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ABSTRACT

AN ACCELERATED GPU LIBRARY FOR EFFICIENT HOMOMORPHIC
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ENES RECEP TÜRKOĞLU

ELECTRONICS ENGINEERING MSC. THESIS, OCTOBER 2023

Thesis Advisor: Prof.Erkay Savaş

Keywords: Homomorphic encryption, Secure computation, Lattice-based cryptography,
Parallel processing, Accelerator

Homomorphic Encryption is an encryption method that enables secure computation on
encrypted data. Among the many homomorphic encryption schemes developed today,
one of the most popular is the CKKS scheme, which stands for the Cheon-Kim-Kim-Song
scheme. This scheme supports both fully homomorphic encryption (FHE) and somewhat
homomorphic encryption (SWHE). One of its most significant advantages is its capability
to handle real numbers, making it highly suitable for applications requiring precise calcu-
lations and complex operations. This thesis elucidates the fundamental operations of the
CKKS scheme, including homomorphic addition, multiplication, linearization, rescale,
and rotation, as well as their practical applications.

One of the primary reasons for selecting the CKKS scheme can be attributed to its adept-
ness in managing real-number computations while mitigating noise accumulation, thus
facilitating a wide array of operations. Moreover, it enables homomorphic evaluations of
deep learning models, making it highly significant in modern cryptographic applications.
The Microsoft Simple Encrypted Arithmetic Library (SEAL) is referenced to efficiently
utilize the CKKS scheme. This thesis enhances the performance of the fundamental
CKKS operations by leveraging the Graphics Processing Unit (GPU) to further optimize
the CPU implementation in this library.

The GPU is preferred due to its computational density in homomorphic encryption oper-
ations and its parallelization ability. Since homomorphic encryption algorithms require
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intense mathematical operations and extensive computations involving large numbers,
the architecture of GPUs, which consists of thousands of cores, enables these algorithms
to be efficiently executed in parallel.

The experimental evaluations on target GPUs were carried out on the RTX 3070 and RTX
4090. Once again, a powerful CPU, the AMD RYZEN 7 3800X, was employed for a fair
comparison. According to the SEAL library, the results revealed acceleration by a factor
of up to 105.04 in homomorphic addition, 246.65 in homomorphic multiplication, 161.07
in relinearization, 113 in rescale, and 121.1 in rotation. These values were obtained with a
ring size of 215 and a modulus bit size of 881. Furthermore, we designed different circuits
with various multiplicative depths and implemented our GPU functions into these circuits.
We achieved a 27.81-fold speedup compared to CPU implementation in a 213 ring size
and 218-bit modulus. To the best of our knowledge, this is the first work in the literature
where a GPU library is used for different multiplicative depth circuits. Our findings
underscore the significant practical impact of homomorphic encryption algorithms when
leveraging GPU resources for real-world deployment.
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ÖZET

CKKS ŞEMASININ HOMOMORFİK ŞİFRELEME İŞLEMLERİ İÇİN
HIZLANDIRILMIŞ VERİMLİ GPU KÜTÜPHANESİ

ENES RECEP TÜRKOĞLU

ELEKTRONİK MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, EKIM 2023

Tez Danışmanı: Dr. Öğr. Üyesi Erkay Savaş

Anahtar Kelimeler: Homomorfik şifreleme, Güvenli hesaplama, Kafes-tabanlı
kriptografi, Eşzamanlı işleme, Hızlandırıcı

Homomorfik Şifreleme, şifrelenmiş veriler üzerinde güvenli bir şekilde hesaplama yap-
mayı sağlayan bir şifreleme metodudur. Günümüzde oluşturulmuş birçok homomorfik
şifreleme şemaları arasından en popüler olanından biri de hiç şüphesiz Cheon-Kim-Kim-
Song (CKKS) şemasıdır. Bu şema hem tamamen homomorfik şifreleme (FHE) hem de
kısmen homomorfik şifreleme (SWHE) için destek sunmaktadır. Bu şemanın en önemli
ayrıcalıklarından biri gerçel sayı işleyebilme kabiliyetidir. Bu sayede, hassas hesaplamalar
ve karmaşık işlemler gerektiren uygulamaların kullanımı için oldukça uygundur. Bu tezde
CKKS şemasının temel işlemleri olan homomorfik toplama, homomorfik çarpma, yeniden
doğrusallaştırma, yeniden ölçeklendirme ve döndürme operasyonları nınn GPU ile daha
verimli ve hızlı bir şekilde gerçeklenebileceğini gösteriyoruz.

Gerçel sayı hesaplamalarını etkin bir şekilde yönetebilmesi ve minimal gürültü artışı ile
çeşitli işlemleri desteklemesi CKKS şemasının tercih edilmesindeki başlıca sebeplerdir.
Dahası, derin öğrenme modellerinin homomorfik değerlendirmelerini mümkün kılması,
CKKS şemasını modern kriptografik uygulamalarda oldukça önemli hale getirmektedir.
CKKS şemasını verimli bir şekilde kullanmak için Microsoft Simple Encrypted Arith-
metic Library (SEAL) adlı kütüphane referans alınmıştır. Bu kütüphanedeki CPU uygu-
lumasını daha da optimize etmek için Grafik İşlem Birimi’nden (GPU’dan) faydalanarak
operasyonlar hızlandırılmıştır.

GPU’nun tercih edilme nedeni, homomorfik şifreleme işlemlerinin hesaplama yoğunluğu
ve bu işlemleri paralelleştirebilme yeteneğidir. Homomorfik şifreleme algoritmaları, büyük
sayılar ile yoğun matematiksel işlemler içermektedir ve GPU’ların, binlerce çekirdekten
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oluşan mimarileri bu algoritmaların paralel olarak verimli bir sekilde yürütülmesini sağlar.

Bu tezdeki GPU uygulamaları RTX 3070 ve RTX 4090 ile yapılmıştır. Adil bir kıyaslama
olması için yine güçlü bir CPU olan AMD RYZEN 7 3800X işlemci kullanılmıştır. Elde
edilen sonuçlarda SEAL kütüphanesine göre homomorfik toplama işleminde 105.04 kata
kadar, homomorfik çarpma işleminde 246.65 kata kadar, yeniden doğrusallaştırma işle-
minde 161.07 kata kadar, yeniden ölçeklendirme işleminde 113 kata kadar ve döndürme
işleminde ise 121.1 kata kadar hızlandırma elde edildiği gözlemlenmiştir. Bu değerler
halka boyutu 215 ve modülüs bit boyutu 881 iken elde edilmiştir. Ayrıca, farklı çarpan
derinliklerine sahip farklı devreler tasarladık ve GPU işlevlerimizi bu devrelere entegre
ettik. 213 halka boyutu ve 218 bit modülüs için CPU uygulaması ile karşılaştırıldığında
27.81 kata kadar bir hız artışı elde ettik. Bildiğimize kadarıyla, bu çalışma, GPU
kütüphanesinin farklı çarpan derinliği devreleri için kullanıldığı literatürdeki ilk çalış-
madır. Sonuçlarımız göstermektedir ki homomorfik şifreleme algoritmaları GPU kulla-
narak gerçek hayata konuşlandırılmasında büyük katkı sağlamaktadır.
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1. INTRODUCTION

Nowadays, the global population’s internet access has surpassed a staggering 5.3 billion
individuals, as reported by the International Communication Union (ITU, 2022). This
extensive development of internet usage has led to an unprecedented accumulation of per-
sonal data. The significance of personal data in the modern world cannot be overstated.
Both private enterprises and governmental agencies leverage this wealth of information to
enhance their operations. Governments harness such data to streamline bureaucratic pro-
cesses through e-government initiatives, while private companies predominantly employ
it for marketing. This presence of digital information, often called big data, has evolved
into a cornerstone of modern society, steering the course of technology and influencing
various domains, from business to governance.

However, the development of these vast volumes of data demands a paramount concern
for security and privacy. The digital processing and storage of data render it susceptible
to various malicious attacks. In fact, reports show that over 80 percent of U.S. companies
have fallen victim to cyberattacks with the intent of compromising the confidentiality,
integrity, and availability of critical data (FUQUA, 2023). Therefore, to ensure both
high-security levels and expedient computation within cloud services, it is essential for
these applications to incorporate strong cryptographic algorithms.

Among the prominent cryptographic algorithms are Rivest–Shamir–Adleman
(RSA) (Rivest et al., 1978) and elliptic curve cryptography (ECC), both of which
belong to the realm of public key cryptography. They rely on hard mathematical
problems, whose solutions remain beyond the reach of contemporary computing devices
with constrained computational capabilities, defying solutions within polynomial time
frames (Bernstein and Lange, 2017). Consequently, these cryptographic schemes offer
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robust security levels for Internet applications. Nonetheless, quantum computers are
anticipated to possess sufficient power to break these schemes, chiefly through Shor’s
algorithm (Shor, 1994). According to Bernstein and Lange, there exists a race against
time to deploy post-quantum cryptography before the advent of quantum comput-
ers (Bernstein and Lange, 2017). One of the most promising approaches for resistance
against quantum computer attacks rests in lattice-based cryptography, on which fully
homomorphic encryption schemes are also based.

Homomorphic encryption enables us to perform computation over encrypted data. There-
fore, cloud servers can process any privacy-sensitive data without decrypting it. In the
work by Gentry (2009) the first functional fully homomorphic encryption scheme was
introduced. This scheme, based on ideal lattices, allows the homomorphic evaluation of
arbitrary circuits. Subsequently, Gentry and Halevi (Gentry and Halevi, 2011) achieved
the first practical implementation of a fully homomorphic encryption (FHE) scheme.
Later developments introduced more practical schemes based on ring learning with error
(RLWE) problems (Lyubashevsky et al., 2013). In these schemes, plaintext and ciphertext
are represented as polynomials, with ciphertext containing a “noise” that accumulates
through homomorphic operations.

The main idea is to manage this noise through the adjustment of ring size and modulus,
essentially creating a noise budget. When the noise surpasses this budget, further homo-
morphic operations are unfeasible, as the ciphertext message cannot be decrypted. These
schemes fall under the category of somewhat homomorphic encryption (SHE). To enable
a higher degree of homomorphic operations, Gentry’s work Gentry (2009) presented a
solution using a technique known as “bootstrapping”, a process that homomorphically
decrypts the ciphertext to refresh the noise budget. This advanced technique is known
as fully homomorphic encryption (FHE).

In the last decade, numerous schemes for homomorphic encryption have emerged.
These include Cheon-Kim-Kim-Song (CKKS) (Cheon et al., 2017), Ducas and Miccian-
cio (DM) (Ducas and Micciancio, 2015), Torus FHE (TFHE) (Chillotti et al., 2018),
Brakerski/Fan-Vercauteren (BFV) (Fan and Vercauteren, 2012), and Brakerski-Gentry-
Vaikuntanathan (BGV) (Brakerski et al., 2012). Among these, the CKKS scheme stands
out as one of the most promising approaches. Additionally, there are several software
libraries available, such as SEAL (SEAL, 2020), PALISADE (PAL, 2021), and HE-
Lib (Halevi and Shoup, 2014).

Due to the computationally expensive nature of homomorphic encryption operations,
it has been considered impractical for large-scale cloud applications. To enhance the
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efficiency of these schemes, accelerators such as GPUs, FPGAs, and ASICs have been
utilized (Wang et al., 2014; Mert et al., 2020; Doröz et al., 2015). In this study, we present
algorithms and implementation techniques for accelerating the CKKS scheme within the
SEAL library using NVIDIA GPUs. This implementation is developed within the frame-
work of the Compute Unified Device Architecture (CUDA) (NVIDIA Corporation, 2010)
programming model, aiming to accelerate CKKS scheme operations through various par-
allelization strategies that take into account GPU architectures. To the best of our
knowledge, this work represents the first GPU library capable of executing the complete
set of CKKS scheme operations, including homomorphic addition, multiplication, rescal-
ing, relinearization, and rotation operations. Furthermore, our GPU implementation’s
timing results surpass those of other state-of-the-art implementations in the literature.
We also designed various circuits to simulate real-world applications with varying levels
of multiplicative depth, utilizing our GPU library functions. Our results demonstrate
that, particularly in the case of large ring sizes, our implementation can effectively exe-
cute homomorphic operations in complex circuits with high multiplicative depths without
requiring bootstrapping.

The thesis is organized as follows:

• In Chapter 2, we expound on the notation used throughout this thesis and present
foundational mathematical background information, including Fixed-Point Arith-
metic, Barrett Reduction, Number Theoretic Transform, Homomorphic Encryp-
tion, and the CKKS Scheme.

• GPU architecture is detailed in Chapter 3, which covers the history of GPUs,
hardware fundamentals, programming models, GPU memory organization, and hi-
erarchy.

• Chapter 4 elaborates on our implementation techniques for the reduction algorithm,
NTT, and CKKS operations in detail.

• Chapter 5 presents timing results and comparisons with state-of-the-art works of
our GPU implementations and our circuit designs.

• We present our conclusions and discuss future directions in Chapter 6.
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2. BACKGROUND

In this section, we commence by introducing the mathematical notation that will be
consistently employed throughout this thesis. Following that, we present the technical
and arithmetic fundamentals that are crucial for comprehending the content within this
work.

This thesis is centered on the efficient GPU implementation of homomorphic encryption
operations using the CKKS scheme. To facilitate an understanding of the CKKS scheme,
we provide a detailed explanation of fixed-point arithmetic immediately after the nota-
tion section. Subsequently, we delve into key components, including the residue number
system, Barrett reduction, and the number theoretic transform. These algorithms serve
as the essential building blocks for homomorphic encryption. Finally, we expound on the
core concepts of homomorphic encryption, with a particular focus on the CKKS scheme.

2.1 Notation

In this thesis, we employed the CKKS scheme to perform SHE operations based on the
Ring Learning with Errors (RLWE) problem. The difficulty of this problem forms the fun-
damental security assumption for various post-quantum cryptography and homomorphic
encryption algorithms. The RLWE problem, more precisely, the Learning with Errors
problem over rings, is a more efficient and practical variant of the Learning with Errors
(LWE) problem. It specializes in working with polynomial rings over finite fields. The
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details are as follows:

The CKKS scheme utilizes the polynomial ring R𝑞 = ℤ𝑞/𝑓(𝑥), where ℤ𝑞 signifies the finite
ring {0,1,…,𝑞 −1}, in which arithmetic is conducted modulo 𝑞. Here, 𝑓(𝑥) represents a
monic irreducible polynomial of degree 𝑛. Specifically, 𝑓(𝑥) takes the form of a cyclotomic
polynomial, 𝜙𝑀(𝑥), with 𝑀 = 2𝑑, and 𝑓(𝑥) = 𝑥𝑛 +1, with 𝑛 = 𝑀

2 ∈ ℤ+, which is referred
to as the ring dimension. Thus, R denotes the set of polynomials with degrees less than
𝑛 and integer coefficients. In some contexts, 𝑛 is recognized as the dimension of R𝑞, and
we use the notation R𝑞,𝑛 to signify its dimension.

The notation [𝑎]𝑞, for 𝑞 > 1, signifies the set of integers to which 𝑎 belongs, ranging within
the interval [−𝑞/2,𝑞/2], while |𝑎|𝑞 constrains 𝑎 to the range of [0,𝑞 − 1]. A polynomial
𝑎(𝑥) ∈ R𝑞 can be regarded as a vector composed of 𝑛 integers in ℤ𝑞, represented by
its coefficients. Upon subjecting the vector of 𝑎(𝑥) to the Number Theoretic Transform
(NTT), a discrete Fourier transformation variant applied over rings ℤ𝑞, it produces a
vector of the same dimension denoted as ̄𝑎(𝑥), often simply referred to as ̄𝑎.

The symbols +, −, and × (or ⋅) signify addition, subtraction, and multiplication, either
in ℤ𝑞 or R𝑞. Conversely, the symbol ⊙ represents modular pointwise multiplication for
vector representations of elements within R𝑞 within the NTT domain. In this context,
it denotes the multiplication of an element in a vector by the corresponding element in
another vector, with these multiplications being executed within ℤ𝑞, essentially a modulo
𝑞 multiplication.

Here, 𝜆 is the security parameter, denoted in unary notation, while 𝑎 ← 𝕊 signifies the
uniform sampling of 𝑎 from the set 𝕊. For the purpose of sampling coefficients for error
polynomials, 𝜒𝑒𝑟𝑟 is employed as a truncated zero-mean discrete Gaussian distribution.
The error characterizes the distribution’s bounds, 𝛽𝑒𝑟𝑟, and standard deviation 𝜎.

We can now provide a comprehensive and simplified definition of the RLWE problem.
Suppose having 𝑎 drawn from the ring R𝑞, and the elements 𝑠 and 𝑒, which form the secret
and error, both sourced from R with coefficients sampled according to 𝜒𝑒𝑟𝑟. Additionally,
suppose we have 𝑏 = 𝑎𝑠 + 𝑒. The ‘search’ RLWE problem is, in essence, the challenge of
making it difficult to determine 𝑠 when given 𝑎 and 𝑏. In an HE scheme, 𝑠 functions as
the secret key, while (𝑏, 𝑎) serves as the public key.
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2.2 Fixed-Point Arithmetic

The CKKS scheme relies on Fixed-Point Arithmetic; thus, a decent understanding of
Fixed-Point Arithmetic is necessary. This arithmetic relies on the representation of num-
bers using fixed number of digits in their fractitonal part. Assuming an imaginary dec-
imal point is fixed at a specified position, its location must not change throughout the
entire computation to maintain numerical consistency and precision. This constraint
ensures that the interpretation of numbers remains consistent, preventing unexpected
variations in the scale or magnitude of the results. Stabilization via rescaling involves a
process, where the imaginary decimal point’s position is adjusted as needed during com-
putation to maintain numerical stability and avoid excessive growth in the data. This
adjustment, known as rescaling, is crucial for preventing overflow and maintaining the
fixed-point representation’s integrity. As an example of real numbers representation in
fixed-point arithmetic: We denote the scaling factor as Δ where Δ = 2𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, this pre-
cision generally corresponds to RNS modulus size. In order to represent a real number
(called 𝑟) in fixed-point arithmetic, 𝑧 = RealToFP(𝑟) = truncate(Δ × 𝑟) for the reverse,
𝑟 = FPToReal(𝑧) = 𝑧

Δ . In the subsequent paragraphs, we will use the aforementioned
conversion primitives to explain CKKS addition, subtraction, and multiplication opera-
tions.

2.2.1 Addition and Subtraction

To perform a CKKS addition or subtraction both fixed-point numbers should be on the
same scale. Here are examples of addition and subtraction for two fixed-point numbers,
denoted as, FPADD and FPSUB respectively. Where FPADD(𝑧1 = |Δ ⋅ 𝑟1|,𝑧2 = |Δ ⋅
𝑟2|) = 𝑧1 +𝑧2 = Δ⋅|𝑟1 +𝑟2| and, FPSUB(𝑧1 = |Δ⋅𝑟|,𝑧2 = |Δ⋅𝑟2|) = 𝑧1 −𝑧2 = Δ⋅|(𝑟1 −𝑟2)|.
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2.2.2 Multiplication

The multiplication operation differs somewhat from addition and subtraction. Here is an
example of multiplication for two fixed-point numbers, denoted as FPMUL:

FPMUL(𝑧1 = |Δ⋅𝑟1|,𝑧2 = |Δ⋅𝑟2|) = 1
Δ ⋅ (𝑧1 ⋅ 𝑧2) = 1

Δ ⋅ (Δ2|𝑟1 ⋅ 𝑟2|) = Δ⋅ |𝑟1 ⋅ 𝑟2|

The rescaling factor, represented by 1
Δ , plays a crucial role by ensuring that the multi-

plication operation results in low noise levels in the output, thus preserving the integrity
of the computation.

2.3 Residue Number System

The Residue Number System (Garner, 1959) enables secure and efficient computation of
encrypted data in Homomorphic Encryption (HE) methods. The RNS has a significant
positive impact on HE systems with high coefficient moduli 𝑄 because it reduces the
computational cost of multi-precision integer arithmetic into single-precision arithmetic.
Arithmetic operations on ciphertexts can be carried out in parallel using the RNS, which
reduces calculation time and resource usage.

Due to practicality and enhancing efficiency, the RNS has been leveraged in several
existing HE schemes such as the CKKS scheme, within the context of privacy-preserving
computation (Al Badawi et al., 2019), private information retrieval, and secure multiparty
computation (Cortés-Mendoza et al., 2021).

In the context of modular arithmetic, given an integer 𝑋 such that 𝑋 < 𝑀 , it can
be represented using residues 𝑥𝑖, where 𝑥𝑖 = 𝑋 mod 𝑚𝑖 for 𝑖 = 1,…,𝑙. Here, the 𝑚𝑖’s
constitute a group of pairwise relatively prime integers known as the moduli or base,
often denoted as [𝑋]𝑚𝑖

= 𝑋 mod 𝑚𝑖.

It is worth noting that in this context, we consider the product of these moduli, which is
defined as 𝑀 = ∏𝑙

𝑖=1 𝑚𝑖. The technique we employ to combine these modular residues
into a single representation, denoted as [𝑋]𝑀 , is the Chinese Remainder Theorem (CRT).
The CRT is a fundamental theorem in number theory, and its application allows us to
express [𝑋]𝑀 as:
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[𝑋]𝑀 = [ ∑𝑟
𝑖=1 [ 𝑥𝑖 ⋅ ( 𝑀

𝑚𝑖
)−1 ]

𝑚𝑖
⋅ 𝑀

𝑚𝑖 ]
𝑀

,

In essence, the Residue Number System (RNS) provides a powerful solution to alleviate
the computationally intensive tasks involved in homomorphic computations. By lever-
aging the Chinese Remainder Theorem and employing the RNS representation, crypto-
graphic algorithms can effectively process large integers through parallelism and reduc-
tion in computational complexity. This not only significantly enhances computational
efficiency but also contributes to the security of homomorphic encryption and related
protocols (Al Badawi et al., 2019).

2.4 Barrett Reduction

Modular multiplication operations are fundamental in the RNS (Residue Number System)
form of homomorphic cryptographic methods, as exemplified by (Bajard et al., 2016), and
often consume a significant portion of execution time in comparison to other operations.

The Barrett reduction (Barrett, 1986) and the Montgomery reduction (Montgomery,
1985) are widely adopted methods for modular reduction operations. Both techniques
perform effectively. However, in this case, the Barrett reduction is preferred due to
its simplicity, in contrast to the Montgomery reduction, which requires an additional
step to convert integers to the Montgomery domain. This additional step involves a
multiplication by 𝑅 (where 𝑅 ∈ ℕ, 𝑅 > 𝑞, and gcd(𝑅,𝑛) = 1) to transition into the
Montgomery domain and another multiplication by 𝑅−1 to return to the polynomial
domain.

As outlined in the inputs of Algorithm 1, there are some precomputed values, denoted
as 𝜇, which are used to calculate the reciprocal of the modulus 𝑞 with the required level
of accuracy. Although this precomputation process is time-consuming, it necessitates
execution only once.

The method performs a right shift operation on the input integer 𝐶 by (𝑘 − 2) bits, as
shown by Step 1, 𝐶1 = Right_shift(𝐶,(𝑘 −2)). This operation leaves the higher-order
coefficients unaffected while discarding the bottom (𝑘 − 2) bits of 𝐶. Next, in Step 2, it
multiplies the output of the right shift operation 𝐶1 by the precomputed value of 𝜇. This
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stage is represented by the expression 𝐶2 = 𝐶1 ⋅ 𝜇 and aims to calculate the quotient of
𝐶 divided by 𝑞.

The result of the multiplication 𝐶2, which has 2𝑘 +3 bits, then undergoes a second right
shift operation in Step 3, denoted as 𝐶3 = Right_shift(𝐶2, (𝑘 + 2)). This step ensures
the accuracy of the intermediate value 𝐶3. The procedure computes the intermediate
product ̂𝑞 = 𝑞 ⋅𝐶3, representing the multiple of 𝑞 believed to be the closest to 𝐶.

This intermediate product ̂𝑞 is then subtracted from the original integer 𝐶 to obtain
𝐶𝑜𝑢𝑡 = (𝐶 − ̂𝑞) in lines 4 and 5. This step calculates the difference integer 𝐶𝑜𝑢𝑡, which
holds the residual value after dividing 𝐶 by 𝑞.

Finally, the algorithm includes corrective steps (Steps 6-9), the if-then-else ensures the
𝐶𝑜𝑢𝑡 falls within the valid range [0,𝑞).

Algorithm 1 Barrett Reduction
Input: 𝐶 = 𝑎×𝑏, where 𝑎,𝑏 < 𝑞; 𝑘 = ⌈𝑙𝑜𝑔2(𝑞)⌉; 𝜇 = ⌊22𝑘+1

𝑞 ⌋
Output: 𝐶𝑜𝑢𝑡 (𝐶 mod 𝑞)

1: 𝐶1 = Right_shift(𝐶,(𝑘 −2))
2: 𝐶2 = 𝐶1 ⋅ 𝜇
3: 𝐶3 = Right_shift(𝐶2, (𝑘 +3))
4: ̂𝑞 = 𝑞 ⋅𝐶3
5: 𝐶𝑜𝑢𝑡 = (𝐶 − ̂𝑞)
6: if 𝐶𝑜𝑢𝑡 >= 𝑞 then 𝐶𝑜𝑢𝑡 = 𝐶𝑜𝑢𝑡 −𝑞
7: else 𝐶𝑜𝑢𝑡 = 𝐶𝑜𝑢𝑡
8: end if

2.5 Number Theoretic Transform

The Number Theoretic Transform (NTT) (Harvey, 2014) is a powerful mathematical
technique that plays a crucial role in various computational algorithms, particularly in
cryptography. NTT is defined as a Discrete Fourier Transform (DFT) defined on the
ring ℤ𝑞/𝜙𝑚(𝑥), where 𝜙𝑚(𝑥) is the 𝑚-th cyclotomic polynomial, and 𝑚 = 2 ⋅ 𝑛. A one
𝑛-point NTT operation converts a polynomial in the (n − 1) degree polynomial domain
𝐴(𝑥) = ∑𝑛−1

𝑖=0 𝑎𝑖𝑥𝑖; (𝑛−1), to a polynomial in the NTT domain of degree (n − 1) ̄𝐴(𝑥) =
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∑𝑛−1
𝑖=0 ̄𝑎𝑖𝑥𝑖, where

(2.1) ̄𝑎𝑖 =
𝑛−1
∑
𝑗=0

𝑎𝑗𝜔𝑖𝑗 ∈ ℤ𝑞 for 𝑖 = 0,1,…,𝑛−1,

Similarly, the inverse NTT (INTT) operation can be defined as

(2.2) 𝑎𝑖 = 𝑛−1
𝑛−1
∑
𝑗=0

̄𝑎𝑗𝜔−𝑖𝑗 ∈ ℤ𝑞.

By comparing Equation 2.1 and 2.2 of NTT and INTT, two differences are notable.
Firstly, in the NTT operation (equation 2.1), 𝜔 (twiddle factor) is used, whereas in INTT
(Equation 2.2), 𝜔−1 (mod 𝑞) is utilized. Moreover, at the end of the INTT operation,
all coefficients are multiplied by 𝑛−1 (mod 𝑞). The NTT operation uses the 𝑛-th root of
unity constant 𝜔 ∈ ℤ𝑞, where 𝜔𝑛 ≡ 1 (mod 𝑞), and 𝜔𝑖 ≠ 1 (mod 𝑞) ∀𝑖 < 𝑛.

Algorithm 2 Merge Forward NTT
Input: 𝑎(𝑥) ∈ ℤ𝑞[𝑥]/(𝑥𝑛 +1) polynomial standard-order
Input: Ψ𝑏𝑟[𝑘] = Ψ𝑏𝑟(𝑘) (Powers of Ψ stored in bit-reversed order)
Input: 𝑛 = 2𝑙, 𝑞 (𝑞 ≡ 1 mod 2𝑛)
Output: ̄𝑎 ∈ ℤ𝑛

𝑞 in bit-reversed order
1: 𝑡 = 𝑛; 𝑚 = 1
2: repeat
3: 𝑡 = 𝑡/2
4: for 𝑖 from 0 by 1 to 𝑚 do
5: 𝑗1 = 2𝑖𝑡
6: 𝑗2 = 𝑗1 +𝑡−1
7: for 𝑗 from 𝑗1 by 1 to 𝑗2 +1 do
8: 𝑈 = 𝑎𝑗
9: 𝑉 = 𝑎𝑗+𝑡 ⋅Ψ𝑏𝑟[𝑚+𝑖] (mod 𝑞)

10: 𝑎𝑗 = 𝑈 +𝑉 (mod 𝑞)
11: 𝑎𝑗+𝑡 = 𝑈 −𝑉 (mod 𝑞)
12: end for
13: end for
14: 𝑚 = 2×𝑚
15: until 𝑚 < 𝑛
16: for 𝑖 from 0 by 1 to 𝑛 do
17: ̄𝑎𝑖 = 𝑎𝑖 (mod 𝑞)
18: end for

Employing NTT/INTT in their original form (Equation 2.1, 2.2) in a practical setting
10



Algorithm 3 Merge Inverse NTT
Input: ̄𝑎 ∈ ℤ𝑛

𝑞 in bit-reversed order
Input: Ψ𝑟𝑒𝑣[𝑘] (power of Ψ−1 stored in bit-reverse order (Ψ𝑟𝑒𝑣[𝑘] = Ψ−𝑏𝑟(𝑘) (mod 𝑞)))
Input: 𝑛 = 2𝑙, 𝑞 (𝑞 ≡ 1 mod 2𝑛)
Output: 𝑎(𝑥) ∈ ℤ𝑞[𝑥]/(𝑥𝑛 +1) standard-order

1: 𝑡 = 1; 𝑚 = 𝑛
2: repeat
3: 𝑗1 = 0; ℎ = 𝑚/2
4: for 𝑖 from 0 by 1 to ℎ do
5: 𝑗2 = 𝑗1 +𝑡−1
6: for 𝑗 from 𝑗1 by 1 to 𝑗2 +1 do
7: 𝑈 = ̄𝑎𝑗; 𝑉 = ̄𝑎𝑗+𝑡
8: ̄𝑎𝑗 = 𝑈+𝑉 (mod 𝑞)
9: ̄𝑎𝑗+𝑡 = (𝑈 −𝑉 ) ⋅Ψ𝑟𝑒𝑣[ℎ+𝑖] (mod 𝑞)

10: end for
11: 𝑗1 = 𝑗1 +2×𝑡
12: end for
13: 𝑡 = 2×𝑡
14: 𝑚 = 𝑚/2
15: until 𝑚 < 𝑛
16: for 𝑖 from 0 by 1 to 𝑛 do
17: 𝑎𝑖 = ( ̄𝑎𝑖 ⋅ 𝑛−1) (mod 𝑞)
18: end for

is computationally inefficient. To remediate this, in literature Mert et al. (2019); Scott
(2017); Su et al. (2022); Pollard (1971); Dai and Sunar (2016); Chu and George (1999);
Feng et al. (2019); Longa and Naehrig (2016), several approaches have been proposed to
address this inefficiency. Algorithms 2 and 3 depict two efficient methods to efficiently
compute NTT and INTT, respectively, which are used in this thesis as well. In the context
of NTT algorithms, a critical component is the butterfly operations which are described
in Steps 10-11 of Algorithm 2 and Steps 8-9 of Algorithm 3. Generally, they employ
one of the two main butterfly structures called Cooley-Tukey (CT) (Cooley and Tukey,
1965) and Gentleman-Sande (GS) (Chu and George, 1999). Both butterfly structures are
suitable for NTT operations. CT-based and GS-based NTT operations are referred to
as decimation-in-time (DIT) (Hamood, 2016) and decimation-in-frequency (DIF) NTT
operations, respectively. Additionally, NTT operations can be adaptable according to the
input and output data order. For example, the input can be in standard order, and the
output can be in bit-reversed order, or the input can be in bit-reverse order and the output
can be in standard order, and so on. Here, standard order denotes the arrangement of
data or elements in their natural sequential order, typically from 0 to 𝑛−1. Conversely,
bit-reversed order entails the reordering of data or elements by reversing their binary
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representations.

2.6 Homomorphic Encryption

Homomorphic encryption is a form of encryption that enables computation on encrypted
data. (Li et al., 2010; Brakerski and Vaikuntanathan, 2011; Phong et al., 2018; Cheon
and Kim, 2015) HE has practical applications in the cloud-computing setting in the sce-
narios of privacy-preserving computation. As shown in Figure 2.1(a), data is sent to the
cloud in an encrypted form. However, the cloud needs to decrypt the data to perform
computations, and then encrypt it again before sending it to the customer. In contrast,
in homomorphic cloud computing, as illustrated in Figure 2.1(b), data does not need to
be decrypted in the cloud. Computations can be performed over encrypted data. This
approach enhances security and enables computation over the data while safeguarding
personal information because the data is never decrypted, ensuring that the data con-
tents remain confidential and undisclosed. To date, HE algorithms are deemed secure
and resistant to quantum attacks due to their proven hardness. There are several tech-
niques developed which provide this hardness. Several techniques have been developed
to establish this level of security, with Ring Learning With Errors (RLWE) standing out
as a notable example (Nejatollahi et al., 2019). However, a non-trivial trade-off persists
between security and computation complexity. Consequently, HE is widely regarded as
computationally expensive compared to its counterparts.

Homomorphic encryption (HE) can be applied in real-life scenarios to enhance e-voting
security and transparency (Anggriane et al., 2016), secure data storage in the cloud (Potey
et al., 2016), perform analysis on sensitive medical information (Munjal and Bhatia, 2022),
provide machine learning as a service (Wu et al., 2021), and more.

HE is categorized into three broad categories: (𝑖) Partially homomorphic encryption,
(𝑖𝑖) somewhat homomorphic encryption (SWHE), and (𝑖𝑖𝑖) fully homomorphic encryp-
tion (FHE).

Partially homomorphic encryption facilitates only a limited set of mathematical opera-
tions, typically restricted to either addition or multiplication. A significant milestone
in the development of fully homomorphic encryption (FHE) was the introduction of the
Paillier cryptosystem (Paillier, 1999), which enabled homomorphic addition on encrypted
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Figure 2.1 Traditional cloud computing (a) and homomorphic cloud computing (b)
illustration.

data. Nonetheless, this scheme lacked support for multiplication operations, it can only
multiply the ciphertext with a plaintext number, thus classifying it as a partially ho-
momorphic encryption method. The method can perform two ciphertext additions as
follows,

𝐷𝑝𝑟𝑖𝑣𝑎𝑡𝑒(𝐸𝑝𝑢𝑏𝑙𝑖𝑐(𝑚1) ⋅𝐸𝑝𝑢𝑏𝑙𝑖𝑐(𝑚2) 𝑚𝑜𝑑 𝑛2) = (𝑚1 +𝑚2) 𝑚𝑜𝑑 𝑛

SWHE allows for the utilization of homomorphic addition and homomorphic multiplica-
tion. This method can perform all computations within the constraints of the noise level.
The available noise budget depends on the ring size and modulus. After multiplication,
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the noise increases. Furthermore, more noise in a ciphertext leads to higher computa-
tional overhead. Thus, the noise budget determines the maximum multiplication depth
achievable in this scheme. If the application requires a multiplication depth beyond what
the noise budget allows, the initial step is to increase the modulus size; however, this may
reduce the security level. If there is no room for compromising security, the next option is
to increase the ring size. The drawback of enlarging the ring size is that it increases com-
putational complexity and can degrade performance. If the application cannot achieve
the desired security level, multiplicative depth, and speed ratio, FHE provides a solution.

FHE can perform the same operations as SWHE and can solve the noise budget problem
via the 𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑝𝑖𝑛𝑔 method. Gentry (2009) proposed one of the first FHE schemes.
The main idea is briefly demonstrated in Figure 2.2. The traditional decryption method
needs a secret key and ciphertext. During 𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑝𝑖𝑛𝑔, when the ciphertext is at the
edge of the noise budget, this ciphertext can be homomorphically decrypted using an
encrypted secret key, and at the output, an equivalent ciphertext is obtained, which has
lower noise and a larger computational budget (Badawi and Polyakov, 2023).

To date, there are a number of SWHE and FHE schemes available. The most promising
approaches are CKKS (Cheon et al., 2017), DM (Ducas and Micciancio, 2015), CGGI
(TFHE)(Chillotti et al., 2016)(Chillotti et al., 2018), BFV (Fan and Vercauteren, 2012),
and BGV (Brakerski et al., 2012). These schemes can be 𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑝𝑎𝑏𝑙𝑒, which means
that if the 𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑝𝑖𝑛𝑔 method is implemented, the scheme can be called FHE; oth-
erwise, SWHE. For example, Microsoft SEAL’s CKKS scheme implementation (SEAL,
2020) is SWHE, but OpenFHE’s CKKS scheme implementation (Badawi et al., 2022)
is FHE. In this thesis, we focus on the SWHE implementation variant for the CKKS
scheme.

2.6.1 CKKS Scheme

Several schemes have been proposed over a decade. One of the most promising and
relatively recent schemes is CKKS, first proposed in 2017. It is important to note that
FHE schemes can be broadly categorized into two families. One of them is binary FHE
schemes, such as DM/FHEW and TFHE. These schemes perform operations on single
bits or small groups of bits (𝑏𝑖𝑡_𝑠𝑖𝑧𝑒 < 8). Therefore, they are ideal for binary circuits
and logical bit operations. They can be used for Boolean operations, comparisons, lookup
tables, programmable bootstrapping, and so on.
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Figure 2.2 Traditional decryption and bootstrapping or homomorphic decryption.

The other category of schemes such as BGV, BFV, and CKKS; typically involves com-
putations on vectors consisting of 16, 32, 64, or 128-bit words. Because of this, they are
also capable of homomorphic evaluation of arithmetic circuits over multi-bit numbers.
BGV and BFV are ideal for integers such as signed and unsigned integers, while CKKS
is ideal for real or approximate numbers such as double or float.

2.6.1.1 Rescale

The CKKS and BGV schemes are examples of Homomorphic Encryption (HE) schemes
that are implemented with a concept known as leveled encryption. In leveled implemen-
tations, the homomorphic operations are divided into levels, each with a certain depth or
complexity. This approach allows for better control of the computation cost and security
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Figure 2.3 Homomorphic multiplication operations of BGV-type schemes (a) and FV-
type schemes (b) (Cheon et al., 2017).
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Figure 2.4 Homomorphic multiplication and rescale operation of CKKS scheme (Cheon
et al., 2017).
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parameters as the depth of operations increases. As previously discussed in Section 2.2,
the CKKS scheme incorporates a rescaling operation, rendering it particularly well-suited
for arithmetic operations in continuous spaces (Cheon et al., 2017). In contrast, the de-
cryption structure of other HE scheme implementations is less amenable to operations
in complex mathematical spaces (Brakerski et al., 2012; Doröz et al., 2015; López-Alt
et al., 2012), such as continuous spaces. In these schemes, represented by equations such
as ⟨𝑐𝑖,𝑠𝑘⟩ = 𝑚𝑖 + 𝑡𝑒𝑖 (mod 𝑞), where 𝑡 denotes the plaintext modulus and 𝑞 represents
the ciphertext modulus, performing operations such as 𝑚1 +𝑚2 and 𝑚1𝑚2 results in the
loss of Most Significant Bits (MSBs), primarily due to the 𝑒𝑖 terms.This is illustrated in
Figure 2.3 (a).

Similarly, the decryption structure of FV-type HE schemes, exemplified by equations
such ⟨𝑐𝑖,𝑠𝑘⟩ = 𝑞𝐼𝑖 + (𝑞/𝑡)𝑚𝑖 + 𝑒𝑖, leads to a similar loss of MSBs during multiplication
operations between two ciphertexts, expressed as ⟨𝑐∗,𝑠𝑘⟩ = 𝑞𝐼∗ + (𝑞/𝑡)𝑚1𝑚2 + 𝑒∗, with
𝐼∗ = 𝑡𝐼1𝐼2 +𝐼1𝑚2 +𝐼2𝑚1 and 𝑒∗ ≈ 𝑡(𝐼1𝑒2 +𝐼2𝑒1), as depicted in Figure 2.3 (b).

In contrast, the CKKS scheme offers an efficient solution for performing approximate
computations by strategically introducing encryption noise. This noise plays a crucial
role in optimizing the trade-off between computation accuracy and efficiency. The key
concept involves introducing encryption noise. Consequently, the decryption structure of
the CKKS scheme takes the form ⟨𝑐,𝑠𝑘⟩ = 𝑚+𝑒 (mod 𝑞), where 𝑒 represents an error of
relatively small magnitude compared to the message. This design allows for approximate
arithmetic by converting the message as 𝑚′ = 𝑚+𝑒. Due to the diminishing error magni-
tude, which aligns with the security requirements of the underlying hardness assumptions,
the loss of most significant bits (MSBs) in the resulting message is unlikely, as illustrated
in Figure 2.4. Furthermore, at the output of the rescaling operation, the ciphertext size
diminishes, reducing both the size of 𝑝−1 ⋅𝑚1𝑚2 and the ciphertext modulus size.

To clarify the relationship between ciphertext and modulus sizes at varying multiplicative
depths, refer to Figure 2.5. As illustrated in the example, there exist three ciphertexts
denoted as 𝑐𝑡1, 𝑐𝑡2, and 𝑐𝑡3. At multiplicative depth 0, these ciphertexts have a size
of 2 × 𝑛 × 𝑑𝑒𝑐𝑜𝑚𝑝_𝑚𝑜𝑑_𝑠𝑖𝑧𝑒, where 𝑑𝑒𝑐𝑜𝑚𝑝_𝑚𝑜𝑑_𝑠𝑖𝑧𝑒 is defined as 𝑟 − 1, indicating
the count of RNS moduli minus one. 𝑐𝑡1 and 𝑐𝑡2 undergo multiplication, relinearization,
and rescale operations, resulting in the ciphertext 𝑐𝑡′

1, whose size shrinks to 2 × 𝑛 ×
(𝑑𝑒𝑐𝑜𝑚𝑝_𝑚𝑜𝑑_𝑠𝑖𝑧𝑒 − 1) at multiplicative depth 1, referred to as 𝑐𝑡′

1. Should one wish
to execute multiplication operations involving 𝑐𝑡′

1 and 𝑐𝑡3, a mod_drop operation becomes
necessary due to 𝑐𝑡3 not sharing the same modulus RNS modulus size with respect to 𝑐𝑡′

1.
The implementation of the mod_drop operation in the SEAL CKKS scheme is depicted in
Algorithm 4. Subsequent to this, the multiplication operation can be performed, yielding
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Figure 2.5 Multiplicative depth example via modDrop operation.

𝑐𝑡∗, which has a size 2×𝑛×(𝑑𝑒𝑐𝑜𝑚𝑝_𝑚𝑜𝑑_𝑠𝑖𝑧𝑒−2) at multiplicative depth 2.

Algorithm 4 CKKS ModDrop Algorithm
Input: 𝑐𝑖[0], 𝑐𝑖[1] ∈ R𝑞𝑖,𝑛, 𝑓𝑜𝑟 0 ≤ 𝑖 < 𝑟−1, where 𝑟 is the number of bases in RNS
Output: 𝑐𝑡𝑖[0], 𝑐𝑡𝑖[1] ∈ R𝑞𝑖,𝑛 𝑓𝑜𝑟 0 ≤ 𝑖 < 𝑟−2

1: for 𝑖 from 0 by 1 to (𝑟 −2) do
2: for 𝑘 from 0 by 1 to 2 do
3: 𝑐𝑡𝑖[𝑘] = 𝑐𝑖[𝑘]
4: end for
5: end for
6: return 𝑐𝑡𝑖[𝑘]

The estimation of the ciphertext coefficient modulus denoted as 𝑄 = 𝑝 ⋅ 𝑞𝑟1, plays a
crucial role in the process. This estimation involves selecting a prime number 𝑝 such that
it significantly surpasses the noise parameter Δ, while ensuring 𝑞 ≈ Δ. These parameters
define a set of moduli, 𝑄𝑟 = 𝑝 ⋅ 𝑞𝑟, where 𝑟 represents the number of levels or depth.

Figure 2.6 illustrates the progression. It begins with the encryption of a fresh ciphertext
modulus. Following a multiplication operation, the ciphertext loses one RNS modulus,
which signifies a reduction in its computational depth. When this process continues, the
RNS modulus becomes depleted, requiring bootstrapping to maintain the computation’s
integrity. Without bootstrapping, decryption becomes necessary.

1Note that, we strive to maintain the original notation as introduced in Cheon et al. (2017); however, this thesis
employs distinct RNS moduli.
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Figure 2.6 Utilization of RNS Modulus Across Various Multiplication Levels.

2.6.1.2 Encoding and Decoding

In the CKKS scheme, the plaintext space is denoted as ℂ𝑛/2, where the plaintext space
itself is defined as 𝑅 = ℤ[𝑥]/(𝑥𝑛 +1). The ciphertext space is defined as 𝑅2

𝑄𝑟
= 𝑅𝑄𝑟

×𝑅𝑄𝑟
,

where 𝑅𝑄𝑟
= ℤ𝑄𝑟

[𝑥]/(𝑥𝑛 +1) and 𝑅 = ℤ[𝑥]/(𝑥𝑛 +1).

Encoding plays a pivotal role in transforming message vectors into polynomials. For
instance, we can define the input and output of the encoding process as follows: 𝜇 =
(𝑚0,𝑚1,…,𝑚𝑛/2−1) ∈ ℂ𝑛/2 and 𝑚(𝑥) ∈ ℤ/(𝑥𝑛 + 1). Essentially, this process takes an
input vector of complex numbers and yields a polynomial with integer coefficients as
output. Furthermore, there exists a homomorphism between vectors and polynomials,
defined as follows: 𝑚1(𝑥)+𝑚2(𝑥) = 𝜇1 ⨁𝜇2 and 𝑚1(𝑥) ⋅𝑚2(𝑥) = 𝜇1 ⨀𝜇2.

We can divide the encoding process into three stages. To begin with, the input comprises
a vector of complex numbers 𝜇 ∈ ℂ𝑛/2. Firstly, to generate z ∈ ℂ𝑛/2, such that 𝑧𝑗 = 𝑧−𝑗,
the input 𝜇 is expanded. Subsequently, 𝜎−1 is applied to z using a special inverse Discrete
Fourier Transform (DFT) operation (Harris, 1978), employing 𝜁𝑗 where 𝜁 represents an
M-th root of unity and 𝑗 ∈ ℤ∗

𝑚 = 1,3,5,…,𝑚−1. Finally, the result is multiplied by the
scaling factor Δ and rounded to an integer. The output message is then represented as
𝑚(𝑥) ∈ 𝑅 = ℤ[𝑥]/(𝑥𝑛 +1), such that 𝑚(𝜁𝑗) = 𝑚𝑖, with 𝑖 = 𝑗+1

2 −1.

The decoding operation can be considered as an inverse encoding operation. First, we
have an input vector of polynomials denoted as 𝑚(𝑥) ∈ 𝑅 = ℤ[𝑥]/(𝑥𝑛 + 1). The initial
step involves multiplication by the scale factor Δ−1. Subsequently, a special Discrete
Fourier Transform (DFT) operation, denoted as 𝜎, is applied to the coefficients of 𝑚(𝑥)
using the M-th root of unity, 𝜁−𝑗, where 𝜁 represents an m-th root of unity and 𝑗 ∈ ℤ∗

𝑚 =
1,3,5,…,𝑚−1. Finally, this process yields an output element denoted as �̃� ∈ ℂ𝑛/2, such
that �̃�𝑖 = 𝑚(𝜁𝑖), with 𝑗 ∈ ℤ∗

𝑚, and 𝑖 = 𝑗+1
2 −1, effectively reducing the dimensionality of
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z ∈ ℂ𝑛.

2.6.1.3 Key Generation

For the key generation process, in summary, the secret key 𝑠 is generated as a sample
from the distribution 𝜒𝑘𝑒𝑦, 𝑠 ← 𝜒𝑘𝑒𝑦, where 𝜒𝑘𝑒𝑦 follows a typical probability distribution,
often the uniform ternary distribution (−1,0,1).

Regarding the public key generation, the following steps are followed: Firstly, a uniform
sample 𝑎 ← 𝜒𝑒𝑛𝑐 is drawn from the encryption probability distribution, which is uniformly
distributed over the ring 𝑅𝑄. Next, an error sample 𝑒 ← 𝜒𝑒𝑟𝑟 is taken, where 𝜒𝑒𝑟𝑟 is the
probability distribution employed for error generation, typically following the discrete
Gaussian distribution 𝒟ℤ,𝜎=3.19. Utilizing these two generated samples, the public key is
derived as 𝑝𝑘 = ([−𝑎 ⋅ 𝑠+𝑒]𝑄, [𝑎]𝑄) ∈ 𝑅2

𝑄.

2.6.1.4 Encryption and Decryption

For the encryption process, it takes plaintext as input, which can be defined as 𝑚(𝑥) ∈ 𝑅,
and produces ciphertext as output, defined as 𝑐𝑡 = (𝑐0, 𝑐1) ∈ 𝑅2

𝑄. Specifically, 𝑐0 and 𝑐1
are computed as follows: 𝑐0 = [𝑢 ⋅ 𝑝𝑘0 + 𝑚 + 𝑒0]𝑄 and 𝑐1 = [𝑢 ⋅ 𝑝𝑘1 + 𝑒1]𝑄, where 𝑢 is
sampled from the distribution 𝜒𝑒𝑛𝑐 (uniform over 𝑅𝑄), 𝑒0 ← 𝜒𝑒𝑟𝑟 and 𝑒1 ← 𝜒𝑒𝑟𝑟.

For the decryption process, it takes the ciphertext 𝑐𝑡 = (𝑐0, 𝑐1) ∈ 𝑅2
𝑄𝑟

as input and com-
putes [𝑐0 +𝑐1 ⋅ 𝑠]𝑄𝑟

, where we use the subscript 𝑙 for leveled encryption. Considering that
𝑐0 = [𝑢 ⋅𝑝𝑘0 +𝑚+𝑒0]𝑄 and 𝑐1 = [𝑢 ⋅𝑝𝑘1 +𝑒1]𝑄, these expressions can be substituted into
the computation, resulting in [𝑢 ⋅𝑝𝑘0 +𝑚+𝑒0 +𝑠⋅(𝑢⋅𝑝𝑘1 +𝑒1)]𝑄𝑟

. Additionally, knowing
that 𝑝𝑘 = ([−𝑎 ⋅ 𝑠 + 𝑒]𝑄, [𝑎]𝑄) ∈ 𝑅2

𝑄, we can replace [−𝑎 ⋅ 𝑠 + 𝑒]𝑄 with 𝑝𝑘0 and [𝑎]𝑄 with
𝑝𝑘1. This yields

[𝑢 ⋅ (−𝑎 ⋅ 𝑠+𝑒)+𝑚+𝑒0 +𝑠 ⋅ (𝑢 ⋅ 𝑎+𝑒1)]𝑄𝑟

Subsequent simplification results in [𝑚 + 𝑢 ⋅ 𝑒 + 𝑒0 + 𝑠 ⋅ 𝑒1]𝑄𝑟
, which can be expressed as

[𝑚(𝑥) + 𝑒′]𝑄𝑟
. It can be observed from the expression 𝑚′(𝑥) = 𝑚(𝑥) + 𝑒′ ∈ 𝑅𝑄𝑟

that
smaller the 𝑒, results in smaller noise in enc and vice versa.
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Figure 2.7 Multiplication of Ciphertexts Using Schoolbook Method.

2.6.1.5 Homomorphic Addition

Homomorphic addition represents one of the fundamental operations within the CKKS
scheme. This operation involves two ciphertext inputs, denoted as 𝐸𝑛𝑐(𝑚𝑎) = 𝑐𝑡𝑎 =
(𝑐𝑎

0 , 𝑐𝑎
1) and 𝐸𝑛𝑐(𝑚𝑏) = 𝑐𝑡𝑏 = (𝑐𝑏

0, 𝑐𝑏
1), with each element belonging to 𝑅2

𝑄𝑟
. The operation

yields the result 𝑐𝑡+ = (𝑐𝑎
0 +𝑐𝑏

0, 𝑐𝑎
1 +𝑐𝑏

1) ∈ 𝑅2
𝑄𝑟

. As previously discussed in Section 2.6.1.4,
upon simplification, we can express this as [𝑢+ ⋅ 𝑝𝑘0 + (𝑚𝑎 + 𝑚𝑏) + 𝑒𝑎

0,𝑢+ ⋅ 𝑝𝑘1 + 𝑒𝑏
1]𝑄𝑟

.
Notably, this operation results in an additive increase in noise. Consequently, the output
represents the encryption of the sum, 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑚𝑎 +𝑚𝑏).

2.6.1.6 Homomorphic Multiplication

Homomorphic multiplication takes two ciphertexts as input, denoted as, 𝐸𝑛𝑐(𝑚𝑎) = 𝑐𝑡𝑎 =
(𝑐𝑎

0 , 𝑐𝑎
1) and 𝐸𝑛𝑐(𝑚𝑏) = 𝑐𝑡𝑏 = (𝑐𝑏

0, 𝑐𝑏
1), both of which are elements of 𝑅2

𝑄𝑟
. Conceptually,

this operation performs elementary schoolbook multiplication, as illustrated in Figure 2.7.
Essentially, at the output of this multiplication, the result is expressed as tuple (𝑐𝑎

0 ⋅
𝑐𝑏

0, 𝑐𝑎
0 ⋅ 𝑐𝑏

1 + 𝑐𝑎
1 ⋅ 𝑐𝑏

0, 𝑐𝑎
1 ⋅ 𝑐𝑏

1) ∈ 𝑅3
𝑄𝑟

. To reduce the dimensionality from 𝑅3
𝑄𝑟

to 𝑅2
𝑄𝑟

, a
relinearization or Key Switching operation is performed, as illustrated in Figure 2.8.
Moreover, to mitigate the amplification of multiplicative noise, a rescaling operation is
performed. Finally, at the output, it returns [𝑚𝑎 ⋅𝑚𝑏 +𝑒×]𝑄𝑟

.
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Figure 2.8 Relinearization or Key switching operation.
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Figure 2.9 Homomorphic rescale operation.

2.6.1.7 Homomorphic Rescaling

After homomorphic multiplication, the result is expressed as [𝑚𝑎 ⋅ 𝑚𝑏 + 𝑒𝑥]𝑄𝑟
. As illus-

trated in Figure 2.9, both the message magnitude and noise experience an increase. This
growth exhibits exponential behavior with respect to the depth 𝑙. Therefore, the rescale
operation, often referred to as Modulus Switching, is employed to maintain the message
magnitude at the same level as fresh encryption while reducing the accumulated noise.

In the third step of Figure 2.9, we have 𝑐𝑡× = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛(Δ2𝜇𝑎𝜇𝑏 + 𝑒×) ∈ 𝑅𝑄𝑟
. The

rescale operation thus eliminates the least significant bits (LSBs) of the product as follows:
𝑟𝑒𝑠𝑐𝑎𝑙𝑒(𝑐𝑡×) = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛(⌈ 1

Δ ⋅ (Δ2 ⋅ 𝜇𝑎 ⋅ 𝜇𝑏 + 𝑒×)⌋) ∈ 𝑅𝑄𝑟
, where 𝑞 ≈ Δ, and then pro-

ceeds to the next level as follows: 𝑟𝑒𝑠𝑐𝑎𝑙𝑒(𝑐𝑡×) = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛(Δ⋅𝜇𝑎 ⋅𝜇𝑏 + 1
𝑞 𝑒× +𝑒𝑟𝑒𝑠𝑐𝑎𝑙𝑒) ∈

𝑅𝑄𝑙−1
.
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Figure 2.10 Illustration of the Key Switching operation.

2.6.1.8 Relinearization

As illustrated in Figure 2.10, the primary concept behind the relinearization operation
involves transitioning a ciphertext encrypted under one key to an equivalent ciphertext.
This equivalence signifies encrypting the same message but under a different key. For
instance, given a ciphertext 𝑐𝑡𝑎 = (𝑐𝑡𝑎

0, 𝑐𝑡𝑎
1) ∈ 𝑅2

𝑄𝑟
, encrypting a message 𝑚 that can be

decrypted using the secret key 𝑠𝑎, the objective is to transform 𝑐𝑡𝑎 into 𝑐𝑡𝑏 = (𝑐𝑡𝑏
0, 𝑐𝑡𝑏

1).
This transformed ciphertext encrypts the same message 𝑚 but can be decrypted using
the secret key 𝑠𝑏.

The CKKS scheme requires the use of the Key Switching operation in three distinct sce-
narios: after the homomorphic multiplication of two ciphertexts, following the application
of an automorphism to a ciphertext for slot rotation, and in proxy re-encryption, which
transitions a ciphertext encrypted under one key to an equivalent ciphertext. In the case
of proxy re-encryption, it is akin to encrypting the same message but under another key.
In all of these scenarios, the Key Switching operation exhibits striking similarities with
only minor variations.

As depicted in Figures 2.7 and 2.8, we are provided with ciphertexts 𝑐𝑡𝑎 = (𝑐𝑎
0 , 𝑐𝑎

1) and
𝑐𝑡𝑏 = (𝑐𝑏

0, 𝑐𝑏
1), each belonging to 𝑅𝑄𝑟

. Following the multiplication operation, three inter-
mediate results are obtained: 𝑐′

0 = 𝑐𝑎
0 ⋅ 𝑐𝑏

0, 𝑐′
1 = 𝑐𝑎

0 ⋅ 𝑐𝑏
1 + 𝑐𝑎

1 ⋅ 𝑐𝑏
0, and 𝑐′

2 = 𝑐𝑎
1 ⋅ 𝑐𝑏

1, all within
𝑅𝑄𝑟

. It is evident that the ciphertext size experiences exponential growth as the circuit
depth increases linearly. The relinearization operation serves to compress the ciphertext,
reducing it to a size of two elements. The core concept involves decrypting 𝑐′ normally
using 𝑚(𝑥) = [𝑐′

0 + 𝑐′
1 ⋅ 𝑠 + 𝑐′

2 ⋅ 𝑠2]𝑄𝑟
. Here, via key switching, the decryption with 𝑠2 can

be turned into decryption only by 𝑠.
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2.6.1.9 Homomorphic Permutation or Rotation

Since this operation is employed in the Key Switching algorithm, it bears a resemblance
to the relinearization operation. Furthermore, this operation is utilized in both the Galois
Elt Algorithm 10 and the Apply Galois Algorithm 9 in Chapter 4.

In terms of the mathematical foundation, we can define 𝐺𝑎𝑙(ℚ(𝜁𝑚)/ℚ) as the set of
mappings 𝑘𝑗: 𝑚(𝑥) → 𝑚(𝑥𝑗) (mod 𝜙𝑚(𝑥)), where 𝑔𝑐𝑑(𝑗,𝑚) = 1. When we apply 𝑘𝑗 to
the ciphertext polynomials, it results in a controlled permutation of the ciphertext slots.
For instance, 𝐺𝑎𝑙(ℚ(𝜁𝑚)/ℚ) ≈ ℤ∗

𝑚=2𝑛 = ⟨5,−1⟩.

• 𝑚(𝑥) = 𝑚(𝜁),𝑚(𝜁5),…,𝑚(𝜁2𝑛−3)

• 𝑘𝑗(𝑚(𝑋𝑗)) = 𝑚(𝜁𝑗),𝑚(𝜁5𝑗),…,𝑚(𝜁(2𝑛−3)𝑗)

Furthermore, these operations can be performed homomorphically on ciphertext polyno-
mials like (𝑐0(𝑥),𝑐1(𝑥)). However, it’s important to note that when the Key Switching
operation is applied without using the Apply Galois Algorithm, the resulting cipher-
text cannot be decrypted using the original secret key 𝑠, but rather requires the use of
𝑠′ = 𝑘𝑗(𝑠(𝑥)). Thanks to the Apply Galois Algorithm we can perform the decryption via
original secret 𝑠.
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3. GPU ARCHITECTURE

In this section, we present a brief overview of the GPU (graphics processing unit), its
brief history, its general architecture, and its adaptation as a means to accelerate general-
purpose computing. Furthermore, we briefly discuss the programming model of GPU and
discuss the memory hierarchy associated with GPU.

3.1 History

Historically GPUs were employed to process and render computer graphics in real-time
for visualization in application areas such as gaming, scientific computing, and digital
image processing. Since these fields involve computationally intensive tasks that can be
parallelized, using GPUs as accelerators is one of the most promising approaches.

By Moore’s Law (Moore, 1965) transistor sizes on a die kept reducing year-by-year
whereas, the operating clock frequencies kept increasing thus (Dennard et al., 1974),
each subsequent generation of chips delivered higher performance until the year 2005,
when this trend peaked. In order to move forward and meet ever-increasing demands for
performance, newer architectures and alternate design organizations were adopted. Par-
allel architectures were especially explored and chosen as a way forward to keep up with
performance demands. This parallelism could be achieved at both the data and instruc-
tion levels, marking the onset of the ”parallel era” and the emergence of multi-core CPUs
and GPUs. GPUs can employ many more threads executing concurrently than CPUs,
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albeit with somewhat lower clock frequencies. All in all, CPUs are better suited for a
diverse range of general-purpose computing tasks, whereas tasks that primarily revolve
around numerical computation and large matrix operations, which can be parallelized at
a granular level, are better accommodated by GPUs.

Additionally, various accelerating approaches exist aside from GPUs, such as field-
programmable gate arrays (FPGAs) or application-specific integrated circuits (ASICs).
GPUs offer greater flexibility in comparison to ASICs and FPGAs, making them a quicker
solution for acceleration. However, these solutions are primarily application-specific,
which is why they outperform GPUs in specific cases.

In conclusion, using an analogy, one might liken the CPU to a race car. Conversely, we
can liken the GPU to a bus.

3.2 GPU Hardware Basics

In order to obtain more performance GPU and CPU should work together. For some cases
opening a folder needs a single thread but for some cases like display screen needs GPU.
Mostly there are 2 different implementations for CPU and GPU as shown in Figure 3.1.
On the left side CPU and GPU work in separate chips. As an example of this NVIDIA
RTX 3070. On the right side CPU and GPU are in the same chips for example AMD’s
Bristol Ridge APU. This thesis mostly focuses on separate integration.

To achieve higher performance, GPUs and CPUs should collaborate. In some cases,
tasks such as opening a folder require a single thread, while others, like rendering the
display screen, demand the GPU’s processing power. Typically, there are two different
implementations for CPUs and GPUs, as illustrated in Figure 3.1. On the left side, CPUs
and GPUs operate on separate chips, as seen in examples like the NVIDIA RTX 3070.
On the right side, CPUs and GPUs are integrated onto the same chip, as exemplified by
AMD’s Bristol Ridge APU. This thesis predominantly focuses on separate integration.

As shown in the left side of Figure 3.1, CPU and GPU have their own memory. Facilitating
data transfer between the CPU and GPU in discrete systems necessitates the use of a
BUS. In contrast, integrated systems feature a shared cache memory to facilitate low-
latency data transfer.
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Figure 3.1 Discreate and integrated CPU and GPU examples.

3.3 Programming Model

Several computing APIs, such as OpenCL, ROCm (Radeon Open Compute), and CUDA,
employ an MIMD-like programming model that facilitates the launching of a large array
of scalar threads onto the GPU. Since we are working with the NVIDIA RTX 3070 and
RTX 4090, this thesis utilizes the CUDA (Compute Unified Device Architecture) language
to implement the CKKS scheme.

Firstly, the code begins execution on the CPU (host) and performs any necessary pre-
computations. Afterward, it must allocate memory as needed using cudaMalloc. Follow-
ing that, it copies the data onto that memory using cudaMemcpy, which takes memory
direction as an input. If data is being copied from the CPU to the GPU, the last input
should be cudaMemcpyHostToDevice; otherwise, it should be cudaMemcpyDeviceToHost.
Then, a driver running on the CPU initiates computation on the GPU, with the GPU
deciding which code will run using kernels.

Kernels take two inputs: the number of blocks and the number of threads for each block,
as denoted here <<<numBlocks, numThreads>>>. As shown in Figure 3.2, kernels are
executed as a grid of thread blocks, each of which contains threads specified during kernel
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Figure 3.2 Illustration Example of Kernels, Grids, Blocks, and Threads.

generation, and kernels are executed sequentially. Additionally, blocks and threads can
be defined as one, two-dimensional, or three-dimensional arrays. This simplifies memory
addressing when processing multi-dimensional data.

In CUDA, GPU functions typically start with __global__ void or __device__ void.
__global__ void indicates that the function is executed on the GPU but called from
the CPU. Conversely, __device__ void means that the function is both executed and
called on the GPU. To manage threads, a Thread_idx should be defined as follows:
blockIdx.x * blockDim.x + threadIdx.x. While using Thread_idx, threads can work
with desired patterns of indexes to access memory and execute the algorithm.

3.4 GPU Memory Organization and Hierarchy

One of the key components of NVIDIA GPUs is the Streaming Multiprocessor (SM),
which is responsible for executing tasks in parallel. Each SM contains several CUDA cores.
When specifying the number of blocks and threads in a kernel, these are organized into
a grid and then assigned to the SMs for execution. Figure 3.3, adapted from (NVIDIA,
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2021), provides a simple illustration of an SM in the RTX 3070 GPU.

Figure 3.3 RTX 3070 Streaming Multiprocessor (NVIDIA, 2021).

As mentioned previously and illustrated in Figure 3.4, grids consist of several thread
blocks. All threads within the same block can share their data via shared memory, but
threads from other blocks cannot access this data. 32 threads form a warp or scheduling
group. The RTX 3070 has up to 32 warps for each block, resulting in 32 × 32 = 1024
threads per block. Each block executes on a single SM, and the RTX 3070 has 46 SMs.

As shown in Figure 3.4 each thread can read and write its own registers and local memory.
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Threads in each block can read from and write to the shared memory. Threads in each
grid can read and write to global memory and can only read from constant and texture
memory.

Registers and shared memory are dedicated hardware; therefore, they reside in on-chip
memory. Threads can access these locations in a single clock cycle. Each thread has
its private register memory to store frequently accessed variables. Shared memory facili-
tates inter-thread cooperation and allows the sharing of intermediate information among
threads within the same block. Global memory is DRAM, off-chip memory. While all
threads can access that memory, it takes significantly more clock cycles compared to reg-
ister and shared memory access times. Moreover, global memory has a size in gigabytes,
whereas shared memory is measured in kilobytes.

Table 3.1 displays different variable types and their associated access penalties. Life time
indicates the duration of execution. If the Life time of a variable is within a kernel, it
is declared within the kernel function’s body; otherwise, if the Life time of a variable is
within an application, the variable is defined outside of the function’s body.
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Table 3.1 Variables and access penalties on modern GPUs memory architecture

Variable Declaration Memory Life Time Perform. Penalty
int localVar; Register Thread 1×
int LocalArr[10]; Local Thread 100×

__device__ int GVar; Global Application 100×
__constant__ int CVar; Constant Application 1×
__shared__ int SVar; Shared Block 1×
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4. Implementation of CKKS on GPU

In this chapter, we introduce our GPU implementations of integers multiplication and
Barrett reduction, INTT, NTT implementations, and SEAL CKKS GPU implementation
by presenting pseudo-codes and providing detailed explanations for the kernels. We use
64-bit precision for the arithmetic operations.

4.1 64-bit Multiplication and Barrett Reduction

As discussed in Section 2.4, Barrett reduction is implemented to achieve efficient reduc-
tion. Furthermore, for performing 64-bit multiplications, PTX code is used for GPU
implementation.

Barrett reduction is implemented as described in Algorithm 1. To achieve the most
efficient result for multiplication, PTX code is employed. The code takes two constants,
unsigned long values, denoted as ‘a’ and ‘b’. The algorithm performs multiplications as
follows: 𝑎.𝑙𝑜𝑤×𝑏.𝑙𝑜𝑤, 𝑎.ℎ𝑖𝑔ℎ×𝑏.𝑙𝑜𝑤, 𝑎.𝑙𝑜𝑤×𝑏.ℎ𝑖𝑔ℎ, 𝑎.ℎ𝑖𝑔ℎ×𝑏.ℎ𝑖𝑔ℎ, and finally, carries
out the addition of these results by aligning them properly. Then, the steps of the Barret
reduction are executed as described in Algorithm 1.
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4.2 INTT and NTT Implementation

In this thesis, we are utilizing the NTT implementation from the work of Ali Şah Özcan
et al. (Şah Özcan and Savaş, 2023), to which one can refer for detailed information. Algo-
rithms 2 and 3 present the pseudo-code for the NTT and INTT operations, respectively.

The Inverse and forward NTT implementation comprises two kernels for ring sizes
212, 213,…, 215. This design prioritizes the full utilization of shared memory to mini-
mize unnecessary kernel usage. Additionally, optimal efficiency is achieved by maximiz-
ing theoretical occupancy and ensuring coalesced access to global memory. Furthermore,
the implementation supports not only individual NTT operations but also batch NTT
operations.

4.3 SEAL CKKS GPU Implementation

In this section, we present the GPU implementation of the CKKS homomorphic operation
algorithms, which include homomorphic addition, homomorphic multiplication, rescaling,
relinearization, and rotation. To develop these algorithms, we utilize the Microsoft SEAL
library. Initially, we created Python models and pseudocode to outline the implementa-
tion process on the GPU. Subsequently, we commenced the GPU implementation.

4.3.1 Homomorphic Addition

Homomorphic addition is one of the simplest and least expensive operations in the
CKKS scheme. As depicted in Algorithm 5, it involves only element-wise addi-
tion operations. Therefore, the implementation consists of only one kernel with
a maximum thread count allowed by the GPU, which is 1024 threads for each
block. The kernel has 2×𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑚𝑜𝑑_𝑐𝑜𝑢𝑛𝑡×(𝑟/𝑡ℎ𝑟𝑒𝑎𝑑_𝑛𝑢𝑚) blocks, where
𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑚𝑜𝑑_𝑐𝑜𝑢𝑛𝑡 = 𝑟 −1 and 𝑟 = number of RNS bases.
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Algorithm 5 CKKS Addition Algorithm
Input: 𝑐𝑡𝑖[𝑘], ̄𝑐𝑡𝑖[𝑘] ∈ R𝑞𝑖

for 0 ≤ 𝑖 < 𝑟 −1, for 0 ≤ 𝑘 < 2
Output: ̃𝑐𝑡𝑖[𝑘] ∈ R𝑞𝑖

for 0 ≤ 𝑖 < 𝑟 −1, for 0 ≤ 𝑘 < 2
1: for 𝑖 from 0 by 1 to (𝑟 −1) do
2: for 𝑘 from 0 by 1 to 2 do
3: ̃𝑐𝑡𝑖[𝑘] = [𝑐𝑡𝑖[𝑘]+ ̄𝑐𝑡𝑖[𝑘]]𝑞𝑖
4: end for
5: end for
6: return ̃𝑐𝑡𝑖[𝑘]

4.3.2 Homomorphic Multiplication

Homomorphic multiplication is another simple and cost-effective operation in the CKKS
scheme. As depicted in Algorithm 6, it involves the multiplication of two ciphertexts, each
with two parts, denoted as 0 and 1. Therefore, the implementation consists of only one
kernel. Initially, this operation was designed using the maximum number of threads per
block. Since the output consists of ciphertexts with three parts, three ‘if’ statements were
used to handle these operations. However, it was later determined that the algorithm
could be optimized to eliminate the need for ‘if’ statements. An efficient memory access
pattern was achieved using 256 threads per block.

Algorithm 6 CKKS Multiplication Algorithm
Input: 𝑐𝑡𝑖[𝑘], ̄𝑐𝑡𝑖[𝑘] ∈ R𝑞𝑖

for 0 ≤ 𝑖 < 𝑟 −1, for 0 ≤ 𝑘 < 2
Output: ̃𝑐𝑡𝑖[𝑘] ∈ R𝑞𝑖

for 0 ≤ 𝑖 < 𝑟 −1, for 0 ≤ 𝑘 < 3
1: for 𝑖 from 0 by 1 to (𝑟 −1) do
2: ̃𝑐𝑡𝑖[0] = [𝑐𝑡𝑖[0]× ̄𝑐𝑡𝑖[0]]𝑞𝑖

3: ̃𝑐𝑡𝑖[1] = [(𝑐𝑡𝑖[0]× ̄𝑐𝑡𝑖[1])+(𝑐𝑡𝑖[1]× ̄𝑐𝑡𝑖[0])]𝑞𝑖

4: ̃𝑐𝑡𝑖[2] = [𝑐𝑡𝑖[1]× ̄𝑐𝑡𝑖[1]]𝑞𝑖
5: end for
6: return ̃𝑐𝑡𝑖[𝑘]

Furthermore, the blocks are two-dimensional, with the 𝑥-dimension having 𝑟/256 blocks
and the 𝑦-dimension having 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑚𝑜𝑑_𝑐𝑜𝑢𝑛𝑡 blocks (𝑟−1). To access 𝑐𝑡𝑖[0],

̃𝑐𝑡𝑖[0], and ̄𝑐𝑡𝑖[0], the code uses the following pattern: (𝑟 × 𝑗) + 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑𝑥 (referred to
as address1), where 𝑗 is the block number in the 𝑦-dimension, and 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑𝑥 is the
thread ID, as discussed in Chapter 3.3. For accessing 𝑐𝑡𝑖[1], ̃𝑐𝑡𝑖[1], and ̄𝑐𝑡𝑖[1], the code
employs the pattern: (𝑟 × 𝑗) + ((𝑟 − 1) × 𝑟) + 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑𝑥. Finally, for writing ̃𝑐𝑡𝑖[2], the
code utilizes the pattern: 2 × ((𝑟 − 1) × 𝑟)+address1. This new memory access pattern
resulted in a 20% speedup of the algorithm.
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4.3.3 Relinearization

As described in Chapter 2.6.1.8, after each multiplication operation, a relinearization
operation should be performed to transform the three ciphertexts resulting from the
multiplication into two ciphertexts. Algorithm 7 provides the pseudocode for the CKKS
relinearization operation. This implementation comprises eleven kernels: eight of these
kernels are NTT and INTT kernels (two kernels per NTT/INTT), and three of them are
dedicated to the relinearization operation.

Algorithm 7 CKKS Relinearization Algorithm
Input: 𝑐𝑖[0], 𝑐𝑖[1], 𝑐𝑖[2] ∈ R𝑞𝑖,𝑛
Input: 𝑒𝑣𝑘𝑗

𝑖 [𝑘] ∈ R𝑞𝑗,𝑛, where 𝑘 ∈ {0,1}, 0 ≤ 𝑗 < 𝑟, and 0 ≤ 𝑖 < (𝑟−1)
Output: 𝑐𝑡𝑖[0], 𝑐𝑡𝑖[1] ∈ R𝑞𝑖,𝑛

1: ̄𝐴𝑗,𝑘 = 1
2: for 𝑖 from 0 by 1 to 𝑟−2 do
3: 𝑐𝑝𝑜𝑙𝑦𝑖 = 𝐼𝑁𝑇 𝑇 𝑛,𝑞𝑖

(𝑐𝑖[2])
4: for 𝑗 from 0 by 1 to 𝑟 −1 do
5: for 𝑘 from 0 by 1 to 1 do
6: 𝑎𝑖,𝑗,𝑘 = [𝑁𝑇 𝑇 𝑛,𝑞𝑗

(𝑐𝑝𝑜𝑙𝑦𝑖)⊙𝑒𝑣𝑘𝑗
𝑖 [𝑘]]𝑞𝑗

7: ̄𝐴𝑗,𝑘 = [ ̄𝐴𝑗,𝑘 +𝑎𝑖,𝑗,𝑘]𝑞𝑖
8: end for
9: end for

10: end for
11: for 𝑘 from 0 by 1 to 1 do
12: 𝐴𝑟−1,𝑘 = 𝐼𝑁𝑇 𝑇 𝑛,𝑞𝑟−1

( ̄𝐴𝑟−1,𝑘)
13: end for
14: ℎ𝑎𝑙𝑓 = ⌊𝑞𝑟−1

2 ⌋
15: for 𝑖 from 0 by 1 to 𝑟−1 do
16: ℎ𝑎𝑙𝑓𝑚𝑜𝑑 = [ℎ𝑎𝑙𝑓]𝑞𝑖
17: for 𝑘 from 0 by 1 to 1 do
18: 𝑡𝑚𝑝 = [[𝐴𝑟−1,𝑘 +ℎ𝑎𝑙𝑓]𝑞𝑟−2

−ℎ𝑎𝑙𝑓𝑚𝑜𝑑]𝑞𝑖
19: 𝑡𝑚𝑝 = 𝑁𝑇 𝑇 𝑛,𝑞𝑖

(𝑡𝑚𝑝)
20: 𝑡𝑚𝑝 = [ ̄𝐴𝑖,𝑘 −𝑡𝑚𝑝]𝑞𝑖
21: 𝑡𝑚𝑝 = [𝑡𝑚𝑝 ×𝑞−1

𝑟 ]𝑞𝑖
22: 𝑐𝑡𝑖[𝑘] = [𝑐𝑖[𝑘]+ 𝑡𝑚𝑝]𝑞𝑖
23: end for
24: end for

Figure 4.1 illustrates the complete relinearization operation. As depicted in line 3, Al-
gorithm 7 initially applies the Inverse Number Theoretic Transform (INTT) operation
to 𝑐𝑖[2], where 𝑐𝑖[2] denotes the third ciphertext resulting from the multiplication opera-
tion. Subsequently, the next set of kernels commences to perform the Number Theoretic
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Figure 4.1 Overall, the implementation of the Relinearization operation can be sum-
marized. The symbols +, −, and × represent addition, subtraction, and multiplication,
respectively, in either ℤ𝑞 or R𝑞, while the symbol ⊙ denotes modular pointwise multipli-
cation for the vector representation of the elements in R𝑞 within the NTT domain.

Transform (NTT) operation for each RNS modulus on the output of the first kernel, as
described in line 6.

The next kernel begins with the evaluation key multiplication (⊙ in line 6 of the al-
gorithm) and performs additions, as depicted in lines 6-7. Furthermore, this kernel
utilizes a 2-dimensional grid size, where the 𝑥-dimension comprises 𝑛/1024 blocks, the
𝑦-dimension matches the number of bases in the RNS, and there are 1024 threads per
block. This implies that the thread count is equal to the total number of coefficients
in all RNS bases of the ciphertext 𝑐𝑖[2]. The kernel indexes the RNS moduli using
the 𝑦-dimension of the grid and retrieves the input data using the following pattern:
𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑𝑥 + (𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑦 × 𝑛) + (𝑖 × (𝑟 × 𝑛)), where 𝑖 is the variable of the outer for
loop and 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑𝑥 ranges from 0 to 𝑛. Due to the dependency in the outer for loop,
this kernel contains only one for loop, which iterates from 0 to 𝑟 − 1, and the innermost
for loop (i.e., line 5) is unrolled.

The next two kernels process the output of the third kernel and perform the INTT
operation on the last RNS modulus base, as depicted in line 12.

The following kernel performs addition operations involving half and halfmod, corre-
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Algorithm 8 CKKS ModSwitch Algorithm
Input: 𝑐𝑖[0], 𝑐𝑖[1] ∈ R𝑞𝑖,𝑛, 𝑓𝑜𝑟 0 ≤ 𝑖 < 𝑟−1
Output: 𝑐𝑡𝑖[0], 𝑐𝑡𝑖[1] ∈ R𝑞𝑖,𝑛 𝑓𝑜𝑟 0 ≤ 𝑖 < 𝑟−2

1: for 𝑘 from 0 by 1 to 1 do
2: 𝐴𝑟−1,𝑘 = 𝐼𝑁𝑇 𝑇 𝑛,𝑞𝑟−1

(𝑐𝑟−1[𝑘])
3: end for
4: ℎ𝑎𝑙𝑓 = ⌊𝑞𝑟−1

2 ⌋
5: for 𝑖 from 0 by 1 to 𝑟−2 do
6: ℎ𝑎𝑙𝑓𝑚𝑜𝑑 = [ℎ𝑎𝑙𝑓]𝑞𝑖
7: for 𝑘 from 0 by 1 to 1 do
8: 𝑡𝑚𝑝 = [[𝐴𝑟−1,𝑘 +half]𝑞𝑟−1

−halfmod]𝑞𝑖
9: 𝑡𝑚𝑝 = 𝑁𝑇 𝑇 𝑛,𝑞𝑗

(𝑡𝑚𝑝)
10: 𝑡𝑚𝑝 = [𝑐𝑖[𝑘]− 𝑡𝑚𝑝]𝑞𝑖
11: 𝑐𝑡𝑖[𝑘] = [𝑡𝑚𝑝 ×𝑞−1

𝑟 ]𝑞𝑖
12: end for
13: end for

sponding to lines 16 and 18 in Algorithm 7. The GPU code retrieves half and halfmod
as precomputed values from the CPU. This kernel also utilizes a 2-dimensional grid
size, where the 𝑥-dimension comprises 𝑛/1024 blocks, and the 𝑦-dimension consists of 2
blocks, each with 1024 threads. To access the input data, the kernel employs the fol-
lowing pattern: 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑𝑥 + (𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑦 × 𝑛). Here, 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑𝑥 ranges from 0 to 𝑛.
Additionally, the for loop in line 15 introduces a dependency. Therefore, this kernel also
contains a single for loop that iterates 𝑟 − 1 times. Subsequently, this kernel is followed
by the NTT kernels, as indicated in line 19.

Finally, the last kernel utilizes a 3-dimensional grid size, with the 𝑥-dimension having
𝑛/1024 blocks, the 𝑦-dimension having 𝑟 −1 blocks, and the 𝑧-dimension consisting of 2
blocks, each with 1024 threads. This kernel implements the operations described in lines
20 to 22 of Algorithm 7. The result is two ciphertexts at the output.

4.3.4 Rescale

As mentioned in Chapter 2.6.1.1, the rescale operation is one of the most essential op-
erations in the CKKS scheme. The algorithm for the rescale operation is referred to as
ModSwitch as depicted in Algorithm 8. This algorithm closely resembles the relineariza-
tion operations described in lines 12 to 21 of Algorithm 7. This operation consists of 6
kernels: 4 of them are for the NTT/INTT operations, and 2 of them are for the rescale
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operation.

The first two kernels take the 2 ciphertexts from the relinearization operation and convert
the NTT domain to the polynomial domain via the INTT operation, as described in line
2 of Algorithm 8.

The next kernel executes lines 4 to 8. This kernel also utilizes the precomputed values
half and halfmod from the CPU, performing addition with half and subtraction with
halfmod. The kernel is structured with (𝑟−2)×2×(𝑛/1024) blocks and 1024 threads per
block. Within this kernel, the first and second components of the ciphertext, 𝑐𝑖[0], 𝑐𝑖[1],
are processed using an if branch, instead of the for loop in the algorithm. The if
section involves threads from 0 to (𝑟 −2)×𝑛 for accessing the first ciphertext, while the
else section involves threads from (𝑟 −2)×𝑛 to the last thread for accessing the second
ciphertext. Subsequently, the kernel initiates computation at line 8.

The following set of 2 kernels takes the inputs from the previous kernel’s output and
transfers them to the NTT domain, as shown in line 9.

The last kernel finally performs subtraction and multiplication with the modular inverse
of the last modulus. The modular inverse of the last modulus is calculated on the CPU,
and the kernel takes it as a precomputed value. This kernel also consists of (𝑟 −2)×2×
(𝑛/1024) blocks and 1024 threads per block, similar to the third kernel. Since the input
sizes are the same, the memory access pattern also remains the same as the third kernel.
After accessing the data via a single if branch (the branch is used to process the 𝑘 = 0
and 𝑘 = 1 values of the for loop in linen 7), the kernel initiates computation on lines 10
and 11. Subsequently, the decomposition modulus size is reduced by one at the output.

4.3.5 Rotation

This operation consists of 3 algorithms: Apply Galois, Galois Elt, and Switch Key.
It is implemented using 12 kernels: 8 kernels for the NTT/INTT operations, 3 kernels
for the switchkey operation, and 1 kernel for Apply Galois (Algorithm 9) and Galois
Elt (Algorithm 10).

Since the Apply Galois algorithm operates on the polynomial domain, the first set of 2
kernels applies the inverse NTT operation.

The next kernel, which executes Algorithms 10 and 9, has a block size of (𝑟 − 1) × 2 ×
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Algorithm 9 Apply Galois Algorithm
Input: 𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡,𝑐𝑖

𝑗[𝑘] ∈ R𝑞𝑖,𝑛, where 0 ≤ 𝑖 < (𝑟 −1) 0 ≤ 𝑗 < 𝑛 𝑘 = 0,1
Output: ̄𝑐𝑖

𝑗[𝑘] ∈ R𝑞𝑖
1: for 𝑖 from 0 by 1 to 𝑟−2 do
2: for 𝑗 from 0 by 1 to 𝑛−1 do
3: 𝑖𝑛𝑑𝑒𝑥_𝑟𝑎𝑤 = 𝑗 ×𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡
4: 𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥_𝑟𝑎𝑤 & (𝑛−1)
5: for 𝑘 from 0 by 1 to 1 do
6: 𝑟_𝑣𝑎𝑙𝑢𝑒 = 𝑐𝑖

𝑗[𝑘]
7: if (𝑖𝑛𝑑𝑒𝑥_𝑟𝑎𝑤 ≫ 𝑙𝑜𝑔2(𝑛)) & 1 then
8: 𝑛𝑜𝑛_𝑧𝑒𝑟𝑜 = 𝑖𝑛𝑡(𝑟_𝑣𝑎𝑙𝑢𝑒 ≠ 0)
9: 𝑟_𝑣𝑎𝑙𝑢𝑒 = (𝑞𝑖 −𝑟_𝑣𝑎𝑙𝑢𝑒) & (−𝑛𝑜𝑛_𝑧𝑒𝑟𝑜)

10: end if
11: ̄𝑐𝑖

𝑗[𝑘] = 𝑟_𝑣𝑎𝑙𝑢𝑒
12: end for
13: end for
14: end for

(𝑛/1024), with each block containing 1024 threads. This makes the overall thread count
equal to the total number of coefficients in all RNS bases of the ciphertext 𝑐𝑖[0] and 𝑐𝑖[1].
Algorithm 10 takes an input steps that defines the number of rotations for the ciphertext
and returns the galois_elt variable, which serves as input for Algorithm 9. The kernel
allocates half the threads for the first component of the ciphertext, 𝑐[0] and the other
half for 𝑐[1]. Originally, the output returns the ciphertext coefficients 𝑐𝑖

𝑗[𝑘] with a size of
(𝑟−1)×2×𝑛, but for simplicity, this kernel returns 2 ciphertexts with sizes of (𝑟−1)×𝑛.

Subsequently, the following operation is the switchkey algorithm. The following 5 sets
of kernels are the same as those used in the relinearization’s where the lines 6 to 19 in
Algorithm 7. The last kernel is identical to the last kernel used in rescaling.
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Algorithm 10 Galois Elt Algorithm
Input: 𝑠𝑡𝑒𝑝𝑠,𝑛
Output: 𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡

1: 𝑚32 = 𝑛×2
2: if 𝑠𝑡𝑒𝑝𝑠 == 0 then
3: return 𝑚32−1
4: else
5: 𝑝𝑜𝑝_𝑠𝑡𝑒𝑝𝑠 = 𝑎𝑏𝑠(𝑠𝑡𝑒𝑝𝑠)
6: if 𝑠𝑡𝑒𝑝𝑠 < 0 then
7: 𝑠𝑡𝑒𝑝𝑠 = (𝑛 ≫ 1)−𝑝𝑜𝑝_𝑠𝑡𝑒𝑝𝑠
8: else
9: 𝑠𝑡𝑒𝑝𝑠 = 𝑝𝑜𝑝_𝑠𝑡𝑒𝑝𝑠

10: end if
11: 𝑔𝑒𝑛 = 3
12: 𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡 = 1
13: for 𝑖 from 0 by 1 to 𝑠𝑡𝑒𝑝𝑠 do
14: 𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡 = 𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡×𝑔𝑒𝑛
15: 𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡 = 𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡 & (𝑚32−1)
16: end for
17: return 𝑔𝑎𝑙𝑜𝑖𝑠_𝑒𝑙𝑡
18: end if
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5. RESULTS

In this section, we present the results of our GPU implementation by conducting a com-
prehensive comparison with state-of-the-art works. Furthermore, we designed circuits to
demonstrate the performance of our implementations. These circuits are designed with
varying multiplicative depths to capture the computational requirements of applying ho-
momorphic computation in real-life applications.

Table 5.1 provides an overview of our testbed environment. The GPU results are obtained
using the NVIDIA RTX 3070 and 4090 GPUs. To ensure a fair comparison, we employed
a powerful CPU, namely the AMD Ryzen 7 3800X.

Table 5.1 Hardware features of the Testbed environment

Feature CPU GPU
RTX3070 RTX 4090

Model Ryzen7 3800X RTX3070 RTX4090
Threads 16 5888 16384

Frequency 4.20 GHz 1920 MHz 2520 MHz
RAM 32 GB (3600 MHz) 12 GB 24 GB

Memory Type - GDDR6X GDDR6X
Memory Bus - 256 bits 384 bits
Bandwidth - 504.2 GB/s 1,008 GB/s

CUDA version: 11.6.2
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5.1 GPU Implementations of CKKS HE Operations Results and

Comparison With State of the Art Works

There are limited prior works in the literature presenting GPU implementations of homo-
morphic operations within the CKKS scheme, and the existing ones often lack comprehen-
sive performance results for all homomorphic operations, let alone results for complete
homomorphic applications. Furthermore, our work focuses on achieving high levels of
security, necessitating the execution of operations using large modulus sizes.

In Table 5.2, we provide GPU-based CKKS implementation results and compare them
with state-of-the-art implementation in Microsoft SEAL library implementation of the
CKKS scheme running on a CPU whose specifications are given in Table 5.1. One sig-
nificant observation is that as the ring dimension increases so do the speedup values.
For homomorphic multiplication, we break down timing results into separate categories:
multiplication, relinearization, and rescale. We achieve impressive speedups of up to
264.65×, 161.07×, and 113× respectively.F or the homomorphic rotation operation, we
attain a speedup of up to 121.1× when compared to CPU results.

We also compared our GPU implementations against those in the literature (Yang et al.,
2023; Jung et al., 2021; Badawi et al., 2020; Shen et al., 2022), and summarized the
results in Table 5.3. Note that the timing results in the literature for homomorphic mul-
tiplication account for both multiplication and relinearization operations while we report
them separately. While Work Yang et al. (2023) exhibits faster results beyond a ring size
of 213, it employs significantly smaller modulus sizes than our work. Consequently, we
contend that our implementation achieves superior performance while maintaining much
higher levels of noise budget. Similarly, in comparison to Work Badawi et al. (2020), our
implementation remains faster despite utilizing larger moduli for ring dimensions 213 and
214; namely, 218 and 438 bits modulus, respectively, compared to their 200 and 360 bits
modulus.

In summary, our implementation delivers substantial speed improvements compared to
CPU-based results. Moreover, it either outperforms or comparable to other existing works
in the literature, particularly when aiming for high levels of nonise budget.
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Table 5.2 Comparison of homomorphic operations’ timing results of the SEAL CKKS
scheme implementation on CPU and our GPU implementation. (times in microseconds)

GPU Imp. SEAL CPU Imp. 𝑇
Operation n log2 𝑞 RTX3070 RTX4090 CPU 𝑇𝑠

Addition

212 109 4 3.42 11 3.22×
213 218 5.1 3.66 42 11.48×
214 438 12.3 4.32 184 42.59×
215 881 44 7.14 750 105.04×

Multiplication

212 109 5.1 4.6 93 20.21×
213 218 7.1 5.1 416 81.56×
214 438 16.8 9.4 1583 168.4×
215 881 67.5 23 6087 264.65×

Relinearization

212 109 67.5 50.1 565 11.28×
213 218 98.3 60.12 2905 48.32×
214 438 398.3 133.02 18150 136.45×
215 881 2867.2 697.95 112415 161.07×

Rescaling

212 109 47.1 22.85 150 6.56×
213 218 57.3 46.24 681 14.72×
214 438 95.1 56.09 3191 56.89×
215 881 328.7 112.48 12710 113×

Rotation

212 109 81.9 60.9 586 9.62×
213 218 121.8 86.78 2921 33.66×
214 438 481.2 194.24 18236 93.88×
215 881 3444.7 939.2 113732 121.1×

𝑇𝑠: CPU vs RTX 4090 speed up.

5.2 Circuit Design using the CKKS GPU Library with Varying

Multiplicative Depth

In order to assess the performance of our CKKS scheme implementation on GPU, we also
designed some benchmark circuits to capture the computational complexity of real-world
applications whose complexity increases with the depth of (Boolean) circuits. Here, the
depth of a circuit is determined by the number of serially executed successive multipli-
cation operations. Figure 5.1 shows a circuit design, that has a multiplicative depth of
three. As shown in the figure, after each depth, ciphertext size decreased by 1 RNS
modulus.
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Table 5.3 Timing results for the CKKS operations GPU implementation compared to
prior works in the literature (Times in microseconds)

Work Device n log2 𝑞 Add. Mult. Relin. Resc. Rot.

(Yang et al., 2023) Tesla V100

212 70 5 139⋆ − 69 140
213 105 5 125⋆ − 70 124
213 142 5 149⋆ − 72 148
214 259 6 178⋆ − 79 176
214 260 6 203⋆ − 79 201
215 500 24 382⋆ − 141 348
215 550 31 484⋆ − 159 447
216 820 75 1119⋆ − 374 1026
216 980 89 1445⋆ − 437 1329

(Jung et al., 2021) Tesla V100 216 1,693 162 2,960⋆ − 490 2,550

(Badawi et al., 2020) Tesla V100

213 200 30′ 400⋆ − 120 3740
214 360 40′ 740⋆ − 140 6090
215 600 50′ 2340⋆ − 270 17820
216 1770 180′ 33580⋆ − 1280 324900
216 2300 300′ 55880⋆ − 1630 444790

(Shen et al., 2022) Tesla V100

212 − − 240 − − −
213 − − 230 − − −
214 − − 310 − − −
215 − − 590 − − −
216 − − 1570 − − −

T.W.

RTX 3070

212 109 4 5.1 67.5 47.1 81.9
213 218 5.1 7.1 98.3 57.3 121.8
214 438 12.3 16.8 398.3 95.1 481.2
215 881 44 67.5 2867.2 328.7 3444.7

RTX 4090

212 109 3.42 4.6 50.1 22.85 60.9
213 218 3.66 5.1 60.12 46.24 86.78
214 438 4.32 9.4 133.02 56.09 194.24
215 881 7.14 23 697.95 112.48 939.2

⋆: Homomorphic multiplication + relinearization operation result.
′: Homomorphic addition with ciphertext and plaintext.
T.W.: This work.

Table 5.4 displays the timing results for various multiplicative depths achieved by our
GPU CKKS library implementation in this thesis in comparison with the GPU BFV
implementation in the work by Şah Özcan et al. (2022), and SEAL’s CPU-based CKKS
and BFV implementations. The provided timings represent the homomorphic evaluations
of the entire circuit and have been obtained using the RTX 3070 GPU. As there is no prior
work involving GPU implementation and circuit design, our primary point of comparison
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Figure 5.1 Circuit design and ciphertext size comparison for 3 multiplicative depth.

is the BFV GPU implementation and CKKS CPU implementation.

For the circuit with the multiplicative depth of four, we achieved timing results that
closely resembled those of the GPU BFV circuit design, with a ring size of 213 and a 218-
bit modulus. In this case, we utilized a set of RNS moduli {40,33,33,33,33,40} bits and
a 33-bit scaling factor. Beyond the fifth and sixth depth, the BFV scheme is unable to
perform additional multiplications with this ring dimension. However, it is worth noting
that by decreasing the bit sizes of each RNS moduli and increasing their quantity, we
can extend the depth of the circuit to 5 and 6 with the CKKS scheme. As demonstrated
in Table 5.4, we can achieve computation for circuits with the multiplicative depth of
five using a set of RNS moduli consisting of {37,30,30,30,30,30,30} bits, resulting in
a remarkable 27.81 times speedup compared to the CPU single thread implementation.
Furthermore, for circuits with the multiplicative depth of six, {35,26,26,26,26,26,26,26}
bits set of RNS moduli enabled a 24.07 times speedup.

Our results demonstrate the adaptability of our GPU library for the design of complex
circuits, making it a valuable tool for accelerating applications that employ the CKKS
scheme.
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Table 5.4 Comparison between the SEAL CKKS and BFV scheme implementations, our
CKKS GPU implementation, and the BFV implementation from the work by Şah Özcan
et al. (2022) (Times are in milliseconds taken using RTX 3070).

CPU

Depth n log2 𝑞 𝒫 S.T M.T. GPU 𝒮𝑆.𝑇.→𝐺𝑃𝑈 𝒮𝑀.𝑇.→𝐺𝑃𝑈

CKKS

4. 213 218 33 76 23.6 2.95 25.76 8

5. 213 218 30 183 43.8 6.58 27.81 6.65

6. 213 218 26 467.74 87 23.42 24.07 3.71

BFV

4. 213 218 − 198.3 82.7 2.82 70.32 29.32

5. 214 218 − 1958.7 516 29.62 66.13 17.42

6. 214 218 − 4021.1 873.3 59.88 67.15 14.58

S.T.: Single thread
M.T.: Multi-thread
𝒮𝑆.𝑇.→𝐺𝑃𝑈 : Speed up between single thread CPU and GPU.
𝒮𝑀.𝑇.→𝐺𝑃𝑈 : Speed up between multi-thread CPU and GPU.
𝒫: Precision.
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6. CONCLUSION

In this chapter, we present a concise summary and conclusions of our work, along with
potential avenues for future research.

Within this thesis, we introduce a GPU library featuring highly parallelized and op-
timized implementations of homomorphic operations designed for the CKKS scheme.
Furthermore, our library seamlessly integrates with the Microsoft SEAL library. These
GPU-accelerated functions are accessible from any application code through SEAL. Con-
sequently, this library serves as an accelerator for homomorphic encryption applications
relying on the CKKS scheme.

To achieve the most competitive timing results available in current literature, we stream-
lined the kernel function calls and optimized GPU memory usage. Our implementation
and timing results affirm that using a GPU as an accelerator represents a sound ap-
proach for the efficient execution of homomorphic encryption operations. For instance,
our GPU implementation outperforms the CPU implementation by factors of 105.04,
264.65, 161.07, 113, and 121.1 for homomorphic addition, homomorphic multiplication,
relinearization, homomorphic rescale, and homomorphic rotation operations, respectively,
using a ring dimension of 215 and an 881-bit modulus via an RTX 4090 GPU.

We also examined the behavior of CKKS scheme operations for homomorphic evaluation
of circuits with various multiplicative depths. Furthermore, we devised several bench-
mark circuits to represent different real-life applications of homomorphic encryption and
presented outcomes at different multiplicative depths, which we subsequently compared
with CPU implementations and the BFV GPU implementation detailed in the work
by Şah Özcan et al. (2022). Our findings indicate that we can achieve speedups of up to
27.81 when compared to a CPU implementation. Additionally, our benchmark circuits
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showed the relation between precision, speed up, and security level.

The reported timing results from our circuit designs underscore the library’s efficacy as
an accelerator for applications ranging from simple to highly complex.

Given that this work focuses on somewhat homomorphic encryption (SWHE), we consider
the bootstrapping operation as a potential avenue for future research, particularly to
implement fully homomorphic encryption (FHE).
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