
EFFICIENT FPGA IMPLEMENTATIONS FOR HOMOMORPHIC
ENCRYPTION OPERATION OF CKKS SCHEME

by
Can Ayduman

Submitted to
the Faculty of Engineering and Natural Sciences

in partial fulfillment of the requirements for the degree of
Master of Science

Sabancı University
Istanbul, Türkiye

August 2023

© 2023 by Can Ayduman.
All Rights Reserved.

ABSTRACT

EFFICIENT FPGA IMPLEMENTATIONS FOR HOMOMORPHIC ENCRYPTION
OPERATION OF CKKS SCHEME

CAN AYDUMAN

ELECTRONICS ENGINEERING MSC. THESIS, AUGUST 2023

Thesis Advisor: Prof. Dr. Erkay Savaş

Keywords: Homomorphic Encryption, Polynomial Multiplication, Number Theoretic
Transform (NTT), FPGA, Hardware Accelerator

Homomorphic encryption is the pinnacle of cryptography, providing secure and private
third-party computation of sensitive data. Homomorphic encryption schemes allow the
unique ability to compute over the encrypted data. Due to its impressive power, one
can gain insights from sensitive data without compromising privacy. Newer generation
fully homomorphic encryption (FHE) schemes such as BFV (Fan & Vercauteren, 2012)
and CKKS (Cheon, Kim, Kim & Song, 2017) schemes are the most popular and have
the potential to be used in practice. The limitation of current homomorphic encryption
schemes is the computationally complex operations, which prevent applications that re-
quire efficiency in their implementations. This thesis aims to present high-performance
hardware designs for accelerating FHE schemes.

This thesis presents a design-time configurable hardware generator for hardware accel-
eration of the CKKS FHE scheme. The design aims to accelerate the multiplication,
relinearization and rescale operations of the CKKS. It includes a design-time config-
urable Number Theoretic Transform (NTT) multiplication hardware for polynomial sizes
between 210 and 215. Polynomial multiplication is a bottleneck for the FHE opera-
tions. Therefore, it is crucial to design efficient hardware accelerators for high degree
polynomial multiplications. The NTT enables very fast polynomial multiplication by
reducing its complexity to 𝒪(𝑛 log2 𝑛) from 𝒪(𝑛2). The Forward NTT operations are
implemented with Cooley-Tukey, while Inverse NTT operations are implemented with
Gentleman-Sande butterfly circuits.

iii

Memory access pattern (MAP) of the NTT operation is complex and it is crucial to design
an efficient MAP for NTT for implementing a high-throughput NTT architecture. We
designed and implemented an efficient algorithm for the MAP of NTT and generalized
this approach for polynomial sizes, 210 to 215. Our hardware acceleration for the CKKS
fully homomorphic encryption scheme offers a 15-fold speedup in the homomorphic mul-
tiplication operation and a 4-fold speedup in the key-switch operation compared to the
Microsoft SEAL library. This comparison was conducted in an environment where the
software ran on an AMD Ryzen 7 3800x CPU.

iv

ÖZET

CKKS ŞEMASININ HOMOMORFİK ŞİFRELEME İŞLEMLERİ İÇİN VERİMLİ
FPGA UYGULAMALARI

CAN AYDUMAN

ELEKTRONİK MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, AĞUSTOS 2023

Tez Danışmanı: Prof. Dr. Erkay Savaş

Anahtar Kelimeler: Homomorfik Şifreleme, Polinom Çarpması, Sayılar Teorisi
Dönüşümü (NTT), FPGA, Hızlandırıcı Donanım

Homomorfik şifreleme, hassas verilerin güvenli ve mahremiyet korumalı bir şekilde
işlenebilmesini sağladığı için kriptografi biliminin zirvesidir. Homomorfik şifreleme şe-
maları, şifrelenmiş veriler üzerinde hesaplama yapabilme yeteneğine sahiptir. Bu benzer-
siz yeteneği sayesinde, gizliliği ve mahremiyeti tehlikeye atmadan hassas verilerden bilgi
elde edilebilir. Yeni nesil tam homomorfik şifreleme (FHE) şemaları olan BFV (Fan &
Vercauteren, 2012) ve CKKS (Cheon, Kim, Kim & Song, 2017) en popüler olanlardır
ve pratikte kullanılma potansiyeline sahiptir. Mevcut homomorfik şifreleme şemalarının
uygulamada kullanılmalarının önündeki en önemli engel ve sınırlama, bu şifreleme şe-
malarının bünyelerinde karmaşık işlemler barındırması ve büyük hacimli veri yapılarıyla
çalışmaları nedeniyle çok yüksek ve kaynak gereksinimine ihtiyaç duymalarıdır. Bu tezin
amacı, tam homomorfik şifreleme şemalarını hızlandırmak için yüksek performanslı do-
nanım tasarımlarını sunmaktır.

Bu tez, CKKS tam Homomorfik şifreleme şemasının donanım hızlandırması için tasarım
zamanında yapılandırılabilir bir donanım üreteci sunmaktadır. Tasarım, CKKS’nin
çarpma, yeniden doğrusallaştırma ve yeniden ölçeklendirme işlemlerini hızlandırmayı
amaçlamaktadır. 210 ve 215 arasında polinom dereceleri için tasarım zamanında yapı-
landırılabilir bir Sayısal Teorik Dönüşüm (NUmber Theoretic Transform - NTT) çarpma
donanımı içermektedir.

Polinom çarpımı, FHE işlemleri için bir darboğaz oluşturmaktadır. Bu nedenle, bu
işlemler için verimli donanım hızlandırıcılar tasarlamak kritiktir. NTT, karmaşıklığını
𝒪(𝑛2)’den 𝒪(𝑛 log2 𝑛)’ye indirerek çok hızlı polinom çarpımını mümkün kılar. İleri NTT
işlemleri Cooley-Tukey ile, ters NTT işlemleri ise Gentleman-Sande kelebek devreleri ile
gerçekleştirilmektedir.

NTT işleminin Bellek Erişim Paterni (MAP) karmaşıktır ve yüksek verimlilikli bir NTT
mimarisi uygulamak için verimli bir MAP için NTT tasarlamak kritiktir. NTT’nin MAP’ı

v

için verimli bir algoritma tasarlanmış ve uygulanmıştır, ve bu yaklaşım 210 ile 215 arasın-
daki polinom boyutları için genelleştirilmiştir. CKKS tam Homomorfik şifreleme şe-
masının hızlandırması için yaptığımız donanım, homomorfik çarpma işleminde Microsoft
SEAL kütüphanesine kıyasla 15 kat, anahtar değiştirme işleminde ise 4 kat hız artışı
sunmaktadır. Bu karşılaştırma, yazılımın AMD Ryzen 7 3800x CPU’da çalıştırıldığı bir
ortamda gerçekleştirilmiştir.

vi

ACKNOWLEDGMENT

First and foremost, I sincerely thank my supervisor, Prof. Dr. Erkay Savaş, for guiding
me throughout my master’s thesis journey, supporting me with his extensive knowledge,
and always being by my side. Prof. Dr. Savaş’s mentorship has been instrumental in
forming and completing this thesis. His perfectionism, attention to detail, and meticulous
approach to scientific research have consistently pushed me to achieve higher standards
at every stage of my thesis work. This pursuit of excellence has been a significant source
of motivation in enhancing the quality of my thesis.

Similarly, I am profoundly grateful to my ex-supervisor, Dr. Erdinç Öztürk, for his
critical feedback, scientific approach, and exceptional guidance throughout my master’s
thesis journey. Dr. Öztürk’s consistently supportive attitude, valuable suggestions, and
direction have significantly influenced the shaping of my thesis. He was always by my side
during my challenges, providing excellent support. Working with him has left a positive
and lasting impact on my academic and personal development.

I want to express my deep gratitude to Prof. Dr. Sıddıka Berna Örs Yalçın and Prof.
Dr. Ferruh Özbudak, who served on the jury committee. Their comments and reviews
have greatly assisted in enhancing the quality of my thesis.

I am deeply grateful to the Cryptography and Information Security Group (CISEC) at
Sabanci University. The support from the group has played a significant role in the
success of my thesis. I want to thank Kemal Derya and Ahmetcan Mert from this group.
Their valuable support and sharing of their experiences have contributed significantly to
developing my thesis work.

I owe a deep debt of gratitude to my friends Emre and Selim for the energy they infused in
me to overcome challenges during my thesis journey. They stood by my side academically
and personally during the limitations I faced and in stressful moments. Their support
transformed this journey from a scientific effort into a personal growth and learning
experience. I thank them profoundly for their invaluable support throughout this process.

Lastly, I would like to sincerely thank my family, who have been by my side with their
belief, love, and support from the beginning to the end of this process. The faith of my
mother, Nurcan, and my father, Şakir, in me has been a source of strength during my
challenging times and my greatest motivation in achieving success.

This thesis is partially supported by the European Union’s Horizon Europe research and
innovation programme under grant agreement No: 101079319 and by TUBITAK under
Grant Number 118E72.

vii

To my beloved family...

viii

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES . xii

1. INTRODUCTION . 1
1.1. Prior Work . 4
1.2. Our Contribution . 7

2. BACKGROUND . 9
2.1. Notation . 9
2.2. NTT-based Polynomial Multiplication 10

2.2.0.1. Montgomery Reduction in NTT 15
2.2.0.2. Merged NTT . 17
2.2.0.3. Four-Step NTT . 19

2.3. Homomorphic Encryption . 21
2.3.1. Cheon-Kim-Kim-Son Homomorphic Encryption Scheme 24
2.3.2. Residue Number System . 26

2.4. Field Programmable Gate Array (FPGA) 27

3. OUR WORK . 30
3.1. Efficient Design-Time Flexible NTT-Based Polynomial Multiplication Ar-

chitectures . 30
3.1.1. Unified Butterfly Unit . 31

3.1.1.1. Modular Addition and Subtraction Units 32
3.1.1.2. Modular Multiplication Unit 33

3.1.2. The Parametric Merged NTT Hardware 33
3.1.3. Four-Step NTT Hardware . 38

3.2. Efficient Design-Time Flexible Hardware Architecture for Accelerating Ho-
momorphic Encryption Operations of CKKS Scheme 42
3.2.1. Full RNS Variant of the CKKS Scheme 43

3.2.1.1. Homomorphic Multiplication 44
3.2.1.2. Key Switching . 45

3.2.2. Homomorphic Multiplication and Key Switching Architecture . . 47

4. RESULTS AND COMPARISON . 51
4.1. Implementation Results . 51

ix

4.1.1. NTT Implementation Results . 52
4.1.2. Homomorphic Encryption Operations Implementation Results . . 53

4.2. Comparison . 54
4.2.1. NTT Comparison . 54
4.2.2. Homomorphic Encryption Operations Comparison 57

5. CONCLUSION AND FUTURE WORK 59
5.1. Conclusion . 59
5.2. Future Work . 60

BIBLIOGRAPHY . 62

x

LIST OF TABLES

Table 1.1. Comparative Table for Merged NTT Implementations in the literature. 4
Table 1.2. Comparative Table for CKKS Implementations in the literature. . 6

Table 4.1. Results for the Merged NTT. 52
Table 4.2. Results for the CKKS Operations (Multiplication + Relinearization

+ Rescaling) . 54
Table 4.3. Comparative Table for Merged NTT Implementations. 56
Table 4.4. Comparison Table for Homomorphic Operations: Multiplication +

Key Switching. 57

xi

LIST OF FIGURES

Figure 2.1. Four-step NTT working principle. 19
Figure 2.2. The workflow of the traditional encryption method incorporating

third-party computation, delineating each critical step in the process. . 22
Figure 2.3. Illustrating the process of third-party computation facilitated

through homomorphic encryption, outlining each pivotal phase. 22

Figure 3.1. 32-bit Modular Adder Unit . 32
Figure 3.2. BRAM Architecture Overview . 36
Figure 3.3. Control Unit Architecture Overview 37
Figure 3.4. Read Addresses of the Memory Access Pattern 37
Figure 3.5. Write Addresses of the Memory Access Pattern 38
Figure 3.6. Four Step NTT Memory Access Pattern with 2 PEs and size0 =

size1 = 8 . 40
Figure 3.7. Four Step NTT Write Access Example 41
Figure 3.8. Overview of the Accelerator Architecture 48

xii

1. INTRODUCTION

Fully Homomorphic Encryption (FHE) is a form of encryption that allows for computa-
tions to be performed on encrypted data without decrypting it. This property was first
demonstrated as a result of the research by Gentry et al. as presented in Gentry (2009).
By using FHE, when decrypted, calculations conducted on encrypted data produce the
same results as those on unencrypted data. The main objective of FHE is to permit
computations in the encrypted domain, ensuring the confidentiality of the data during
these computations. The significance of FHE stems from its capability to maintain the
privacy and security of sensitive information, particularly in cloud computing and multi-
party computation scenarios. It offers a secure approach to processing confidential data
without accessing the unencrypted form.

The Cheon-Kim-Kim-Song (CKKS) scheme Cheon (2017) is pivotal for conducting non-
linear operations on real numbers. Originally, CKKS started resembling other Somewhat
Homomorphic Encryption (SHE) systems before transitioning into a Fully Homomorphic
framework. SHE systems support a finite set of arithmetic operations on encrypted data
until the associated ’noise’ surpasses a specific limit. Once this noise budget is depleted,
further operations might result in decryption inaccuracies. On the other hand, a typical
FHE system facilitates endless computations. The progression from SHE to FHE often
hinges on a technique termed bootstrapping, introduced by Gentry Gentry (2009). While
this approach is advantageous, it demands significant computational effort and serves to
reset the ciphertext’s noise level, allowing for sustained computations. However, boot-
strapping is beyond the scope of this work.

Microsoft SEAL (2020) is a software library designed to implement FHE operations, offer-
ing building blocks for application development. Among the implemented HE schemes in

1

Algorithm 1 Algorithm of Schoolbook Multiplication
Input: 𝐴(𝑥),𝐵(𝑥) ∈ 𝑅𝑞,𝑛
Output: 𝐶(𝑥) = 𝐴(𝑥)×𝐵(𝑥) ∈ 𝑅𝑞,2𝑛

1: for 𝑖 from 0 by 1 to 𝑛−1 do
2: for 𝑗 from 0 by 1 to 𝑛−1 do
3: 𝐶[𝑖+𝑗] ← (𝐶[𝑖+𝑗]+(𝐴[𝑖]×𝐵[𝑗]))𝑚𝑜𝑑𝑞
4: return 𝐶(𝑥)

Algorithm 2 Algorithm of Karatsuba Multiplication
Input: 𝐴(𝑥) = 𝐴1 ⋅ 𝑥𝑛/2 +𝐴0 where 𝐴1,𝐴0 ∈ 𝑅𝑞,𝑛/2
Input: 𝐵(𝑥) = 𝐵1 ⋅ 𝑥𝑛/2 +𝐵0 where 𝐵1,𝐵0 ∈ 𝑅𝑞,𝑛/2
Output: 𝐶(𝑥) = 𝐴(𝑥)×𝐵(𝑥) ∈ 𝑅𝑞,2𝑛

1: 𝑉0(𝑥) = Karatsuba(𝐴0(𝑥)𝐵0(𝑥)) # Recursive call
2: 𝑉1(𝑥) = Karatsuba((𝐴0(𝑥)+𝐴1(𝑥))(𝐵0(𝑥)+𝐵1(𝑥))) # Recursive call
3: 𝑉2(𝑥) = Karatsuba(𝐴1(𝑥)𝐵1(𝑥)) # Recursive call
4: 𝐶(𝑥) = 𝑉2(𝑥)×𝑥𝑛 +(𝑉1(𝑥)−𝑉0(𝑥)−𝑉2(𝑥))×𝑥𝑛/2 +𝑉0(𝑥)
5: return 𝐶(𝑥)

Microsoft SEAL is CKKS, which is particularly suitable to hardware acceleration because
of its computationally intensive operations, amenable to massive parallelization.

In HE schemes, the bottleneck in terms of computational time often revolves around the
multiplication of polynomials. For these encryption systems to be practically useful, it
is imperative to incorporate fast and efficient methods for performing these polynomial
multiplications. Various algorithms such as the traditional schoolbook multiplication, the
more optimized Karatsuba algorithm, and multiplication based on the Number Theoretic
Transform (NTT) can accelerate the homomorphic operations of the CKKS scheme .

Two common algorithms are often considered in polynomial multiplication: Schoolbook
and Karatsuba (Karatsuba and Ofman (1962)). The steps of these two algorithms are
respectively given in Algorithm 1 and Algorithm 2. Both algorithms take as inputs two
polynomials 𝐴(𝑥) and 𝐵(𝑥) with degrees of 𝑛 − 1, represented as arrays of coefficients.
The Schoolbook algorithm is a straightforward approach that initializes a zero-filled array
𝐶(𝑥) of size 2𝑛−1 to store the result. It iteratively multiplies each coefficient of 𝐴(𝑥) by
each coefficient of 𝐵(𝑥), accumulating the results in 𝐶(𝑥), and has a time complexity of
𝒪(𝑛2). This complexity makes it suitable for small to moderately high degree polynomi-
als. On the other hand, the Karatsuba algorithm divides each input polynomial into two
half-degree polynomials. It uses a clever trick to reduce the number of multiplications to
three: 𝑉0(𝑥), 𝑉1(𝑥), and 𝑉2(𝑥). These multiplications are performed recursively, which
enhances the algorithm’s efficiency for higher-degree polynomials. The final result 𝐶(𝑥)
is then composed of these partial products, and the algorithm has a time complexity of

2

𝒪(𝑛log2 3). The Karatsuba method is generally faster than the Schoolbook algorithm for
larger polynomials, making it more suitable for larger-scale tasks.

In the context of Homomorphic Encryption (HE), polynomial multiplication is often re-
quired to be performed on polynomials with large degrees, such as 8192 and higher. Due
to the high computational overhead associated with standard multiplication algorithms
such as Schoolbook and Karatsuba, the polynomial multiplication algorithm based on
NTT is often employed. NTT is a type of discrete Fourier transform (DFT) in a finite
field and is an efficient algorithm that offers significant performance improvements for
polynomial multiplication. Particularly in finite fields that are friendly to modular arith-
metic, NTT can achieve multiplication with a time complexity of 𝒪(𝑛 log𝑛), making it
highly effective for large-scale polynomial multiplications required in HE.

The SEAL library’s CKKS scheme supports various parameter sets. The choice of param-
eter sets directly affects the balance between performance and security, computational
complexity, and error rates. Therefore, it is important that the hardware can be easily
configured to accommodate different parameter sets. Furthermore, the balance between
performance and resource utilization varies depending on the platform and application.
At this point, we want to emphasize the critical role of design-time flexible hardware. A
flexible hardware design can be easily configured to be used with various parameter sets,
thereby becoming suitable for different performance and security needs as well as noise
budget in SHE. In other words, the same hardware infrastructure can be optimized for a
large number of various applications and platforms. Such flexibility provides a significant
advantage, especially in limited resources or complex systems with diverse workloads and
data types. As a result, the adaptability offered by design-time flexible hardware can
further broaden the practical applications of HE, thereby enhancing data privacy and
security on a more comprehensive scale.

The primary motivation of this thesis is to overcome the computational challenges that
hinder the broad-scale applicability of HE, thereby enabling enhanced data privacy across
a broader range of applications. To this end, we emphasize the importance of hardware
accelerator capable of performing large-degree polynomial multiplications efficiently and
effectively, an area where many existing algorithms fall short. This accelerator is specif-
ically optimized for NTT operations, which play a critical role in the CKKS scheme.
Notably, the crucial importance of design-time flexible hardware becomes evident. Such
flexibility allows the hardware to adapt quickly to various parameter sets, meeting dif-
ferent performance and security requirements. This adaptability can further broaden
the practical applications of HE, providing more comprehensive data privacy and secu-
rity. In summary, this thesis introduces a new hardware approach capable of overcoming

3

computational challenges and potentially expanding the practical applications of HE.

1.1 Prior Work

In previous works, there are various implementations for the NTT and CKKS schemes;
however, these implementations generally focus on specific ring sizes and numbers of
processing elements (PEs), which is a hardware unit responsible essentially for executing
the most fundamental operation of NTT, known as butterfly operation. Such approaches
need more flexibility to accommodate a wide range of polynomial degrees or different
configurations of PEs. Existing works are often tailored to specific applications or perfor-
mance requirements, limiting their adaptability for different scenarios or variable sizes.
Therefore, we present architectures from other works that target various polynomial sizes
to ensure a fair comparison. As these architectures are generally optimized in line with
specific design requirements and performance objectives, making direct comparisons be-
tween them is challenging.

Work Platform log2(𝑛) q # of PE
Ozturk et al. (2017) Virtex-7 14 32-bit Fixed
Sinha Roy et al. (2019) UltraScale 12 30-bit Fixed
Matteo et al. (2023) Zynq Ultrascale+ Configurable 32-bit Fixed
Duong-Ngoc et al. (2022) Zynq UltraScale+ 16 60-bit Fixed
Paludo and Sousa (2022) Virtex Ultrascale+ Configurable 32-bit Configurable
Su et al. (2022) Virtex-7 Configurable 32-bit Configurable
Ye et al. (2022) Virtex-7 Configurable 60-bit Fixed
Xin et al. (2021) Zynq UltraScale+ 12 40-bit Fixed
Our Work Alveo U280 Configurable 32-bit Configurable

Table 1.1 Comparative Table for Merged NTT Implementations in the literature.

In a previous study by Ozturk et al. (2017), the authors designed and implemented a
polynomial multiplier for HE schemes using a Virtex 7 XC7VX690T FPGA. Their archi-
tecture supports polynomials of degree 𝑁 = 16,384 and 𝑁 = 32,768 for homomorphically
computing the operations of blocks ciphers Prince and AES, respectively, with coefficient
bit-lengths of log𝑝 = 32 bits. Interestingly, the parameter (i.e., ciphertext modulus)
𝑞 has a bit-length of 500 bits for the Prince scheme. The authors also used the Chi-
nese Remainder Theorem (CRT) to accelerate computation and improve performance.

4

Although the work illustrates the feasibility of handling large-degree polynomials and
incorporating CRT for optimization, it does not delve into design scalability or resource
constraints issues. The work is valuable for understanding FPGA-based implementations
of lattice-based cryptosystems and provides insights into the complexities of scaling such
architectures.

In the study by Sinha Roy et al. (2019), the authors present a specifically optimized
FPGA-based architecture to accelerate HE computations. They significantly improve
memory access patterns and computational resources by utilizing the Zynq FPGA plat-
form. Their architecture employs two parallel butterfly cores for NTT computations.
This allows them to achieve performance close to the optimal memory access speed of
eight coefficients per cycle provided by the FPGA’s Block RAM (BRAM). However, the
study does not offer a scalable architecture; it is only optimized for a specific ring size
and modulus value.

A recent study by Matteo et al. (2023) presents a hardware accelerator specifically for the
SEAL-Embedded library. This accelerator has a configurable NTT unit that can handle
various polynomial degrees. However, the study is optimized for specific ring dimension
and size of the modulus 𝑞 and does not offer a scalable architecture. For instance, in
the indicated FPGA hardware setup, the counts of LUTs and REGs increase for different
configurations with polynomial degrees ranging from 1024 to 16384, while the number of
DSPs remains constant. We aim to investigate as to how performance will be affected
for different polynomial degrees and modulus size. This is the gap in the literature we
intend to address in this work.

Duong-Ngoc et al. (2022) proposes an area-efficient NTT architecture for HE technology.
At the core of the proposed NTT architecture is a high-throughput butterfly unit array
that communicates with a single data memory unit through a conflict-free memory access
pattern. In addition, a twiddle factor generator has been developed to reduce memory
consumption. The proposed architecture has been implemented on the Xilinx Zynq Ul-
traScale+ ZCU102 FPGA platform. The design specifically focuses on a ring size of 65536
and a certain number of processing elements. The focus on a specific set of parameters
aims to enhance efficiency and performance in particular application scenarios.

Paludo and Sousa (2022) introduces accelerated architectures for NTT designed explic-
itly for FPGAs, utilizing a novel Montgomery-based butterfly structure. The butterfly
architecture is expanded into a Modular Arithmetic Logic Unit (MALU) to enhance reuse
and simplify programmability. Furthermore, to boost performance, a Linux-compatible
RISC-V core with six-stage pipeline is extended with custom instructions. The per-

5

formance of the proposed architectures is evaluated on the Xilinx Ultrascale+ FPGA
platform.

Su et al. (2022) presents a specialized NTT/INTT architecture specifically designed to
enhance the performance of FHE applications. The work proposes an area-efficient and
highly unified reconfigurable architecture with a variable number of processing elements,
significantly boosting the computational efficiency of FHE. Implemented on a Xilinx
Virtex-7 FPGA platform, the realized architecture demonstrates substantial improve-
ments in NTT/INTT operations and polynomial multiplication compared to previous
works, making the practical applications of FHE more accessible.

Ye et al. (2022) proposes an optimized pipelined NTT architecture on FPGA to accel-
erate polynomial multiplication. The proposed architecture offers high efficiency using
reduced hardware resources and significantly improves performance, particularly for Post-
Quantum Cryptography (PQC) applications.

Xin et al. (2021) offers a multi-level parallel hardware accelerator for homomorphic com-
putations in machine learning. The vectorized NTT unit and the Residue Number System
(RNS) are employed to achieve low and mid-level parallelism, respectively. Additionally,
a fully pipelined and parallel accelerator is designed for dual ciphertext processing, offer-
ing high-level parallelism.

Work Platform log2(𝑛) q # of PE
Mert et al. (2022) Alveo U250 14(Configurable) 438-bit Configurable
Riazi et al. (2020) Stratix10 13(Configurable) 218-bit Configurable
Our Work Alveo U280 13 218-bit Configurable

Table 1.2 Comparative Table for CKKS Implementations in the literature.

In the paper by Mert et al. (2022), the authors introduce “Medha”, a programmable
hardware accelerator, specifically designed to speed up HE algorithms for cloud-based
computations. Medha features a flexible architecture that can accommodate multiple
sets of HE parameters. The authors propose a “divide-and-conquer” technique, allowing
the hardware accelerator designed for a smaller ring to operate on a larger ring size
as well. Medha’s architecture comprises interconnected parallel processing units that
require a minimum number of nets, making the placement and routing of the architecture
easy on the reconfigurable hardware platform. The study was implemented on a Xilinx
Alveo U250 FPGA and achieved significant speed gains compared to the Microsoft SEAL
software implementation. This accelerator aims to substantially improve the performance
of HE, which is both computation and data-centric.

6

The paper by Riazi et al. (2020) focuses on the challenges of data privacy, security, and
confidentiality that arise with the rapid growth of cloud computing. The study introduces
a novel hardware architecture for FHE aimed at reducing the significant computational
overhead, which is the main hindrance to the large-scale deployment of FHE. Utilizing
multiple levels of parallelism, the architecture achieves substantial performance improve-
ments. Specifically, the paper presents a highly parallelizable architecture for NTT,
which could be of independent interest as NTT is frequently utilized in many lattice-
based cryptography systems. Implementations on reconfigurable hardware demonstrate
a 164-268× performance improvement across a wide range of FHE parameters. Detailed
comparisons and the performance of these two designs in terms of resource utilization
and performance matrix are provided in Chapter 4.

1.2 Our Contribution

Previous studies have generally focused on specific ring sizes and numbers of PEs, which
means they lack the flexibility to accommodate different polynomial sizes or PE con-
figurations. Specifically, existing studies are usually tailored to specific applications or
performance requirements, limiting their adaptability to different scenarios or variable
sizes. In our study, we propose a design-time configurable, parametric unified NTT hard-
ware architecture that can meet different ring sizes, hardware resource constraints, and
numbers of PEs. This flexible structure provides the capability to use the architecture
for various hardware environments, polynomial sizes, and numbers of PEs. Additionally,
we propose and implement a design-time flexible hardware architecture specifically opti-
mized for NTT operations, featuring a Memory Access Pattern (MAP) method and NTT
architecture. These improvements offer significant advantages in speed and scalability.

Mainly, we apply this architecture to the key-switching and homomorphic multiplication
operations of the CKKS scheme, providing design-time reconfigurability by enabling an
increase in the number of PEs. As a result of our hardware optimizations, we achieve
a 15-fold speed-up in homomorphic multiplication operations and a 4-fold speed-up in
key-switching operations compared to Microsoft SEAL’s CPU implementation. These
performance gains demonstrate the value of our architecture, not just in theory but also
in practical applications. This thesis further extends the implementation of the CKKS
scheme for varying numbers of PEs, building upon the initial work detailed in our previous

7

publication (Ayduman et al. (2023)), where the scheme was implemented with a fixed
number of PEs.

Our work’s key contributions are outlined below:

• We propose a parametric merged-NTT hardware architecture that is capable of
accommodating various ring sizes and hardware resource constraints. Our thesis
will detail how this flexibility allows the architecture to be employed across diverse
hardware environments and ring sizes, meeting different computational and resource
requirements.

• We propose an optimized MAP tailored explicitly for NTT operations. In the
thesis, we aim to investigate the extendability or customizability of this efficient
MAP algorithm.

• We also introduce a design-time flexible hardware architecture for the four-step
NTT method, which serves as an alternative algorithm for the rapid computation
of NTT. In our performance tests for specific ring sizes used in CKKS operations,
we observed that the merged NTT exhibited superior performance compared to
the four-step NTT. However, it’s crucial to emphasize the potential of the four-step
NTT. This method might offer superior performance, especially for larger ring sizes,
and may be more effective in specific application scenarios. In our thesis, we will
explore the advantages of this design-time flexibility for this particular NTT method
and its potential contributions, especially for applications operating at higher ring
sizes.

• We propose a design-time configurable hardware architecture that accelerates the
multiplication and key-switching operations of the CKKS scheme, showcasing a 15×
and 4× speed-up for homomorphic multiplication and key-switching operations,
respectively, compared to Microsoft SEAL’s CPU implementation. In the context
of our thesis, we will explore the scalability and optimization of this architecture
for different application scenarios and discuss how these performance gains could
be translated into real-world applications.

8

2. BACKGROUND

This chapter introduces the theoretical and technical concepts necessary to follow and
understand discussions in the thesis. These concepts of background contribute to better
comprehension of the research methodology and findings discussed later in this work. In
particular, mathematical notations and symbols that will be used throughout the study
are introduced to set the stage. Concepts such as polynomial multiplication and NTT
directly affect the functioning and performance of HE. Additionally, we will provide a
detailed examination of two significant contributions in this field: the Cheon-Kim-Kim-
Son Homomorphic Encryption Scheme and Microsoft SEAL Homomorphic Encryption
Library. Lastly, we will discuss the Residue Number System and its impact on the
performance of HE. All these topics form the foundation for the analyses and discussions
that will follow in subsequent parts of the thesis.

2.1 Notation

The value 𝑞 represents the modulus, with ℤ𝑞 comprising all positive integers smaller
than the modulus 𝑞. The polynomial Φ(𝑥) denotes a cyclotomic polynomial, while
ℤ𝑞[𝑥]/Φ𝑚(𝑥) specifies the ring of polynomials ℤ𝑞[𝑥] reduced by the polynomial Φ𝑚(𝑥).
The constant 𝜔 is the 𝑛-th root of unity and 𝜓 is the 2𝑛-th root of unity in ℤ𝑞. Here,
𝑛 designates the degree of the cyclotomic polynomial, Φ𝑚 (usually Φ𝑚 = 𝑥𝑛 + 1 and
𝑚 = 2𝑛) and 𝑃𝐸 represents the total count of processing units, also known as butterfly
units. The constant 𝑅 is called the Montgomery constant, which is used to transform an

9

integer to its Montgomery representation when Montgomery reduction algorithm is used
for modular arithmetic. Generally, 𝑅 = 2ℓ where ℓ = log𝑞 for a modulus 𝑞.

The function BitReverse(value, bit length) returns the given binary value in bit
reverse order; for instance, BitReverse(112,4) yields the value 11002. The symbol
⊙ stands for coefficient-wise multiplication. ̄𝐴 = NTT(𝐴) represents the application
of the NTT operation to the vector 𝐴, implying that the output resides in the NTT
domain. Conversely, INTT(̄𝐴) indicates the application of the inverse NTT operation
to the vector ̄𝐴 in the NTT domain. The function modinv(𝑛,𝑞) is employed to compute
the modular inverse of a number, aiming to determine the inverse of a number with
respect to a specified modulus using the Extended Euclidean Algorithm. The function
generateTwiddleFactorTable(𝑤,𝑛,𝑞) is utilized to produce a “twiddle factor” table
specifically for the NTT steps of the 4-step NTT process. This function accepts three
parameters: the base twiddle factor (i.e., primitive root of unity), the size of the twiddle
factor table, and the modulus value in use. In its operation, the function computes the bit-
reverse of a certain value 𝑖, which is then used as the power of the base twiddle factor. The
size of the table produced by this function corresponds to the number of rows or columns
of the matrix being used. On the other hand, the generateTwiddleFactorMainTable
function is tailored for the multiplication step of the Four-Step NTT process. As opposed
to the former, this function generates a “twiddle factor” table with a size equal to 𝑛.
It essentially builds a more expansive table to accommodate the requirements of the
multiplication step. The critical distinction between the two functions lies in their purpose
and the dimensions of the tables they produce. While both are integral to the 4-step NTT,
they cater to different steps.

2.2 NTT-based Polynomial Multiplication

In the earliest conceptual stages of NTT, it was fundamentally intertwined with the de-
velopment and understanding of Fourier transforms, specifically the Fast Fourier Trans-
form (FFT). The foundational grounds for NTT were laid during the mid-20th century,
around the same time that Cooley and Tukey introduced the FFT algorithm in Coo-
ley and Tukey (1965), a method that significantly enhanced the efficiency of Fourier
transforms by reducing the number of operations needed.

Despite the efficacy of the FFT, there was an understanding that operating over real or
10

complex numbers can introduce numerical instability due to round-off errors, sparking
interest in transforms over finite fields or rings, which would be immune to such errors.
This marked the inception of NTT, a transform that operates over finite rings, which
promised computational stability and accuracy.

Early works venturing into NTT often revolved around identifying suitable rings and
understanding the characteristics that these rings must possess to facilitate a successful
transformation. Studies from the 1970s, such as those by Pollard (1971) and Agarwal
and Burrus (1975), delved deep into the mathematical intricacies and potential of NTT.
These pioneering works set the stage for the impressive development trajectory NTT
would follow in the subsequent years.

As the computational power increased and the requirements of various applications be-
came more demanding, the adaptations and implementations of NTT have evolved signif-
icantly. Nowadays, it forms a core part of different sophisticated algorithms in the field
of cryptography, such as HE and lattice-based cryptographic systems, ensuring security
and efficiency. Moreover, researchers have endeavored to optimize NTT further, creating
variations with improved computational speed and reduced memory footprint, as demon-
strated by Aysu et al. (2013). Additionally, the NTT found its place in the digital signal
processing realm, enhancing the efficiency of several applications. Current adaptations
leverage the potent combination of hardware accelerators and optimized algorithms to
realize the full potential of NTT in modern computing environments.

In recent years, the application of NTT in the field of cryptography has garnered substan-
tial attention. Leveraging the strengths of finite field arithmetic, NTT facilitates secure
and efficient cryptographic protocols. Its integration in cryptographic operations, such
as HE, allows for secure data processing while maintaining confidentiality. Besides, NTT
finds crucial applications in lattice-based cryptography, which is anticipated to play a
pivotal role in the post-quantum cryptography era, offering resistance against quantum
attacks, as noted by Li et al. (2023). Furthermore, it aids in the swift execution of polyno-
mial multiplication, a fundamental operation in many cryptographic systems, enhancing
system performance and security. As cryptographic techniques become more advanced,
the role of NTT is expected to expand, cementing its position as an indispensable tool
in fostering secure communications in the digital age.

NTT is a version of the Discrete Fourier Transform (DFT) defined over the ring ℤ𝑞. This
transformation facilitates the conversion of any vector with 𝑛 elements in the polynomial
domain (i.e., The coefficients of polynomials of degree 𝑛 − 1) to another vector with 𝑛
elements in the NTT domain. This transformation process utilizes a parameter known as

11

the “twiddle factor” (or primitive root of unity), denoted as 𝜔. The following equations
mathematically define the forward (NTT) and inverse (INTT) transformations:

(2.1) ̄𝑎𝑖 =
𝑛−1
∑
𝑗=0

𝑎𝑗𝜔𝑖×𝑗 mod 𝑞 for 𝑖 = 0,1,…,𝑛−1,

(2.2) 𝑎𝑖 = 1
𝑛

𝑛−1
∑
𝑗=0

̄𝑎𝑗𝜔−𝑖×𝑗 mod 𝑞 for 𝑖 = 0,1,…,𝑛−1.

These equations outline the mathematical operations required to find a vector’s counter-
part in the NTT domain.

The powers of this constant value, referred to as the “twiddle factor”, play a critical role
in the NTT and inverse NTT (INTT) computations. Within this scope, selecting two
specific twiddle factors that satisfy certain mathematical criteria is essential. The first
factor, denoted as 𝜔, is defined as the 𝑛-th root of unity in ℤ𝑞 and meets the conditions
𝜔𝑛 ≡ 1 (mod 𝑞) and 𝜔𝑖 ≠ 1 (mod 𝑞) for all 𝑖 < 𝑛, where q ≡ 1 (mod 𝑛). The second
factor, denoted as 𝜓, is designated as the 2𝑛-th root of unity in ℤ𝑞, fulfilling the conditions
𝜓2𝑛 ≡ 1 (mod 𝑞) and 𝜓𝑖 ≠ 1 (mod 𝑞) for all 𝑖 < 2𝑛, where 𝑞 ≡ 1 (mod 2𝑛). These two
factors are interrelated through the equations 𝜔 = 𝜓2 mod 𝑞 and 𝜓𝑛 mod 𝑞 = −1, which
are vital in ensuring the accuracy of the computations.

Based on the principles outlined in Winkler (1996), the multiplication of two (𝑛 − 1)-
degree polynomials results in a (2𝑛 − 2)-degree polynomial. To efficiently compute this
using NTT, both input polynomials are initially extended to 2𝑛-element vectors through
zero-padding. Subsequently, a 2𝑛-point NTT is applied to these extended polynomi-
als, followed by a coefficient-wise multiplication. The result is then transformed to the
polynomial domain using a 2𝑛-point INTT. The final step involves reducing this result
modulo a cyclotomic polynomial, Φ(𝑥), to obtain the desired 𝑛-degree polynomial prod-
uct. Mathematically, this process can be represented as:

(2.3) 𝐶(𝑥) = INTT(NTT(𝐴(𝑥)) ⋅NTT(𝐵(𝑥))) mod Φ(𝑥),

where:

12

• 𝐴(𝑥) and 𝐵(𝑥) represent the zero-padded 2𝑛-element input vectors comprised of
the coefficients of these two polynomials.

• NTT(𝐴(𝑥)) and NTT(𝐵(𝑥)) denote the transformations of these polynomials in
the NTT domain.

• 𝐶(𝑥) is the output polynomial.

• Φ(𝑥) is the cyclotomic polynomial utilized in the reduction step.

As highlighted by Pöppelmann and Güneysu (2012), utilizing positive wrapped convo-
lution (PWC) and negative wrapped convolution (NWC) techniques enables these oper-
ations to be executed more efficiently, utilizing 𝑛-point NTT and INTT, thanks to the
reduction with the cyclotomic polynomial. This optimization reduces memory usage and
accelerates the computation because it facilitates operations over polynomials with lower
degrees.

The PWC technique is employed when the polynomial takes the form 𝑥𝑛 −1. This method
leverages the properties of cyclotomic polynomials to simplify convolution operations. In-
stead of expanding the convolution to broader polynomials, PWC confines the operations
to positive indices.

On the other hand, the NWC method is employed when the polynomial takes the form
𝑥𝑛 + 1. In this method, there is an additional step before NTT and after the INTT
operation. The NTTs of the two input polynomials are taken (each being element-wise
multiplied by a 𝝍 vector, which consists of successive powers of 𝜓 and then a coefficient-
wise multiplication is carried out on them. Subsequently, these outputs are transformed
back using INTT. The result obtained from the INTT undergoes another element-wise
multiplication operation with a vector 𝝍inv, which consists of the multiplicative inverses of
the powers of 𝜓 This procedure is fully elucidated in Algorithm 3 and for more information
for PWC and NWC techniques reader is referred to Longa and Naehrig (2016).

Algorithm 3 Negative Wrapped Convolution Technique
1: procedure NWC(a, b, 𝜓, 𝜓inv)
2: 𝑎new ← 𝑎⊙(1,𝜓,𝜓2,…,𝜓𝑛−1)
3: 𝑏new ← 𝑏 ⊙(1,𝜓,𝜓2,…,𝜓𝑛−1)
4: 𝑎NTT ← NTT(𝑎new)
5: 𝑏NTT ← NTT(𝑏new)
6: 𝑐NTT ← 𝑎NTT ⊙𝑏NTT
7: 𝑐 ← INTT(𝑐NTT)
8: 𝑐final ← 𝑐 ⊙(1,𝜓inv,𝜓2

inv,…,𝜓𝑛−1
inv)

9: return 𝑐final

13

These techniques obviate the need for doubling the input polynomials and prevent poly-
nomial reduction after the INTT operation, substantially reducing the computational
time. However, NWC entail additional pre-processing and post-processing steps; these
involve multiplication operations with 𝝍 and 𝝍inv vectors.

Given that the formulas in Eqns 2.1 and 2.2 lead to a quadratic complexity of 𝑂(𝑛2),
there are various algorithms available to perform NTT operations more efficiently, includ-
ing the iterative NTT, merged NTT, and four-step NTT algorithms. These algorithms
utilize reductions over cyclotomic polynomials to enhance efficiency. Specifically, these
algorithms operate in the ring ℤ𝑞[𝑥]/Φ𝑚(𝑥), working with different bases — some with
𝑥𝑛 −1 and others with 𝑥𝑛 +1 — facilitating more effective computations in certain con-
texts.

A series of algorithms incorporating butterfly operations have been developed to enhance
the efficiency of NTT and INTT operations. These operations significantly reduce time
complexity in polynomial computations, offering faster and less complex solutions.

The Cooley-Tukey (CT) butterfly operations and the Gentleman-Sande (GS) butterfly
operations, both emphasized by Chu and George (1999), are crucial components in NTT
algorithms. The CT butterfly operations are generally utilized during the NTT stage,
facilitating the merging of polynomials while accelerating the processes and reducing
complexity. This operation employs three inputs, named 𝑢,𝑡, and 𝑤 (𝑤 is in fact a
twiddle factor), to produce two outputs: (𝑢 + 𝑡𝑤) mod 𝑞 and (𝑢 − 𝑡𝑤) mod 𝑞. Modular
addition, subtraction, and multiplication operations are performed during this operation.
CT operations are illustrated in Steps 6-9 of Algorithm 4.

On the other hand, the Gentleman-Sande (GS) butterfly operations are mainly preferred
in INTT operations, aiding in optimizing processes and assisting in the division of polyno-
mials. In this operation, the modular multiplication of 𝑡 and 𝑤 is executed following the
modular subtraction, resulting in two outputs: (𝑢 − 𝑡)𝑤 mod 𝑞 and (𝑢 + 𝑡) mod 𝑞. Both
butterfly operations allow for the faster and more efficient execution of NTT algorithms.

The Iterative NTT algorithm illustrated in Algorithm 4 is designed to transform a poly-
nomial into the NTT domain using the Cooley-Tukey butterfly structure. The input
polynomial 𝐴(𝑥) is received in natural order, while the output is returned in a bit-
reversed order. The three nested loops carry out transformations on the polynomial.
Each “butterfly” operation generates two new values using the modular arithmetic oper-
ations applied on the values defined as 𝑢 and 𝑡. During these operations, a value referred
to as 𝑤, which is one of the powers of the primitive root of unity, is also used as a
multiplier. The algorithm can maintain high efficiency even when operating on large

14

Algorithm 4 Iterative NTT (Zhang et al. (2020))
Input: 𝐴(𝑥) ∈ 𝑅𝑞,𝑛 in natural order
Input: Primitive 𝑁th root of unity 𝑤𝑁 ∈ ℤ𝑝
Input: A prime number 𝑞
Output: 𝐴(𝑥) ∈ 𝑅𝑞,𝑛 in bit-reversed order

1: for 𝑠 from log2(𝑁) down to 1 do
2: 𝑚 ← 2𝑠

3: for 𝑘 from 0 to 𝑁/𝑚−1 do
4: 𝑤 ← 𝑤bit reverse(𝑘,log2(𝑁)−𝑠)⋅(𝑚/2)

𝑁
5: for 𝑗 from 0 to 𝑚/2−1 do
6: 𝑢 ← 𝐴[𝑘 ⋅𝑚+𝑗]
7: 𝑡 ← 𝐴[𝑘 ⋅𝑚+𝑗 +𝑚/2]
8: 𝐴[𝑘 ⋅𝑚+𝑗] ← (𝑢+𝑡 ⋅𝑤) mod 𝑞
9: 𝐴[𝑘 ⋅𝑚+𝑗 +𝑚/2] ← (𝑢−𝑡 ⋅𝑤) mod 𝑞

10: return 𝐴

data sets, as there are many butterfly operations that can be performed separately and
independently. This indicates that the algorithm possesses a highly parallelizable struc-
ture. This feature significantly reduces the time complexity for large-scale computations,
thereby facilitating faster operations.

2.2.0.1 Montgomery Reduction in NTT

In the context of NTT-based polynomial multiplication, one of the most significant chal-
lenges is the efficiency of arithmetic operations. Notably, the reduction process in mod-
ular arithmetic is among the most time-consuming steps within NTT especially in the
modular multiplication operation. The Montgomery reduction is a method developed to
address this challenge and accelerate modular reduction operations. By employing arith-
metical operations that are less costly compared to the standard modular reduction, this
method aims to achieve faster and more efficient results in polynomial multiplication.
The specifics of how the Montgomery reduction is applied to enhance the performance of
NTT-based polynomial multiplication will be elucidated in this section.

The Montgomery reduction, introduced in Montgomery (1985), is presented in Algo-
rithm 5. This method is renowned for its ability to perform modular reductions without
direct divisions, making it attractive for hardware and software implementations, where
division is costly. The algorithm takes three inputs: typically 𝑐, representing an integer
multiplication result; an ℓ-bit modulus 𝑞; and 𝜇 = −𝑞−1 mod 𝑅. In the first step, the

15

Algorithm 5 Montgomery Reduction
Input: 𝑐 (2ℓ-bit positive integer)
Input: Modulus 𝑞 (𝑙-bit positive integer)
Input: 𝜇 = −𝑞−1 mod 𝑅 where 𝑅 = 2ℓ mod 𝑞
Output: 𝑐 = 𝑐 ⋅𝑅−1 mod 𝑞

1: 𝑢1 ← 𝑐 ⋅𝜇 mod 𝑅
2: 𝑢2 ← 𝑐 +𝑢1 ⋅ 𝑞
3: 𝑢3 ← 𝑢2 >> ℓ
4: 𝑢4 ← 𝑢3 −𝑞
5: if 𝑢4 < 0 then
6: 𝑐 ← 𝑢3
7: else
8: 𝑐 ← 𝑢4
9: return 𝑐

lower ℓ-bits of of 𝑐 is multiplied by 𝜇 and the result is reduced mod𝑅 and stored in 𝑢1.
Next, the result of the multiplication of 𝑢1 and 𝑞 are added to 𝑐, which produces a 2ℓ-
bit number whose least significant ℓ-bits are all zero. In the subsequent step, the result
of the previous step, 𝑢2 is right-shifted by ℓ bits. This operation simulates an integer
division by 𝑅 without executing an actual division. The modulus, 𝑞 is subtracted from
the resulting value 𝑢3 and the result of the subtraction is stored in 𝑢4. As 𝑢4 can be a
negative number, the remaining steps ensure that always a positive integer in the correct
range is returned.

The algorithm in fact returns 𝑐𝑅−1 mod 𝑞, instead of 𝑐𝑅−1 mod 𝑞, where it is said to be in
the Montgomery domain. Therefore, the Montgomery algorithm requires to obtain 𝑐 mod
𝑞 eventually. However, if the modular multiplication involves a constant multiplier, 𝑏, in
the computation of 𝑎𝑏 mod 𝑞, then 𝑏𝑅 mod 𝑞 is precomputed and stored. Then, the input
of Algorithm 5 becomes 𝑐𝑅 mod 𝑞 when 𝑎 is multiplied by 𝑏𝑅 mod 𝑞 prior to Algorithm 5.
Consequently, Algorithm 5 returns 𝑎𝑏 mod 𝑞. As in all modular multiplication operation
in the butterfly operations, one operand is always a twiddle factor, which is a constant
value, the precomputation technique eliminates the transformation from the Montgomery
domain.

16

Algorithm 6 Merged-NTT Algorithm with CT Butterfly
Input: 𝐴(𝑥) ∈ 𝑅𝑞,𝑛 in natural order
Input: Ψ𝑡𝑎𝑏𝑙𝑒 ∈ ℤ𝑞
Output: 𝐵(𝑥) ∈ 𝑅𝑞,𝑛 in bit-reversed order

1: 𝑁 ← length(𝐴)
2: 𝐵 ← 𝐴
3: 𝑙 ← log2(𝑁)
4: for 𝑚𝑝𝑜𝑤𝑒𝑟 from 0 to 𝑙−1 do
5: 𝑚 ← 2𝑚𝑝𝑜𝑤𝑒𝑟

6: 𝑡 ← 𝑁
2𝑚

7: for 𝑖 from 0 to 𝑚−1 do
8: 𝑧1 ← 2×𝑖×𝑡
9: 𝑧2 ← 𝑧1 +𝑡

10: Ψ𝑝𝑜𝑤 ← BitReverse(𝑚+𝑖, 𝑙)
11: 𝑆 ← Ψ𝑡𝑎𝑏𝑙𝑒[Ψ𝑝𝑜𝑤]
12: for 𝑧 from 𝑧1 to 𝑧2 −1 do
13: 𝑈 ← 𝐵[𝑧]
14: 𝑉 ← (𝐵[𝑧 +𝑡]×𝑆) mod 𝑞
15: 𝐵[𝑧] ← (𝑈 +𝑉) mod 𝑞
16: 𝐵[𝑧 +𝑡] ← (𝑈 −𝑉) mod 𝑞
17: return 𝐵

2.2.0.2 Merged NTT

The Merged NTT algorithm is similar to the iterative NTT algorithm. However, when
multiplying polynomials in the polynomial ring defined with ℤ𝑞[𝑥]/(𝑥𝑛 + 1) using tra-
ditional algorithms such as the iterative NTT, it is necessary to perform pre-processing
and post-processing operations using the NWC technique defined above. Therefore, the
Merged-NTT algorithm emerges as a significant development in the field of polynomial
multiplications based on NTT, as described in Algorithm 6. The presented algorithm
accelerates polynomial multiplication operation by avoiding time-consuming coefficient
rearrangement steps typically associated with traditional NTT algorithms. In the poly-
nomial ring defined by ℤ𝑞[𝑥]/(𝑥𝑛 +1), the algorithm optimizes polynomial multiplication
operations by interacting with 𝑛 elements instead of the traditional 2𝑛.

This study integrates the unified pre-processing and NTT strategies formulated by Roy
et al. (2014). In Merged NTT, instead of utilizing 𝜔 as the 𝑛-th root of unity, 𝜓 as the
2𝑛-th root of unity is employed for the polynomial ring ℤ𝑞[𝑥]/(𝑥𝑛 + 1). This approach
eliminates the necessity for a preprocessing step at the outset. In this implementation,
we leveraged a 𝜓-table, which contains precomputed powers of 𝜓 given in natural order
to optimize operations further. The 𝜓-table is stored in Block RAMs in the Montgomery

17

Algorithm 7 Merged-INTT Algorithm
Input: 𝐴(𝑥) ∈ 𝑅𝑞,𝑛 in natural order
Input: Ψtable ∈ ℤ𝑞
Output: 𝐵(𝑥) ∈ 𝑅𝑞,𝑛 in bit-reversed order

1: 𝑁 ← length(𝐴)
2: 𝐵 ← 𝐴
3: 𝑙 ← log2(𝑁)
4: 𝑡 ← 1
5: 𝑚 ← 𝑁
6: while 𝑚 > 1 do
7: 𝑗1 ← 0
8: ℎ ← 𝑚

2
9: for 𝑖 from 0 to ℎ−1 do

10: 𝑗2 ← 𝑗1+𝑡−1
11: Ψpow ← BitReverse(ℎ+𝑖, 𝑙)
12: 𝑆 ← Ψtable[Ψpow]
13: for 𝑗 from 𝑗1 to 𝑗2 do
14: 𝑈 ← 𝐵[𝑗]
15: 𝑉 ← 𝐵[𝑗 +𝑡]
16: 𝐵[𝑗] ← (𝑈 +𝑉) mod 𝑞
17: 𝐵[𝑗 +𝑡] ← ((𝑈 −𝑉)×𝑆) mod 𝑞
18: 𝑗1 ← 𝑗1+2×𝑡
19: 𝑡 ← 2×𝑡
20: 𝑚 ← 𝑚

2
21: 𝑁inv ← modinv(𝑁,𝑞)
22: for 𝑖 from 0 to 𝑁 −1 do
23: 𝐵[𝑖] ← (𝐵[𝑖]×𝑁inv) mod 𝑞
24: return 𝐵

form, i.e., 𝜓 × 𝑅 mod 𝑞. Additionally, the Merged NTT adopts the Cooley-Tukey but-
terfly structure.

We all integrate the unified post-processing and NTT strategies formulated by Pöppel-
mann et al. in Pöppelmann et al. (2015). To avoid the reduction step at the end of the
iterative INTT, it is necessary to multiply the output polynomial with the powers of 𝜓−1,
a procedure known as the post-processing operation. In this strategy, the GS butterfly
structure facilitates this integration; it takes inputs in a bit-reversed order and gives
outputs in a normal order. The same authors have previously advocated this method of
consolidating the post-processing steps with INTT, thereby orchestrating a unified inverse
NTT operation. The technique is delineated in Algorithm 7, illustrating this integrated
approach to inverse NTT with the utilization of the GS butterfly structure.

18

2.2.0.3 Four-Step NTT

The Four-Step NTT method exploits the execution of small size NTT operations by
dividing NTT into smaller fragments. Moreover, it enjoys a substantial advantage in
parallelization compared to the previously introduced iterative NTT and merge NTT
algorithms, thanks to the ability to perform numerous independent NTT operations at a
reduced size. Operating with a lower NTT sizes considerably simplifies the reading from
and writing to memory for inputs and outputs, making it an ideal choice for efficient
solutions. This approach enhances the optimization of the algorithm, allowing for fast
and reliable results Dai and Sunar (2015).

Figure 2.1 This figure illustrates the working principle of the four-step NTT. As can
be seen, the process is divided into four main stages: (1) Forward iterative NTT com-
putation; (2) Point-wise multiplication with twiddle factor; (3) Transpose operation; (4)
Forward iterative NTT computation.

As depicted in Figure 2.1, the four-step NTT takes a matrix of 𝑠𝑖𝑧𝑒0 × 𝑠𝑖𝑧𝑒1 as input,
whose elements are the coefficients of the input polynomial. The parameters 𝑠𝑖𝑧𝑒0 and
𝑠𝑖𝑧𝑒1 can be modified according to design choices. The four-step NTT comprises four
main stages. The first stage is the NTT stage, where independent NTT operations are
conducted for each column of the matrix. In this stage, the size of the NTT operations is
determined by 𝑠𝑖𝑧𝑒0, while they are performed up to 𝑠𝑖𝑧𝑒1 times. The second stage is the
multiplication stage, in which each polynomial coefficient is point-wise multiplied by a
corresponding power of the twiddle factor. The third stage involves transpose operation,

19

Algorithm 8 Four-step INTT using GS-based butterfly structure
Input: 𝐴𝑁𝑇 𝑇 (𝑥) ∈ 𝑅𝑞,𝑛 in bit-reversed order
Input: Primitive 𝑁th root of unity 𝑤𝑁 ∈ ℤ𝑝
Input: Matrix sizes 𝑠𝑖𝑧𝑒 = [𝑠𝑖𝑧𝑒0,𝑠𝑖𝑧𝑒1]
Output: 𝐴(𝑥) ∈ 𝑅𝑞,𝑛 in natural order

1: Convert the polynomial 𝐴𝑁𝑇 𝑇 into a 2D matrix, 𝑀𝑎𝑡𝑟𝑖𝑥0𝐴 with dimensions
[𝑠𝑖𝑧𝑒1][𝑠𝑖𝑧𝑒0]

2: for 𝑖 from 0 to 𝑠𝑖𝑧𝑒1 −1 do
3: for 𝑗 from 0 to 𝑠𝑖𝑧𝑒0 −1 do
4: 𝑀𝑎𝑡𝑟𝑖𝑥0𝐴[𝑖].append(𝐴𝑁𝑇 𝑇 [((𝑗 ⋅ 𝑠𝑖𝑧𝑒0)+𝑖)%𝑛])
5: 𝑊0 ← 𝑊 𝑛/𝑠𝑖𝑧𝑒0 mod 𝑞
6: 𝑊0𝑡𝑎𝑏𝑙𝑒 ← generateTwiddleFactorTable(𝑊0,𝑠𝑖𝑧𝑒0, 𝑞)
7: for 𝑖 from 0 to 𝑠𝑖𝑧𝑒1 −1 do
8: 𝑀𝑎𝑡𝑟𝑖𝑥0𝐴[𝑖] ← GS-INTT(𝑀𝑎𝑡𝑟𝑖𝑥0𝐴[𝑖],𝑊0𝑡𝑎𝑏𝑙𝑒, 𝑞)
9: 𝑊𝑡𝑎𝑏𝑙𝑒 ← generateTwiddleFactorMainTable(𝑠𝑖𝑧𝑒,𝑞,𝑊)

10: Perform point-wise multiplication with 𝑊𝑡𝑎𝑏𝑙𝑒 to get 𝑀𝑎𝑡𝑟𝑖𝑥1𝐴
11: 𝑊1 ← 𝑊 𝑛/𝑠𝑖𝑧𝑒1 mod 𝑞
12: 𝑊1𝑡𝑎𝑏𝑙𝑒 ← generateTwiddleFactorTable(𝑊1,𝑠𝑖𝑧𝑒1, 𝑞)
13: for 𝑖 from 0 to 𝑠𝑖𝑧𝑒0 −1 do
14: 𝑀𝑎𝑡𝑟𝑖𝑥1𝐴[𝑖] ← GS-INTT(𝑀𝑎𝑡𝑟𝑖𝑥1𝐴[𝑖],𝑊1𝑡𝑎𝑏𝑙𝑒, 𝑞)
15: Perform Transpose operation to get 𝑀𝑎𝑡𝑟𝑖𝑥2𝐴
16: Convert 𝑀𝑎𝑡𝑟𝑖𝑥2𝐴 from 2D array to 1D array 𝐴
17: 𝑁𝑖𝑛𝑣 ← modinv(𝑛,𝑞)
18: for 𝑖 from 0 to 𝑛−1 do
19: 𝐴[𝑖] ← (𝐴[𝑖] ⋅𝑁𝑖𝑛𝑣)%𝑞
20: return 𝐴

wherein a transpose operation is applied to the matrix after the NTT operation. The
fourth and final stage is another NTT stage, where the NTT operation is applied to each
column of the transposed matrix. This four-stage process holds critical importance for
conducting polynomial operations swiftly and efficiently.

In the initial NTT stage of the Four-Step NTT, a Cooley-Tukey-based NTT is employed.
Given the NTT inputs in the normal order, this approach yields outputs in the bit-
reversed order. During the multiplication stage, the multiplication of twiddle factors is
also organized according to the bit-reversed order. Following this, a transpose operation
is applied. This step ensures the columns of the matrix are sorted according to the
bit-reversed order while each element in a column retains a normal order arrangement.
Finally, in the final stage of the Four-Step NTT, a Cooley-Tukey-based NTT is utilized
again. This strategy guarantees that the resultant output maintains a bit-reversed order
arrangement akin to the outcome in the Merge NTT.

20

The four-step INTT comprises the four stages introduced above and is illustrated in
Algorithm 8. A distinctive feature of INTT, as opposed to NTT, is that it employs a
GS-based butterfly structure. This version of the INTT algorithm is favored because it
takes inputs in bit-reversed order and gives outputs in normal order. Additionally, unlike
in four-step NTT, the polynomial resulting from the final stage of the four-step INTT
algorithm is multiplied by 𝑛−1 in ℤ𝑞. Functions 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇 𝑤𝑖𝑑𝑑𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟𝑀𝑎𝑖𝑛𝑇 𝑎𝑏𝑙𝑒 and
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇 𝑤𝑖𝑑𝑑𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟𝑇 𝑎𝑏𝑙𝑒 are tasked with generating arrays to be used in the stages
of GS-INTT and twiddle factor multiplication, respectively, based on the given twiddle
factor.

In the traditional NTT approach, processing extremely high-degree polynomials becomes
challenging due to memory insufficiencies, posing a significant limitation, especially in
large-scale computations. The Four-step NTT method addresses this issue by parti-
tioning high-degree polynomials into smaller vector segments. This partitioning process
facilitates the breakdown of polynomials into smaller, more manageable pieces, allow-
ing each component to be processed individually. Moreover, this approach enables the
utilization of off-chip memory, thus ensuring that even high-degree polynomials can be
effectively handled. Coupled with an appropriate data pathway, this strategy paves the
way for more efficient polynomial operations. Consequently, the Four-step NTT can
substantially reduce the memory requirements for high-performance computations.

2.3 Homomorphic Encryption

HE refers to a cryptographic method that facilitates the execution of operations directly
on encrypted data without the necessity of decryption first. Essentially, this encryption
not only protects the data but allows for secure computations to occur, resulting in an out-
come that, when finally decrypted, identical precisely to what would have been achieved
if the calculations were carried out on the raw, unencrypted data. The cornerstone of this
encryption approach is its capacity to retain the confidentiality of the data all through the
computational stages, thereby ensuring an uncompromised privacy-safeguarding avenue
while allowing for necessary data manipulations and analyses.

Figures 2.2 and 2.3 respectively illustrate the traditional and HE methods in the context
of third-party computation. In the traditional encryption method depicted in Figure 2.2,
data encrypted by the user is sent to a third party for processing. At this stage, the

21

third-party decrypts the data to perform the necessary operations and then re-encrypts
the results before sending them back to the user. This process exposes the data at one
point, creating security risks.

Figure 2.2 The workflow of the traditional encryption method incorporating third-party
computation, delineating each critical step in the process.

On the other hand, the HE method is detailed in Figure 2.3. This method describes a
process, where the data encrypted by the user can be directly processed without decryp-
tion. In other words, the third party can perform operations on the encrypted data and
send the results back to the user, ensuring continuous (or end-to-end) protection of data
confidentiality. This comparison underscores the persistent confidentiality afforded by
the HE method against the potential security risks of traditional encryption. While HE
offers a higher level of security by eliminating the necessity of decryption, the traditional
method, albeit providing a simpler workflow, engenders a security vulnerability during
operations.

Figure 2.3 Illustrating the process of third-party computation facilitated through ho-
momorphic encryption, outlining each pivotal phase.

As we explore the details of HE, it is essential to grasp the idea of “noise”. This key
feature helps differentiate between different types of HE. At its core, “noise” means the
extra random data added, which is sampled from a random distribution (e.g., Gaussian

22

with zero mean and small standard deviation) during encryption. This additional data
helps keep the information secure, but it can also make calculations on the encrypted data
more complex. As Acar et al. (2018) have outlined, we can divide HE into three main
types; namely partial homomorphic, somewhat homomorphic, and fully homomorphic
encryption, each distinguished based on how the “noise” is handled.

• Partial Homomorphic Encryption (PHE): PHE is an encryption scheme that
supports a limited set of operations. In the PHE scheme, either addition or mul-
tiplication operations can be performed, but it cannot support both operations
simultaneously. This characteristic makes application simpler than Somewhat and
Fully HE schemes. However, this allows only specific types of operations to be con-
ducted on the encrypted data, limiting its application range. Partial homomorphic
encryption schemes are instantiated using conventional algorithms based on num-
ber theoretic approach such as Paillier encrytpion scheme Paillier (1999), which
does not use noise.

• Somewhat Homomorphic Encryption (SWHE): SWHE allows for a broader
set of operations to be performed on encrypted data, encompassing addition and
multiplication operations. However, this comes with a limitation: after a certain
number of operations, the “noise” in the encrypted data grows to a point where it
can no longer be decrypted correctly; this necessitates the conscious management
of noise growth to prevent decryption errors.

• Fully Homomorphic Encryption (FHE): FHE represents HE schemes that
allow an unlimited number of both addition and multiplication operations to be
performed on encrypted data, without decrypting it. The revolutionary concept
that makes this method possible is a technique called “bootstrapping”, developed
by Gentry, which effectively reduces the noise level, enabling even extensive calcula-
tions to be decrypted correctly. While this technique is computationally intensive,
it paves the way for securely performing complex operations on encrypted data,
opening avenues for secure multi-party computations and privacy-preserving data
analyses.

In this thesis, we elect to focus on SWHE. The fundamental reason behind this choice is
that this encryption offers a balance between partial and fully homomorphic encryption
methods. SWHE supports a broader set of operations compared to PHE, allowing for
more complex computations and offering a more comprehensive range of applications.
On the other hand, there is a performance overhead in FHE due to the bootstrapping
operation utilized. Although SWHE requires conscious noise management, it does not

23

necessitate the application of advanced, overly complicated, techniques such as boot-
strapping. With these features, SWHE provides advantages regarding the applicability
and efficiency of HE algorithms compared to FHE, making it a more favorable choice in
this context.

In SWHE, there are two commonly used schemes in academia as well as industry. The
first one is the BFV scheme introduced in Brakerski et al. (2011). This scheme supports
operations over integers and allows both addition and multiplication operations. The
main advantage of the BFV scheme is that the results of the computations are entirely
accurate, which is crucial for secure and error-free calculations. However, this scheme is
primarily optimized for integer calculations and does not support operations involving
real numbers.

The second is the CKKS scheme, initially introduced by Cheon, Kim, Kim, and Song
in Cheon (2017). This scheme allows for the approximate addition and multiplication
of encrypted messages. CKKS supports integers and accommodates complex and real
numbers, granting it greater flexibility for numerous applications. The attributes of the
CKKS scheme are particularly vital in applications such as machine learning or statistical
analysis because these fields often require working with data that involve integers and real
or complex numbers. Moreover, the ability of the CKKS scheme to perform approximate
calculations makes it a suitable solution for a wide range of applications.

2.3.1 Cheon-Kim-Kim-Son Homomorphic Encryption Scheme

The CKKS scheme, like other HE schemes, is based on the ring-LWE (RLWE) problem
(Lyubashevsky et al. (2013)). This method adopts a decryption structure of the form
(𝑚 + 𝑒 mod 𝑞), where 𝑚 represents the original message, 𝑒 is a small error term added
to ensure security, and 𝑞 represents the encryption modulus. The noise added during the
encryption process can replace the original message in approximate arithmetic operations,
preserving the significant digits of the main message.

In the CKKS scheme, the “rescaling” technique is developed, leveraging the scaling factor
“𝑝” to manipulate the modulus of the encrypted messages. In this technique, 𝑝 is chosen
as a scaling factor and is utilized during the encryption process to perform manipulations
on the cipher text. That is, starting with a cipher that has an encryption ⟨𝑐,sk⟩ ≡ 𝑚+𝑒
(mod 𝑞), a new cipher is obtained using the scaling factor 𝑝 as ⌊𝑝−1 ⋅ 𝑐⌋ (mod𝑞/𝑝), which is
a valid encryption of the message 𝑚/𝑝 with an approximate error of 𝑒/𝑝. This procedure

24

not only diminishes the size of the ciphertext modulus but also reduces the error term,
thereby preserving the precision of the encrypted texts.

This methodology results in a precision loss of only one more bit compared to unencrypted
floating-point arithmetic, demonstrating its suitability for approximate computations.
One of the most significant advantages of this approach is that the required bit size of
the ciphertext modulus grows linearly with the depth of the evaluated circuit, eliminating
the necessity for exponential growth.

In the discussions above, a perspective has been provided on the general features of
the CKKS scheme and its advantages in practice. However, to fully grasp how this
scheme operates in practice, it is essential to carefully examine its fundamental operations,
particularly key generation, encryption, and decryption. Below, the critical operations of
the CKKS scheme are detailed.

• Key Generation:

– A secret key 𝑠𝑘 ∈ ℛ𝑞 = ℤ𝑞/Φ(𝑥) is generatee by sampling its coefficients from
the set {−1,0,1} using a uniform distribution. Keeping this key confidential
is essential.

– Then, the public key (𝑎,𝑏) ∈ ℛ2
𝑞 is generated as follows

∗ 𝑎 ∈ ℛ𝑞 is generated by sampling its coefficients from a uniform distribu-
tion.

∗ An error polynomial 𝑒 ∈ ℛ𝑞 is generated by sampling its coefficients from
a normal distribution with zero mean and small standad deviation (e.g.,
𝜎 = 3.6).

∗ 𝑏 ← −𝑎 ⋅𝑠𝑘 +𝑒 mod 𝑞 is computed.

– The public key is denoted as 𝑝𝑘 = (𝑏,𝑎).

• Encryption:

– For a given message 𝑚 ∈ ℛ𝑞, encryption is done using the public key 𝑝𝑘 =
(𝑝𝑘0,𝑝𝑘1) and the resulting ciphertext is 𝑐𝑡 = (𝑐0, 𝑐1).

– 𝜇 ∈ ℛ𝑞 is generated by sampling its coefficients from a uniform distribution.

– The error polynomials 𝑒0 and 𝑒1 are sampled the same way 𝑒 is sampled in
the key generation.

– 𝑐0 ← 𝜇⋅𝑝𝑘0 +𝑚+𝑒0 mod 𝑞 and 𝑐1 ← 𝜇⋅𝑝𝑘1 +𝑒1 mod 𝑞 are computed.

25

• Decryption:

– The ciphertext 𝑐𝑡 = (𝑐0, 𝑐1) is decrypted using the secret key 𝑠𝑘.

– 𝑚′ ← 𝑐0 +𝑐1 ⋅ 𝑠𝑘 is computed

– The decryption yields 𝑚′ ≈ 𝑚 + 𝑒′, which is the sum of the original message
𝑚 and a noise 𝑒′.

We can show that the decryption works as follows:

𝑐0 +𝑐1 ⋅ 𝑠𝑘 = 𝜇 ⋅𝑝𝑘0 +𝑚+𝑒0 +(𝜇 ⋅𝑝𝑘1 +𝑒1) ⋅ 𝑠𝑘
= 𝜇 ⋅ (−𝑎 ⋅ 𝑠𝑘 +𝑒)+𝑚+𝑒0 +𝜇⋅𝑎 ⋅ 𝑠𝑘 +𝑒1 ⋅ 𝑠𝑘
= 𝜇 ⋅ 𝑒+𝑚+𝑒0 +𝑒1 ⋅ 𝑠𝑘
= 𝑚+𝑒′,

where 𝑒′ = 𝜇 ⋅ 𝑒 + 𝑒0 + 𝑒1 ⋅ 𝑠𝑘 is a polynomial in ℛ with small coefficients. As the error
polynomial consists of small coefficients, 𝑚′ approximates the message 𝑚.

Microsoft’s SEAL library< facilitates homomorphic applications by providing efficient
implementations of both the BFV and CKKS schemes. This library employs the full
RNS variant of both the CKKS and BFV schemes, and it partitions high-precision poly-
nomial arithmetic into smaller low-precision integer arithmetic, allowing operations to
be executed in parallel while eliminating division and rounding processes. Thanks to
these features, the BFV and CKKS schemes offer suitable solutions for a wide range of
applications by providing faster and more efficient homomorphic computation.

2.3.2 Residue Number System

The Residue Number System (RNS) plays a pivotal role in many cryptographic applica-
tions because it facilitates parallel arithmetic computations for large numbers. This is
achieved by utilizing a series of smaller moduli instead of a single large modulus, hence of-
fering the opportunity to employ single-precision arithmetic instead of the more complex
and computationally intensive multi-precision arithmetic. As a result, more efficient HE
implementations (e.g., Türkoğlu et al. (2022) which presents an efficient implementation
of BFV homomorphic encryption scheme) can be developed.

Additionally, RNS arithmetic exhibits significant efficiency in considerably enhancing the

26

processing speed of R-LWE-based lattice SWHE schemes. Furthermore, efforts have been
initiated to devise RNS variants of such encryption schemes, which have demonstrated
substantial speed improvements on platforms fully leveraging the parallelism afforded by
RNS, including GPU and FPGA environments.

By the Chinese Remainder Theorem (CRT) (Pei et al. (1996)), we consider an integer 𝑋
that is less than a predefined 𝑀 . This 𝑋 can be represented using a series of residues,
denoted as 𝑥𝑖, derived through the equation 𝑥𝑖 = 𝑋 mod 𝑚𝑖 across an index range from
1 to 𝑟, where 𝑚𝑖 are pairwise relatively prime moduli. This representation stands valid
under the condition that 𝑀 equals the product of 𝑚𝑖 for all 𝑖 in the mentioned range.
Furthermore, every 𝑚𝑖 belongs to a group characterized by pair-wise relatively prime
numbers, an ensemble generally termed as the moduli. Consequently, a conventional
notation adopted is [𝑋]𝑚𝑖

= 𝑋 mod 𝑚𝑖. Leveraging this foundational concept, we can
employ CRT to craft mathematical expressions grounded in this residue representation.

(2.4) |𝑋|𝑀 = ∣
𝑟

∑
𝑖=1

∣𝑥𝑖 ⋅𝑀−1
𝑖 ∣𝑚𝑖

⋅𝑀𝑖∣
𝑀

, for 𝑖 = 0,1,…,𝑟 −1,

where 𝑀𝑖 = 𝑀
𝑚𝑖

.

In Equation 2.4, the primary objective is to reconstruct the original integer 𝑋 utilizing
the provided residues 𝑥𝑖. Here, each 𝑥𝑖 represents the residue of 𝑋 with respect to a
specific modulus 𝑚𝑖. The term 𝑀−1

𝑖 denotes the modular inverse with respect to 𝑚𝑖
and ascertains the weighting used during the reconstruction process. 𝑀𝑖 is an integer by
obtaining by multiplying all moduli except for 𝑚𝑖 and determines the positional signif-
icance of each residue within the RNS structure. Consequently, the summation in the
equation provides a weighted sum of these residues, facilitating the reconstruction of 𝑋.

2.4 Field Programmable Gate Array (FPGA)

Field-Programmable Gate Arrays (FPGA) hold a significant place in the electronics
realm. Comprising programmable logic blocks and the interconnection paths that fa-
cilitate information flow between them, FPGA represents a type of digital integrated
circuit. This unique structure grants it extensive applicability across various domains,

27

leading to its preference in industrial and academic projects. Remarkably, the ability
to program the hardware flexibly and its adaptability stand as primary reasons behind
FPGA’s widespread popularity.

The components within an FPGA are paramount to its functionality and versatility. Each
element has a distinct role and contributes to the overall efficiency and capability of the
device. Logic blocks handle computational tasks, programmable interconnects provide the
communication backbone, and various memory elements store data, all under the precise
control of the designer. The importance of these components cannot be overstated, as
they collectively determine the FPGA’s potential in complexity and performance.

• Look-Up Tables (LUTs): LUTs are fundamental functional components of the
FPGA. They possess the capacity to perform a variety of arithmetic and logical
operations, handling tasks ranging from simple processes to complex computations.

• Programmable Interconnects: These components interlink different sections of
the FPGA, ensuring uninterrupted and efficient data and signal flow.

• Input/Output Blocks: These blocks enable the FPGA to send and receive signals
to and from other devices.

• Memory Elements: FPGAs are equipped with various memory elements to cater
to data storage needs. Depending on the specific requirements of the FPGA design,
different types of memories can be utilized.

– Flip-Flops: These are the most basic memory elements used in FPGAs and
can store a single bit of data, either a 0 or a 1. They are commonly utilized
within logic blocks.

– Block RAM (BRAM): Compact memory segments embedded within the
FPGA. They have a larger storage capacity than Flip-Flops and are typically
used for data buffering and other purposes.

• DSP Slices: Highly optimized hardware units designed to specific mathematical
operations such as multiplications.

Implementing HE operations and NTT with large ring sizes on FPGA introduces several
challenges. The limited memory capacity of FPGAs complicates managing extensive data
volume. The substantial data volume required by HE and NTT operations accentuates
these limitations. Data movement and management become involved for such appli-
cations. Specifically, ensuring efficient data reading and writing patterns with BRAM
blocks, which we use to store polynomial coefficients for recursive algorithms like NTT, is

28

notably challenging. This highlights the importance of efficient data movement to achieve
optimal performance. On another note, modular multiplication, a pivotal operation in
HE, is complex and demands efficient implementation on hardware. This operation can
lead to substantial resource consumption and extended computation times.

Optimizing the hardened IP functions embedded in FPGA demands a thorough under-
standing of both the hardware specifics and the intricacies of the application. For in-
stance, our adaptation of the word-level Montgomery reduction method, utilized to max-
imize the potential of DSP blocks, reflects these optimization challenges. The FPGA’s
limited hardware resources, especially logic blocks and memory, necessitate efficient de-
sign to utilize these assets. These constraints become prominent when considering the
parallelization requirement of the CKKS operations; also, the finite availability of DSP
blocks restricts this potential. Furthermore, the reprogrammable nature of FPGAs can
complicate adapting existing designs for different parameters and ring sizes. Nonetheless,
despite these hurdles, a successful implementation of NTT on FPGA is attainable with
the right design and optimization strategies.

29

3. OUR WORK

This chapter delves deeply into the methodologies we employed to realize our architec-
tures. Initially, we introduce our approach to designing NTT-based polynomial multi-
plication architectures with temporal flexibility. We present the unified butterfly unit
amalgamating modular arithmetic operations in this context. Our research extends to
implementing the Parametric Merged NTT Hardware, which caters to specific optimiza-
tion needs and its four-step variant.

As the chapter progresses, the focus narrows to HE, especially the CKKS scheme. We
delve into our specially designed hardware architecture with temporal flexibility to ac-
celerate the operations of the CKKS scheme. Detailed discussions are presented about
the full RNS variant of the CKKS scheme and the intricacies of the homomorphic mul-
tiplication and key-switching mechanisms. The concluding sections showcase our uni-
fied architectural design developed for homomorphic multiplication and key-switching,
demonstrating its efficiency and adaptability.

3.1 Efficient Design-Time Flexible NTT-Based Polynomial Multiplication

Architectures

This section will focus on two distinct hardware architectures we developed for NTT-
based polynomial multiplication, which is a follow up study of the work presented in
Mert (2021). Firstly, we will delve deeply into the unified butterfly unit architecture

30

concept, which plays a critical role in performing modular operations and forms the
foundation of our approach. This concept expands and offers a detailed examination of
the ideas proposed initially in Mert (2021), aiming to present a comprehensive analysis
that underscores its significance and functionality. Subsequently, we will thoroughly
explore our designs, specifically the Design-Time Flexible Merged NTT and the Four-Step
NTT architectures. This section will discuss our expectations from both architectures
and their potential advantages and limitations. We will scrutinize these architectures’
technical specifications, performance metrics, and application domains in depth.

3.1.1 Unified Butterfly Unit

The Unified Butterfly Unit, designed to perform the modular arithmetic operations re-
quired for homomorphic operations, such as those for executing NTT, INTT, modular
addition, subtraction, and multiplication tasks. Aiming for a high-performance hardware
architecture, we use the merged NTT and four-step NTT algorithms introduced above.
In these algorithms, the combined butterfly unit is employed to carry out both CT and
GS butterfly operations, a unit which was analysed in detail in Mert (2021).

The unified butterfly unit is adept at conducting both CT and GS butterfly operations,
while simultaneously handling modular addition, subtraction, and multiplication. This
unit processes three 32-bit coefficients (𝑎, 𝑏, 𝑤) and two control signals (𝑐𝑡, 𝑚𝑡) as
inputs. In return, it produces five 32-bit coefficients (𝑒, 𝑜, 𝑠, 𝑚0, 𝑚1) as outputs. The
configuration of the control signals 𝑐𝑡 and 𝑚𝑡 determines the operation. Specifically, in
the configuration 𝑐𝑡,𝑚𝑡 = (0,0), the outputs 𝑒 and 𝑜 represent 𝑎+𝑏 mod 𝑞 and (𝑎−𝑏)⋅𝑤
mod 𝑞, respectively. On the other hand, for the configuration 𝑐𝑡,𝑚𝑡 = (1,0), the outputs
𝑒 and 𝑜 stand for 𝑎 + 𝑏 ⋅ 𝑤 mod 𝑞 and 𝑎 − 𝑏 ⋅ 𝑤 mod 𝑞. These outputs from the two
configurations, 𝑒 and 𝑜, correspond to the CT and GS butterfly operations discussed
in Section 2.2. The other outputs are utilized for additional modular operations, such
as addition, subtraction, and multiplication. Specifically, for the configuration 𝑐𝑡,𝑚𝑡 =
(0,1), the output 𝑚0 is used for the operation (𝑎 + 𝑏)𝑤 mod 𝑞, while the output 𝑚1 is
used for the operation (𝑎+𝑏)𝑤 mod 232.

31

3.1.1.1 Modular Addition and Subtraction Units

Modular addition and subtraction operations play a critical role in the unified butterfly
structure. Efficiently executing these operations has a significant impact on the over-
all performance. A hardware module designed for the modular addition operation is
visualized in Figure 3.1.

Figure 3.1 32-bit Modular Adder Unit

This module takes two 32-bit numbers (𝐴 and 𝐵) and a modulus value (𝑞) as inputs.
These two numbers are added, and the modular value of the sum concerning 𝑞 is directed
to the output. If the result exceeds the modulus value, it is subtracted from this value
to attain the actual modular result. In addition to the traditional addition operation,
an additional comparison and conditional assignment are performed during the modular
addition process. This ensures that the resulting sum is checked against the modulus
value, and the appropriate value is assigned to the output based on the outcome.

The modular subtraction operation is structurally similar to the modular addition mod-
ule, but the primary function is subtraction rather than addition. A subtraction operation
is performed for two inputs. If the subtracted result is negative, a correction step is re-
quired. This is achieved by adding the result to the modulus value. After the correction
process, the resulting value is checked to ensure it is either positive or zero. If the value
is positive or zero, it is directly assigned to the output. However, the corrected value is
used if a negative result is obtained. This method ensures that the results obtained in
the modular subtraction process always fall within a specific positive range.

32

3.1.1.2 Modular Multiplication Unit

The Modular multiplication unit is a critical component, especially since it is the most
computationally intensive part of the NTT and INTT operations. The word-level Mont-
gomery modular multiplication method is adopted in the unit designed in Mert et al.
(2019). This method is chosen to execute the modular reduction step, which is the most
compute-intensive section of the unified unit. Mert et al. (2019)’s selection of the “word-
level Montgomery reduction” method proves more efficient than other popular methods
such as the Barrett reduction (Barrett (1986)),K2-RED (Bisheh-Niasar et al. (2021)),
and Plantard(Huang et al. (2022)).

The design-time configurability of the Montgomery reduction algorithm makes this
method more efficient. However, the traditional Montgomery algorithm discussed in
Section 2.2.0.1 must be more suitable for DSP blocks. Although each DSP block can per-
form complex operations, the input and output bit values are inappropriate for regular
Montgomery reduction. On the contrary, the word-level Montgomery method, as shown
in Algorithm 9, divides the reduction process into several steps, allowing us to operate
with lower bits. As a result, employing the word-level approach enables us to utilize DSP
blocks more effectively and simplifies implementing these operations on the DSP.

In our research, we employ an NTT-friendly prime that enhances the efficiency of the
Montgomery reduction algorithm. In the conventional Montgomery method, as presented
in Algorithm 5, the first two steps involve intricate multiplication operations. However,
thanks to the properties of the NTT-friendly prime, these complex multiplication tasks
are transformed into simpler shift operations in the Word-Level Montgomery algorithm,
as described in Algorithm 9. This transformation is particularly crucial in FPGA imple-
mentations because it allows us to convert the computationally intensive multiplication
operations into shift operations, which are naturally more performant on hardware plat-
forms such as FPGA.

3.1.2 The Parametric Merged NTT Hardware

Developing an NTT framework on an FPGA platform presents considerable challenges,
primarily due to the intricate Memory Access Patterns (MAP) required to attain a high
throughput. Integrating a variety of butterfly units not only facilitates more flexible re-
source distribution, but is also crucial in FPGA environments, where resource availability

33

Algorithm 9 Word-Level Montgomery Reduction Algorithm for NTT-friendly Primes
Mert (2021)
Input: 𝐷 = 𝐴⋅𝐵 (a 𝑙-bit positive integer, 𝑤 · (𝐿−1) ≤ 𝑙 < 𝑤 ·𝐿)
Input: w = log2(2𝑛) (word size)
Input: L = 𝑙/𝑤 (repeat count)
Input: 𝑞 (an 𝑙-bit positive integer, 𝑞 = 𝑞𝐻 · 2𝑤 +1)
Input: 𝜇 = −𝑞−1 mod 𝑅 where 𝑅 = 2𝑤·𝐿 (mod q)
Output: 𝐶 = 𝐷 ⋅𝑅−1 (mod q)

1: 𝑇 3 ← 𝐷
2: for i = 0 to L-1 do
3: 𝑇1,𝐻 ← 𝑇3 ≫ 𝑤 # Upper part of 𝑇1
4: 𝑇1,𝐿 ← 𝑇3 (mod 2𝑤) # Lower part of 𝑇1
5: 𝑇2 ← −𝑇1,𝐿 (mod 2𝑤)
6: carry = 𝑇2[𝑤 −1]∨𝑇1,𝐿[𝑤 −1]
7: 𝑇3 ← 𝑇1,𝐻 +(𝑞𝐻 · 𝑇2)+ carry
8: 𝑇4 ← 𝑇3 −𝑞
9: if 𝑇4 < 0 then

10: 𝐶 ← 𝑇3
11: else
12: 𝐶 ← 𝑇4
13: return 𝐶

might be restricted.

The work in Mert (2021) created an open-source and parametric hardware design for
merged-NTT, capable of adapting to a broad spectrum of ring dimensions and numbers
of butterfly units. Distinct MAPs are necessitated at each of the log2 𝑛 phases of the
NTT, meaning that the memory storage locations for coefficients must be meticulously
predetermined at every stage to avoid data clashes.

Our approach leverages a universal MAP applicable to ring dimensions ranging from 210

to 215. Furthermore, we design and realize a parametric hardware solution adaptable at
the design stage to facilitate merged NTT/INTT processes based on specified polynomial
degrees and butterfly unit numbers.

In the architecture of the overall design, the unified butterfly unit, introduced as a PE,
is detailed in Section 3.1.1. This PE is a versatile unit designed to execute both CT and
GS operations in a unified fashion and the specific butterfly operation can be selected at
runtime. In addition, it can perform other modular arithmetic operations, such as mod-
ular multiplication and modular addition/subtraction for 32-bit numbers. The unit’s
functionality can be configured during runtime, providing enhanced flexibility in oper-
ations. An address generator is incorporated to produce BRAM read/write addresses

34

for read/write operations. The control unit is responsible for adjusting the operating
mode of the input multiplexers for the unified butterfly units and the address generator.
Multiplexers (Mux) are utilized to sequence the input and output data to ensure proper
read/write operations. The BRAM groups store coefficients for input polynomials and
twiddle factors.

To implement the NTT algorithm efficiently on hardware, a specialized Python script
was developed. This script is tailored to automatically generate the required code in a
hardware description language by taking into consideration two crucial parameters:

1.1 The size of the polynomial ring (𝑛)

1.2 The number of PEs, which essentially represents the count of butterfly units in the
architecture.

With these parameters provided, the script computes the necessary number of memory
units for polynomial storage using the formula

(3.1) Number of memory units = 2×Number of PEs,

as each butterfly operation reads two vector elements and outputs two vector elements as
well. This significant detail is delineated in Figure 3.2, where each PE necessitates two
inputs (coefficients of the input polynomial) per clock cycle. In addition, each PE requires
one twiddle factor power, implying that the total number of memory units designated for
the twiddle factors is equivalent to the number of PEs. In Figure 3.2, “Data” and “TW”
represent the input vector elements and twiddle factors, respectively. Furthermore, the
data storage capacity for each memory unit is given by

(3.2) Data storage per memory unit = 𝑛
Number of memory units .

This systematic and automated approach ensures accuracy and enhances scalability for
varying ring sizes and processing capacities.

In our hardware realization of the NTT algorithm, a pivotal component is the control
unit designed for orchestrating read and write operations by producing the correct indices
(or their addresses in the BRAMs) for input vector and twiddle factors. This control
unit is fundamentally structured from an address generator combined with an expansive
multiplexer. Crucially, the instantiation of the address generator and the multiplexer is
parameterized based on the specified PE count and the dimension of the polynomial ring.

The primary function of the address generator is to take the initial signals for both NTT

35

Figure 3.2 BRAM Architecture Overview

and INTT, and consistently generate read and write addresses for the polynomial data
with each clock cycle. In tandem with this, it is also entrusted with emitting the requisite
read signals that fetch the twiddle factors.

On the other hand, the multiplexer operates by accepting outputs generated by the
address unit. It also takes in the even and odd results computed by the butterfly unit
during the preceding clock cycle. The multiplexer’s responsibility is to transform these
outputs into structured arrays. These array-formatted data streams are then channeled
as read, write, and data signals towards the BRAM groups. A visual representation of
this orchestrated operation can be found in Figure 3.3.

To understand the intricacies of address generation for reading and writing operations,
one can consider Figure 3.4 and Figure 3.5. In this example, we have a ring dimension
of 8192 and a design conofiguration employing 8 PEs. Initially, our design comprises 16
Block RAMs (BRAMs), each with a capacity to store 1024 addresses

The polynomial’s first half (coefficients with indices from 0 to 𝑛/2−1) is loaded into the
even-indexed BRAMs, while the latter is stored in the odd-indexed BRAMs. The reading
process initiates from the address 0 (See READ # in Figure 3.4). The subsequent address
accessed by each PE is halfway through, precisely at the 256th position (i.e., 512/2). The
rationale behind this is to prepare the data for the next stage in the NTT computation.

36

Figure 3.3 Control Unit Architecture Overview

Figure 3.4 Read Addresses of the Memory Access Pattern

For instance, since in the second stage of the NTT computation, the first PE will process
the vector elements with indices 0 and 2048, the result of butterfly operation of the vector
elements with indices 0 and 4096 in the first stage should be written using the BRAM
address 256, where the vector element with index 2048 is currently located. Therefore,
it has to be processed in the second clock cycle. It is read from the BRAM in the same
clock cycle as the result of the first butterfly operations is written to the same BRAM
address. This can be oberserved in Figure 3.5, which shows the memory map of the
vector elements in the beginning of the second NTT stage.

Addressing for writing is established between each BRAM pair. Post the initial stage,
data from the second half of the even BRAM assembly is transferred to the first half of
the odd BRAMs. Conversely, the odd BRAM’s first half is written into the even BRAM’s

37

Figure 3.5 Write Addresses of the Memory Access Pattern

latter half. It is worth noting that with every stage progression, both the read and write
addresses undergo halving.

In conclusion, through our work on the hardware implementation of the NTT algorithm,
we observe that each specific configuration of polynomial size and butterfly unit count
necessitates a distinct NTT architecture. Each configuration has its unique MAP and
calculation sequence, implying a need for a dynamic structure. To this end, our proposed
NTT design proficiently handles this complexity, automatically generating the necessary
address and control logic for a specific configuration. This automation approach offers a
significant flexibility advantage compared to traditional fixed-configuration applications.
Notably, our design’s ability to seamlessly adapt to polynomial sizes ranging from 210 to
215 suggests its potential as an effective solution in a wide range of applications.

3.1.3 Four-Step NTT Hardware

The Four-Step NTT algorithm offers distinctive advantages when implemented on hard-
ware platforms, especially in contrast to the Merge NTT approach. This section elucidates
these advantages while highlighting the accompanying challenges and trade-offs.

One of the salient advantages of the Four-Step NTT is the ability to achieve parallelization
for smaller size NTTs. This stems from the capability to apply the NTT independently
across each column of the matrix, into which the input vector to the NTT computation is
organized. As a consequence of working with these smaller size NTT operations, memory
access patterns are more systematic and organized. This orderly access is pivotal in re-
ducing latency and ensuring efficient data retrieval. Furthermore, the structured memory

38

access simplifies the establishment of a pipeline architecture, fostering streamlined data
flow and potentially boosting processing speed.

While the Four-Step NTT algrithm showcases advantages in terms of parallel processing
and memory access, it does necessitate larger memory capacities. The need for a more
extensive set of pre-computed twiddle factors directly contributes to increased Block RAM
(BRAM) consumption. Careful consideration is required to ensure that this increased
memory usage is appropriately managed, especially when deploying the algorithm on
constrained hardware platforms.

From the number of operation standpoint, the Four-Step NTT introduces additional mul-
tiplications when compared with the Merge NTT. Specifically, while the operation count
in the Merge NTT stands at 𝑛/2× log(𝑛), the Four-Step NTT algorithm demands addi-
tional multiplication operations. These extra operations, although introducing overhead,
can be efficiently managed given the other parallelization advantages of the Four-Step
approach.

To optimize the throughput of our Four-Step NTT implementation, the First NTT, mul-
tiplication, and Second NTT steps are pipelined when deployed on FPGA. We dedicate
different PEs for each stage to facilitate this pipelined structure. It is imperative to note
that the provided BRAM values and the count of PEs pertain exclusively to one NTT
step.

The memory access pattern of the Four-Step NTT stages closely resembles that of the
Iterative NTT. The method for determining the number of BRAMs and addresses is
consistent with our approach for the Merged NTT. To enhance efficiency in the pipeline
structure, we opt for matrix sizes where the number of rows and columns are equal
(or close to each other). Our design is configurable and can be easily restructured for
different ring dimensions and numbers of PEs. In practice, although our synthesized
implementation is based on a ring size of 4096, in the example discussed here, the ring
dimension is chosen as 64, the number of PEs is set to 2, and the matrix size is selected
as 8×8, for ease of discussion.

In this example, with two PEs, we deploy four BRAMs. This setup aligns with the Merge
NTT up to this point. However, a distinct differentiation with the Four Step NTT is in
the addressing scheme for the coefficients. Unlike the Merge NTT, where coefficients are
placed into even and odd BRAMs consecutively, in our Four Step NTT example, the
address progression relies on the row or column count, pivoting on whether it is the first
group of NTTs or the second group of NTTs.

In Figure 3.6, the addressing scheme of the presented memory implementation exhibits a

39

Figure 3.6 Four Step NTT Memory Access Pattern with 2 PEs and size0 = size1 = 8

distinctive structure from that of the merged NTT. Within this framework, the coefficient
at the 0th index is directly allocated to the starting address of the first even-numbered
BRAM. However, due to the value of 𝑠𝑖𝑧𝑒1 being 8, the coefficient at the 8th index is
saved to the first address of the second even-numbered BRAM group. For odd-numbered
BRAM addresses, indexing commences from the size0/2 × size1 value and increases by
size1 (in this case, 8) at each step. This addressing approach continues by incrementing
the indexes by one for every size0 element group (e.g., 8).

Following storing the coefficients to BRAMs as indicated above for the NTT algorithm,
the address selection for reading and writing operations parallels the approach employed
in the Merged NTT implementation. Nonetheless, a salient differentiation in this simi-
larity is the grouping of BRAM address clusters based on the size1 value (e.g., 8). This
grouping procedure is represented in the figure through groups labeled with the 𝑁𝑇 𝑇 #
tag. Within each 𝑁𝑇 𝑇 # group, the selection of read and write addresses is executed as
defined in the Merged NTT since each group, in fact, corresponds to an independent, yet
much smaller, NTT operation.

40

The multiplication step in the Four-Step NTT algorithm possesses a simplicity inherent
to its point-wise and independent nature. As a result, the memory access pattern is
direct and unambiguous. Despite the straightforward nature of the multiplication pro-
cess, efficiency can be further optimized during the data write-back phase. One notable
improvement is integrating the transpose operation during the output write phase to the
Block RAMs (BRAMs). This integration eliminates the necessity for a separate transpose
step.

The writing strategy employed here uses a formula dependent on the PE and matrix sizes.
This formula enables the determination of the precise BRAM address to which each data
point will be written. By doing so, memory access is streamlined, and potential bottle-
necks are averted. The exact formulas detailing this address calculation are provided in
Equations 3.3 and 3.4.

(3.3) newID =
⎢
⎢
⎣

ADDR mod ⌊ size1
2 ⌋−ADDR mod ⌊ size1

PE ⌋
⌊ size1

PE⋅2⌋+⌊ADDR
⌊ 𝑁

PE⋅2 ⌋ ⌋
⎥
⎥
⎦

(3.4) newADDR = size0 ⋅ (ADDR mod ⌊size1
PE ⌋)+⌊ADDR mod ⌊ 𝑁

PE⋅2⌋
⌊ size1

2 ⌋
⌋+⌊size0

PE ⌋ ⋅ ID

Figure 3.7 Four Step NTT Write Access Example

41

In these formulas, “newID” designates the BRAM group to be written to, while “ID”
represents the BRAM group being read. Similarly, “newADDR” indicates the BRAM
address to be written to, and “ADDR” signifies the BRAM address being read. As
deduced from these equations, our design’s multiplication section depends on the selected
ring size and the number of PEs. This allows for easy design modifications, considering
the performance and area trade-offs. For our 8×8 matrix example, Figure 3.7 visualizes
the memory access pattern.

In implementing the CKKS operations on FPGA, the performance of NTT plays a key
role. In this context, we explored two different NTT methods: merged NTT and four-step
NTT. Both methods are potentially applicable for CKKS. However, based on performance
tests for the ring sizes we worked with, we observed that merged NTT outperformed four-
step NTT. Hence, we opted for the merged NTT method in implementing the CKKS
scheme. We plan to develop and optimize the four-step NTT method for future work.
Four-step NTT has the potential to exhibit superior performance, especially for higher
ring sizes. Therefore, this method may be more effective in certain application scenarios
and ring sizes.

3.2 Efficient Design-Time Flexible Hardware Architecture for Accelerating

Homomorphic Encryption Operations of CKKS Scheme

This section introduces an efficient hardware architecture designed to accelerate the HE
operations of the CKKS scheme. In recent years, with the growing popularity of HE
in numerous application areas, there has been an increasing need for hardware-based
solutions to speed up these operations. The presented architecture is designed to meet
these demands, offering design-time flexibility and a performance-driven approach. In
this section, we will delve into the details of how we efficiently implemented the foun-
dational operations of the CKKS scheme, namely the homomorphic multiplication and
key-switching operations, in hardware.

Within the CKKS framework, operations such as homomorphic multiplication, relin-
earization, and rescaling stand out as primary operations. For parameters defined as
𝑛 = 8192 and ⌈log2(𝑞)⌉ = 218, we introduce a cutting-edge hardware architecture metic-
ulously tailored for superior performance and scalability. This architecture is notably
design-time configurable in terms of the number of PE, which is crucial for striking an

42

optimal balance between performance and area constraints. The flexibility to adjust the
PE count allows us to meet various performance versus area requirements, enhancing the
adaptability and efficiency of the CKKS implementation within different scenarios.

3.2.1 Full RNS Variant of the CKKS Scheme

In this section, we scrutinize the homomorphic multiplication and key-switching opera-
tions based on the full RNS variant of the CKKS scheme. The examination is focused on
delineating how these operations are orchestrated in the SEAL library, which was inaugu-
rated by Microsoft in 2020. Following this introduction, we will provide the pseudocode
to understand them comprehensively. This deep analysis will unveil the intricacies of the
implementation phase and elucidate the operational mechanisms in a clear manner.

The full RNS variant of the CKKS scheme plays a crucial role in the efficient execution
of HE operations. In traditional approaches, a single large modulus is employed for such
functions. However, the RNS variant, as explained in the RNS section, advocates for uti-
lizing multiple smaller moduli. This modification paves the way for using single-precision
arithmetic instead of multi-precision arithmetic. Consequently, this approach allows for
faster arithmetic operations in hardware without any delay. Additionally, this technique
provides a more effective means of addressing operations with high computational inten-
sity, such as key-switching. The RNS variant dissects these operations into independent
smaller components, allowing for parallel processing. This parallelization lays the foun-
dation for a more optimized MAP structure in hardware, enhancing overall performance
and optimizing resource utilization.

For the effective implementation of the full RNS variant of the CKKS scheme, the scheme
parameters chosen include the degree 𝑛 of the polynomial ring, the maximum ciphertext
modulus 𝑄, and the RNS base 𝑄𝐿 consisting of 𝑙+1 small prime moduli. These selections
are made considering the required security level and the maximum multiplicative depth
𝑙 for the application. The RNS bases we employ are 32-bit in bit-length, encompassing
6 distinct RNS bases. Furthermore, for key-switching operations, we also incorporate a
special prime 𝑝 = 𝑞𝑙 that is exclusively designated for this process. This special prime is
considered in the extended RNS base as 𝑄𝐿 = {𝑞0, ..., 𝑞𝑙−1,𝑝}. The reasons and advantages
for using these RNS bases and the special prime in the CKKS encryption scheme directly
impact the overall performance and security of the scheme.

43

Algorithm 10 Homomorphic Multiplication for CKKS
Input: 𝑐𝑡𝑎 = (𝑐𝑡𝑎,0, 𝑐𝑡𝑎,1),𝑐𝑡𝑏 = (𝑐𝑡𝑏,0, 𝑐𝑡𝑏,1)
𝑐𝑡𝑎, 𝑐𝑡𝑏 ∈ ℛ(𝑙−1)×2

𝑄 ,𝑄 = ∏𝑙−1
𝑖=1 𝑞𝑖

Output: 𝑟𝑒𝑠 = (𝑟𝑒𝑠0, 𝑟𝑒𝑠1, 𝑟𝑒𝑠2), 𝑟𝑒𝑠 ∈ ℛ(𝑙−1)×3
𝑄

1: for 𝑖 = 1 → 𝑙−1 do
2: 𝑟𝑒𝑠0,𝑖 ← 𝑐𝑡𝑎,0,𝑖 ⊙𝑐𝑡𝑏,0,𝑖
3: 𝑟𝑒𝑠1,𝑖 ← 𝑐𝑡𝑎,0,𝑖 ⊙𝑐𝑡𝑏,1,𝑖 +𝑐𝑡𝑎,1,𝑖 ⊙𝑐𝑡𝑏,0,𝑖
4: 𝑟𝑒𝑠2,𝑖 ← 𝑐𝑡𝑎,1,𝑖 ⊙𝑐𝑡𝑏,1,𝑖
5: return 𝑟𝑒𝑠

3.2.1.1 Homomorphic Multiplication

Within the framework of the CKKS scheme, homomorphic multiplication is distinctly
characterized by its utilization of a sequence of smaller moduli, denoted as 𝑞𝑖, which
collectively constitute the RNS base. A primary advantage of this methodology in the
CKKS is the facilitation of parallel computations across individual RNS moduli, signifi-
cantly enhancing the operation’s efficiency.

Compared to the homomorphic multiplication process intrinsic to the BFV scheme, the
CKKS exhibits a noticeable advantage. The BFV scheme is renowned for its reliance
on supplementary RNS bases and consequent engagement in resource-intensive base ex-
tensions. In contrast, as depicted in Algorithm 10, the CKKS refrains from using any
additional RNS bases. It solely engages in coefficient-wise multiplication operations on
ciphertexts.

Within the CKKS scheme, the homomorphic multiplication operation starts by taking
in two ciphertexts, each consisting of two polynomials, based on the RNS arithmetic.
Upon completion of the operation, a ciphertext encompassing three distinct components
is derived. As illustrated in Algorithm 10, this procedure is portrayed step-by-step. The
algorithm receives two ciphertexts, namely 𝑐𝑡𝑎 and 𝑐𝑡𝑏, as input, each bearing a dual-
component configuration within the ℛ2

𝑄 space, where the modulus 𝑄 is construed as the
product of the multiple moduli each represented by 𝑞𝑖. During the computational phase,
the individual components of both ciphertexts undergo multiplication processes inter
se, leading to the generation of a novel ciphertext, res, characterized by three separate
components.

44

Algorithm 11 Relinearization for CKKS
Input: 𝑐𝑡𝑎, 𝑐𝑡𝑏, 𝑐𝑡𝑐 ∈ ℛ𝑄
Input: RK0,RK1 ∈ ℛ𝑙

𝑄𝐿
Relinearization keys

Output: 𝑐𝑡′
0, 𝑐𝑡′

1 ∈ ℛ𝑄𝐿
1: 𝑣𝑎𝑙0,𝑣𝑎𝑙1 ← 0
2: for 𝑖 = 0 → 𝑙−1 do
3: 𝛼 ← INTT𝑞𝑖

(𝑐𝑡𝑐,𝑖)
4: for 𝑗 = 0 → 𝑙 do
5: ̄𝛽 ← NTT𝑞𝑗

(𝛼)
6: 𝑣𝑎𝑙0 ← ̄𝛽 ⊙RK0,𝑖,𝑗 mod 𝑞𝑗
7: 𝑐𝑡′

0,𝑗 ← 𝑐𝑡′
0,𝑗 +𝑣𝑎𝑙0 mod 𝑞𝑗

8: 𝑣𝑎𝑙1 ← ̄𝛽 ⊙RK1,𝑖,𝑗 mod 𝑞𝑗
9: 𝑐𝑡′

1,𝑗 ← 𝑐𝑡′
1,𝑗 +𝑣𝑎𝑙1 mod 𝑞𝑗

10: return 𝑐𝑡′
0, 𝑐𝑡′

1

3.2.1.2 Key Switching

Following the execution of the homomorphic multiplication, the derived ciphertext mani-
fests three distinct components (i.e., polynomials in ℛ𝑄). A subsequent operation, termed
“key switching”, is leveraged to get these three components down to a more manageable
two components. Notably, the computational demands of key switching markedly eclipse
those of the homomorphic multiplication. In particular, the NTT operation acts as a
performance bottleneck point for key-switching as well. This is primarily due to the
numbers of NTTs and INTTs engaged in the key-switching operation; the count is about
the square of the number of the RNS bases.

The key-switching procedure within the CKKS scheme consists of two stages. The first
stage is the relinearization process. In the CKKS scheme, the relinearization operation
is employed to reduce the three-component ciphertext, obtained due to homomorphic
multiplication, to a structure with two components. The purpose of this operation is to
decrease the size of the ciphertext, paving the way for subsequent homomorphic opera-
tions to be executed more swiftly and efficiently. The steps required to accomplish this
task are elaborated in detail in the “Relinearization for CKKS” operation presented in
Algorithm 11.

In the CKKS scheme, the generation of relinearization keys is required to perform the
relinearization operation. Relinearization keys consist of two components: RK0 and RK1.
The RK0 component is produced by expanding a pseudorandom public seed, while RK1 is
computed using the secret key. Both components, RK0 and RK1, are 𝑙-tuples and reside

45

Algorithm 12 Homomorphic Rescale for CKKS
Input: 𝑐𝑡′

0, 𝑐𝑡′
1 ∈ ℛ𝑄𝐿

Output: ̄𝑐𝑡0, ̄𝑐𝑡1ℛ𝑄
1: 𝛼 ← INTT(𝑐𝑡′

0,𝑙)
2: 𝛽 ← INTT(𝑐𝑡′

1,𝑙)
3: halfmod ← (𝑞𝑙 ≫ 1)
4: ̄𝛼 ← 𝛼+halfmod mod 𝑞𝑙
5: ̄𝛽 ← 𝛽 +halfmod mod 𝑞𝑙
6: for 𝑖 = 0 → 𝑙−1 do
7: 𝛼′ ← ̄𝛼−halfmod mod 𝑞𝑖
8: 𝛽′ ← ̄𝛽 −halfmod mod 𝑞𝑖
9: ̃𝛼 ← NTT(𝛼′)

10: ̃𝛽 ← NTT(𝛽′)
11: 𝛾0 ← 𝑐𝑡′

0,𝑖 − ̃𝛼
12: 𝛾1 ← 𝑐𝑡′

1,𝑖 − ̃𝛽
13: ̄𝑐𝑡0,𝑖 ← 𝑐𝑡0,𝑖 +𝑞−1

𝑙 ⊙𝛾0 mod 𝑞𝑖
14: ̄𝑐𝑡1,𝑖 ← 𝑐𝑡1,𝑖 +𝑞−1

𝑙 ⊙𝛾1 mod 𝑞𝑖
15: return ̄𝑐𝑡0, ̄𝑐𝑡1

in ℛ𝑄𝐿
. The notation RK0,𝑖 is used to select the 𝑖-th element from the 𝑙-tuple. This

element is found within ℛ𝑄𝐿
and, thus, comprises 𝑙 + 1 residue polynomials in the RNS

representation. We utilize the notation RK0,𝑖,𝑗 to represent the 𝑗-th residue polynomial
of 𝑅𝐾0,𝑖. In summary, each of RK0 and RK1 is a vector containing 𝑙(𝑙 + 1) residue
polynomials.

Algorithm 11 starts with the input components 𝑐𝑡𝑎, 𝑐𝑡𝑏, and 𝑐𝑡𝑐, which are the three
components of the ciphertext obtained after the homomoprhic multiplication operation.
The variables 𝑣𝑎𝑙0 and 𝑣𝑎𝑙1 are initialized to zero. The two nested loops iterate across all
RNS bases. The outer loop applies the INTT operation for each RNS base of the third
component. Meanwhile, the inner loop transforms the output of the INTT using NTT
and subsequently multiplies it with the relinearization keys RK0 and RK1 to compute the
new ciphertext components. The procedure ensures that the ciphertext components are
transformed into a streamlined two-component structure, facilitating subsequent compu-
tations.

The second step is the rescale operation. The primary purpose of the rescale process is
to scale down the ciphertext components from ℛ𝑄𝐿

to ℛ𝑄.This is done to obtain the
same homomorphic ciphertext value in the new RNS base. The method presented in
Algorithm 12 details the steps of the rescale operation.

The algorithm starts by taking 𝑐𝑡′
0 and 𝑐𝑡′

1 components as input. Initially, the INTT

46

operation is applied to the ciphertext components of the last RNS base. The results
obtained are then converted into new components by adjusting them with the value of
halfmod. Here, halfmod represents the right-shifted value (by one bit) of the last RNS
base(𝑝).

These newly obtained components are scaled across all RNS bases in subsequent steps.
This is achieved by applying the NTT operation for each base and making corrections
using previously calculated values. As a result, these processes produce the scaled com-
ponents of the ciphertext.

This scaling operation aids other processes within the CKKS scheme to operate more effi-
ciently. Specifically, this procedure enhances the overall performance and computational
speed, expanding the ability to perform more operations on the ciphertext.

3.2.2 Homomorphic Multiplication and Key Switching Architecture

As described in Algorithm 10, the homomorphic multiplication in the CKKS scheme fun-
damentally involves modular multiplications performed point-wise in the NTT domain,
as well as modular addition operations. To execute these base operations, we utilize the
unified butterfly unit as a PE, detailed in Section 3.1.1. Our design is configurable, al-
lowing variations in the number of unified butterfly units. In this section, we will present
examples of our design implemented with 96 PEs and discuss how our design adapts to
changes in the number of these units. The overall structure of our design is visualized in
Figure 3.8.

For Homomorphic Multiplication, four ciphertext polynomials are utilized as input. Each
polynomial comes with 6 RNS bases and has 8192 coefficients. To carry out modular
operations, processing element groups (PE groups) are employed. There are 12 PE groups
in total, with each group comprising 8 PE elements. This means there are 96 PE elements
altogether. For each RNS base, two PE groups are designated, leading to 16 PE elements
in total. Since Homomorphic Multiplication mainly involves point-wise multiplication
and addition, operations within each RNS base are parallelized using 2 PE groups.

The capacity to read only one data from each BRAM group exists in a single clock cycle.
With the aim to boost design performance by incorporating more PEs, each of the 96
PE elements is required to read two inputs simultaneously. As a result, the number of
BRAM groups is double that of the PEs, leading to 192. Each BRAM group has been

47

Figure 3.8 Overview of the Accelerator Architecture

fashioned with a depth of 1024 to accommodate input polynomial coefficients.

However, in Algorithm 10, to store the intermediate multiplication results of 𝑐𝑡𝑎,0,𝑖 ⊙𝑐𝑡𝑏,1,𝑖
and 𝑐𝑡𝑎,1,𝑖 ⊙𝑐𝑡𝑏,0,𝑖, the depth of half of the utilized BRAM groups has been increased to
2048. These intermediate multiplication values are stored between addresses 1024 and
2048 within this enhanced depth. In the end, 18 polynomials (i.e., 𝑟𝑒𝑠0, 𝑟𝑒𝑠1, 𝑟𝑒𝑠2, each
with 6 RNS bases) with a degree of 8192 are written back to the same BRAM groups.

In the CKKS scheme, the relinearization and rescaling operations contain fundamen-
tal arithmetic operations such as NTT, INTT, modular multiplication, addition, and
subtraction. To execute the NTT and INTT functions, the merged NTT hardware, com-
prehensively detailed in Section 3.1.2, is employed. Owing to the configurable nature of
this specific hardware to accommodate different PE counts, relinearization and rescaling
operations are implemented on the FPGA using varying numbers of PEs. These processes
are positioned immediately following the homomorphic multiplication operation.

A crucial point to note is that our method is specifically optimized for a particular set of
parameters. Our approach is limited to applications requiring only a single multiplica-

48

tion depth. This characteristic affects its flexibility and the range of applications it can
serve. While our design offers specific efficiencies for which it is optimized, it lacks the
adaptability provided by broader designs.

While the homomorphic multiplication utilizes 96 unified butterfly units to facilitate the
parallel execution of data-independent tasks, identical units have also been engaged for
the relinearization and rescaling tasks. It is imperative to highlight that 408 BRAM
groups are used during these sequences. In optimizing storage and access efficiencies,
configurations are set with 144 BRAM groups at a depth of 2048, 56 at 2559, and 208 at
1024. Various requirements drive this specific allocation: 56 BRAM groups, at a depth
2559, are dedicated solely to storing twiddle factors. Meanwhile, 48 groups at 2048-depth
are reserved for the relinearization keys. All remaining BRAM groups accommodate the
input, output, and intermediary values.

The relinearization operation of the CKKS scheme is presented in Algorithm 11. During
the key-switching process, each polynomial needs to be multiplied by a relinearization
key, and 2𝑙(𝑙+1) relinearization keys must be stored. As 𝑙 = 6, a total of 84 relinearization
keys are stored for the selected parameters. BRAMs are used to store 6 relinearization
keys, and the same BRAMs are reused to store other relinearization keys. To store
relinearization keys, 48 BRAM groups with a depth of 2048 are fully utilized. The
BRAM groups can store relinearization keys for 6 polynomials, and the operations of 6
polynomials can be executed in parallel. The relinearization keys required for subsequent
polynomials are stored sequentially in the same BRAMs. The primitive root of unity
powers required for NTT and INTT operations are stored in 56 BRAMs with a depth of
2559. Due to the use of the word-level Montgomery reduction algorithm, the powers of
the primitive root of unity and the relinearization keys are multiplied by the Montgomery
constant 𝑅 before being sent to the FPGA.

In the CKKS scheme, initiating the relinearization procedure involves executing INTT
and NTT operations within two nested loops (see Algorithm 11). Through the loop
unrolling technique, these operations can be executed in parallel. Eight distinct unified
butterfly units are deployed to facilitate parallelization for every RNS base. Every unified
butterfly unit is linked to two BRAM groups for polynomial storage and another BRAM
group for holding twiddle factors. A dedicated address generation controller generates
the requisite read and write addresses for the BRAM groups.

PEs are utilized for the modular multiplication of ciphertexts with relinearization keys.
When executing modular multiplication operations, reading addresses ranging from 0 to
1023 are generated to read polynomial terms that are to be fed as inputs to the unified

49

butterfly units. The outputs from the modular multiplication performed by the unified
butterfly units are recorded in the previously uninitialized 96 BRAM groups with a depth
of 1024. Following these procedures, the unified butterfly units come into play again for
the modular addition of the resulting polynomials. During the modular addition tasks,
addresses are produced to retrieve polynomial terms, which will be fed into the unified
butterfly units. The subsequent outputs are written into the 108 BRAM groups that are
initialized before, each with a depth of 1024.

After completing the relinearization section, the rescaling operation, as described in Al-
gorithm 12, is applied. The outputs from the INTT operation and the addition of half of
the final RNS base (i.e., 𝑝) are saved back to the BRAM groups, from where the inputs
are sourced. The unified butterfly units are configured for the INTT and addition pro-
cesses. Modular subtraction, NTT, and modular addition operations are all executed in
parallel using 96 unified butterfly units. The configuration of the unified butterfly units
for modular subtraction is carried out in the same manner as the previously mentioned
modular addition configuration. Ultimately, the produced outputs are written back to
the BRAM groups where the ciphertexts, used as inputs at the onset of the relinearization
process, are stored initially.

50

4. RESULTS AND COMPARISON

In this chapter, we present a detailed exploration of the results obtained from our pro-
posed NTT implementations and subsequently offer a comparison with other existing
designs proposed in the literature. The rapid evolution in the domain of HE and the
continual demands for faster and more efficient algorithms and/or their implementations
make the juxtaposition of results a crucial step to gain insight the merit of each de-
sign. Herein, we first delve deep into the outcomes from our merged and four-step NTT
implementations. Additionally, the efficiency of our design in facilitating various HE op-
erations is also elaborated upon. In the latter part of this chapter, a rigorous comparison,
both in terms of resource utilization and performance metrics, is presented, reinforcing
the novelties and advantages of our approach.

4.1 Implementation Results

In this section, we present the implementation results of the architecture coded in Verilog
and synthesized using the Xilinx Vivado 2019.2 tool, targeting the Xilinx Alveo U280
board.

51

4.1.1 NTT Implementation Results

Our NTT design was successfully synthesized, achieving an operating frequency of
181 MHz. The design is tailored for 𝑛 = 8192 to facilitate HE operations under the
CKKS scheme. For investigative purposes, we also synthesized individual NTT architec-
tures with support for 𝑛 = 4096 and 𝑛 = 16384, though the latter two dimensions are not
used to implement the CKKS scheme. The working word size for these configurations
corresponds to log2 𝑞 = 32-bit, as summarized in Table 4.1.

Resource Utilization Performance Metrics
of PE 𝑛 LUT BRAM DSP LUTRAM FF Period (ns) # of Clock Cycles Latency (𝜇s)

8
212 7390 24 56 542 5549 5.5 3096 17
213 7099 40 56 544 5599 5.5 6682 36.7
214 7428 68 56 546 5653 5.5 14364 79

16
212 15201 32 112 1073 11830 5.5 1560 8.5
213 14695 48 112 1075 11839 5.5 3354 18.4
214 15227 80 112 1077 11915 5.5 7196 39.5

32
212 29760 48 224 2088 21406 5.5 792 4.3
213 29189 64 224 2100 21443 5.5 1690 9.2
214 29100 96 224 2098 21556 5.5 3612 19.8

Table 4.1 Results for the Merged NTT.

Based on the data in Table 4.1, an increase in the number of PEs results in a rise in
resource utilization. For the same number of PEs, as the value of 𝑛 increases, there is a
noticeable growth in BRAM usage. Even though the period remains constant at 5.5 ns
for all configurations, an increase in the number of PEs causes a reduction in the clock
cycle count, leading to a decrease in latency. This suggests that designs with more PEs
have a faster data processing capability. In conclusion, adjusting the number of PEs on
different FPGA boards makes it possible to strike a balance between resource usage and
performance.

Our four-step NTT design for a ring size of 212 was synthesized on the FPGA using 24
PEs. With this configuration, the design operates at 5.5 ns and consumes a total of 1983
LUTs, 142 FFs, and 168 DSPs. For the 24 PEs, the total number of clock cycles was
determined to be 4396, which corresponds to a latency of 24.1 𝜇𝑠 and a throughput of
10.6 𝜇𝑠.

When examining the clock cycle variations for configurations with 48 and 96 PEs con-
cerning the four-step NTT:

• For the configuration with 48 PEs, the total number of clock cycles is found to be
2610, which results in a latency of 14.3 𝜇𝑠 and a throughput of 6.4 𝜇𝑠.

52

• For the configuration with 96 PEs, the total number of clock cycles is found to be
1688, which corresponds to a latency of 9.3 𝜇𝑠 and a throughput of 4.3 𝜇𝑠.

These clock cycle duration figures indicate that the total required clock cycle count de-
creases as the number of PEs increases. This suggests that the data processing speed
increases with more PEs in use.

In our FPGA design, when we compare the latency of the Four-Step NTT with that of
the Merged NTT, we observe that the Four-Step NTT takes longer. This is due to the
additional multiplication operation in the Four-Step NTT, which results in more clock
cycles. Therefore, we opted for the Merged NTT method when implementing the CKKS
operations.

However, we must recognize the advantages brought by the pipelined structure of the
Four-Step NTT. High throughput is achieved, especially when using an equal number of
PEs for each pipeline stage. Furthermore, when the data size exceeds the capacity of the
BRAMs, it’s essential to consider the advantageous memory access pattern offered by the
Four-Step NTT when reading data from off-chip memory.

4.1.2 Homomorphic Encryption Operations Implementation Results

The proposed architecture provides support for homomorphic multiplication, relineariza-
tion, and rescaling operations in line with the CKKS scheme. In this study, the proposed
architecture, based on the Xilinx Alveo U280 FPGA platform, employs 372940 LUTs,
672 DSPs, and 768 BRAMs within a structure, where the PE count is 96 (for the other
two potential number of PEs, see Table 4.2). The results presented in Table 4.2 contain
the collective performance of homomorphic multiplication, relinearization, and rescaling
operations, reflecting the integrated outcome of these processes. These operations are
executed in 2581, 72175, and 18591 clock cycles. It is worth noting that these clock
cycle figures do not include the write durations to the BRAM components from external
sources.

For the PE counts, two distinct selections, #PE ∈ {96,192}, are found to be suitable
in terms of Xilinx Alveo U280 FPGA resource utilization. However, the required LUT
value for #PE = 384 exceeds the capacity of the Xilinx Alveo U280 FPGA. The detailed
synthesis results are presented in Table 4.2.

Our hardware-oriented approach, with #PE = 96, provides a 15-fold speedup in the

53

Resource Utilization Performance Metrics
of PE 𝑛 LUT BRAM DSP FF Period (ns) Clock Cycle Latency (𝜇s)
96 213 372940 768 672 9826 5.5 93350 513.4

192 213 754128 928 1344 264399 5.5 46886 257.8

384 213 1520173 1632 2688 520961 5.5 23846 131.1

Table 4.2 Results for the CKKS Operations (Multiplication + Relinearization + Rescal-
ing)

homomorphic multiplication operation and a 4-fold speedup in the key switch operation
compared to the software implementation based on the Microsoft SEAL library running
on an AMD Ryzen 7 3800x CPU.

Our design can be easily modified for FPGA platforms with higher resource capacities.
Increasing the number of PEs can further enhance performance metrics. As mentioned
in Section 3.2, making these adaptations is straightforward. Therefore, while our cur-
rent results are based on the Xilinx Alveo U280 FPGA, there is significant potential for
improving performance and efficiency on more advanced FPGA platforms.

4.2 Comparison

In this section, we present comparison of our implementation with those in the literature,
first for NTT operation, then for homomorphic operations.

4.2.1 NTT Comparison

Table 4.3 presents a comprehensive comparison of NTT implementations. The compar-
ison is divided into two main categories: resource utilization and performance metrics.
Resource utilization includes the usage of Lookup Tables (LUTs), Block RAMs (BRAMs),
and Digital Signal Processing (DSP) blocks, while performance metrics contain the pro-
cessing time (Period) and latency (Latency). A significant portion of the works (Ozturk
et al. (2017), Sinha Roy et al. (2019), Matteo et al. (2023), Duong-Ngoc et al. (2022),
Paludo and Sousa (2022), Xin et al. (2021)) focus on developing hardware accelerators

54

for homomorphic encryption. Some studies, such as Su et al. (2022) and Ye et al. (2022),
propose reconfigurable architectures and pipelined structures to accelerate polynomial
multiplication. The work of Kawamura et al. (2018) concentrates on loop structure op-
timization, targeting the acceleration of the NTT. These contributions take significant
steps in accelerating computations in HE.

The Kawamura et al. (2018) study utilizes High-Level Synthesis (HLS) tools to optimize
the loop structure in the software definition of the NTT operation through loop flattening
and reduction of iteration counts, leading to hardware-level improvements on an FPGA.
These techniques maximize the FPGA’s parallel processing capabilities and significantly
improve computational efficiency. In addition, our design, featuring a #PE = 32 archi-
tecture, has achieved significantly better results in performance metrics, particularly in
terms of latency. More importantly, our #PE = 16 and #PE = 8 architectures offer
superior results compared to other studies in both performance metrics and the usage
of LUTs and BRAMs. These outcomes demonstrate that our design strikes an excellent
balance between resource efficiency and computational performance.

When comparing the performance and resource utilization of the studies, the works of
Matteo et al. (2023) and Paludo and Sousa (2022) offer exceptionally economical solutions
regarding resource usage. The study of Matteo et al. (2023) addresses the issue of HE li-
braries such as Microsoft SEAL not being designed for resource-constrained platforms by
proposing a hardware accelerator designed explicitly for a HE library for embedded plat-
forms, SEAL-Embedded. This accelerator includes a memory architecture that reduces
I/O latency and a dedicated module for the generation of roots of unity. On the other
hand, the Paludo and Sousa (2022) study proposes an architecture for the acceleration
of NTT using a Montgomery-based butterfly. Compared to our work, the Matteo et al.
(2023) and Paludo and Sousa (2022) studies have lower resource consumption regarding
LUT, BRAM, and DSP usage. However, when it comes to latency, our study supports
lower latency values than both Matteo et al. (2023) and Paludo and Sousa (2022). For
instance, while performing operations at a size of 212, the Matteo et al. (2023) study offers
a latency of 136.58 𝜇𝑠 and the Paludo and Sousa (2022) study offers 11 𝜇𝑠. Our study
achieves a significant speed advantage with only 4.3 𝜇𝑠 of latency. This reduced latency
is particularly advantageous for time-critical applications and, despite higher resource
usage, presents a preferable solution where latency is critical.

The dedicated hardware accelerator focused on in the Ozturk et al. (2017) study is op-
timized for somewhat homomorphic encryption-based schemes, offering a structure that
can multiply large polynomials much faster. However, there are differences between our
work and Ozturk et al. (2017) in terms of resource utilization and performance metrics.

55

Regarding resource utilization, the Ozturk et al. (2017) study consumes 219K LUTs and
768 DSPs, and when looking at performance metrics, it achieves a latency of 24.5 𝜇𝑠 for
operations of size 214. In comparison, our NTT implementation uses 29100 LUTs and
224 DSPs for operations of the same size and offers a latency of 19.8 𝜇𝑠. It is necessary to
note that the resource utilization data for the Ozturk et al. (2017) study is for the poly-
nomial multiplier. It should be noted that the data presented in our study, including the
resource utilization figures, specifically pertains to the NTT implementation. However,
the performance metrics, i.e., the latency times, are for NTT operations in both studies.
In this context, our study offers an advantage in efficiency and optimization, providing
better latency times with lower resource usage.

Resource Utilization Performance Metrics
WORK 𝑛 LUT BRAM DSP Period (ns) Latency (𝜇s)
Ozturk et al. (2017) 214 219K 193 768 4 24.5
Sinha Roy et al. (2019) 212 64K 400 200 4.4 73
Matteo et al. (2023) 212 3320 29.5 42 5.5 136.58
Duong-Ngoc et al. (2022) 216 149K 25 564 5 2684
Paludo and Sousa (2022) 212 7.9K 24 32 3.6 11
Su et al. (2022) 212 14K 79 80 4 12.3
Ye et al. (2022) 212 17K 24 286 6.6 55
Xin et al. (2021) 212 176K 550 1344 6.6 20

Kawamura et al. (2018)
212 30K 36 12 10 333
213 36K 82 13 10 703
214 41K 183 26 10 1482

Our work
212 29760 48 224 5.5 4.3
213 29189 64 224 5.5 9.2
214 29100 96 224 5.5 19.8

Table 4.3 Comparative Table for Merged NTT Implementations.

The resource utilization and performance metrics of our study are competitive when
compared to similar works in the literature. For instance, Sinha Roy et al. (2019)’s
work utilizes 64K LUTs and 200 DSPs to achieve a latency of 73 𝜇𝑠 for operations of
size 212. In contrast, our study only requires 29760 LUTs and 224 DSPs to achieve a
significantly lower latency of 4.3 𝜇𝑠 for the same operation size. However, comparing
our results with those of Duong-Ngoc et al. (2022), which focuses on operations of size
216, may only partially be fair due to the different ring sizes addressed. Nonetheless, the
algorithmic and architectural features of our NTT implementation possess the flexibility
and capacity to be adapted to operations of size 216. Preliminary results suggest that
we could significantly improve the resource utilization and latency metrics presented by
Duong-Ngoc et al. (2022). Moreover, while the works of Su et al. (2022) and Ye et al.
(2022) also exhibit higher resource usage and latency for similar operation sizes, Xin et al.

56

(2021)’s work, despite being closer to our study in terms of resource utilization, still falls
short with a latency of 20 𝜇𝑠 compared to our result of 4.3 𝜇𝑠.

In conclusion, the design developed in this study offers competitive latency performance.
Furthermore, the reconfigurability of our design for different ring sizes and PE counts
demonstrates its adaptability across a broad spectrum of applications. Comparative
analyses of performance metrics and resource utilization reveal that our design not only
provides a significant advantage in latency but is also competitive in resource utilization.
With its low latency times for small and large ring sizes, our design emerges as an effective
hardware acceleration solution for HE.

4.2.2 Homomorphic Encryption Operations Comparison

Table 4.4 compares the resource utilization and performance metrics for HE operations
on different FPGA devices. The study Mert et al. (2022) represents an application with
a 214 parameter on the Alveo U250 FPGA device, demonstrating a significant resource
consumption with 1,093,250 ALM/LUT, 1,576.5 BRAM, 3,607 DSP, and 931 URAM.
This application operates with a period of 5ns and a delay of 669.39 microseconds.

Resource Utilization Performance Metrics
WORK FPGA Device 𝑛 ALM/LUT BRAM DSP URAM Period (ns) Latency (𝜇s)
Mert et al. (2022) U250 214 1093250 1576.5 3607 931 5 497.24
Riazi et al. (2020) Stratix10 213 698884 10340 2610 - 3.3 -

Our U280 213 754128 928 1344 - 5.5 257.8

Table 4.4 Comparison Table for Homomorphic Operations: Multiplication + Key
Switching.

Mert et al. (2022) focuses on the flexibility needs of HE applications. This flexibility
reflects the varying multiplication depth requirements of different homomorphic applica-
tions. Notably, these applications’ different multiplication depths result in variability in
the parameter sets used. In contrast, our application is optimized according to a specific
parameter set, limiting it to a single multiplication depth. Consequently, our method
needs more flexibility in Mert et al. (2022). While Mert et al. (2022) is designed to adapt
to the needs of various HE applications with varying multiplication depths, our approach
can only be employed with a fixed parameter set, inherently constraining it to appli-
cations requiring just one multiplication. The study Mert et al. (2022) introduces the
Residue Polynomial Arithmetic Unit (RPAU) design to address this need for flexibility.

57

This RPAU comprises a NTT unit for polynomial multiplication operations, two parallel
dyadic arithmetic units, and customized on-chip memory for result residue polynomials.
This design enables operations to be executed with the speed and efficiency required to
meet the demands of HE applications.

Mert et al. (2022) performed with parameter sets 214 and 215 for the U250 FPGA device.
Our application’s ring size parameter is closer to MEDAH’s 214 parameter set, and thus
we consider this set for our comparisons. Given that MEDAH is designed for a larger ring
size at 214, this higher parameter set is anticipated to have greater resource consumption
and more latency. Unlike other studies, Mert et al. (2022) utilized 931 URAMs. Mert
et al. (2022) opts for URAMs to store RPMs efficiently and also to store the key-switching
key. This usage facilitates more optimized memory access based on data dependencies
and access patterns.

Riazi et al. (2020) provides the results of another significant research that examines
RNS-based HE operations on a Stratix10 FPGA device. This study was conducted with
a parameter set similar to ours. There are distinct differences in design methodologies
between Riazi et al. (2020) and our approach. The Riazi et al. (2020) study aims for high
throughput by partitioning key-switching operations into stages and employing a separate
block for each stage. Due to the focus on maximizing throughput with the block-pipeline
architecture, Riazi et al. (2020) does not emphasize latency. Consequently, the reason
Riazi et al. (2020) does not report latency times is due to these structural features of
the design. Additionally, Riazi et al. (2020) can perform 22,536 operations (consisting of
both multiplication and key-switching operations) per second.

However, in our approach, programmability is prioritized with a specific instruction set
architecture, and PEs and BRAMs are repeatedly used to compute different steps of ho-
momorphic operations. Naturally, our approach embodies a low-latency-focused architec-
ture. As a result, the design introduced in Riazi et al. (2020) can perform approximately
5 times more operations per second than ours.

58

5. CONCLUSION AND FUTURE WORK

This chapter provides an overview of the studies covered in this dissertation, concluding
with potential avenues for future research.

5.1 Conclusion

In this thesis, we first proposed a parametric merged-NTT hardware to accelerate the
homomorphic operations of the CKKS scheme. From prior works, we observed that
there was generally a focus on specific ring sizes and the number of PEs. This implies
a need for more flexibility in existing studies to cater to different polynomial sizes or
PE configurations. In our work, we introduced a design-time configurable, parametric
integrated NTT hardware architecture that can respond to various ring sizes, hardware
resource constraints, and numbers of PEs. This versatile structure allows the architecture
to be used for various hardware environments, polynomial sizes, and numbers of PEs.

Furthermore, we presented a hardware architecture optimized for NTT operations that
offers design-time flexibility. Our proposed hardware provides a flexible structure, taking
into account hardware resource constraints. This design can perform the NTT operation
without any stalls between NTT stages. The suggested merged-NTT architecture is
applied to the key-switching and homomorphic multiplication operations of the CKKS
scheme, providing design-time reconfigurability that allows for an increase in the number
of PEs.

59

In our thesis, we also proposed a design-time flexible hardware architecture for the four-
stage NTT method. This alternative NTT algorithm presents another potential approach
for rapid NTT computation. Especially for larger ring sizes, there are potential advan-
tages to the four-stage NTT. Our thesis discussed how this method could be more effective
for larger ring sizes and its potential advantages for specific application scenarios.

Within the scope of this thesis, the presented architecture possesses a detailed structure
supporting the CKKS HE scheme. It can efficiently execute critical operations such as
homomorphic multiplication, relinearization, and rescaling. Implemented on the Xilinx
Alveo U280 FPGA platform, this architecture optimizes resource utilization based on se-
lected PE values, offering a fast and resource-efficient solution. Moreover, our hardware-
centric approach provides significant speed enhancements compared to software solutions,
particularly those based on the Microsoft SEAL library. This suggests that FPGAs might
be a potentially more suitable platform for HE operations. The customizable nature of
the presented architecture is designed to be flexible enough to be compatible with dif-
ferent FPGA platforms, implying easy adaptability to more advanced or different FPGA
platforms. Lastly, this study emphasizes the importance of an FPGA-based optimized
approach in HE operations theoretically and through practical applications.

5.2 Future Work

HE schemes, especially the CKKS scheme, are witnessing growing interest due to their
potential for secure and efficient computations on encrypted data. Our current design
presents a foundational step in implementing CKKS on FPGA platforms, emphasizing
low latency. However, there are further improvements and paths to be explored. In this
context, we highlight the potential directions we plan to pursue in our ongoing research.

Our emphasis on low latency in accelerating the CKKS scheme has shown that we need
to balance the low-latency design we implemented in our NTT and the efficiency of
the CKKS key-switching algorithm. While improving the key-switching mechanism can
enhance the overall efficiency of the CKKS scheme, especially in real-time applications
where timely execution of homomorphic operations is critical, it is imperative that we
concurrently optimize the associated efficiency.

Our parametrically merged-NTT hardware, which primarily focuses on latency improve-

60

ment for our NTT and homomorphic operations on FPGA implementations, can integrate
with other HE schemes. By leveraging the high throughput characteristics of the four-
step NTT, it is feasible to construct a pipeline structure that offers increased throughput
for homomorphic operations. This integration can unveil extensive use cases for the
hardware, especially with throughput-optimized designs utilizing the four-step NTT that
have great potential to explore. We aim for FPGA platforms to address a wide range of
cryptographic needs, which are closely related to the adaptability of the hardware.

Establishing the right balance between encryption security, performance, and efficiency
necessitates allowing the CKKS scheme to operate at different ring sizes. While our
current design offers a specific range, we anticipate challenges associated with higher ring
sizes, particularly concerning FPGA memory constraints. When dealing with larger ring
sizes that exceed onboard memory, solutions such as the 4-step NTT, recognized for its
memory efficiency, can be considered.

Energy efficiency becomes paramount as cryptographic hardware finds increased appli-
cations, especially in mobile and IoT devices. Our current design underscores the need
for energy optimization. Future iterations should emphasize both computational effi-
ciency and reduced energy consumption. By adopting energy-efficient algorithms and
architectural optimizations, we can pave the way for a sustainable and efficient future in
cryptographic hardware design on FPGA platforms.

HE is a crucial tool for secure and efficient data processing. By implementing the CKKS
scheme on FPGA platforms, we strive to maximize this potential. Despite our current
design’s advantages, some areas need improvements to push further. In the coming
period, we plan to enact these enhancements to boost the overall performance of our
cryptographic solutions.

61

BIBLIOGRAPHY

Acar, A., Aksu, H., Uluagac, A. S., and Conti, M. (2018). A survey on homomorphic
encryption schemes: Theory and implementation. ACM Comput. Surv., 51(4).

Agarwal, R. and Burrus, C. (1975). Number theoretic transforms to implement fast
digital convolution. Proceedings of the IEEE, 63(4):550–560.

Ayduman, C., Koçer, E., Kırbıyık, S., Can Mert, A., and Savaş, E. (2023). Efficient
design-time flexible hardware architecture for accelerating homomorphic encryption.
In 2023 IFIP/IEEE 31st International Conference on Very Large Scale Integration
(VLSI-SoC), pages 1–7.

Aysu, A., Patterson, C., and Schaumont, P. (2013). Low-cost and area-efficient fpga
implementations of lattice-based cryptography. In 2013 IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pages 81–86.

Barrett, P. (1986). Implementing the rivest shamir and adleman public key encryption al-
gorithm on a standard digital signal processor. In Advances in Cryptology — CRYPTO’
86, page 311–323.

Bisheh-Niasar, M., Azarderakhsh, R., and Mozaffari-Kermani, M. (2021). High-speed
ntt-based polynomial multiplication accelerator for crystals-kyber post-quantum cryp-
tography. Cryptology ePrint Archive, Paper 2021/563. https://eprint.iacr.org/
2021/563.

Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2011). Fully homomorphic encryption
without bootstrapping. Cryptology ePrint Archive, Paper 2011/277. https://eprint.
iacr.org/2011/277.

Cheon, J. e. a. (2017). Homomorphic encryption for arithmetic of approximate numbers.
In Advances in Cryptology – ASIACRYPT 2017, pages 409–437.

Chu, E. and George, A. (1999). Inside the FFT black box: serial and parallel fast Fourier
transform algorithms. CRC press.

Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of
complex fourier series. Mathematics of Computation, 19(90):297–301.

Dai, W. and Sunar, B. (2015). cuhe: A homomorphic encryption accelerator library.
Cryptology ePrint Archive, Paper 2015/818. https://eprint.iacr.org/2015/818.

Duong-Ngoc, P., Kwon, S., Yoo, D., and Lee, H. (2022). Area-efficient number theoretic
transform architecture for homomorphic encryption. IEEE Transactions on Circuits
and Systems I: Regular Papers, 70(3):1270–1283.

Gentry, C. (2009). Fully homomorphic encryption using ideal lattices. In Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing.

62

https://eprint.iacr.org/2021/563
https://eprint.iacr.org/2021/563
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2015/818

Huang, J., Zhang, J., Zhao, H., Liu, Z., Cheung, R. C. C., Koç, �. K., and Chen, D. (2022).
Improved plantard arithmetic for lattice-based cryptography. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2022(4):614–636.

Karatsuba, A. A. and Ofman, Y. P. (1962). Multiplication of many-digital numbers by
automatic computers. In Doklady Akademii Nauk, volume 145, pages 293–294. Russian
Academy of Sciences.

Kawamura, K., Yanagisawa, M., and Togawa, N. (2018). A loop structure optimization
targeting high-level synthesis of fast number theoretic transform. In 2018 19th Inter-
national Symposium on Quality Electronic Design (ISQED), pages 106–111.

Li, S., Chen, Y., Chen, L., Liao, J., Kuang, C., Li, K., Liang, W., and Xiong, N. (2023).
Post-quantum security: Opportunities and challenges. Sensors, 23(21).

Longa, P. and Naehrig, M. (2016). Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In Foresti, S. and Persiano, G., editors, Cryptology
and Network Security, pages 124–139, Cham. Springer International Publishing.

Lyubashevsky, V., Peikert, C., and Regev, O. (2013). On ideal lattices and learning with
errors over rings. J. ACM, 60(6).

Matteo, S. D., Gerfo, M. L., and Saponara, S. (2023). Vlsi design and fpga implementation
of an ntt hardware accelerator for homomorphic seal-embedded library. IEEE Access,
11:72498–72508.

Mert, A. C. (2021). Efficient Hardware Implementations for Lattice-Based Cryptography
Primitives. PhD thesis, Sabancı University, İstanbul, Turkey.

Mert, A. C., Aikata, Kwon, S., Shin, Y., Yoo, D., Lee, Y., and Roy, S. S. (2022). Medha:
Microcoded hardware accelerator for computing on encrypted data. Cryptology ePrint
Archive, Paper 2022/480. https://eprint.iacr.org/2022/480.

Mert, A. C., Öztürk, E., and Savaş, E. (2019). Design and implementation of a fast and
scalable ntt-based polynomial multiplier architecture. 2019 22nd Euromicro Conference
on Digital System Design (DSD), pages 253–260.

Montgomery, P. L. (1985). Modular multiplication without trial division. Mathematics
of computation, 44(170):519–521.

Ozturk, E., Doroz, Y., Savas, E., and Sunar, B. (2017). A custom accelerator for homo-
morphic encryption applications. IEEE Transactions on Computers, 66(1):3–16.

Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity
classes. In Stern, J., editor, Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques, Prague, Czech
Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer Sci-
ence, pages 223–238. Springer.

Paludo, R. and Sousa, L. (2022). Ntt architecture for a linux-ready risc-v fully-
homomorphic encryption accelerator. IEEE Transactions on Circuits and Systems
I: Regular Papers, 69(7):2669–2682.

63

https://eprint.iacr.org/2022/480

Pei, D., Salomaa, A., and Ding, C. (1996). Chinese remainder theorem: applications in
computing, coding, cryptography. World Scientific.

Pollard, J. M. (1971). The fast fourier transform in a finite field. Mathematics of Com-
putation, 25:365–374.

Pöppelmann, T., Oder, T., and Güneysu, T. (2015). High-performance ideal lattice-
based cryptography on 8-bit atxmega microcontrollers. In Lauter, K. and Rodríguez-
Henríquez, F., editors, Progress in Cryptology – LATINCRYPT 2015, pages 346–365,
Cham. Springer International Publishing.

Pöppelmann, T. and Güneysu, T. (2012). Towards efficient arithmetic for lattice-based
cryptography on reconfigurable hardware. pages 139–158.

Riazi, M. S., Laine, K., Pelton, B., and Dai, W. (2020). Heax: An architecture for com-
puting on encrypted data. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS
’20, page 1295–1309, New York, NY, USA. Association for Computing Machinery.

Roy, S. S., Vercauteren, F., Mentens, N., Chen, D. D., and Verbauwhede, I. (2014). Com-
pact ring-lwe cryptoprocessor. In Batina, L. and Robshaw, M., editors, Cryptographic
Hardware and Embedded Systems – CHES 2014, pages 371–391, Berlin, Heidelberg.
Springer Berlin Heidelberg.

SEAL (2020). Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA.

Sinha Roy, S., Turan, F., Jarvinen, K., Vercauteren, F., and Verbauwhede, I. (2019).
Fpga-based high-performance parallel architecture for homomorphic computing on en-
crypted data. In 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA).

Su, Y., Yang, B.-L., Yang, C., Yang, Z.-P., and Liu, Y.-W. (2022). A highly unified
reconfigurable multicore architecture to speed up ntt/intt for homomorphic polynomial
multiplication. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
30(8):993–1006.

Türkoğlu, E. R., Özcan, A. �., Ayduman, C., Mert, A. C., Öztürk, E., and Savaş, E.
(2022). An accelerated gpu library for homomorphic encryption operations of bfv
scheme. In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1155–1159.

Winkler, F. (1996). Polynomial algorithms in computer algebra / F. Winkler. Texts and
monographs in symbolic computation. Springer, Wien.

Xin, G., Zhao, Y., and Han, J. (2021). A multi-layer parallel hardware architecture for
homomorphic computation in machine learning. In 2021 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pages 1–5.

Ye, Z., Cheung, R. C. C., and Huang, K. (2022). Pipentt: A pipelined number theoretic
transform architecture. IEEE Transactions on Circuits and Systems II: Express Briefs,
69(10):4068–4072.

64

https://github.com/Microsoft/SEAL

Zhang, N., Qin, Q., Yuan, H., Zhou, C., Yin, S., Wei, S., and Liu, L. (2020). Nttu: An
area-efficient low-power ntt-uncoupled architecture for ntt-based multiplication. IEEE
Transactions on Computers, 69(4):520–533.

65

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Prior Work
	Our Contribution

	BACKGROUND
	Notation
	NTT-based Polynomial Multiplication
	Montgomery Reduction in NTT
	Merged NTT
	Four-Step NTT

	Homomorphic Encryption
	Cheon-Kim-Kim-Son Homomorphic Encryption Scheme
	Residue Number System

	Field Programmable Gate Array (FPGA)

	OUR WORK
	Efficient Design-Time Flexible NTT-Based Polynomial Multiplication Architectures
	Unified Butterfly Unit
	Modular Addition and Subtraction Units
	Modular Multiplication Unit

	The Parametric Merged NTT Hardware
	Four-Step NTT Hardware

	Efficient Design-Time Flexible Hardware Architecture for Accelerating Homomorphic Encryption Operations of CKKS Scheme
	Full RNS Variant of the CKKS Scheme
	Homomorphic Multiplication
	Key Switching

	Homomorphic Multiplication and Key Switching Architecture

	RESULTS AND COMPARISON
	Implementation Results
	NTT Implementation Results
	Homomorphic Encryption Operations Implementation Results

	Comparison
	NTT Comparison
	Homomorphic Encryption Operations Comparison

	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	BIBLIOGRAPHY

