
USING PREFERENCE LEARNING FOR MULTI-OBJECTIVE
OPTIMIZATION WITH APPLICATIONS IN SUPPLY CHAIN

by
ZEREN ALPOĞUZ

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of

the requirements for the degree of Master of Science

Sabancı University
December 2023



ZEREN ALPOĞUZ 2023 ©

All Rights Reserved



ABSTRACT

USING PREFERENCE LEARNING FOR MULTI-OBJECTIVE
OPTIMIZATION WITH APPLICATIONS IN SUPPLY CHAIN

ZEREN ALPOĞUZ

Industrial Engineering, MSc. Thesis, December 2023

Thesis Supervisor: Asst. Prof. Ezgi KARABULUT TÜRKSEVEN

Keywords: Multi-criteria Decision Making, Multi-objective Optimization,
Preference Learning, Weighted-Sum Method, Rank-SVM, Supply Chain Network

Choosing the right weight is a challenging task in solving a multi-criteria decision
making (MCDM) problems. We utilize the learning-to-rank machine learning ap-
proach, Rank SVM, to learn the criteria weights in MCDM. As the training data,
Rank SVM needs the pairwise preferences of the alternatives, as revealed by the
decision maker (DM). We develop three strategies in offering alternative pairs to
DMs. The first strategy is offering pairs from the Pareto frontier which represents
a set of optimal solutions, the second strategy is offering pairs from the feasible
region meaning dominated and non-dominated solutions that are possible given the
constraints and the third one is offering pairs from the utopian space that covers
both feasible and infeasible solutions. The main objective of this study is to evaluate
the impact of offering pairs from different regions on the learning process of Rank
SVM and utilizing information learned in data generation strategies. To evaluate
the performance and effectiveness of our strategies, we chose a three-echelon supply
chain network problem as our test case. Experimental results obtained from three
different settings provide a practical evaluation. We observe distinct impacts be-
tween strategies in offering alternative pairs; some strategies yield more accurate or
consistent results than others. This highlights the importance of the source of alter-
native pairs in the effectiveness of preference learning algorithms. In addition, the
use of learning information in the generation of training data provided a significant
improvement except the Utopian region strategy.
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ÖZET

ÇOK AMAÇLI OPTİMİZASYONDA TERCİHLİ ÖĞRENMEYİ KULLANMA
VE TEDARİK ZİNCİRİNDEKİ UYGULAMASI

ZEREN ALPOĞUZ

Endüstri Mühendisliği, Yüksek Lisans Tezi, Aralık 2023

Tez Danışmanı: Dr. Öğr. Üyesi Ezgi KARABULUT TÜRKSEVEN

Anahtar Kelimeler: Çok Kriterli Karar Verme, Çok Amaçlı Optimizasyon, Tercihli
Öğrenme, Ağırlıklı Toplam Yöntemi, Rank-SVM, Tedarik Zinciri Ağı

Çok kriterli karar verme (ÇKKV) problemlerini çözmede doğru kriter ağırlıkların
belirlenmesi zorlu bir iştir. ÇKKV’deki kriter ağırlıklarını öğrenmek için, sırala-
maya dayalı makine öğrenme yaklaşımlarından biri olan olan Sıralama Destek Vek-
tör Makinesi kullanılmaktadır. Sıralama Destek Vektör Makinesi için eğitim verisi,
karar vericinin belirlediği alternatiflerin ikili tercihlerinden oluşmaktadır. Bu çalış-
mada karar vericilere ikililer önermek için üç farklı strateji geliştirilmektedir. İlk
strateji, en iyi çözümler setini temsil eden Pareto sınırından ikililer sunmaktır; ik-
inci strateji, kısıtlamalar göz önünde bulundurularak domine edilemeyen ve domine
edilebilen çözümleri içeren bölgeden ikililer sunmaktır; üçüncüsü ise hem olurlu (fea-
sible) hem de uygun olmayan (infeasible) çözümleri kapsayan ütopik alandan ikililer
sunmaktır. Bu çalışmanın temel amacı, karar vericiye farklı bölgelerden ikililer
sunmanın Sıralama Destek Vektör Makinesinin öğrenme süreci üzerindeki etkisini
değerlendirmek ve öğrenilen bilgilerin veri oluşturma stratejilerinde kullanılmasıdır.
Stratejilerin performansını ve etkinliğini değerlendirmek için, test vakası olarak üç
kademeli bir tedarik zinciri dağıtım ağı problemi seçilmiştir. Üç farklı tedarik zinciri
dağıtım ağı probleminden elde edilen sonuçlar pratik bir değerlendirme sağlamak-
tadır. Alternatif ikililer sunma stratejileri arasında belirgin farklılıklar gözlemlen-
mektedir; bazı stratejiler diğerlerinden daha doğru veya tutarlı sonuçlar vermekte-
dir. Bu, tercih öğrenme algoritmalarının etkinliğinde alternatif ikililerin kaynağının
önemini vurgulamaktadır. Ayrıca eğitim verilerinin oluşturulmasında öğrenme bilgi-
lerinin kullanılması Ütopya bölgesi stratejisi dışında önemli bir gelişme sağlamıştır.
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1. INTRODUCTION

Multi-criteria decision making (MCDM) is about making decisions or selecting the
best alternative from a set of available options when multiple criteria need to be
considered (Sahoo & Goswami, 2023). Over the years, the application of MCDM
has steadily grown. This rise is attributed to the growing understanding of the
importance of considering various perspectives and managing numerous trade-offs
in complex situations, necessitating the evaluation based on multiple criteria
(Cinelli, Kadziński, Gonzalez & Słowiński, 2020). This trend has been especially
pronounced in complex decision-making areas such as supply chain management
(Govindan, Kadziński & Sivakumar, 2017), energy (Tseng, Ardaniah, Sujanto, Fujii
& Lim, 2021), healthcare (Dias, Dias, Ventura, Rocha, Ferreira, Khouri & Lopes,
2022) and so forth.

Multi-objective optimization (MOO) or Pareto optimization is an area of MCDM
that is concerned with mathematical optimization problems involving more than
one objective function to be optimized simultaneously. Note that MOO and
MCDM are distinct concepts. MOO aims to identify a collection of non-dominated
solutions. In contrast, MCDM’s goal is to order these non-dominated solutions and
suggest one of them to decision-makers for potential implementation (Wang, Li,
Rangaiah & Wu, 2022).

Recently, there are many optimization techniques for MOO that have been
developed by researchers (Trisnaa, Mariminb, Arkemanb & Sunartib, 2016).
No-preference, a-priori, a-posteriori and interactive are the four main classifica-
tions that utilize optimization algorithms for solving multi-objective optimization
problems (MOPs) (Hwang & Masud, 1979). When a decision maker doesn’t
provide specific preference information, the MOO strategy used is known as a
no-preference method (Hwang & Masud, 1979). In the a-priori method, various
objectives are aggregated into a single objective, emphasizing the importance of
each objective from the decision-makers’ perspective. After this merging, single-
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objective algorithms can be utilized to find the optimal solution without any need
for modification (Marler & Arora, 2010). Methods like the weighted sum method,
the epsilon-constraint method, and the goal programming approach are examples
of a-priori methods. In the a-posteriori category, the structure MOPs is preserved
and optimized simultaneously, requiring modifications in the algorithms to solve
multiple objectives. Techniques such as mathematical programming, evolutionary
algorithms, and deep learning approaches fall under a-posteriori methods (Huy,
Nallagownden, Truong, Kannan, Vo & Ho, 2022). For the interactive category,
the preferences of decision-makers are assessed and integrated throughout the
MOO process. This method involves continual interaction with decision-makers to
align the optimization process with their changing preferences (Meignan, Knust,
Frayret & Gaud, 2015). In this article, we focused on one of the a-priori method
which is weighted sum method that consolidates various objectives into one by
attributing weights to each. This leads to a singular objective function derived
from the aggregated weighted objectives, reflecting their importance according to
the decision maker’s preferences (Zelany, 1974).

Selecting suitable weights for the weighting method can pose a significant challenge,
even for those knowledgeable in the relevant problem area (Billal & Hossain, 2020).
Ripon, Khan, Glette, Hovin & Torresen (2011) pointed out various shortcomings
of the weighting method such as the difficulty in pre-determining the right weight
for each objective function, the limitation of generating only one Pareto optimal
solution in each run and the possibility of different combinations of weights leading
to the same Pareto optimal solution. Even for an individual decision-maker,
providing numerical values to represent the relative importance of various decision
criteria proves to be a difficult task. This complexity is naturally increased when
attempting to gather these criteria weights from multiple decision-makers (Odu,
2019). Despite the fact that the appropriate weights to accurately represent the
decision maker’s preferences is not straightforward, weights can significantly affect
the results (Keshavarz-Ghorabaee, Amiri, Zavadskas & Turskis, 2021).

In practical applications, criteria weights are frequently determined subjectively by
experts (Zavadskas & Podvezko, 2016). There are numerous methods developed for
determining these weights based on expert evaluations of their significance. Among
the well-known approaches are the Analytic Hierarchy Process (AHP) (Saaty,
1980), the Delphi method (Hwang & Lin, 1987), the Stepwise Weight Assessment
Ratio Analysis (SWARA) (Kersuliene, Zavadskas & Turskis, 2010) and the Factor
Relationship (FARE) method.
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New approaches have developed, fuzzy-based methods for managing uncertainty,
data-centric models that utilize machine learning and big data analytics, as well as
integrated hybrid methodologies combining various techniques (Sahoo & Goswami,
2023). Preference learning, a subset of machine learning, concentrates on ranking a
set of alternatives into ordered classes, labels, or levels based on multiple attributes
(Krzysztof Martyn, 2023). Incorporating preference learning into MOO allows
decision-makers to customize the optimization process to better reflect human
preferences or certain criteria that might be challenging to assess. For preference
learning, various algorithms are employed, including support vector machines,
neural networks, and decision trees (Krzysztof Martyn, 2023). These algorithms
can discover rules and patterns from a variety of data types and features can handle
more complex scenarios and scale better with large amounts of data (Sahoo &
Goswami, 2023).

Rank-SVM, a preference learning technique, designed to infer the criteria weight
vector that a decision-maker have in mind by learning from pairwise comparisons
(Fürnkranz & Hüllermeier, 2011). We are motivated to determine the weight vector
based on the observed preference information exemplified by a ≻ b as our training
data, where a denotes the first alternative and b denotes the second alternative.
The goal of this thesis is to study the impact of the selection of alternative pairs
for comparison while employing the pairwise ranking approach Rank SVM. Three
strategies are developed for the selection of the alternative pairs to decision-makers:

1.1 Offering pairs from the Pareto frontier which is a concept that represents the
set of optimal solutions where no other solution dominates.

1.2 Offering pairs from the feasible region, meaning dominated and non-dominated
solutions that are possible given the constraints.

1.3 Offering pairs from the utopian space, a theoretical region that encompasses
both feasible and infeasible solutions i.e., idealized space where the best pos-
sible outcomes for all objectives are achieved simultaneously

Our research aims to evaluate the impact of offering pairs from different regions on
the learning process of the Rank-SVM. Specifically, we seek to understand whether
this approach affects the accuracy and speed of determining the criterion weight
vector that the decision maker has in mind. Then, we analyze the impact of data
generation strategies utilizing the information learned.

3



To evaluate the performance and effectiveness of our strategies, we chose a three-
echelon supply chain network problem as our test case. The reason behind that
is: supply chain networks are complex systems with numerous factors influencing
their efficiency, robustness, and resilience. As industries evolve, so do their supply
chains, bringing forth new challenges that necessitate innovative approaches for
optimization (Vidrova, 2020). Historically, single-objective optimization methods
dominated this field, focusing on singular objectives like cost minimization or
lead-time reduction (Trisnaa et al., 2016). However, in the dynamic landscape
of today’s environment, where sustainability, quality, agility, flexibility, customer
satisfaction and various other criteria intersect, a singular goal is often insufficient
(Vafaeenezhad, Tavakkoli-Moghaddam & Cheikhrouhou, 2019).

The remainder of this thesis is organized as follows. A review is provided from the
relevant literature in Section 2. Following this, Section 3 details the identification
of the problem along with its background information. The deterministic three-
echelon supply chain network model is introduced in Section 4, including its objective
functions and constraints. The solution methodology is introduced in Section 5, and
the experimental results are discussed in Section 6. Finally, Section 7 concludes the
thesis and outlines potential future research directions.

4



2. LITERATURE REVIEW

Firstly, we review the related literature on multi-objective optimization in Section
2.1. This is followed by an analysis of studies on preference learning within the
context of multi-objective optimization, detailed in Section 2.2. Lastly, Section 2.3
presents an overview of how multi-objective optimization is applied to supply chain
problems.

2.1 Multi-objective Optimization

Multi-objective optimization (MOO) has emerged as a critical area in the opti-
mization field, addressing problems with several conflicting objectives. Early foun-
dational work by Pareto established the concept of optimality in a multi-criteria
context, leading to what is now known as Pareto optimality (Pareto, 1906). Given:

• A set of decision variables: x = (x1,x2, . . . ,xn)

• A set of objective functions: fi(x) for i = 1,2, . . . ,m

• A set of constraints: gj(x)≤ 0 for j = 1,2, . . . ,p and hk(x) = 0 for k = 1,2, . . . , q

The multiobjective optimization problem can be written as:

Minimize (or Maximize) :


f1(x)
f2(x)

...
fm(x)


Subject to:

gj(x)≤ 0, for j = 1,2, . . . ,p

hk(x) = 0, for k = 1,2, . . . , q

5



The key distinction between single and MOO lies in the nature of the optimal so-
lutions (Vafaeenezhad et al., 2019). While single objective optimization leads to a
unique optimal solution, multi-objective optimization presents a range of equally
applicable alternative solutions, each with its own set of trade-offs. This concept
is central to many fields, including economics, engineering, and decision science,
where trade-offs between competing objectives must be considered (Marler & Arora,
2004). These solutions are referred to as Pareto optimal (non-dominated) solutions.
A Pareto optimal solution is one where no objective can be improved without si-
multaneously degrading another objective (Pareto, 1906). The Pareto frontier is the
collection of all these optimal solutions, representing the best trade-offs available to
decision-makers (Deb, Pratap, Agarwal & Meyarivan, 2002). An example of Pareto
frontier with two objective functions can be seen in 2.1:

f1

f2
A

B

C

D

E

Figure 2.1 Pareto frontier for a minimization problem. Points A, B, and C are on
the Pareto frontier (non-dominated solutions), while point D is dominated solution
and E is infeasible point.

In the context of Pareto optimization and MOO, utopian space refers to a theoretical
or idealized space where the best possible outcomes for all objectives are achieved
simultaneously (Zhao, Tang & Yang, 2012). This point is often unreachable in real-
world scenarios because in most complicated problems, there is a trade-off between
objectives. For example, in a scenario where one objective is to minimize inventory
cost and another is to maximize availability of the products, the utopian point
would represent the lowest possible inventory cost and the highest possible product
availability, a combination that is typically unachievable in reality.

No-preference, a-priori, a-posteriori, and interactive are the four primary categories
employing optimization algorithms to address MOPs (Hwang & Masud, 1979).
If a decision maker does not specifically provide any preference information, the
multi-objective optimization approach employed can be classified as a no-preference
method (Hwang & Masud, 1979).
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In the a-priori method, various objectives are consolidated into a singular one, high-
lighting their importance as perceived by decision-makers (Marler & Arora, 2010).
Following this aggregation, algorithms designed for single objectives can be applied
to determine the optimal solution, without needing to modify the algorithm . In an
a-priori context, mathematical programming might be used to formulate and solve
a problem where the decision-maker’s preferences are stated before the optimiza-
tion process begins. The a-priori methods include the weighted sum method, where
different weights are assigned to each objective, reflecting their relative importance
(Zelany, 1974); the epsilon-constraint method, which involves optimizing one objec-
tive while setting constraints on the others was first proposed by (Haimes, Lasdon &
Wismer, 1971); the goal programming approach, where the aim is to minimize the de-
viation from target goals for each objective (Trisnaa et al., 2016). These techniques,
while straightforward and easy to implement, often require a deep understanding of
the problem context to set proper weights or goals. They are particularly useful in
scenarios where decision-makers have a clear preference or hierarchy of objectives
(Marler & Arora, 2004). This thesis focuses on weighted sum method, which is one
of the a priori methods. Weighted sum method can be denoted as follows:

Given m objective functions fi(x) for i = 1,2, . . . ,m and weights wi for each objective,
the weighted sum approach is given in 2.1 (Zelany, 1974):

(2.1) F (x) =
m∑

i=1
wi ·fi(x)

where x is the vector of decision variables and the weights satisfy wi ≥ 0 for all i

and often ∑m
i=1 wi = 1.

In practice, choosing the appropriate weights for the weighting method, even by
someone well-informed about the problem, can be quite challenging. This diffi-
culty is further exacerbated by the need for scaling among objectives and the fact
that minor changes in the weights can lead to significantly distinct solutions (Billal
& Hossain, 2020). Ripon et al. (2011) stated several limitations of the weighting
method: (1) determining the appropriate weight for each objective function before-
hand is challenging; (2) only one Pareto optimal solution is produced in a single run;
(3) since all objective functions are summed linearly, this method struggles to iden-
tify Pareto optimal solutions not represented in a linear format; (4) different weight
combinations might yield the same Pareto optimal solution. Traditional approaches
for this include Saaty’s Analytical Hierarchy Process (AHP) (Saaty, 1980) and the
comparison based approach (Shepetukha & Olson, 2001). Fullér & Majlender (2001)
built up a weight vector that aligns with the highest entropy. Nonetheless, the prac-
tical use of these methods is constrained since they require additional information
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which are often challenging to gather in real-world scenarios (Qu, Ma, Clausen &
Jørgensen, 2021).

The structure of MOPs is maintained and optimized simulataneously in the a-
posteriori category therefore, the algorithms require modifications to address mul-
tiple objectives (Huy et al., 2022). This approach enables the acquisition of a set
of Pareto optimal solutions in a single simulation. Decision-making follows the op-
timization process. This highlights the importance of having a diverse range of
solutions across all objectives, providing the decision-maker with a wide array of
choices. Mathematical programming, evolutionary algorithms and deep learning
methods included in the a-posteriori category. Mathematical programming can be
part of an a-posteriori approach when it’s used to generate a set of Pareto-optimal
solutions without pre-defined preferences (Messac & Mattson, 2004). Especially in
handling complex problems where objectives are diverse or conflicting, leading to
the development of more advanced methods like evolutionary algorithms in the field
of MOO (Deb et al., 2002). Over the past thirty years, evolutionary algorithms have
emerged as some of the most effective methods for addressing MOO (Zhao et al.,
2012). The interest in using evolutionary algorithms has been on the rise since
Schaffer (1985)’s pioneering research, which were capable of handling complex and
non-convex problems. These evolutionary methods are widely appreciated for their
flexibility and robustness, especially in scenarios where objectives conflict or are not
well understood (Coello, Brambila, Gamboa, Tapia & Gómez, 2020). Key examples
include Genetic Algorithms, which simulate the process of natural evolution using
operators like selection, crossover, and mutation to evolve solutions towards optimal-
ity; Particle Swarm Optimization, inspired by the social behavior of birds and fish;
and Evolutionary Strategies, which emphasize mutation and selection (Qi, Zhang,
Ma, Y Quan & Miao, 2017). Another method is the Non-dominated Sorting Ge-
netic Algorithm (NSGA-II), which is specifically designed for MOO and is effective
in finding a diverse set of solutions along the Pareto front (Maier, Razavi, Kapelan,
Matott, Kasprzyk & Tolson, 2019). However, traditional methods like evolutionary
algorithms struggle with the scalability required for contemporary high-dimensional
problems (Qu et al., 2021). There are two significant issues that can be: (1) Scal-
ability – the necessity to train an increasing number of models to cover the entire
objective space grows exponentially with the number of objectives; and (2) Flex-
ibility – the decision-maker is restricted from freely shifting between preferences
unless all the models are pre-trained and stored. Machine learning, an emerging
and promising technique in artificial intelligence, is drawing increasing attention
for its potential in this context (Qu et al., 2021). Deep learning-based techniques
represent innovative methods for producing multiple Pareto optimal solutions. The
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concept revolves around leveraging the extensive generalization capabilities of deep
neural networks to discern and model the entire Pareto front. This is accomplished
by learning from a limited set of example trade-offs along that front, a process known
as Pareto Front Learning (Navon, Shamsian, Chechik & Fetaya, 2021).

One of the key aspect of MOO is incorporating decision-maker preferences, as purely
mathematical solutions may not align with practical or subjective considerations.
Research by Cinelli et al. (2020) provided framework for integrating user prefer-
ences into MOO solutions. In the interactive category, decision makers’ preferences
are evaluated and combined through the MOO process. These methods preserve
the multi-objective framework but intermittently stop the optimization to collect
decision-makers’ preferences (Meignan et al., 2015).

2.2 Preference Learning in Multi-objective Optimization

Preference learning is a type of machine learning that focuses on assigning a group of
alternatives to preference-ordered classes, labels or ranks in the presence of multiple
attributes (Krzysztof Martyn, 2023). These preferences can be provided by users or
inferred from their behavior or other types of feedback and can be defined in two
ways: a pairwise comparisons (e.g., item A is preferred over item B) and rankings
of items (e.g., A is ranked first, B is second) (Fürnkranz & Hüllermeier, 2011). It
can be applied in various areas such as (Fürnkranz & Hüllermeier, 2011):

• Recommender systems, where the system learns to recommend items (movies,
products, etc.)

• Information retrieval, where the goal is to rank documents by their relevance
to a query.

• Decision making and multi-criteria decision analysis, where preferences over
multiple criteria need to be aggregated.

Preference learning can be seen as a way to understand or model the preferences
that are then used in MOO to make decisions that align with these preferences. By
integrating preference learning into MOO, decision-makers can adopt the optimiza-
tion process to align more closely with human preferences or specific criteria that
are not easily quantifiable.

9



A variety of algorithms are used for preference learning, such as support vector ma-
chines, neural networks and decision trees (Krzysztof Martyn, 2023). In this thesis
we utilize Rank SVM, a machine learning algorithm, to deduce the weight vector
of criteria that a decision-maker has in mind. Rank SVM, short for Ranking Sup-
port Vector Machine, is a specialized algorithm in the realm of preference learning
that extends the traditional support vector machine framework to handle ranking
problems (Krzysztof Martyn, 2023). It can be used in scenarios where the goal is to
order or rank a set of alternatives based on preferences. The primary concept behind
Rank SVM is to learn from pairwise comparisons – it considers pairs of alternatives
and aims to minimize the number of misordered pairs (Fürnkranz & Hüllermeier,
2011). In essence, Rank SVM treats ranking as a binary classification problem; for
each pair of alternatives, it predicts which item is preferred over the other. This ap-
proach allows it to learn a model that can generalize to rank new items. Rank SVM
aims to find a function f that ranks instances such that for any pair of instances
(xi,xj) with labels yi > yj , it holds that f(xi) > f(xj) (Desmedt, Iliopoulou, Lopez
& Grave, 2021).

2.3 Multi-objective Optimization in Supply Chain

The complexity of supply chain management (SCM) has increased with the global-
ization and technological advancements (Vidrova, 2020). The complexity of SCM is
highlighted by the need to take into account the various phases of the supply chain
(sourcing, manufacturing, warehousing, distribution, and transportation), various
types of supply chains (such as forward, reverse, and closed-loop), multiple levels
of decision-making (strategic, tactical, and operational), and the overall supply
chain environment (certain, uncertain). (Trisnaa et al., 2016). It’s a complicated
process that includes a variety of stakeholders, ranging from suppliers to customers,
managing products and services while considering variety of objectives simultane-
ously. This part of the literature review examines the evolution, methodologies and
applications of MOO in SCM.

Various researchers have considered several objectives within supply chains (Trisnaa
et al., 2016). For instance, Sustainable Supply Chain and Logistics Modeling
(SSCLM) is gaining attention in research due to its aim to optimize economic,
environmental, and social objectives together (Jayarathna, Agdas, Dawes &
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Yigitcanlar, 2021). Table 2.1 presents the objective functions that the researchers,
as discussed in this article, have focused on.

Table 2.1 Objectives in Supply Chain Problems

Authors Objectives

Mastrocinque et al. (2013) and Zhao et al.
(2012)

Min. total cost and min. delivery lead
time

Farahani & Elahipanah (2008) Min. total cost and max. service level
Amin & Zhang (2013) Min. total cost and min. environmental

impact
Liu & Papageorgiou (2013) Min. total cost, Min. Process time and

min. sale losses
Zhang et al. (2013) Min. total cost, min. delivery lead time,

max. product quality and max. green ap-
praisal score

Ruiz-Femenia et al. (2013) Max. (net present value) NPV and min.
global warning potential (GWP)

Cheshmehgaz et al. (2013) Min. total cost and min. response time

A-priori methods such as weighted sum, epsilon-constraint, goal programming
etc. can be used in MOO in supply chains. Zhang et al. (2013) created a
bi-objective model for designing the supply chain of dispersed manufacturing in
China, employing the weighted sum method. Liu & Papageorgiou (2013) applied
the epsilon-constraint method the lexicographic method for optimizing production,
distribution, and capacity planning in multi-product, multi-period global supply
chains within the process industry.

Mathematical programming can be utilized to develop and solve MOPs, wherein
the preferences of the decision-maker are defined prior to the initiation of the
optimization process. Trisnaa et al. (2016) classified supply chain models based
on the supply chain environment, between certain and uncertain environments. In
scenarios with a certain environment, supply chain models are often constructed
using deterministic programming techniques such as linear programming (LP),
integer programming (IP), non-linear programming (NLP), mixed integer linear
programming (MILP), and mixed integer non-linear programming (MINLP).
Besides, in uncertainty supply chain settings, researchers commonly apply methods
like fuzzy programming, robust optimization, and stochastic programming (Trisnaa
et al., 2016). Jamshidi, Ghomi & Karimi (2012) proposed a model for green supply
chain optimization using a MINLP approach. This model was constructed to
achieve the dual objectives of minimizing annual cost as well as environmental
impact. Amin & Zhang (2013) created a MILP model for optimizing a closed-loop
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supply chain network. The model’s objectives included selecting potential locations
for manufacturing and remanufacturing plants, determining the range of products
to be produced, identifying demand market locations, and choosing locations for
possible collection centers. They utilized a multi-objective function within the
linear programming framework to minimize both costs and environmental impacts.
Ruiz-Femenia et al. (2013) formulated a Stochastic Mixed-Integer Linear Program
(SMILP) to model chemical supply chains. Their analysis focused on the impact of
demand uncertainty on the multi-objective optimization of chemical supply chains,
assessing both economic and environmental impacts.

Genetic algorithms, ant colony optimization, memetic algorithms, tabu search,
and simulated annealing are the metaheuristic methods often used to solve multi-
objective optimization for supply chain cases (Trisnaa et al., 2016). Farahani &
Elahipanah (2008) applied a genetic algorithm to create and resolve a just-in-time
(JIT) distribution model within supply chain management, covering a network of
suppliers, wholesalers, and retailers. Their fundamental goal was to maximize the
service level by minimizing the total of backorders and excesses of products across
all periods. Cheshmehgaz et al. (2013) used the NSGA II algorithm for restructur-
ing supply chain networks, aiming to reduce both the response time to consumers
and the overall costs. Their redesigned supply chain configuration included a three-
level logistic network, which consist of potential suppliers, distribution centers, and
deterministic demand from available customers. Zhao et al. (2012) applied the ant
colony optimization technique to enhance supply chain design, adapting to dynamic
business environments and diverse customer requirements. Their design aimed to
fulfill dual objectives: optimizing both cost and time efficiency in the supply chain.
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3. PROBLEM FORMULATION

We are presented with a decision-maker who is well-informed about the nature of the
supply chain network problem, objectives and restrictions within the experimental
setting we are examining. We know everything except the relative importance of
the objectives i.e. weights. Our study aims to reveal the weight vector that reflects
the decision maker’s preferences by applying the Rank SVM method, which focuses
on pairwise ranking. Additionally, we study the impact of offering alternatives from
different regions (Pareto front, feasible region, utopian space) on the Rank SVM
learning process.

The input for training the Rank SVM model is alternative pairs and information
about which alternative is preferred in each pair (Fürnkranz & Hüllermeier, 2011).
Decision makers, who are assumed to be rational, are asked to choose between
two alternatives. The alternatives are described through feature vectors, which
include details on various aspects of the alternative, such as transportation and
inventory costs. At every iteration, decision maker is provided with two alternatives
(pairs) and she select the alternative with the lowest cost which is recorded as the
preference of the decision maker. The alternatives to be offered to each decision-
maker are determined by solving an optimization problem which is provided in
Section 4.2. Also, we assume that offering fewer alternative pairs to the decision
maker will lead to more consistent emergence of preferences, therefore we also seek
to find the minimum number of iterations required for an accurate learning outcome.

Instead of using traditional batch learning methods, which typically build a model
based on the entire data-set in a single analysis, we used online learning where
the model takes data points one by one (Hoi, Sahoo, Lu & Zhao, 2021). At every
iteration, alternatives are offered to decision makers and preference information is re-
ceived, which is used to update the estimated weight vector to be used in subsequent
iterations. The goal is to continuously improve the model’s prediction accuracy by
using information from previous data points and any additional information. This
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procedure is similar to how decisions are made in the real world, where decisions
are frequently made in a sequential fashion and have an impact on one another. We
use training data indicative of preference orders, exemplified by x1 ≻ x2, where x1

denotes the first alternative and x2 indicates the second alternative.

x1 ≻ x2 =⇒ wT x1 ≥ wT x2(3.1)

wT (x1−x2)≥ 0(3.2)

wT (x2−x1)≤ 0(3.3)

where w is the weight vector to be learned. Equations (3.1), (3.2), and (3.3) describe
how the Rank SVM model interprets preferences between two alternatives based on
feature representations x1 and x2. Equation (3.1) states that if option x1 is preferred
over x2 (denoted by x1 ≻ x2), then the score given to x1 by the weight vector w

should be greater than or equal to the score it gives to x2. Equation (3.2) takes the
difference of the feature vectors and asserts that when this difference is projected
onto w, the result should be non-negative, which aligns with the preference stated
in Equation (3.1). Finally, Equation (3.3) expresses the converse scenario.

x1

x2

wT x = 0

+

+

+

+

+
+

-

-
-

-
-

-

-

-

Figure 3.1 Illustration of Linear Rank SVM which is sample plotting to make un-
derstand the concepts involved.

Figure 3.1 shows a two-dimensional feature space; where x1 and x2 are features.
The wT x line represents the decision boundary learned by the Rank SVM model.
The decision boundary is where the model is indifferent between options, meaning
it gives them the same score. The points marked with the "+" are the points
where the model is preferred, and the points marked with "−" are the points where
the model is not preferred. Points above the decision boundary line are preferred
over points below it because they have higher predicted scores on w (if it is a
maximization problem). The goal of the Rank SVM training process is to find
the optimal location of this decision boundary so that it best separates higher
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ranked options from lower ranked options based on the training data provided. As
mentioned before, we develop three strategies which are offering pairs from the
Pareto front, from the feasible solution set and from the utopian space. One of
the main objective is to evaluate the impact of offering pairs from different regions
on the decision-making process. This aspect is critical as it explores how varying
degrees of information complexity and realism affect the preferences. The detailed
analysis of the three strategies can be seen below:

Strategy 1: Pairs from Pareto Frontier

Offering pairs from the Pareto front, shown as the blue line in the Figure 3.2,
meaning that only the optimal solutions are presented as alternatives to the decision-
makers. This ensures that the decision-maker always chooses between the best
possible trade-offs. On the other hand, this strategy might not reveal the decision-
maker’s preferences in regions where the trade-offs are not very sharp. Moreover,
decision-makers may exhibit a bias towards certain objectives because, depending
on the nature of the problem, the Pareto front may be dominated by certain types
of solutions.

f1

f2
A

B

C

Figure 3.2 The selection region of the alternative pairs for the first strategy

Strategy 2: Pairs from Feasible Region

Proposing pairs from the feasible solution set that includes both non-dominated and
dominated solutions can be seen as the shaded area in Figure 3.3. This strategy
offers a wider range of options, potentially revealing more diverse preferences. It can
better capture the decision maker’s preferences across the feasible space, not just at
the optimal frontier. However, more options can lead to complexity and difficulty
in making choices, possibly leading to decision fatigue or less consistent choices.
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Figure 3.3 The selection region of the alternative pairs for the second strategy

Strategy 3: Pairs from Utopian Region

Offering pairs from the utopian space, which includes both feasible and infeasible
solutions shown as the shaded area in 3.4. This can provide insight into the de-
cision maker’s ideal preferences, which can reveal underlying values more clearly
and encourage the decision maker to think more broadly and creatively. Also, it
can be useful to understand the upper bounds of the decision-maker’s aspirations
or desirable states. However, decision makers may find it difficult to make choices
when presented with options that are not based on reality, which can lead to con-
fusion or inconsistency in choices. It can set unattainable expectations, leading to
disappointment.

f1

f2
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B

C

D

E

Figure 3.4 The selection region of the alternative pairs for the third strategy
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4. APPLICATION IN SUPPLY CHAIN

4.1 Supply Chain Network Problem

Our problem is a deterministic three-echelon supply chain network problem involv-
ing suppliers, wholesalers, and retailers which illustrated in Figure 4.1. Consider
a multi-product, multi-period, three-echelon supply chain comprised of suppliers
who distribute various products to both wholesalers and retailers; wholesalers who
obtain these products from suppliers and store them to meet the demands of retail-
ers; and retailers who acquire products from both suppliers and wholesalers. It is
characterized by nine objective functions which are:

1. Minimize transportation cost from suppliers to wholesalers

2. Minimize transportation cost from suppliers to retailers

3. Minimize transportation cost from wholesalers to retailers

4. Minimize wholesalers’ inventory cost

5. Minimize retailers’ inventory cost

6. Minimize retailers’ backorder cost

7. Minimize vehicle fixed cost from suppliers to wholesalers

8. Minimize vehicle fixed cost from suppliers to retailers

9. Minimize vehicle fixed cost from wholesalers to retailers

There are trade-offs between these objectives. For example, reducing shipping costs
often involves aggregating shipments, less frequent deliveries. This approach can
lead to increase in the stock levels at both wholesaler and retailer, thus poten-
tially increasing inventory holding costs. Conversely, to minimize inventory costs,
more frequent shipments in smaller quantities might be preferred. This can lead to
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Figure 4.1 Three-Echelon Supply Chain Network

higher transportation costs due to less efficient use of vehicle space and increased
trip frequency. Additionally, minimizing backorder costs often requires maintaining
higher inventory levels to prevent stockouts. This directly conflicts with the goal of
minimizing inventory costs, as higher inventory levels lead to greater holding costs.
While all objective functions in this setting are cost-based, it is recognized that
this may not always be the case in real-world scenarios. The variety of objectives
indicated by the authors can be seen in multi-objective supply chain problems in
Section 2, Table 2.1. For example, there could be instances where the authors com-
pare objective functions with different units such as environment impact versus cost
(Amin & Zhang, 2013), service level versus cost (Farahani & Elahipanah, 2008).

4.2 Mathematical Model

Our MILP model is constructed with the intent to minimize the cost while adher-
ing to the constraints of the system. Binary decision variables, which determine
the vehicle usage, reflecting the discrete decision of whether to use transportation
resources between specific nodes in the network. These binary decisions enable the
model to substantially reduce unnecessary fixed transportation costs by optimizing
the allocation of vehicles only when needed. Furthermore, continuous variables are
the product quantities being transported between nodes, the inventory levels to be
maintained and backordering volumes. These continuous variables are are crucial
in providing a balance between holding sufficient inventory to meet demand and
avoiding the financial stress caused by overstocking. Our model was developed by
adapting minor changes to the model in the Farahani & Elahipanah (2008)’s article.
The parameters and decision variables illustrated in Table 4.1.
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Table 4.1 Notation used throughout the Three-echelon Supply Chain Network Model

Sets
I Set of suppliers
J Set of wholesalers
K Set of retailers
T Set of periods
P Set of products

Parameters
hpj Unit inventory holding cost of product p ∈ P in wholesaler j ∈ J

h′
kp Unit inventory holding cost of product p ∈ P in retailer k ∈K

dpkt Demand quantity of product p ∈ P of retailer k ∈K in period t ∈ T

gij Distance between supplier i ∈ I and wholesaler j ∈ J

eik Distance between supplier i ∈ I and retailer k ∈K

ljk Distance between wholesaler j ∈ J and retailer k ∈K

Spit Supply capacity of supplier i ∈ I for product p ∈ P in period t ∈ T

Qpjt Holding capacity of wholesaler j ∈ J for product p ∈ P in period t ∈ T

Q′
pkt Holding capacity of retailer k ∈K for product p ∈ P in period t ∈ T

cajt Delivery capacity of wholesaler j ∈ J in period t ∈ T

ca′
kt Delivery capacity of retailer k ∈K in period t ∈ T

backorderkp Unit backorder cost of product p ∈ P of retailer k ∈K

blpkt Max. amount of permitted backorder of product p ∈ P of retailer k ∈K

in period t ∈ T

oswij Vehicle fixed cost from supplier i ∈ I to wholesaler j ∈ J

osrik Vehicle fixed cost from supplier i ∈ I to retailer k ∈K

owrjk Vehicle fixed cost from wholesaler j ∈ J to retailer k ∈K

Decision Variables
ypijt amount of product p ∈ P transported from supplier i to wholesaler j ∈ J

in period t ∈ T

upjkt amount of product p ∈ P transported from wholesaler j ∈ J to retailer k ∈K

in period t ∈ T

vpikt amount of product p ∈ P transported from supplier i ∈ I to retailer k ∈K

in period t ∈ T

Inwpjt inventory level of product p ∈ P at wholesaler j ∈ J in period t ∈ T

Inpkt inventory level of product p ∈ P at retailer k ∈K in period t ∈ T

Bpkt amount of product p ∈ P ’s backorders of retailer k in period t ∈ T

zswijt =

1, if vehicle is used from supplier i ∈ I to wholesaler j ∈ J in period t ∈ T

0, otherwise

zsrikt =

1, if vehicle is used from supplier i ∈ I to retailer k ∈K in period t ∈ T

0, otherwise

zwrjkt =

1, if vehicle is used from wholesaler j ∈ J to retailer k ∈K in period t ∈ T

0, otherwise
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The objective functions of the model aim to minimize the total supply chain costs
by optimizing transportation, inventory holding, and backordering costs across all
echelons and time periods which can be seen from Equation (4.1) to (4.9). To ensure
the feasibility and reliability of the supply chain, our model incorporates a series of
constraints that regulate the flow of goods through the network as indicated in from
Equation (4.10) to (4.23). These constraints are effective in maintaining inventory
balance at all echelons and periods, thus preventing scenarios of overstocking or
under-stocking. They also ensure that the supply chain operates within capacity
limits and adheres to the logistical considerations such as storage space constraints.

min
∑
p∈P

∑
i∈I

∑
j∈J

∑
t∈T

ypijtgij(4.1)

min
∑
p∈P

∑
i∈I

∑
k∈K

∑
t∈T

vpikteik(4.2)

min
∑
p∈P

∑
j∈J

∑
k∈K

∑
t∈T

upjktljk(4.3)

min
∑
p∈P

∑
j∈J

∑
t∈T

hpjInwpjt(4.4)

min
∑
p∈P

∑
k∈K

∑
t∈T

h′
kpInpkt(4.5)

min
∑
p∈P

∑
k∈K

∑
t∈T

backorderkpBpkt(4.6)

min
∑
i∈I

∑
j∈J

∑
t∈T

oswijzswijt(4.7)

min
∑
i∈I

∑
k∈K

∑
t∈T

osrikzsrikt(4.8)

min
∑
j∈J

∑
k∈K

∑
t∈T

owrjkzwrjkt(4.9)

Subject to

∑
j∈J

ypijt +
∑
k∈K

vpikt ≤ Spit ∀p ∈ P ,∀i ∈ I,∀t ∈ T(4.10)

Inwpjt ≤Qpjt ∀p ∈ P ,∀j ∈ J ,∀t ∈ T(4.11)

Inwpjt ≥ (0.1)Qpjt ∀p ∈ P ,∀j ∈ J ,∀t ∈ T , t ̸= 1(4.12)

Inpkt ≤Q′
pkt ∀p ∈ P ,∀k ∈ K,∀t ∈ T(4.13) ∑

p∈P

∑
i∈I

ypijt ≤ cajt ∀j ∈ J ,∀t ∈ T(4.14)

∑
p∈P

∑
j∈J

upjkt +
∑
p∈P

∑
i∈I

vpikt ≤ ca′
kt ∀k ∈ K,∀t ∈ T(4.15)
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Inwpjt +
∑
i∈I

ypijt =
∑
k∈K

upjkt + Inwpj(t+1) ∀p ∈ P ,∀j ∈ J ,∀t ∈ T(4.16)

Inpkt−Bpkt +
∑
j∈J

upjkt

+
∑
i∈I

vpikt = Inpk(t+1)−Bpk(t+1) +dpkt

∀p ∈ P , ∀k ∈ K, ∀t ∈ T(4.17)

Bpkt ≤ blpkt ∀p ∈ P ,∀k ∈ K,∀t ∈ T(4.18)

Inwpj1, Inpk1 = 0 ∀p ∈ P ,∀j ∈ J ,∀k ∈ K(4.19)

InpkT ,BpkT = 0 ∀p ∈ P ,∀k ∈ K(4.20)

ypijt,upikt,vpjkt ≥ 0 ∀p ∈ P ,∀i ∈ I,∀j ∈ J ,∀k ∈ K,∀t ∈ T(4.21)

Inwpjt, Inpkt,Bpkt ≥ 0 ∀p ∈ P ,∀j ∈ J ,∀k ∈ K,∀t ∈ T(4.22)

zswijt, zsrikt, zwrjkt ∈ {0,1} ∀p ∈ P ,∀i ∈ I,∀j ∈ J ,∀k ∈ K,∀t ∈ T(4.23)

Objective functions (4.1), (4.2) and (4.3) minimize the transportation cost. Equation
(4.1) minimizes the cost associated with transporting product p ∈ P from supplier
i ∈ I to wholesaler j ∈ J over the time period t ∈ T . Equation (4.2) sum minimizes
the cost of transporting product p ∈ P directly from supplier i ∈ I to retailer k ∈
K. Equation (4.3) minimizes the cost associated with transporting product p ∈
P from wholesaler j ∈ J to retailer k ∈ K. Equation (4.4) and (4.5) minimizes
the wholesalers’ and retailers’ inventory holding cost, respectively. Equation (4.4)
minimizes the the costs for holding inventory of product p ∈ P at wholesaler j ∈ J ,
where hpj is the unit holding cost for product p ∈ P at wholesaler j ∈ J , and Inwpjt

is the inventory level. In the same manner, Equation (4.5) minimizes the costs
for holding inventory of product p ∈ P at retailer k ∈ K, where h′

kp is the unit
holding cost for product p ∈ P at retailer k ∈ K, and Inpkt is the inventory level.
Objective function (4.6) minimizes the backorder cost in retailers in all periods. It
aims to minimize the costs associated with backorders for product p ∈ P at retailer
k ∈ K during time t ∈ T , with backorderkp representing the backorder cost per
unit of product p ∈ P , and Bpkt the amount of backordered product. Objective
function (4.7), (4.8) and (4.9) minimizes the vehicle cost from supplier to wholesaler,
from supplier to retailer and from wholesaler to retailer, respectively. Equation
(4.7) minimizes the vehicle costs for shipping product p ∈ P from supplier i ∈ I

to wholesaler j ∈ J over time t ∈ T , including variable vehicle cost per unit oswij

and a binary variable zswijt indicating whether the vehicle is used. Equation (4.8)
minimizes the costs of transporting product p ∈ P directly from supplier i ∈ I to
retailer k ∈ K over the time period t ∈ T , with osrik as the vehicle cost per unit
and zsrikt as the binary variable indicating vehicle usage. Equation (4.9) minimizes
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the vehicle costs of moving product p ∈ P from wholesaler j ∈ J to retailer k ∈K

over time t ∈ T , where owrjk represents the cost per unit and zwrjkt indicates
whether the vehicle is used. These objective functions collectively aim to optimize
the supply chain by reducing transportation costs, as well as costs associated with
holding inventory and managing backorders. The decision variables ypijt, upjkt, vpikt,
Inpkt, Inwpjt, Bpkt denote the quantity transported, inventory levels and backorder
quantity, while the binary variables zswijt, zsrikt, zwrjkt, indicate whether certain
transport routes are active. The parameters such as hpj , h′

kp, and backorderkp

are coefficients that represent the cost per unit for holding wholesalers’ inventory,
retailers’ inventory and backordering respectively.

Constraint (4.10) ensures that the total amounts requested by wholesalers and re-
tailers from each supplier i ∈ I do not exceed suppliers’ supply capacity for product
p ∈ P in period t ∈ T . Constraint (4.11) and (4.13) guarantees that the inventory
level does not exceed the holding capacity of the wholesaler j ∈ J and retailer k ∈K

for that product p ∈ P in period t ∈ T , respectively. Constraint (4.12) sets a min-
imum inventory level at the wholesaler to avoid stockouts. The inventory level of
product p ∈ P at wholesaler j ∈ J must be at least 10% of the wholesaler’s stor-
age capacity for that product in period t ∈ T , ensuring a minimum level of product
availability. Constraint (4.14) and (4.15) controls wholesalers’ and retailers’ delivery
capacities in period t∈ T , respectively. Constraint (4.16) assures that the beginning
inventory of the wholesaler j ∈ J and the amount of products sent by each supplier
i ∈ I to the wholesalers is equal to the ending inventory of the wholesaler j ∈ J and
the amount of products sent by each wholesaler j ∈ J to retailers. Constraint (4.17)
represents the inventory balance equation for retailer k ∈ K which implies begin-
ning inventory of the retailer k ∈K plus the amount of product received from both
suppliers and wholesalers, minus the backorders is equal to the ending inventory of
retailer k ∈ K plus the backorder quantity of the next period and demand of the
retailer k ∈K. Constraint (4.18) limits the number of backorders. The backorders
of product p ∈ P at retailer k ∈K in period t ∈ T must not exceed the maximum al-
lowed backorder quantity for that product at that retailer k ∈K. Constraint (4.19)
ensures that the beginning inventory is 0 for wholesaler j ∈ J and retailer k ∈ K

at the beginning of the time horizon, respectively. Constraint (4.20) set a zero in-
ventory level and zero backorder amount for retailer k ∈K at the end of the time
horizon, respectively. Constraint (4.21) requires that all transportation decisions
result in non-negative product flows and Constraint (4.22) asserts that inventory
and backorder levels must also be non-negative. Finally, Constraint (4.23) enforces
binary conditions on transportation routes, indicating whether a route is active with
a 1 or inactive with a 0, reflecting the discrete nature of transportation decisions.
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5. METHODOLOGY

This chapter presents the methodology adopted in this thesis to explore and vali-
date the application of preference learning in MOO within the field of supply chain
networks. The multi-criteria decision analysis (MCDA) framework that allows the
assessment of various alternatives across multiple criteria is illustrated in 5.1 (Ag-
garwal, 2015). Three developed strategies which are the Pareto Frontier approach
detailed in Section 5.1, the Feasible Region approach in Section 5.2 and the Utopian
Region approach in Section 5.3 with corresponding algorithms presented in Algo-
rithm 2, 3 and 4, respectively.

c1 c2 · · · cN

x1 x
(1)
1 x

(2)
1 · · · x

(N)
1

x2 x
(1)
2 x

(2)
2 · · · x

(N)
2

... ... ... . . . ...

xM x
(1)
M x

(2)
M · · · x

(N)
M

Figure 5.1 Multi-criteria Decision Analysis Model

C = {c1, c2, . . . , cN} represents objectives (criteria) e.g. minimize transportation cost,
minimize inventory cost etc. Each objective cj , is associated with a weight value,
wj . The weight vector for the objective set C is represented as:

(5.1) W = (w1,w2, . . . ,wN )

where weights satisfy wi ≥ 0 for all i and ∑m
i=1 wi = 1.

A set of alternatives or objective vectors are denoted as X = {x1,x2, . . . ,xM}. Each
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alternative can be represented as a vector:

(5.2) xi = (x(1)
i ,x

(2)
i , . . . ,x

(N)
i ) ∈ RN

where, x
(j)
i is the outcome of an optimization process influenced by weights of each

objective. Overall score of each alternative is calculated as:

(5.3) fi = w1x
(1)
i +w2x

(2)
i + . . . ,+wN x

(N)
i

To achieve our research objectives, we developed a methodology for the generation
of training data. The pseudo code represents an algorithm for a learning procedure
of Rank SVM can be seen in Algorithm 1.

Algorithm 1 Rank SVM Learning Procedure
1: for i = 1 to R do ▷ Number of replications
2: OptParameters() ▷ Generate optimization parameters
3: w∗←RandomWeight() ▷ Initialize w∗ randomly
4: for j = 1 to T do ▷ Number of iterations
5: x1←ObjectiveVector() ▷ First objective vector (alternative)
6: x2←ObjectiveVector() ▷ Second objective vector (alternative)
7: dij.append[x1 - x2] ▷ Add independent variables to learning data
8: if x⊤

1 w∗ - x⊤
2 w∗ > 0 then

9: y.append[1] ▷ Add labels to learning data
10: else
11: y.append[0] ▷ Add labels to learning data
12: end if
13: wmodel←RankSVM(dij ,y) ▷ Call Rank SVM to update wmodel

14: end for
15: end for

The step-by-step explanation of the pseudo-code is as follows:

• Initialization: The algorithm starts with a loop that will execute R repli-
cations (lines 1-15). In each replication, optimization parameters are set up
by calling OptParameters() (line 2) and true weight vector (w∗) is initialized
randomly (line 3).

• Rank SVM Training: Another loop starts which will perform T iterations
(line 4). In each iteration, two objective vectors x1 and x2 are generated (lines
5-6). These represent different alternatives that need to be ranked. The only
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variation among the algorithms of three strategies lies in the method of gen-
erating these two objective vectors which are the outputs of the optimization.
The difference between two objective vectors is calculated and appended to a
list dij (line 7) which will be used as input data for the Rank SVM. A label
is generated based on the product of the true weight vector (w∗) with the
objective vectors. If x1 multiplied by w∗ is greater than x2 multiplied by w∗,
a label of 1 is appended to y; otherwise, a label of 0 is appended (lines 8-12)
to y. These labels represent which objective vector is "better" according to the
true weights.

• Model Update: The Rank SVM is called with the differences dij and labels
y to update the model weights wmodel (line 13).

Next, each strategy is assessed individually in Section 5.1, 5.2 and 5.3 noting that
the only difference lies in the area where pairs are chosen. The pseudo codes of
the algorithms corresponding to each strategy can be seen in Algorithm 2, 3 and 4
below.

5.1 Strategy 1: Pairs from Pareto Frontier

First strategy, which shown in Algorithm 2, involves offering decision-makers with
alternative pairs from the Pareto frontier, where each alternative represents an op-
timal solution. For each iteration, two weight vectors are randomly generated (line
5 and line 7) and the optimization problem (4.1) - (4.23) is solved to find the alter-
natives to be offered to each decision-maker. The first objective vector (x1) is the
vector of optimized objective values of the optimization problem with respect to the
first random weight vector (w1). This function represents an optimization model
that uses w1 as an input to determine an optimal objective vector by using weighted
sum method (line 6). In the same manner, the second objective vector (x2) is the
vector of optimized objective values of the optimization problem with respect to the
second random weight vector (w2).
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Algorithm 2 Rank SVM Learning Procedure - Pairs from Pareto Frontier
1: for i = 1 to R do ▷ Number of replications
2: OptParameters() ▷ Generate optimization parameters
3: w∗←RandomWeight() ▷ Initialize w∗ randomly
4: for j = 1 to T do ▷ Number of iterations
5: w1←RandomWeight() ▷ First random weight
6: x1←Optimize(w1) ▷ First objective vector
7: w2←RandomWeight() ▷ Second random weight
8: x2←Optimize(w2) ▷ Second objective vector
9: end for

10: end for

5.2 Strategy 2: Pairs from Feasible Region

This strategy broadens the scope by including pairs from the feasible region of
solutions, thereby capturing a wider range of potential preferences and allowing
a more comprehensive understanding of decision-making criteria. To find feasible
solutions, we reduced our problem to LP by giving binary decision variables as
parameters which indicate the vehicle usage (zswijt, zsrikt and zwrjkt). Different
methods can also be used to find feasible solutions.

The second strategy, which shown in Algorithm 3, involves offering decision-makers
with alternative pairs from both dominated and non-dominated solutions. For each
iteration, 1 or 0 is assigned randomly to binary decision variables which are zswijt,
zsrikt and zwrjkt (line 5 and line 8). Next, two weight vectors are randomly gener-
ated (line 6 and line 9) and the optimization problem is solved to find the alternatives
to be offered to each decision-maker. The first objective vector (x1) is the vector
of optimized objective values of the optimization problem with respect to the first
random weight vector (w1) and z1 (line 7). In the same manner, the second objective
vector (x2) is the vector of optimized objective values of the optimization problem
with respect to the second random weight vector (w2) and z2 (line 10). The result
of the optimization problem may be infeasible (line 7 and line 10), therefore random
z1 or z2 is generated until the feasible solutions is found.
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Algorithm 3 Rank SVM Learning Procedure - Pairs from Feasible Region
1: for i = 1 to R do ▷ Number of replications
2: OptParameters() ▷ Generate optimization parameters
3: w∗←RandomWeight() ▷ Initialize w∗ randomly
4: for j = 1 to T do ▷ Number of iterations
5: z1←RandomZ(0,1) ▷ First Z value
6: w1←RandomWeight() ▷ First random weight
7: x1←Optimize(z1,w1) ▷ First objective vector
8: z2←RandomZ(0,1) ▷ Second Z value
9: w2←RandomWeight() ▷ Second random weight

10: x2←Optimize(z2,w2) ▷ Second objective vector
11: end for
12: end for

5.3 Strategy 3: Pairs from Utopian Region

The third strategy introduces pairs from a utopian space that includes both feasi-
ble and infeasible solutions. Algorithm 4 is for generating training data from the
Utopian region, which is a conceptual region representing ideal solutions that might
not be feasible or practical. For each replication, when calculating the minimum
value (obj_min) in a minimization problem, we take the weight of the calculated
objective as 1 and the rest as 0 (line 4); when calculating the maximum value
(obj_max), we take the weight of the calculated objective as −1 and the rest as 0
(line 5). For each replication, the optimization problem (4.1) - (4.23) is solved to
find the bounds of the problem. For each iteration, x1 and x2 are selected according
to uniform random distribution between minimum and maximum objective values
(obj_min, obj_max) (line 7 and line 8).
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Algorithm 4 Rank SVM Learning Procedure - Pairs from Utopian Region
1: for i = 1 to R do ▷ Number of replications
2: OptParameters() ▷ Generate optimization parameters
3: w∗←RandomWeight() ▷ Initialize w∗ randomly
4: obj_min←Optimize(wmin) ▷ Optimize to get minimum objectives
5: obj_max←Optimize(wmax) ▷ Optimize to get maximum objectives
6: for j = 1 to T do ▷ Number of iterations
7: x1←Random(obj_min, obj_max) ▷ First objective vector
8: x2←Random(obj_min, obj_max) ▷ Second objective vector
9: end for

10: end for

5.4 Using Learning Information to Generate Training Data

So far, we do not use what we learned while generating training data and two ob-
jective vectors x1 and x2 are generated independently from the previous iterations.
Now, we create x1 as the best estimated solution according to the current model
weight vector. In this way, one of the alternatives we compare becomes the incum-
bent best. In order to achieve this objective, we replace line 5 in Algorithm 1, lines
5 and 6 in Algorithm 2, lines 5, 6, 7, and 8 in Algorithm 3 and line 7 in Algorithm
4 with

(5.4) x1 = Optimize(wmodel)

To clarify, x1 is the objective vector corresponding to decision that decision maker
makes based on the current estimated weight as stated in Equation 5.4.
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6. EXPERIMENTAL RESULTS

This section outlines the experiments and provides inferences of the comparisons for
different strategies as discussed in Section 3 and Section 5. Models and algorithms
in the experiments are coded and run in Python 3.9.16 using Spyder along with
Gurobi version 10 (ID:2427355). The computations are performed with Intel Core
i7- 1255U CPU @1.70 GHz and 16 GB RAM.

The structure of the test problems is explained in Section 6.1. The results of analysis
on various strategies are demonstrated according to inferences in Section 6.2.

6.1 Designing Test Problems

A range of replications is created using various mixes of parameter values to replicate
different scenarios in real-world cases. Each replication consists of P = 2 products,
I = 4 suppliers, J = 3 wholesalers, K = 6 retailers and T = 4 periods. The values
for each parameters are randomly generated within their respective minimum and
maximum limits, as outlined in Table 6.1. The ranges of the parameters adopted
with minor modifications from Farahani & Elahipanah (2008)’s article.

Table 6.1 Parameters and Parameter Ranges

Parameter Range Parameter Range
Q [2000 - 3000] g [5 - 10]
Q′ [2000 - 3000] e [15 - 30]
h [10 - 20] l [10 - 20]
h′ [5 - 10] d [80 - 120]
s [800, 800 + 240*K/I] bl [500 - 600]
ca′ [800, 800 + 160*P] osw [10000 - 20000]
ca [1000, 1000 + 160*P*K/J] osr [8000 - 15000]
backorder [5 - 10] owr [10000 - 20000]
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The objective functions (4.1) - (4.9) are categorized to test our strategies in different
settings. 7-objective, 4-objective and 3-objective are the settings which are detailed
in below. Our strategies are evaluated for each problem setting, which discussed
in Section 6.2. Finally, the results obtained with smart training stated in Section 6.3.

Setting 1: 7-Objective

Objective functions are categorized into seven groups as follows:

1. Minimize transportation cost (4.1) + (4.2) + (4.3)

2. Minimize wholesalers’ inventory cost (4.4)

3. Minimize retailers’ inventory cost (4.5)

4. Minimize retailers’ backorder cost (4.6)

5. Minimize vehicle fixed cost from suppliers to wholesalers (4.7)

6. Minimize vehicle fixed cost from suppliers to retailers (4.8)

7. Minimize vehicle fixed cost from wholesalers to retailers (4.9)

Setting 2: 4-Objective

Objective functions are categorized into four groups as transportation, inventory,
backorder and vehicle fixed cost as follows:

1. Minimize transportation cost (4.1) + (4.2) + (4.3)

2. Minimize inventory cost of wholesalers and retailers. (4.4) + (4.5)

3. Minimize backorder cost of retailers. (4.6)

4. Minimize vehicle fixed cost of suppliers, wholesaler and retailers. (4.7) + (4.8)
+ (4.9)

Setting 3: 3-Objective

Objective functions are categorized into three groups as suppliers, wholesaler and
retailers cost as follows:

1. Minimize suppliers’ cost which indicates the minimization of transportation
and vehicle fixed cost of suppliers. (4.1) + (4.2) + (4.7) + (4.8)

2. Minimize wholesalers’ cost which indicates the minimization of transportation,
vehicle fixed and inventory cost of wholesalers. (4.3) + (4.4) + (4.9)

3. Minimize retailers’ cost which indicates the minimization of inventory and
backorder cost of retailers. (4.5) + (4.6)
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In the weighted sum approach, if a single objective dominates the others, it may
create an imbalance by skewing the solutions towards that leading objective. This
imbalance may restrict a search of the solution space and the specific needs repre-
sented by the less dominant objectives may be neglected. Therefore, we examined
the distribution of all objective function values of R = 100 random instances for
all settings using box plots to ensure that no single objective dominates the others.
The box plots for each setting can be seen in Figures 6.1, 6.2 and 6.3.
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6.2 Evaluation Metrics

The evaluation procedure is illustrated in Algorithm 5. The simulation is repeated
for R = 100 replications. In each replication, parameters initialized within the pre-
defined ranges in Table 6.1 and weight vectors (w∗ and wmodel) initialized randomly
(lines 2, 3 and 6).

Algorithm 5 Evaluation Procedure
1: for i = 1 to R do ▷ Number of replications
2: OptParameters() ▷ Generate optimization parameters
3: w∗←RandomWeight() ▷ Initialize w∗ randomly
4: true_objective←Optimize(w∗) ▷ Optimize to get true objective vector
5: true_score← true_objective⊤w∗

6: wmodel←RandomWeight() ▷ Initialize wmodel randomly
7: for j = 1 to T do ▷ Number of iterations
8: model_objective←Optimize(wmodel) ▷ Optimize to get model

objective vector
9: model_score←model_objective⊤w∗

10: x1←ObjectiveVector() ▷ First objective vector
11: x2←ObjectiveVector() ▷ Second objective vector
12: result_star←Compare(x⊤

1 w∗,x⊤
2 w∗)

13: result_model←Compare(x⊤
1 wmodel,x⊤

2 wmodel)
14: if result_star ̸= result_model then
15: Accuracy.append[0]
16: else
17: Accuracy.append[1]
18: end if
19: deviation percentage← model score−true score

true score

20: distance← linalg.norm(wstar−wmodel)
21: dij.append[x1 - x2] ▷ Add independent variables to learning data
22: if x⊤

1 w∗ - x⊤
2 w∗ > 0 then

23: y.append[1] ▷ Add labels to learning data
24: else
25: y.append[0] ▷ Add labels to learning data
26: end if
27: wmodel←RankSVM(dij ,y) ▷ Call Rank SVM to update wmodel

28: end for
29: end for
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The true_objective holds the result of the optimization problem (4.1) - (4.23)
(line 4). The true_score is obtained by calculating the dot product of w∗ and
true_objective (line 5).

Another loop starts which will perform T = 100 iterations (line 7). In each iteration,
the model_objective holds the result of the optimization problem (4.1) - (4.23) (line
8). The model_score is obtained by calculating the dot product of wmodel and
model_objective (line 9). Also, two alternatives are offered to decision makers and
receives preference information from decision makers (lines 10-11).

In addition to the three strategies we previously defined, we also added a random
strategy to the comparison. It randomly decides which strategy to use in each
iteration. Three evaluation metrics — accuracy, percentage deviation, and Euclidean
distance — are employed to assess the strategies, as discussed in Sections 6.2.1, 6.2.2,
and 6.2.3. The graphs shown in the following for each metric represent the average
of the values obtained in each iteration over R = 100 replications.

6.2.1 Accuracy

Accuracy reflects how often the model correctly ranks pairs of two alternatives. The
algorithm compares the ranking produced by the true weights (w∗) and the model
weights (wmodel) against the objective vectors x1 and x2 (lines 12-13). If the model
ranking (result_model) matches the true ranking (result_star), the accuracy
value is recorded as 1; if they differ, the value is 0 (lines 14-18). This binary
indicator reflects how well the model’s predictions agree with the decision-maker’s
actual preferences.

To understand the underlying trend easily, 3-point moving average of the accuracy
is calculated. All settings (Figures 6.4, 6.5 and 6.6) display a similar trend where the
average accuracy for each strategy rises, indicating an enhancement in performance
as the iterations progress. The 7-objective setting (Figure 6.4) demonstrates a more
evident difference between the strategies early in the iterations. The 4-objective
and 3-objective settings (Figures 6.5 and 6.6) display more closely grouped accuracy
values for the strategies, implying that the reduction in objectives may lead to
less differentiation in accuracy performance. The Random strategy exhibits the
higher fluctuation in accuracy across all three settings, generally performing the least
consistent performance. The utopian and feasible region strategies consistently lead
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in performance which may due to expansion of selection region and sharper trade-
offs. To summarize, while the performance of the strategies presents variation across
different objective settings, the relative performance between the strategies remains
stable.
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Figure 6.6 Accuracy of 3-objective Setting
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6.2.2 Percentage Deviation

The most crucial metric is the deviation percentage because it is the one that di-
rectly affects the decision maker’s realized cost. Deviation refers to the difference
between the costs of decisions made based on the true weights (true_score) and the
costs of decisions made based on the weights predicted by the Rank SVM model
(model_score). It is a measure of how much the model score deviates from the true
score which is calculated as follows (line 19):

true_score← true_objective⊤w∗(6.1)

model_score←model_objective⊤w∗(6.2)

deviation percentage← model score− true score

true score
(6.3)

where true_objective holds the result of the optimization problem (4.1) - (4.23)
with respect to w∗ and model_objective holds the result of optimization problem
(4.1) - (4.23) with respect to wmodel.

The closer the model weights are to the decision maker’s actual weights, the more
likely they make similar decisions therefore the deviation be lower. Conversely, high
deviation indicates a significant difference between the model’s predictions and the
decision maker’s actual preferences implying that the model needs to be improved
or a more accurate understanding of the decision maker’s preferences is needed.

After the initial sharp decline, the strategies converge to stabilize at lower percent-
ages of deviation in all settings (Figures 6.7, 6.8 and 6.9). There is slightly higher
initial deviation in the Pareto front strategy in the 3-objective setting (Figure 6.9)
than in the 4- and 7-objective setting. Except from this, all three strategies per-
form similarly in terms of the order of the strategies. The feasible and random
strategy is the best performer across all objective settings. Multiple reasons could
be attributed to the performance of the these strategies such as more diverse and
informative trade-offs. Pareto front is the worst strategy which limits the range of
trade-offs and reduces the richness of the information presented.
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Figure 6.9 Deviation Percentage of 3-objective Setting
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6.2.3 Euclidean Distance

Euclidean distance calculates the distance between the true weights (w∗) and the
weight vector found by Rank SVM (wmodel) using a linear algebra norm function
(line 20). It is an indicator of the alignment between the weights predicted by the
model and the decision-maker’s actual preferences which is expressed as:

(6.4) distance← linalg.norm(wstar−wmodel)

In all three settings (Figures 6.10, 6.11 and 6.12), the average Euclidean distance
tends to decrease as the number of iterations increases, implying that the strategies
are converging towards the desired outcomes over time. It appears that all strategies
in the three objective settings reach a stabilization point implying that further iter-
ations beyond this point yield diminishing returns in terms of improvement. As the
number of objectives decreases, the distance between true and model weights at the
last iteration decreases implying that it may easier to converge the true weights in
smaller search spaces. The 7-objective setting (Figure 6.10) and 4-objective setting
(Figure 6.11) are very similar to each other in terms of the order of the strategies
which is Pareto ≻ Utopian ≻ Random ≻ Feasible. However, in 3-objective set-
ting (Figure 6.12), this order changes to Random ≻ Utopian ≻ Feasible ≻ Pareto.
Since multiple weight configurations can yield similar solutions, comparison should
be made by assessing other metrics.
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Figure 6.12 Eucledian Distance of 3-objective Setting

6.3 Impact of Smart Training Data

In this section, the results of incorporating learning information in generating train-
ing data is examined. According to the evaluation metrics we defined, the compar-
ison of four strategies with and without smart training is as follows:
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objective Setting
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Figure 6.15 Deviation Percentage of 7-
objective Setting
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Figure 6.16 Deviation Percentage of
Smart 7-objective Setting
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Figure 6.17 Euclidean Distance of 7-
objective Setting
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Figure 6.18 Euclidean Distance of Smart
7-objective Setting

Except for the Utopian region strategy, we generally observe that there is an im-
provement in performance and the order of the strategies does not change with the
smart training. As can be seen in Figure 6.19 and Figure 6.20; the Utopian region
strategy may get stuck and cannot be able to make any mistakes. If it doesn’t make
any mistakes, the estimation cannot be updated, therefore the performance of the
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metrics for the Utopian region strategy is not as expected.
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Figure 6.19 Accuracy of 7-objective Set-
ting
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Figure 6.20 Euclidean Distance of 7-
objective Setting

These explanations pertain to the 7-objective setting, however, they are ap-
plicable to the 4- or 3-objective settings. Table 6.2 and Table 6.3. illustrate
in which iteration the percentage deviation fell below the threshold which is
determined as 10%, 5% and 1% in 3- and 4-objective setting, respectively. For
example, without smart training it drops below 5% in the 32nd iteration, while
with smart training it drops in the 5th iteration for feasible region strategy in
the 3-objective setting. While the use of smart training improved performance
in all strategies, a deterioration is observed in the utopian region strategy. This
observation is consistent with the results of the 7-objective setting mentioned earlier.

Table 6.2 Comparison of Percentage
Deviation in 4-objective Setting

10% 5% 1%
Pareto 59 78 -
Pareto (Smart) 10 13 28
Feasible 58 - -
Feasible (Smart) 5 11 60
Utopian 41 59 -
Utopian (Smart) - - -
Random 12 18 31
Random (Smart) 6 10 16

Table 6.3 Comparison of Percentage
Deviation in 3-objective Setting

10% 5% 1%
Pareto - - -
Pareto (Smart) 11 15 29
Feasible 16 32 70
Feasible (Smart) 4 5 22
Utopian 39 43 -
Utopian (Smart) - - -
Random 8 17 89
Random (Smart) 4 6 18
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7. CONCLUSION

In this thesis we consider decision-maker who is well-informed about the supply
chain network problem within our experimental framework. The one aspect that
remains unknown is the relative importance of the objectives and we aim to learn
the weights corresponding to each objective by applying the the pairwise ranking
approach Rank SVM. The main goal of this thesis is to study the impact of the
selection of alternative pairs from different regions. To this end, we developed three
strategies for selecting alternative pairs: from the Pareto frontier, the feasible re-
gion, and the utopian space. At every iteration, decision-maker is provided with
alternative pairs and she select the alternative with the lowest cost. Next, the pref-
erence information is used to update the estimated weight vector to be used in the
following iterations. Within this framework, we conduct an experimental study on
the impact of the selection of alternative pairs on the Rank SVM learning process.
Our experimental study assessed these strategies against three metrics: accuracy,
percentage deviation, and Euclidean distance. Based on the experiments, we reach
the following conclusions.

For accuracy, which indicates whether a decision maker is correctly predicted which
alternative she would prefer, the Utopian and feasible region strategy leads in
performance. The random strategy indicates the most inconsistent performance,
indicating higher variations in accuracy across various settings. Euclidean distance,
which is the distance between the model and true weight vectors, the feasible region
strategy shows the worst performance. Since multiple weight configurations can
yield similar solutions it does not have as direct impact as the percentage deviation
metric when evaluating the decision-making process. For the most crucial metric is
percentage deviation, which refers to the difference between the costs of decisions
made based on the true weights and the weights predicted by the Rank SVM model,
all three strategies perform similarly across all settings in terms of the order of the
strategies. The feasible region and random strategy shows the best performance in
percentage deviation across all objective settings while the Pareto front strategy is
the worst.
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To summarize, generally the performance of these strategies was consistent across
different objective settings, indicating the adaptability of our model. Furthermore,
experimental results obtained from applying the strategies to a three-echelon supply
chain network problem highlighted the importance of the source of alternative
pairs in the effectiveness of preference learning algorithms. Different strategies
can be used for different purposes, but considering the ease of calculation and
performance according to the percentage deviation, the feasible region strategy
is better than others, while the Pareto front strategy is the worst. The feasible
region represents both dominated and non-dominated solutions therefore, selecting
pairs from this region might provide a wider range of alternatives, exposing the
decision-maker to more diverse and informative trade-offs. On the other hand,
the Pareto front consists of solutions that are non-dominated, meaning no other
solutions are better in all objectives. This might limit the range of trade-offs
presented to the decision-maker, reducing the richness of information available for
learning preferences. It is also noted that if we include learning information in the
training data generation process, there is an increase in performance for all metrics
except for the Utopian region strategy. For managerial point of view, it would be
more logical to present the alternatives to customers from a wider and realistic
area in order to understand their preferences correctly. This type of study of a
broad customer base may help an organization shape itself and its production or
marketing strategies.

A future direction for this thesis is to extend the model to a stochastic decision-
making process. At each iteration, the decision-maker can select the preferred op-
tion based on a certain probability which brings additional complexity to the model.
Another extension can be the consideration of qualitative objective functions such
as sustainability or customer experience in addition to quantitative objective func-
tions. Also, hybrid strategies can be developed. For example, applying the feasible
region strategy in the first T iterations and the Pareto front strategy in the remain-
ing iterations. Moreover, the integration of other machine learning techniques such
as reinforcement learning or deep learning can be investigated to handle more com-
plex, dynamic supply chain networks with more objectives and decision variables.
In future studies, the strategies can be validated through case studies in different in-
dustries to understand their practical implications and limitations in the real-world.
Additionally, the strategies developed in this thesis can be implemented in a variety
of other domains, including healthcare, finance, and urban planning.

42



BIBLIOGRAPHY

Aggarwal, M. (2015). On learning of weights through preferences. Information
Sciences, 321, 90–102.

Amin, S. H. & Zhang, G. (2013). A multi-objective facility location model for
closed-loop supply chain network under uncertain demand and return. Applied
Mathematical Modelling, 37 (6), 41654176.

Billal, M. M. & Hossain, M. M. (2020). Multi-objective optimization for multi-
product multi-period four echelon supply chain problems under uncertainty.
Journal of Optimization in Industrial Engineering, 13 (1), 1–17.

Cheshmehgaz, H. R., Desa, M. I., & Wibowo, A. (2013). A flexible three-level
logistic network design considering cost and time criteria with a multi-objective
evolutionary algorithm. Intelligent Manufacturing, 24, 277–293.

Cinelli, M., Kadziński, M., Gonzalez, M., & Słowiński, R. (2020). How to support
the application of multiple criteria decision analysis? let us start with a com-
prehensive taxonomy. Omega, 96.

Coello, C. A. C., Brambila, S. G., Gamboa, J. F., Tapia, J. M. G. C., & Gómez,
R. H. (2020). Evolutionary multiobjective optimization: open research areas
and some challenges lying ahead. Complex Intelligent Systems, 6, 221–236.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary
Computation, 6, 182–197.

Desmedt, N., Iliopoulou, V., Lopez, C., & Grave, K. D. (2021). Active preference
learning in product design decisions. Procedia CIRP, 100, 277–282.

Dias, L. C., Dias, J., Ventura, T., Rocha, H., Ferreira, B., Khouri, L., & Lopes,
M. D. (2022). Learning target-based preferences through additive models: an
application in radiotherapy treatment planning. European Journal of Opera-
tion Research, 302 (1), 270–279.

Farahani, R. Z. & Elahipanah, M. (2008). A genetic algorithm to optimize the
total cost and service level for just-in-time distribution in a supply chain.
International Journal of Production Economics, 111, 229–243.

Fullér, R. & Majlender, P. (2001). An analytic approach for obtaining maximal
entropy owa operator weights. Fuzzy Sets and Systems, 124 (1), 53–57.

Fürnkranz, J. & Hüllermeier, E. (2011). Preference Learning and Ranking by Pair-
wise Comparison. Springer.

Govindan, K., Kadziński, M., & Sivakumar, R. (2017). Application of a novel
promethee-based method for construction of a group compromise ranking to
prioritization of green suppliers in food supply chain. Symmetry, 71, 129–145.

Haimes, Y., Lasdon, L., & Wismer, D. (1971). On a bicriterionformulation of the
problems of integrated systemidentification and system optimization. IEEE-
Transactions on Systems, Man, and Cybernetics, 1, 296–297.

Hoi, S. C. H., Sahoo, D., Lu, J., & Zhao, P. (2021). Online learning: A comprehensive
survey. Neurocomputing, 459, 249–289.

Huy, T. H. B., Nallagownden, P., Truong, K. H., Kannan, R., Vo, D. N., & Ho, N.
(2022). Multi-objective search group algorithm for engineering design prob-
lems. Applied Soft Computing, 126.

43



Hwang, C. L. & Lin, M. J. (1987). Group Decision Making under Multiple Criteria:
Methods and Applications. Springer–Verlag.

Hwang, C.-L. & Masud, A. S. M. (1979). Multiple objective decision making, methods
and applications: a state-of-the-art survey. Springer-Verlag.

Jamshidi, R., Ghomi, S. M. T. F., & Karimi, B. (2012). Multi-objective green
supply chain optimization with a new hybrid memetic algorithm using the
taguchi method. Scientia Iranica, 19 (6), 1876–1886.

Jayarathna, C. P., Agdas, D., Dawes, L., & Yigitcanlar, T. (2021). ulti-objective
optimization for sustainable supply chain and logistics: A review. Sustainabil-
ity, 13 (24), 13617.

Kersuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute
resolution method by applying new step–wise weight assessment ratio analysis
(swara). Journal of Business Economics and Management, 11 (2), 243–258.

Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., & Turskis, Z. (2021). De-
termination of objective weights using a new method based on the removal
effects of criteria (merec). Symmetry, 13, 525.

Krzysztof Martyn, M. K. (2023). Deep preference learning for multiple criteria
decision analysis. European Journal of Operation Research, 305 (2), 781–805.

Liu, S. & Papageorgiou, L. G. (2013). Multiobjective optimisation of production,
distribution and capacity planning of global supply chains in the process in-
dustry. Omega, 41, 369–382.

Maier, H. R., Razavi, S., Kapelan, Z., Matott, L. S., Kasprzyk, J., & Tolson, B. A.
(2019). Introductory overview: Optimization using evolutionary algorithms
and other metaheuristics. Environmental Modelling Software, 114, 195–213.

Marler, R. T. & Arora, J. S. (2004). Survey of multi-objective optimization meth-
ods for engineering. Structural and Multidisciplinary Optimization, 26 (6),
369–395.

Marler, R. T. & Arora, J. S. (2010). The weighted sum method for multi-objective
optimization: new insights. Structural and Multidisciplinary Optimization,
41 (6), 853–862.

Mastrocinque, E., Yuce, B., Lambiase, A., & Packianather, M. S. (2013). A multi-
objective optimization for supply chain network using the bees algorithm.
International Journal of Engineering Business Management, 5 (28), 1–11.

Meignan, D., Knust, S., Frayret, J. M., & Gaud, G. P. N. N. (2015). A review and
taxonomy of interactive optimization methods in operations research. ACM
Transactions on Interactive Intelligent Systems, 5, 17:1–17:43.

Messac, A. & Mattson, C. A. (2004). Normal constraint method with guarantee
of even representation of complete pareto frontier. AIAA Journal, 42 (10),
2101–2111.

Navon, A., Shamsian, A., Chechik, G., & Fetaya, E. (2021). Learning the pareto
front with hypernetworks. In Proceedings of International Conference on
Learning Representations (ICLR).

Odu, G. O. (2019). Weighting methods for multi-criteria decision making technique.
Journal of Applied Sciences and Environmental Management, 23 (8), 1449.

Pareto, V. (1906). Manuale di economia politica. Societa Editrice, 13.
Qi, Y., Zhang, Q., Ma, X., Y Quan, Y., & Miao, Q. (2017). Utopian point based

decomposition for multi-objective optimization problems with complicated
pareto fronts. Applied Soft Computing, 61, 844–859.

44



Qu, Q., Ma, Z., Clausen, A., & Jørgensen, B. N. (2021). A comprehensive review of
machine learning in multi-objective optimization. In 2021 IEEE 4th Interna-
tional Conference on Big Data and Artificial Intelligence (BDAI), (pp. 7–14).,
Qingdao, China.

Ripon, K. S. N., Khan, K. N., Glette, K., Hovin, M., & Torresen, J. (2011). Us-
ing pareto optimality for solving multi-objective unequal area facility layout
problem. In Proceedings of the 13th Annual Genetic and Evolutionary Com-
putation Conference, (pp. 12–16)., Dublin, Ireland.

Ruiz-Femenia, R., Guillen-Gosalbez, G., Jimenez, L., & Caballero, J. A. (2013).
Multi-objective optimization of environmentally conscious chemical supply
chains under demand uncertainty. Chemical Engineering Science, 95, 1–11.

Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill.
Sahoo, S. K. & Goswami, S. S. (2023). A comprehensive review of multiple criteria

decision-making (mcdm) methods: Advancements, applications, and future
directions. Decision Making Advances, 1 (1), 25–48.

Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic
algorithms. In Proceedings of the 1st International Conference on Genetic
Algorithms, (pp. 93–100)., Pittsburgh, PA, USA.

Shepetukha, Y. & Olson, D. L. (2001). Comparative analysis of multiattribute
techniques based on cardinal and ordinal inputs. Math. Comput. Modell., 34,
229–241.

Trisnaa, T., Mariminb, M., Arkemanb, Y., & Sunartib, T. C. (2016). Multi-objective
optimization for supply chain management problem: A literature review. De-
cision Science Letters, 5, 283–316.

Tseng, M. L., Ardaniah, V., Sujanto, R. Y., Fujii, M., & Lim, M. K. (2021). Mul-
ticriteria assessment of renewable energy sources under uncertainty: barriers
to adoption. Technological Forecasting and Social Change, 171, 525.

Vafaeenezhad, T., Tavakkoli-Moghaddam, R., & Cheikhrouhou, N. (2019). Multi-
objective mathematical modeling for sustainable supply chain management in
the paper industry. Computers and Industrial Engineering, 135, 1092–1102.

Vidrova, Z. (2020). Supply chain management in the aspect of globalization. In SHS
Web of Conferences, volume 74, (pp. 04031).

Wang, Z., Li, J., Rangaiah, G. P., & Wu, Z. (2022). Machine learning aided multi-
objective optimization and multi-criteria decision making: Framework and two
applications in chemical engineering. Computers and Chemical Engineering,
165, 107945.

Zavadskas, E. K. & Podvezko, V. (2016). Integrated determination of objective
criteria weights in mcdm. International Journal of Information Technology
Decision Making, 15 (02), 267–283.

Zelany, M. (1974). A concept of compromise solutions and the method of the dis-
placed ideal. Computers Operations Research, 1 (3-4), 479–496.

Zhang, A., Luo, H., & Huang, G. Q. (2013). A bi-objective model for supply chain
design of dispersed manufacturing in china. International Journal of Produc-
tion Economics, 146 (1), 48–58.

Zhao, F., Tang, J., & Yang, Y. (2012). A new approach based on ant colony
optimization (aco) to determine the supply chain (sc) design for a product
mix. Journal of Computers, 7 (3), 736–743.

45


	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	INTRODUCTION
	LITERATURE REVIEW
	Multi-objective Optimization
	Preference Learning in Multi-objective Optimization
	Multi-objective Optimization in Supply Chain

	PROBLEM FORMULATION
	APPLICATION IN SUPPLY CHAIN
	Supply Chain Network Problem
	Mathematical Model

	METHODOLOGY
	Strategy 1: Pairs from Pareto Frontier
	Strategy 2: Pairs from Feasible Region
	Strategy 3: Pairs from Utopian Region
	Using Learning Information to Generate Training Data

	EXPERIMENTAL RESULTS
	Designing Test Problems
	Evaluation Metrics
	Accuracy
	Percentage Deviation
	Euclidean Distance

	Impact of Smart Training Data

	CONCLUSION
	BIBLIOGRAPHY

