2—|—le:c—l—i)(ﬁ—ir:t:—kl)fi”ff)fm.

It is clear that a cubic number field cannot contain a root of degree 2, 4 and 16

irreducible polynomial.

So, we cannot obtain a point of order 8 over a cubic number field. Thus Z/8Z and
ZJ16Z cannot occur as a torsion subgroup of X1(15) over a cubic number field.
Hence

Tors(X1(15), K) =Z/AZ.

Case 4: Z/2Z x ZJ10Z C Tors(E,K).
Consider the following modular curve
X1(2,10) 12 =P 42 —r=a(a?+2—1) =zf(z).
We have
Z/6Z ~Tors(X1(2,10),Q) C Tors(X1(2,10), K).
By Theorem 2.2.5, Tors(X1(2,10),K) must be one of the following groups:
Z/nZ, n=06,12,18
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7.)27 % 7.)2n7,, n = 3,6

Theorem 3.0.9. Let K be a cubic number field. Then

Tors(X1(2,10),K) ~Z/6Z.

Proof: The groups Z./27 x 7./67 and 7./27. x 7./127 cannot occur as subgroup of
X1(2,10) over cubic number field, like in previous cases. Just notice that there is

no 2-torsion point other than (0,0).

If we can have Z /127, this means that we have a point of order 4. So it must be
half of the point of order 2. By the duplication formula from [28] we get

et 422+ 1= (22 +1)2=0.

So if we have a point of order 4, x-coordinate of that point must be root of x> +1,
but clearly a cubic number field cannot contain a root of degree 2 irreducible
polynomial. Hence, 7./127 cannot occur as torsion subgroup of X1(2,10) over a

cubic number field.

The 9-division polynomial of X1(2,10) is
Ug(x) = (v —1)(32® +Ta* + 24 1) fo for.

By MAGMA, Tors(X1(2,10), L) ~ Z/6Z where L is the number field generated by
the polynomial 313+ 7x? 4+ x4+ 1. So it is not possible to obtain Z/187 as a torsion
subgroup of X1(2,10) over a cubic number field.

Thus
Tors(X1(2,10),K) = Z/6Z.

Case 5: Z/2Z x ZJ12Z C Tors(E,K).

Consider the following modular curve
X1(2,12) =22 -l +ar=a(?—2+1)=zf(2).

We have
Z]AZ ~ Tors(X1(2,12),Q) C Tors(X1(2,12), K).

By Theorem 2.2.5, Tors(X1(2,12), K) must be one of the following groups:
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Z/nZ, n=4,8,12,16,20
7.)27 x 7.)2nZ, n=2,4,6

Theorem 3.0.10. Let K be a cubic number field. Then
Tors(X(2,12),K) ~Z/47.

Proof: We cannot have Z/27 x /AL, Z]27 X L.|8Z., 7.]27. X ZJ12Z as a torsion
subgroup of X1(2,12) over cubic number field, like in previous cases since we can

not get a 2-torsion point over any cubic number field other than (0,0).

The 3-division polynomial of X1(2,12) is
Ws(z) = 30 — 423 + 622 — 1.

Clearly, a cubic number field cannot contain a root of degree 4 irreducible
polynomial. So, we cannot obtain Z/127Z as a torsion subgroup of X1(2,12) over a

cubic number field.

The 5-division polynomial of X1(2,12) is

W5(z) =522 — 202 + 78210 — 802 — 1052° +-36027 — 5402° +4322° — 28521 + 14023
— 502241

Similarly, a cubic number field cannot contain a root of Us(x), which is degree 12
irreducible polynomial. Hence 7./207 cannot occur as a torsion subgroup of
X1(2,12) over a cubic number field.

The 8-division polynomial of X1(2,12) is

Wg(z) = fro(zt +423 —62% +4x+1) (2 =223 + 622 =22+ 1) (22 —z+ 1) (2% — 4z +1)
(2% +1)(x—1)(x+1)z.

Obuviously, a cubic number field can not contain any root of the irreducible
polynomial of degree 2,4 and 16, since cubic number fields cannot contain a field of
degree 2, 4, or 16. So, we cannot have a point of order of 8. Hence we cannot
obtain Z/8Z and Z/16Z as a torsion subgroup of X1(2,12) over a cubic number
field. Thus

Tors(X1(2,12),K) =7Z/47.
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4. Torsion Structure of Elliptic Curves over Quartic Number Fields

In this chapter, K will be a number field with [K : Q] = 4.

Remark 4.0.1. If the modular curve X1(m,mn) where, m > 1 and n > 2, has
genus g > 1, then by Falting’s theorem ,[8], | X1(m,mn)(K) |< oo for any number
field.

Remark 4.0.2. Notice that the modular curves X1(13), X1(16), X1(17), X1(18)
X1(20), X1(21), X1(22), X1(24), X1(2,14), X1(2,16) and X1(2,18) are curves of
genus 2,2, 5,2,3,5,6,5,4,5 and 7, respectively.

By Theorem 2.2.6, there are infinitely many quartic points on any of the curves
X1(m,mn), see Remark 4.0.2.

In what follows, we only consider the curves X1(m,mn) when g < 1.
Case 1: ZJ11Z C Tors(E,K).
Consider the following modular curve
X1(11) 2 —y=a3—2a?
We have
Z/5Z ~ Tors(X1(11),Q) C Tors(X1(11), K).
By Theorem 2.2.6, Tors(X1(11),K) must be one of the following groups:
Z/nZ, n=5,10,15,20
Z7)27 X Z.]10Z
Z7.)57 X 7] 57

Theorem 4.0.3. Let K be a quartic number field. Then

Tors(X1(11),K) ~Z/5Z.
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Proof: The 2-division polynomial of X71(11) is
Uy(z) = 4% — 42> +1.

Clearly, a quartic number field cannot contain a root of degree 3 irreducible
polynomial. So, groups Z/10Z, Z/20Z and Z/27 X Z/10Z cannot seen as a torsion
group of X1(11) over a quartic number field.

The 3-division polynomial of X1(11) is
Ws(z) = 3zt — 423 4+ 3z — 1.

By MAGMA, Tors(X;(11),L) ~Z/5Z where L is the number field generated by
Us(x). Hence, we cannot obtain Z/15Z over a quartic number field as torsion
group of X1(11).

Therefore, we are left the possibly that Tors(X1(11), K) ~7Z/5Z X Z/5Z, see
Theorem 2.2.6.

The 5-division polynomial of X1(11) is

\115($) = J}(:L‘ — 1)f10.
If there is a new 5-torsion point, then the x-coordinate of the point must be a root

of fio. But a root of f19 cannot be contained in a quartic number field.

Hence
Tors(X1(11),K) ~7Z/57Z.

]

Remark 4.0.4. By MAGMA, Rank(X;(11),L) is positive where L is the number
field generated by 3z* — 43 +3x —1. So, we have infinitely many elliptic curve
over the number field L with torsion Z/11Z.

Case 2: Z/14Z C Tors(E,K).

Consider the following modular curve
X1(14) 1y +ay+y=a3—2z.

We have
Z/6Z ~Tors(X1(14),Q) C Tors(X1(14),K).
By Theorem 2.2.6, Tors(X1(14), K) must be one of the following groups:
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Z/nZ, n=6,12,18,24
7.)27 x 7./2nZ, n = 3,6,9
7./37 % 7./67,
7./67. % 7./67.

Theorem 4.0.5. Let K be a quartic number field. Then

Z/12Z if K~ M :=Q[z]/(2z* — 423 — 1),
Tors(X1(14), K) ~(Z/2Z x Z/6Z if K O L:=Qlz]/{2®— 32+ 1),
Z]6Z otherwise.

Proof: The 2-division polynomial of X1(14) is

3 1
Wy(z) = D(22-= ) .
o(z) = (z+ )(x FRR
(—1,0) is a 2-torsion point on the curve. If there is another 2-torsion point on the
curve then the x-coordinate of that point must be a root of the polynomial
2?2 =3z +1. By MAGMA, we obtain that Tors(X1(14),L) ~ Z/2Z x Z/6Z where L
is the number field generated by the polynomial x> — %SL’—F i.

Point from X (14) Corresponding Elliptic Curve with torsion Z/147Z
(—4511—1—3’ 4a8—7) y2 + 2a+15xy+ al—zly = 23 + al—tll 2
(CL, fanl) y + 4a+33xy + 45a6+7y — 3+ 45CLG+7I2

Table 4.1 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(14) over the number field generated by 22 — 2z 41

The 12-division polynomial of X1(14) is
1
Uig(z) =z(x—1)(z+1) (a: —i$+4>($2+x+2)(x2+2x—1)(x4—4x3—1)

($4 2I +2x +;x+ >f3 fs ) f6 fs fr2.fas.

First notice that the fields generated by x* — %a: +% and x>+ x+2 are isomorphic.

By MAGMA, Tors(X1(14), L) ~7Z/6Z where L is the number field generated by the
polynomial 2%+ 2x — 1.

By MAGMA, Tors(X1(14),L) ~ Z/QZ X Z/6Z where L is the number field
generated by the polynomial z* — x + x + x—I— L but it is easy to see that the
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field generated by the polynomial x* — %x%—i is contained in the field generated by
the polynomial x* — %x?’ + %x2 + %x + %

Point from X;(14) Corresponding Elliptic Curve with torsion Z /147
y? + 2(—4a3 + 10a® — 8a + T)ay + 3(—2a3 + 54 —
da+1)y =23+ 1(—2a3+5a® — da+1)a?

(3(—2a®+5a2 —4a—1),-2)

Table 4.2 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(14) over the number field generated by 2% — 323 + 322 + 1z + 1

In this case the point (3(—2a®+5a* —4a+3), 1(2a® — 5a® +4a— 11)) gives rise to

the elliptic curve

1 1 1
y2—|—%(2a3—5a2+4a+63)xy+m(2a3—5a2+4a+ 11)y= m3+m(2a3—5a2+4a+11)x2

with torsion Z./27. x 7./ 147 over the number field generated by
at— %x3+%x2—|—%x+%.

By MAGMA, Tors(X1(14), L) ~ Z/12Z where L is the number field generated by
the polynomial x* — 423 — 1.

Point from X (14) Corresponding Elliptic Curve with torsion Z/14Z
(3(—a®+5a2 —5a+3),3(—3a® + | y>+ 1(—4a®+18a% — 9a +15)xy + (30> — 14a® + 11a—
13a® —5a+3)) 4)y =23+ 4 (3a — 14a® + 11a — 4)a?

(3(=a® + 5a® — 3a — 3),3(3a® — | y? + & (—17a® + 59a® + 37a + 13)xy + 4 (5a® — 20a% —
11a® —5a+1)) 3a+8)y = x3+ £ (5a® — 20a% — 3a + 8)a?

Table 4.3 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(14) over the number field generated by % — 423 — 1

Notice that we cannot have the group Z/27 X Z/12Z as torsion subgroup of Xi(14)
over quartic number field. Since we already examined Wi2(x) for all possible

torsion subgroup over quartic number field.

The 9-division polynomial of X1(14) is

1
Ug(z) =x(z® =222 —z +1) <x3—|—3$2 —IL‘+1) fefar

Clearly, a quartic number field cannot contain a root of irreducible polynomial of
degree 3, 6 and 27. So, the groups Z/187 and 727 X Z /187 cannot occur as a

torsion group of X1(14) over a quartic number field.
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The 24-division polynomial of X1(14) is

Uoy(z) =x(z—1)(z+1) (:v2 - 3ZB+1> (22 +2+2) (22 + 22— 1) (2 — 42 — 1)

4 4
3 3 1 1
<x4 B 5333 * §x2 Tt 2> fél)fg)f6fé§1)f§2)f12f1(e13)f1(625)f24f32f48f96-

We cannot have the group Z /247 over a quartic number field as a torsion group of
X1(14), since the roots which can be in a quartic number fields does not give a point

of order 24. We already did necessary calculations when we are working on Wia(x).

The 3-division polynomial of X1(14) is
3,1 2
Us(z) ==z (a: +§x —x—l—l).

If there is a another 3-torsion point then the x-coordinate of the point must be the
root of the polynomial > + %xQ —x+1, however a quartic number field cannot

contain a root of a degree 3 irreducible polynomial. So, we cannot see 7./37 X Z.]6Z
and Z/6Z X Z.]6Z as torsion subgroup of X1(14) over a quartic number field. ]

Remark 4.0.6. By MAGMA, Rank(X1(14),L) is positive where L is the number
field generated by the polynomial x* — %933 + %xQ + %x + %, so we have infinitely

many elliptic curve over the number field L with torsion Z/147Z.
Case 3: Z/15Z C Tors(E,K).
Consider the following modular curve
X1(15) 12 +ay+y = a3+ 22
We have
Z]AZ ~Tors(X1(15),Q) C Tors(X1(15), K).

By Theorem 2.2.6, Tors(X1(15),K) must be one of the following groups:

Z/nZ, n=4,812,16,20,24

Z)27 X ZL)2nZ, n=2,4,6,8

ZJAZ x Z.)AnZ, n = 1,2
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Theorem 4.0.7. Let K be a quartic number field. Then

7./16Z if K~ Ly :=Q[z]
7.)167, if K =~ Ly :=Qlz]
Z)2LxZJST if K ~ L3 := Qx]
Tors(X1(15),K) ~ S Z./2Z x ZJAZ if K D Ly := Q[x]
7./87 if K2 Ls:=Q[x]
7./87 if K2 Lg:= Q7]
Z/AZ otherwise.

Proof: The 3-division polynomial of X1(15) is

Us(x) :x4+§az3~l—x2+x+l.
3 3
So, it is possible to obtain a a quartic number field that contain root of W3(x). Let
L be the number field generated by the polynomial x*+ 2333 +a?+a+ % By
MAGMA, we have Tors(X1(15),L) ~Z/AZ. So, there is no growth in torsion.
Hence the groups Z/127, /247 and Z)27 X /127 cannot occur as a torsion
group of X1(15) over a quartic number field.

The 5-division polynomial of X1(15) is

56 249 1
Us(z) =22 452 4 Exlo +2927 + 6625+ 9627 + 8725 + ?:ﬁ +182% +223 — 2% — 1z — v
Clearly, a quartic number field cannot contain a root of degree 12 irreducible
polynomial. So, we cannot have a b-torsion point over a quartic number field.

Hence we cannot obtain Z./207 over a quartic number field as a torsion subgroup

Of X1(15).

The 8-division polynomial of X1(15) is

Ug(z) =a(z+1)(z+2)(z* —z—1) (:cz—i—ix—i—jl) (2 +241)

1 3
<m4+2x3+2x2+2x+1) (21 4823 + 922 + 20+ 1) f16.
Clearly, a quartic number field cannot contain a root of degree 16 irreducible
polynomial. Notice that the number fields generated by the polynomials x> —x —1,
z? + i:c—i—i and 2 +x+1 are not isomorphic. Since a quartic number field can
contain a quadratic number field we need to consider number field generated by

above polynomials.
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By MAGMA, Tors(X1(15),L) ~ Z/8Z where L is the number field generated by the

polynomial x> —x — 1.

Point from X1(15) Corresponding Elliptic Curve with torsion Z/15Z
(a,—2a—1) g2+ Bl gy Cladls), 5 (CTIads) 5

Table 4.4 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(15) over the number field generated by 22 —z — 1

By MAGMA, Tors(X1(15),L) ~Z/27 x Z./]AZ where L is the number field
generated by the polynomial z° + im + i.

Point from X (15) Corresponding Elliptic Curve with torsion Z/15Z
(—2,—4a) y? + (8a+1)xy + (24a +8)y = 23 + (24a + 8)z?

Table 4.5 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(15) over the number field generated by 22+ Lz + 1

By MAGMA, Tors(X1(15), L) ~ Z/8Z where L is the number field generated by the
polynomial >+ x+1. But in this case, new torsion points do not give rise to an

elliptic curve with torsion subgroup Z/157Z.

By MAGMA, Tors(X1(15),L) ~Z/27 x Z./]AZ where L is the number field
generated by the polynomial z*+ %mg + %x2 +2x+ 1. But it is easy to see that the
number field generated by the polynomial x* + %xs + %xQ +2x+1 contains the
number field generated by the polynomial 2% + %JJ + i.

Point from X;(15) Corresponding Elliptic Curve with torsion Z/15Z
y? + (4a3 — 202 + da + 3)zy + (120 — 6a® + 12a +
14)y = 23+ (120> — 6a + 12a + 14) 2>

(—2,—2a®+a? —2a—1)

Table 4.6 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(15) over the number field generated by zt+ 123+ 322 + 22 +1

By MAGMA, Tors(X1(15), L) ~ Z/AZ where L is the number field generated by the
polynomial x* 4+ 8z + 922 +2x +1. So, there is no growth in torsion in this case.
But, in this case rank is positive so we have infinitely many elliptic curve over the
number field L with torsion Z/15Z.

We also need to consider the compositum of the quadratic field.

Ly is the number field generated by z°+ %x—i—i
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Ls is the number field generated by x> —x —1
Lg is the number field generated by 2% +x+1

Let Fj; be the compositum of the number field L; and L;. Then By MAGMA, Fys,
Fs¢ and Fyg are the number fields generated by 16z* — 2423 — 1922 + 212+ 31,

2t — 22+ 4 and 162* + 4023 4+ 6922 4 552 + 19, respectively. Notice that Fys, Fig
and Fug are isomorphic to each other, so we only need to consider one of them. We

will work on Fsg.

By MAGMA, Tors(X1(15),L) ~7Z/27 x Z./8Z where L is the number field
generated by the polynomial z* — 2% +4.

Point from X (15) Corresponding Elliptic Curve with torsion Z/15Z
2 a%—4 2, (7a%469 79a°+93) 3, (794%+493) 2
% 5) y?+1 o Loy + 5 = + ;
3 3
(a _431&+27 a —za+2) y2+ (5a —125a—20)xy+ (47a —131(1—210)y:x3+ (47a —14211(1—210)x2

Table 4.7 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(15) over the number field generated by z* — 22 44

The 16-division polynomial of X1(15) is

1 1 1 3
Ui6(x) =z(x+1)(z4+2) (2 —x—1) <x2+4x—|—4) (2 +z41) <x4+2x3+2x2+2x+1>

(248234922 + 20 4+1) (2t = 723 — 622 + 204+ 1) (2t + 3% + 422 +- 22+ 1)f8f1((13)f1((25)f64.

The only polynomials, we need to consider are (x* — 723 —62% 4+ 22 +1) and
(z* + 323 + 422 + 22+ 1) since we already exzamined the other polynomials when we

are working on Vg(x).

By MAGMA, Tors(X1(15),L) ~Z/16Z where L is the number field generated by
the polynomial x* — Tx3 — 622 + 22 + 1.

Point from X (15)
(3(=a® + 8> — a —

Corresponding Elliptic Curve with torsion Z/15Z
y?2 + 1 (=243 +16a% — 2a — 9)zy + L (11a — 88a® + 11a +

87)y = 2® + £(11a® — 88a® + 11a + 87)a?

3),3(2a% — 164 +2a+ 3))
(3(7a®> — 51a®> — 27a +
20),%(—23¢® + 1684> +
87a—"T73))

y? + 1(106a® — 694a% — 949a — 224)zy + 1(—18224a +
119150a® + 164384a + 39466)y = 23 + +(—18224a® +
11915042 4 164384a + 39466) 2>

Table 4.8 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(15) over the number field generated by 2* — 723 — 622 + 2241
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By MAGMA, Tors(X1(15),L) ~ Z/16Z where L is the number field generated by
the polynomial x* + 323 4+ 422 + 22 + 1.

Point from X (15) Corresponding Elliptic Curve with torsion Z/15Z

y? + (=3a® — 11a® — 16a — T)zy + (164> — 45a% — 50a —

3 2 —a?—2a—2 3 2 —
+ 3a* + 3a, 2
(a a a,—a ) 8)y =3 +( 16a” — 45a 50a S)x

(—a® — 2a% —a + 1,—a® — | y? + (—10a> — 20a® — 10a — 5)zy + (—94a® — 18842 — 94a —
20> —a+1) 58)y = 22 + (—94a> — 18842 — 94a — 58) x>

Table 4.9 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(15) over the number field generated by z* + 323 + 422 + 22+ 1

The 4-division polynomial of X1(15) is

11 1, 3
Uy(z) = (v +1)(z+2) (:c2+4:c+4> <x4+2x3+2m2+2x+1>.

If ZJAZ x Z.JAZ occur over quartic number field as a torsion subgroup of X1(15), it
must occur over number fields generated by the above polynomial, but we already
examined all of them and it didn’t occur. So, we cannot have Z/AZ x 7/AZ,

LZJAZ X ZLJ8Z and Z )27 x Z/16Z as a torsion subgroup of X1(15) over a quartic
number field. O

Remark 4.0.8. By MAGMA, Rank(X1(15),L) is positive where L is the number
field generated by the polynomial x* + %x?’ + %xQ +2x+1, so we have infinitely

many elliptic curve over the number field L with torsion Z/15Z.
Case 4: 7)27 X ZJ/10Z
Consider following modular curve
X1(2,10) 2 =P 42t~z =22+ 2 —1).
We have
7.)67 ~ Tors(X1(2,10),Q) C Tors(X1(2,10), K).
By Theorem 2.2.6, Tors(X1(2,10),K) must be one of the following groups:
Z/nZ, n=06,12,18,24
7)27 X Z]2nZ., n = 3,6,9
Z7)37 X 1]6Z
7.)67 X 1.]6Z
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Theorem 4.0.9. Let K be a quartic number field. Then

7.]127 if K~ L:=Q[x]/(z* + 423+ 622 — 4z + 1),
Tors(X1(2,10),K) ~7Z/2Zx Z/6Z if K O M = Q[z]/(2z? — 4z — 1),
Z]6Z otherwise.

Proof: The 9-division polynomial of X1(2,10) is

Uo(z) = (x—1) (:c3—|— ;x2 + ;H ;) Fofor.

But a quartic number field cannot contain any roots of (xS + %CL‘Q + %x—i— %), fo and
far. So, we cannot obtain Z./187 and Z/27 x 7./187Z as a torsion subgroup of
X1(2,10) over a quartic number field.

The 12- division polynomial of X1(2,10) is

Upo(z) =x(z—1)(z+1)(2® =4z — 1) (2® + 1) (2® + 2 — 1) (2 + 22° — 622 — 22 + 1)
(o' +40® + 627 — 4z + 1) f57 17 fo s o fou.

Notice that the number fields generated by the polynomials > —4x —1 and

22+ —1 are isomorphic, so it is enough to consider only one of them.

By MAGMA, Tors(X1(2,10),L) ~Z/27 x 7./6Z where L is the number field
generated by the polynomial x> —4x — 1. But in this case, new torsion points do

not give rise to an elliptic curve with torsion subgroup 7Z./27. x 7./ 10Z.

By MAGMA, Tors(X1(2,10), L) ~ Z/6Z where L is the number field generated by
the polynomial 2%+ 1.

By MAGMA, Tors(X1(2,10),L) ~ Z/27 x 7|67 where L is the number field
generated by the polynomial z* + 223 — 622 — 2z + 1. Notice that the number field
generated by the polynomial x* + 223 — 622 — 2z + 1 contains the number field
generated by the polynomial x> —4x — 1. But in this case, new torsion points do

not give rise to an elliptic curve with torsion subgroup 7Z./27 x 7./ 10Z.

By MAGMA, Tors(X1(2,10), L) ~ Z/127Z where L is the number field generated by
the polynomial x* + 423 4 622 — 4x + 1.
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Corresponding Elliptic Curve with torsion Z /27 x

Point from X (2,10) 7./10Z

3.- 2 23 122 a0 _ 32 —
(a3+4a2+6a_4’a +5a ;—11a—|—5) y2 :$3+( 3a 181a0 39a 6)$2—|— (2a +8a5+14a 2){E

Table 4.10 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(2,10) over the number field generated by z* + 423 4 622 — 42+ 1

The 3-division polynomial of X1(2,10) is

1 1
Us(x)=(x—1) (m3+;x2+3x+3> :

So if there is a new 3-torsion point, its x-coordinate must be root of the polynomial
(mg + %x2 + %x+ %) But a quartic number cannot contain a root of this
polynomial. Hence we cannot have groups Z/37 x Z/6Z and Z/6Z x Z/6Z as

torsion group of X1(2,10) over a quartic number field.

The case Z.]27 X 7./127. cannot occur over a quartic number field since if they
occur over a quartic number field then x-coordinate of the new 2-torsion point must
came from root of degree 2 or 4 polynomial which is component of Wia(x), but this

is not possible.

The 24- division polynomial of X1(2,10) is

Wau(x) = Uio(2) £2 18 12 i f1s fos.

We notice that there is no new root can be contained in a quartic number field. So,
the case Z./247. cannot occur as a torsion subgroup of an elliptic curve over a

quartic number field. O
Case 5: 7/27 x7/12Z

Consider following the modular curve
X1(2,12) =2 — P v =22t —2+1).

We have
7]A7 ~Tors(X1(2,12),Q) C Tors(X1(2,12), K).
By Theorem 2.2.6, Tors(X1(2,12), K) must be one of the following groups:
Z/nZ, n = 4,8,12,16,20,24

7.)27. % 7./2n7., n=2,4,6,8
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ZJAL X L]AnZ., n = 1,2

Theorem 4.0.10. Let K be a quartic number field. Then

7)27.x 7)8Z if K ~ L := Q[x]/{x* — 22 + 522 —da + 1),

]
)27 x ZJAZ if K D My := Q[z]/(x® —x+1),
Tors(X1(2,12),K) ~ { Z/8Z if K2 My:=Qla]/(2* -4z +1),
L8 if K2 Ms:=Qlz]/(2*+1),
Z]AZ otherwise.

Proof:The 3-division polynomial of X1(2,12) is

4 1
Us(z) =at— 3x3+2x 3

By MAGMA, Tors(X1(2,12), L) ~ Z/AZ where L is the number field generated by
the polynomial x* — %:1:3 + 222 — %

Since we cannot obtain a 3-torsion point, Z/127Z, /247 and Z/2Z x Z/12Z

cannot occur as torsion group of X1(2,12) over a quartic number field.

The 5-division polynomial of X1(2,12) is
78 432 1
5(z) = '? — 4zt +Ex10 —162° — 2128+ 7227 — 108x6+?x5 — 5724 4-282° — 10:(:2+g

A quartic number field cannot contain a root of degree 12 irreducible polynomial.
Hence we cannot have Z/20Z as torsion subgroup of X1(2,12) over a quartic

number field.

The 8-division polynomial of X1(2,12) is

Ug(z) =ax(z—D)(z+1) (22 —da+1) (22 —x+1)(2® + 1) (z* — 223 +62° — 22 +1)
(21 4 423 — 62° + 42 +1) f16.

By MAGMA, Tors(X1(2,12),L) ~7Z/8Z where L is the number field generated by

the polynomial x> —4x +1. But in this case, new torsion points do not give rise to

an elliptic curve with torsion subgroup Z /27 x 7.J127Z.

By MAGMA, Tors(X1(2,12), L) ~ Z/27 x Z./AZ where L is the number field
generated by the polynomial x? — x+ 1. But in this case, new torsion points do not

give rise to an elliptic curve with torsion subgroup Z /27 X 7./127.
By MAGMA, Tors(X1(2,12),L) ~7Z/8Z where L is the number field generated by
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the polynomial x>+ 1. But in this case new torsion points do not give rise to an

elliptic curve with torsion subgroup 7./27 x 7.]127.

By MAGMA, Tors(X1(2,12), L) =~ Z /27 x Z./AZ where L is the number field
generated by the polynomial x* — 223 + 62> — 2z +1. But it is easy to notice that
the number field generated by the polynomial x* — 223 + 622 —2x +1 contain the
number field generated by the polynomial 2% — x +1.

By MAGMA, Tors(X1(2,12), L) ~ Z/8Z where L is the number field generated by
the polynomial x* +4x® — 622 +4x+ 1. But it is easy to notice that the number
field generated by the polynomial z* + 423 —62% +4x+1 contain the number field
generated by the polynomial x> — 4z + 1.

We also need to consider the compositum of the quadratic fields My, My and Ms.

Let Fj; be the compositum of the number field M; and M;. Then By MAGMA, Fia,
Fi3 and Fb3 are the number fields generated by x* — 1023 + 3322 — 402 + 25,
=223 + 522 — 4z 41 and z* — 823 + 2022 — 162 + 16, respectively. Notice that
Fio, Fi3 and Fb3 are isomorphic to each other, so we only need to consider one of

them. We will work on Fi3.

By MAGMA, Tors(X1(2,12),L) ~7Z/27Z x /87 where L is the number field
generated by the polynomial x* — 223 + 522 —4x 4+ 1. But in this case, new torsion
points do not give rise to an elliptic curve with torsion subgroup Z /27 x 7./127. So
we cannot have Z /167 and 7./27 x Z/16Z as a torsion group of X1(2,12) over a

quartic number field.

The 4-division polynomial of X1(2,12) is
Uy(z)=x(z—1)(z+1)(2? —2+1)(z* = 22° + 6% — 22+ 1).

So we cannot have the groups Z/AZ X Z./AZ and Z/AZ x 787 as a torsion group
of X1(2,12) over a quartic number field. Since if there is new 4-torsion point, its
x-coordinate must be root of the Wy(x), but this is not possible. We already did

necessary calculations when we are working on Wg(x). O

Remark 4.0.11. By MAGMA, Rank(X1(2,12),L) is positive where L is the
number field generated by the polynomial x* — %xg + 222 — %, so we have infinitely
many elliptic curve over the number field L with torsion Z./27. X Z/127.

Remark 4.0.12. For the remaining cases we do not need to consider new points

over quadratic number fields since following torsions cannot occur over quadratic
number field.
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Case 6: Z/37 x L]37Z

Consider following the modular curve X1(3,3) of genus 0. The general equation of
the elliptic curve with torsion subgroup Z/37Z x 7./37Z, [1], is the following:

£3,3) 2+ ((z4+2v+ (1 —2)zy+ ((z+ 1)v? — 20)y = 2°

where v € K, z= (3 and X1(3,3) is defined over the field Q((3). Then the

discriminant is given by

A(3,3) = —27(—vz + 02 (14 2) + (—vz + 02 (14 2))3(1 — 2 +v(2+ 2))3.

Notice that A(3,3) =0 if and only ifv=0,v=1, v= 173 ((_21:2’;2),3 S

other than the points (0,0), (0,1), (0,1%;) and (0, ((_21;;;)33), we can have an elliptic
curve with torsion Z /37 x 7/ 3Z.

and v = 0

Case 7: 137 x /67

Consider following the modular curve X1(3,6) of genus 0. The general equation of
the elliptic curve with torsion subgroup Z/3Z X Z/6Z, [1], is the following:

£(3,6) 2+ (t+2zy+ (—t(t+1))y = 2® + (—t(t + 1)) 2>

where t = %, v € K and and X1(3,6) is defined over the field Q((3). Then

the discriminant is given by

A(3,6) = =27t (t+ 1) + 83 (£ +2)° (¢ 4+ 1)° +4° ((t+2)* — 4t(t + 1))2 (t+1)3
— 93 (t+2) ((t+2)° —4t(t +1)) (£ +1)°.

Notice that A(3,6) =0 if and only if v=—1, v = —%, v= i (—3—2\/5),

V= i (—3+i\/§), V= % (—3—@\/5) and v = % (—3+i\/§). So other than the
points (0,v), where v is the root of A(3,6), we can have an elliptic curve with
torsion Z.)3Z x 7/ 6Z.

Case 8: Z/37 x Z/9Z

Consider following the modular curve
X1(3,9) 24y =2a

We have
737 ~ Tors(X1(3,9),Q) C Tors(X1(3,9), K).
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By Theorem 2.2.6, Tors(X1(3,9),K) must be one of the following groups:
Z/nZ, n=3,6,9,12,15,18,21,24
7.)27 % Z./2nZ, n = 3,6,9
Z)3Zx Z/3nZ, n=1,2,3
7./6Z x Z/61Z
Theorem 4.0.13. Let K be a quartic number field. Then

Z)37.x7)3Z if K O L:=Q[x]/{x*—x+1),
737 otherwise.

Tors(X1(3,9),K) ~

Proof: The 2-division polynomial of X1(3,9) is

Clearly a quartic number field cannot contain a root of a degree 3 irreducible
polynomial. So we cannot have a point of order 2. Hence the groups 7./67, Z]12Z,
ZJ18Z, 7)247, 7./27 X L]6Z, |27 X 2127, 7|37 X Z./6Z and Z/6Z X Z]6Z

cannot occur as torsion group of X1(3,9) over a quartic number field.
The 5-division polynomial of X1(3,9) is
12 9 6 3 1
Us(z) =2+ 192" —32° — b —%
Clearly a quartic number field cannot contain a root of a degree 12 irreducible
polynomial. So, we cannot obtain the group 7 /157.
The 7-division polynomial of X1(3,9) is

Uq(z) = (2% — ;ig + ;)fls-

Clearly a quartic number field cannot contain a root of a degree 6 and 18

irreducible polynomial. So, we cannot obtain the group 7./217.
The 9-division polynomial of X1(3,9) is
Ug(x) = 2(z+1)(2? —x +1)(2® — 322 + 1) fs fo f1s.

Clearly a quartic number field cannot contain a root of a degree 3, 6, 9 and 18

irreducible polynomial. So, we only need to consider the polynomial x> —x+1. By
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MAGMA, Tors(X1(3,9),L) ~7Z/37Z x Z./3Z where L is the number field generated
by the polynomial x? —x+1. But since we cannot have Z/3Z x 7./9Z as torsion
group of an elliptic curve over a quadratic number field, we do not need to consider

new points in the torsion. Also, we cannot obtain the groups Z./97 and
Z2)37 X 1/9Z as torsion group of X1(3,9) over a quartic number field. O

Case 9: 7/AZ X Z.]AZ
Consider following the modular curve X;(4,4) of genus 0.

The general equation of the elliptic curve with torsion subgroup Z/AZ x ZJAZ, [1],
is the following:
E(4,4) 2 +ay+ (—t)y = a® + (—t)2?

where t = %ﬂ, ve K and X1(4,4) is defined over the field Q((4). Then

the discriminant is given by
A(4,4) = =27t1 4 (1 — 4)*t3 — 9(1 — 4t)t> + 83,

Notice that A(4,4) =0 if and only ifv=1,v=2, v=1—1i and v=1+1i. So other
than the points (0,1), (0,2), (0,1—14) and (0,1+14) we can have an elliptic curve
with torsion ZJAZ x 7./AZ.

Case 10: 7/A7 x 7|87
Consider following the modular curve
X1(4,8) % =2 —x.
We have
L)27 X 7.)]27 ~ Tors(X1(4,8),Q) C Tors(X1(4,8), K).
By Theorem 2.2.6, Tors(X1(4,8),K) must be one of the following groups:
L)27 X L)2nZ, n=1,2,3,4,5,6
L)AL X ZL]AnZ, n=1,2
Theorem 4.0.14. Let K be a quartic number field. Then
L)AL x ZJAZ if K ~ L := Q[z]/(2x* — 423 + 42% +8),
7.)27. x Z.JAZ if K D My := Q[z]/{z? — 2z —1),

7.)27.x 7.JAZ if K D Ms := Q[z]/(2? +1),
LJ2Z <X L]2Z  otherwise.

Tors(X1(4,8),K) ~
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Proof: The 3-division polynomial of X1(4,8) is

1
s(z) = ot — 222 — 3

By MAGMA, Tors(X1(4,8),L) ~Z/27 x 7|27 where L is the number field

generated by the polynomial z* — 222 — % There is no growth in torsion.

So, also Z/27 x 7./67Z and Z./27 x 7127 cannot occur as torsion subgroup of
X1(4,8) over a quartic number field.

The 4-division polynomial of X1(4,8) is
Uy(z) =a(x—1D)(z+1)(2® =22 —1)(z® + 1) (2> + 22— 1).

First notice that the number fields generated by the polynomials > —2x —1 and

22+ 2x — 1 are isomorphic. So, it is enough to consider only one of them.

By MAGMA, Tors(X1(4,8),L) ~Z/27 x Z./]AZ where L is the number field
generated by the polynomial x> — 2z — 1.

By MAGMA, Tors(X1(4,8),L) ~Z/27 x Z/AZ where L is the number field
generated by the polynomial x> +1.

There is no quartic polynomial in Vy(x) but we also need to consider compositum

of the fields generated by the polynomials x> —2x —1 and 2%+ 1.

Let M be the compositum of the fields generated by the polynomials x> — 2z — 1 and
22+ 1. Then M is the number field generated by the polynomial x* — 43 + 422 + 8.

By MAGMA, Tors(X1(4,8),L) ~Z/AZ x Z./AZ where L is the number field
generated by the polynomial x* — 42 +42% +8. But all of the torsion points are

cusps. So new torsion points do not give rise to an elliptic curve with the torsion

subgroup Z/AZ X Z./8Z. (double checked)

The 8-division polynomial of X1(4,8) is

Ws(w) = Wa(a) 1 17 12,

There isn’t any new polynomials we need to consider in Vg(x) because we already
examined all of them when we are working on V4(x). So, the cases 7./27 x 7.]87
and ZJAZ x Z/8Z cannot occur as torsion subgroup of X1(4,8) over a quartic
number field.
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The 5-division polynomial of X1(4,8) is

\115(13) = (:L’4 — §x2 + ;)) fs-
By MAGMA, Tors(X1(4,8),L) ~Z/27 x Z./]AZ where L is the number field
generated by the polynomial x* — %x2 +% and all new torsion points are cusps. It is
easy to see that the field generated by the polynomial x>+ 1 is contained in the field
generated by the polynomial x* — %xz + % So we could not obtain a point of order
5. Hence, we cannot obtain 7./27 X Z/10Z as torsion subgroup of X1(4,8) over a
quartic number field. [

Remark 4.0.15. By MAGMA, Rank(X1(4,8),L) is positive where L is the number
field generated by the polynomial * — 222 — %, but L does not contain (4. So, even

we have a positive rank, we cannot obtain an elliptic curve with torsion
Z7]A7 X 7./8Z over L.

Case 11: 7/57 x 7./5Z

Consider following the modular curve X1(5,5) of genus 0. The general equation of
the elliptic curve with torsion subgroup Z/5Z X Z/5Z, [1], is the following:

£(5,5) :y* + (1 —t)wy + (—t)y = 2 + (—t)2?

where t = % and X1(5,5) is defined over the field Q((s). U and V are defined

as following

(2—a)v? | (2—a)v +3
Ue_5 T 5 5
v+1

and —((a—|—2)v2+(5a+9)v+(25a+41))

T (¥4 (=3a—2)v2+ (2a+6)v + (5a+9))

where a = %, z2=C(5 andv € K,. Then

A(5,5) = =27t +8(1—1)** + ((1—)* - 4t>2t3 —9((1—1)? —4t) (1—1)".

So other than the points (0,v) where v is the root of A(5,5) we can have an elliptic
curve with torsion Z/5Z x Z/5Z.

Case 12: 7/67 x Z]6Z

Consider following the modular curve

X1(6,6):y? = a3 +1.
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We have
Z]6Z ~Tors(X1(6,6),Q) C Tors(X1(6,6), K).

By Theorem 2.2.6, Tors(X1(6,6), K) must be one of the following groups:
Z/nZ, n=6,12,18,24
7)2Z x 7)2nT, n=3,6,9
/37 x L./6Z
/67 x L./6Z

Theorem 4.0.16. Let K be a quartic number field. Then

7127 if K~ L:=Qlxz]/({z* — 823 —8x —8),
Tors(X1(6,6), K) ~ § Z/2Z x Z./6Z if K D M := Q[z]/(2? — x +1),
Z]6Z otherwise.

Proof: The 2-division polynomial of X1(6,6) is
Uy(z) = (x+1)(z® —z+1).

By MAGMA, we obtain that Tors(X1(6,6),L) ~ Z/27 x Z/6Z where L is the
number field is generated by the polynomial x> — x4+ 1.

The 12-division polynomial of X1(6,6) is

Uio(z) = x(z —2)(x+1)(2® —z 4+ 1) (2 + 22 — 2) (2> + 224+ 4) (2 — 823 — 8z — 8)
(ot = 20° 1 62° +da + ) f51 157 fo s fra .

First notice that the number fields generated by the polynomials > —x+1 and

22 +2x+4 are isomorphic and we already examined the polynomial > —z + 1.

By MAGMA, Tors(X1(6,6),L) ~7Z/6Z where L is the number field generated by
the polynomial x* + 2z — 2.

By MAGMA, Tors(X1(6,6), L) ~ Z/12Z where L is the number field generated by
the polynomial x* — 823 —8x — 8. Since L does not contain (g, new points from

torsion do not give rise to an elliptic curve with torsion Z/6Z x Z./67Z.

By MAGMA, Tors(X1(6,6), L) ~7Z/27 x Z/6Z where L is the number field
generated by the polynomial x* —2x3 + 622 4+ 4z +4 but it is easy to see that the
number field generated by the polynomial x* — 223 + 622 +4x +4 contain the number
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field generated by the polynomial x> —x+1. New points from torsion are cusps, so

they do not give rise to an elliptic curve with torsion subgroup Z/6Z X Z./6Z.

We also need to consider the compositum of the number fields generated by the
polynomials %> —x+1 and x> +2x — 2. Their compositum is the number field
generated by the polynomial z* + 223 — 322 — 4z +13. We notice the number fields
generated by the polynomials * + 223 — 322 — 4z 413 and 2* — 223 + 622 + 4o + 4

are isomorphic.

Notice that we cannot have the case Z /27 X Z.J12Z as torsion subgroup of X1(6,6)
over quartic number field. Since we already examined Wi2(x) for all possible

torsion subgroup over quartic number field.

The 9-division polynomial of X1(6,6) is
Yy (:B) = I(Ig + 4)f9f27.

Clearly a quartic number field cannot contain a root of the polynomials (x> +4), fo
and fa7. So, the groups Z /187 and Z /27 x Z/18Z cannot occur as a torsion
subgroup of X1(6,6) over a quartic number field.

The 24-division polynomial of X1(6,6) is

Uoy(z) = 2(x —2)(x + 1) (2% — 2z +1)(2* + 22 — 2) (2% + 22 +4) (2" — 82 — 82 —8)
(o —20% + 6%+ dx + 4) £V 1P fo 189 1) o fi6) 118 foafsfas .

Notice that we already examined the necessary polynomials when we are working on
Uia(z). So the case Z/247 cannot occur.

The 3-division polynomial of X1(6,6) is
Ug(z) = x(z® +4).

If there exist a new independent 3-torsion point, it must be root of the polynomial
2344 but a quartic number field cannot contain root of degree 3 irreducible
polynomial. So we cannot have the cases Z/37 x Z./6Z and Z/6Z x Z/6Z as

torsion subgroup of X1(6,6) over a quartic number field. [
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5. Torsion Structure of Elliptic Curves over Quintic Number Fields

In this chapter, K will be a number field with [K : Q] = 5.

Remark 5.0.1. If the modular curve X1(m,mn), where m > 1 and n > 2, has
genus g > 1, then by Falting’s theorem, [8], | X1(m,mn)(K) |< oo for any number
field.

Remark 5.0.2. Notice that the modular curves X1(13), X1(16), X1(17), X;(18),
X1(19), X1(20), X1(21), X1(22), X1(24), X1(25) X1(2,14) and X1(2,16) are
curves of genus 2, 2, 5,2, 7, 3,5, 6,5, 12, 4 and 5, respectively.

By Theorem 2.2.7, there are infinitely many quintic points on any of the curves
X1(m,mn), see Remark 5.0.2.

In what follows, we only consider the curves X1(m,mn) when g=1.
Case 1: Z/11Z C Tors(E,K).
Consider the following modular curve
X1(11) 2 —y=a3—2a?
We have
Z/5Z ~ Tors(X1(11),Q) C Tors(X1(11), K).
By Theorem 2.2.7, Tors(X1(11),K) must be one of the following groups:
Z/nZ, n=5,10,15,20
7)27 X Z.]10Z
Theorem 5.0.3. Let K be a quintic number field. Then

7)257 if K ~ L :=Q[z]/(x% —182* +352% — 1622 — 2z +1),
ZJ5Z  otherwise.

Tors(X1(11),K) ~
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Proof: The 2-division polynomial of X71(11) is
Uy(z) = 4% — 42> +1.

It is easy to see that a quintic number field can not contain a root of Wa(x) since if
it contains a root of Wo(x), it must also contain the number field obtained by

adjoining the root of Wo(x), but this is not possible. Hence we cannot obtain
ZJ10Z, Z)20Z and Z/2Z x ZJ/10Z as a torsion subgroup of X1(11) over a quintic
number field.

The 3-division polynomial of X1(11) is
Ws(z) =32t — 42 4+ 3z — 1.

Similarly, a quintic field can not contain a root of degree 4 irreducible polynomial.
Hence Z/15Z cannot occur as the torsion subgroup of X1(11) over a quintic

number field.

Now consider 25-division polynomial of X1(11), which are
Wos(x) = x(x —1)(2° — 1821 +352% — 1622 — 20 +1)(2° — T2t + 132 — 522 — 22+ 1)
1) (2
Fr0f50 F50) Fas0

Clearly, a quintic number field can not contain a root of irreducible polynomials
1 2
fro. f3), J55) and faso.

Also notice that the fields generated by the polynomials
2® —18z* 4 3523 — 1622 — 22 + 1,

2® —Tat +132% — 52 — 20 +1
are isomorphic. So it is enough to consider only one of them.

By MAGMA, Tors(X;(11), L) ~7Z/257Z where L is the number field generated by
the polynomial x° — 182* + 3523 — 1622 — 2z + 1.
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Point from X (11) Corresponding Elliptic Curve with torsion Z/117Z

(&r(at — 194 + 50a% — | y? + £ (61a* — 1017a3 + 786a% + 43a — 42)zy + 5(9199a* —
3a+3), 5 (10a* —168a®+ | 153213a® + 115964a> + 8589a — 6848)y = 2% + +(2183a* —
14842 4 25a — 3)) 36363a +27587a? + 2037a — 1629) x>

({r(a* — 19a® + 50a* —
3a. + 3),4(—10a* +
168a% — 148a® — 25a +

y? + #(10a* — 160a® + 2242 + 10a + 4)zy +
55475a% — 43435a% — 3104a + 2565)y = 2° + £ (—831a* +
13888a? — 11227a? — 775a + 663 )22

14))
(&(15a* — 271a® + | y? + £(—2401a* + 4379943 — 9463042 + 61254a — 9956)xy +
5460  —  327a  + | £7(36813276a* — 671514575a% + 1450365472a% — 938692534a +

,77(49a™ — a” + y = x° + a” — a® + a® —
60), 1r (49a* — 897a® 152690206 3 + (211054a* — 3849857a® + 83150884

198642 — 1330a +229)) | 5381621a + 875389)x>

Table 5.1 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(11) over the number field generated by z° — 18z* + 3523 — 1622 — 22 + 1

Case 2: 7./147Z C Tors(E,K).

Consider the following modular curve
X1(14) - +ay+y=a3—2z.

We have
Z/6Z ~ Tors(X1(14),Q) C Tors(X1(14),K).
By Theorem 2.2.7, Tors(X1(14),K) must be one of the following groups:
Z/nZ, n=6,12,18,24
7)2Z x Z)2nZ, n = 3,6

Theorem 5.0.4. Let K be a quintic number field. Then
Tors(X1(14),K) ~Z/6Z.

Proof: We cannot obtain groups 7./27 X Z.)6Z and Z/27 x Z./]127 as torsion
subgroup of X1(14) over a quintic number field because if there is a 2-torsion point
other than (—1,0) then x-coordinates of that point must be a root of polynomial

22 — 1, but this implies that the field generated by the polynomial x> —1 must be

contained in a quintic number field, which is not possible.
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The 4-division polynomial of X1(14) is
2 3 1.9
Uy(x)=o+1)(z" — i Z)(m +2x—1) fa.

Clearly, a quintic number field can not contain a root of degree 2 and 4 irreducible
polynomials. So, Z/127 and 7247 cannot occur as torsion subgroup of X1(14)

over a quintic number field.

The 9-division polynomial of X1(14) is
1
Ug(x) = (2> — 222 —x+1)(2® + §x2 —x+1)fofor.

Clearly, a quintic number field can not contain a root of degree 3, 6, and 27
irreducible polynomials. So, Z/18Z cannot occur as torsion subgroup of X1(14)

over a quintic number field.

Hence
Tors(Xi(14),K) ~7Z/6Z.

Case 3: 7Z/157 C Tors(E,K).

Consider the following modular curve
X1(15) 2 +ay+y = a3 + 22

We have
ZJAZ ~ Tors(X1(15),Q) C Tors(X1(15), K).
By Theorem 2.2.7 Tors(X1(15), K) must be one of the following groups:
Z/nZ, n = 4,8,12,16,20,24
7,)27. % 7,)2n7, n = 2,4,6,8

Theorem 5.0.5. Let K be a quintic number field. Then
Tors(X1(15), K) ~Z/AZ.

Proof: The groups 727 x ZJAZ, 7.]27 X 1|87, 7.]27 x Z./12Z and
)27 x ZJ16Z cannot occur as torsion group of X1(15) over a quintic number

field. Just notice that there is no 2-torsion point other than (—1,0).
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The 5-division polynomial of X1(15) is

Uy (x) = 52" + 2521 56210 4 14527 4 3302% + 48027 + 4352° 4-2492° + 902
+1023 —102% — 5z — 1.

Surely, a quintic number field can not contain a root of a degree 12 irreducible
polynomial. So, we cannot obtain Z/20Z as a torsion subgroup of X1(15) over a

quintic number field.

The 6-division polynomial of X1(15) is
2, 1 1))

A quintic number field cannot contain a root of degree 2, 4, and 8 irreducible
polynomial. So, Z/127 and Z /247 cannot occur over a quintic number field as a

torsion subgroup of X1(15).

The 8-division polynomial of X1(15) is

V(o) = ala+ (e +2)(@ 0 = )P+ o )@ et DA f

Like in previous cases a quintic number field can not contain a root of degree 2, 4,
and 16 irreducible polynomial. As a result, Z/87 and 7Z/167Z cannot occur over a

quintic number field as a torsion subgroup of X1(15).

Hence
Tors(X1(15), K) ~ Z/AZ.

Case 4: 7/27Z x7/10Z

Consider following modular curve
X1(2,10) 1y =P 42—z =2(2® +2-1).

We have
Z/6Z ~Tors(X1(2,10),Q) C Tors(X1(2,10), K).
By Theorem 2.2.7, Tors(X1(2,10), K) must be one of the following groups:
Z/nZ, n=6,12,18,24

7.)27 % 7.)2n7,, n.= 3,6
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Theorem 5.0.6. Let K be a quintic number field. Then
Tors(X1(2,10),K) ~Z/6Z.

Proof: Like in previous cases we cannot have a 2-torsion point other than (0,0).
Hence the groups Z/27 x Z/6Z and 7)27 x 7/ 127 cannot occur as torsion
subgroup of X1(2,10) over a quintic number field.

The 4-division polynomial of X1(2,10) is
Uy(z) = 2(z? +1)(2? + 2 — 1) (2 4+ 223 — 62% — 22+ 1).

Apparently, a quintic number field cannot contain a root of polynomials (x> +1),
(22 +2—1), (2* +223 —62% — 22+ 1). Thus we cannot have Z./127 and Z./247 as

torsion subgroup of X1(2,10) over a quintic number field.

The 9-division polynomial of X1(2,10) is

7 1 1
_ 3,2, = -
(z—1)(x t37 +3$+3)f9f27-

A quintic number field can not contain a root of degree 3, 9, and 27 irreducible
polynomials. So, Z/18Z cannot occur over a quintic number field as a torsion
subgroup of X1(2,10).

Therefore
Tors(X1(2,10), K) ~ Z/6Z.

Case 5: 7/2Zx7/12Z

Consider following the modular curve
X1(2,12) =2 -l vx=a(a? —x+1).

We have
ZJAZ ~Tors(X1(2,12),Q) C Tors(X1(2,12), K).
By Theorem 2.2.7, Tors(X1(2,12), K) must be one of the following groups:
Z/nZ, n=4,8,12,16,20,24

7.)27 % 7.)2n7Z, n = 2,4,6,8
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Theorem 5.0.7. Let K be a quintic number field. Then
Tors(X1(2,12),K) ~7Z/47.

Proof: We cannot obtain Z/2Z x ZJAZ, 7.)2Z x Z|8Z, Z]27Z x /127 and
Z)27 X ZLJ16Z as torsion subgroup of X1(2,12) over a quintic number field, since
there is no 2-torsion point other than (0,0) as a quintic number field can not

contain a field that generated by a degree 2 irreducible polynomial.

The 5-division polynomial of X1(2,12) is
U5 (z) =522 — 202 + 78210 — 8027 — 10525 + 36027 — 54020 + 4322 — 2852 + 1402 — 5022 4-1.

It is clear that a quintic number field cannot contain a root of a degree 12
irreducible polynomial. As a result, 7./20Z cannot occur over a quintic number field

as torsion subgroup of X1(2,12).

The 6-division polynomial of X1(2,12) is
2 143 o 1y 4 2
Ug(z) =a(z—x+1)(z —3% +2x _5)(95 —62° +4x—3) fs.

Like in previous cases a quintic number field cannot contain a root of degree 2, 4,
and 8 irreducible polynomials. So, Z/127 and 7./247 cannot occur as a torsion

subgroup of X1(2,12) over a quintic number field.

The 8-division polynomial of X1(2,12) is
Us(x) = oe—1)(w+1)(@? —dw+1)(2* —z+ D)2 + 1) 17 117 fs.

Precisely, a quintic number field cannot contain a root of degree 2, 4, and 16
irreducible polynomials. Hence, we cannot obtain Z/8Z and Z/16Z over a quintic

number field as a torsion subgroup of X1(2,12).

Thus
Tors(X1(2,12),K) ~Z/AZ.
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6. Torsion Structure of Elliptic Curves over Sextic Number Fields

In this chapter, K will be a number field with [K : Q] = 6.

Remark 6.0.1. If the modular curve X1(m,mn), where m > 1 and n > 2, has

genus > 1, then by Falting’s theorem, [8], | X1(m,mn)(K) |< oo for any number
field.

Remark 6.0.2. Notice that the modular curves X1(13), X1(16), X1(17), X;(18),
X1(19), X1(20), X1(21), X1(22), X1(24), X1(25), X1(26), X1(27), X1(28),
X1(30), X1(2,14), X1(2,16), X1(2,18), X1(2,20), X1(3,12) are curves of genus 2,
2,5,2,7,3,5,6, 5,12, 10, 13, 10, 9, 4, 5, 7, 9 and 3, respectively.

By Theorem 2.2.8, there are infinitely many sextic points on any of the curves
X1(m,mn), see Remark 6.0.2.

In what follows, we only consider the curves X1(m,mn) when g < 1.
Case 1: Z/11Z C Tors(E,K).

Consider the following modular curve
X1(11) 192 —y = 2 — 22

We have
Z/57 ~Tors(X1(11),Q) C Tors(X1(11), K).
By Theorem 2.2.8, Tors(X1(11), K) must be one of the following groups:
Z/nZ, n=5,10,15,20,30

7.)27 % 7./2n7, n = 5,10
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Theorem 6.0.3. Let K be a sextic number field. Then

7107 if KD L:=Qlz]/ (423 — 42> +1),
Tors(X1(11), K)~{ 7)27 x Z/10Z  if K ~ M := Q[z]/{162° — 322 + 1622 + 11),
Z/5Z otherwise.

Proof: The 3-division polynomial of a X1(11) is
W3(z) = 30t — 42 + 30— 1.

Clearly, a sextic number field cannot contain a root of degree 4 irreducible
polynomial. So we cannot have Z/15Z and Z/30Z as a torsion subgroup of X1(11)

over sextic number field.

The 4-division polynomial of X1(11) is
Wy(z) = (4o — 42 +1)(22° — 42° +102° — 102® + 42— 1).

By MAGMA, we obtain that Tors(X1(11),L) ~ Z/10Z where L is the number field
generated the by the polynomial 4a3 —42% +1.

Point from X (11) Corresponding Elliptic Curve with torsion Z/117Z

Y%+ (—8a%+6a)ry+ (1364 —192a+80)y = 23 + (484 — 68a +

—2a+2,4a® —4a+2
( ) 28) 22

Table 6.1 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(11) over the number field generated by 423 —4a? +1

By MAGMA, we obtain that Tors(X1(11),L) ~ Z/10Z where L is the number field
generated the by the polynomial 2% — 42° + 1023 — 1022 + 42 — 1. Notice that the
number field generated the by the polynomial 25 — 42 + 1023 — 102? + 42 — 1
contains the number field generated the by the polynomial 423 — 4z +1

Point from X;(11) Corresponding Elliptic Curve with torsion Z/117Z

y? + 4 (—48a5 + 42a* + 724 — 192a% + 24a + 19)xy +
17%6(2@5 —10a* +8a3 +19a® — 34a+T7)y = 23 + %(10@5 -
17a* — 4a + 51a® — 38a + 13)2?

(& (—8a® + 7a* + 12a3 —
32a? +4a+5),3)

Table 6.2 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(11) over the number field generated by 225 —42° + 1023 — 102 + 42 — 1

We also need to consider the splitting field of 4z3 — 42>+ 1. Let L be the splitting
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field of 42> — 422 +1 and we obtain that L is generated by the polynomial
162 — 3221 + 1622 + 11.

By MAGMA, we obtain that Tors(X1(11),L) ~7Z/27 x Z/10Z where L is the
number field generated the by the polynomial 1625 — 3224 4+ 1622+ 11.

Point from X;(11) Corresponding Elliptic Curve with torsion Z/117Z

y? + & (—72a* + 120a% — 13)zy + 55 (—16a* + 140> — 5)y =

1 4 2 1
“o(—12a*+20a°+1), 5
(1 )2) 23+ 15 (—4a* — 642 + 13)a?

241 4 2 1 5 1 3
(L(12¢* — 2042 — 190 + |7 + =5 (36a" — 60a® — 57a + 35)xy + 557 (—12a° + 8a* +20a” —

1;8 . 7a® —18a — T)y = 23 + 551 (—24a° + da* + 40a® + 6a® — 17a +
aﬁ) 6 2

5
(3(12a* — 20a® + 19a + | y* + (36a’ — 60a® + 57a + 35)zy + 55;(12a° + 8at — 204> —
18),3) 7a’+18a—T)y = 2 + 55;(24a” +4a* — 4043 + 64 + 17a +6) 2

Table 6.3 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(11) over the number field generated by 162% — 3224 + 1622 + 11

If there is a 4-torsion point, x-coordinate of that point must came from Wy(z) but
we saw that roots of W4(x) does not give a 4-torsion point. So we cannot have
ZJ20Z and Z)27 X Z.]20Z as torsion subgroup of X1(11) over a sextic number
field. O

Remark 6.0.4. By MAGMA, Rank(X1(11),L) is positive where L is the number
field generated the by the polynomial 2% — 42° + 1023 — 1022 + 42 — 1. It follows

that there are infinitely many elliptic curve over the number field L with torsion
ZJ117Z.

Case 2: Z/14Z C Tors(E,K).
Consider the following modular curve
X1(14) 1y +ay+y=a3—2z.
We have
Z/6Z ~Tors(X1(14),Q) C Tors(X1(14), K).

By Theorem 2.2.8, Tors(X1(14), K) must be one of the following groups:

Z/nZ, n =6,12,18,24,30

2)27 X 7)2nZ, n=3,6,9

7./3Z x Z./3nZ, n = 2,4
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Theorem 6.0.5.

Tors(X1(14),K) ~

Z7/6Z X 7.]6Z
Let K be a sextic number field. Then

Z)2LxZJ6Z if K 2 Ly:=Qlz]/(z? -3z +1),

7./187 if KD Ly :=Qlx]/(z® - 92% — 2+ 1),

7187 if K ~ My :=Q[z]/(2 + 2% +223 + 2% — 22+ 1),
Z)2Z x ZJ)18Z if K ~ My := Q[z]/ (6425 — 12962° + 737224
Z)3ZxZ)6Z if K ~ Mz := Q[x]/(8125 — 5042* + 78422 4 2352),
Z/6Z otherwise.

Proof: The 4-division polynomial of X1(14) is

Uy(x) = (v +1)(2 —ix+i)(x2—|—2x—1)f4.

— 827523 4 380252 — 8482 + 344)

Clearly, a sextic number field cannot conta

polynomial.

By MAGMA, we obtain that Tors(X1(14),
number field generated the by the polynomi

in a root of degree 4 irreducible

L)~17/27 X Z]6Z where L is the

2 3 1

Point from X (14) Corresponding Elliptic Curve with torsion Z/147Z
((74Z+3)7 (4ag7)) I (2a+15)$y n (a1+1) ~ (a1+41)x2
(a, (—az—l)) Y2+ (= 4;;33) 4 (4 )y 234 (FAat?) 4a+7) 22

Table 6.4 All non-isomorphic Elliptic Curves obtained from new torsion points of

X1(14) over the number field generated by

By MAGMA, we obtain that Tors(X1(14),

2 3 1
T —Zx—i‘z

L) ~7/6Z where L is the number field

generated the by the polynomial x>+ 2z —1. So, we cannot obtain a 4-torsion
point. Hence we cannot obtain 7./127, 7.J]247, 7./27. x Z./127 and Z./37 X Z]127Z

as torsion subgroup of X1(14) over a sextic number field.

The 5-division polynomial of X1(14) is

Us(z) =22+ 2t — 6210 41727 + 92

8 627 —102° +112*

1
—3x3—2x2+x—g.

Clearly, a sextic number field cannot contain a root of degree 12 irreducible

polynomial. So, we cannot obtain Z/30Z as a torsion subgroup of X1(14) over a

sextic number field.
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The 6-division polynomial of X1(14) is

3 1 1
Ug(x)=x(z—1)(x+ 1)($2—ZZU—|- Z)(:t2+x+2)(x3~l—§:£2—x+ D(2?+52% —2+1)

(25 —4a® + 92" 462 — 32% — 220+ 1).

We already investigated the case x° — %xqt %. Also notice that the fields generated
by the polynomials (z2 — 2x+ 1), (22 +x+2) are isomorphic.

By MAGMA, we obtain that Tors(X1(14),L) ~ Z/6Z where L is the number field
generated the by the polynomial x3 + %xQ —x+1 Also notice that the fields
generated by the polynomials x>+ %:ﬁ —x+1, 234522 —2x+1 are isomorphic.

By MAGMA, we obtain that Tors(X1(14),L) ~ 7 /27 X Z./6Z, where L is the
number field generated by the polynomial 2% — 425 + 9x* + 623 — 322 — 22+ 1. Also
notice that the number field L contains the number field generated by the

polynomial x* — %:I: + i.

Point from X;(14) Corresponding Elliptic Curve with torsion Z/147Z

> 16
14) 3a* +5a® + 15a% + 2a + 8)x?

(3(—a® + 3a* — 5a3 — 15a® — 2a + | y* + 2(a® — 3a* + 5a® + 15a® + 2a + 60)zy +
6), 1 (a® — 3a* + 5a3 + 15a% + 2a — | {35(a® —3a* +5a3+15a% +2a+8)y = 3+ 155 (a® —

(%(—a5 + 3a* — 5a® — 15a® — 2a + | |
2)7_2)

3a* —5a% — 15a% — 2a + 4)2?

y?2 + 1(—2d° + 6a* — 10a® — 304> — da + 13)zy +
1(—a®+3a —5a® — 150> —2a+4)y = 23+ 1 (—a® +

Table 6.5 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(14) over the number field generated by ¢ — 425 4+ 92% + 623 — 322 — 22+ 1

Now we need to consider the compositum field generatad by the polynomials
- %x -+ % and 3 + %xz —x+1 and also the splitting field of the polynomial
3+ %xQ —x+1.

The compositum field of x> — %x + i and 3+ %:1:2 —x+1 is generated by the
polynomial 57625 — 9122 — 4042* 4 213323 — 75422 — 17522 + 1276 and it is
isomorphic to the number field generated by the polynomial

20 — 425 + 92 + 623 — 322 — 22 + 1.

The splitting field of the polynomial z3 + %1‘2 —x+1 is generated by the polynomial
8120 — 504x* + 78422 4 2352. By MAGMA, we obtain that
Tors(X1(14),L) ~7Z/37 x Z/6Z where L is the number field generated the by the
polynomial 8125 — 5042 + 78422 + 2352.
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Point from X (14)

Corresponding Elliptic Curve with torsion Z/147Z

(ga55(—243¢*  + 12600 -
1316), 15576 (—162a°  + 7294+
32764 — 3780a — 10892a — 3360))

Y + 307 (4293° — 1296a* — 320044 + 1159242
85232a + 7056)zy + trars5 (—7695a° + 22302a*
60606a® — 168420a% — 166992a + 466872)y = 3
Troiss (—7695a° +22302a* + 60606a° — 1684204

166992a + 466872) 22

+
+
+

(g135(—243a*  + 12600  —
1316), 15515(162¢°  +  729a*  —
3276a° — 3780a? + 10892a — 3360))

v+ ggp(—4293d® — 1296a* + 32004a®

11592a% — 85232a + 7056)zy + 1zars5 (76954

22302a* — 60606a> — 168420a%> + 166992a
466872)y = 2% + 1z5(7695a° + 223020
60606a> — 16842042 + 166992a + 466872) x>

_I_
+
+

Y2 + 1735 (4324° — 10350

— 210a3 + 103642

2072))

243a®>  + = 216a?  +
i%g . 193242 + 1120 1540a + 18424)zy + gra=5(135a° + 3276at —
a’ a a —
2800), b (—162a +567a" — 37843 — 76020 — 13468a" + 35280 + T8T92)y =
o 23 + s (13505 4 3276a — 760243 — 13468a® +
50402 + 476a — 2072)) i
3528a -+ 78792)x
2 1 5 4 3 D)
(L(243a5 + 216a* — 126043 — y® + 17368 (—432a° — 1035a™ + 210a” + 1036a° +
3248 1 5 A
19320 — 11200 — 2800), L (16245 + | 00 18424)zy + gr7gsg(—1350° + 3276a” +
5670t + 37803 504’1624 g, | 76027 — 13468* — 35280 + TsTORy =
a a _— a —_ a —

23+ e (— 13505 + 32760 + 760203 — 134684 —

3528a + 78792) x>

Table 6.6 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(14) over the number field generated by 812% — 50424 + 78422 + 2352

We cannot obtain Z./6Z X Z/6Z as torsion subgroup of X1(14) over a sextic

number field.

The 18-division polynomial of X1(14) is

3 1
Uig(x) =z(z—1)(z+1)(2? —ZJJ—I—4)(:1324-1’4-2)(&33—91’2—I+1)($3—2l’2—x+1)
1
(x3+§a:2—x+1)(:v3+5x2—x+1)(3c6—4x5+9x4—|—6x3—3x2—2x+1)
(20 + 2t 4+ 203 + 22 — 204+ 1) (28 + 225 + 112* + 322 — 22+ 1)

(2% + 32° + 224

By MAGMA, we obtain that Tors(X1(14),L)

— 3+ 42® — 20+ 1)f12f2(%)f2($)f54

~ 7./187Z where L is the number field

generated the by the polynomial x3 — 92> — x4+ 1. Also notice that the fields

generated by the polynomials o3 — 92> —x 41, 23 — 222 —x +1 are isomorphic.
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Point from X (14)

Corresponding Elliptic Curve with torsion Z/147Z

(3(a® — 10a + 5),3(—3a% +
28a—9))

y? + 1—14(—a2 + 13a + 12)zy + %(a2 +6a+ 1)y = 23 +
% (a?+6a+1)2?

(3(—3a%+26a+11), —4a® +
35a + 13)

y2 + k(=170 + 144a + 85)zy + 1(—2a — 1)y = 23 +

%(—Qa— 1)2?

Table 6.7 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(14) over the number field generated by 2% — 922 — 241

By MAGMA, we obtain that Tors(X1(14),L) ~ Z /187 where L is the number field
generated the by the polynomial 28+ x* 4 223 + 22 — 2o+ 1. Also notice that the
fields generated by the polynomials 2%+ x* + 222 + 22 — 22+ 1 and

28 4+ 22° + 112* + 322 — 22+ 1 are isomorphic.

Point from X (14)

Corresponding Elliptic Curve with torsion Z/147Z

(2¢° + a* + 2a® + 5a® +
4a — 3, %(—7@5 —a* —6a3 —
14a? — 7a+15))

y? + L (—48a° — 25a* — 60a® — 122a% — 106a + 93)zy + 5 (4a® +
2a* +a® +9a% +5a — 11)y = m3+ﬁ(4a5+2a4+a3+9a2+5a—
11)2?

(%(a5+a4—|—2a3—|—2a2—1—a—
1),—a’—a®>—a+1)

y?+ ﬁ (5a* +2a3 +6a+27)zy + 91—8(—46a5 —12a*—47a3 —107a> —
T3a+97)y = a3 + g5 (—46a® — 12a" — 47a3 — 107a® — 730+ 97)a?

(%(—2a5 —a* —2a% — 4a® —
da+3),5(—a® —at — 2a% —
4a? —3a—1))

Y2 + 35 (a® +3a* — 4a3 — 10a% — a+23)xy + & (—6a° + a* + 5a3 —
3a%® —9a+8)y = 3 + ﬁ(—6a5 +a* +5a% —3a® — 9a + 8)x?

Table 6.8 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(14) over the number field generated by 2 + 2% 4223 + 22 — 2241

In this case the point (a,5(a*—1)) gives rise to the elliptic curve

2

1 1
Y-+ §(—a5 +a' —4a® 4+ 3a+ Ty + — (—a® — 10a* + 250> — 394> + 220+ 5)y =

98

1
7+ o=(—a® — 100 + 250" — 3907 + 220+ 5)a”

with torsion Z/27. x 7./ 147 over the number field generated by

20+t 203 42 — 20+ 1.

Again we need to consider the compositum field of the degree 3 and 2 polynomial

and the splitting field of the degree 3 polynomial which we did not consider before.

Notice that the splitting field of the number field generated by the polynomial

23— 922 — x4+ 1 is dtself.
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The compositum field of polynomials x> — %x + i and 23 — 922 —x +1 generatd by
the polynomial 64x% — 12962° + 73722* — 827523 4 380222 — 848z + 344.

By MAGMA, we obtain that Tors(X1(14),L) ~7Z/27 x 7/18Z where L is the

number field generated the by the polynomial
6428 — 12962° + 737221 — 827523 + 380222 — 848z + 344
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Point from X (14)

Corresponding Elliptic Curve with torsion Z /147

20629200a* 4+ 125893444a3 —
1969005550 4+  131178420a —

264298996)y = 2° + oogimms(3679744a°
170629136a* + 89828518043 — 550217883a2

(146410836(_399360a5 T oo 1 5 4 3
01884800 — 420936480 4 | ¥ + =r5i5096 (199680a° — 3959424a* 4 21461824a® —
) 18516864a> + 9340928¢ +  55692589)xy  +
37033728¢> —  18681856a  + ) 5 A 5
’7 a -
2oes1on ) 4629216a> + 2335232a + 2027468)y = a® +
7918848a* 4+ 429236484 — . 5 . 5
) seearies (49920 —  989856a! + 53654564 —
3703372842  +  18681856a  — ) )
462921642 + 23352324 + 2027468 )z
24042555))
2 1 5 4
(L (20070245 Y+ s (—1302480a°  + 26068008at —
732018 1 ) 13958974943 + 904148094 — 151968450 +
3902512a*  + 176791204  + ) 5 A
1764502 56T 4 66791476) 2y + Tozpesgss (—1148880a° + 22378744a" —
. ; 1143926850 4+ 53445594a®> — 16498374a +
3028910), z5sta09 (—310704a + 5 ) .
60482500 3135159308+ 14949160)y = 2 + {ypgessss(—1148880a° +
) 22378744a* — 114392685a® + 53445594a’
18443167a% — 42940330 — 848048)) )
16498374a 4 14949160)x
v+ e (—1597440a° 4+ 31675392¢f  —
171694592a3 4+ 148134912a> — 74727424a +
(3560309 (—399360a° + 7918848a' — | 41267085)xy + s5erries (—798720a° + 158376964 —
42923648a% +  37033728a®>  — | 8584729643 + 7406745642 — 37363712a +
18681856a +2081301), —2) 11483020)y = 2° 4+ ey (—798720d° +
15837696a* — 8584729643 + 740674564 —
37363712a + 11483020) 22
e (—15925124° + | 1?2 4+ s (—19638720a° + 4032495524 —
14640836 204971704
32285584a% — 1842076044 + | 237078653203 + 3116825143a®> — 16055214364 +
206506735a> —  59636178a  — | 469421936)2y + yggizos (3679744a® — 1706291364 +
T448176), Tieismss (991680a° — | 898285180a® — 5502178830 — 188995344a +

14230152)) 1889953440 + 264298996) 2
1 5
(7575 (—2568192a +
7320418< 2 1 5 4
+  Tozmsgs(— 1422028847 + 2841509840t —
5131041604 — 28124485603 + | 10248;;’852( )

) 15579511440 + 1346173359a% — 1466264980 +
243006141a>  — 264695320  + X 5 .
28636578), 3550505 (—3457536a°  + ; ;

) , 21461824a> — 1851686402 + 2020510a — 2870755)y =
69073792a* — 37857011243 + |, ) ; , ;

) 7° + se5ari65 (199680a° — 3959424a + 214618244 —
3270943320 —  3562946la  + ; )

1851686402 + 20205100 — 2870755)x
31950180))

Table 6.9 All non-isomorphic Elliptic Curves obtained from new torsion points
of X1(14) over the number field generated by 6429 — 129625 + 73722 — 827523 +

380222 — 8481 + 344
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In this case the point ({eoess (9891844’ — 197430884 4 10805616843 —
93346623a> + 10170184a + 22702588), 15135 (— 276787245 + 55269840a* —
3027066804 + 26152300542 — 28490042a — 45357056)) gives rise to the elliptic
curve

2, (—1288704a° +25682224a* — 140248904403 + 12112191942 — 132009494 + 38336784)
Y

51242926
N (—608256a” + 11932304a* — 6363842403 + 5478828942 — 59938964 + 1746120) y

102485852

102485852

]

Remark 6.0.6. By MAGMA, Rank(X1(14),L) is positive where L is the number
field generated the by the polynomial x>+ %$2 —x+1, so we have infinitely many
elliptic curves over the number field L with torsion Z./147.

Remark 6.0.7. By MAGMA, Rank(X1(14),L) is positive where L is the number
field generated the by the polynomial 28 — 425 + 92* +62% — 322 — 22+ 1, so we
have infinitely many elliptic curves over the number field L with torsion Z/147Z.

Remark 6.0.8. By MAGMA, Rank(X1(14),L) is positive where L is the number
field generated the by the polynomial 8126 — 5042* + 78422 42352, so we have
infinitely many elliptic curves over the number field L with torsion 7 /147.

Remark 6.0.9. By MAGMA, Rank(X1(14),L) is positive where L is the number
field generated the by the polynomial 28+ x* +2x3 4+ 22 — 2z + 1, so we have

infinitely many elliptic curves over the number field L with torsion Z/14Z.
Case 3: /157 C Tors(E,K).
Consider the following modular curve
X1(15) sy oy +y = a3 + 22
We have
ZJAZ ~Tors(X1(15),Q) C Tors(X1(15), K).

By Theorem 2.2.8, Tors(X1(15), K) must be one of the following groups:

Z/nZ, n=4,8,12,16,20,24,28

7)27 X Z]2nZ., n = 2,4,6,8,10

ZJAZXZ[AnZ, n=1,2
95

3, (—608256a° 4+ 11932304a* — 6363842403 + 5478828942 — 59938964 + 1746120) ,

X

Y



Theorem 6.0.10. Let K be a sextic number field. Then

Z)2ZxZJAZ if K O Ly :=Q[z]/{z® + fz + 1),

R i K D Ly = Qla] /(e o — 1),
787 if K O L3 :=Qla]/{z? +z+1),
Z]AZ otherwise.

Proof: The 3-division polynomial of X1(15) is

D 1
Uy () :x4+§x3+x2+x+§.

Clearly a sextic number field cannot contain a root of degree 4 irreducible
polynomial. Hence we cannot obtain Z/127Z, 7./247 and 7./27. X Z/12Z as torsion
subgroup of X1(15) over a sextic number field.

The 5-divison polynomial of X1(15) is

56 249 1
U5 (x) :x12+5x11+gxlo+29x9+66x8+96x7+87x6+?x5+18x4+2x3—2x2 —r— .

So, we cannot have Z/20Z and Z /27 x Z./20Z as torsion subgroup of X1(15) over

a sextic number field.

The 7-divison polynomial of X1(15) is

U7 (z) = fou.

It is clear that a sextic number field cannot contaion a root of degree 24 irreducible
polynomial. Hence, Z/287 cannot occur as torsion subgroup of X1(15) over a

sextic number field.

The 16-divison polynomial of X1(15) is

Uig(a) = a(z+1)(z+2) (22 —z— 1)(x2+ix+jl)(x2+x+ 1) 0 72§ B ) g b (D) 6@ g

Notice that the number fields generated by the polynomials > —x —1, 2+ ix + i

and 22 +x+1 are not isomorphic.

By MAGMA, Tors(X1(15),L) ~Z/8Z where L is the number field generated by the

polynomial 2% —x — 1.
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Point from X7 (15) Corresponding Elliptic Curve with torsion Z/157Z

(a,—2a—1) g2+ Bty Clarls), 5 CTIads) 5

Table 6.10 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(15) over the number field generated by 2 —z — 1

By MAGMA, Tors(X1(15),L) ~Z/27 x Z./]AZ where L is the number field
generated by the polynomial z2+ ix -+ i.

Point from X (15) Corresponding Elliptic Curve with torsion Z/15Z
(—2,—4a) Y2+ (8a+1)zy + (24a + 8)y = 23 + (24a + 8)x?

Table 6.11 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(15) over the number field generated by z° + 32+ 1

By MAGMA, Tors(X1(15),L) ~7Z/8Z where L is the number field generated by the
polynomial x> 4+ x+1. But in this case, new torsion points do not give rise to an

elliptic curve with torsion subgroup Z/157Z.

Hence, 7.)16Z, 7.)27. x 7./87, 7./27. x 7,/167, 7.JAZ x Z./AZ and 7./AZ x 7./87

cannot occur as torsion subgroup of X1(15) over a sextic number field.

Case 4: 7)27 xZJ/10Z
Consider following modular curve
X1(2,10): 2 =P 42—z =22 +2-1).
We have
Z/6Z ~Tors(X1(2,10),Q) C Tors(X1(2,10), K).

By Theorem 2.2.8, Tors(X1(2,10),K) must be one of the following groups:

Z/nZ, n=06,12,18,24,30

7)27 X Z]2nZ., n = 3,6,9

Z)3LXZ)3nZ, n=24

Z/6Z x Z/6Z
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Theorem 6.0.11. Let K be a sextic number field. Then

Z/3Z.x7)6Z if K ~ L :=Q[z]/(x5 — 625+ 552* — 18023 + 65522 — 9662 + 1641),
Tors(X1(2,10),K)~ < Z/2Z.x 7.)67 if K O M :=Q[z]/(2x% +2 —1),
7./6Z otherwise.

Proof: The 5-division polynomial of X1(2,10) is
46 304 1
Us(z) =22 +42!! - gaslo —162" —212° —72x7+123:64—?9:5—{—735:54—28333—1-10332—1-5.

So, we cannot obtain Z/30Z as a torsion subgroup of X1(2,10) over a sextic
number field. The 4-division polynomial of X1(2,10) is

Uy(z) =a(z®+1)(2® +2—1) fy

By MAGMA, Tors(X1(2,10),L) ~ Z/6Z where L is the number field generated by
the polynomial 2%+ 1.

By MAGMA, Tors(X1(2,10),L) ~Z/27 x 7./6Z where L is the number field
generated by the polynomial x> +x — 1. But new torsion points do not give rise to
an elliptic curve with torsion subgroup Z./27 X ZJ10Z. So, we cannot have a point
of order 4. Hence, we cannot obtain Z/127, 7./247, 7./]27 X Z.]127Z and

Z|3Z % Z.J12Z as torsion subgroup of X1(2,10) over a sextic number field.

The 18-division polynomial of X1(2,10) is

Uig(z) =ax(x—1)(x+1) (2> — 4z — 1) (2? + 2 — 1)(:(:3—x2—|—7x—3)(:1:3—|—;xz—l—;x—l—;)
(a8 4825 + 5 = 52% + 82— 1) f§V 1§ Frs 133 152 fa

Notice that the number fields generated by the polynomials > —4x —1 and
22+ —1 are isomorphic and we already investigated x> +x — 1. Also the number
fields generated by the polynomials x>+ %xQ + %:1: + % and 23 — 2% +Tx —3 are

isomorphic. So it is enough to consider just one of them.

By MAGMA, Tors(X1(2,10),L) ~7Z/6Z where L is the number field generated by
the polynomial x3 — 2+ 7x — 3.

By MAGMA, Tors(X1(2,10), L) ~Z/27 x Z./67Z where L is the number field
generated by the polynomial x5+ 825 4 52 — 522 +8x — 1. But in this case, new
torsion points do not give rise to an elliptic curve with torsion subgroup

Z7)27 x Z.J10Z. Also notice that number field L contains the number field generated
by the polynomial 2%+ x — 1.
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Now we need to consider that compositum field generated by the polynomials
2?4 x—1, 23— 2% +7x—3 and also splitting field of the polynomial 3 — x>+ 7x — 3.

The compositum field generated by the polynomials x> +x —1 and x> — 2> +7x —3
is isomorphic the number field generated by the polynomial
25 4 82° + 52* — 522 + 82 — 1.

The splitting field of x® — x> +7x — 3 is generated by the polynomial

2% — 625 + 5524 — 18023 4 65522 — 966 + 1641 and By MAGMA,
Tors(X1(2,10), L) ~ Z/3Z x 7./67Z where L is the number field generated by the
polynomial 2% — 625 + 5524 — 18023 4 65522 — 9662 + 1641.

Point from X;(2,10) Corresponding Elliptic Curve with torsion Z/27 x 7Z./10Z

(%(aél — 4a® + 46a% — 84a +
261), ;g5(—2d°> + 10a? —
85a® + 215a% — 585a 4 447))

y? = 23 + 55 (—a’ + 4a® — 29a% + 50a — 124)2” + ;35(43a” —
172a3 + 778a% — 1212a +2163)x

Table 6.12 All non-isomorphic Elliptic Curves obtained from new torsion points
of X1(2,10) over the number field generated by x5 — 627 + 552% — 18023 4 65522 —
966x + 1641

Hence ZJ18Z, 7./27. x Z.J18Z and Z/67Z x Z./6Z cannot occur as a torsion subgroup
of X1(2,10) over a sextic number field. O

Case 5: Z/2Zx7Z/12Z
Consider following the modular curve
X12,12) 1y =2 — 2P tr =@ -2 +1).
We have
Z]AZ ~ Tors(X1(2,12),Q) C Tors(X1(2,12), K).

By Theorem 2.2.8, Tors(X1(2,12),K) must be one of the following groups:

Z/nZ, n =4,8,12,16,20,24,28

Z)27 % Z)2nZ, n = 2,4,6,8,10

LZJAL X ZL]AnZ, n = 1,2
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Theorem 6.0.12. Let K be a sextic number field. Then

7.)27. x Z.JAZ if K D My := Q[z]/(2? — x4+ 1),
; R 2 _
Tors(Xy(2.12), K) ~ 7./87 if K2 My :=Qlx]/{x*—4x+1),
Z/8Z if K2 Ms:=Q[a]/(x*+1),
Z]AZ otherwise.

Proof: The 3-division polynomial of X1(2,12) is

4 1
Uy(z) =% — a1 222 -
4(z)=1x 3% +2x 3

Clearly, a sextic number field cannot contaion a root of degree 4 irreducible
polynomial.So, Z/127, 7./]247. and Z./]27. x 7./127 cannot occur as a torsion
subgroup of X1(2,12) over a sextic number field.

The 5-division polynomial of X1(2,12) is
Us5(z) = fia.

Clearly, a sextic number field cannot contaion a root of degree 12 irreducible
polynomial.So, Z/20Z and Z.)27 X Z./20Z cannot occur as a torsion subgroup of
X1(2,12) over a sextic number field.

The T7-division polynomial of X1(2,12) is

U7 (z) = foa.

Clearly, a sextic number field cannot contaion a root of degree 24 irreducible
polynomial.So, /287 cannot occur as a torsion subgroup of X1(2,12) over a sextic
number field.

The 16-division polynomial of X1(2,12) is
Vi6(z) = a(—1)(w+1)(2? —da+1) (@ =2+ 1)@+ D 12 VR 1D 1 o fea.

By MAGMA, Tors(X1(2,12),L) ~7Z/8Z where L is the number field generated by
the polynomial x> —4x + 1. But new torsion points do not give rise to an elliptic

curve with torsion subgroup Z /27 x Z/12Z.

By MAGMA, Tors(X1(2,12), L) ~ Z/27 x Z./AZ where L is the number field
generated by the polynomial > — x+ 1. But new torsion points do not give rise to

an elliptic curve with torsion subgroup 7. /27 x 7./12Z.

60



By MAGMA, Tors(X1(2,12), L) ~ Z/8Z where L is the number field generated by
the polynomial >+ 1. But new torsion points do not give rise to an elliptic curve
with torsion subgroup Z/27 X 7./]127..

So, we cannot obtain Z/16Z, 7.)27 X /87, 7./27 x Z.J16Z, Z.]AZ x 7./AZ and
Z]AZ X Z./8Z. as a torsion subgroup X1(2,12) over a sextic number field. O

Case 6: Z/37 x Z]37Z

Consider following the modular curve X1(3,3) of genus 0. The general equation of
the elliptic curve with torsion subgroup Z/37 x 7./3Z, [1], is the following:

£3,3) 2+ ((z4+2v+ (1 —2)ay+ ((z+ 1)v? — z0)y = 2°

where v € K, z = (3 and X1(3,3) is defined over the field Q((3). Then the

discriminant is given by
A(3,3) = —27(—vz + 02 (14 2) + (—vz + 02 (14 2))3(1 — 2+ (2 + 2))3.

Notice that A(3,3) =0 if and only ifv=0,v=1, v== andv= (_1+Z)3. So

1+z (2+2)3
3
other than the points (0,0), (0,1), (0,13;) and (0, ((_21—;;2” ), we can have an elliptic

curve with torsion Z/37Z x 7/ 3Z.
Case 7: /37 x 167

Consider following the modular curve X1(3,6) of genus 0. The general equation of
the elliptic curve with torsion subgroup Z/37 x 7/6Z, [1], is the following:

E(3,6) 12+ (t+2)ay+ (—t(t+1))y = 2>+ (—t(t +1))a?

where t = %, v € K and and X1(3,6) is defined over the field Q((3). Then

the discriminant is given by

A(3,6) = =27t (¢ + 1) + 83 (£ +2)° (£ 4+ 1)° +4° ((t+2)? — 4t(t + 1))2 (t+1)>
— 93 (t+2) ((t+2)° —4t(t +1)) (£ +1)°.

-3,
V= i (—34—2'\/3), V= % (—B—i\/§> and v = % (—3—1—2\/5). So other than the
points (0,v), where v is the root of A(3,6), we can have an elliptic curve with

torsion )37 x 7/ 6Z.

Notice that A(3,6) =0 if and only ifv=—1,v=—3, v = i (—B—i\/g),

Case 8: 737 x Z/9Z
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Consider following the modular curve
X1(3,9) 1 y* +y =23
We have
737 ~Tors(X1(3,9),Q) C Tors(X1(3,9), K).
By Theorem 2.2.8, Tors(X1(3,9), K) must be one of the following groups:
7/nZ, n=3,6,9,12,15,18,21,24,27, 30
7)27 % Z)2nZ, n = 3,6,,9
Z/3ZxZ/3nZ, n=1,2,3,4
7./6Z x 7./61Z

Theorem 6.0.13. Let K be a sextic number field. Then

Z)37x 737 if K 2 My :=Q[x]/(x? —x+1),

Z/6Z if K 2 My :=Qla]/(x®+ ),

7./97, if KD Msy:=Q[z]/(z3 - 322 +1),
Tors(X1(3,9), K) ~{ Z/6Z if K =~ Ny = Q[x]/(2%+ 5% — §),

{
Z)6ZxZ)6Z if K ~ N :=Q|x]/{z®— 325 +122% + 1123 + 622+ 32 + 1),
Z/37x 7.)9Z if K ~ N3 := Q[z]/ (25 + 325 + 92* + 223 4+ 322 + 1),

Z]37Z otherwise.

Proof: The 5-division polynomial of X1(3,9) is
Us5(x) = fi2.

Clearly, a sextic number field cannot contain a root of degree 12 polynomial. So,
we cannot have Z/15Z and Z/30Z as a torsion subgroup of X(3,9) over a sextic

number field.
The 4-division polynomial of X1(3,9) is

1

o).

1
Uy(z) = (x3+1)(x6+5x3 ~3

By MAGMA, Tors(X1(3,9),L) ~Z/6Z where L is the number field generated by
the polynomial 2> +1/4. But new torsion points do not give rise to an elliptic
curve with torsion subgroup Z /37 X Z./9Z, since an elliptic curve cannot have
Z|3Z X Z.]9Z as torsion subgroup over cubic number field.
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By MAGMA, Tors(X1(3,9),L) ~Z/6Z where L is the number field generated by
the polynomial x® + 523 — % However, new points do not give rise to an elliptic
curve with torsion subgroup Z /37 X Z.]9Z, even we have a positive rank we cannot
obtain an elliptic curve with torsion subgroup Z/37 x 7./97 over L since L does

not contain (3. So, we could not obtain a 4-torsion point. Hence we cannot obtain
LJ12Z, Z)247, )27 x ZJ12Z and Z.)3Z X Z/127Z as a torsion subgroup of

X1(3,9) over a sextic number field.

The 3-division polynomial of X1(3,9) is
Us(z) =x(z+1)(2® —z+1).

By MAGMA, Tors(X1(3,9),L) ~7Z/3Z x Z/3Z where L is the number field
generated by the polynomial 2> —x+ 1. However, new points do not give rise to an
elliptic curve with torsion subgroup Z/37 x 7./9Z,since an elliptic curve cannot

have Z/3Z x Z./9Z as torsion subgroup over quadratic number field.

The 6-division polynomial of X1(3,9) is

Uo(x) = 2@+ 1) (2? —x+1)(2° —2)(x3+i)($3+3x2 34 1)

(2% —32° + 1221 + 1123 + 622 + 32+ 1).

Notice that the number fields generated by polynomials z3 —2, x> +i and

23+ 322 — 3w+ 1 are isomorphic. By MAGMA, Tors(X1(3,9),L) ~Z/6Z x Z/6Z
where L is the number field generated by the polynomial

2% — 325 + 122 + 1123 + 622 + 3z + 1.

Point from X7(3,9) Corresponding Elliptic Curve with torsion Z/3Z x Z /9Z

(3(a® —4a* +16a —2a* —a+ | y* + 3(72d° — 221a* + 8604 + 789a® + 154a — 3d)zy +
4),3(a® — 3a" +12a3 + 10a® + | $(1410a® — 4327a* + 16838a® + 1546542 + 3014a — 739)y =
3a)) 23 + §(1410a° — 4327a* + 168384 + 154650 + 3014a — 739) 2>

Table 6.13 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(3,9) over the number field generated by x5 —32° +122* + 1123 + 622 4+ 3z + 1

We also need to investigate compositum field generatet by the polyomials > —x +1
and 3 + 1/4, which is the field generated by the polynomial

1620 — 4825 + 962 — 10423 4 8422 — 602+ 25. But it is easy to notice that this
compositum field is isomorphic to the field generated by the polynomial

2% — 325 + 122 + 1123 + 622 + 3z + 1.
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So we cannot obtain 7./27 x Z/6Z and Z/3Z X Z./6Z as a torsion subgroup of
X1(3,9) over a sextic number field.

The 9-division polynomial of X1(3,9) is
Ug(x) =x(v+1)(2* — 2+ 1)(2> — 322 + 1) (25 + 32° + 92* + 22 + 327 +- 1) 15

By MAGMA, Tors(X1(3,9),L) ~Z/9Z where L is the number field generated by
the polynomial 23 — 322+ 1. Notice that L does not contain (3, so new points does

not give rise to an elliptic curve over L.

By MAGMA, Tors(X1(3,9),L) ~7Z/3Z x Z/9Z where L is the number field
generated by the polynomial % + 32° 4+ 92t + 223 + 322 + 1.

Point from X (3,9) Corresponding Elliptic Curve with torsion Z/3Z x Z /97

(3(—a* — 4a® — 124 — 10a — | y? + 1(—14a° — 42a* — 120a® — 14a® — 18)zy + 1(—89a® —
4),3(4a® + 12a* + 35a® + | 267a* — 763a® — 89a® — 136)y = 2® + 3(—89a® — 267a* —

4a? —10)) 763a3 — 89a% — 136)2>

Table 6.14 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(3,9) over the number field generated by x5 4 325 4924 4223 + 322 + 1

We also need to investigate compositum field generated by the polyomials x> —x + 1
and x3 —3x? + 1, which is the field generated by the polynomial

28 — 927 +302* — 4723 + 4522 — 300 +19. But it is easy to notice that this
compositum field is isomorphic to the field generated by the polynomial

29 4+ 32° + 924 + 223 4+ 322+ 1

The 7-division polynomial of X1(3,9) is

\117(95) = (1‘6 — ;1'3 + ;)flg.

By MAGMA, Tors(X1(3,9),L) ~Z/37Z x Z/3Z where L is the number field
generated by the polynomial x% — %x?) + % Notice that L contains the number field
generated by the polynomial x> —x +1 and in this case L contains (3. But new

points do not give rise to an elliptic curve with torsion subgroup Z /37 x 7./97Z.

But we could not obtain a 7-torsion point, hence we cannot have Z/217Z as a

torsion subgroup of X1(3,9) over a sextic number field.
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The 18-division polynomial of X1(3,9) is

Uig(x) = z(z+1)(2? =24+ 1) (2> =322 + 1) (2% — 2)(2® + 1/4) (23 + 32% = 3z + 1)
(28 —32% + 1224 + 1123+ 622+ 32+ 1) (25 + 3% + 924 + 223 + 322+ 1) £ 1P £V 12 fr £

and the 27-division polynomial of X1(3,9) is

Wor(x) =2(x+1) (22 —z+1) (23 —3:U2+1)(a:6—|—3x5+9x4+2x3+3x2+1)f9f18f27f54f81.

Notice that we already investigated all the necessary polynomial in Vig(z) and

Uo7 (z) when we are working with other division polynomials. Hence, we cannot
obtain ZJ18Z, 7./277 and 7./27. x Z.J187Z as a subgroup of X1(3,9) over a sextic
number field. O

Case 9: 7/A7 x L]AZ
Consider following the modular curve X1(4,4) of genus 0.

The general equation of the elliptic curve with torsion subgroup Z/AZ X Z.JAZ, [1],
is the following:
E(4,4) y* +ay+ (—t)y = 2® 4 (—t)a?

where t = (1_”)(”2—_21}%, ve K and X1(4,4) is defined over the field Q((4). Then

204
the discriminant is given by

A(4,4) = =27t 4 (1 — 4)*t3 — 9(1 — 4t)t> + 83

Notice that A(4,4) =0 if and only ifv=1,v=2, v=1—1i and v=1+1. So other
than the points (0,1), (0,2), (0,1—14) and (0,1+14) we can have an elliptic curve
with torsion Z/AZ X Z/AZ.

Case 10: 7Z/AZ x 7|87

Consider following the modular curve
X1(4,8) 192 =3 —u.

We have
2)27 X 1.)]27 ~ Tors(X1(4,8),Q) C Tors(X1(4,8), K).
By Theorem 2.2.8, Tors(X1(4,8), K) must be one of the following groups:

Z)27 X ZL)2nZ, n=1,...,10
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ZJAL X L]AnZ., n = 1,2
/67 x L./6Z

Theorem 6.0.14. Let K be a sextic number field. Then

7.)27. x Z.JAZ if K D My := Q[z]/{z? — 2z —1),
Tors(X1(4,8),K) ~ S Z/2Z x ZLJAZ if K D My := Q[z]/(x? +1),
2)27 x7./27  otherwise.

Proof: The 3-division polynomial of X1(4,8) is

1
s(z) = ot — 222 — 3

A sextic number field cannot contain a root of degree 4 polynomial. So, we cannot
obtain 7.2 x 767, 7./27 X /127, 7./27 X /187 and Z]67Z x Z/6Z as torsion
subgroup of X1(4,8) over a sextic number field.

The 5-division polynomial of X1(4,8) is

Us(z) = (334 — ixQ + é)fg.

A sextic number field cannot contain a root of degree 4 and 8 polynomial. So, we
cannot obtain Z/27 x 7./10Z and 7./27 x 7.]20Z as torsion subgroup of X1(4,8)

over a sextic number field.

The 8-division polynomial of X1(4,8) is
V() = 2(z — (e + D)(2? = 20— 1)@+ D(? + 20— 1) ;) 12 1.

Notice that the number fields generated by the polynomials > —2x —1 and

2?4+ 2x — 1 are isomorphic. So, it is enough to consider only one of them. By
MAGMA, Tors(X1(4,8),L) ~7Z/27 x Z.]AZ where L is the number field generated
by the polynomial > — 2z — 1.

By MAGMA, Tors(X1(4,8),L) ~Z/27 x Z/AZ where L is the number field
generated by the polynomial x> +1.

So, we cannot have Z/27 X Z/8Z, Z.]27 X /167, 7.JAZ X Z]AZ and Z/AZ X 7|87

as torsion subgroup of X1(4,8) over a sextic number field.
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The T-division polynomial of X1(4,8) is

U7 (x) = fou.

A sextic number field cannot contain a root of degree 24 polynomial. Hence,
)27 x ZJ14Z cannot occur as a torsion subgroup of X1(4,8) over a sextic number
field.

Case 11: 767 x 767
Consider following the modular curve
X1(6,6):y? = a3 +1.
We have
Z]6Z ~ Tors(X1(6,6),Q) C Tors(X1(6,6), K).
By Theorem 2.2.8, Tors(X1(6,6),K) must be one of the following groups:
Z/nZ, n=06,12,18,24,30
2)27 X Z)2nZ., n = 3,6,9
7)37 X 1]6Z
Z7)6Z X 1L]6Z
Theorem 6.0.15. Let K be a sextic number field. Then
Z)2ZxZ)6Z if K2 L:=Qlxr]/{z?—z+1),

Tors(X1(6,6), K)~< Z/6Z x Z/6Z if K ~ M := Q[z] /(2% — 62° + 362* 4 823 — 2422 4 16),
Z]6Z otherwise.

Proof: The 4-division polynomial of X1(6,6) is
Uy(r) = (z+1) (22 =2+ 1) (22 + 22— 2) 1.
By MAGMA, we obtain that Tors(X1(6,6),L) ~7Z/27 x Z/6Z where L is the

number field is generated by the polynomial x> — x + 1.

By MAGMA, Tors(X1(6,6), L) ~Z/6Z where L is the number field generated by
the polynomial x> + 2z — 2.

So we cannot obtain a 4-torsion point. Thus Z./127, 7.]247, 7./27 x Z./127Z and

Z7)37 x ZJ12Z cannot occur as a torsion subgroup of X1(6,6) over a sextic number
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field.

The 5-division polynomial of X1(6,6) is

Us(z) = fia.

Clearly, a sextic number field cannot contain a root of degree 12 polynomial. Hence

we cannot have Z/30Z as a torsion subgroup of X1(6,6) over a sextic number field.

The 18-division polynomial of X1(6,6) is

Uig(z) = x(z—2)(z+1)(z® — 24+ 1) (2% + 22+ 4) (2® + 4) (23 + 622 + 4)
(a8 — 62° + 362" +82° — 242 +16) £ 157 fis £33 152 f.

Notice that the number fields generated by the polynomials > —x+1 and
22+ 2x+4 are isomorphic and we already examined the polynomial x* — x4 1.
Also Notice that the number fields generated by the polynomials 23+ 62> +4 and

23 +4 are isomorphic.

By MAGMA, Tors(X1(6,6),L) ~Z/6Z where L is the number field generated by
the polynomial 2 +4.

We also need to investigate the splitting field of x® +4 and the compositum field of
23 +4 and 22 —x+1. But these two fields are isomorphic to the number field
generated by the polynomial x5 — 625 4 362 + 82 — 2422 4 16.

By MAGMA, Tors(X1(6,6),L) ~Z/6Z x Z/6Z where L is the number field
generated by the polynomial % — 62° + 362 + 823 — 2422 4 16.

Corresponding Elliptic Curve with torsion

Point from X (6,6) 7./67 x 7./6Z
X

(s(a* — 8a® + 48a®> — 56a —

2 4 2 3 2.2
T3yt 5y =x"+37
32), L (a* — 63 +36a® + da—12)) |0 3V 9Y 9

Table 6.15 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(6,6) over the number field generated by x5 — 62° 4 362* + 823 — 2422 416

So, ZJ187Z, 7./]27. x 7./187 and Z./37 x Z./6Z cannot occur as torsion subgroup of
X1(6,6) over a sextic number field. O
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7. Torsion Subgroups over Number Fields with Smallest

Discriminant

In the following table we list the 2 cubic number fields with different Galois group
and smallest discriminant. In the table, D is the discriminant of the field, G its

Galois group, and the last column is the generating polynomial of field K; where
1<i<2.

7.1 Cubic Number Fields

Field | D G Polynomial
Ky |23 Ss -2 +1
Ky |49 Cs 23— 2?22 +1

Table 7.1 Cubic Number Fields with Smallest Discriminant

We investigate possible torsion groups over the above fields.

In this chapter for the computation of torsion of Jacobian over a number field we

use the MAGMA code by Samir Siksek [2].
The results in this section can be found in [22].

Theorem 7.1.1. The torsion of an elliptic curve over Ky is isomorphic to one of

the following groups:
Z/mZ, m=1,...,10,12
2)27 X L]2mZ, m =1,...,4,6.

Proof: We already have all the torsion subgroups occuring over Q.
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Genus 1

Consider the following modular curve
X1(11) 12—y = 2% — 22

By our computations we obtain that X1(11)(K1) ~Z/5Z ~ X1(11)(Q) and all the
points of X1(11)(K1) are cusps. Hence we cannot obtain an elliptic curves with
torsion ZJ117Z over Kj.

Consider the following modular curve
X1(14) 1y vay+y=a°—2z.

By our computations we obtain that X1(14)(K1) ~Z/6Z ~ X1(14)(Q) and all the
points of X1(14)(K1) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/14Z over K

Consider the following modular curve
X1(15) sy oy +y = a3 + 22

By our computations we obtain that X1(15)(K1) ~ Z/AZ ~ X1(15)(Q) and all the
points of X1(15)(K1) are cusps. Hence we cannot obtain an elliptic curves with

torsion Z/15Z over K
Consider the following modular curve
X1(2,10) : 2 =a® + 22 — 2.

By our computations we obtain that X1(2,10)(K1) ~Z/6Z ~ X1(2,10)(Q) and all
the points of X1(2,10)(K1) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/27 x Z/10Z over K.

Consider the following modular curve
X1(2,12) ¢y =23 -2 +x.

By our computations we obtain that X1(2,12)(K1) ~Z X Z/AZ where
(a®2 —a+1,a%2—2a+1) is the point with infinite order. So we can have an elliptic

curve over Ky with torsion subgroup Z./27 x 7./ 127Z.

Genus 2
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For genus 2 curves we check, Jacobian of the curve over the number field and
whether there is no growth in torsion and rank. We conclude that all points are
cusps over the number field, since none of the points on the curve cannot give an

elliptic curve with desired torsion over Q.

Consider the following modular curve
X1(13) :y? =28 — 225 4 21 — 203 + 627 — 4z + 1.

By MAGMA, Tors(J1(13)(K1)) ~Z/19Z and Rank(J1(13)(K1)) =0. Since there
is mo growth in torsion and rank is 0, we can say that all the points on X1(13) are

CUSPS.

Consider the following modular curve
X1(16) : g2 = 2%+ 221 4 222 — 2.

By MAGMA, Tors(J1(16)(K1)) ~Z/2Z x Z/10Z and Rank(J1(16)(K1)) =0. Since
there is no growth in torsion and rank is 0, we can say that all the points on

X1(16) are cusps.

Consider the following modular curve
X1(18) : y® = 2% +22° + 52 + 1023 + 1022 4+ 42 + 1.

By MAGMA, Tors(J1(18)(K1)) ~Z/217Z and Rank(J1(18)(K1)) =0. Since there
is mo growth in torsion and rank is 0, we can say that all the points on X1(18) are

CUSpS.
Higher genus Curves

Since we cannot obtain Z/147Z as a torsion subgroup of an elliptic curve over K,
it is not possible to obtain 7./27 x Z.J147Z as a torsion subgroup of an elliptic curve

over K.

We cannot use above methods for X1(20) since it is a non-hyperelliptic curve of

genus 3. In this case we will use
X0(20): 92 =2® + 2% +4a+4

and show that there is no 20-cycle over K1. By MAGMA,
X0(20)(K1) ~ X0(20)(Q) = Z/6Z.

By [24], X0(20) has 6 rational cusps. Hence all the points on Xo(20)(K1) are
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Cusps.

Theorem 7.1.2. The torsion of an elliptic curve over Ko is isomorphic to one of

the following groups:
Z/mZ, m=1,...,10,12,13,14,18
L2 X L/2mZ, m=1,...,4.
Proof: We already have all the torsion subgroups occuring over Q.
Genus 1

Consider the following modular curve
X1(11) 12—y = a3 — 22

By our computations we obtain that X1(11)(K2) ~Z/5Z ~ X1(11)(Q) and all the
points of X1(11)(K2) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/117Z over Ks.

Consider the following modular curve

X1(14) P +ay+y =2 —x.

By our computations we obtain that X1(14)(K1) ~ Z/187Z. Notice that the number
fields generated by the polynomials x> — x*> —2x+1 and 2° —22%2 —x+1 are

isomorphic. We already obtain elliptic curves over Ko with torsion subgroup

ZJ147Z, which is
1.2, Lo Lo 3,1 2 2
Ei :y +?(9a —13a—|—1)3:y+?(8a —4a—19)y ==z +?7(8a —4a—19)x
2 o2, Lo Lo 3, 1o 2
Ei vy +§(3a +5a+5)xy+?(8a +Ta—4)y==x —l—?(Sa +Ta—4)x
Consider the following modular curve
X1(15) 2 oy +y = a3 + 22

By our computations we obtain that X1(15)(K2) ~Z/AZ ~ X1(15)(Q) and all the
points of X1(15)(K2) are cusps. Hence we cannot obtain an elliptic curves with
torsion ZJ15Z over Ko

72



Consider the following modular curve
X1(2,10) : 2 = 2?4 2% — .

By our computations we obtain that X1(2,10)(K2) ~7Z/6Z ~ X1(2,10)(Q) and all
the points of X1(2,10)(K2) are cusps. Hence we cannot obtain an elliptic curves

with torsion Z/27 x 7./10Z over K.

Consider the following modular curve
X1(2,12) 1 y? = 2% — 2% 41

By our computations we obtain that X1(2,12)(K2) ~Z/47 ~ X1(2,12)(Q) and all
the points of X1(2,12)(K2) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/27 X Z/127. over K.

Genus 2

Tors(J1(13)(K2)) ~Z/19Z and 0 < Rank(J1(13)(K2)) < 2. In this case we can
easily find a point on X1(13) over the number field Ky that gives an elliptic curve
with torsion subgroup Z/13Z.

Point from X7 (13) Corresponding Elliptic Curve with torsion Z/13Z

(a®> —a—1,2a> —6) y? 4 (4a? —2a—8)xy+(20a® — 11a—45)y = 23 + (20 — 11a — 45)2>

Table 7.2 Elliptic curve obtained from points on X1 (13) over the number field K»

By MAGMA, Tors(J1(16)(K1)) ~Z/2Z x Z/10Z and Rank(J1(16)(K7)) =0. Since
there is no growth in torsion and rank is 0, we can say that all the points on

X1(16) are cusps.

Tors(Ji1(18)(K2)) ~Z/21Z and 0 < Rank(J1(18)(K2)) < 2. In this case we can
easily find a point on X1(18) over the number field Ko that gives an elliptic curve
with torsion subgroup 7./18Z7.

Point from X (18) Corresponding Elliptic Curve with torsion Z/187Z

(—a%+1,3a+3) y?+ (=7a®+6a+13)zy+ (—a®+9a—13)y = 23 + (—a® +9a — 13)2?

Table 7.3 Elliptic curve obtained from points on X(18) over the number field K5

Higher genus Curves

Since we can only obtain two elliptic curves with the torsion subgroup Z /147 over
Ko, which are E}y and E?,, we need to check the elliptic curves Ei, and E?, above
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to find another 2-torsion point. But By MAGMA, we obtain that there does not
exist another 2-torsion point on Ei, and E?, . So, it is not possible to obtain

Z)27 X Z.J14Z as a torsion subgroup of an elliptic curve over K.

We cannot use above methods for X1(20) since it is a non-hyperelliptic curve of

genus 3. In this case we will use
X0(20): 92 =P+ 2% +4x+4

and show that there is no 20-cycle over K1. By MAGMA,
X0(20)(K1) =~ X0(20)(Q) ~ Z/6Z.

By [24], X0(20) has 6 rational cusps. Hence all the points on Xo(20)(K1) are

CUSPS.
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7.2 Quartic Number Fields

In the following table we list the 5 quartic number fields with different Galois group
and smallest discriminant. In the table, D is the discriminant of the field, G its
Galois group, and the last column is the generating polynomial of field K; where
1< <5,

Field | D G Polynomial

Ki 125 Cy - —r+1
Ko 144 Vi rt— 2241

Ks 117 Dy ot — 2?41
K, 3136 Ay =223 4222 42
K 229 Sy -2 +1

Table 7.4 Quartic Number Fields with Smallest Discriminant

We investigate possible torsion groups over the above fields.

For this section, we assume that no torsion groups occur over the quartic number
fields other than these in Theorem 1.0.4.

In this section we will analyze the modular curves for each field according to their
genus, because although we always get a conclusion for small genus curves, this

was not possible for curves with large genus.

Remark 7.2.1. We could not find any method to check the existence of
Ki-rational points for the modular curves X1(17), X1(21) and X1(22) over the
number field K; where i =1,...,5.

Theorem 7.2.2. The torsion of an elliptic curve over Ki is isomorphic to one of

the following groups:
Z/mZ, m=1,..,10,12,15,16
Z)20XZL]2mZ, m=1,...,4
Z/5Z X 7.]57..
Proof: We already have all the torsion subgroups occuring over Q.

Genus 0
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Since K1 does not contain (3 and (4, Z./37 X L)3Z, 7./]37 x 7.]6Z and

L)AL X ZLJAZ cannot occur as a torsion subgroup of an elliptic curve over K.

Notice that Ky contains (5, so it is enough to find one elliptic curve with torsion

Z7/57 X 1.]5Z over Kj.

Point
from Corresponding Elliptic Curve with torsion Z/5Z x Z /57
Xl (57 5)
Y2 + 55 (=8¢ +5¢2 —8(5+24)wy + 55 (—8¢E +5¢F —8(5 +2)y = 2 + 55(—8¢3 +5¢3 —
(07 C5) 2
8¢ +2)x

Table 7.5 Elliptic curve obtained from points on X1(5,5) over the number field K

Genus 1
Consider the following modular curve
X1(11) 192 —y = 2® — 2%

By our computations we obtain that X1(11)(K1) ~Z/5Z ~ X1(11)(Q) and all the
points of X1(11)(K1) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/117Z over Kj.

Consider the following modular curve
X1(14) 1y +ay+y=a3—uz.

By our computations we obtain that X1(14)(K1) ~Z/6Z ~ X1(14)(Q) and all the
points of X1(14)(K1) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/14Z over K

Consider the following modular curve
X1(15) 2 v oy +y =23 + 22

By our computations we obtain that X1(15)(K1) ~ Z/16Z. Notice that the number
fields generated by the polynomials x* — 234+ 22 —x+1 and 2* + 323 +42% + 20+ 1
are isomorphic. We already obtain elliptic curves over K1 with torsion subgroup
ZJ15Z, which are

y? + (—10a> +10a? — 5)zy + (—94a> + 94a® — 58)y = 2> + (—94a® + 94a* — 58)2?,
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Y2+ (—2a> + 502 —5a+3)zy + (3a® + 50 — 13a+10)y = 22 + (3a® + 5a* — 13a+10)2>.

Consider the following modular curve
X1(2,10) 12 = 2?4 2% — z.

By our computations we obtain that X1(2,10)(K1) ~7Z/27 x 7Z./6Z Notice that K
contains the number field generated by the polynomial x> — 4z — 1. But all the new

points from torsion subgroup are cusps.

Consider the following modular curve
X1(2,12) :y? = a® — 2% 41

By our computations we obtain that X1(2,12)(K1) ~Z/47 ~ X1(2,12)(Q) and all
the points of X1(2,12)(K1) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/27 x 7./ 127 over Kj.

Consider the following modular curve
X1(3,9) 1y +y =a>.

By our computations we obtain that X1(3,9)(K1) ~7Z x Z/3Z where

(a® —a?,a3 — a?) is the point with infinite order. Even rank is positive, since K1
does not contain (3, we cannot have an elliptic curve over K1 with torsion
subgroup Z /37 X 7] 9Z..

Consider the following modular curve
X1(4,8) ¢y =23 —x.

By our computations we obtain that X1(4,8)(K1) ~Z X 7/27 x 7Z.]27 where

(a® — a2, —a® +a?) is the point with infinite order. Even rank is positive, since K,
does not contain (4, we cannot have an elliptic curve over K1 with torsion
subgroup Z/AZ x 7,/ 8.

Consider the following modular curve
X1(6,6) : ¢y =23 +1.

By our computations we obtain that X1(6,6)(K1)~Z/6Z ~ X1(6,6)(Q) and all the
points of X1(6,6)(K1) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/6Z x 7./6Z over Ky

7



Genus 2

By MAGMA, Tors(J1(13)(K1)) ~ Z/19Z and Rank(J1(13)(K71)) =0. Since there
is mo growth in torsion and rank is 0, we can say that all the points on X1(13) are

CuSps.

Tors(Ji1(16)(K1)) ~Z/10Z x Z/10Z and 0 < Rank(J1(16)(K1)) < 2. In this case
we can easily find a point on X1(16) over the number field K that gives an elliptic

curve with torsion subgroup Z/167Z.

Point from X (16) Corresponding Elliptic Curve with torsion Z/16Z
(2a% — 2a® — 3,160 + | y? + (2a® + 3a® + 3a + 3)xy + (—3a® — 5a® — 5a — 3)y =
4a®+12a —6) 23+ (—3a® — 5a® — ba — 3)2?

Table 7.6 Elliptic curve obtained from points on X7(16) over the number field K

By MAGMA, Tors(J1(18)(K1)) ~7Z/217Z and Rank(J1(18)(K7)) =0. Since there
is mo growth in torsion and rank is 0, we can say that all the points on X;1(18) are

CUSpS.
Higher genus Curves

Since we cannot obtain 14-torsion over Ki,obviously 7./27 x 7./147 cannot occur

over Kj.

Since we cannot obtain 18-torsion over Ki,obviously 7./27 x 7./187Z cannot occur

over Kj.

Since 7/167 occur as a torsion subgroup of an elliptic curve over Ky, we cannot
use same argument for 7./27 X ZJ16Z. Also we could not find any method to check

its existence over Kj.

We cannot use above methods for X1(20) since it is a non-hyperelliptic curve of

genus 3. In this case we will use
X0(20): 92 =P+ 2% +4x+4

and show that there is no 20-cycle over K. By MAGMA,
Xo(20)(K) = X0(20)(Q) ~ Z/6Z.

By [24], X0(20) has 6 rational cusps. Hence all the points on Xo(20)(K7) are
cusps. Now consider
Xo(24) 2 =a® —2? — 4z +4.
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We will show that there is no 24-cycle over Ki. By MAGMA,
Xo(24) (K1) ~ X0(24)(Q) ~Z/27 x Z.]AZ.

By [24], X0(24) has 8 rational cusps. Hence all the points on Xo(24)(K1) are

CuSpS.

Theorem 7.2.3. The torsion of an elliptic curve over Ky is isomorphic to one of

the following groups:
Z/mZ, m=1,..,10,12,14,15
Z)20XZL]2mZ, m=1,...,4
Z|3ZXZ)3mZ, m=1,2
L]AZ X 7] AZ..
Proof: We already have all the torsion subgroups occuring over Q.
Genus 0

Since Ka does not contain (5, Z/57 X Z/5Z cannot occur as a torsion subgroup of

an elliptic curve over Ks.

Notice that Ka contains (3, so it is enough to find one elliptic curve with torsion
2)37 X ZJ3Z and 737 x Z]6Z over K.

Point ) o ] _
¢ Corresponding Elliptic Curve with torsion
Tom
Z7/37 x 1.]3Z
X1 (3v 3)
0,3) |y +y=2a°

Table 7.7 Elliptic curve obtained from points on X1(3,3) over the number field K5

Point . o ) _
¢ Corresponding Elliptic Curve with torsion
rom
M 737x2/62
X1(3,6)
(0,¢3) | ¥*+(2G+ Dy +(6¢+4)y = 2° + (6¢3+4)2”

Table 7.8 Elliptic curve obtained from points on X(3,6) over the number field Ko

Notice that Ko contains (4, so it is enough to find one elliptic curve with torsion

L]AZL X L] AZ over K.
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Point
from Corresponding Elliptic Curve with torsion Z /47 x 7. /A7
X1 (47 4)
(0,¢) | v?+ay+3BG+1)y =2+ 3(3¢ +1)2?

Table 7.9 Elliptic curve obtained from points on X(4,4) over the number field K

Genus 1

Consider the following modular curve
X1(11) 2 —y = a3 — 22

By our computations we obtain that X1(11)(Ky3) ~Z/5Z ~ X1(11)(Q) and all the
points of X1(11)(K1) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/117 over Ks.

Consider the following modular curve
X1(14) 2 +ay+y=a3—uz.

By our computations we obtain that X1(14)(Kq) ~ Z x 7/67 where

(—a3,a® —a? —a) is the point with infinite order. So we can have an elliptic curve

over Ko with torsion subgroup 7. /147.

Consider the following modular curve
X1(15) 12 +ay+y = a3 + 22

By our computations we obtain that X1(15)(Kq) ~ Z x 7 /87 where
(a® —a—1,—a>—a?) is the point with infinite order. So we can have an elliptic

curve over Ko with torsion subgroup Z/15Z.

Consider the following modular curve
X1(2,10) 12 =P+ 2% — 2.

By our computations we obtain that X1(2,10)(K2) ~7Z/6Z ~ X1(2,10)(Q) and all
the points of X1(2,10)(K2) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/27 x Z./10Z over K.
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Consider the following modular curve
X1(2,12) ¢y =23 -2+ x.

By our computations we obtain that X1(2,12)(K2) ~7Z/27 x 7Z./8Z. Notice that the
number fields generated by the polynomials x* — 2% +1 and z* — 223 + 522 — 4z + 1
are isomorphic. We already saw that new torsion points do not give rise to an

elliptic curve in the previous chapter.

Consider the following modular curve
X1(3,9) 1y +y =22,

By our computations we obtain that X1(3,9)(K2) ~7Z/37Z x 7Z/37Z. But new points

do not give rise to an elliptic curve with torsion subgroup Z/37Z X Z./97Z.

Consider the following modular curve
X1(4,8) :y* =23 —x.

By our computations we obtain that X1(4,8)(K2) ~7Z/27Z x Z/AZ. Notice that the
number field generated by the polynomial z* — x?+1 contains the number field
generated by the polynomial x>+ 1. All the new points from torsion subgroup are
cusps. So, new torsion points do not give rise to an elliptic curve with desired

torsion.

Consider the following modular curve
X1(6,6) :y* =23 +1.

By our computations we obtain that X1(6,6)(K2) ~7Z/27Z x Z/6Z. So, Ko contains
number field generated by the polynomial 2> —x +1. Even Ky does contain (g, new
points from torsion are cusps. Clearly, new torsion points do not give rise to an

elliptic curve with desired torsion.
Genus 2

By MAGMA, Tors(J1(13)(K2)) ~ Z/19Z and Rank(J1(13)(K2)) =0. Since there
is mo growth in torsion and rank is 0, we can say that all the points on X1(13) are

Cusps.

By MAGMA, Tors(J1(16)(K2)) ~7Z/27Z x Z./27 x Z./10Z and
Rank(Jl(lfi)(Kg)) =0.
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By MAGMA, Tors(J;(18)(K2)) ~Z/37Z x Z/217Z and Rank(J1(18)(K32)) = 0.

Since there is a growth in torsion for some cases, we cannot say anything about

their existence over Ks.

Higher genus Curves

By MAGMA, X(20)(K3) ~7Z/27Z X Z/6Z.
By MAGMA, X(24)(K3) ~Z/AZ x Z]AZ.

We could not obtain any useful information with this method, but we figure out a
method useful for X1(20)(K2) and X1(24)(K2).

As X1(4n) is a cover of X1(2,2n), if Y1(2,2n) =0 then Y1(4n) = 0. In our case we
have Y1(2,10) =0 and Y1(2,12) =0, so we can say Y1(20) =0 and Y1(24) = 0. Thus

we cannot have Z/20Z and 7./247, as torsion subgroup of an elliptic curve over K.

Since 7./147 occurs as a torsion subgroup of an elliptic curve over Ka, we cannot
say )27 x 7./ 147 occurs or not.

Similarly, since we do not have information for Z/16Z and 7 /187, we also cannot

decide Z/27. X 7./167Z and 7./27 x Z/18Z occur or not.

Theorem 7.2.4. The torsion of an elliptic curve over K3 is isomorphic to one of

the following groups:
Z/mZ, m=1,...,13
Z)20 X ZL)2mZ, m =1,...,5
Z)3Z X Z)3mZ, m =1,2.
Proof: We already have all the torsion subgroups occuring over Q.
Genus 0

Since K3 does not contain (4 and (5, Z/AZ X Z]AZ and Z./57 X /57 cannot occur

as a torsion subgroup of an elliptic curve over Ks.

Notice that K3 contains (3, so it is enough to find one elliptic curve with torsion
2)37 X Z/3Z and 737 x Z]6Z over Ks.
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Point
from
X1(3,3)
0,3) | ¥ +y=2°

Corresponding Elliptic Curve with torsion
Z7/3Z x 7] 37

Table 7.10 Elliptic curve obtained from points on X1(3,3) over the number field K3

Point

¢ Corresponding Elliptic Curve with torsion
O\ 7)3mx 76

X1(376)

(0,G3) | ¥*+(2G+1)zy+(6¢+4)y = 2°+(6¢3 +4) 2

Table 7.11 Elliptic curve obtained from points on X(3,6) over the number field K3

Genus 1

Consider the following modular curve
X1(11) 192 —y = 2® — 2%

By our computations we obtain that X1(11)(K3) ~7Z x Z/5Z where
(—a®+2a%—1,a% — a® — a+2) is the point with infinite order. So we can have an

elliptic curve over Ks with torsion subgroup Z./117.

Consider the following modular curve
X1(14) 2 +ay+y=a—uz.

By our computations we obtain that X1(14)(K3) ~Z/6Z ~ X1(14)(Q) and all the
points of X1(14)(K3) are cusps. Hence we cannot obtain an elliptic curves with
torsion ZJ14Z over K3

Consider the following modular curve
X1(15) 12 oy +y = a3 + 22

By our computations we obtain that X(15)(K3) ~ Z/87. Notice that K3 contains
the number field generated by the polynomial x>+ x+ 1, but in the previous chapter
we obtain that new torsion points does not give rise to elliptic curves with the

torsion subgroup Z/15Z. Hence we cannot obtain an elliptic curves with torsion

Z/15Z over K3
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Consider the following modular curve
X1(2,10) : 2 = 2?4 2% — .

By our computations we obtain that X1(2,10)(K3) ~Z x Z/6Z where
(2a3 —3a?+2,3a® — 5a% +a+2) is the point with infinite order. So we can have an
elliptic curve over Ks with torsion subgroup 7./27 x 7./10Z.

Consider the following modular curve
X1(2,12) :y? = 2% — 2% 41

By our computations we obtain that X1(2,12)(K3) ~7Z/27 x Z./AZ. Notice that the
number field K3 contains the number field generated by the polynomial x> —x + 1

and all the points are cusps.
Consider the following modular curve
X1(3,9) 1y +y =22,
By our computations we obtain that X1(3,9)(K3) ~7Z/3Z x Z/3Z. But new points
do not give rise to an elliptic curve with torsion subgroup Z/37 x Z]9Z

Consider the following modular curve
X1(4,8) :y* =2 —a.

By our computations we obtain that X1(4,8)(K3) ~Z x Z /27 x 7./ 27 where
(—a,a? —a—1) is the point with infinite order. Even rank is positive, since K3
does not contain (4, we cannot have an elliptic curve over K3 with torsion
subgroup Z/AZ X 7./ 8.

Consider the following modular curve
X1(6,6) : > =a3+1.

By our computations we obtain that X1(6,6)(K3) ~7Z/2Z X Z/6Z.S0, K3 contains
number field generated by the polynomial 2> —x +1. Even K3 does contain (g, new
points from torsion are cusps. Clearly, new torsion points do not give rise to an

elliptic curve with desired torsion.

Genus 2

By MAGMA, Tors(J1(13)(K3)) ~ Z/57Z and Rank(J1(13)(K3)) =0. In this case
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we can easily find a point on X1(13) over the number field K3 that gives an elliptic
curve with torsion subgroup Z/137.

Point from X;(13) Corresponding Elliptic Curve with torsion Z/13Z
(a®—a®+1,a® —3a®+ | y> + (26> —4a® +2a+2)vy + (7 — 124> +a+8)y = 23 +
2) (7a® —12a® 4+ a + 8)a?

Table 7.12 Elliptic curve obtained from points on X;(13) over the number field K3

By MAGMA, Tors(J1(16)(K3)) ~Z/27 x Z/10Z and Rank(J1(16)(K3)) =0. Since
there is no growth in torsion and rank is 0, we can say that all the points on

X1(16) are cusps.

By MAGMA, Tors(J1(18)(K3)) ~Z/3Z x Z/217Z and Rank(J1(18)(K3)) =0. Since

there is growth in this case we cannot decide its occurrence.
Higher genus Curves

Since we cannot obtain 14-torsion over Ks,obviously 7./27. x 7./147 cannot occur

over Kj.

Since we cannot obtain 16-torsion over Ks,obviously 7./27 x 7./16Z cannot occur

over Kj.

We cannot use same argument for 7./27 x Z./18Z, since we do not have
information about X1(18).

By MAGMA, X(20)(K3) ~Z x Z/6Z. Since rank is positive we cannot decide its

occurrence over Kg .

Now consider
Xo(24):y? = 2% —2* — 4o+ 4.

We will show that there is no 24-cycle over K3. By MAGMA,
X0(24)(K3) ~ X0(24)(Q) ~Z/2Z x Z]AZ.

By [24], X0(24) has 8 rational cusps. Hence all the points on Xo(24)(K3) are

CUSPS.

Theorem 7.2.5. The torsion of an elliptic curve over Ky is isomorphic to one of

the following groups:
Z/mZ, m=1,...,10,12

L)27 X L)2mZ, m =1,...,5.
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Proof: We already have all the torsion subgroups occuring over Q.
Genus 0

Since Ky does not contain (3, (4 and (s, Z/37Zx 7./37, 7|37 X Z.]6Z, 7.]AZ X 7. AZ

and Z/57 X Z/5Z cannot occur as a torsion subgroup of an elliptic curve over Ky.
Genus 1

Consider the following modular curve
X1(11) 2 —y = a3 — 22

By our computations we obtain that X1(11)(Ky) ~7Z/5Z ~ X1(11)(Q) and all the
points of X1(11)(Ky) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/117 over Kjy.

Consider the following modular curve
X1(14) -2 +ay+y=a—z.

By our computations we obtain that X1(14)(Ky) ~Z/6Z ~ X1(14)(Q) and all the
points of X1(14)(Ky) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/14Z over Ky.

Consider the following modular curve
X1(15) 2 +ay+y = a3 + 22

By our computations we obtain that X1(15)(Ky) ~ Z/4AZ ~ X1(15)(Q) and all the
points of X1(15)(K4) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/15Z over Kjy.

Consider the following modular curve
X1(2,10) 12 =P+ 2% — 2.

By our computations we obtain that X1(2,10)(Ky) ~7Z x Z/6Z where
(3859 (71403 — 730a® — 340a + 1139), 1957 (349764 — 343124 — 25216a + 13125)) is

the point with infinite order. So we can have an elliptic curve over K4 with torsion

subgroup Z /27 X 7./ 107Z.
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Consider the following modular curve
X1(2,12) ¢y =23 -2+ x.

By our computations we obtain that X1(2,12)(Ky) ~Z /A7 ~ X1(2,12)(Q) and all
the points of X1(2,12)(Ky) are cusps. Hence we cannot obtain an elliptic curves

with torsion Z)27 x 7./ 127 over Ky.
Consider the following modular curve
X1(3,9) 12y =2

By our computations we obtain that X1(3,9)(K4) ~Z/37Z ~ X1(3,9)(Q) and all the
points of X1(3,9)(Ky) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/3Z x Z./9Z over Ky.

Consider the following modular curve
X1(4,8) ¢y =23 —x.

By our computations we obtain that X1(4,8)(Ky4) ~7Z X Z/27 X 7] 27 where

(80a3—164a2—|—152a—|—41 —686a3+2192a2—2972a+424) is the point with infinite order. Even
ST ) 729 :

rank is positive, since Ky does not contain (4, we cannot have an elliptic curve
over Ky with torsion subgroup Z /A7 x 7./8Z.

Consider the following modular curve
X1(6,6) :y* =23 +1.

By our computations we obtain that X1(6,6)(K4) ~7Z x Z./6Z where
(—a®+2a%+2,—-2a3 +4a® + 2a+3) is the point with infinite order. Even rank is
positive, since Ky does not contain (g, we cannot have an elliptic curve over Ky
with torsion subgroup Z/6Z x 7 /6Z.

Genus 2

By MAGMA, Tors(Jy(13)(K4)) ~ Z/19Z and Rank(J;(13)(K1)) < 2.

By MAGMA, Tors(J1(16)(Ky4)) ~7Z/27 x Z/10Z and Rank(J1(16)(Ky)) < 2.
By MAGMA, Tors(J1(18)(K4)) ~Z/217Z and Rank(J1(18)(Ky4)) < 4.

Since we could not obtain lower bound Rank(J1(13)(K4)), Rank(J1(16)(K4)) and
Rank(J1(18)(Ky)), we cannot decide existence of Z./137, Z.J16Z and Z/18Z over
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Ky.
Higher genus Curves

Since we cannot obtain 14-torsion over Ky,obviously 7./27 x 7./147Z cannot occur
over Ky. But we cannot use same arqument for Z/27 x Z/16Z and 7 /27 x 7./ 18Z
,since we do not have information about X1(16) and X1(18).

By MAGMA, X(20)(K4) ~7Z X Z/6Z. Since rank is positive we cannot decide its

occurrence over K4.

Now consider
Xo(24) :y? = 2% — 2 —da 4 4.

We will show that there is no 24-cycle over Ky. By MAGMA,
X0(24)(Ky) ~ X0(24)(Q) ~Z/27Z x Z]AZ.

By [24], X0(24) has 8 rational cusps. Hence all the points on Xo(24)(K4) are

CUSPS.

Theorem 7.2.6. The torsion of an elliptic curve over Ks is isomorphic to one of

the following groups:
Z/mZ, m=1,...,10,12
2)27 X L]2mZ, m =1,...,4,6.
Proof: We already have all the torsion subgroups occuring over Q.
Genus 0

Since Ky does not contain (3, (4 and (s, Z/32Z X Z)3Z, 7.3 x L]|6Z, Z]AZ X 7./ AZ

and Z /57 X Z./5Z. cannot occur as a torsion subgroup of an elliptic curve over K.
Genus 1

Consider the following modular curve
X1(11) 2 —y =2% — 22

By our computations we obtain that X1(11)(K5) ~7Z/5Z ~ X1(11)(Q) and all the
points of X1(11)(K5) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/11Z over K.
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Consider the following modular curve
X1(14) sy +ay+y=a3—z.

By our computations we obtain that X1(14)(Ks) ~ Z/6Z ~ X1(14)(Q) and all the
points of X1(14)(K5) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/14Z over K.

Consider the following modular curve
X1(15) 2 +ay+y = 2>+ 22

By our computations we obtain that X1(15)(K5) ~ Z/A7Z ~ X1(15)(Q) and all the
points of X1(15)(K5) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/15Z over K.

Consider the following modular curve
X1(2,10) 1 y? = 2?4 2% — .

By our computations we obtain that X1(2,10)(K5) ~7Z/6Z ~ X1(2,10)(Q) and all
the points of X1(2,10)(K5) are cusps. Hence we cannot obtain an elliptic curves

with torsion Z/27 x 7./10Z over Ks.
Consider the following modular curve
X1(2,12) 12 =2® -2+ x.

By our computations we obtain that X1(2,12)(K5) ~7Z x 7/AZ where
(a® —1,a3 +a? +a) is the point with infinite order. So we can have an elliptic

curve over Ky with torsion subgroup Z /27 x 7./127.

Consider the following modular curve
X1(3,9) 1yt +y =22,

By our computations we obtain that X1(3,9)(Ks5) ~Z/3Z ~ X1(3,9)(Q) and all the
points of X1(3,9)(K5) are cusps. Hence we cannot obtain an elliptic curve with
torsion Z)3Z x Z]9Z over Kj

Consider the following modular curve
X1(4,8) ¢y =23 —ux.

89



By our computations we obtain that X1(4,8)(Ks) ~Z X 7/27 x /27 where
(a®+a?+a—1,-2a—a?+2) is the point with infinite order. Even rank is
positive, since K5 does not contain (4, we cannot have an elliptic curve over K
with torsion subgroup Z/AZ X 7./87Z.

Consider the following modular curve
X1(6,6) : ¢y =23 +1.

By our computations we obtain that X1(6,6)(Ks) ~7Z/6Z ~ X1(6,6)(Q) and all the
points of X1(6,6)(K5) are cusps. Hence we cannot obtain an elliptic curve with

torsion Z./6Z x 7/6Z over Ks
Genus 2

By MAGMA, Tors(J1(13)(K5)) ~ Z/19Z and Rank(J1(13)(K5)) =0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(13) are

Cusps.

By MAGMA, Tors(J1(16)(K5)) ~Z/27 x Z./10Z and Rank(J1(16)(K5)) =0. Since
there is no growth in torsion and rank is 0, we can say that all the points on

X1(16) are cusps.

By MAGMA, Tors(J1(18)(K5)) ~ Z/21Z and Rank(J1(18)(K5)) =0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(18) are

Cusps.
Higher genus Curves

Since we cannot obtain 14-torsion over Ky,obviously 7./27 x 7./14Z cannot occur

over K.

Since we cannot obtain 16-torsion over Ks,obviously Z/27 X Z /167 cannot occur

over K.

Since we cannot obtain 18-torsion over Ky,obviously 7./27. x 7./187 cannot occur

over K.

We cannot use above methods for X1(20) since it is a non-hyperelliptic curve of

genus 3. In this case we will use
X0(20) : y? =23 +a® 44w +4

and show that there is no 20-cycle over K5. By MAGMA,
X0(20)(K5) ~ X0(20)(Q) = Z/6Z.
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By [24], X0(20) has 6 rational cusps. Hence all the points on Xo(20)(K5) are
cusps.

By MAGMA, X¢(24)(K5) ~Z X Z/2Z X Z]AZ. Since rank is positive we cannot
decide existence of /247 over K.
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7.3 Quintic Number Fields

In the following table we list the 5 quintic number fields with different Galois group
and smallest discriminant. In the table, D is the discriminant of the field, G its
Galois group, and the last column is the generating polynomial of field K; where
1< <5,

Field | D G Polynomial
K 1609 S - tr+1
Ky 2209 Ds 2 =2t 4223 — a2+ 1

K 35152 Fx 2 —at 2 — 4 —1
Ky 18496 As 20—t 222 — 21+ 2
K 14641 Cs 2=t — 43+ 322+ 32— 1

Table 7.13 Quintic Number Fields with Smallest Discriminant

We investigate possible torsion groups over the above field.

In this chapter for the computation of torsion of Jacobian we use the MAGMA code

of Samir Siksek and the code can be found at website.

For this section, we assume that no torsion groups occur over the quintic number
field other than these in Theorem 2.1.7.

In this section we will analyze the modular curves for each field according to their
genus, because although we always get a conclusion for small genus curves, this

was not possible for curves with large genus.

Remark 7.3.1. We could not find any method to check the existence of
K-rational points for the modular curves X1(17), X1(19), X1(21), X1(22) and
X1(25) over the number field K; wherei=1,....5.

Theorem 7.3.2. The torsion of an elliptic curve over K is isomorphic to one of

the following groups:
Z/mZ, m=1,...,10,12,13,14,15
L)27 X L/2mZ, m=1,...,4.
Proof: We already have all the torsion subgroups occuring over Q.

Genus 1
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Consider the following modular curve
X1(11) 2 —y = a3 — 22

By our computations we obtain that X1(11)(K1) ~Z/5Z ~ X1(11)(Q) and all the
points of X1(11)(K1) are cusps. Hence we cannot obtain an elliptic curves with
torsion ZJ117Z over Kj.

Consider the following modular curve

X1(14) 1y vay+y =2 —2z.

By our computations we obtain that X1(14)(Ky) ~7Z x 7/67 where
(—a, —a*+a’+a— 1) is the point with infinite order. So we can have an elliptic

curve over Ky with torsion subgroup Z/147.

Consider the following modular curve
X1(15) 1y oy +y = a3+ 22

By our computations we obtain that X1(15)(K1) ~ 72 x 7./AZ, where
(a* —a,—a’+a+1) and (3a* —2a3 — 2a% — 2a+4,—9a* + 6a>® + 5a2 +6a — 13) are
the points with infinite order. So we can have an elliptic curve over Ky with

torsion subgroup Z/15Z.

Consider the following modular curve
X1(2,10) : 2 = 2?4 2% — z.

By our computations we obtain that X1(2,10)(K1) ~7Z/6Z ~ X1(2,10)(Q) and all
the points of X1(2,10)(K1) are cusps. Hence we cannot obtain an elliptic curves

with torsion Z/27 x 7./10Z over Kj.

Consider the following modular curve
X1(2,12) 1 y? =% — 2% +u.

By our computations we obtain that X1(2,12)(K1) ~Z/4Z ~ X1(2,12)(Q) and all
the points of X1(2,12)(K1) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z)27 x 7./127 over Kj.

Genus 2

By MAGMA, Tors(J1(13)(K1)) ~Z/19Z and 0 < Rank(J;(13)(K1)) < 2. In this
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case we can easily find a point on X1(13) over the number field Ky that gives an

elliptic curve with torsion subgroup Z/137Z.

Point from X1(13) Corresponding Elliptic Curve with torsion Z/137Z
y? + (a* —a+2)zy + (5a* — 3a® — 2a%> — 3a + T)y = 2% +
(5a' —3a3 — 2a% — 3a+7)2?

(a?,a® —a?+a+1)

Table 7.14 Elliptic curve obtained from points on X (13) over the number field K3

By MAGMA, Tors(J1(16)(K1)) ~Z/27Z x Z/10Z and Rank(J1(16)(K1)) =0. Since
there is no growth in torsion and rank is 0, we can say that all the points on

X1(16) are cusps.

By MAGMA, Tors(J1(18)(K1)) ~Z/21Z and Rank(J1(18)(K1)) =0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(18) are

CUSpS.
Higher genus Curves

Since we cannot obtain 16-torsion over Ki,obviously Z/27 x Z/167Z cannot occur

over Kj.

Since Z/147, occur as a torsion subgroup of an elliptic curve over Ki, we cannot
use same argument for Z/27 x 7./147. Also we could not find any other method to
check that it occurs or not over Ky. We cannot use above methods for X1(20) since

it is a mon-hyperelliptic curve of genus 3. In this case we will use
X0(20): 92 =2® + 2% +4a+4

and show that there is no 20-cycle over K1. By MAGMA,
X0(20)(K1) ~ X0(20)(Q) ~Z/6Z. By [24], X0(20) has 6 rational cusps. Hence all
the points on X¢(20)(K1) are cusps.

Now consider
Xo(24) :y? = 2% — 2 —da 4 4.

We will show that there is no 24-cycle over Ki. By MAGMA,
X0(24) (K1) ~ X0(24)(Q) ~Z/27Z x ZJAZ. By [24], Xo(24) has 8 rational cusps.
Hence all the points on X¢(24)(K1) are cusps.

Theorem 7.3.3. The torsion of an elliptic curve over Ky is isomorphic to one of

the following groups:
Z/mZ, m=1,...,10,12,14
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Z)27 X Z]2mZ, m =1,...,4,6.
Proof: We already have all the torsion subgroups occuring over Q.
Genus 1

Consider the following modular curve
X1(11) 12—y = 2% — 22

By our computations we obtain that X1(11)(K2) ~Z/5Z ~ X1(11)(Q) and all the
points of X1(11)(K2) are cusps. Hence we cannot obtain an elliptic curves with
torsion ZJ11Z over Ks.

Consider the following modular curve
X1(14) 1y +ay+y=a°—2z.

By our computations we obtain that X1(14)(Ks3) ~ Z* x 7Z./6Z where

(—a*+2a3 —a?,a* — a3 —a? —a) and (a® —a®+1,a* — 3a® +3a® — 2) are the points
with infinite order. So we can have an elliptic curve over Ko with torsion subgroup
Z7/147.

Consider the following modular curve
X1(15) 2 +ay+y = a3 + 22

By our computations we obtain that X1(15)(K2) ~ Z/4Z ~ X1(15)(Q) and all the
points of X1(15)(K2) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/15Z over Ks.

Consider the following modular curve
X1(2,10) 12 =P+ 2% — .

By our computations we obtain that X1(2,10)(K2) ~7Z/6Z ~ X1(2,10)(Q) and all
the points of X1(2,10)(K2) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/27 x 7./ 10Z over K.

Consider the following modular curve
X1(2,12) ¢y =a® — 2% 41
By our computations we obtain that X1(2,12)(K2) ~ Z? x Z./4Z where
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(2a® —2a+1,—2a+3) and (a* —a® +a? —a* +a®+1) are the points with infinite
order. So we can have an elliptic curve over Ko with torsion subgroup

2]27 X 7.J]127.
Genus 2

By MAGMA, Tors(J1(13)(K2)) ~ Z/19Z and Rank(J1(13)(K2)) =0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(13) are

Cusps.

By MAGMA, Tors(J1(16)(K2)) ~Z/2Z x Z/10Z and Rank(J1(16)(K2)) =0. Since
there is no growth in torsion and rank is 0, we can say that all the points on

X1(16) are cusps.

By MAGMA, Tors(J1(18)(K2)) ~Z/21Z and Rank(J1(18)(K2)) =0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(18) are

CUSPS.
Higher genus Curves

Since we cannot obtain 16-torsion over Ka,obviously Z/27 x Z /167 cannot occur

over Ko.

Since Z/147 occur as a torsion subgroup of an elliptic curve over Ko, we cannot
use same argument for Z/27 x 7./147. Also we could not find any other method to

check its existence over Ks.

We cannot use above methods for X1(20) since it is a non-hyperelliptic curve of

genus 3. In this case we will use
X0(20): 92 =2® + 2% +4a+4

and show that there is no 20-cycle over K. By MAGMA,
X0(20)(K2) ~ X0(20)(Q) ~Z/6Z. By [24], X0(20) has 6 rational cusps. Hence all
the points on X¢(20)(K2) are cusps.

By MAGMA, X(24)(Ks) ~ 72 x 7./27. x 7.J4Z.. Since rank is positive we cannot

decide its existence over Ks.

Theorem 7.3.4. The torsion of an elliptic curve over Ks is isomorphic to one of

the following groups:
Z/mZ, m=1,...,12,14,15

L)27 X L)2mZ, m =1,...,6.
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Proof: We already have all the torsion subgroups occuring over Q.
Genus 1

By our computations we obtain that X;(11)(K3) ~ Z x Z/5Z where

(m(—m4 +1397a® — 3725a* + 6161a + 5289),

15829 (177601a* — 125712a® + 164214 — 1033624 + 477684))

is the point with infinite order. So we can have an elliptic curve over Ks with

torsion subgroup Z/117.

By our computations we obtain that X;(14)(K3) ~ Z x Z/6Z where

1
(ﬁ(445a4 — 1432a® 4 1199a” 4 275a + 685),

1
m(2505a4 + 1158234 — 170020a” 4 323164 — 66576))

is the point with infinite order. So we can have an elliptic curve over Ks with

torsion subgroup Z/147.

By our computations we obtain that X;(15)(K3) ~ Z x Z/AZ where
(%(—131@4 +481a® — 133a% 4 1261a — 74), 555 (3163a* + 4557a> + 14522a% + 10119a — 3969))
is the point with infinite order. So we can have an elliptic curve over K3 with

torsion subgroup 7./157.

By our computations we obtain that X1(2,10)(K3) ~7Z x Z/6Z where
(1925 (619a — 784% 4 871a% — 1032a — 279), 4= (205864 + 8993a° + 426694 — 301830 — 23476) )
is the point with infinite order. So we can have an elliptic curve over Ks with

torsion subgroup Z./27 X Z./10Z.

By our computations we obtain that X1(2,12)(K3) ~7Z x 7/AZ where
(4a* = 9a% + 11a? — 230+ 20, —29a” + 460° — 640> + 1360 — 76) is the point with
infinite order. So we can have an elliptic curve over K3 with torsion subgroup

2]27 x .J]127.
Genus 2

By MAGMA, Tors(J1(13)(K3)) ~ Z/19Z and Rank(J1(13)(K3)) =0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(13) are

Cusps.

By MAGMA, Tors(J1(16)(K3)) ~7Z/27 x Z/10Z and Rank(J1(16)(K3)) < 2.
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By MAGMA, Tors(J;(18)(K3)) ~ Z/21Z and Rank(J;(18)(K3)) < 2.

Since we could not obtain lower bound Rank(J1(16)(K2)) and Rank(J1(18)(K3)),
we cannot decide existence of /167 and Z/187Z over K.

Higher genus Curves

We cannot say anything about existence of Z /27 x 7./14Z and 7./27 X Z./16Z
,since we do not have information about X1(14) and X1(16).

By MAGMA, X(20)(K3) ~7Z x Z/6Z. Since rank is positive we cannot decide
existence Z./20Z over K.

By MAGMA, X(24)(K3) ~7Z x 7Z./27 X ZL]AZ. Since rank is positive we cannot
decide existence 7. /247 over Ks.

Theorem 7.3.5. The torsion of an elliptic curve over Ky is isomorphic to one of

the following groups:
Z/mZ, m=1,...,10,12,15
L)27 X L/2mZ, m=1,...,5.
Proof: We already have all the torsion subgroups occuring over Q.
Genus 1

By our computations we obtain that X1(11)(Ky) ~Z/5Z ~ X1(11)(Q) and all the
points of X1(11)(Ky) are cusps. Hence we cannot obtain an elliptic curves with
torsion ZJ117Z over Kjy.

By our computations we obtain that X1(14)(Ky) ~7Z/6Z ~ X1(14)(Q) and all the
points of X1(14)(Ky) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/14Z over Ky.

By our computations we obtain that X1(15)(Ky) ~ 72 x Z/AZ where
(a* —a®+a? —a*+3a® —5a% +4a—3) and (%(a4 +2), %(—5@4 +2a® + 2a* — 10))
are the points with infinite order. So we can have an elliptic curve over K4 with

torsion subgroup 7. /15Z.

By our computations we obtain that X1(2,10)(Ky) ~7Z x 7 /67 where
(a3 + 1,a*+2a— 1) is the point with infinite order. So we can have an elliptic
curve over K4 with torsion subgroup Z/27 x Z./10Z.

By our computations we obtain that X1(2,12)(Ky) ~Z/47 ~ X1(2,12)(Q) and all

the points of X1(2,12)(Ky) are cusps. Hence we cannot obtain an elliptic curves

98



with torsion Z)27 x 7./127 over Ky.
Genus 2

By MAGMA, Tors(J1(13)(K4)) ~ Z/19Z and Rank(J1(13)(K4)) =0. Since there
is mo growth in torsion and rank is 0, we can say that all the points on X1(13) are

CUSPS.

By MAGMA, Tors(J1(16)(Ky4)) ~Z/27 x Z./10Z and Rank(J1(16)(K4)) =0. Since
there is no growth in torsion and rank is 0, we can say that all the points on

X1(16) are cusps.

By MAGMA, Tors(J1(18)(K4)) ~ Z/217Z and Rank(J1(18)(K4)) =0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(18) are

CUuSps.
Higher genus Curves

Since we cannot obtain 14-torsion over Ky,obviously 7./27 x 7./147Z cannot occur

over Ky.

Since we cannot obtain 16-torsion over Ky,obviously 7./27. x 7./16Z cannot occur

over Kjy.

By MAGMA, X(20)(K4) ~7Z x Z/6Z. Since rank is positive, we cannot decide
existence Z/20Z over Ky.

Now consider
Xo(24) 2 =a® —2? — 4z +4.

We will show that there is no 24-cycle over Ky. By MAGMA,
X0(24)(K4) ~ X0(24)(Q) ~Z/2Z x ZJAZ. By [24], Xo(24) has 8 rational cusps.
Hence all the points on Xo(24)(Ky4) are cusps.

Theorem 7.3.6. The torsion of an elliptic curve over Ks is isomorphic to one of

the following groups:
Z/mZ, m=1,...,12
L)27 X L./2mZ, m=1,...,4.
Proof: We already have all the torsion subgroups occuring over Q.

Genus 1
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By our computations we obtain that X1(11)(Ks5) ~ Z/257Z. In this case we obtain

following 3 non-isomoprhic elliptic curves over Ky with torsion subgroup Z/157Z.

y? + (—4a* +11a® — 3a* — 8a+3)zy + (—652a* + 17394 — 321a? — 1380a + 383)y
= 23+ (—155a* + 41163 — 730 — 3250+ 90) 22,

y? +(501a* —918a® — 1241a% +2537a — 605) zy + (— 76872694 + 140740830 + 190559054
— 388940250+ 9252517)y = 2 + (—484791a* +887570a> +1201744a> — 24528184+ 583502) 22,

y? + (4a* — 8a® — 8a® +22a — 10)xy + (—739a + 132943 + 1869a* — 3669a + 788)y
= 2% 4 (—180a* + 318a> + 464a” — 877a + 168)22.

By our computations we obtain that X1(14)(Ks) ~Z/6Z ~ X1(14)(Q) and all the
points of X1(14)(K5) are cusps. Hence we cannot obtain an elliptic curves with
torsion /147 over K.

By our computations we obtain that X1(15)(K5) ~ Z/A7 ~ X1(15)(Q) and all the
points of X1(15)(K5) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/15Z over K.

By our computations we obtain that X1(2,10)(K5) ~7Z/6Z ~ X1(2,10)(Q) and all
the points of X1(2,10)(K5) are cusps. Hence we cannot obtain an elliptic curves

with torsion Z/27 x 7./10Z over Ks.

By our computations we obtain that X1(2,12)(K5) ~Z /47 ~ X1(2,12)(Q) and all
the points of X1(2,12)(K5) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/27 X Z/127. over K.

Genus 2

By MAGMA, Tors(J1(13)(K5)) ~ Z/19Z and Rank(J1(13)(K5)) =0. Since there
is mo growth in torsion and rank is 0, we can say that all the points on X1(13) are

Cusps.

By MAGMA, Tors(J1(16)(K5)) ~Z/27 x Z./10Z and Rank(J1(16)(Ks5)) =0. Since
there is no growth in torsion and rank is 0, we can say that all the points on

X1(16) are cusps.

By MAGMA, Tors(J1(18)(K5)) ~ Z/21Z and Rank(J1(18)(K5)) =0. Since there

is no growth in torsion and rank is 0, we can say that all the points on X1(18) are
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CUSPS.
Higher genus Curves

Since we cannot obtain 14-torsion over Ky,obviously 7./27 x 7./147Z cannot occur

over Ky.

Since we cannot obtain 16-torsion over Ky,obviously Z/27 X Z /167 cannot occur

over Ky.

We cannot use above methods for X1(20) since it is a non-hyperelliptic curve of

genus 3. In this case we will use

X0(20): 92 =23+ 2% +4x+4
and show that there is no 20-cycle over K5. By MAGMA,
Xo(20)(Ks) = X0(20)(Q) ~ Z/6Z.

By [24], X0(20) has 6 rational cusps. Hence all the points on Xo(20)(K5) are

Cusps.

Now consider
Xo(24) 2 =a® —2? — 4z +4.

We will show that there is no 24-cycle over K5. By MAGMA,
X0(24)(K5) ~ X0(24)(Q) ~Z/27 x Z]AZ.

By [24], X0(24) has 8 rational cusps. Hence all the points on Xo(24)(K5) are

Cusps.
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