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Abstract. In this study, a new structural modal model is developed based on the inverse finite 
element method (iFEM) to regenerate the natural frequencies and mode shapes of plates from 
in situ strain measurements. Also, the proposed model is applied to the structural damage 
diagnosis of vibrating plates. To perform the necessary simulations, a cantilever plate is 
analyzed with a limited number of strain gauges through the iFEM approach under hammer 
testing loads. To this end, the plate is dynamically simulated with/without initial damage 
using forward finite element analysis. The strain response at each time step is recorded as 
input to the iFEM analysis. The results of iFEM versus reference solutions are 
comprehensively compared. Consequently, the superior modal data identification and damage 
diagnosis capability of the proposed methodology are demonstrated. Overall, the iFEM 
approach has been proven as a turn-key solution for experimental modal testing and structural 
health monitoring of plates under vibration.  

Keywords: Shape sensing; inverse finite element method; vibration; natural frequency 
identification; modal shape reconstruction; damage diagnosis.  

1 INTRODUCTION 
Plates are commonly used in different sizes and shapes to manufacture various structural 

components for aerospace, marine, and automotive engineering applications. Depending on 
the environmental/operations conditions, these structures can be subjected to a variety of 
dynamic loads. Therefore, performing dynamic analysis of plates is of great importance to 
predict the realistic mechanical response of the engineering parts. Among the class of 
dynamic (frequency/time/hybrid domain) analysis, experimental/numerical modal analysis 
serves as a vital technology in the field of structural dynamics because it enables the 
predictions of modal parameters, such as natural frequencies, mode shapes, and damping 
ratios, from simulated or measured vibration data [1-3]. This mathematical model is the modal 
model of the system, and the information about its properties is called “modal data”. Modal 
data obtained from the experiments can be utilized to perform real-time condition monitoring, 
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structural health monitoring, and damage diagnosis/prognosis. Hence, the development and 
refinement of experimental modal identification techniques are significantly required to 
enhance the performance and safety of a wide range of structures. 

Modal testing is an experimental technique for determining the modal model of a time-
invariant linear oscillatory system. The theoretical basis of this technique is based on the 
relationship between the vibrational response at one point in the structure and the excitation at 
the same or at another point as a function of excitation frequency [4]. This relationship, which 
often takes the form of a complex mathematical function, is called a frequency response 
function (FRF). In modal testing, FRFs, or the impact response of the structure, are measured. 
FRFs can be measured by applying a (measured) force to a point on the structure, in the 
absence of other excitation forces, and measuring the vibration response at one or more points 
on the structure. Modern excitation methods and advances in modal analysis theory have 
made it possible to apply more complex excitation mechanisms [5]. Experimental mode 
identification has various applications such as fixing bugs, matching the finite element model 
to the experimental results, repairing the structure, sensitivity analysis, reducing the 
mathematical models, and diagnosing structural defects [6-7].  

For the identification of structural modes in an experiment, measurement of the frequency 
response can be conducted through displacement data. Thus, accurate prediction of the 
structural deformations in the experimental may play a critical role for full-field modal 
identification (e.g., natural frequencies, and model shape in three-dimensional domain). To 
this end, the inverse finite element method (iFEM), i.e., originally developed for the purpose 
of deformation reconstruction (shape sensing) from a strain sensor network [8], can be 
adopted to find full-field deformations of the vibrating plates in real-time. In literature, the 
iFEM methodology was demonstrated to be a highly accurate shape-sensing algorithm for 
beam/plate/shell/solid-like structures. For instance, four-node (iQS4) [9] and eight-node 
(iCS8) [10] inverse shell elements were developed to analyze real-time structural 
deformations of shell structures. According to a recent comparative and review study of the 
iFEM element [11], the iQS4 element became popular in the last decade for shape sensing and 
structural health monitoring applications [12-15].  

In the study, we present a systematic iFEM/iQS4-based strategy for the first time to 
reconstruct structural modal data including natural frequencies and full-field structural mode 
shapes from the experimental strain data of the sensor network. The potential use of the 
present modal model based on iFEM can also be extended to damage diagnosis of vibrating 
plates. Therefore, after verification of the present modal system identification, a fault/damage 
diagnosis example is also solved using the proposed methodology. Overall, the results are 
compared reference solutions generated by the numerical forward analysis. Hence, the iFEM 
results are comprehensively validated while emphasizing the underlying principles, 
advantages, limitations, and practical applications of the proposed iFEM modal model. This 
paper is structured into four sections. After the introduction presented in Section 1, the 
mathematical foundation of the proposed iFEM-based modal identification method is 
summarized in Section 2. Lastly, Section 3 describes the numerical examples whereas the 
concluding remarks are provided in Section 4.  
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2 INVERSE FINITE ELEMENT FORMULATION 

2.1 The iQS4 Element Formulation 
In this study, we use a four-node quadrilateral inverse shell element, iQS4, developed 

originally by Kefal et al. [9]. The iQS4 element formulation is based on the Mindlin’s plate 
kinematic relations. Accordingly, the displacement vector components of a material point 
within the iQS4 element can be defined as: 
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where u  vector defines the kinematic variables of the Mindlin plate, the eN  matrix contains 
second order Lagrangian shape functions of the element [9], and the eu  vector defines the 
element degrees of freedom (DOF) vector of the iQS4 element, which is consisted of three 
translational and three rotational DOFs per node. Linear infinitesimal strains of any material 
point within the element can be calculated as: 
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where ii  is the normal strain along x1 and x2 coordinates, 12  is the in-plane shear strains, and 
iz  is the transverse (out-of-plane) shear strains of the element. These strain components are 

defined as first order derivatives of the kinematic variables with respect to in-plane coordinate 
coordinates, ( 1,2)ix i  , which are referred to as “membrane, e , bending, κ , and γ , 
transverse-shear section strains.” Substituting the e eN u  approximation in these vectors and 
taking relevant derivatives of eN  with respect to in-plane coordinates, section strains are 
approximated using eB , B , B  strain-displacement relation matrices [9]. 

For performing an accurate iFEM analysis, a set of strain gauges or fiber optic cables 
should be mounted on the top and bottom of the structure within each element position. 
Accordingly, utilizing the in situ sensor data, the experimental membrane and bending section 
strains can be calculated as: 

,
2 2

i i i i
i i h

    
 
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Ε Κ

(3) 

where the iΕ  and iΚ  terms are experimental counterparts of e  and κ  analytical section 
strains, respectively, and the 2h term stands for the total thickness of the iQS4 element. 
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Moreover, i
ε  and i

ε  vectors contain the experimental surface strain measurements obtained 
from the sensors at position,  1 2, ( 1,2, )sensors

i ix x i n x . Here, the superscripts ‘+’ and ‘–’ 
denote the top and bottom of surface of an iQS4 element, in the given order. The values of the  

iΕ  and iΚ  are not continues within the element as they correspond to a specific point in the 
element domain. Their continuous form ( i Ε Ε  and i Κ Κ ) can be obtained by employing 
smoothing procedures [16]. Alternatively, considering the relatively small size of each inverse 
element size compared to the whole structural discretization, the experimental section strain 
can be assumed constant over each iQS4 element. Therefore, even a single set of strain 
sensors is enough to obtain continuous form of the experimental section strains within the 
whole iFEM mesh. Note that the experimental counterpart of the γ  section strains, 
represented as Γ , can be safely omitted for the iFEM analysis of thin shell structures. 

Next, to find the minimum error between analytical and experimental strains of an iQS4 
element, a weighted least squares function, ( )e e e  u , is defined as: 

 2 2 22
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where the L2 norms of the strain difference vectors can be computed as 2

2
Tχ χ χ . To provide 

consistency between units, L2 norm for bending curvatures is multiplied by thickness square, 
(2h)2, and the surface integral term is normalized with the total area of the iQS4 element, A.
The coefficients of ew , w , w  are the penalty terms, as such they are adjusted to a small 
positive value (i.e., compared to unity such as 410  ) for the iQS4 elements without sensors. 
Otherwise, they are set to unit number 1 for elements with a sensor. To solve an iFEM 
problem, first variation of the Eq. (4) with respect to eu  can be performed as: 
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where the variation of the experimental measurements vanishes, 0 0  . Analytical section 
strains given in Eq. (2) can be substituted into the Eq. (5), and the resultant can be minimized 
to obtain the final set of iFEM equations as:  

  0e eT e e e e e e      u k u f k u f (6) 

where ek  and ef  are the shape (left-hand-side) matrix and experimental-strain-data (right-
hand-side) vectors, respectively. These quantities constitute the iQS4 equations as: 
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The local equations must be transformed to a global form by considering basis vectors of 
elemental and global coordinate systems of the structural domain. Note that this 
transformation can be performed like the classical finite element analysis. Then, the global 
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equations of each iQS4 element can be assembled to obtain a global equation system of the 
entire discretization. Afterwards, constraint boundary conditions are applied to solve the 
global system, and subsequently obtain displacement DOF in the full-field domain. 

2.2 Structural Modal Model and Damage Diagnosis 
The iFEM/iQS4 analysis produces the full-field displacement DOF of the structure, these 

displacements can be post processed into meaningful data for various applications as well. 
Here, modal shape and damage identification are concurrently investigated. Since iFEM 
produces responses in time domain, these responses need to be switched to frequency domain. 
This can be done with Fourier transformation of the real-time response. There are different 
algorithms readily available to achieve fast and reliable Fourier transformation of the signal. 
One such method is Fast Fourier Transformation that finds the frequency spectrum of the 
signal in ( log )O N N  time where N  is the length of the sequence. In general, FFT is achieved 
by separating the even and odd terms of the Discrete Fourier Transformation (DFT) from each 
other. In the complex mathematical form, the DFT sequence can be written as: 

21

0
( 1,2......, 1)

iN nk
N

k n
n

A a e k N
 



  
(8) 

where, na  is the value of the signal in discrete time samples. Moreover, the sequence given in 
Eq. (8) can be separated into even and odd terms by using the Cooley-Tukey algorithm. For 
the brevity, details of these algorithms are not included here.  

The FFT analysis provides useful quantities in the frequency domain to obtain meaningful 
data that simply cannot be deducted from the time domain signal. One such usage of the FFT 
is for obtaining frequency response functions (FRFs). Since the iFEM output data in time 
domain is available in the full-field domain, the reconstructed displacement data can be 
switched into frequency domain by FFT, and then FRFs can be obtained by sampling 
response data for a range of frequencies on any point on the structure regardless of the sensor 
locations. Then, examining the peaks in FRFs of displacements at different locations of the 
structural domain, natural frequencies of the structure can be obtained. Plotting the 
magnitudes of the FRFs over the full-field structural domain for each natural frequency, one 
can inspect the contour plots of the structural mode shapes. Correct identification of the 
structural modal data lends itself to accurate damage identification because the natural 
frequencies of the pristine and damaged structures are expected to be different, and thus can 
be effectively compared for each time series of strain data acquisition using iFEM-FRFs data. 
Hence, it is possible to diagnose the damage by observing the shift in the locations of the 
natural frequency peaks between pristine and damaged configurations. 

3 NUMERICAL EXAMPLES 
In this section, the iFEM-based model identification and damage diagnosis procedures 

described in Section 2 are verified by performing modal testing of a cantilever plate. To this 
end, pristine and damaged cases of a plate subjected to an instantaneous impact, namely 
“hammer test”, is considered as depicted in Figure 1. Hammer test is simulated by running 
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full transient analysis based on forward finite element method (FEM) in Ansys Mechanical 
APDL software. During the simulation, physical damping is set to zero; however, a small 
numerical damping (which is less than 1%) is enforced by default in the transient solution 
stage of Ansys. Moreover, Newmark integration scheme is utilized to solve the transient 
problem. To create virtual discrete strain data for iFEM analysis, the strain data is exported 
for different sampling frequencies, namely 0.5 kHz and 1 kHz. Note that these forward 
analyses are not required for an experimental test given that strain data can be collected 
directly from the strain gauges in real time. It is worth noting that sampling frequency is 
identical to integration frequency of the forward transient analysis. Hereafter, terminology of 
“strain sampling frequency” is adopted to be consisted with the experimental terminology for 
strain sensors. In addition to transient analysis, modal analysis of both pristine and damaged 
case is performed to obtain natural frequencies of the structure. These modal analysis results 
can be considered as a reference solution for the iFEM analyses. Then, these reference results 
compared with the iFEM mode identification results to show the high accuracy of the 
presented method.  

Figure 1: Plate geometry, damage shape and position, applied load and iFEM sensor placement model.

The square plate shown in Figure 1 is subjected to an impact load of F = 1 N, which is 
applied at 1 2( , ) (1,1)x x   in the negative z direction at onset of the transient analysis for about 
0.002 s. One edge of the plate is fully clamped so all the kinematic variables along the 
clamped edge are constrained. The plate has a length of l = 1 m and a thickness of 2h = 5 mm.
As presented in Figure 1, circular damage location and size are introduced as a parameter of 
the length. The plate is made of an isotropic material with elastic modulus of 200 GPa,
Poisson ratio of 0.3 and density of 7850 kg/m3. To simulate the damage accurately, the elastic
modulus of the finite elements encountered in the damaged region is degraded by a factor of 
10-5. Here, 36 strain sensors are placed in a square array parallel to plate edges. This number

1141



A. Kefal, M. A. Abdollahzadeh and M. Y. Belur 

of strain gauges can be minimized by applying smoothing element analysis [16]. 
Nevertheless, our aim is to verify the capability of the proposed approach for the present 
scenario; therefore, the present number of sensors is not the main concern. For the forward 
finite element analysis, the discretization of the model has 30×30 shell elements both for 
pristine and damaged cases. On the other hand, 10×10 uniformly distributed iQS4 elements 
are utilized to conduct iFEM analysis. Note that in the iFEM analysis, elements with sensors 
have weighting coefficients of unity whereas the elements without sensors are assigned to 
weighting coefficients of 10-4. After performing iFEM and FEM (reference) simulations, the
transient displacement response at 1 2( , ) (1,0.5)x x  , named as Point 1, is plotted in Figure 2. In 
this figure, iFEM results and reference solution almost identically match each other for 
different time steps. Therefore, this result verifies the high shape-sensing capability of the 
iQS4 element for real-time monitoring of vibrating plates.  

Figure 2: Displacements response at Point 1 obtained from reference solution and iFEM analysis for strain 
sampling frequency of 0.5 kHz. 

Figure  3: Comparison of reference (natural) frequencies of the plate and FRF of displacements at Point 2 
obtained from iFEM for 0.5 kHz and 1 kHz strain sampling frequencies.
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The iFEM response in time domain is then switched to frequency domain, and natural 
frequencies are identified by the modal shape reconstruction methodology presented in 
Section 2.2. To inspect the FRF results, displacement response of any point within plate 
domain can be selected. This is true for a real experiment of the present hammer test case as 
well since the displacement field of the entire domain is available from the iFEM solution. 
Therefore, there is no need to select measurement points prior to the experiment for mode 
identification using iFEM. Thus, after iFEM analysis, we plot the displacement FRF at Point 
2, 1 2( , ) (1,1)x x   to identify the natural frequencies of the plate as shown in Figure 3.  In this 
figure, iFEM (0.5 kHz) and iFEM (1 kHz) solutions correspond to the iFEM analyses 
performed by using the strain data input sampled at 0.5 kHz and 1 kHz, respectively. Also, the 
modes found from the reference modal analysis (i.e., obtained from FEM) are marked in 
Figure 3 as black dots with the corresponding natural frequencies next to them. For the 
bandwidth of 50 Hz, FRF peaks of iFEM (0.5 kHz) and iFEM (1 kHz) results precisely 
coincide with reference natural frequencies of the plate. On the other hand, the precision of 
iFEM (0.5 Hz) slightly diminishes at the higher frequencies whereas iFEM analysis with 1 
kHz sampled strain-sensor data still provides excellent accuracy. Such a result is expected 
since lower sampling frequencies results in a lower resolution of the FFT simulation.  

Table 1: Pristine modes and percent difference (PD) with respect to modal analysis results. 

Mode Reference 
Freq., Hz 

iFEM (0.5 kHz) 
Prediction, Hz 

iFEM (1kHz) 
Prediction, Hz 

PD for iFEM 
(0.5 kHz), % 

PD for iFEM 
(1 kHz), % 

1 4.22 4.15 4.21 1.6 0.2 
2 10.33 10.25 10.31 0.8 0.2 
3 25.87 25.63 25.88 0.9 0.03 
4 33.05 32.71 33.02 1.0 0.1 
5 37.61 37.11 37.48 1.3 0.3 
6 65.81 62.50 65.06 5.0 1.1 
7 74.46 70.31 73.67 5.6 1.1 
8 77.95 73.24 76.90 6.0 1.3 
9 86.24 79.59 84.78 7.7 1.7 

To elaborate on this, the first nine different modes of the plate predicted by iFEM (0.5 
kHz) and iFEM (1 kHz) are listed in Table 1. As can be seen from the percent differences 
between iFEM results and reference solutions, iFEM (0.5 kHz) analysis produces up to 7.7% 
error for the natural frequency identification while iFEM (1 kHz) can precisely identify the 
first 9 modal frequencies of the plate with errors less than 1.7%. However, the results of 
iFEM (0.5 kHz) up to 5th mode are precise enough since the 0.5 kHz sampling frequency is
nearly adequate for the 0-35 Hz bandwidth. Furthermore, modal shapes reconstructed by 
iFEM (1 kHz) analysis are compared with the reference FEM solution in Figure 4. As can be 
seen from this figure, the iFEM displacement contours are almost indistinguishable from the 
reference solution, thereby confirming the excellent capabilities of the iFEM/iQS4 
methodology for full-field mode shape reconstruction of vibrating plates. 
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Figure 4: Comparison of iFEM (1 kHz) and reference solution contours for the mode shapes of the plate. 

The damage diagnosis capability of the proposed inverse method can be explored by 
conducting an iFEM analysis with the strain data (e.g., the sampling rate of 1 kHz) acquired 
from sensors mounted on the damaged plate. In Figure 5, the real-time deformations at Point 
1 obtained from iFEM analysis are plotted to illustrate the difference of the structural 
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response between pristine and damaged plate. According to the time-domain response in this 
figure, one can obviously observe that the iFEM displacement solution includes the effect of 
the damage introduced to the plate model. Then, for diagnosing the damage more carefully, 
displacement FRF responses obtained from iFEM analysis for pristine and damaged 
conditions of the plate are compared in Figure 6. Here, the first 5 peaks of the displacement 
FRF shift to lower modal frequencies, which can be attributed to the presence of damage 
available in the interior domain. Besides,  the frequencies readings of iFEM for the damaged 
case are almost identical to the reference natural frequencies of the damaged plate. Hence, it is 
confirmed that the proposed iFEM/iQS4 methodology provides high accuracy for both time 
and frequency response for the damaged case as well. Also, it enables the correct 
identification of major modes in the damaged plate, thus serving as a promising tool for 
damage diagnosis of vibrating plates. 

Figure 5: Pristine and damaged structures displacement response at Point 1.

Figure 6: Comparison of displacement FRF at Point 2 obtained from iFEM simulations of damaged and 
pristine plates as well as reference (natural) frequencies of the damaged plate.
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4 CONCLUDING REMARKS 
In this research effort, the accuracy of the iFEM/iQS4 element formulation is explored for 

modal shape reconstruction and natural frequency identification by conducting a numerical 
simulation of a hammer tests on a cantilever plate. Two different hammer tests simulation are 
performed with different strain sampling frequencies. In addition, a circular damage is 
introduced to pristine model and a high frequency hammer test is simulated to verify the 
precision of the method for the damaged case as well. Performing iFEM analysis with 
different strain-data sampling as input, modal shapes of a plate under low-frequency vibration 
are correctly reconstructed. Moreover, it is demonstrated that the precision of the iFEM/iQS4 
method increases with higher strain sampling frequency. Furthermore, even though it is 
possible to obtain natural frequencies just by directly utilizing a single measurement location 
reading, the suggested iFEM based approach is a post processing extension of the full field 
displacement solution of the iFEM. Therefore, it is shown in addition to precise natural 
frequency prediction of the method, iFEM can reconstruct full-field mode shape of the 
structure for a given natural frequency by using just a limited number of sensors. 

Although the results of the 0.5 kHz strain sampling rate accurately predict the low natural 
frequencies well, higher sampling frequencies, e.g., 1 kHz, increase the precision of the iFEM 
methodology exponentially. As such, it is demonstrated that iFEM can determine the first 9 
natural frequencies of the plate with less than 2% error. Furthermore, the damaged case 
results of the iFEM analysis confirm precise damage diagnosis capability of the proposed 
method. Therefore, it can be concluded that the proposed iFEM strategy is a promising 
method for constructing a structural modal model (natural frequency identification and modal 
shape reconstruction) as well as performing structural health monitoring of vibrating plates. 
Further research should focus on the experimental verification of the numerical results for 
both intact and damaged structures. Besides, new sensor placement models can be explored 
for modal testing in future studies by taking advantage of the smoothed iFEM formulation 
[16] for a sensor network with a small number of strain gauges and/or fiber optic sensing. 
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