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Homomorphic encryption (HE) is a cryptosystem that allows the secure processing of
encrypted data. One of the most popular HE schemes is the Brakerski-Fan-Vercauteren
(BFV), which supports somewhat (SWHE) and fully homomorphic encryption (FHE).
Since overly involved arithmetic operations of HE schemes are amenable to concurrent
computation, GPU devices can be instrumental in facilitating the practical use of HE in
real world applications thanks to their superior parallel processing capacity.

We propose an optimized and highly parallelized GPU library to accelerate the BFV
scheme. The BFV scheme is based on lattice-based cryptography and involves overly
many polynomial multiplications of very high degrees and multiprecision coefficients.
Since, schoolbook polynomial multiplication is inefficient for GPU at high degrees, firstly,
we present three different Number Theoretic Transform (NTT) implementations based
on Merge NTT and 4-Step NTT algorithms that are optimized for GPUs instead of using
schoolbook multiplicaition. The best of these three implementations employs an approach
i) to optimize the number of accesses to slow global memory for thread synchronization,
and ii) to make better use of spatial locality in global memory accesses. It turns out that
by controlling certain parameters in CUDA platform for general-purpose GPU computing
(GPGPU) such as kernel count, block size and block shape, we can affect the performance
of NTT. To the best of our knowledge, this work is unique for it suggests a recipe for
selecting optimum CUDA parameters to obtain the best NTT performance for a given
polynomial degree. Our implementation results on various GPU devices for all power-
of-two polynomial degrees from 212 to 228 show that our algorithms compare favorably
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with the other state-of-the-art GPU implementations in the literature with the optimum
selection of these three CUDA parameters. Furthermore, NTT can also be used in Zero-
Knowledge systems apart from Homomorphic Encryption because it can work with high
ring sizes.

The library also improves the performance of the homomorphic operations of the BFV
scheme. Although the library can be independently used, it is also fully integrated with
the Microsoft SEAL library, which is a well-known HE library that also implements the
BFV scheme. For one ciphertext multiplication, for the ring dimension 214 and the
modulus bit size of 438, our GPU implementation offers 361.6 times speedup over the
SEAL library running on a high-end CPU. The library compares favorably with other
state-of-the-art GPU implementations of NTT and BFV operations.

Finally, we implement a privacy-preserving application that classifies encrypted genome
data for tumor types and achieves speedups of 237.88 and 36.08 over CPU implementa-
tions using single and 16 threads, respectively.

Our results indicate that GPU implementations can facilitate the deployment of homo-
morphic cryptographic libraries in real-world privacy-preserving applications.
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ÖZET

ÜÇ FARKLI HIZLANDIRILMIŞ NTT ALGORTIMASI KULLANARAK BFV
HOMOMORFIK ŞIFRELEME ŞEMASI IÇIN BIR GPU KÜTÜPHANESI

GELIŞTIRILMESI

ALI ŞAH ÖZCAN

ELEKTRONİK VE MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, EKIM 2023

Tez Danışmanı: Prof. Dr. Erkay Savaş

Anahtar Kelimeler: A,B,C,D Keywords: Kafes-tabanlı Kriptogragi, Homomorfik
Şifreleme, Sayılar Teorisi Dönüşümü (NTT), GPU, Paralel İşleme, Güvenli Hesaplama

Homomorfik şifreleme (İngilizcesi, homomorphic encryption, HE), şifrelenmiş verilerin
güvenli bir şekilde işlenmesini sağlayan bir şifreleme sistemidir. En popüler HE şe-
malarından biri, sınırlı (İngilizcesi, somewhat homomorphic encryption, SWHE) ve tama-
men homomorfik şifrelemeyi (İnglizcesi, fully homomorphic encryption, FHE) destekleyen
Brakerski-Fan-Vercauteren (BFV) adı verilen şifreleme sistemidir. HE şemalarının kar-
maşık aritmetik işlemleri eşzamanlı hesaplamaya uygun olduğundan, grafik işlemci (GPU)
cihazları, üstün paralel işleme kapasiteleri sayesinde HE algoritmalarının gerçek dünya
uygulamalarında pratik kullanımını kolaylaştırmada etkili olabilir.

Bu tezde, BFV şemasını hızlandırmak için optimize edilmiş ve yüksek derecede par-
alelleştirilmiş bir GPU kütüphanesi öneriyoruz. BFV şeması, kafes tabanlı kriptografik
(İngilizcesi, lattice-based encryption) sistemlere dayalıdır ve çok sayıda, katsayıları
çok büyük tamsayılar olan yüksek dereceli polinom çarpmalarını içerir. GPU gerçek-
lemelerinde yüksek dereceli polinomları çarpmak için klasik polinom çarpma yöntemi
kullanıldığında çok verimsiz olduğundan, klasik yöntem yerine GPU cihazları için eniy-
ilenmiş ve bir çeşit hızlı Fourier dönüşümü olan ve tam sayılar üzerinde çalışan sayılar
teorisi dönüşümünü (İngilizcesi, number theoretic transformation, NTT) kullanan yön-
temler tercih edilir. NTT işlemini hızlı gerçekleyebilmek için temel olarak iki yöntem
vardır: i) birleştirilmiş yinelemeli NTT ve ii) 4-adımlı NTT yöntemleri. Bu tezde, bu
iki yöntemi GPU için uyarlayarak üç farklı algoritma sunuyoruz. Bu tezde de görüle-
ceği üzere, bu üç algoritma içinde en iyisi, i) iş parçacığı senkronizasyonu için yavaş
ana belleğe erişim sayısını eniyileyip ve ii) ana bellek erişimlerinde mekânsal yerellikten
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daha iyi yararlanan algoritmadır. Bahsi geçen NTT algoritması, GPU üzerinde genel
amaçlı yazılımlar geliştirilmesine olanak sağlayan CUDA platformunda çekirdek sayısı,
blok boyutu ve blok şekli gibi belirli parametreleri kontrol ederek NTT başarımını olumlu
yönde etkileyebilmektedir. Bilgimiz dahilinde olduğu kadar, bu çalışma, verilen bir poli-
nom derecesi için en iyi NTT performansını elde etmek için en elverişli CUDA paramet-
relerini seçmek için bir izlek öneren benzersiz bir çalışmadır. Literatürde bilinen en iyi
GPU uygulamaları ile karşılaştırıldığında, 212 ila 228 arasındaki ikinin kuvveti olan tüm
polinom dereceleri için çeşitli GPU cihazlarından elde ettiğimiz gerçekleme sonuçlarımız,
algoritmamızın üstün bir başarım sağladığını göstermektedir. Üstelik geliştirdiğimiz NTT
algoritması, çok yüksek halka boyutlarıyla çalışabildiğinden homomorfik şifreleme dışında
sıfır bilgi ispatı adı verilen kriptografik protokollerde de kullanılabilir.

Geliştirdiğimiz GPU yazılım kütüphanesi, ayrıca BFV şemasının homomorfik işlemlerinin
başarımının da arttırılmasını sağlamaktadır. Geliştirdiğimiz kütüphane bağımsız olarak
kullanılabildiği gibi, BFV sisteminin yanısıra diğer HE sistemlerinin de yazılım gerçek-
lemelerini içeren ve çok kullanınılan Microsoft SEAL kütüphanesiyle tamamen entegre
bir şekilde de kullanılabilir. 214 halka boyutu ve 438 bit uzunluğunda bir modül boyutu
kullanıldığında, GPU gerçeklememiz bir şifreli metin çarpımı için, üst düzey bir CPU
üzerinde çalışan SEAL kütüphanesine göre 361,6 kat hızlanma sağlar. Geliştirilen GPU
Kütüphanesi, NTT ve BFV işlemleri karşılatırıldığında, literatürdeki benzer GPU gerçek-
lemelerine göre daha hızlıdır.

Son olarak, GPU gerçeklememizi tümör türlerinin tespiti için şifrelenmiş genom verilerini
sınıflandıran bir uygulamada denedik. GPU uygulamamız, bir ve 16 iş parçacığı kullanan
CPU uygulamalarına göre, sırasıyla, 237.88 ve 36.08’lık hız artışları sağlamıştır.

Sonuçlarımız, GPU gerçeklemelerimiz yardımıyla, homomorfik şifreleme sistemlerinin
gerçek dünyadaki mahremiyet korumalı uygulamaların kullanımının yolunun açılmasına
yardımcı olacağını göstermektedir.
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1. INTRODUCTION

Fully Homomorphic Encryption (FHE) enables computation over encrypted data, which
had been considered as the most sought-after cryptographic primitive for many years. In
(Gentry, 2009), Gentry proposed the first functional FHE scheme, which is described over
ideal lattices and permits the homomorphic evaluation of arbitrary circuits. Later, more
practicable schemes based on learning with errors problem over rings (RLWE) (Lyuba-
shevsky et al., 2013) were proposed, where plaintext and ciphertext messages are repre-
sented as polynomials and ciphertext contains “noise”, which, increases as homomorphic
operations are applied. Thus, the scheme has a noise budget sufficient only for a certain
number of homomorphic operations; and if noise reaches a certain limit, the homomorphic
property will not hold and the ciphertext message does not decrypt correctly due to exces-
sive noise. This scheme is, thus, aptly called somewhat homomorphic encryption (SHE).
To continue with the homomorphic operations, a technique referred as bootstrapping
was proposed originally by Gentry (Gentry, 2009), whereby the ciphertext is homomor-
phically decrypted to obtain a ciphertext with a replenished noise budget. This process
can be applied repeatedly to obtain a fully homomorphic scheme, but bootstrapping is
generally deemed to be a prohibitively expensive operation.

The first implementation of an FHE scheme was realized by Gentry and Halevi, as ex-
plained in (Gentry and Halevi, 2011). Then, several FHE realizations were introduced
such as those in (Brakerski and Vaikuntanathan, 2014) and (Brakerski et al., 2014). One
of the most promising approaches is the Brakerski-Fan-Vercauteren (BFV) scheme (Fan
and Vercauteren, 2012a), and there are several practical implementations of this and other
similar schemes such as those provided by well-known software libraries SEAL (Microsoft,
2020), PALISADE (PALISADE, 2021), and HELib (Halevi and Shoup, 2014).
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However, due to their compute-intensive operations in involved mathematical structures,
current FHE implementations are far from being easily deployable in practice such as in
large-scale practical cloud applications. Besides algorithmic optimizations and theoretical
advances, using hardware accelerators is also the most viable option for bridging the gap
between FHE performance and the requirements of real-world applications. GPU, FPGA
and ASIC architectures can be profitably utilized as accelerators (Wang et al., 2014)
(Mert et al., 2020b) (Doröz et al., 2015), to push the boundaries of FHE performance. A
recently announced software library (Badawi et al., 2022) provides support for hardware
acceleration integration to software implementations of HE schemes using a standard
Hardware Abstraction Layer (HAL).

New generation FPGA devices, with extra high bandwidth memory communication and
relatively low-energy consumption, stand one of the best candidates for acceleration.
GPU devices, on the other hand, can also be profitably utilized in acceleration of many
cryptographic primitives due to their extraordinary computational resources, easy inte-
gration with software libraries, and superior general-purpose computing capabilities.

Current GPU devices consist of thousands of parallel running threads and high bandwidth
memory hierarchy featuring on-chip and off-chip memory. Computations intended to run
on GPU are performed by invoking GPU kernel functions, and applications running on
a host CPU device can call many kernels to offload some of its computation to GPU.
Invoking each kernel function incurs an overhead in execution time due to the fact that
access to off-chip memory is required for thread synchronization. The threads are grouped
into blocks, whose size and shape are configurable and the threads in the same group enjoy
faster synchronization. Various factors such as the number of kernels, block size, and
block shape may have major impact on the performance of the application. Therefore,
developing efficient GPU applications necessitates novel algorithm design and systematic
approach in addition to code optimization specific to GPU architectures.

In this thesis, we present algorithms and implementation techniques to accelerate the
BFV scheme of the SEAL library via NVIDIA GPUs. Our implementation developed
in computing Unified Device Architecture (CUDA) program model (NVIDIA Corpora-
tion, 2010) accelerates all homomorphic operations in the BFV scheme utilizing various
parallelization strategies that can be applied on GPU architectures. To the best of our
knowledge, ours is the first work, in which the entire SEAL BFV scheme (including addi-
tion, multiplication, relinearization, and rotation operations) can be offloaded onto GPU.
We provide a GPU library for the BFV homomomorphic encryption scheme, which can
be used as a standalone application or integrated with the SEAL library to accelerate cho-
sen homomorphic operations. The fully GPU-operated version of the library is publicly
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available on Github1. Our implementations used in the library achieves a very high level
of parallelization on GPU, targeting the compute-intensive nature of FHE operations.

The polynomial multiplication (e.g., the multiplication in polynomial rings R𝑞 = ℤ𝑞/Φ(𝑥),
where Φ𝑛(𝑥) is the cyclotomic polynomial of degree 𝑛), is (one of) the most time and re-
source consuming operation in both homomorphic encryption and modern zero-knowledge
proof schemes such as zk-SNARK (Bitansky et al., 2012; Ben-Sasson et al., 2013). One
widely adopted method for fast and memory efficient polynomial multiplication is based
on number theoretic transform (NTT) (Agarwal and Burrus, 1974), where its fast im-
plementations can be achieved via hardware acceleration on GPU (Özerk et al., 2022;
Özcan et al., 2023; Shivdikar et al., 2022; Kim et al., 2020; Dai and Sunar, 2015; Zheng,
2020; Goey et al., 2021) and FPGA devices (Mert et al., 2022; Derya et al., 2021; Mert
et al., 2020a; Hirner et al., 2023; Riazi et al., 2020; Zhao et al., 2023). Besides academia,
industry is also keenly interested in the acceleration of the cryptographic primitives and
organize the competitions to promote interest therein2.

Fortunately, there is a good deal of room for algorithmic research to accelerate the polyno-
mial multiplication by utilizing the inherent parallelism in the operation and the hardware
infrastructures (FPGA, ASIC, GPU) to exploit them in different ways. GPU architectures
support many concurrent threads, which can be employed to perform the multiplication
of very high-degree polynomials. Therefore, the noise budget can be made sufficiently
large to homomorphically evaluate relatively complex circuits without having to use the
bootstrapping method.

Here, we present a full GPU implementation for homomorphic operations of the BFV
scheme and show that it can be used to accelerate real-world applications significantly.
Our work introduces 3 different NTT implementation based on Merge (Cooley and Tukey,
1965) and 4-Step NTT (Bailey, 1989) tehcniques for polynomial multiplication adapted to
GPU architecture and one of them proves to be the fastest in comparison to those reported
in the literature to the best of our knowledge. We can summarize our contributions in
this thesis as follows:

• We propose three algorithms for efficient computation of NTT designed to fully
exploit the outstanding parallel computing capabilities of GPU with carefully op-
timized memory access patterns. One of the algorithms is a form of well-known
recursive algorithm while the other based on the Four-Step algorithm. We aim
two degree ranges for the polynomials: i) 𝑛 ∈ [212,216] intended for homomorphic

1https://github.com/Alisah-Ozcan/HE_GPU

2https://www.zprize.io/
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encryption applications, and ii) 𝑛 ∈ [220,228] for the zk-SNARK protocol. The al-
gorithms are flexible and parametric as they can easily be adapted to work with
any value of 𝑛 provided that it is a power of two.

• We show that the performance of the algorithms is highly dependent on the selection
of parameters such as the number of kernels, block size and block shape. We, then,
propose a systematic approach to find out their optimum selection for the fastest
implementation given a polynomial degree. The approach helps determine the
selection of a specific parameter by considering the interplay of several parameters
to improve computational aspects of an implementation such as fast access to global
memory.

• We implement both algorithms on various GPU devices using all possible opti-
mization techniques and present our implementation results for time efficiency. We
provide both latency and throughput results, which suggest the performance of
each algorithm varies depending on the ring dimension as well as the specific GPU
device. Also, the timing results confirm that our algorithms compare favorably
with other state-of-the-art algorithms for GPU in the literature.

The remaining of the thesis is organized as follows. Chapter 2 provides the mathematical
background of Residue Number System (RNS), modular arithmetic, Number Theoretic
Transform [NTT] and homomorphic encryption schemes. Chapter 3 reviews the GPU
architecture and its working principles and points outs common practices to use GPU
devices efficiently. Chapter 4 presents three different NTT algorithms customized for
efficient GPU implementation. Chapter 5 presents the implementation results and com-
pares them with those of the state-of-the-art implementations in the literature. The thesis
is concluded in Chapter 6 with final remarks capturing the achievements and contribu-
tion. Additionally, the NTT-GPU3 and GPU-HE Library4 implementations are publicly
available on Github.

3https://github.com/Alisah-Ozcan/GPU-NTT

4https://github.com/Alisah-Ozcan/HE_GPU
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2. BACKGROUND

This section presents the notation used throughout the thesis and explains the Residue
Number System, the Barrett reduction, the Montgomery reduction, the Goldilock reduc-
tion, the Plantard reduction, polynomial multiplication and reduction, Number Theoretic
Transform, homomorphic cryptosystems.

2.1 Notation

The SHE scheme used in this work is BFV, one of the most efficient and widely used
cryptographic schemes in the literature. The scheme is based on the ring learning with
errors (RLWE) problem, whose difficulty serves as the security assumption for some post-
quantum cryptography and homomorphic encryption algorithms. The RLWE problem, or
more precisely, learning with errors problem over rings, is a more efficient and practicable
version of the learning with errors (LWE) problem, which is specialized to work with
polynomial rings over finite fields, whose details are given below.

The BFV scheme makes use of the polynomial ring R𝑞 = ℤ𝑞/Φ(𝑥), where ℤ𝑞 represents
the finite ring {0,1,…,𝑞 −1}, in which the arithmetic is performed modulo 𝑞. Here, 𝑛 is
the degree of the cyclotomic polynomial Φ(𝑥), and when its degree is selected as a power
of two, we obtain Φ(𝑥) = 𝑥𝑛 +1. Then, the arithmetic in the ring R𝑞 is optimized as the
polynomial division is performed with 𝑥𝑛 + 1. Abusing the terminology we sometimes
refer 𝑛 as the dimension of R𝑞 and use the notation R𝑞,𝑛 to indicate its dimension.

5



Symbols and operations used in the subsequent parts of the thesis are as follows: ⌈⋅⌉,
⌊⋅⌋, ⌈⋅⌋ represent round up, round down and round to nearest integer, respectively. The
notation, [𝑎]𝑡, indicates that the integer 𝑎 lies in [−𝑡/2, 𝑡/2] while |𝑎|𝑡 reduces 𝑎 to the
interval [0, 𝑡−1]. A polynomial 𝑎(𝑥) ∈ R𝑞 can be treated as a vector of 𝑛 integers in ℤ𝑞,
which is composed of its coefficients. When the number theoretic transformation (NTT),
which is a form of discrete Fourier transformation over rings ℤ𝑚 (Section 2.4.2), is applied
to the vector of 𝑎(𝑥), a vector of the same dimension is obtained, which is shown as ̄𝑎(𝑥)
(or just ̄𝑎). While the symbols +,− and × (or just ⋅) represent addition, subtraction
and multiplication, respectively in either ℤ𝑞 or R𝑞 the symbol ⊙ represents modular
pointwise multiplication for vector representation of the elements of R𝑞 in the NTT
domain. Namely, an element in a vector is multiplied by the elements of another vector
with the same index value, where multiplications are in ℤ𝑞 (i.e., modulo 𝑞 multiplication).
𝜆 is the security parameter denoted in unary notation. 𝑎 ← 𝕊 stands for the uniform
sampling of 𝑎 from the set 𝕊. 𝜒𝑒𝑟𝑟, a truncated zero-mean discrete Gaussian distribution,
is used to sample the coefficients of error polynomials. The distribution is parameterized
by the error bound 𝛽𝑒𝑟𝑟 and standard deviation 𝜎.

Now, we can give the most general and simplified definition of the RLWE problem.
Suppose 𝑎 ← R𝑞 and the secret 𝑠 and the error 𝑒 are the elements of R, whose coefficients
are sampled from 𝜒𝑒𝑟𝑟. Also suppose we have 𝑏 = 𝑎𝑠 + 𝑒. Then, the “search” RLWE
problem can be defined as follows: Given 𝑎 and 𝑏, it is hard to find 𝑠. In an HE scheme,
𝑠 is the secret key whereas the (𝑏, 𝑎) are the public key.

2.2 Residue Number System

An integer 𝑋 < 𝑀 , can be represented using residues 𝑥𝑖, where 𝑥𝑖 = 𝑋 mod 𝑚𝑖 for
𝑖 = 1,…,𝑟, if 𝑀 = ∏𝑟

𝑖=1 𝑚𝑖. Here, 𝑚𝑖 form a set of pair-wise relatively prime integers
that are known as moduli or “base” and a common notation is that [𝑋]𝑚𝑖

= 𝑋 mod 𝑚𝑖.
Due to the Chinese Remainder Theorem (CRT) we have

|𝑋|𝑀 = ∣ ∑𝑟
𝑖=1 ∣ 𝑥𝑖 ⋅𝑀−1

𝑖 ∣
𝑚𝑖

⋅𝑀𝑖 ∣
𝑀

,

where 𝑀𝑖 = 𝑀
𝑚𝑖

. Additionally, The RNS provides that the base can be extended to or
converted to new bases using Algorithms 21 and 22 in Section 4.4.5. The RNS is pre-
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ferred in cryptographic applications as it allows concurrent arithmetic with a set of small
moduli in place of a big modulus; this is useful especially when the small moduli fit
the word length of the underlying computing platform (Antao et al., 2012). It is also
showed (Bajard et al., 2015), that RNS proves to be useful in accelerating the R-LWE
based lattice-base somewhat homomorphic encryption schemes (Fan and Vercauteren,
2012b; Brakerski, 2012). Furthermore, RNS-variants of such schemes are proposed (Ba-
jard et al., 2016) and their implementations achieve good speedups on platforms, where
the concurrency of RNS is exploited (Al Badawi et al., 2019a).

2.3 Modular Addition/Substraction and Multiplication

In the fields of mathematics, computer science, and cryptography, modular arithmetic
plays a pivotal role in constraining data within a finite numerical set during arithmetic
operations. This practice is imperative as it facilitates the efficient execution of operations
on data, preventing unwieldy numerical expansions after each computation. Noteworthy
among the fundamental modular arithmetic operations are addition, subtraction, and
multiplication. In the modular arithmetic, the division operation is replaced by multipli-
cation, a concept that can be elucidated through the following illustrative example:

Example 2.1.
A,B ∈ [0,𝑞 −1]

B−1 mod 𝑞 =≡ B𝑞−2 mod 𝑞

C = A×B mod 𝑞

In the context of Example 2.1, we encounter a scenario wherein the variables A and B
are provided as elements of ℤ𝑞, and the objective is to effectuate a division operation
involving A divided by B. Modular arithmetic lacks a direct division operation. To
surmount this limitation, the process entails the computation of the modular inverse of
B with respect to the modulus 𝑞, resulting in the derivation of the value B−1. After that,
the division operation in ℤ𝑞 is realized by multiplying A with calculated B−1. Note that
we seek the existence of 𝐵−1 mod 𝑞, which we have when gcd(𝐵,𝑞) = 1.

Modular addition and modular subtraction are relatively straightforward operations when
compared to modular multiplication. In both addition and subtraction, the reduction step
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entails a single arithmetic operation. This simplicity arises from the fact that the mag-
nitude of the operands undergoes minimal change following the addition or subtraction.
This phenomenon can be explained as follows: Consider two numbers, A and B, both
subject to modular reduction modulo q. In this modular arithmetic field, the permissible
numerical values for both A and B lie within the range of 0 to q−1. When these two
numbers are added, the resulting number’s value becomes the interval from 0 to 2q−2.
Given the objective of returning the result to the correct range (i.e., [0, 𝑞−1]), it becomes
necessary to perform a subtraction operation if the result exceeds q. Since the highest
value for the sum of A and B is 2q−2, a single subtraction suffices to realign it in the
correct range. Even when the sum reaches its maximum value, subtracting q will yield
a value of 2q−2, ensuring that it resides within the correct range. A similar rationale
applies to modular subtraction.

In contrast, modular multiplication presents a more intricate challenge in terms of re-
turning the resulting number to the range of [0,𝑞 −1]. While a straightforward approach
involves repetitively subtracting q from the multiplication result until it falls within the
desired range, this method is notably inefficient. The subsequent subsection will elaborate
on four distinct reduction techniques optimized for modular multiplication scenarios.

2.3.1 Barrett Reduction

Algorithm 1 Barrett Reduction (Shivdikar et al., 2022)
Input: 𝐶 = 𝑎×𝑏, where 𝑎,𝑏 < 𝑞; 𝑘 = ⌈𝑙𝑜𝑔2(𝑞)⌉; 𝜇 = ⌊22𝑘+1

𝑞 ⌋
Output: 𝐶𝑜𝑢𝑡 (𝐶 mod 𝑞)

1: 𝑟 ← 𝐶 ≫ (𝑘 −2)
2: 𝑟 ← 𝑟 ⋅𝜇
3: 𝑟 ← 𝑟 ≫ (𝑘 +3)
4: 𝑟 ← 𝑞 ⋅ 𝑟
5: 𝐶𝑜𝑢𝑡 ← (𝐶 −𝑟)
6: if 𝐶𝑜𝑢𝑡 >= 𝑞 then 𝐶𝑜𝑢𝑡 ← 𝐶𝑜𝑢𝑡 −𝑞
7: else 𝐶𝑜𝑢𝑡 ← 𝐶𝑜𝑢𝑡

The Barrett reduction algorithms, as described in Algorithm 1, represent one of the
widely adopted approach for efficiently executing modular reduction operations. In this
algorithmic formulation, the parameter 𝜇 is designated as the pre-computed value 𝜇 =
⌊22𝑘

𝑞 ⌋, where q denotes the modulus, and k corresponds to the bit length of the said
modulus. In contrast to the Original Barrett, Algorithm 1, which involves a right-shift by
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k−2 positions as its initial step, this variant adopts an alternate approach. Specifically, it
initiates with a direct multiplication operation using the pre-computed value 𝜇, followed
by a subsequent right-shift of 2k positions. This right-shifted result is then multiplied by
the modulus q. Due to the inherent computational cost associated with the multiplication
by 𝜇, this right-shifting operation is performed in two separate stages in Algorithm 1
unlike the Original Barrett Algorithm.

A salient feature of the Barrett reduction algorithm lies in its strategic utilization of
multiplication, bitwise shifting, and subtraction operations, as opposed to the compu-
tationally costly division operation necessitated by conventional modular multiplication
algorithms in the calculation of C mod 𝑞.

2.3.2 Montgomery Reduction

Algorithm 2 Word Level Montgomery Reduction (Bos and Montgomery, 2017)
Input: 𝐶 = 𝑎×𝑏, where 𝑎,𝑏 < 𝑞; 𝑘 = ⌈𝑙𝑜𝑔2(𝑞)⌉;
Input: 𝜇 = −𝑞−1 mod 2𝑤,𝑤 <= 𝑘;
Output: 𝐶𝑜𝑢𝑡 (𝐶 ×𝑅−1 mod 𝑞) where 𝑅 = 2⌈ 𝑘

𝑤 ⌉×𝑤 mod 𝑞
1: 𝑇 ← 𝐶
2: for 𝑖 from 0 by 1 to ⌈ 𝑘

𝑤⌉ do
3: 𝑇 1 ← 𝑇 mod 2𝑤

4: 𝑇 2 ← (𝑇 1×𝜇) mod 2𝑤

5: 𝑇 ← ⌊𝑇 +(𝑇 2×𝑞)
2𝑤 ⌋

6: if 𝑇 > 𝑞 then 𝐶𝑜𝑢𝑡 ← 𝑇
7: else 𝐶𝑜𝑢𝑡 ← 𝑇 −𝑞

The Montgomery reduction, as presented in Algorithm 2, stands as an efficient method-
ology widely used for modular reduction. Particularly, it exhibits notable efficiency when
implemented at the word level (with w representing the word size of the computing de-
vice), especially when handling data consistingn of high bit sizes, typically in the range
of 128 to 256 bits or more. Similarly the Barrett reduction algorithm, the Montgomery
reduction method requires the pre-computation of certain parameters before executing
reduction operations. However, it is sufficient to calculate these parameters once for each
modulus, so there is no need to recalculate each time. The pivotal parameter in this con-
text is denoted as 𝜇 and is determined as follows: 𝜇 = −𝑞−1 mod 2𝑤. A certain choice
of the modulus of the form 𝑞 = 𝑘2𝜈 + 1, where 𝜈 ≥ 𝑤, renders 𝜇 = −1, thereby there is
no need the multiplication operation in line 4 of Algorithm 2.
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Unlike the Barrett reduction, the Montgomery reduction does not yield the anticipated
result directly; rather, it generates the result within the so-called Montgomery domain,
𝐶𝑜𝑢𝑡 = 𝐴𝐵𝑅−1 mod 𝑞, where R = 2⌈ 𝑘

𝑤 ⌉×𝑤 mod 𝑞. Post-processing should be applied to
obtain the expected outcome. While this may prima facie appear to introduce inefficiency,
two methods can alleviate the burden associated with this situation.

One approach involves pre-processing and post-processing. Numbers that be multiplied
can be multiplied with R. Thus, in an application where arithmetic operations are iter-
atively performed, Montgomery reduction is executed multiple times without immediate
post-processing. Any operand or value, 𝐴, in the Montgomery domain is represented
as 𝐴𝑅 and the Montgomery arithmetic operations on them always results in the same
form. To recover the correct result, the operand, 𝐴𝑅, should be multiply 1 using the
Montgomery multiplication algorithm, which will render the final result 𝐴.

Secondly, if one of the numbers to be multiplied is constant, it can be multiplied with R.
In such cases, the result obtained following Montgomery reduction equal to the expected
result and there is no need to post-processing steps.

2.3.3 Goldilock Reduction

Algorithm 3 Goldilock Reduction (Hamburg, 2015)
Input: 𝐶 = 𝑎×𝑏, where 𝑎,𝑏 < 𝑞 ≡ 264 −232 +1
Output: 𝐶𝑜𝑢𝑡 (𝐶 mod 𝑞)

1: 𝑋3 ← 𝐶 ≫ 96
2: 𝑋2 ← (𝐶 ≫ 64) mod 232

3: 𝑋1 ← 𝐶 mod 264

4: 𝐶𝑜𝑢𝑡 ← 𝑋1 +(𝑋2 ×(232 −1))−𝑋3
5: if 𝐶𝑜𝑢𝑡 ≥ 𝑞 then 𝐶𝑜𝑢𝑡 ← 𝐶𝑜𝑢𝑡 −𝑞
6: else 𝐶𝑜𝑢𝑡 ← 𝐶𝑜𝑢𝑡

The Goldilock reduction, as shown in Algorithm 3, represents a specialized reduction
technique renowned for its unparalleled speed when compared to other reduction method-
ologies. However, this method is exclusively applicable to specific modulus values, such
as Θ2𝑘 −Θ𝑘 +1, it cannot be applied with all modulus such as Barret and Montgomery.
The Goldilock reduction algorithm is tailored for Goldilock primes, and for the variant
presented in Algorithm 3, the parameter k is assigned a value of 32.

The most important reason why the Goldilock reduction algorithm is more efficient than
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other methods is that it does not use the costly multiplication operation during reduction.
Instead, the reduction is executed through arithmetic operations encompassing addition,
subtraction, and shift operations, all of which are notably less computationally expensive
than multiplication operations. This reduction is chiefly attributable to the expressibility
of the modulus 264 −Θ32 +1 as 264 = Θ32 −1, as elucidated within Algorithm 3. Further-
more, Goldilock Reduction gives the expected results directly, that is, it does not need
any pre-processing or post-processing.

2.3.4 Plantard Reduction

Algorithm 4 Plantard Reduction (Plantard, 2021)
Input: 𝑎,𝑏 𝑤ℎ𝑒𝑟𝑒 𝑎,𝑏 < 𝑞; 𝑘 = ⌈𝑙𝑜𝑔2(𝑞)⌉ 𝑎𝑛𝑑 𝑤 = 2𝑘+2

Output: 𝐶𝑜𝑢𝑡 (𝑎×𝑏 mod 𝑞)
1: 𝜎 ← (−22𝑤) mod 𝑞 # Pre-computed
2: 𝑏̃ ← 𝑏 ×𝜎 mod 𝑞 # Pre-computed
3: 𝑏̃ ← ̃𝑏 ×(𝑞−1 mod 22𝑤) mod 22𝑤 # Pre-computed
4: 𝑇 ← 𝑎×𝑏̃ mod 22𝑤

5: 𝑇 ← 𝑇 ≫ 𝑤
6: 𝑇 ← (𝑇 ×(𝑞 +1)) ≫ 𝑤
7: if 𝑇 ≡ 𝑞 then 𝐶𝑜𝑢𝑡 ← 0
8: else 𝐶𝑜𝑢𝑡 ← 𝑇

The Plantard reduction, as delineated in Algorithm 4, may prima facie appear inefficient
due to its requisite extensive pre-processing procedures. However, it can be advantageous
in scenarios, wherein one of the multiplicand is constant. The foremost rationale for
this efficiency derives from the provisions elucidated within Algorithm 4, wherein it is
stipulated that if one of the multiplicands assumes a constant value, the complete pre-
processing phase can be executed beforehand and all pre-computed values subsequently
stored in memory. In this case, a multiplication gain is achieved compared to the Barrett
and Montgomery reduction algorithms explained above in the previous two sections.

In order for the Plantard reduction to work, the value 𝑏̃ must be computed as shown in
Algorithm 4. NTT, one of the applications in which this method can be used efficiently,
is explained in the following sections.
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2.4 Polynomial Multiplication and Polynomial Reduction

Within this section, we introduce the critical concepts of polynomial multiplication and
polynomial reduction, both of which will serve as foundational arithmetic components in
the subsequent sections. Multiple ways exists to perform polynomial multiplication and
polynomial reduction. Below, working principle of these methods and their advantages
is elucidated.

2.4.1 Schoolbook Polynomial Multiplication

Algorithm 5 Schoolbook Polynomial Multiplication & Reduciton
Input: 𝑎(𝑥),𝑏(𝑥) ∈ ℤ𝑞[𝑥]/(𝑥𝑛 +1) or ℤ𝑞[𝑥]/(𝑥𝑛 −1)
Output: 𝑐(𝑥) = 𝑎(𝑥)×𝑏(𝑥) ∈ ℤ𝑞[𝑥]/(𝑥𝑛 +1)

1: 𝑡 = 𝑛; 𝑚 = 1
2: for 𝑖 from 0 by 1 to 𝑛 do # Polynomial Multiplication Part
3: for 𝑗 from 0 by 1 to 𝑛 do
4: ̄𝑐𝑖+𝑗 = 𝑎𝑖 ×𝑏𝑗 (mod 𝑞)
5: for 𝑘 from 0 by 1 to 𝑛 do # Polynomial Reduction Part
6: if ℤ𝑞[𝑥]/(𝑥𝑛 +1) then 𝑐𝑘 = ̄𝑐𝑘 − ̄𝑐𝑛+𝑘 (mod 𝑞)
7: else 𝑐𝑘 = ̄𝑐𝑘 + ̄𝑐𝑛+𝑘 (mod 𝑞) # ℤ𝑞[𝑥]/(𝑥𝑛 −1) 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

The schoolbook polynomial multiplication is fundamentally same to the polynomial mul-
tiplication methods taught at the high school level. Essentially, it involves the pairwise
multiplication of coefficients belonging to both polynomials to be multiplied, followed by
the summation of terms sharing the same degree. The polynomial multiplication in R
requires also polynomial reduction by the cyclotomic polynomial Φ(𝑥).

As an illustrative instance used in the lattice-based cryptography, let us consider the
scenario, where Φ(𝑥) = x𝑛 + 1 represents our designated reduction polynomial. In this
context, the equality x𝑛 = −1 is employed to simplify the polynomial reduction. Then,
the polynomial reduction can be done by subtraction of the upper half of the polynomial
from the lower half.

The Schoolbook multiplication and reduction are described in Algorithm 5. It is dis-
cernible that a total of n2 multiplications are entailed in this process, thereby the com-
plexity of Schoolbook polynomial multiplication is n2. In the rest of Algorithm 5, it is
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explained how polynomial reduction is performed with two separate reduction polynomi-
als (i.e., 𝑥𝑛 +1 and 𝑥𝑛 −1) that will be frequently used in lattice-based cryotography.

2.4.2 Number Theoretic Transform

The number theoretic transform (NTT) is a form of Discrete Fourier Transform (DFT)
defined over the ring of integers ℤ𝑞. In cryptography, it is commonly used for multipli-
cation of high degree polynomials as it reduces quadratic complexity of the schoolbook
multiplication to 𝑂(𝑛 log𝑛). The coefficients of an (𝑛 − 1)-degree polynomial can be
thought as a vector of integers, 𝑎 = [𝑎0,𝑎1,…,𝑎𝑛−1], which can be transformed to an-
other vector ̄𝑎 = [ ̄𝑎0, ̄𝑎1,…, ̄𝑎𝑛−1] using NTT. The definition of the 𝑚-point NTT and
INTT can be given as in Eqns 2.1 and 2.2:

(2.1) ̄𝑎𝑖 =
𝑛−1
∑
𝑗=0

𝑎𝑗𝜔𝑖×𝑗 mod 𝑞 for 𝑖 = 0,1,…,𝑚

(2.2) 𝑎𝑖 = 1
𝑛

𝑛−1
∑
𝑗=0

̄𝑎𝑗𝜔−𝑖×𝑗 mod 𝑞 for 𝑖 = 0,1,…,𝑛−1.

where 𝑚 ≥ 𝑛. For NTT to be defined, we need the existence of a constant value 𝜔 ∈ ℤ𝑞.,
which can have two types

• 𝜔 ∈ ℤ𝑞: the primitive 𝑛-th root of unity in ℤ𝑞, which satisfies the conditions 𝜔𝑛 ≡ 1
(mod 𝑞) and 𝜔𝑖 ≠ 1 (mod 𝑞) ∀𝑖 < 𝑛, where 𝑞 ≡ 1 (mod 𝑛).

• 𝜓, where 𝜓 ∈ ℤ𝑞: the primitive 2𝑛-th root of unity, which satisfies the conditions
𝜓2𝑛 ≡ 1 (mod 𝑞) and 𝜓𝑖 ≠ 1 (mod 𝑞) ∀𝑖 < 2𝑛, where 𝑞 ≡ 1 (mod 2𝑛). Note that
𝜔 = 𝜓2 mod 𝑞 and 𝜓𝑛 mod 𝑞 = −1.

If two vectors in the NTT domain ̄𝑎 and 𝑏̄, where ̄𝑎 = 𝑁𝑇 𝑇 (𝑎(𝑥)) and 𝑏̄ = 𝑁𝑇 𝑇 (𝑏(𝑥)), are
multiplied element-wise in ℤ𝑞, the result is ̄𝑐 in the NTT domain, where 𝑐(𝑥) = 𝑎(𝑥)𝑏(𝑥).
When the inverse NTT is applied on ̄𝑐, 𝑐(𝑥) is obtained. The NTT-based polynomial
multiplicaton can be captured by the following formulae:

(2.3) ̄𝑐(𝑥) = 𝑁𝑇 𝑇 𝑛(𝑎(𝑥))⊙𝑁𝑇 𝑇 𝑛(𝑏(𝑥))
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(2.4) 𝑐(𝑥) = 𝐼𝑁𝑇 𝑇 𝑛( ̄𝑐(𝑥)) mod 𝑞

Consequently, an NTT multiplication algorithm can be defined for an efficient multipli-
cation in R𝑞 as described in Eqns. 2.3 and 2.4. As the formulas in Eqns 2.1 and 2.2
result in quadratic complexity for computing NTT and inverse NTT operations, Sec-
tion 2.4.2.1 and Section 2.4.2.2 elucidated more efficient computation of NTT and its
INTT approaches.

2.4.2.1 Merge NTT

Algorithm 6 Merge Forward NTT (Merge-NTT)
Input: 𝑎(𝑥) ∈ ℤ𝑞[𝑥]/(𝑥𝑛 +1) polynomial standard-order
Input: Ψ𝑟𝑒𝑣[𝑘] = 𝜓𝑏𝑟(𝑘) (mod 𝑞) for 0 < 𝑘 ≤ 𝑛 − 1 (Powers of 𝜓 stored in bit-reverse

order)
Input: 𝑛 = 2𝑙, 𝑞 (𝑞 ≡ 1 mod 2𝑛)
Output: ̄𝑎 ← 𝑁𝑇 𝑇 (𝑎) in bit-reversed order

1: 𝑡 ← 𝑛; 𝑚 ← 1
2: while 𝑚 < 𝑛 do
3: 𝑡 ← 𝑡/2
4: for 𝑖 from 0 by 1 to 𝑚 do
5: 𝑗1 ← 2𝑖𝑡
6: 𝑗2 ← 𝑗1 +𝑡−1
7: for 𝑗 from 𝑗1 by 1 to 𝑗2 +1 do
8: 𝑎𝑗,𝑎𝑗+𝑡 ← CT(𝑎𝑗,𝑎𝑗+𝑡,Ψ𝑏𝑟[𝑚+𝑖],𝑞)
9: 𝑚 ← 2×𝑚

10: return 𝑎

In this section, we present two algorithms, Algorithm 6 and Algorithm 8 based on re-
cursive NTT technique for efficient computation of NTT and inverse NTT, respectively.
Both algorithms are based on the factorization of the cyclotomic polynomial 𝑥𝑛 +1 into
𝑛 degree-1 polynomials as follows:

(2.5) 𝑥𝑛 +1 ≡
𝑛−1
∏
𝑖=0

(𝑥−𝜓2𝑖+1) mod 𝑞

By reducing a given polynomial 𝑎(𝑥) by these degree-1 polynomials, we obtain 𝑛 integers,
which are, in fact, the elements of ̄𝑎. This computation can be performed recursively. We
first use the following factorization
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(𝑥𝑛 +1) ≡(𝑥𝑛 −𝜓𝑛)
≡(𝑥𝑛/2 −𝜓𝑛/2)(𝑥𝑛/2 +𝜓𝑛/2) mod 𝑞(2.6)

and reduce 𝑎(𝑥) by polynomials (𝑥𝑛/2 − 𝜓𝑛/2) and (𝑥𝑛/2 + 𝜓𝑛/2). Reducing 𝑎(𝑥) by the
first and second factors can be realized by employing the equations 𝑥𝑛/2 = 𝜓𝑛/2 and
𝑥𝑛/2 = −𝜓𝑛/2, respectively. This accounts for the Cooley-Tukey Butterfly operations in
Step 8 of Algorithm 6. The description of the Cooley-Tukey Butterfly operation given in
Algorithm 7.

Algorithm 7 Cooley-Tukey Butterfly (CT)
Input: 𝑈 , 𝑉 , 𝜓, 𝑞
Output: ̄𝑈 , ̄𝑉

1: ̄𝑈 ← 𝑈 +(𝑉 ×𝜓) (mod 𝑞)
2: ̄𝑉 ← 𝑈 −(𝑉 ×𝜓) (mod 𝑞)
3: return ̄𝑈 , ̄𝑉

Factorization is further utilized as follows:

(𝑥𝑛/2 −𝜓𝑛/2) ≡ (𝑥𝑛/4 +𝜓𝑛/4)(𝑥𝑛/4 +𝜓𝑛/4) mod 𝑞

and

(𝑥𝑛/2 +𝜓𝑛/2) ≡ (𝑥𝑛/2 −𝜓𝑛/2+𝑛)
(𝑥𝑛/4 −𝜓𝑛/4+𝑛/2)(𝑥𝑛/4 +𝜓𝑛/4+𝑛/2) mod 𝑞

The factorization is repeated until degree-1 polynomials are obtained.

As can be observed from Algorithm 6, different powers of 𝜓 are stored in the bit-reverse
order in the table Ψ𝑟𝑒𝑣, which simply means that the 𝑖th power of 𝜓 is stored in the
(𝑟𝑒𝑣(𝑖)−1)th element of Ψ𝑟𝑒𝑣. For instance, for 𝑛 = 8 the first element of Ψ𝑟𝑒𝑣 holds 𝜓4

as the bit-reversed order of 4 = 100 is 001.

The inverse NTT operation, whose steps are given in Algorithm 8, is performed following
the recursive factorization of (𝑥𝑛 +1) in the reverse order of that applied during the NTT
computation.

To illustrate the inverse NTT algorithm, its last iteration is demonstrated, which yields
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Algorithm 8 Merge Inverse NTT (INTT)
Input: ̄𝑎 ∈ ℤ𝑛

𝑞 in bit-reversed order
Input: Ψ𝑟𝑒𝑣[𝑘] = 𝜓−𝑏𝑟(𝑘) (mod 𝑞) for0 < 𝑘 ≤ 𝑛−1 (power of 𝜓−1 stored in bit-reverse

order)
Input: 𝑛 = 2𝑙, 𝑞 (𝑞 ≡ 1 mod 2𝑛)
Output: 𝑎(𝑥) ∈ ℤ𝑞[𝑥]/(𝑥𝑛 +1) standard-order

1: 𝑡 ← 1; 𝑚 ← 𝑛
2: while 𝑚 < 𝑛 do
3: 𝑗1 ← 0; ℎ ← 𝑚/2
4: for 𝑖 from 0 by 1 to ℎ do
5: 𝑗2 ← 𝑗1 +𝑡−1
6: for 𝑗 from 𝑗1 by 1 to 𝑗2 +1 do
7: ̄𝑎𝑗, ̄𝑎𝑗+𝑡 ← GS( ̄𝑎𝑗, ̄𝑎𝑗+𝑡,Ψ𝑟𝑒𝑣[ℎ+𝑖],𝑞)
8: 𝑗1 ← 𝑗1 +2×𝑡
9: 𝑡 ← 2×𝑡

10: 𝑚 ← 𝑚/2
11: for 𝑖 from 0 by 1 to 𝑛 do
12: 𝑎𝑖 ← ( ̄𝑎𝑖 ⋅ 𝑛−1) (mod 𝑞)
13: return 𝑎

the final result. The vector ̄𝑎 before the last iteration is as follows:

𝑎 = (𝑎0 +𝑎𝑛/2𝜓𝑛/2),…,(𝑎𝑛/2−1 +𝑎𝑛−1𝜓𝑛/2)
+(𝑎0 −𝑎𝑛/2𝜓𝑛/2),…,(𝑎𝑛/2−1 −𝑎𝑛−1𝜓𝑛/2)(2.7)

If the first half is added to the second half, the first half of the resulting vector multiplied
by 2 is obtained,

2(𝑎0,…,𝑎𝑛/2−1)(2.8)

Furthermore, if the second half of ̄𝑎 is subtracted from its first half,

2𝜓𝑛/2(𝑎𝑛/2,…,𝑎𝑛−1).(2.9)

is obtained. Thus, the result in Eqn 2.9 needs to be multiplied by 𝜓−𝑛/2. This elaborates
the Gentleman-Sande Butterfly operation (which is described in Algorithm 9) in Step 7
of Algorithm 8.

As there are log2 𝑛 iterations in the outermost loop of Algorithm 8 and the vector elements
are effectively multiplied by 2 in every iteration, the result needs to be divided by 𝑛 in ℤ𝑞.
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Algorithm 9 Gentleman-Sande Butterfly (GS)
Input: 𝑈 , 𝑉 , 𝜓, 𝑞
Output: ̄𝑈 , ̄𝑉

1: ̄𝑈 ← 𝑈 +𝑉 (mod 𝑞)
2: ̄𝑉 ← (𝑈 −𝑉 )×𝜓 (mod 𝑞)
3: return ̄𝑈 , ̄𝑉

2.4.2.2 4-Step NTT

The four-step method (Bailey, 1989), described in Algorithm 10, is another way to com-
pute NTT (and inverse NTT) operations. In the first stage, it arranges the input vector
into a two-dimensional matrix of 𝑛1-by-𝑛2, where 𝑛 = 𝑛1 ×𝑛2 (Steps 1-5 of Algorithm 10).
In the second stage, it performs 𝑛2 NTT operations of 𝑛1-point each (Steps 7-9). In the
third stage, the matrix elements are multiplied with certain powers of the primitive
root of unity, 𝜓 (Steps 11-15). And finally, the algorithm performs 𝑛1 NTT operations
of 𝑛2-point each (Steps 16-18). The 4-Step NTT algorithm computes much smaller
(𝑛1-point and 𝑛2-point against 𝑛-point NTT operations) and independent NTT compu-
tations, which exploits the parallel processing and locality of memory access much better
than the Merge NTT algorithm. Nevertheless, the transpose operations (Steps 6, 10,
and 19) can be challenging as they can cause a very fragmented memory access, which
can be very disruptive for threads in a GPU device. The version of the 4-Step NTT
algorithm for computing inverse NTT operation is given in Algorithm 11.

2.5 Homomorphic Encryption

Homomorphic encryption (HE) is a cryptosystem that allows the secure processing of
encrypted data without decrypting it. Homomorphic cryptosystems are widely used
applications where privacy and security are essential. Secure data outsourcing, cloud
computing, and privacy-preserving machine learning can be considered as a few of daily
life applications, which use homomorphic encryption. Homomorphic encryption basic
workflow can be shown as follows:

• Encryption Part: The data owner encrypts the data with respect to a particular
homomorphic encryption scheme.
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Algorithm 10 Four-Step NTT (4Step-NTT)
Input: 𝑛1,𝑛2 ≤ 𝑛 and 𝑛1 ×𝑛2 = 𝑛
Input: 𝑎(𝑥) ∈ ℤ𝑞[𝑥]/(𝑥𝑛 −1) in polynomial standard-order
Input: Ω[𝑘] = Ω𝑏𝑟(𝑗)×𝑖 (mod 𝑞) for 0 < 𝑘 ≤ 𝑛−1, for 0 < 𝑗 ≤ 𝑛1 −1 for 0 < 𝑖 ≤ 𝑛2 −1
Input: Ω0𝑏𝑟

[𝑘] = 𝜔𝑏𝑟(𝑘)
0 (mod 𝑞) where 𝜔0 = Ω(𝑛/𝑛1) (mod 𝑞), for 0 < 𝑘 ≤ 𝑛1 −1

Input: Ω1𝑏𝑟
[𝑘] = 𝜔𝑏𝑟(𝑘)

1 (mod 𝑞) where 𝜔1 = Ω(𝑛/𝑛2) (mod 𝑞), for 0 < 𝑘 ≤ 𝑛2 −1
Output: ̄𝑎 ← 𝑁𝑇 𝑇 (𝑎) in bit-reversed order

1: for 𝑖 from 0 by 1 to 𝑛1 do # 1) Vector to matrix
2: for 𝑗 from 0 by 1 to 𝑛2 do
3: 𝐵𝑖,𝑗 ← 𝑎𝑖×𝑛2+𝑗
4: 𝐵 = 𝐵𝑇 # Transpose operation
5: for 𝑗 from 0 by 1 to 𝑛2 do # 2) 𝑛2, 𝑛1-point NTTs
6: 𝐵𝑗 ← NTT(𝐵𝑗,Ω0𝑏𝑟

,𝑛1, 𝑞)
7: 𝐵 = 𝐵𝑇 # Transpose operation
8: for 𝑖 from 0 by 1 to 𝑛1 do # 3) Correction step
9: for 𝑗 from 0 by 1 to 𝑛2 do

10: 𝐵𝑖,𝑗 ← 𝐵𝑖,𝑗 ×Ω𝑖×𝑛2+𝑗 (mod 𝑞)
11: for 𝑖 from 0 by 1 to 𝑛1 do
12: 𝐵𝑖 ← NTT(𝐵𝑖,Ω1𝑏𝑟

,𝑛2, 𝑞) # 4) 𝑛1, 𝑛2-point NTTs
13: 𝐵 = 𝐵𝑇 # Transpose operation
14: for 𝑗 from 0 by 1 to 𝑛2 do # Matrix to vector
15: for 𝑖 from 0 by 1 to 𝑛1 do
16: 𝑎𝑗×𝑛1+𝑖 ← 𝐵𝑗,𝑖
17: return 𝐴

• Homomorphic Operations Part: The homomorphic operation scheme provides
specific mathematical operations that can be performed on the encrypted data (ci-
phertext). Within that period, there is no need for any decryption operation. The
homomorphic operations do not need the decryption key either. Furthermore, the
results obtained after computation are also encrypted. In other words, only the
data owner gets the decrypted results.

• Decryption Part: Since the data owner has a secret key, the ciphertext obtained
after computation can be decrypted to obtain desired results.

Homomorphic encryption has three types: Partially Homomorphic Encryption, Some-
what Homomorphic Encryption, and Fully Homomorphic Encryption. Partially Homo-
morphic Encryption only allows single mathematical operations, either multiplication or
addition. Additionally, since the security of actual constructions of partially homomor-
phic encryption schemes is based on number theoretic hard problems, they are not secure
for attacks running on quantum computers. ElGamal and Paillier cryptosystems (Gamal,
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Algorithm 11 Four-Step INTT
Input: 𝑛1,𝑛2 ≤ 𝑛 and 𝑛1 ×𝑛2 = 𝑛
Input: 𝐴(𝑥) ∈ ℤ𝑞[𝑥]/(𝑥𝑛 −1) in bit-reversed order
Input: Ω[𝑘] = Ω−𝑏𝑟(𝑗)×𝑖 (mod 𝑞) for 0 < 𝑘 ≤ 𝑛−1, for 0 < 𝑗 ≤ 𝑛1 −1 for 0 < 𝑖 ≤ 𝑛2 −1
Input: 𝜔0𝑏𝑟

[𝑘] = 𝜔−𝑏𝑟(𝑘)
0 (mod 𝑞) where 𝜔0 = Ω−(𝑛/𝑛1) (mod 𝑞), for 0 < 𝑘 ≤ 𝑛1 − 1

(Powers of 𝜔0 stored in bit-reverse order)
Input: 𝜔1𝑏𝑟

[𝑘] = 𝜔−𝑏𝑟(𝑘)
1 (mod 𝑞) where 𝜔1 = Ω−(𝑛/𝑛2) (mod 𝑞), for 0 < 𝑘 ≤ 𝑛2 − 1

(Powers of 𝜔1 stored in bit-reverse order)
Output: 𝐴 ← 𝐼𝑁𝑇 𝑇 (𝐴) in polynomial standard-order

1: for 𝑖 from 0 by 1 to 𝑛1 do # Vector to matrix
2: for 𝑗 from 0 by 1 to 𝑛2 do
3: 𝐵𝑖,𝑗 ← 𝐴𝑖×𝑛2+𝑗
4: 𝐵 = 𝐵𝑇 # 1𝑠𝑡 transpose operation
5: for 𝑗 from 0 by 1 to 𝑛2 do # 𝑛2, 𝑛1-point INTTs
6: 𝐵𝑗 ← INTT(𝐵𝑗,𝜔0,𝑛1, 𝑞)
7: 𝐵 ← 𝐵𝑇 # 2𝑛𝑑 transpose operation
8: for 𝑖 from 0 by 1 to 𝑛1 do
9: for 𝑗 from 0 by 1 to 𝑛2 do

10: 𝐵𝑖,𝑗 ← 𝐵𝑖,𝑗 ×Ω[𝑖×𝑛2 +𝑗] (mod 𝑞)
11: for 𝑖 from 0 by 1 to 𝑛1 do
12: 𝐵𝑖 ← INTT(𝐵𝑖,𝜔1,𝑛2, 𝑞) # 𝑛1, 𝑛2-point INTTs
13: 𝐵 = 𝐵𝑇 # 3𝑟𝑑 transpose operation
14: for 𝑗 from 0 by 1 to 𝑛2 do # Matrix to vector
15: for 𝑖 from 0 by 1 to 𝑛1 do
16: 𝐴𝑗×𝑛1+𝑖 ← 𝐵𝑗,𝑖
17: for 𝑘 from 0 by 1 to 𝑛 do
18: 𝐴𝑘 ← (𝐴𝑘 ×𝑛−1) (mod 𝑞)
19: return 𝐴

1985; Paillier, 1999) are the most commonly used representatives of Partially Homomor-
phic Encryption. ElGamal only provides homomorphic multiplication, while Paillier only
provides homomorphic addition.

Since Somewhat Homomorphic Encryption (SWHE) and Fully Homomorphic Encryption
(FHE) work based on RLWE, they are safe against attacks that may come from quan-
tum computers. Moreover, unlike Partial Homomorphic Encryption, the cryptosystems in
SWHE and FHE can perform multiple homomorphic operation types. So, homomorphic
multiplication and addition can be used in the same scheme. The most famous examples
of SWHE and FHE are BFV, CKKS, BGV, and TFHE (Fan and Vercauteren, 2012c;
Cheon et al., 2016; Brakerski et al., 2011; Chillotti et al., 2016). This thesis exclusively
focuses on the BFV scheme. Since the ciphertext is encrypted with noise terms in those
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schemes, noise level in the ciphertext increases after each homomorphic operation, and
after a certain number of operations, the ciphertext becomes undecryptable, meaning the
noise budget is exhausted. In this case, the ciphertext is passed back to the owner for
decryption before the noise budget is exhausted. This type of schemes is commonly re-
ferred as somewhat homomorphic encryption schemes (SWHE). Cryptographic schemes,
which permits the so-called bootstrapping operation (Boura et al., 2020), is known as
fully homoorphic encryption (FHE) schemes. Bootstrapping is the process of lowering
the noise level in the ciphertext without decrypting it. As a result of bootstrapping,
the noise budget of the ciphertext İs replenished, allowing homomorphic operations to
continue. A scheme with an efficient bootstrapping algorithm is called FHE because the-
oretically it offers the ability to perform an infinite number of homomorphic operations
on the ciphertext.

2.5.1 ElGamal

One of the public-key cryptosystems, the ElGamal encryption system(Gamal, 1985), was
propseded by Taher ElGamal in the 1980s. The ElGamal cryptosystem is mainly used for
secure communication and partial homomorphic encryption. The security of the ElGamal
cryptosystem is based on the difficulty of the discrete logarithm problem. That is why
it is not secure against attacks running on quantum computers. ElGamal cryptosystem
basic workflow can be shown as follows:

• Key Generation Part:

– Alice generates a key pair (public key, secret key)

– Secret key consists of one parameter.

∗ 𝑎: integer number chosen by Alice.

– Public key consists of three parameters.(𝑝,𝑔,ℎ)

∗ 𝑝: Large prime number.

∗ 𝑔: Generator of the multiplicative group modulo 𝑝.

∗ ℎ: ℎ = 𝑔𝑎 mod 𝑝.

• Encryption Part:
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– Bob wants to send an encrypted message to Alice. Firstly Bob selects 𝑘, which
is random integer. After that Bob can generates the ciphertext as follows:

∗ Compute 𝑐1 = 𝑔𝑘 mod 𝑝.

∗ Compute 𝑐2 = ℎ𝑘 ×𝑚 mod 𝑝, where 𝑚 < 𝑝 is the message.

∗ Send the ciphertext (𝑐1, 𝑐2) to Alice.

• Decryption Part:

– Alice receives the ciphertext (𝑐1, 𝑐2) from Bob.

– Alice calculates shared secret s = 𝑐1
a mod 𝑝 using her secret key.

– Alice computes message from Bob, using the formula 𝑚 = 𝑐2 × s-1 mod 𝑝

As mentioned earlier, ElGamal also provides homomorphic multiplication feature in ad-
dition to secure communication. The basic homomorphic multiplication workflow can be
shown as follows:

• Homomorphic Multiplication with Elgamal Cryptosystem:

– Bob obtains ciphertext(𝑐1, 𝑐2) which encryptes the message 𝑚1 with Alice’s
public key.

– Bob generates new ciphertext(𝑏1, 𝑏2) which encrypt the message 𝑚2 via Alice’s
public key.

– Bob computes a new ciphertext(d1,d2) as follows:

∗ 𝑑1 =𝑏1 ⋅ 𝑐1 mod 𝑝

∗ 𝑑2 =𝑏2 ⋅ 𝑐2 mod 𝑝

– Bob sends the ciphertext(𝑑1,𝑑2) to Alice and she decrypts it with using her
secret key. Then she obtains the result 𝑚1 ⋅𝑚2 mod 𝑝. Although, Alice knows
𝑚1 ⋅𝑚2 mod 𝑝, she never knows the exact values of 𝑚1 and 𝑚2.

2.5.2 Paillier

The Paillier cryptosystem, developed by Pascal Paillier in 1999 (Paillier, 1999), is also
a public-key cryptosystem as the ElGamal cryptosystem. The Paillier cryptosystem is
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widely used in privacy-preserving computations and secure multiparty computation ap-
plications. One of the most essential features of the Paillier cryptosystem is that it
provides the capability to perform homomorphic addition operations on encrypted data.
The basic Paillier cryptosystem and its homomorphic addition feature workflow can be
shown as follows:

• Key Generation Part:

– Key generation part consists of generation of the public key (𝑁 , 𝑔) and the
secret key (𝜆,𝜇).

∗ 𝑁 : product of two large prime numbers (i.e., 𝑁 = 𝑝 × 𝑞) and it defines
the size of the encryption space.

∗ 𝑔: Generator of the multiplicative group modulo 𝑁2.

∗ 𝜆 and 𝜇: are derived from p and q (𝜆 = 𝐿𝐶𝑀(𝑝 − 1,𝑞 − 1), 𝜇 =
(𝐿(𝑔𝜆𝑚𝑜𝑑𝑁2))−1 mod 𝑁 where 𝐿(𝑥) = (𝑥−1)/𝑁).

• Encryption Part:

– A random value 𝑟 is selected where 1 ≤ 𝑟 ≤ 𝑁 . After that message 𝑚 is
encrypted as follows:

∗ 𝑐 = (𝑔𝑚 ×𝑟𝑁) mod 𝑁2

• Homomorphic Addition Part:

– Given two ciphertexts, 𝑐1 and 𝑐2, generated from messages 𝑚1 and 𝑚2, re-
spectively, if one wants to calculate the sum of 𝑚1 and 𝑚2 homomorphically,
the computation 𝐶𝑠𝑢𝑚 = 𝑐1 ×𝑐2 mod 𝑁2 is performed.

• Decryption Part:

– The recipient uses his secret key value, which is generated from his public
key parameters, in order to decrypt an incoming ciphertext. In this case, the
message can be obtained as:

∗ 𝑚 = 𝐿(𝐶𝜆
𝑠𝑢𝑚 mod 𝑁2)×𝜇 mod 𝑁 where 𝐿(𝑥) is the 𝐿-function defined

as 𝐿(𝑥) = (𝑥−1)/𝑁 .

22



2.5.3 Brakerski/Fan-Vercauteren

BFV is one of the homomorphic encryption schemes that allow fully homomorphic en-
cryption, based on RLWE. Unlike schemes based on partially homomorphic encryption,
BFV allows performing addition and multiplication on the same ciphertext. This means
that arbitrary computations can be performed on encrypted data while it remains en-
crypted. In addition to all of these benefits, since the security level of BFV relies on the
hardness of the Learning With Errors (LWE) problem, it is secure against attacks from
quantum computers.

BFV has multiple variants since its development in 2011 when Junfeng Fan and Frederik
Vercauteren published their first work. In this thesis, the textbook-FV and RNS variant
of BFV by Microsoft SEAL (Microsoft, 2020) are used.

2.5.3.1 Key Generation

Since BFV based on RLWE (Regev, 2005), which is asymmetric key cryptosystems, it
employs a pair of keys a public key and a secret key. The keys are generated as follows:

𝑎 ← R𝑞,𝑛, 𝑠 ← R2,𝑛 and 𝑒 ← 𝜒

𝑠𝑘 = 𝑠, 𝑝𝑘 = (𝑝𝑘[0],𝑝𝑘[1]) = ([−(𝑎𝑠+𝑒)]𝑞,𝑎),

where 𝑠𝑘 and 𝑝𝑘 are secret and public keys, respectively. Also, the degree of cyclotomic
polynomial Φ(𝑥), 𝑛 and the size of the ciphertext modulus depends on 𝜆, which is security
parameter. Let 𝑞 = 𝑞(𝜆) ≥ 2 is an integer. For the secret key generation in Textbook-BFV,
𝑠 ← R2,𝑛 is used as shown above. For the public key generation in Textbook-BFV, first
𝑎 ← R𝑞,𝑛 and 𝑒 ← 𝜒 are sampled from the corresponding distribution at random. Recall
that 𝑎 is sampled uniformly randomly, while 𝑒 is sampled from Gaussian distribution.
Since the Textbook-BFV is working with single ciphertext modulus, these operations are
applied only one times. However, the RNS variant of BFV uses multiple moduli. For
this reason, certain operations are repeated for each modulus, 𝑞𝑖 in the RNS base, as
explained in Algorithm 12.

The evaluation key, which is another public key, is also of great importance because it
plays a crucial role in reducing the increasing size of the ciphertext after homomorphic
multiplication and in the operation of homomorphic rotation functions. Essentially, its
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Algorithm 12 Secret & Public Key Generation (RNS)
1: 𝑠 ← R(−1,0,1),𝑛, 𝑒𝑟𝑟 ← 𝜒
2: for 𝑖 from 0 by 1 to 𝑟 do # r = Modulus Count in RNS Domain
3: 𝑠𝑘𝑖 ← 𝑠 mod 𝑞𝑖
4: 𝑎𝑖 ← R𝑞𝑖,𝑛
5: 𝑒𝑖 ← 𝑒𝑟𝑟 mod 𝑞𝑖
6: 𝑝𝑘[0]𝑖 ← −(𝑠𝑘𝑖 ×𝑎𝑖 +𝑒𝑖) mod 𝑞𝑖
7: 𝑝𝑘[1]𝑖 ← 𝑎𝑖

size and calculation vary depending on the ciphertext size. Under normal conditions, the
ciphertext consists of two parts, 𝑐𝑡[0] and 𝑐𝑡[1], but after homomorphic multiplication,
this size increases to three. If the so-called relinearization operation is not applied to
the non-linear part, 𝑐𝑡[2], the computational difficulty of the following multiplication
increases. Therefore, the relinearization operation is generally used after homomorphic
multiplications. For this reason, evaluation keys are usually derived from the square of
the secret key as shown in Algorithm 13, but this can also be applied to other powers of
the secret key.

Algorithm 13 Evaluation Key (Relinearization Key) Generation (RNS variant)
1: ei ← 𝜒
2: for 𝑖 from 0 by 1 to 𝑟 −1 do # r = Modulus Count in RNS Domain
3: 𝑎𝑖 ← R𝑞𝑖,𝑛
4: evk[0]𝑖 ← (−(𝑠𝑘𝑖 ×𝑎𝑖 +𝑒𝑖))+(𝑠2 ×𝑞𝑟−1) mod 𝑞𝑖
5: evk[1]𝑖 ← 𝑎𝑖

2.5.3.2 Encryption

When a message is encrypted, an error term (a random polynomial sampled from the
distribution 𝜒) is added to the ciphertest, similar to the error terms used in the key
generation operation. The definition of the encryption operation for textbook-FV can be
shown as follows:

𝑚 ∈ R𝑡,𝑛, 𝑢 ← R2,𝑛 and 𝑒1,𝑒2 ← 𝜒,

𝑐𝑡 = (𝑐𝑡[0],𝑐𝑡[1]) = ([𝑚 ⋅Δ+𝑝𝑘[0]𝑢+𝑒1]𝑞, [𝑝𝑘[1]𝑢+𝑒2]𝑞).

Here, the message, 𝑚, is encoded as polynomial, whose coefficients are reduced modulo 𝑡,
where 𝑡 is referred as the plaintext modulus. The most significant difference that sets
BFV apart from other schemes is that the message is multiplied by a scaling factor, Δ,
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during encryption, where Δ = ⌊𝑞/𝑡⌋. For some integer 𝑡 > 1, where 𝑡 ≪ 𝑞, the ciphertext
and plaintext spaces are taken as R𝑞,𝑛 and R𝑡,𝑛, respectively. Also, we note that neither
𝑞 nor 𝑡 has to be a prime integer. While the RNS variant of the BFV is fundamentally
similar to textbook-BFV, it exhibits some differences due to the inclusion of multiple
moduli used in the RNs artihmetic. These distinctions are detailed in Algorithm 14. As

Algorithm 14 BFV Encryption (RNS variant)
1: 𝑢 ← R(−1,0,1),𝑛, err0 ← 𝜒 , err1 ← 𝜒
2: for 𝑖 from 0 by 1 to r do # r = Modulus Count in RNS Domain
3: 𝑐𝑡[0]𝑖 ← (𝑝𝑘[0]𝑖 ×𝑢)+𝑒𝑟𝑟0 mod 𝑞𝑖 # 𝑝𝑘 = Public Key
4: 𝑐𝑡[1]𝑖 ← (𝑝𝑘[1]𝑖 ×𝑢)+𝑒𝑟𝑟1 mod 𝑞𝑖
5: half ← 𝑞r−1/2
6: for 𝑗 from 0 by 1 to 2 do # Divide and Round Last q
7: for 𝑖 from 0 by 1 to r−1 do
8: 𝑐𝑡[𝑗]𝑖 ← (𝑐𝑡[𝑗]𝑖 −((𝑐𝑡[𝑗]r−1 +half) mod 𝑞r−1)−half)×𝑞−1

r−1 mod 𝑞𝑖
9: fix ← ⌊(𝑚+⌊𝑡+1/2⌋)/𝑡⌋ # 𝑚 = Message

10: for 𝑖 from 0 by 1 to r−1 do
11: 𝑐𝑡[0]𝑖 ← 𝑐𝑡[0]𝑖 +(𝑚×Δ)+ fix mod 𝑞𝑖

shown in Algorithm 14, when encrypting in the BFV RNS variant, the last of the RNS
bases is decomposed and added to the other bases. In this case, the number of RNS bases
in the ciphertext is one less than the initial number of RNS bases. The primary reason
for this decomposition is to achieve the most accurate results during decryption.

2.5.3.3 Decryption

As can be seen from the equation below, Textbook-BFV decryption is quite easy to
understand.

𝑐𝑡 = (𝑐𝑡[0],𝑐𝑡[1]) ∈ R𝑞,𝑛 and 𝑠𝑘 ∈ R2,𝑛

𝑚 = [⌊Δ−1[𝑐𝑡[0]+𝑐𝑡[1]𝑠]𝑞⌉]𝑡, where Δ = 𝑞
𝑡

The only criterion here is that the error disappears when ciphertext is divided by Δ
during decryption. If the error is greater than Δ, that is, if the result is an integer when
divided by delta, it will not give the correct result even if the ciphertext is decrypted.
From this, it is evident that using a larger modulus will provide a larger noise budget. In
this case, it enables more homomorphic operations but reduces the security level.
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For the BFV RNS variant, decryption is considerably more complex compared to en-
cryption and key generation. This complexity arises because it involves multiple base
conversions. To perform these base conversions during decryption, certain parameters
for 𝑡 (the plaintext modulus) and 𝛾 (a threshold parameter for error handling) must be
precomputed. Essentially, these parameters are based on the RNS conversion operation
mentioned in Section 2.2, which is implemented using Algorithms 21 and 22. As described
in Algorithm 15, the BFV RNS variant initiates with 𝑐𝑡[1] multiplied by the secret key,
and then the ciphertext pairs are added together. However, the BFV RNS variant also
includes additional operations to return to the domain of the plaintext modulus.

Algorithm 15 Decryption (RNS)
1: 𝑃𝛾 ← 0 , 𝑃𝑡 ← 0
2: for 𝑖 from 0 by 1 to r−1 do # r = Modulus Count in RNS Domain
3: 𝑃𝑖 ← (𝑐𝑡[1]𝑖 ×𝑠𝑘𝑖)+𝑐𝑡[0]𝑖 mod 𝑞𝑖 # 𝑠𝑘 = Secret Key for each RNS Domain
4: 𝑃𝑖 ← (𝑃𝑖 ×𝑡×𝛾)×𝑞−1 mod 𝑞𝑖 # Convert from base 𝑞 to base (𝑡,𝛾)
5: 𝑃𝛾 ← 𝑃𝛾 +𝑃𝑖 mod 𝛾
6: 𝑃𝑡 ← 𝑃𝑡 +𝑃𝑖 mod 𝑡
7: 𝑃𝛾 ← 𝑃𝛾 ×(−𝑞−1) mod 𝛾
8: 𝑃𝑡 ← 𝑃𝑡 ×(−𝑞−1) mod 𝑡
9: for 𝑖 from 0 by 1 to 𝑛 do # n = Polynomial Ring Size

10: if 𝑃𝛾[𝑖] > (𝛾/2) then 𝑚[𝑖] ← 𝑃𝑡[𝑖]+ (𝛾 −𝑃𝛾[𝑖]) mod 𝑡 # m = Message
11: else 𝑚[𝑖] ← 𝑃𝑡[𝑖]−𝑃𝛾[𝑖] mod 𝑡
12: 𝑚 ← 𝑚×(−𝛾−1) mod 𝑡

2.5.3.4 Addition/Substract

In the BFV scheme, the most straightforward operations are addition and subtraction.
It just consists of modular addition and subtraction of the coefficients of ciphertext poly-
nomials that are in R𝑞,𝑛. As shown in Algorithm 16, two pairs of ciphertext polynomials
in the same bases are added or subtracted coefficient-wise, where the moduli are 𝑞𝑖 for
𝑖 = 0,…𝑟−1. Here, 𝑐𝑡𝑖 stands for the ciphertext pair in the modulus 𝑞𝑖 for 𝑖 = 0,…𝑟−1;
namely 𝑐𝑡𝑖 = [𝑐𝑡]𝑞𝑖

for ease of notation.
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Algorithm 16 Addition
1: for 𝑖 from 0 by 1 to r−1 do # r = Modulus Count in RNS Domain
2: 𝑐𝑡[0]𝑖 ← 𝑐𝑡[0]𝑖 + ̄𝑐𝑡[0]𝑖 mod 𝑞𝑖
3: 𝑐𝑡[1]𝑖 ← 𝑐𝑡[1]𝑖 + ̄𝑐𝑡[1]𝑖 mod 𝑞𝑖

2.5.3.5 Multiplication

The Textbook-BFV multiplication takes two ciphertex (𝑐𝑡 and ̄𝑐𝑡) and computes following
equations:

𝑐0 = [𝑐𝑡[0]× ̄𝑐𝑡[0]]𝑞
𝑐1 = [𝑐𝑡[0]× ̄𝑐𝑡[1]+𝑐𝑡[1]× ̄𝑐𝑡[0]]𝑞

𝑐2 = [𝑐𝑡[1]× ̄𝑐𝑡[1]]𝑞
As can be seen in the equation, polynomials of two ciphertexts are multiplied with each
other, and the product is a new ciphertext with a size of three. Although the multipli-
cation of the textbook-BFV is easy, the multiplication of the BFV RNS variant, which
visualised in Figure 2.1, is quite complicated. As pointed out earlier in the RNS variant
of the BFV scheme, a set of smaller moduli 𝑞𝑖 is used instead of one large coefficient
modulus 𝑞 for the ring arithmetic; a technique known as residue number system (hence,
the abbreviation RNS). Using RNS arithmetic allows to perform operations in parallel
and removes the need for arbitrary-precision arithmetic. The homomorphic multiplica-
tion operation takes two ciphertexts as inputs, each of which consists of two polynomials
in R𝑞,𝑛 and performs a tensor product that produces three polynomials as output in each
RNS base.

Due to complexity of using the RNS arithmetic in homomorphic multiplication (see (Ba-
jard et al., 2016) for more details), the SEAL library uses the base extension technique
and introduces additional auxiliary base (ℬ and 𝑚𝑠𝑘) in addition to the RNS base
𝒬 = {𝑞0, 𝑞1,…,𝑞𝑟−1. The auxiliary base ℬ consists of {𝐵0,𝐵1,…,𝐵𝜌−1}, which are pair-
wise co-prime while 𝑚𝑠𝑘 is a prime integer. Generally, the auxiliary base ℬ and the prime
𝑚𝑠𝑘 are joined to form the base ℬ𝑠𝑘 (= ℬ∪𝑚𝑠𝑘). Thus, the homomorphic multiplication
operation in BFV requires conversion between the 𝒬 base and the auxiliary base ℬ𝑠𝑘.
The conversion is implemented using a technique known as “fast base conversion”, which
can introduce extra multiples of 𝑞 in the computations that can lead to error in the ci-
phertext. To remedy this, a reduction operation through another modulus 𝑚̃ is required
after the fast base conversion operation is applied.

As shown in Figure 2.1, the BFV multiplication operation starts by performing the fast
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Figure 2.1 Homomorphic Multiplication Operation in The BFV Scheme.

base conversion operations fastbconv_1, which convert the inputs in 𝒬 to the base {𝐵𝑠𝑘 ∪
𝑚̃}. The fastbconv_1 operations are followed by the reduction operation, for which the
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additional base 𝑚̃ is used; this operation is known as small Montgomery reduction modulo
𝑞, sm_mrq. It limits the impact of the error and converts the inputs in the {ℬ𝑠𝑘 ∪ 𝑚̃}
base to the ℬ𝑠𝑘 base. After the sm_mrq operation, the NTT operation is applied to all
ciphertext components (both in ℬ𝑠𝑘 and 𝒬 bases) and ciphertext multiplication operation
is performed coefficient-wise to all vectors in all bases. Then, the inverse NTT operation
is performed to convert the result to the polynomial domain. After the inverse NTT
operation, ciphertexts are multiplied with plaintext modulus 𝑡. Then, the floor operation
is used instead of the rounding operation; via a method is called “fastfloor function”,
and convert the ciphertext in the base {𝑞 ∪ 𝐵𝑠𝑘} bases to the base ℬ𝑠𝑘 as it involves
division by 𝑞. Finally, the fastbconv_2 function is used to perform conversion from the
𝐵𝑠𝑘 base back to the original RNS base 𝒬. The reader is referred to (Bajard et al., 2016)
for more detail.

2.5.3.6 Relineariazation

To remove the non-linear part of the ciphertext after homomorphic multiplication, the
Relinearization operation is applied. It is essentially based on the so-called switch-key
operation illustrated in Figure 2.2, which transforms the third ciphertext component
𝑐𝑡[2], which is decryptable by 𝑠𝑘2, into a form, which is decryptable by the original secret
ky, 𝑠𝑘. To perform the relinearization operation, the Relinkey, which is a evaluation
key generated from the secret key in Algorithm 13, is needed. The following equation
represents the textbook-BFV relinearization operation

Decomposes 𝑐2 in 𝑤 as 𝑐2 = ∑𝑙
𝑖=0 𝑐(𝑖)

2 ×𝑤𝑖

𝑐𝑡𝑛𝑒𝑤[0] = [𝑐0 +∑𝑙
𝑖=0 𝑒𝑣𝑘[𝑖][0]×𝑐(𝑖)

2 ]𝑞
𝑐𝑡𝑛𝑒𝑤[1] = [𝑐1 +∑𝑙

𝑖=0 𝑒𝑣𝑘[𝑖][1]×𝑐(𝑖)
2 ]𝑞

The SEAL BFV uses the switch-key technique visualised in Figure 2.2, which consists
of the mix of three different methods for relinearization operation (Bajard and Plantard,
2004), (Halevi et al., 2019), (Chen et al., 2019). The most current method of these tech-
niques is the special modulus method, which improves relinearization in terms of noise
performance. The switch-key method shown in Figure 2.2 is the main building block of
the relinearization and the rotation operations. As shown in Figure 2.2, after the ho-
momorphic multiplication, in addition to 𝑐𝑡[0] and 𝑐𝑡[1], the third ciphertext component
𝑐𝑡[2] is obtained. Recall that a ciphertext component is written in 𝑟−1 moduli excluding
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Figure 2.2 Switch Key Operation in the BFV Scheme. The symbols +,− and × represent
addition, subtraction and multiplication, respectively in either ℤ𝑞 or R𝑞 while the symbol
⊙ represents modular pointwise multiplication for vector representation of the elements
of R𝑞 in the NTT domain.

𝑞𝑟−1 after encryption; 𝑐𝑡𝑖 for 𝑖 = 0,…,𝑟 − 1. Firstly, all 𝑐𝑡𝑖[2] are transformed to the
NTT domain using all moduli 𝑞𝑖 in the RNS base to be multiplied with the evaluation
keys that are already in the NTT domain. The number of NTT operations is, therefore,
𝑟(𝑟 − 1). After the NTT operations, the ciphertexts are multiplied with the evaluation
keys in the NTT domain, where the multiplication is component-wise modulo multiplica-
tion. The modulus used in the multiplication is written next to the box that represents
component-wise multiplication in Figure 2.2. Then, all results from the multiplication
using the same modulus 𝑞𝑖 in the RNS base are summed. Subsequently, the resulting
vectors are transformed back to the polynomial domain using inverse NTT operation.
Finally, as shown in Figure 2.2, necessary operations are applied to accommodate 𝑐𝑡[2]
in 𝑐𝑡[0] and 𝑐𝑡[1]. In the figure the half mode 𝐻𝑚[𝑖] = [⌊𝑞𝑟−1/2⌋]𝑞𝑖

. See Algorithm 23 for
the details.
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2.5.3.7 Rotation

The rotation operation also uses the switch-key operation as in the case of relinearization.
However, the operation is based on Galois automorphism (Laine, 2017), and therefore,
rotation mainly are used for the switch-key operation except initial part. At the beginning
of the rotation operation, ciphertext are permuted with using Apply Galois operation as
shown in Algoritm 24 and then the switch-key operation applied. For each power of 2,
there is a different set of Galois keys and if the rotation amount is a power of 2, the
switch-key operation is executed using the corresponding Galois key. On the other hand,
if the rotation amount is not a power of two, the amount is written as the combination
of powers of two, and the switch-key operation is applied multiple times with different
Galois keys. For instance, if the rotation amount is 10, it can be implemented using two
switch-key operations; the former uses the Galois keys for 8, the latter for 2.
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3. GPU CODING AND ARCHITECTURE

GPU is a computing device that facilitates exceptional parallel processing capability due
to that fact that it supports extremely high number of threads. Therefore, its instruction
throughput far exceeds the one that can possibly be sustained by a conventional general-
purpose CPU, which features comparably modest number of threads. As CPU and GPU
are designed for different applications with different design principles, quantity, speed
and computational power of CPU and GPU threads are also different. A CPU sustains
fewer number of threads (in the order of tens) that can complete computationally more
involved operations faster while recent GPU devices can support as high as 15K threads.
But the GPU threads are computationally less capable running at slightly slower clock
speeds. Therefore, the performance comparison of GPU and CPU can be involved and
depends on benchmarks as pointed out in Lee et al. (2010) and advantage of GPU over
CPU is overestimated at times.

Configurable hardware platforms such as FPGA, which can offer superior parallelization
with better energy efficiency than GPU. However, being easier to program and integrate
with applications running on CPU and containing more on-chip and off-chip memory,
GPU can be a strong alternative to accelerate memory-bound applications such as ad-
vanced cryptographic operations, which heavily rely on arithmetic on extremely large
mathematical objects; e.g. polynomial rings of very high dimensions.

CUDA-enabled GPU is a parallel computing device that can be used for general-purpose
programming via CUDA®, which is a general purpose parallel computing platform and
programming model. The CUDA software environment allows developers to use high-level
programming languages such as C++ and Fortran.

In conclusion, GPUs are powerful devices, which proved to be accessible and easily pro-
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grammable accelerators for a wide range of applications. However, it is essential to acquire
deep insight into its micro-architectural details and to design algorithms to harness their
computational resources.

3.1 High-Level Architecture of GPU

From a very high level, we can consider that a GPU platform consists of two main parts:
i) GPU chip, and ii) off-chip memory. The GPU chip contains the main computation
units known as streaming multiprocessors (SM) and on-chip memory that implements
registers and shared memory. The local, global, constant, and texture memory types are
all implemented in off-chip memory, for which the GDDR is used; a memory technology
offering higher bandwidth and more power-efficient communication when compared with
the DDR technology used in CPU memory systems. Nevertheless, the off-chip memory
is still much slower than registers and on-chip shared memory.

A GPU contains an array of Streaming Multiprocessors (SM), which create, manage,
schedule and execute threads on its functional units. An SM contains L1 cache (which
is used to implement shared memory) and registers that are accessible to the threads
scheduled to run on the SM. Execution happens in groups of 32 parallel threads called
warps, in which threads start together at the same program address, but they can execute
independently as they maintain separate states. An SM partitions threads into warps and
its warps schedulers schedule them for execution on functional units of SM.

Another programming abstraction is thread block (or simply block), which can contain
more than one warp. For instance, a block can contain as many as 32 warps or 1024
threads in current GPU devices. For easy indexing of threads, a block can be defined
one, two or three dimensional. All threads in a block are scheduled to run on the same
SM (accessing the same shared memory), which is capable of executing more than one
block.

A grid is formed by combining multiple blocks, each of which contains the same number
of threads. As the number of threads in a block is limited, grids are used to run larger
number of threads in parallel than that can fit in a single block. Namely, different blocks
in a grid may run in different SMs, and therefore, threads in different blocks do not use
the same shared memory. Similar to blocks, a grid can be indexed one, two or three
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dimensional. We refer a particular configuration of block or grid as its shape.

Kernel is a function that is executed on a GPU device, which takes also the number of
threads and blocks as arguments. As more than one block is used to execute a kernel,
when threads from different blocks have to synchronize, this can be done by terminating
the current kernel and start another if the computation is expected to continue. Starting
and terminating kernels incur significant timing overhead, therefore an algorithm that
limits the thread synchronization within a block is more efficient.

The compute capability of a GPU device, which determines hardware features and/or
instructions available, is given by a version number and should be known to algorithm
designers for developing better algorithms and their efficient implementations on GPU
devices. The compute capability of a GPU device determines some pertinent information
to our work such as the maximum number of blocks, warps, threads, number of 32-bit
registers, maximum amount of shared memory per SM. In this thesis, we use GPU devices
with the compute capability 8.6 and some of its relevant features are listed in Table 3.1.

Table 3.1 Configuration of compute capability 8.6

Maximum number of blocks per SM 16
Maximum number of warps per SM 48
Maximum number of threads per SM 1536
Number of 32-bit registers per SM 64 K
Maximum number of 32-bit registers per thread 255
Maximum amount of shared memory per SM 100 KB

3.2 GPU Memory Hierarchy

There are different types of memory in the GPU, and the access pattern to these memory
types plays a very important role in memory latency performance. Each memory type
has its advantages and disadvantages and can be used for different purposes accordingly.
Table 3.2 lists these memory types and their specifications.

In the hierarchical structure of GPU memory system, the global memory is in the highest
level implemented in GDDR (off-chip memory), and therefore, its size is larger than any
other GPU memory type. Its access latency is slower than other memory types, because
of the overhead of accessing the off-chip memory. Additionally, since the global memory
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Table 3.2 The various principal traits of the memory types

Memory Types Scope Life Time Access Latency
Register 1 Thread Kernel 1×
Shared All threads in block Kernel 1×
Local 1 Thread Kernel ≈ 100×
Global All threads + host Application ≈ 100×

allocations persist for the lifetime of a GPU application, data in global memory can be
shared among kernels and all threads in a GPU can access global memory regardless of
their block. The local memory, rather than a physical memory, is an abstraction of global
memory, which is local to the thread and used to hold variables when register space is
not sufficient.

The shared memory persists for the lifetime of a kernel, due to the fact that they are
implemented in the L1 cache (on-chip memory) of an SM. As the shared memory is private
to blocks, all threads of a block can access the same shared memory and synchronize.
Furthermore, the shared memory, which is smaller in size, is fast and its access latency
is comparable to that of registers. Consequently, memory-dependent operations can be
profitably performed in the shared memory instead of the global memory. However,
threads from different blocks can use only the global memory to share data.

The last on-chip memory type, the register file consists of 32-bit registers, which can be
accessed in one clock cycle. The register file size is 64K 32-bit registers per SM and each
thread has at most 255 32-bit registers.

3.3 Coalesced & Uncoalesced Access to Global Memory

As discussed in Section 3.1, each kernel needs to access global memory to load and
store data. Therefore, accessing global memory plays a very important role in high
performance GPU programming. The data in the off-chip global memory are delivered
to the CUDA cores via caches. Each time the global memory is accessed, the entire
memory block is fetched and placed in a cache line of the same size as the memory block.
Therefore, the line sizes of L1 and L2 cache memories have particularly significant impact
on the performance of CUDA programs. As the line sizes of both cache memories are
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128 B, a group of threads accessing consecutive addresses that coincide with a memory
block of 128 B contributes to achieving the global memory access latency values listed in
Table 3.2. This is known as coalesced access in the GPU terminology which is illustrated in
Figure 3.1. For instance, 16 threads accessing 8 B unsigned long long data types each,
which happen to be consecutive in the same memory block, maximizes the performance as
the entire 128 B block is brought to the cache with one global memory access operation.
Otherwise, uncoalesced and strided accesses occur and the latency figures in Table 3.2
cannot be achieved as the same amount of data requires more than one memory block to
be brought to the cache. One can affect the coalesced access following good programming
practices.

3.4 Theoretical Occupancy

Occupancy is defined as the ratio between the number of actual active warps on an
SM and the maximum possible number of active warps on the SM. As the occupancy
plays an important role in efficient utilization of GPU resources (and ultimately the
application performance), it is extremely essential to calculate the maximum theoretical
occupancy of GPU before launching a kernel. When a kernel is created, the number of
threads in a block, is determined as well as the shared memory size that will be available
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in the block. Since each block runs in one SM, the size of the register per thread is
also fixed in the block. These three parameters (namely, block dimensions, the shared
memory size, the number of registers per thread) directly affect the maximum theoretical
occupancy. A block can include at most 1024 threads, which may not be necessarily
optimum for achieving maximum theoretical occupancy. The reason is that increasing
block size limits the resources per thread. For instance, for GPUs with compute capability
8.6, shared memory capacity per SM and is 100 KB, while maximum shared memory per
thread block is 99 KB. Also, the L1 cache is configurable and its some parts can be
used for shared memory and some parts can be used for data loaded or stored by the
L2 cache. If the shared memory size is too high, a bottleneck occurs because there
is little space left for data loaded or stored by the L2 cache. Therefore, in order to
allocate more resources to threads one can consider deploying smaller block sizes such
as 512 or even 256. This way, more warps can be active at a time. One can follow the
NVIDIA documentation and guidelines to achieve higher occupancy rates. In Section 4.2
at Table 4.1, we report the achieved occupancy rates and how it affects the overall timings
of our NTT implementation (see the discussion of the optimum size for a thread block).

37



4. GPU IMPLEMENTATONS

This section presents implementation techniques, methods, and algorithms for BFV ho-
momorphic operations on GPUs: key generation, encryption, decryption, addition, mul-
tiplication, relinearization, and rotation. Moreover, since BFV operations rely on poly-
nomial multiplication, two different NTT algorithms and three different implementations
on GPU devices are presented in Sections 4.1, 4.2, and 4.3, respectively. We will detail
their steps and explain the rationale behind the specific design choices, which are directly
determined by the micro-architecture of GPU devices.

4.1 MERGE-NTT GPU IMPLEMENTATION APPROACH 1

In this section, we explain our first GPU implementation of NTT algorithm, which is
based on the recursive algorithm in Section 2.4.2.1 (Algorithm 6) The Cooley-Tukey NTT
and Gentleman-Sande INTT algorithms described in Section 2.4.2 is implemented on the
GPU. NTT and INTT perform as the inverse of each other in terms of algorithm steps.
Therefore, in this section, separate explanations of NTT and INTT are not needed. This
section explains the challenges for fast and efficient implementation of NTT and presents
our solutions to overcome them. Algorithm 17 shows the GPU pseudo-code for the NTT
algorithm, which is essentially the same as the on given in Algorithm 6. One important
adaptation to GPU is the synchronization operation in Step 12, whose effect on the
correctness of the computations will be explained later in this section.
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Algorithm 17 Merge in Place Forward NTT on GPU (with syncthreads)
Input: 𝐴[𝑛] ,𝑃 𝑠𝑖𝑇 𝑎𝑏𝑙𝑒[𝑛],𝑞
Output: 𝐴[𝑛]

1: 𝐼𝑑𝑥 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥.𝑥×𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥+𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥
2: for 𝑙𝑜𝑜𝑝 from 0 by 1 to log2(𝑛) do
3: 𝑡 = (𝑛/2) ≫ 𝑙𝑜𝑜𝑝
4: 𝑚 = 2 ≪ 𝑙𝑜𝑜𝑝
5: 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑖𝑛𝑡(𝑖𝑑𝑥/𝑡) ∗ 𝑡+𝑖𝑑𝑥
6: 𝑈 = 𝐴[𝑎𝑑𝑑𝑟𝑒𝑠𝑠]
7: 𝑉 = 𝐴[𝑎𝑑𝑑𝑟𝑒𝑠𝑠+𝑡]
8: 𝑃𝑠𝑖 = 𝑃𝑠𝑖𝑇 𝑎𝑏𝑙𝑒[𝑖𝑛𝑡(𝑖𝑑𝑥/𝑡)+𝑚]
9: 𝐴[𝑎𝑑𝑑𝑟𝑒𝑠𝑠] = (𝑈 +𝑉 )%𝑞

10: 𝑉 = (𝑉 ×𝑃𝑠𝑖)%𝑞
11: 𝐴[𝑎𝑑𝑑𝑟𝑒𝑠𝑠+𝑡] = (𝑈 −𝑉 )%𝑞
12: __syncthreads()

The NTT operation consists of log2 𝑛 sequentially executed loops, each of which contains
𝑛/2 butterfly operations independent of each other, which can be performed simultane-
ously using 𝑛/2 threads on the GPU.

Each GPU can run a certain number of streaming multiprocessors (SM), the number of
which depends on the GPU model and computational capability (version) of the GPU.
Each SM consists of 4 warps scheduler and each scheduler can perform 32 threads at same
time for all GPU models. However, these warp schedulers can perform sequentially and
generate blocks which have 1024 threads. The limitation here is each SM can perform
1536 virtual thread as shown Table 3.1. Therefore, if the executed blocks consist of 1024
threads, the SM can perform one block. But, if executed blocks consist of 512 threads,
SM can perform as many as 3 blocks.

When a GPU code is executed, the tasks are performed by warp groups. For example, if
the code uses a number of threads in the range of [96-128], a total of four warps is needed
in both cases. Also, even if the warps perform the same task, they may not finish their
share of tasks simultaneously. Therefore, shared data usage among threads can lead to
synchronization problems.

For instance, as the ring dimension 𝑛 or the number of simultaneous (I)NTT operations
increases, synchronization problems can occur if proper synchronization operations are
not employed during the execution of Algorithm 17 (suppose Step 12 of Algorithm 17
is not present). This can be explained with a simple example. Suppose that we have
a hypothetical GPU with a total thread count of 16 and a maximum block size of 4
threads. Let one warp of this GPU consist of two threads and let Algorithm 17 without
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Figure 4.1 Execution of Alg. 17 without synchronization in ideal circumstances where
𝑛 = 32.

synchronization be executed for 𝑛 = 32 on this GPU. Figure 4.1 portrays a visualization
of the execution of Algorithm 17 without synchronization on the hypothetical GPU.

The figure shows a total of log2 32 = 5 iterations. 16 threads are used, whose indexes are
between 0 and 15 (𝑇0,…,𝑇15). We use a different color for the oval rectangle that encircles
a block of four threads. Each thread 𝑇𝑖 accesses two different memory locations using the
address and address+ t values in Algorithm 17, performs the butterfly operation, writes
two pieces of the results again in the same two memory locations. When a thread finishes
its own task, it moves to the next iteration of the algorithm and performs the same
operation, only with a different value of 𝑡 this time. Figure 4.1 represents the execution
of the algorithm in the ideal circumstances as the threads are assumed to finish their
tasks simultaneously.

However, Algorithm 17 does not always execute in ideal circumstances. Suppose that the
number of threads is only 12 for the scenario in Figure 4.1. Even when the number of
threads is less than the number of tasks, incidentally the execution can still be correct.
One such scenario is depicted in Figure 4.2, where we only show the first two iterations.
As the scenario requires 16 threads, but the hypothetical GPU has 12 threads, the number
of threads is not sufficient, and the code runs sequentially after a point. In the figure,
we use primed letters to distinguish the multiple assignments of the same thread to
different tasks. For instance, 𝑇0 and 𝑇 ′

0 show that the thread executes two different
butterfly operations in the same iteration sequentially. Incidentally again, this does not
necessarily lead to incorrect execution as shown in Figure 4.2.

Nevertheless, since thread synchronization is not implemented, an error in calculations
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Figure 4.2 One good scenario for Alg. 17 without synchronization, where 𝑛 = 32 and
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒 = 4
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Figure 4.3 One problematic scenario for Alg. 17 without synchronization, where 𝑛 = 32

can occur as visualized in Figure 4.3. For instance, suppose four threads in the dashed
red line, namely 𝑇 ′

2,𝑇 ′
3,𝑇 ′

6,𝑇 ′
7, are assumed to be scheduled simultaneously. And, since

they operate on the same memory locations in two consecutive iterations, there is a data
dependency between the first two and the last two threads. This will definitely lead to a
race condition, resulting in incorrect results.

It is impossible to put a barrier between the warps to solve the aforementioned synchro-
nization problem. Therefore, only block-level barriers can be used as shown in Step 12 of
Algorithm 17, which resolves all synchronization problems as long as the ring dimension
𝑛 is less than or equal to the block size. Since a block in GPU has a maximum of 1024
threads for all GPU models, the barrier __syncthreads() in Step 12 of Algorithm 17
cannot resolve the synchronization issue for higher values of 𝑛 or when performing many
NTT operations in batches1.

The latter issue can be explained over another execution scenario of Algorithm 17 on the
hypothetical GPU, depicted in Figure 4.4. The eight threads enclosed in the dashed red
line belong to two different blocks as the block size of the hypothetical GPU is just four.
Here, the thread block in the 2nd iteration run on data that has not yet been completed,
leading to incorrect results.

1When multiple and independent NTT operations are executed, the threads are scheduled as if those independent
NTT calculations are combined into a single big NTT operation.
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Figure 4.4 Another problematic scenario for Alg. 17, where 𝑛 = 32

For values of 𝑛 much higher than the block size and the high number of multiple NTT
operations running simultaneously, an obvious solution to resolve all synchronization
issues is simply using more than one kernel depending on the size of 𝑛 or the number of
NTT computations. For example, for 𝑛 = 32 on our hypothetical GPU, to resolve the
synchronization issue in Figure 4.4, we can use two consecutively executing kernels for
the first two iterations of the NTT computation.

After the first two iterations are completed, the threads in one block will never need or use
the data processed by another block and no synchronization problem occurs. Therefore,
after the first two iterations, execution can continue within the third kernel using shared
memory and block synchronization.

However, when more than one kernel is used, the only way to share data across kernels
is to use global memory, which is the slowest of all GPU memory types (see Table 3.2).
As the value of 𝑛 increases, this method becomes prohibitively inefficient as the number
of kernels required for NTT will also increase. This approach is used in (Özerk et al.,
2022), and as demonstrated in the subsequent sections, our new approach in this thesis
scales better as 𝑛 increases.

The approaches described above have either synchronization issues or inefficient memory
usage, both of which are efficiently addressed by our new NTT implementation. The
new implementation consists of always two kernels for all values of 𝑛. An example with
𝑛 = 32 is visualized in the hypothetical GPU in Figure 4.5, where the first two iterations
are performed in the first kernel. Operations of these iterations in the first kernel are
performed sequentially on purpose. In the example in Figure 4.5, two blocks and eight
threads (recall 2 blocks = 8 threads on the hypothetical GPU) are scheduled twice in the
first two iterations. Each thread in the two blocks writes the addresses of interest in the
global memory to its registers, as illustrated in Figure 4.6. Then, each thread performs
butterfly operations using its register memory. When a thread finishes its task in one
iteration, it writes the data in its register memory to the corresponding global memory.
Although the first kernel seems to be slower because it uses fewer number of threads
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Figure 4.5 An example of our NTT algorithm where, 𝑛 = 32 and
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒 = 4.

than the above mentioned examples, the acceleration here comes not from the number
of threads, but from the more efficient usage of memory as we minimize the number of
global memory accesses. On the other hand, in the approach employed in (Özerk et al.,
2022), the number of kernels along with global memory access increases as 𝑛 becomes
larger. The pseudo-code for the algorithm used to implement the operations in the first
kernel is given in Algorithm 18.

In the second kernel in Figure 4.5, the number of threads in a block suffices to complete
the remaining NTT operations. Since data sharing among threads within the block is
required, each block has its shared memory consisting of 2 × blocksize. This poses no
problem as the shared memory is the fastest type of GPU memory. Here, each thread
accesses its own part of the memory using its respective indexes for each iteration, per-
forms a butterfly operation, and writes the result to the shared memory of the block it
is connected to until the last iteration. After all threads finishes their executions, the
result, which is in the shared memory, are written to these global memory, and the NTT
operation is terminated. This NTT implementation is fast and free of synchronization
issues for power of two 𝑛 values between 212 and 215

This NTT implementation is fast and free of synchronization issues for power of two 𝑛
values between 212 and 215 and multiple concurrent NTT computations. However, It
is impossible to implement 𝑛 size higher than 215 using this implementation due to its
register usage. However, the following section expresses a new method showing how NTT
and INTT can be implemented efficiently for any 𝑛 values.
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Figure 4.6 Register Memory Usage in our NTT Algorithm for 𝑛 = 32.

4.2 MERGE-NTT GPU IMPLEMENTATION APPROACH 2
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Algorithm 18 Kernel 1 in Figure 4.5
Input: 𝐴[𝑛],𝑃 𝑠𝑖𝑇 𝑎𝑏𝑙𝑒[𝑛],𝑞
Input: 𝑏𝑐: no. of blocks (𝑏𝑐 = 2)
Output: 𝐴[𝑛]

1: 𝑖𝑑𝑥 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥.𝑥×𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥+𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥
2: 𝑚 = 1
3: 𝑘 = 𝑛/(2×𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥×𝑏𝑐)
4: 𝑡 = 𝑛
5: for 𝑖 from 0 to 𝑛/(2×𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥 ) do
6: 𝑟𝑒𝑔[𝑖] = 𝐴[𝑖𝑑𝑥+(𝑖×(2×𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥))]
7: for 𝑖 from 0 to log2 (𝑛/(2×𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥×𝑏𝑐))+1 do
8: for 𝑗 from 0 to 𝑛/(2×𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥×𝑏𝑐) do
9: 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = ⌊ 𝑗

𝑘⌋×𝑘 +𝑗
10: 𝑈 = 𝑟𝑒𝑔[𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛]
11: 𝑉 = 𝑟𝑒𝑔[𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛+𝑘]
12: 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = ⌊ 𝑖𝑑𝑥

𝑡 ⌋+𝑚
13: 𝑉 = (𝑉 ×𝑃𝑠𝑖𝑇 𝑎𝑏𝑙𝑒[𝑎𝑑𝑑𝑟𝑒𝑠𝑠]) mod 𝑞
14: 𝑟𝑒𝑔[𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛] = (𝑈 +𝑉 ) mod 𝑞
15: 𝑟𝑒𝑔[𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛+𝑘] = (𝑈 −𝑉 ) mod 𝑞
16: 𝑚 = 𝑚×2
17: 𝑘 = 𝑘/2
18: 𝑡 = 𝑡/2
19: for 𝑖 from 0 by 1 to 𝑛/(𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥×2) do
20: 𝐴[𝑖𝑑𝑥+(𝑖×(𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥×2))] = 𝑟𝑒𝑔[𝑖]

In this section, we explain our second GPU algorithm of computing NTT, also based
the recursive NTT algorithm, namely, Algorithm 6, which is free of limitations of Algo-
rithm 18.

The Merge-NTT consists of two parts: i) NTT host, runing on the host device (i.e.,
general-purpose CPU), which determines the block size, block and grid shapes and the
number of kernels etc., and ii) NTT kernel which performs the actual NTT computation
on GPU. As observable in Algorithm 6, Merge-NTT consists of 3 main parts: i) the
outer loop (the “do-while” loop starting in line 2), ii) the inner loop (the ”for” loop
in line 4), and iii) butterfly operation (CT Coley-Tukey) in line 8). In the first outer
loop iteration, there is one NTT operation operating on the entire elements of the input
vector. The number of independent NTT operations doubles from one iteration to the
next operating on the separate parts of the input vector. For instance, in the second
iteration, we have two independent NTT operations operating the first and the second
half of the input vector, respectively. We can even assign indices to the NTT operations
in a outer loop iteration, increasing from left to right for easy reference to them.
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While the outer loop needs to be executed sequentially as there is data dependency be-
tween an iteration of the outer loop and the next, the inner loop iterations are independent
and, therefore, suitable for parallelization. The threads in a block can perform all itera-
tions of the inner loop concurrently and use the __syncthreads() intrinsic function for
synchronization provided that bDim ≥ 𝑛/2 where 𝑛 is the ring dimension. Otherwise,
more than one block is needed for full parallelization of the inner loop and the syn-
chronization becomes problematic as the only way for that is via global memory, which
results in using multiple kernels. For example, when 𝑛 = 211, where there are 1024 CT
operations in each inner loop iteration, one block (and one kernel) suffices to implement
NTT operation as the maximum number of threads in CUDA-capable GPUs is 1024.

When 𝑛 > 211, however, multiple kernels will be needed and the approach adopted in
Özerk et al. (2022) uses a new kernel for each outer iteration until the iteration number
log2 𝑛− log2 2bDim. Therefore, the number of kernels can be calculated using the formula
kc = log2 (𝑛/2bDim). For example, when 𝑛 = 215 there are 15 outer iterations, the number
of kernels needed can be computed as 4 for bDim = 1024. When the ring dimension
increases to 220 and 224, 9 and 13 kernels are needed, respectively, which renders the
approach in Özerk et al. (2022) prohibitively inefficient for high ring dimensions. The
work in Özcan et al. (2023) (also our first method outlined in Section 4.1), adopting a
completely different approach, performs all outer iterations up to log2 𝑛 − log2 2bDim in
a single kernel, whereby some iterations of the inner loop is serialized. The second kernel
is used thereafter as inter-block dependency is no longer an issue. This way, access to
global memory is reduced using only two kernels. But, unfortunately, it can only perform
NTT operation up to 𝑛 = 215 as the number of registers in the SM is insufficient to get
all vector elements from the global memory at the start of the kernel.

We can keep track of the number of outer loop iterations performed in each kernel in an ar-
ray, named 𝑘𝑜𝑐 (kernel outer iteration count). For example, for the method in Özerk et al.
(2022), the number of kernels (kernel count) 𝑘𝑐 = log2 𝑛 − log2 2bDim and the elements
of the array can be written as koc[0] = log2 2bDim and koc[𝑖] = 1 for 𝑖 ≥ 1. For Özcan
et al. (2023), we have kc = 2 and 𝑘𝑜𝑐[0] = 𝑙𝑜𝑔22bDim, 𝑘𝑜𝑐[1] = log2 𝑛 − log2 2bDim with
𝑛 ≤ 215. Nevertheless, the partitioning of the outer loop iterations into kernels can be
done in different ways to obtain a better GPU implementation as demonstrated in the
rest of this thesis.

Suppose the function Partition (see Algorithm 19) gets the ring dimension 𝑛, the maxi-
mum number of threads in a block (typically mbd = 1024 in CUDA-enabled GPU devices),
and returns the optimal partition for 𝑛 along with the block size bDim, without the par-
ticular shapes of a block and grid; namely their dimensions in different coordinates, which
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may vary depending on the particular kernel. Note that the returned block size is not
necessarily the maximum block size and it turns out a smaller block size may be advan-
tageous as will be shown in the subsequent sections. For example, when bDim = 1024
and 𝑛 = 218 we can perform NTT in two kernels with seven outer loop iterations in
the first kernel and 11 in the second kernel. Namely, we can write 𝑘𝑐 = 2, 𝑘𝑜𝑐[0] = 11
and koc[1] = 7. In another example, when bDim = 1024 and 𝑛 = 224, we have kc = 3,
kc[2] = 2,kc[1] = kc[0] = 11. On the other hand, when we use a smaller block size such
as bDim = 256, then we have kc = 3, kc[2] = 6,kc[1] = kc[0] = 9. Note that a kernel can-
not perform more than log2 2bDim outer loop iterations. One particular contribution of
ours is that we propose such a novel access model to global memory that blocks in the
kernels for 𝑖 ≥ 1 (i.e., those except the last kernel running the last log2 2bDim) perform
the computations using shared memory in all outer loop iterations.

Algorithm 19 NTT HOST
Input: 𝐴[𝑛],PsiTable[𝑛],𝑛,𝑞,mbd
Output: 𝐴[𝑛] # In-place calculation

1: {bDim,kc,koc} ← Partition(𝑛,mbd = 1024) # Optimal partition
2: bc ← 𝑛/(2× bDim) # # of blocks
3: olc ← 𝑙𝑜𝑔2(𝑛) # # of outer loop iterations
4: oc ← −1
5: for 𝑖 from 0 by 1 to kc−1 do
6: oc ← oc+ koc[𝑖]
7: ko[𝑖] ← 2oc

8: olc ← olc− koc[𝑖]
9: if 𝑖 = 0 then

10: kgs[𝑖] ← [1,bc]
11: kbs[𝑖] ← [bDim/ko[𝑖],ko[𝑖]]
12: else
13: kgs[𝑖] ← [bc/(2olc),2olc]
14: kbs[𝑖][1] ← (2× ko[𝑖−1])/kgs[𝑖][1]
15: kbs[𝑖][0] ← bDim/kbs[𝑖][1]
16: 𝑚 ← 1
17: for 𝑖 from kc−1 by −1 to 0 do
18: 𝑑𝑖𝑚3 B(kgs[𝑖][0],kgs[𝑖][1])
19: 𝑑𝑖𝑚3 T(kbs[𝑖][0],kbs[𝑖][1])
20: NTT ⋘ B,T ⋙ (𝐴,PsiTable,𝑚,ko[𝑖],koc[𝑖], 𝑞)
21: 𝑚 ← 𝑚×(2koc[𝑖])

The proposed approach for determining the block size, kernel count, grid and kernel
shapes is detailed in Algorithm 19, which is intended to execute on the host device to
invoke kernels. In line 1 of the algorithm, the function Partition takes the ring dimension
𝑛 and the maximum block size on CUDA-enable GPU (by default mbd = 1024) and
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returns the block size (bDim ≤ 1024), the number of kernels (kc ≥ 2 for 𝑛 > 2bDim) and
the array koc, whose elements keep the number of outer iterations in the corresponding
kernel in reverse index; e.g., 𝑖 = 0 and 𝑖 = 𝑘𝑐 −1 represents the last and the first kernels,
respectively. The function Partition relies on empirical investigation to a certain extent
as shown in the subsequent sections.

In partitioning the outer loop iterations into kernels, it may seem intuitive to perform
as many as possible iterations in last kernels and more likely fewer number of them in
earlier kernels. Different partitioning schemes, however, can also benefit the memory
access performance; but care must be taken on deciding the optimal partitioning.

In Algorithm 19, bc stands for the number of blocks in the grid (block count) while olc
represents the number of outer loop iterations remaining to be performed. The kernel
offset ko, keeps the difference between the indices of the vector elements in the butterfly
operation at the start of a kernel. For instance, in the last kernel, in which each block
processes 2bDim vector elements, ko = bDim while ko = 𝑛/2 in the first kernel.

After the block dimension bDim, the number of kernels kc, and the number of iterations
in each kernel are determined in Step 1 of Algorithm 19, shapes of grids and kernels are
computed in lines between Steps 5 and 18. Block and grid shapes, which simply pertain
to their dimensionality, are determined by taking into account the memory dependencies
between the outer loop iterations of the NTT algorithm. Both kgs (kernel grid shape)
and kbs (kernel block shape) are two-dimensional arrays and their elements keep track of
dimensions of grids and blocks in each kernel.

With two-dimensional access structure, one can arrange the blocks of the grid into differ-
ent block groups. The first and second dimensions of kgs designate the number of blocks
in each group and the number of block groups, respectively. The blocks, executing the
same NTT operation and thus accessing the same range of vector elements, are organized
into the same block group.

Example 4.1. Supposing 𝑛 = 224 and bDim = 1024, the number of blocks is bc = 8192.
Assume also koc = [11,11,2]. In the first iteration of the first kernel, all threads in
the blocks access the entire input vector, then all blocks in the kernel belongs to the
same group. Therefore, we have kgs[2] = [8192,1]. As the first kernel iterates two times
(koc[2] = 2), the second kernel will process four independent parts of the input vector in
four independent NTT operations in its first iteration. Then, we can have four groups of
blocks, i.e., kgs[1] = [2048,4]. The final kernel has blocks, which are processing their own
parts of the vector. Then, one can think there are as many block groups as the number of
blocks. Thus, we have kgs[0] = [1,𝑏𝑐].
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In a similar fashion, we can group the threads in a block, as well. While the first dimension
of kbs designates the number of threads in each group, the second does the number of
thread groups. The grouping strategy depends on the number of iterations in the kernel.
The goal is simply to ensure that the threads in a block will access the same vector
elements in all outer iterations performed in the kernel.

Example 4.2. In Example 4.1, the first kernel performs the first two iterations of the
outer loop as koc[2] = 2. Then, a block is grouped into two thread groups with 512 threads
in each; namely, kbs = [512,2]. This way, one group of threads will be accessing the vector
elements in the second iteration, which are processed by the other thread group in the first
iteration. As the first and second groups are in the same block, they use the same shared
memory, which will eliminate accessing the global memory. In the second kernel, as there
are 11 iterations, the block is organized into 1024 thread groups with a single thread in
each group; namely kbs = [1,1024]. Finally, in the last kernel, we can place all threads in
the same group as a block is guaranteed to access the same 2bDim elements of the vector
(i.e., kbs = [1024,1]).

As observed in Example 4.2, the thread groups are excessively fragmented in the second
kernel. Since threads in the same block process the vector elements that are located in
distant locations in memory, this can adversely affect the memory access performance
due to uncoalesced access pattern. Especially, if we can place the threads that access the
same memory block (i.e., 128 B) in the same group, memory access will be optimized.
Then, different partitioning of outer loop iterations into kernels should be considered.

Example 4.3. Suppose koc = [11,7,6] for 𝑛 = 224 and bDim = 1024. Then we will have

kgs = [[1,8192], [128,64], [8192,1]] and

kbs = [[1024,1], [16,64], [32,32]].

Here, in the first two kernels, there are 32 and 16 threads in thread groups, respectively.
For instance, in the first iterations of the second kernel, 16 threads access 16 consecutive
vector elements from the global memory, which is likely to be kept in the same memory
block. If each thread accesses 8 B data types, this will result in a perfect match with the
size of the memory block of 128 B.

Working with the maximum block dimension of bDim = 1024 may not always result in
optimum performance, as good occupancy rate cannot be achieved due to poor resource
utilization as explained in Section 3.4. For instance, if we use 64-bit arithmetic (8 B)
in the computation of NTT, then, each block uses 2048 × 8 B of the shared memory
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for the operands of the butterfly operation. This turns out to result in only a poor
occupancy rate of 66% as an SM in a GPU device with compute capability 8.6 can run
maximum of 1534 threads (see Table 3.1). If, however, bDim = 256, then the maximum
theoretical occupancy will be achieved as an SM can run more blocks at the same time
with each block using 512×8 = 4 KB. If, for example, the SM runs 6 blocks of 256, then
computation uses 24 KB of the shared memory.

To see the effects of the occupancy rate on the performance we ran a set of experiments.
We executed our NTT algorithm with two different block dimensions, bDim = 1024 and
bDim = 256, on three GPU devices. As seen in Table 4.1, better occupancy rate can lead
to more than 10% improvement in execution times.

Table 4.1 Effect of the block dimension on performance with 𝑛 = 217.

bDim koc GPU-A GPU-B GPU-C
1024 [11,6] 30.1 𝜇𝑠 24.3 𝜇𝑠 12.2 𝜇𝑠
256 [9, 8] 25.5 𝜇𝑠 21.0 𝜇𝑠 12.2 𝜇𝑠

From the discussions, we can conclude that there are couple of factors that determine
the overall performance: block dimension, the number of kernels, the number of outer
iterations in the kernels, kernel and grid shapes. As all the internal architectural details
of the GPU devices and the scheduling of threads in SMs are known to a certain extent,
an exact formula for choosing the best value of a factor cannot be given. For example,
maximum block dimension of bDim = 1024 for NTT computation of high ring dimensions
is not optimum due to poor occupancy rate. However, it is not easy to determine whether
bDim = 256 or bDim = 128 is better although both enjoy maximum occupancy. Depending
on the ring dimension and other factors, bDim = 128 may not fully utilize coalesced access
to the memory. All our experiments support that using bDim = 256 is the optimum choice.
For the number of outer iterations in the kernels koc, we rely on experimental observations
and manual adjustments to a certain extent.

Using the configuration obtained in Algorithm 19 for block dimension, kernel count,
kernel and block shapes, the NTT Kernel function in Algorithm 20 is called in Step 20
of Algorithm 19. The index GAddr in Algorithm 20 is used to access the global memory
for the elements of the input vector 𝐴 when the kernel is started. The threads access the
global memory with GAddr for array elements, which are placed in the shared memory.
The size of the shared memory for each thread block depends on the block dimension
BDim and the size of input vector elements, 𝑤 (e.g. 𝑤 = 4 𝐵 or 𝑤 = 8 𝐵), and can be
computed as 2×BDim×𝑤. In order to exploit the coalesced access to the global memory,
the threads are organized into groups, whose member threads access the global memory
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with consecutive indices of the input vector.

Algorithm 20 NTT KERNEL (NTT)
Input: 𝐴[𝑛],PsiTable[𝑛],𝑚,ko,koc, 𝑞
Output: 𝐴[𝑛]

1: 𝑡1 ← bDim.𝑥× bDim.𝑦 # Block dimension
2: ℓ1 ← tID.𝑦 ×(𝑘𝑜/2𝑘𝑜𝑐−1) # Offset btw. thread groups
3: ℓ2 ← bDim.𝑥× bID.𝑥 # offset within an NTT
4: ℓ3 ← 2×𝑘𝑜 × bID.𝑦 # offset for an NTT
5: GAddr ← tID.𝑥+ℓ1 +ℓ2 +ℓ3 # For global mem.
6: SAddr ← tID.𝑥+ tID.𝑦 × bDim.𝑥 # For shared mem.
7: PsiAddr ← tID.𝑥+ℓ1 +ℓ2 +ℓ3/2 # For twiddle factors
8: offset𝐺 ← ko
9: offset𝑆 ← bDim.𝑥× bDim.𝑦

10: SMem[SAddr] ← 𝐴[GAddr]
11: SMem[SAddr+offset𝑆] ← 𝐴[GAddr+offset𝐺]
12: for 𝑖 from 0 by 1 to koc−1 do
13: u ← ⌊SAddr/𝑡1⌋×𝑡1 +SAddr
14: PsiIn ← 𝑚+⌊PsiAddr/𝑘𝑜⌋
15: CT(SMem[𝑢],SMem[𝑢+𝑡1],PsiTable[PsiIn], 𝑞)
16: syncthreads()
17: 𝑚 ← 𝑚×2
18: 𝑡1 ← 𝑡1/2
19: ko ← ko/2
20: 𝐴[GAddr] ← SMem[SAddr]
21: 𝐴[GAddr+offset𝐺] ← SMem[SAddr+offset𝑆]

Example 4.4. In a hypothetical GPU, assume 𝑛 = 256 and bDim = 4 and the partition
is that kc = 3 and koc = [3,3,2]. Then, we can compute the grid and block shapes as
kgs = [[1,32], [8,4], [32,1]] and kbs = [[4,1], [1,4], [2,2]], respectively. In the first kernel, the
blocks access the entire range of vector elements (as there is one NTT operation), therefore,
there is one block group with 32 elements as 𝑏𝑐 = 32 and bID.𝑥 ∈ [0,31],bID.𝑦 = 0. The
execution of the two outer loop iterations of the first block of the first kernel is depicted
in Table 4.2.

There are two groups of threads in each block and threads in the same group access the
consecutive elements of the input vector. Thus, we have tID.𝑥 ∈ [0,1] and tID.𝑦 ∈ [0,1].
For example, the two threads in the first group access the four elements with indices [0,128]
and [1,129], respectively. Note that, in the second iteration, there is no access to the global
memory as all vector elements are already in the shared memory. The offset value of the
indices between the first and second group of threads is calculated as ko/2koc−1 = 64 (See
ℓ1 in the second step of Algorithm 20).
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Table 4.2 The execution of the first block of the first kernel in Example 4.4

bID tID GAddr SAddr Corr.GAddr iteration
[0,0] [0,0] [0, 128] [0,4] [0,128] 0

[0,2] [0,64] 1
[1,0] [1, 129] [1,5] [1,129] 0

[1,3] [1,65] 1
[0,1] [64, 192] [2,6] [64,192] 0

[4,6] [128,192] 1
[1,1] [65, 193] [3,7] [65,193] 0

[5,7] [128,192] 1

As mentioned previously, thread blocks are organized as two-dimensional arrays in grids
and bID.𝑥 and bID.𝑦 are indices of a particular block. Here, bID.𝑦 is the index of the
NTT sub-block while bID.𝑥 is the offset within the NTT sub-block.

Example 4.5. In Example 4.4, as there is a single NTT operation in the first iteration
of the first kernel, there is one block group in a grid; namely we have bID.𝑦 = 0 for all
block groups. To calculate the index of 𝐴 in the global memory, we need to compute the
offset value ℓ2 = bDim.𝑥 × bID.𝑥. For example, when bID.𝑥 = 1, the offset value for the
index of 𝐴 in global memory will be 2 as bDim.𝑥 = 2. See Table 4.3 for the execution of
the first three blocks of the first kernel for the first thread groups.

As there are bDim.𝑥 threads in each thread group bID.𝑥 executing the same NTT oper-
ation, we need to add the offset value ℓ2 = bDim.𝑥 × bID.𝑥 (see Algorithm 20, Step 3)
within an NTT operation to the index used to access to global memory at the start of a
kernel. Finally, another offset value ℓ3 = 2 × ko × bID.𝑦 (Algorithm 20, Step 4) is added
to the global memory index. Here, bID.𝑦 is the index of the NTT operation in outer loop
iterations, which needs to be multiplied by twice the kernel offset value of ko.

As mentioned earlier, tID.𝑦 is the index of a thread group in the same block, which refers
to coalesced thread groups. For example, assume bDim = 256 and kbs = [16,16] (i.e.,
tID.𝑥 ∈ [0,15]). As stated in Section 3.3, since L1 cache memory and L2 cache memory
line sizes are 128 bytes and if we use vector elements of 8 𝐵 (64-bit), for the best value
of minimum thread group size we should have bDim.𝑥 ≥ 16. Otherwise, the number of
clock cycles increases when accessing global memory due to the increase in the number
of uncoalesced accesses, which leads to decrease in the bandwidth and increase in the
latency of computation.

Except for the last kernel, bDim.𝑥 decreases as the number of outer iterations in kernels

52



Table 4.3 The execution of the first three blocks of the first kernel in Example 4.4

bID tID GAddr SAddr Corr.GAddr iteration
[0,0] [0,0] [0, 128] [0,4] [0,128] 0

[0,2] [0,64] 1
[1,0] [1, 129] [1,5] [1,129] 0

[1,3] [1,65] 1
…

[1,0] [0,0] [2, 130] [0,4] [2,130] 0
[0,2] [2,66] 1

[1,0] [3, 131] [1,5] [3,131] 0
[1,3] [3,67] 1

…
[2,0] [0,0] [4, 132] [0,4] [4,132] 0

[0,2] [4,68] 1
[1,0] [5, 133] [1,5] [5,133] 0

[1,3] [5,69] 1

increases. Thus, using fewer outer loop iterations in those kernels must be considered.
For example, in Algorithm 19, if the kernel performs maximum number of outer iterations
(i.e., 𝑙𝑜𝑔2(2bDim)), then we will cause the worst memory access pattern as bDim.𝑥 = 1.

Example 4.6. Assume 𝑛 = 224, bDim = 1024, bc = 8192. The partitioning the outer
loop iterations as koc = [11,11,2] will lead to bDim.𝑥 = 512,bDim.𝑥 = 1, in the first
and the second kernels, respectively. However, if we use koc = [11,7,6], we will have
bDim.𝑥 = 32,bDim.𝑥 = 16 for the first two kernels, which will result in much better global
memory access pattern.

Reducing the number of outer iterations in a kernel, on the other hand, will increase the
total number of kernels. Therefore, the number of accesses to the global memory will
increase; as explained in Section 3.3, which is not good for the overall latency. However,
the best NTT implementation can be achieved if a balance is found between the number of
accesses to global memory and the number of clock cycles spent accessing global memory.

Example 4.7. We examine the effect of the kernel count with a concrete example, with
𝑛 = 218 and bDim = 256. We can use two different partitions: kc1 = 2 and koc1 = [9,9];
and kc2 = 3 and koc2 = [9,5,4]. The results are given in Table 4.4. As can be observed
in Table 4.4, when kc = 2, bDim.𝑥 = 1 for the first kernel, which will result in inferior
latency. On the other hand, when three kernels are used, as the global memory access
patterns are much better (due to bDim.𝑥 ≥ 16), the latency values are improved. As can
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Table 4.4 Effect of the number of kernels on performance with 𝑛 = 218 and bDim = 256.

koc bDim.𝑥 GPU-A GPU-B GPU-C
[9,9] [256, 1] 53.0 𝜇𝑠 31.8 𝜇𝑠 21.2 𝜇𝑠

[9, 5, 4] [256, 16, 32] 41.7 𝜇𝑠 28.4 𝜇𝑠 15.5 𝜇𝑠

be seen from the results, using extra kernels may be advantageous depending on input
parameters, if global memory access patterns result in poor performance despite fewer
number of kernels.

4.3 4STEP-NTT GPU IMPLEMENTATION

As can be observed in Algorithm 10 given for 4Step-NTT, the algorithm consists of six
main operation blocks: i) transpose of 𝑛1 × 𝑛2 matrix 𝐵 (Step 6), ii) 𝑛2 𝑛1-point NTT
of rows of 𝐵 (Steps 7-9), iii) transpose of 𝑛2 ×𝑛1 matrix 𝐵 (Step 10), iv) multiplication
with twiddle factors (Steps 11-15), v) 𝑛1 𝑛2-point NTT of columns of 𝐵 (Steps 16-18),
and vi) transpose of 𝑛1 ×𝑛2 matrix 𝐵 (Step 19). Here, the NTT operation blocks can be
performed in parallel as there are 𝑛2 or 𝑛1 independent NTT operations in each block.

Note that the vector-to-matrix and matrix-to-vector operations do not have to performed
explicitly. Note also that the first and the last transpose operations are not necessary
and can be skipped provided that both NTT and inverse NTT operations do not perform
them. This naturally necessitates modification in data access patterns, which will not pose
any significant performance penalty. The transpose operation, on the other hand, can be
prohibitively expensive for large matrices, and eliminating them results in improvement
in the latency. Finally, the multiplication with twiddle factors in fourth operations block
can be incorporated into the second NTT operation block. With these optimizations,
the 4Step-NTT algorithm is simplified to have only two NTT operation blocks and a
transpose operation in between.

In both NTT operation blocks, there are many independent NTT operations of much
smaller sizes than those used in the Merge-NTT algorithm, which can be performed
in parallel. The number and the sizes of NTT operations in the first and second NTT
blocks can be important in the performance of its GPU implementation. Although in the
original 4Step-NTT algorithm, it is suggested that 𝐵 be a square matrix (or as close to
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square matrix as possible), namely 𝑛1 ≈ 𝑛2, the algorithm works with various selections
of 𝑛1 and 𝑛2. Then, we need to determine specific values of of 𝑛1 and 𝑛2 for a given 𝑛
to optimize the second transpose operation, which may be problematic as it can result in
costly memory accesses.

Example 4.8. Consider the ring dimension of 𝑛 = 222, where the coefficients of input
polynomial can be arranged into a 211 × 211 matrix; i.e., 𝑛1 = 𝑛2 = 211. Then, the first
NTT block consists of 211-point NTT operations. And, considering bDim ≤ 1024, one
block can only process at most 2bDim/𝑛1 = 4 NTT operations. Consequently, only a
small number of threads in a block will access the consecutive addresses in the global
memory during the subsequent transpose operation. This will lead to sub-optimal access
pattern to the global memory, which adversely affects the latency. Thus, after the first
NTT operation block, it will be more efficient to terminate the kernel and launch another
that performs transpose operation through shared memory. Although using an additional
kernel for the transpose increases the number of global memory accesses, from latency
perspective this turns out to be more efficient compared to storing the matrix elements
in transposed format directly to global memory in the same kernel after the first NTT
operation block. This is due to the fact that performing the transpose by the existing
threads of the kernel blocks through global memory will lead to uncoalesced accesses by
the threads, resulting in increased latency for global memory access. Instead, that storing
the matrix elements to the global memory before the transpose and then loading them in
a new kernel will enable to perform the transpose in the shared memory can be much
more efficient. Therefore, using an additional kernel enables the transpose process to be
performed with much lower latency.

Alternatively, using a smaller value of 𝑛1 can be advantageous to improve the memory
access pattern during the transpose operation performed in the same kernel as the first
block of NTT operations. For instance, we can use the dimensions 𝑛1 = 27 and 𝑛2 = 215

for 𝑛 = 222. This way, each block’s shared memory can be considered as two-dimensional
array, each row of which corresponds to an independent NTT operation and by this means
as many as 2bDim/𝑛1 = 16 NTT operations can be performed for 𝑛1 = 128. After all NTT
operations completed, columns of the array are read by threads and stored to the global
memory exploiting the advantages of coalesced accesses. In summary, using a suitably
small values of 𝑛1, one can eliminate the extra kernel for the transpose operation without
the adverse effect of sub-optimal global memory accesses.

Table 4.5 shows the timing results of 4Step-NTT based on five different cases for 𝑛 = 222

for the two matrix dimensions (𝑛1,𝑛2) ∈ {(211,211), (27,215)} on three different GPU
devices, where different implementation techniques are applied.
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Table 4.5 Effect of the matrix dimension on the performance of the 4Step NTT Algo-
rithm

𝑛 case [𝑛1,𝑛2] GPU-A GPU-B GPU-C

222

1 [211,211] 1219.29 𝜇𝑠 439.99 𝜇𝑠 342.51 𝜇𝑠
2 [211,211] 1226.70 𝜇𝑠 413.65 𝜇𝑠 256.77 𝜇𝑠
3 [211,211] 893.27 𝜇𝑠 302.35 𝜇𝑠 190.70 𝜇𝑠
4 [27,215] 780.11 𝜇𝑠 296.16 𝜇𝑠 175.92 𝜇𝑠
5 [27,215] 617.26 𝜇𝑠 252.71 𝜇𝑠 142.84 𝜇𝑠

The first three cases in Table 4.5 capture the effect of transpose operations in perfor-
mance. For instance, in cases 1 and 2, the first and last transpose operations explained in
Algorithm 10 are included in timings. In case 1, all three transpose operations described
in Algorithm 10 are performed in the NTT kernels, which has an adverse effect on per-
formance because of uncoalesced access to the global memory. In case 2, on the other
hand, using an additional kernel for each transpose results in much better performance
compared to case 1 for A 100 and RTX 4090.

As explained earlier, when used in an application, there is no need to execute the first
and the last transpose operations. In case 3, only one transpose operation is performed
in a separate kernel, which leads to significant acceleration.

In cases 4 and 5 are we use a rectangular matrix (𝑛1,𝑛2) = (27,215), where there is a
significant speedup in comparison with the first three cases. The difference between cases
4 and 5 is that case 5 does not use an additional kernel for transpose operation. Since
𝑛1 is small, many NTT operations can be performed in the same GPU block. After the
NTT operation, the transpose operation can be performed in the same kernel via reading
the columns of the shared memory.

The dimension of the second block of NTT operations also plays an important role and
very large values of 𝑛2 can lead to performance penalties. A balance between 𝑛1 and
𝑛2 should be reached to achieve the best performance. Table 4.6 contains the matrix
dimensions for all ring sizes of interest, which is found to give the best performance in
each case experimentally.
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Table 4.6 Matrix Sizes for 4Step NTT Implementation

𝑛 𝑛1 ×𝑛2 𝑛 𝑛1 ×𝑛2

212 25 ×27 219 25 ×214

213 25 ×28 220 25 ×215

214 25 ×29 221 26 ×215

215 26 ×29 222 27 ×215

216 27 ×29 223 27 ×216

217 25 ×212 224 28 ×216

218 25 ×213

4.4 BFV GPU Library

This section explains our GPU implementations of homomorphic addition, multiplication,
relinearization and rotation operations of the BFV homomorphic encryption scheme. Al-
gorithms for all these homomorphic operations are given as pseudo-codes as implemented
in the Microsoft SEAL library. All algorithms are implemented so that they use our GPU
implementation of the NTT algorithm as described in Section 4.1 and Section 4.2.

4.4.1 Key Generation

As shown by Algorithms 12 and 13 in Section 2.5.3.1, key generation operations need
uniform and Gaussian random number generators. The cuRAND2 library, which provides
facilities that focus on the simple and efficient generation of high-quality pseudorandom
and quasirandom numbers, is used for random number generation on GPU. Since, all
random numbers generated in kernel, the number of global memory access as well as
latency are reduced. Rest of the key generation algoritm algorithms require polynomial
multiplication, so that we used efficient GPU NTT algoritm, which explained before
to convert polynomials to the NTT domain. Then, the polynomial multiplications are
performed element-wise for all RNS bases. Since BFV ciphertexts need to be in the
polynomial domain, after the polynomial multiplication performed in the NTT domain,
the results are converted to polynomial domain.

2https://docs.nvidia.com/cuda/curand/
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4.4.2 Encryption

Similar to the key generation operation, the encryption operation also needs random
number generation. As expressed in Algorithm 14 in Section 2.5.3.2, random numbers
are multiplied and added with public key easily and parallel in a single kernel. Iterations
given in lines 6 and 10 are merged into a single kernel.

4.4.3 Decryption

The decryption of the BFV scheme is implemented using Algorithm 15 in Section 2.5.3.3.
Unlike key generation and encryption operations, decryption operation needs no random
number generation and thanks to RNS, all for loops can be directly implemented in paral-
lel. All operations except for NTT and INTT operations for the 𝑐𝑡[1]×𝑠𝑘 multiplication
are merged as much as possible to maintain a minimum kernel count.

4.4.4 Addition/Substract

As explained in Section 2.5.3.4, addition/subtraction operations of the BFV scheme are
simple and inexpensive and their implementation consists of only one kernel. In this
kernel, each ring element is represented as a vector over 𝑍𝑞𝑖

for each modulus in the RNS
base, and modulo addition/subtraction is performed over the elements of the vectors.

4.4.5 Multiplication

In addition to kernel functions to implement NTT and INTT operations, ten different
CUDA kernel functions are implemented for the multiplication operation (see Figure 2.1
for these operations). Each of the kernel functions use a one-dimensional block and thread
indexing. Before the GPU computation, all necessary parameters are generated on CPU
of the host computer, then sent to GPU. In what follows, we briefly mention all of them,
but provide pseudo-codes for some important ones in case they are more involved.
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Algorithm 21 Fast Convert Array
Input: 𝑟𝑛

𝑖 ∈ R𝑞𝑖,𝑛
Input: 𝑃𝑖 = [𝑞𝑖

𝑞 ]𝑞𝑖
, 𝑏𝑎𝑠𝑒_𝑐𝑗

𝑖 = [ 𝑞
𝑞𝑖

]𝐵𝑠𝑘𝑗
Output: 𝑐𝑡𝑛

𝑖 ∈ R𝐵𝑠𝑘,𝑛
1: for 𝑖 from 0 by 1 to 𝑟−2 do
2: 𝑚𝑢𝑙𝑡𝑛

𝑖 = [𝑟𝑛
𝑖 ×𝑃𝑖]𝑞𝑖

3: for 𝑖 from 0 by 1 to 𝐵𝑠𝑘_𝑙𝑒𝑛−1 do
4: 𝑠𝑢𝑚𝑛

𝑖 = 0
5: for 𝑗 from 0 by 1 to 𝑟 −2 do
6: for 𝑘 from 0 by 1 to 𝑛−1 do
7: 𝑠𝑢𝑚𝑘

𝑖 = [𝑠𝑢𝑚𝑘
𝑖 +(𝑚𝑢𝑙𝑘𝑖 ×𝑏𝑎𝑠𝑒_𝑐𝑗

𝑖)]𝐵𝑠𝑘𝑗

8: 𝑐𝑡𝑛
𝑖 = 𝑠𝑢𝑚𝑛

𝑖

Algorithm 22 Fast Floor
Input: 𝑟𝑛

𝑖 ∈ R𝑞𝑖,𝑛, 𝑟𝑛
𝑗 ∈ R𝐵𝑠𝑘𝑗,𝑛, 𝑃𝑖 = [𝑞𝑖

𝑞 ]𝑞𝑖

Input: 𝑏𝑎𝑠𝑒_𝑐𝑗
𝑖 = [ 𝑞

𝑞𝑖
]𝐵𝑠𝑘𝑗

Output: 𝑐𝑛
𝑖 ∈ R𝑞𝑖,𝑛

1: 𝑐𝑡𝑛
𝑖 ← 𝑓𝑎𝑠𝑡_𝑐𝑜𝑛𝑣_𝑎𝑟𝑟𝑎𝑦(𝑟𝑛

𝑖 ,𝑃𝑖, 𝑏𝑎𝑠𝑒_𝑐𝑗
𝑖)

2: for 𝑖 from 0 by 1 to 𝐵𝑠𝑘_𝑙𝑒𝑛−1 do
3: for 𝑘 from 0 by 1 to 𝑛−1 do
4: 𝑐𝑡𝑘

𝑖 = [𝑟𝑘
𝑗 −𝑐𝑡𝑘

𝑖 ]𝐵𝑠𝑘𝑖
5: 𝑐𝑘

𝑖 = [𝑐𝑡𝑘
𝑖 ×[𝑞]−1

𝐵𝑠𝑘𝑖
)]𝐵𝑠𝑘𝑖

The first two CUDA kernel functions are employed to implement base conversion opera-
tion from the RNS base 𝒬 to ℬ𝑠𝑘. The pseudo-code of the base conversion operation is
given in Algorithm 21, as it is implemented in the Microsoft SEAL library. In particular,
the first kernel implements the for loop in lines 1-2 of Algorithm 21. As the result of
the for loop is needed in the subsequent operations in lines 3-8 of Algorithm 21 a second
kernel is used.

The third CUDA kernel function is implemented to perform the small Montgomery re-
duction operation (i.e., sm_mrq Figure 2.1), which is employed to eliminate errors due to
the base conversion operation in the previous step. After the NTT operations are applied
to all vectors both in the RNS and extension bases, the fourth and fifth CUDA kernel
functions are used to perform multiplication of the ciphertexts; the former in the RNS
base 𝒬, multip_q and the latter in the extension base ℬ𝑠𝑘, multip_BSK (see the middle
block in Figure 2.1). Then, the INTT operation follows the multiplication operation to
convert the ciphertexts back to the polynomial domain. The sixth CUDA kernel func-
tion is used to implement the multiplication of ciphertexts with the plaintext modulus 𝑡,
multip_t. The seventh CUDA kernel function, named first_fast_floor, implements
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Algorithm 23 Switch Key
Input: 𝑐𝑖[0], 𝑐𝑖[1], 𝑐𝑖[2] ∈ R𝑞𝑖,𝑛
Input: 𝑒𝑣𝑘𝑗

𝑖 [𝑘] ∈ R𝑞𝑗,𝑛, where 𝑘 ∈ {0,1}, 0 ≤ 𝑗 < 𝑟, and 0 ≤ 𝑖 < (𝑟−1)
Output: 𝑐𝑡𝑖[0], 𝑐𝑡𝑖[1] ∈ R𝑞𝑖,𝑛

1: ̄𝐴𝑗,𝑘 = 1
2: for 𝑖 from 0 by 1 to 𝑟−2 do
3: for 𝑗 from 0 by 1 to 𝑟 −1 do
4: for 𝑘 from 0 by 1 to 1 do
5: 𝑎𝑖,𝑗,𝑘 = [𝑁𝑇 𝑇 𝑛,𝑞𝑗

(𝑐𝑖[2])⊙𝑒𝑣𝑘𝑗
𝑖 [𝑘]]𝑞𝑗

6: ̄𝐴𝑗,𝑘 = [ ̄𝐴𝑗,𝑘 +𝑎𝑖,𝑗,𝑘]𝑞𝑗

7: for 𝑗 from 0 by 1 to 𝑟 do
8: 𝐴𝑗,0 = 𝐼𝑁𝑇 𝑇 𝑛,𝑞𝑗

( ̄𝐴𝑗,0)
9: 𝐴𝑗,1 = 𝐼𝑁𝑇 𝑇 𝑛,𝑞𝑗

( ̄𝐴𝑗,1)
10: ℎ𝑎𝑙𝑓 = ⌊𝑞𝑟−1

2 ⌋
11: for 𝑖 from 0 by 1 to 𝑟−1 do
12: ℎ𝑎𝑙𝑓𝑚𝑜𝑑 = [ℎ𝑎𝑙𝑓]𝑞𝑖
13: for 𝑘 from 0 by 1 to 1 do
14: 𝑡𝑚𝑝 = [[𝐴𝑟−1,𝑘 +ℎ𝑎𝑙𝑓]𝑞𝑟−1

−ℎ𝑎𝑙𝑓𝑚𝑜𝑑]𝑞𝑖
15: 𝑡𝑚𝑝 = [𝑡𝑚𝑝 ×𝑞−1

𝑟 ]𝑞𝑖
16: 𝑐𝑡𝑖[𝑘] = [𝑐𝑖[𝑘]+ 𝑡𝑚𝑝]𝑞𝑖

the first step of the fast_floor function (see Algorithm 22 for the pseudo-code): the
results of the multip_t kernel function in 𝒬 and ℬ𝑠𝑘 bases are converted to the ℬ𝑠𝑘
base. The eighth CUDA kernel function, named second_fast_floor, eliminates errors
with the flooring method instead of the rounding method. After the fast_floor kernel
function, the fast base conversion function is performed in the ninth and tenth CUDA
kernel functions. The ninth kernel function performs the conversion from the extension
base ℬ𝑠𝑘 to the RNS base 𝒬. Finally, the tenth kernel function, second_fastbdconv_sk
is used to eliminate the rounding errors.

4.4.6 Relineariazation

The BFV relinearization operation uses switchkey operation as explained in Figure 2.2,
a pseudo-code of which is given in Algorithm 23 as it is implemented in the Microsoft
SEAL library. The relinerization operation usually follows a homomorphic multiplication
of ciphertexts, which are given in the polynomial domain in BFV. The third component of
the ciphertext, 𝑐[2], which are to be multiplied with evaluations keys, are first converted
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Algorithm 24 Apply Galois
Input: 𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡,𝑐𝑗

𝑖 [𝑘] ∈ R𝑞𝑖,𝑛, where 0 ≤ 𝑖 < (𝑟 −1) 0 ≤ 𝑗 < 𝑛 𝑘 = 0,1
Output: 𝑐𝑗

𝑖 [𝑘] ∈ R𝑞𝑖
1: for 𝑖 from 0 by 1 to 𝑟−2 do
2: for 𝑗 from 0 by 1 to 𝑛−1 do
3: 𝑖𝑛𝑑𝑒𝑥_𝑟𝑎𝑤 = 𝑗 ×𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡
4: 𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥_𝑟𝑎𝑤 & (𝑛−1)
5: for 𝑘 from 0 by 1 to 1 do
6: 𝑟_𝑣𝑎𝑙 = 𝑐𝑗

𝑖 [𝑘]
7: if (𝑖𝑛𝑑𝑒𝑥_𝑟𝑎𝑤 ≫ 𝑙𝑜𝑔2(𝑛)) & 1 then
8: 𝑛𝑜𝑛_𝑧𝑒𝑟𝑜 = 𝑖𝑛𝑡(𝑟_𝑣𝑎𝑙 ≠ 0)
9: 𝑟_𝑣𝑎𝑙 = (𝑞𝑖 −𝑟_𝑣𝑎𝑙)&(−𝑛𝑜𝑛_𝑧𝑒𝑟𝑜)

10: 𝑐𝑗
𝑖 [𝑘] = 𝑟_𝑣𝑎𝑙

to the NTT domain using our NTT implementation (see line 5 of Algorithm 23). Then,
the multiplication with evaluation keys are performed in the lines 2-6 of Algorithm 23,
which are implemented in a single kernel function.

Due to the fact that no polynomial multiplication is needed after line 9, the results are
converted back to the polynomial domain (see lines 7-9 of Algorithm 23). The lines
10 and 12 are used to implement the arithmetic with the half modulus as previously
described in Figure 2.2. Lastly, the operations between lines 10 to 16 in Algorithm 23
are implemented with a single kernel.

4.4.7 Rotation

The BFV rotation operation uses the so-called apply_galois method, whose pseudo-
code is given in Algorithm 24 and the switchkey operation in Algorithm 23. Before the
rotation operation, galois_elt algorithm for a given shift amount is executed in CPU
using Algorithm 25 and the result galois_elt is sent to GPU. Then, a single kernel is
used to implement apply_galois algorithm. Finally, another kernel function is used to
implement switchkey operation as explained in part 2.5.3.7.
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Algorithm 25 Galois Elt
Input: 𝑠𝑡𝑒𝑝𝑠,𝑛
Output: 𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡

1: 𝑚32 = 𝑛×2
2: if 𝑠𝑡𝑒𝑝𝑠 == 0 then
3: return 𝑚32−1
4: else
5: 𝑝𝑜𝑝_𝑠𝑡𝑒𝑝𝑠 = 𝑎𝑏𝑠(𝑠𝑡𝑒𝑝𝑠)
6: if 𝑠𝑡𝑒𝑝𝑠 < 0 then
7: 𝑠𝑡𝑒𝑝𝑠 = (𝑛 ≫ 1)−𝑝𝑜𝑝_𝑠𝑡𝑒𝑝𝑠
8: else
9: 𝑠𝑡𝑒𝑝𝑠 = 𝑝𝑜𝑝_𝑠𝑡𝑒𝑝𝑠

10: 𝑔𝑒𝑛 = 3
11: 𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡 = 1
12: for 𝑖 from 0 by 1 to 𝑠𝑡𝑒𝑝𝑠 do
13: 𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡 = 𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡×𝑔𝑒𝑛
14: 𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡 = 𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡 & (𝑚32−1)
15: return 𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡
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5. RESULT AND COMPARISON

In this section, we present the results of three different GPU implementations of NTT on
three different GPU machines, whose architectural details are given in Table 5.1. Only
NTT results and comparisons are included in this section since INTT is just an inverse
of NTT, and its results are almost identical to NTT results. Addititionaly, we present
the results of the BFV implementation on GPU and their comparison with those in the
state-of-the-art works in the literature. Also, we present the implementation of gradient
boosting framework (XGBoost) (ŞS Mağara et al., 2021) using our GPU library to show
its performance in practical real-world applications.

In our NTT implementations, three different types of modular reduction, which are op-
timized in assembly, are applied. Two of them are Barret Shivdikar et al. (2022) and
Plantard Plantard (2021) reductions, which can work with any NTT friendly prime, while
the third is the Goldilocks reduction Hamburg (2015), if the 64-bit goldilocks prime (i.e.,
𝑞 = 264 −232 +1) is employed. The goldilocks reduction method, which consists of fewer

Table 5.1 Hardware features of the Testbed

GPU
Feature GPU-A GPU-B GPU-C

Architecture RTX 3060Ti A100 80 GB RTX 4090
Threads 4864 6912 16384

Boost Freq. 1665 MHz 1410 MHz 2520 MHz
Memory Size 8 GB 80 GB 24 GB
Memory Type GDDR6 HBM2e GDDR6X
Memory Bus 256 bit 5120 bit 384 bit
Bandwidth 448 GB/s 1935 GB/s 1008 GB/s
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number of instructions, is used for more efficient modular arithmetic. Here, we also show
the effects of a fast goldilocks modular reduction method on the overall performance of an
NTT operation. Lastly, we include performance comparison of the proposed algorithms
with those in the literature.

All the measurements in the subsequent tables are kernel timings only; namely, they do
not include the transfer time from the CPU to the GPU. While taking the measurements,
the cudaEventRecord function, which is one of CUDA’s native functions, is used. It
is a reliable function for measuring time as it measures all GPU activity from the time
kernels are invoked to the terminations of the kernels. To ensure stability, all scenarios
are repeated at least 50 times (as many as 1000 times for most cases) depending on the
ring dimension, and the average values of the results are presented. In addition, the
timings of all implementations are taken on devices with the same CUDA driver and the
same operating system1.

5.1 NTT Implementations Results and Comparison with Related Works

In this section, we report on our GPU implementations of NTT algorithms and compare
their results with those running on CPU and other GPU implementations in the literature.

5.1.1 Comparison of Three NTT Implementations Between Each Other

In this section, we compare three GPU implementations of NTT, explained in Chap-
ter 4, which are referred to as MERGE-1, MERGE-2, and 4-STEP, respectively.
As the names indicate the first two algorithms are two different implementations of the
Merge algorithm while the third is based on the 4Step algorithm. For comparison we
use latency and throughput as metrics. The latency results of a single NTT for all three
NTT implementations are given in Table 5.2 with three different GPUs in Table IV,
where the better timings are in bold. As can be observed from the table, the timings of
the MERGE-2 and 4-STEP are generally close to each other and much better than

1Ubuntu 20.04 LTS and CUDA version 12.1
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Table 5.2 Timings of NTT Algorithms for Single Forward NTT on different GPUs in
𝜇𝑠 (Latency)

MERGE-1 MERGE-2 4-STEP
𝑙𝑜𝑔𝑛 GPU-A / GPU-B / GPU-C GPU-A / GPU-B / GPU-C GPU-A / GPU-B / GPU-C
12 12.71 / 18.15 / 10.89 8.32 / 12.57 / 7.64 7.92 / 12.62 / 7.29
13 15.02 / 20.64 / 12.26 8.43 / 12.94 / 7.74 8.30 / 12.64 / 7.53
14 19.18 / 27.11 / 16.02 9.15 / 12.97 / 7.80 8.95 / 13.70 / 8.08
15 33.81 / 42.79 / 24.69 10.49 / 13.84 / 8.03 10.36 / 14.41 / 8.49
16 - / - / - 14.79 / 15.93 / 8.66 14.33 / 16.34 / 9.04
17 - / - / - 24.66 / 21.94 / 11.81 23.97 / 22.57 / 11.86
18 - / - / - 41.70 / 28.38 / 15.46 40.75 / 28.89 / 15.37
19 - / - / - 85.25 / 43.38 / 24.54 87.30 / 43.19 / 23.13
20 - / - / - 164.02 / 72.12 / 39.40 165.85 / 72.60 / 38.33
21 - / - / - 321.88 / 142.29 / 70.68 317.61 / 135.83 / 66.37
22 - / - / - 647.32 / 272.99 / 135.19 617.26 / 252.71 / 142.84
23 - / - / - 1422.32 / 602.16 / 377.91 1221.85 / 499.01 / 422.91
24 - / - / - 3448.09 / 1152.67 / 1020.95 2514.96 / 1016.50 / 969.92

All time measurements are taken for the 64-bit Goldilocks prime.

MERGE-1. The main reason of this is that MERGE-1 performs sequentially inside
the kernel and its occupancy is relatively lower than the other two implementations. Ad-
ditionally, MERGE-1 is not designed to run for the ring sizes higher than 215 due to its
register-based design. For relatively small values of 𝑛, the MERGE-2 algorithm tends
to perform better than the 4-STEP algorithm. For very large values of 𝑛, however, the
4-STEP algorithm’s performance is generally superior, due to the fact that the former
algorithm becomes memory-bound with the increase of 𝑛 and that better spatial locality
of the latter algorithm becomes advantageous. Another observation from the table is that
the architectural differences can affect the performance to a certain extent. For instance,
while the MERGE-2 is slower than the 4-STEP on RTX 4090 for 𝑛 = 220, the opposite
is true for the other two GPU devices.

In HE implementations, as many independent NTT operations are executed concurrently,
we also need to measure the throughput. GPU has many threads to execute many NTT
operations in parallel. In fact, running a single NTT does not reveal the real potential
of a GPU device as its resources are not fully utilized, especially for smaller values of 𝑛.
Table 5.3 presents the timing results for different number of concurrently running NTT
operations (i.e., 4, 16, 32,64, 128). It is clear from the table that GPU devices can compute
many NTT operations in parallel without increasing the execution time significantly.
However, when the GPU resources are fully utilized, the execution of NTT operations
is serialized. For instance, on RTX 4090, when 𝑛 = 214 while four NTT operations take
8.04 𝜇𝑠, 16 of them take only slightly more time, 11.48 𝜇𝑠 when MERGE-2 is used. The
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Table 5.3 Timings of GPU implementations of Batch Forward NTT in 𝜇𝑠

NTT GPU-A GPU-B GPU-C
n count • / † / ‡ • / † / ‡ • / † / ‡

212

4 12.91 / 8.67 / 8.67 17.85 / 12.24 / 12.98 10.71 / 7.59 / 7.72
16 15.56 / 12.27 / 12.63 18.39 / 13.91 / 14.20 10.99 / 7.86 / 8.14
32 23.08 / 17.09 / 17.41 18.72 / 15.65 / 16.98 11.63 / 8.54 / 9.25
64 41.17 / 26.90 / 28.69 27.56 / 19.63 / 20.91 13.98 / 10.67 / 10.68
128 80.74 / 53.04 / 54.71 37.09 / 27.85 / 28.97 22.21 / 15.62 / 15.25

213

4 15.28 / 9.45 / 9.82 20.78 / 13.25 / 13.66 12.31 / 7.65 / 8.04
16 24.08 / 17.52 / 18.53 21.19 / 16.20 / 17.14 12.72 / 8.80 / 9.51
32 46.66 / 28.00 / 29.24 28.67 / 20.22 / 21.73 15.45 / 11.08 / 11.36
64 92.75 / 54.41 / 57.89 40.65 / 29.10 / 30.48 25.08 / 16.05 / 15.92
128 169.42 / 101.53 / 104.55 60.93 / 46.07 / 48.11 44.39 / 24.89 / 24.72

214

4 22.52 / 13.24 / 13.70 27.53 / 14.94 / 15.10 16.22 / 8.04 / 8.55
16 53.45 / 29.80 / 31.90 34.71 / 21.10 / 22.34 17.59 / 11.48 / 11.70
32 106.86 / 56.19 / 60.98 43.19 / 30.63 / 31.76 26.85 / 16.82 / 16.80
64 209.63 / 103.47 / 110.90 70.60 / 48.90 / 51.29 47.67 / 26.36 / 26.32
128 400.73 / 197.25 / 209.85 121.22 / 88.52 / 90.58 86.84 / 47.11 / 45.16

215

4 41.88 / 19.41 / 20.46 43.48 / 17.26 / 18.59 25.57 / 9.19 / 9.86
16 134.87 / 57.71 / 62.48 57.73 / 32.26 / 33.21 32.65 / 17.55 / 17.31
32 266.47 / 106.48 / 112.25 74.95 / 51.85 / 53.47 53.20 / 27.81 / 27.41
64 539.45 / 200.83 / 211.89 143.50 / 93.86 / 94.58 97.02 / 49.83 / 47.72
128 1057.04 / 389.93 / 407.62 263.55 / 192.83 / 185.17 186.45 / 90.66 / 85.48

216

4 - / 33.64 / 34.28 - / 23.26 / 24.30 - / 12.46 / 12.49
16 - / 113.16 / 112.93 - / 55.92 / 56.30 - / 30.76 / 28.56
32 - / 219.09 / 211.73 - / 100.77 / 99.30 - / 53.85 / 49.66
64 - / 422.00 / 406.88 - / 196.43 / 188.83 - / 97.16 / 91.00
128 - / 819.44 / 803.18 - / 366.00 / 354.03 - / 184.86 / 192.16

•: MERGE-1 NTT
†: MERGE-2 NTT
‡: 4STEP NTT
All time measurements are taken for the 64-bit Goldilocks prime.

increase in execution times is more salient for RTX 3060 Ti and A 100, which support
fewer number of threads. Nevertheless, we observe the same effect for RTX 4090 also for
higher ring dimensions, which require more resources.

When performances of the three GPUs are compared, all algorithms generally run faster
on RTX 3060Ti than A 100 at low ring dimensions when the number of NTT operations is
low. This is due to the fact that the clock frequency is more dominant than the bandwidth;
in other words, the operations are compute-bounded for those input sizes. However, when
the ring dimension and the number of NTT operations are high, the execution becomes
memory-bound. Then, A 100 performs much better than RTX 3060 Ti with its superior
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memory bandwidth. RTX 4090 has a relatively high memory bandwidth, albeit only
half as much as A100. Nonetheless, thanks to the new ADA architecture, RTX 4090
has many more threads and operates at a very high frequency. Thus, RTX 4090 is the
best of the three GPU devices for all instances (see Table 5.2 and Table 5.3). However,
as the operations become memory-bound for higher values of 𝑛, the difference in the
timing results obtained on RTX 4090 and A 100 becomes mush less visible. For example,
for 𝑛 = 222 MERGE-2 takes 272.99 𝜇𝑠 and 135.19 𝜇𝑠 on A100 and on RTX 4090,
respectively, which translates into a speedup of 2.02× (see Table 5.2). However, the
speedup values dramatically drop to 1.59× for 𝑛 = 223 and 1.13× for 𝑛 = 224.

In our all experiments, we report the timing results for the 64-bit goldilocks primes, for
which the modular reduction is very fast. On the other hand, when residue number
system (RNS) is used to work with much larger modulus, as in the case of Homomorphic
Encryprion (HE) schemes, using random primes with a fast reduction algorithm can be
advantageous as it decreases the number of base moduli in the RNS Dai et al. (2018). For
HE applications, special goldilocks prime 𝑄 = 264 +232 +1 is used as carrier for smaller
primes, 𝑞𝑖, employed in RNS arithmetic. When carrier prime is used for NTT, there is
an upper bound for RNS prime bases, imposed by the inequality 𝑞2

𝑖 𝑛 < 𝑄. For instance,
each base can be at most 25-bit and 24-bit, respectively, for the ring sizes 𝑛 = 214 and
𝑛 = 215.

Thus, we also implemented the MERGE-2 algorithm using 60-bit NTT-friendly random
primes with Barret and Plantard reduction to see the performance penalty due to their
usage. For the ring dimension range of [212,224], using 64-bit goldilocks primes offers
maximum 25.5% speedup over the NTT implementation with random primes for A100
(the figures are very close for the other GPU devices). Consequently, we can conclude
that using NTT-friendly random primes can be more advantageous for HE applications
using RNS arithmetic.

5.1.2 Comparison of NTT Results with Related Works in the Literature

The literature contains several works that accelerate NTT (and related operations) using
old as well as the contemporary GPU devices. They either use a randomly chosen NTT-
friendly primes or specials primes (e.g., Goldilocks primes), which offer faster modular
reduction. We compare our timing results of single NTT with those in the literature
for the parameter sets suitable for the HE algorithms in Table 5.4. The table lists the
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Table 5.4 Timings (𝜇𝑠) of GPU implementation of Our Single Forward NTT and their
comparison with the works in literature

log2 𝑛

Work Device log2 𝑞 12 13 14 15 16
Kim et al. (2020) Titan V 60 - - 44.1 84.2 -

Zheng (2020) RTX 2080 Ti 64∗ - - - 83.3 -
Goey et al. (2021) GTX 1070 64∗ - - 57.8 - -

Dai and Sunar (2015) GTX 1070 64∗ - - 66.8 - -
Özerk et al. (2022) V 100 55 - - 29 39 -

Shivdikar et al. (2022) A 100 62 - - 13.3 - 16.5
Shivdikar et al. (2022) V 100 62 - - 11.5 - 16.4

T.W. RTX 3060 Ti 64∗ 8.32 8.43 9.15 10.49 14.79
T.W. A 100 64∗ 12.57 12.94 12.97 13.84 15.93
T.W. RTX 4090 64∗ 7.64 7.74 7.78 8.03 8.66
T.W. RTX 3060 Ti 60 8.45 8.67 9.38 11.45 15.00
T.W. A 100 60 12.72 13.22 13.27 14.56 16.15
T.W. RTX 4090 60 7.60 7.65 7.77 8.20 8.86

T.W.: This Work (MERGE-2)
⋆: uses constant prime 𝑞 = 264 −232 +1

results for both 60-bit random primes implemented with the Plantard Reduction and the
64-bit Goldilocks prime implemented with the Goldilocks Reduction. Considering the
architectural differences, our MERGE-2 algorithm compares favorably with all works
in the literature. More results including those taken with three different modular reduc-
tion methods, Goldilocks, Plantard, and Barret Reductions, respectively, are available
Table 7.1 in Appendix.

We also compare our results with the GPU implementation (known as SPPARK2),
which is intended for ZK-SNARK protocols working with much higher ring dimensions
and a larger 253-bit random prime. For a fair comparison, we adopt the SPARKK im-
plementation of the Montgomery multiplication algorithm in our CUDA code. Only the
kernels of SPPARK for NTT are included in the timings excluding the kernels for LDE
or bit reverse order operations. In addition, the execution times of same number of NTT
operations are measured for both SPPARK and our implementations and their averages
are calculated. The average timings of a single NTT operation for ring dimensions be-

2https://github.com/supranational/sppark/tree/main
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Table 5.5 Timings (𝜇𝑠) of GPU implementation of Our Single Forward NTT for higher
values of 𝑛 with log𝑞 = 253 (𝑞 is BLS12-377 prime)

GPU-B GPU-C
𝑙𝑜𝑔𝑛 T.W. / SPPARK T.W. / SPPARK
19 230.68 / 246.66 111.60 / 132.96
20 416.47 / 515.72 206.88 / 259.88
21 854.36 / 937.38 424.25 / 504.40
22 1690.40 / 1912.60 959.88 / 1075.67
23 3511.66 / 4284.51 2027.27 / 2362.28
24 7294.05 / 8060.20 4178.86 / 4484.67
25 15251.5 / 16952.4 8620.7 / 9131.73
26 31388.1 / 38815.0 17728.4 / 20213.7
27 65097.4 / 74886.3 36780.5 / 38177.9
28 137242.0 / 179563.0 78886.7 / 82987.3

T.W.: This Work (MERGE-2)

tween 219 and 228 are reported in Table 5.53. The results in Table 5.5 show that our
implementation is 6.9/30.8% and 3.8/25.6% min/max faster than SPPARK on A 100
and RTX 4090, respectively. In addition, our implementation also supports higher ring
dimensions than 228 as the SPPARK implementation.

5.2 BFV Library Operation Results and Comparison with Related Works

There are not many prior works in the literature that present GPU implementations
of homomorphic operations of the BFV scheme, and the existing ones do not give per-
formance results for all homomorphic operations let alone the homomorphic application
results. Therefore, the comparison of our work with other works in the literature cannot
be comprehensive. The work in (Dai and Sunar, 2015) provides timing results on GPU for
homomorphic applications of an old and completely different homomorphic encryption
scheme, LTV (López-Alt et al., 2017), which is not in use today. We compare the results
of our GPU implementation of the BFV-scheme operations with the work (Al Badawi

3The extended version of the execution times comparison for ring dimensions between 212 and 228 is available in
Table 7.2 in Appendix.
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et al., 2019b), which represents the state-of-the-art in the literature for GPU implemen-
tation of the BFV scheme. The work (Al Badawi et al., 2019b) provides only the timing
results of homomorphic multiplication, which includes those of the following relineariza-
tion operation.

We first provide our timing results separately in Table 5.6, which includes all major
homomorphic arithmetic operations, typically used in many homomorphic applications.

Table 5.6 Comparison results of SEAL BFV Scheme operations and literature with our
GPU implementations of BFV scheme operations(𝜇𝑠).

GPU-A GPU-C Tesla V100 CPU 𝑇
Operation n log2 𝑞 MERGE-1 MERGE-2 MERGE-1 MERGE-2 Al Badawi et al. (2019b) SEAL 𝑇𝑠

Enc.

212 109 37.15 26.20 29.46 21.35 - 938 43.9×
213 218 48.32 36.56 33.93 22.71 - 2299 101.2×
214 438 143.33 105.22 49.48 34.40 - 8656 251.6×
215 881 640.8 383.87 119.07 80.49 - 35212 437.5×

Dec.

212 109 34.65 22.62 27.42 19.41 - 289 14.9×
213 218 52.09 27.41 31.91 20.45 - 859 42.0×
214 438 87.51 58.62 44.86 27.31 - 3992 146.2×
215 881 332.7 206.9 87.86 53.63 - 16893 315.0×

Add.

212 109 4 4 3.42 3.42 - 14 4.1×
213 218 5.1 5.1 3.66 3.66 - 58 15.8×
214 438 12.3 12.3 4.32 4.32 - 233 53.9×
215 881 44 44 7.14 7.14 - 778 109.0×

Mult.

212 109 64.59 50.84 36.97 29.37 - 3212 109.4×
213 218 157.24 123.45 51.53 44.16 - 11883 269.1×
214 438 737.86 531.49 167.32 134.83 - 48757 361.6×
215 881 3982.3 2838.6 791.56 637.27 - 205295 322.1×

Relin.

212 109 36.03 26.63 28.98 20.89 - 625 29.9×
213 218 59.89 49.18 33.56 23.42 - 3100 132.36×
214 438 376.3 255.83 83.12 56.96 - 18295 321.2×
215 881 2960.0 1573.7 656.27 460.25 - 111736 242.8×

Rot.

212 109 36.53 27.82 29.15 20.91 - 642 30.7×
213 218 63.0 48.78 34.22 24.15 - 3157 130.7×
214 438 386.17 268.03 93.57 67.64 - 18338 271.1×
215 881 3245.2 1846.16 705.58 519.90 - 113437 218.2×

Mult. + Relin.

212 60 78.6 59.4 59.1 42.3 859 - 20.3×
213 120 157.9 127.5 75.1 56.0 1012 - 18.0×
214 360 789.5 556.1 189.5 141.6 2010 - 14.2×
215 600 3671.5 2289.9 772.9 563.0 4826 - 8.5×

Enc.:BFV Encryption. Dec.:BFV Decryption. Add.:BFV Addition.
Mult.:BFV Multiplication. Relin.:BFV Relinearization. Rot.:BFV Rotation.
𝑇𝑠: speed up

Our GPU implementation shows significant improvements over the CPU implementation
of the SEAL library running on a powerful CPU. The Microsoft SEAL library, which is
open-source and written in C++ programming language, provides highly optimized NTT
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implementation and therefore, represents state-of-the-art implementations of both the
NTT and the BFV algorithms. As shown in Table 5.6 the proposed GPU library provides
up to 361.6× faster BFV multiplication operation, 321.2× faster BFV relinearization
operation, 271.1× faster BFV rotation operation, 53.9× faster BFV addition operation,
when 𝑛 = 214 and log2 𝑞 = 438 with respect to the SEAL library, which is running on
AMD Ryzen7 3800X. The total number of threads available in our GPU devices accounts
for the optimum results obtained at 𝑛 = 214.

Care must be taken when evaluating CPU and GPU timing results as a fair comparison
of GPU and CPU implementations can be very difficult due to differences in their ar-
chitectures and applicable optimization techniques. As pointed out in Lee et al. (2010)
acceleration figures can overestimate the performance of a GPU device when compared
to a CPU. The Microsoft SEAL library is probably the fastest CPU implementation of
the BFV scheme in the open source and we are unable to identify any further optimiza-
tion or parallelization technique that outperforms its NTT or homomorphic operation
implementation. On the other hand, we find that CPU parallelization when deployed
in the right way can be extremely useful in acceleration at application level as shown in
Section 5.3. Indeed, the speedup of GPU implementation turns out to be more moderate
when all computing power of CPU is utilized for XGBoost classification application in
Section 5.3; a result which is in line with those in Lee et al. (2010).

Then, we compare our results with the work in Al Badawi et al. (2019b) only for ho-
momorphic multiplication including the following relinearization operation as it is the
only one reported. The GPU used in Al Badawi et al. (2019b) has 5120 cores and 16
GB of memory operating at the clock frequency of 1.380 GHz, which is comparable to
RTX 3060Ti used in our measurements. The execution times are also measured for the
same ciphertext modulus sizes and the ring dimensions used in the work Al Badawi et al.
(2019b) for a fair comparison. As observable from Table 5.6, our GPU implementation
outperforms that in Al Badawi et al. (2019b) for all cases. For instance, our multiplica-
tion including relinearization implementation results are 6.31× faster for 𝑛 = 212, 5.95×
faster for ring size 𝑛 = 213, 3.04× faster for ring size 𝑛 = 214, and 1.67× faster for ring
size 𝑛 = 215 than the work Al Badawi et al. (2019b), respectively.
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5.3 Results of Privacy-Preserving Inference for Genome Data using BFV

GPU Library

Mağara et al. (ŞS Mağara et al., 2021) introduce a privacy-preserving gradient boosting
inference framework (XGBoost) algorithm using homomorphic encryption for the classi-
fication of the encrypted genome data of different tumor types. We implemented their
framework using our GPU library of the BFV scheme. XGBoost is a learning algorithm,
which uses Extreme Gradient Boosting ensembles. The model consists of classification
trees that are constructed by training data. Trees of the ensemble evaluate the test data
that are classified into one of the leaves. Lastly, a final prediction score is formed by
summing up the numerical scores obtained from each tree. To decrease the complexity of
the model and the depth of the corresponding circuit to be homomorphically evaluated,
shallow trees are selected.

As explained in (ŞS Mağara et al., 2021), test data is encrypted, and the XGBoost trees
are homomorphically evaluated for a total of 258 test data points. The total number
of homomorphic multiplications, rotations, subtractions, plain multiplications, addition,
and relinearization operations are 1290, 1806, 1806, 1290, 3354, and 2322, respectively.

We run the inference framework both on GPU and CPU, and all known possible opti-
mization and parallelization techniques to us are employed for the CPU implementation.
As shown in Table 5.7, our GPU library accelerates the classification operation at least
237.88 times with respect to the results obtained from AMD Ryzen7 3800X CPU with a
single thread while the speedup is 36.08 when multi-threaded version of the CPU imple-
mentation is used.

Table 5.7 Implementation of gradient boosting framework(XGBoost) results

SEAL T.W
n log2 𝑞 S.T. M.T. GPU-C 𝑇 𝑆

213 218 25.62 s 3.4 s 0.142 s 180.42× 23.94×
214 438 127.028 s 19.27 s 0.534 s 237.88× 36.08×

S.T.:Single Thread M.T.:Multi Thread.(16 threads) T.W.:This Work. 𝑇 :The ratio of
single-thread results over this work. 𝑆: The ratio of multi-thread results over this work.
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6. CONCLUSION AND FUTURE WORK

In this thesis, we presented three different and highly parallelized and optimized GPU
algorithms and their implementations of NTT based on Merge and 4-Step algorithms
and homomorphic operations of the BFV scheme. Although our implementations can
be independently used, they are also integrated with the Microsoft SEAL library and
their functions can be called from any application code using SEAL. Therefore, our
implementations are true accelerators for homomorphic encryption applications. The
main objective of the proposed algorithms is to optimize the memory access latency by
optimizing the number of CUDA kernel invocations, and by determining the optimum
sizes and shapes of the thread blocks to take advantage of coalesced access to the global
memory. We provided two types of timing results for both algorithms on three powerful
GPUs: i) execution time of a single NTT operation (latency) and ii) the execution times
of many concurrently running NTT operations (throughput). Throughput is a more
important metric for the performance of NTT in homomorphic encryption applications as
they execute a multitude of them in parallel. Nevertheless, all other works on the subject
report only latency results for a very limited input parameters such as ring dimension
and coefficient modulus size, which may be misleading to asses the performance of an
NTT algorithm. Therefore, ours is a unique work in the literature by providing a very
extensive timing results on a wide range of input parameter set and three different GPU
devices. Our latency results suggest that the two of the three algorithms (the iterative
algorithm incorporating the latest optimizations; i.e., MERGE-2, and the one based on
the 4-Step algorithm) perform comparably with very close timing results. The throughput
results, on the other hand, indicate that the the iterative algorithm performs markedly
better than the 4-step algorithm. While the later algorithm is usually preferred in the
literature for its better spatial locality, our results suggest that the former can be an
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alternative for homomorphic encryption applications. Also, when compared with the
best known implementation for very high degree polynomials in the range of [212,228],
our implementation is superior.

Then, all homomorphic operations of the BFV scheme are also implemented on GPU
and compared against the SEAL library running on a CPU. When compared with CPU
implementation for the ring size of 214 and the modulus bit size of 438, the GPU library
running on RTX4090 achieves speedups of 361.6, 321.2, and 271.1 for homomorphic mul-
tiplication, relinearization, and homomorphic rotation, respectively. We also compared
our homomorphic multiplication followed by a relinearization operation with that of the
state-of-the-art GPU implementation in the literature, and found that ours is up to 6.31
times faster than the latter.

We also showed that the proposed GPU library is profitably used in the homomorphic
processing of real data such as the classification of encrypted genome data for tumor types
and reported at least a speedup of 23.94 in comparison with a powerful CPU running 16
threads.

The reported performance gains establish that GPU implementations of homomorphic
encryption prove to be useful to help privacy-preserving data processing applications
become more practicable.

As future work, we are planning to develop a method for the twiddle factor generation in
the iterative NTT algorithm as it suffers from the increased number of them processed
in a large portion of iterations. Other optimization techniques such as higher radix
butterfly circuits can be incorporated to further accelerate both algorithms. We also
envision integrating our GPU accelerator into other HE libraries and using it to accelerate
other more challenging operations such as bootstrapping and scheme switching. We can
achieve these goals by joining recent open-source efforts in the development of HE software
libraries such as OpenFHE (Badawi et al., 2022).
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7. APPENDIX

Table 7.1 Timings of MERGE-2 NTT for single Forward NTT on different GPUs with
three different modular reduction algorithms in 𝜇𝑠 (Latency)

GPU-A GPU-B GPU-C
𝑙𝑜𝑔𝑛 † / ‡ / ♠ † / ‡ / ♠ † / ‡ / ♠
12 8.32 / 8.45 / 8.93 12.57 / 12.72 / 12.95 7.64 / 7.60 / 7.76
13 8.43 / 8.67 / 9.31 12.94 / 13.22 / 13.42 7.74 / 7.65 / 7.80
14 9.15 / 9.38 / 9.71 12.97 / 13.27 / 13.46 7.80 / 7.77 / 8.06
15 10.49 / 11.45 / 11.88 13.84 / 14.56 / 14.69 8.03 / 8.20 / 8.23
16 14.79 / 15.00 / 17.67 15.93 / 16.15 / 17.37 8.66 / 8.86 / 8.96
17 24.66 / 28.24 / 28.45 21.94 / 22.45 / 24.09 11.81 / 12.94 / 12.52
18 41.70 / 45.26 / 49.90 28.38 / 28.46 / 32.36 15.46 / 16.33 / 17.44
19 85.25 / 94.46 / 97.88 43.38 / 41.67 / 51.74 24.54 / 24.18 / 27.97
20 164.02 / 179.82 / 188.30 72.12 / 68.87 / 89.69 39.40 / 38.36 / 47.73
21 321.88 / 351.73 / 373.72 142.29 / 135.10 / 182.17 70.68 / 66.64 / 87.19
22 647.32 / 735.41 / 759.05 272.99 / 262.17 / 342.66 135.19 / 129.97 / 168.43
23 1422.32 / 1596.05 / 1607.2 602.16 / 580.07 / 727.43 377.91 / 465.20 / 409.42
24 3448.09 / 3882.28 / 3596.6 1152.67 / 1122.70 / 1445.5 1020.95 / 1173.72 / 1028.55

†: Goldilock Reduction used. (64bit)
‡: Plantard Reduction used. (60bit)
♠: Barret Reduction used. (60bit)
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Table 7.2 Timings (𝜇𝑠) of Our Single Forward NTT(MERGE-2) And Comparison with
Sppark’s Implementation with log𝑞 = 253 (𝑞 is BLS12-377 prime)

GPU-B GPU-C
𝑙𝑜𝑔𝑛 T.W. / SPPARK T.W. / SPPARK
12 26.79 / 23.33 15.38 / 11.71
13 28.88 / 28.08 16.25 / 15.84
14 29.97 / 28.48 17.04 / 18.73
15 31.72 / 37.73 18.50 / 20.35
16 48.27 / 47.14 21.64 / 27.58
17 77.10 / 77.61 39.44 / 42.04
18 120.06 / 116.45 64.04 / 65.81
19 230.68 / 246.66 111.60 / 132.96
20 416.47 / 515.72 206.88 / 259.88
21 854.36 / 937.38 424.25 / 504.40
22 1690.40 / 1912.60 959.88 / 1075.67
23 3511.66 / 4284.51 2027.27 / 2362.28
24 7294.05 / 8060.20 4178.86 / 4484.67
25 15251.5 / 16952.4 8620.7 / 9131.73
26 31388.1 / 38815.0 17728.4 / 20213.7
27 65097.4 / 74886.3 36780.5 / 38177.9
28 137242.0 / 179563.0 78886.7 / 82987.3

T.W.: This Work (MERGE NTT)
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