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ABSTRACT 
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Curvilinear fibers, Functionally Graded (FG) materials, Plate kinematics, Refined Zigzag 

Theory (RZT), Finite Element Modeling (FEM).  

The use of composite structures is becoming increasingly prevalent in structural 

engineering, due to their superior specific strength and stiffness. Fiber steering and 

functional grading of material to produce a Variable Stiffness (VS) composite or a 

Functionally Graded (FG) material composite, are two widely used tailoring methods for 

achieving the desired mechanical properties in composite structures to prevent their 

failure. However, the increased expansion in the design space for tailoring in these 

structures can pose a substantial challenge during structural analysis. It is essential to 

address this challenge by utilizing computationally efficient and accurate evaluations, 

particularly during determining the optimal fiber angles and the right material 

Compositional Gradient (CG) profiles based on the mechanical requirements. This study 

aims to comprehensively adopt and reformulate the Refined Zigzag theory (RZT) to 

accurately predict the strain and stress of different VS composite and FG sandwich plate 

laminates under static deformation. Therefore, the second chapter of this thesis proposes 

an RZT-based model which considers the variation of the curvilinear fiber angles in 

calculation of the ZigZag (ZZ) functions and utilizes their derivatives with respect to in-

plane coordinates in the definition of strains. Also, in the same chapter, the ZZ functions 

of the proposed model are enhanced to account for the continuous thickness-wise 

variation of the material. This enhancement allows the model to be capable of analyzing 
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sandwich panels and composite plates consisting of FG and/or VS layers composite 

plates. Furthermore, a shear locking-free three node triangle RZT element is adopted to 

keep the degree of freedom in its minimum level and increase the computational 

efficiency.  In order to accurately predict thickness-wise transverse stresses, a recovery 

procedure based on the integration of the Cauchy’s equilibrium equations is presented. In 

the third and fourth chapters, by solving numerical problems it is shown that the results 

of this procedure have a high level of accuracy, comparable to more computationally 

demanding three-dimensional Finite Element (FE) approaches or other higher-order 

theories. Therefore, the proposed model in this thesis provides an efficient and accurate 

method for analyzing VS and FG composite laminates. This model can be reliably 

integrated to design platforms to serve for tailoring the curvilinear fiber orientations and 

the material CG profiles and potentially improve the structural performance of these 

structures.  
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ÖZET 

Anahtar Kelimeler: Kompozit laminatlar, Sandviç plakalar (SP), Uyarlamak, Değişken 

rijitlik, Eğrisel fiberler, Fonksiyonel Derecelendirilmiş (FG) malzemeler, Plaka 

kinematiği, Rafine Zigzag Teorisi (RZT), Sonlu Eleman Modellemesi (FEM). 

Kompozit yapıların kullanımı, üstün özgül dayanımları ve rijitlikleri nedeniyle yapı 

mühendisliğinde giderek yaygınlaşmaktadır. Değişken Sertlik (VS) kompoziti veya 

Fonksiyonel derecelendirilmiş malzeme (FG) kompoziti üretmek için fiber yönlendirme 

ve malzemenin fonksiyonel derecelendirmesi, kompozit yapılarda hasar oluşmalarını 

önlemek için istenen mekanik özellikleri elde etmek için yaygın olarak kullanılan iki 

uyarlama yöntemidir. Bununla birlikte, bu yapılarda uyarlama için tasarım alanında artan 

genişleme, yapısal analiz sırasında önemli bir zorluk oluşturabilir. Özellikle mekanik 

gereksinimlere dayalı olarak en uygun fiber açılarının ve doğru malzeme bileşimi gradyan 

profillerinin belirlenmesi sırasında, hesaplama açısından verimli ve doğru 

değerlendirmeler kullanarak bu zorluğun üstesinden gelmek çok önemlidir. Bu çalışma, 

statik deformasyon altında olan farklı VS kompozit ve FG sandviç plaka laminatlarının 

gerinim ve gerilimi doğru bir şekilde tahmin etmek için rafine Zikzak teorisini (RZT) 

kapsamlı bir şekilde benimsemeyi ve yeniden formüle etmeyi amaçlamaktadır. Bu 

nedenle, bu tezin ikinci bölümü, zikzak fonksiyonlarının hesaplanmasında eğrisel fiber 

açılarının değişimini dikkate alan ve gerinimlerin tanımlanmasında düzlem içi 

koordinatlara göre türevlerini kullanan RZT tabanlı bir model önermiştir. Ayrıca, aynı 

bölümde, önerilen modelin ZikZak (ZZ) fonksiyonları, malzemenin sürekli kalınlık-bazlı 

değişimini hesaba katacak şekilde geliştirilmiştir. Bu geliştirme, modelin sandviç 

panelleri ve FG ve/veya VS katmanlı kompozit plakalardan oluşan kompozit plakaları 

analiz edebilmesini sağlar. Bunlara ek olarak, serbestlik derecesini minimum seviyede 
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tutmak ve hesaplama verimliliğini artırmak için kayma kilitlenmesiz üç düğümlü üçgen 

RZT elemanı kullanılmıştır. Kalınlık yönü kayma gerilmelerini doğru bir şekilde tahmin 

etmek için, Cauchy'nin denge denklemlerinin entegrasyonuna dayalı bir geri kazanım 

prosedürü sunulmuştur. Üçüncü ve dördüncü bölümlerde, sayısal problemler çözülerek, 

bu prosedürün sonuçlarının, hesaplama açısından daha zorlu üç boyutlu Sonlu Eleman 

(FE) yaklaşımları veya diğer üst düzey teorilerle karşılaştırılabilir yüksek bir doğruluk 

düzeyine sahip olduğu gösterilmiştir. Bu nedenle, bu tezde önerilen model, VS ve FG 

kompozit laminatların analizi için verimli ve doğru bir yöntem sağlar. Bu model, eğrisel 

fiber oryantasyonlarının ve malzeme CG profillerinin uyarlanmasına hizmet etmek ve 

potansiyel olarak bu yapıların yapısal performansını iyileştirmek için tasarım 

platformlarına güvenilir bir şekilde entegre edilebilir. 
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1 INTRODUCTION 

Material technology directly impacts the efficiency and effectiveness of human activities 

and plays a pivotal role in shaping our world. With the growing manufacturing industry, 

materials that offer better strength, affordability, and environmental sustainability are 

becoming increasingly important. In this regard, many applications demand materials 

with conflicting properties which are not achievable with a single, monolithic material. 

As a result, as a viable solution composite materials have been introduced due to their 

superior properties and potential for use in multiple applications [1–3]. These materials 

consist of a combination of two or more components, known as the matrix phase and the 

reinforcement phase namely particles or fibers. The combination of the matrix and fibers 

offer superior performance when compared separately to either of these components. It 

has been demonstrated in many research studies that Fiber-Reinforced Composites 

(FRCs) can serve to be an alternative to their conventional metal counterparts due to 

significant improvements in their structural, mechanical, and tribological properties [3–

5]. The design technique of conventional Constant Stiffness (CS) composites with 

Unidirectional (UD) fibers entails a consistent selection of fiber angles of the plies, ply 

number, thickness, and constant material properties throughout each lamina [6]. These 

structures are also known as Constant Stiffness Composite Laminates (CSCL). However, 

with the advent of new technologies such as Automated Fiber Placement (AFP) and 

Three-Dimensional (3D) printing, a further extension beyond CS design space can be 

achieved through a tailoring strategy that allows stiffness to vary across different regions 

of the structure and improves material efficiency and structural performance. Composite 

tailoring involves the selection and modification of components, as well as engineering 

interfaces [7]. In this thesis, two tailoring strategies are pursued. The first strategy 

includes fiber steering, and the second strategy entails material tailoring or functional 

gradation. Fiber steering refers to varying the fiber angle with a rule locally relative to the 

in-plane coordinates, and functional gradation refers to modifying the composition and 

structure of the composite material. Fiber-steered composites are referred to as Variable 

Stiffness Composite Laminates (VSCL) [8–10], whereas Functionally Graded (FG) 

materials [11–17] are tailored multifunctional materials. The determination of mechanical 

requirement-driven fiber angles, and the proper material CG profiles necessitates the 

utilization of novel optimization methodologies [18–21] integrated with fast and robust 

mechanical analysis tools that minimize the undesirable failure modes for these 
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structures. In this regard, this thesis aims to develop an accurate, time-efficient, robust, 

reliable, and low-cost computational model to perform structural analysis on VSCLs and 

Functionally Graded Sandwich Plates (FG-SP). This computational model utilizes the 

Refined Zigzag Theory (RZT) as its basis. Recently, the RZT was provided for 

multilayered composites and Sandwich Plates (SP), with the kinematics of First-Order 

Shear Deformation Theory (FSDT) serving as its foundation. RZT by enriching these 

kinematics with linear ZZ functions, provides accurate estimations of the in-plane 

displacements [22,23]. The theory was derived from the principle of virtual work in a 

variationally consistent manner. The RZT avoids the shortcomings of prior ZZ theories 

that limited their accuracy and enhances efficient adaptation to FE modeling frameworks 

[22–28]. The majority of structural investigations on composite structures using RZT are 

primarily concerned with beam, plate, and shell laminates with UD fibers. Nonetheless, 

RZT in its original form is ineffective for modeling true variation of in-plane 

displacements of VSCLs and FG material structures due to their complexity. That is, for 

in-plane curvilinear fiber reinforcements, the average shear rigidities depend on in-plane 

coordinates, whereas for thickness-wise material variation within the FG layers, these 

terms need to be continuously regulated along the thickness coordinate due to the 

variation of the elasticity modulus. Therefore, a modification to the original theory is 

essential. To the best of the authors' knowledge, no prior research in the literature has 

been dedicated to providing a robust mathematical RZT-based formulation for structural 

analysis of laminated plates with curvilinear fiber reinforcements and/or FG materials. 

Therefore, in this research by adding further to the predictive capabilities of the original 

RZT, a novel comprehensive model is proposed to address this shortcoming in two steps. 

The first step involves the development of a model capable of performing accurate static 

analysis of the composite and SPs reinforced by curvilinear fibers with computational 

efficiency using a three-node triangle element. In the second step, the developed model 

is enhanced to predict the behavior of FG material layers in the presence of curved fibers 

in composite laminates. The accuracy, performance, and computational efficiency of the 

proposed model are assessed and validated through bending analysis of several VSCL 

plates with various curvilinear fiber paths and different span-to-thickness ratios. The 

obtained results from the proposed formulation are verified with reference solutions 

available in the literature and those generated by high-fidelity 3D ANSYS models. They 

reveal remarkable benefits of the proposed model for predicting highly accurate 

displacement and stress distributions of VSCLs. Furthermore, CPU runtime comparisons 
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of RZT3C, QUAD-RZT4, and 3D Ansys solid 185 components show the computational 

efficiency and superiority of the proposed model. 

Additionally, by utilizing the proposed enhanced RZT model, this thesis investigates the 

flexural behavior of moderately thick SPs made of FG material core and curvilinear fiber-

reinforced face sheets as novel hybrid composites under various lamination schemes, 

loading, and boundary conditions, for the first time in the literature. The increased 

performance of hybrid composites because of the regulated strength and stiffness through 

rigorous analysis is demonstrated to be potentially utilized to enhance the structural 

integrity, and durability for a wide range of applications. The author is aware that no prior 

study has reported the use of the three-node shear-locking free triangle RZT element 

formulation for analyzing the displacements and stresses for SPs with FG material cores 

and VS face sheets at a lower computational cost and acceptable accuracy. The 

comprehensive numerical results highlight the key factors affecting structural 

performance and provide valuable insights into the design and tailoring of composite 

sandwich structures with FG cores and VS face sheets. Thus, the obtained results of this 

study can be reliably used as potential benchmark solutions for future research in this 

area. 

The final section of this thesis is designated to the concluding remarks drawn from the 

presented numerical results based on the proposed formulation. 

1.1 The curvilinear fiber reinforcement concept 

The FRCs are classified based on the length of their fibers as discontinuous FRCs with 

short, and continuous with long fibers. Generally, the composites reinforced by 

continuous fibers show high specific strength and modulus, enabling them ideal 

candidates for aerospace, automobiles, ships, and high-speed trains [29–31]. In 

continuous FRCs, the fibers can be arranged either unidirectionally [32–34] or 

curvilinearly [35–38] within the matrix. In these composites the load transfer interaction 

between the matrix and fibers is in a highly efficient manner, and the orientation of the 

fibers determine the mechanical behavior [39,40]. In composite structures subjected to 

combined loadings, stress distributions are not uniform. The UD FRCs perform weakly 

against stress concentration leaving the efficiency of the composite material decrease 

[35,41]. The utilization of curvilinear FRCs can be a promising approach to tackle this 

problem [8–10]. In curvilinear FRCs, the variation of the fiber orientation with respect to 
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spatial in-plane position results in a controlled and varied local stiffness of the structure. 

Fig. 1-1 depicts the schematic of CSCLs and VSCLs respectively. Aside from using 

curvilinear fibers, various other techniques can also modify panel stiffness to obtain 

VSCLs. For instance, in plates with in-plane variation of material properties (in-plane FG 

plates) can also be considered VSCL plates [42]. However, for the purposes of this thesis, 

the term Variable Stiffness (VS) refers specifically to laminates in which the fiber angle 

within a ply can continuously change with spatial location. This distinction is important 

to clarify the specific focus of the research being conducted. 

 

Fig. 1-1 Schematic of (a) CSCL and (b) VSCL [43]. 

1.2 The curvilinear fiber path 

In a lamina, fibers can theoretically follow any pattern. One possible pattern that fiber 

orientation may follow is a curvilinear fiber path. Generally, in curvilinear FRCs, all 

fibers follow a path defined for a reference curvilinear fiber. There are two common 

methods to define the curvilinear fiber path for non-reference fibers. These methods are 

known as parallel and shifted methods [42]. Fig. 1-2 depicts the reference fiber path of 

the curvilinear lamina. 

1.2.1 The shifted curvilinear fiber path method 

In this technique the reference fiber path is constructed as the first step and then the 

reference fiber path is translated by a defined amount along y axis to construct the rest of 

the paths [42]. Fig. 1-3a represents the shifted curvilinear path in a composite plate. For 

the shifted curvilinear fiber path method, the curvilinear fiber path is only a function of 

x-direction. In this thesis, the curvilinear fiber paths are defined based on the shifted 

method.  
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Fig. 1-2 Reference curvilinear fiber path [42]. 

1.2.2 The parallel curvilinear fiber path method 

This technique constructs the curvilinear fiber path as a group of locations parallel to the 

reference curve. Hence, each fiber curve maintains a fixed distance from the other fiber 

path. In contrast to the shifted fiber technique, in this method the curves of non-reference 

fibers do not necessarily follow the same analytical rule as does the reference one. As is 

seen in Fig. 1-3b. the curvilinear fiber orientation for the two points A and B, with the 

same x coordinate, are not equally the same [42]. 

 

Fig. 1-3 Curvilinear fiber path (a) Shifted (b) parallel [42]. 

1.3 Functionally graded material composites 

Albeit having improved properties such as stiffness, and weight reduction, laminated 

composites perform weakly in their laminae’s interfaces due to the discontinuity of the 

properties and stresses. Using FG materials is a technique to mitigate this issue. The FG 

material concept was first introduced to minimize thermal stress in the aerospace 
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structures [44,45]. FG materials are categorized as composite materials with an 

inhomogeneous distribution of constituents [46]. The volume percentage of each 

constituent (phase) of an FG material varies continuously/discontinuously while moving 

in a certain direction (Fig. 1-4) [47–49]. This results in the substitution of sharp contacts 

with gradient interfaces, and reduces the mechanical/thermal mismatch between two 

discrete adjacent zones [50]. As is seen in Fig. 1-4a and Fig. 1-5a, for the continuous FG 

materials, the variation of the constituents as well as the material properties has no 

positional separation zone within the domain of the FG. However, for discontinuous FG 

materials this does not hold true (Fig. 1-4b and Fig. 1-5b) [51,52].  

 

Fig. 1-4 The structure of FG material (a) continuous FG (b) discontinuous FG [51]. 

 

 

Fig. 1-5 The distribution of the material properties for (a) continuous (b) 

discontinuous FG material [53]. 

Depending on the desired design and functionality, the FG material composites can be 

tailored both with internally/externally specific non-uniformity in the structure and 

composition [54]. Several configurations of composite plates with FG material layers 

include SPs with FG face sheets and a homogenous core or an FG core and 

isotropic/orthotropic face sheets, and FG material in all layers. Fig. 1-6 Shows all 

combinations of the possible configurations of the FG-SPs [55]. In this thesis, the FG-
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SPs are assumed to be plates with orthotropic composite face sheets (skins) and an FG 

core made of a two-phase material (soft foam). 

 

Fig. 1-6 Configurations of an FG-SP (a) an isotropic FG panel with very thin face sheets 

(b) and (c) homogeneous/composite face sheets with an FG core (d) and (e) FG face 

sheets and a homogeneous hard/soft core (f) both FG face sheets and an FG core [55]. 

1.4 Homogenization 

In FG materials made up of distinct constituents, the change in the volume fraction of 

each constituent results in the variation of the effective material properties along the 

gradation direction. Therefore, for a mechanical model to predict the behavior of an FG 

material, the estimation of the effective properties of the two or multi-phase composition 

is required. Usually, a homogenization method provides an approximation of the effective 

properties in FG materials in the absence of information about the size of the dispersed 

phases, and their distribution. It is therefore necessary to make assumptions based on the 

distribution of volume fractions of each phase. In the literature, various homogenization 

models the such as Voigt model or the rule of mixture [56], the Mori-Tanaka scheme [57], 

and the self-consistent method [58] have been developed and compared in terms of their 

capability in determining the effective properties of FG materials. The Voigt model, 

estimates the effective properties of the FG material by taking the average of 

strain/stresses all present constituents with the assumption that their distributions are 

uniform [59]. Nonetheless, for the Mori-Tanka [57] and self-consistent homogenization 

models [58] the average of these fields are taken locally. Hence, the Mori-Tanaka model 

is useful for analyzing periodically dispersed discontinuous particulate-based 

reinforcements. However, the Voigt model is a quick and easy way to predict overall 
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material properties and structural responses in continuously graded materials [60]. 

Several Other methods to determine the effective properties of FG materials have been 

developed by other researchers [61–63]. Below, the Voigt model is briefly introduced.  

1.4.1 The Voigt model. 

The Voigt homogenization model is utilized to determine the effective elastic properties  

in various single or multi-directionally graded FG materials [64–66]. In this model, P , an 

FG material's arbitrary property varies based on the variation of the constituents’ volume 

fractions and properties [64]. The following is the mathematical relationship describing 

the property P : 

1

n

i i

i

P PV
=

=  (1.1)  

In the above formulation, the thi  FG material constituent is characterized by its property 

iP  and volume fraction iV , where the sum of all the volume fractions equals unity [64].  

1.4.2 Gradation Laws (Material gradation profiles)  

In FG materials, the Compositional Gradient (CG) of the constituents in a multi-phase 

material is fulfilled according to a predetermined profile. This profile or the gradation law 

regulates the variation of volume fractions based on the spatial position and results in 

continuously graded macro properties [67]. In the literature, the power-law, exponential-

law, and sigmoid-law are among the commonly used gradation laws [66].  

1.4.2.1 The power-law  

The power law for material gradation is frequently used in analyzing the stresses in FG 

material plates and shells with uniform thickness [68]. Wakashima et al.[69] initially 

proposed this law. For the FG plate shown in Fig. 1-7, the gradation-wise local volume 

faction of the constituents according to power-law holds as the following relation [67]: 

/ 2
( )

n
z h

v z
h

+ 
=  
 

 (1.2)  

where h , and z  respectively represent the thickness, and n  is the Compositional 

Gradient Index (CGI) or CG exponent which can theoretically vary in the range, 
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0 n   [64]. In general, the function ( )v z  can be any non-negative function of z  that 

is not singular [70].  

 

Fig. 1-7 Uniform thickness FG plate [67] 

1.4.2.2 The Sigmoid-law   

Using a single power-law function to describe the variation profile of volume fraction can 

result in stress concentration. This is because for values of n  less or greater than one, the 

value of volume faction changes abruptly near the surfaces [67]. Therefore, describing 

the volume fraction with two power-law functions, results in a more gradual change. The 

explicit definitions of the two power-law functions (volume fractions) are as follows [67]: 

1

1 / 2
( ) 1

2 / 2

n
h z

v z
h

− 
= −  

 
 for 0 / 2z h   

 

(1.3)  

 
2

1 / 2
( )

2 / 2

n
h z

v z
h

+ 
=  

 
     for / 2 0h z−    (1.4)  

1.4.2.3 The Exponential-law  

The exponential profile for the variation of the volume fraction of the constituents in FG 

plates is described as [71]: 

2( )

h
z

P z e



 

+ 
 =  (1.5)  

with, 

1P = , and 2

1

1
ln( )

P

h P
 =  (1.6)  

where 1P  and 2P  are the predetermined properties at the bottom and top surfaces of the 

FG material [71].   
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1.5 State of art on Modeling  

The VSCL and FG composite structures offer a wider range of design options than 

CSCLs. A reliable design requires an accurate evaluation of strain and stress states. This 

brief review focuses on the state of art regarding the modeling of VSCL and FG 

composites. Relying solely on analytical solutions to predict the mechanical response of 

VS and FG laminated structures may be insufficient. In the absence of an exact solution, 

detailed 3D Finite Element (FE) models are frequently required to perform high-fidelity 

analyses of VSCLs and FG composite structures within a multidisciplinary design and 

optimization framework. However, the high accuracy of 3D continuum FEM comes at an 

enormous computational cost. To model the VSCL and FG composite laminates, 

researchers have focused on developing approximated models that compromise accuracy 

and computational efficiency. The two types of approximate models are the displacement-

based, and the mixed models. Displacement-based models assume displacements as the 

primary variable and they are developed on the basis of the virtual displacement principle 

[72], while mixed models assume displacements and stresses independently and are 

developed according to the Reissner’s Mixed Variational Theorem [73]. With a main 

concentration on approximate modeling techniques, the following two sub-sections 

provide the state of art on modeling VSCL and multilayered FG composites respectively. 

1.5.1 The VSCL modeling. 

The proper design of the fiber path in VSCLs assists the improvement of stress 

redistribution from weak to strong areas within the domain of the structure, and the 

reduction of stress concentration [74]. The spatially varying orientation of fibers has been 

demonstrated to improve VSCLs’ mechanical behavior in several studies [75–77]. For 

instance, Ijsselmuiden et al. [78] showed that the locally tailored VSCLs tolerate 

substantially more compressive load before buckling. Nonetheless, finding the spatially 

varying optimal fiber orientation in the optimization platforms relies on accurate and 

efficient modeling techniques. In this regard, modeling of VSCLs has become a major 

area of research after the initial discussion of the pioneer studies in this area in 

refs.[79,80].  

Khaneh et al. [81] analytically investigated the static deflection of VS composite beams 

under non-uniform loads and changed the coefficients of the governing differential 

equations to express VS properties. To investigate thin-walled VSCL beams, Gunay et al. 
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[82] proposed an analytical approach that takes bend-torsion coupling, warping impacts, 

and VS along the beam's cross-section into account. For analyzing composite structures, 

plate and shell models are among the best approximated models. Several studies in 

literature have reported the use of these models to estimate the strain, stress fields, and 

critical failure conditions of curvilinear fiber reinforced laminates. For the most part, 

these approaches use FE discretization to form and solve their governing equations. 

Jegley et al. [83] in their research, have underlined the relevance of extra-fine FE 

discretization for the exact and smooth modeling of curvilinear fibers in VSCLs.  

However, the use of the extra high-resolution mesh significantly increases the degrees of 

freedom in a numerical system. As a result, this FE model, when paired with the necessary 

optimization procedures, necessitates extensive computing effort [84]. In the open 

literature, approximate models have been dominantly used to model the mechanical 

behavior of VSCLs. Among these models, approximate axiomatic displacement-based 

models are generally classified into three types: Equivalent Single Layer (ESL) models 

[85–92], Layer-wise theories (LW) [93–98], and ZZ models [99–104]. To predict the 

stress fields in the ESL models, an assumption is made for thickness-wise distribution of 

displacement components, resulting in the reduction of the 3D problem to a 2D problem. 

The Classical Plate Theory (CPT)/Classical Laminate Theory (CLT), and the FSDTs are 

the most basic ESL methods. Antunes et al. [105] studied the modal behavior of the VSCL 

plates by comparing the experimental results with those of the CPT, and the FSDT under 

different boundary conditions. She reported that for the thin plate, the results of the CPT 

and the FSDT are almost identical. In another study, Setoodeh et al. [38] used a 

conforming CPT approach to carry the buckling analysis of the rectangular plates in 

conjunction with a reciprocal approximation to update the fiber angle in the VSCL. 

Ganapathi et al. [106] by employing an FSDT approach, considered the variation of the 

continuous fiber orientation in composite plates, and proved that the critical buckling 

behavior of the laminates with higher fiber angles at the edges and lower in the center 

improves.  

In spite of the fact that simple 2D ESL models are efficient in computation and can 

accurately predict a structure's global response, they fail to predict local responses for 

thick laminates with high anisotropy. In particular, the CLT [107] ignores transverse shear 

stresses, whereas the FSDT [108,109] assumes transverse shear strain distribution 

throughout the plies' thickness to be constant [110]. As a result, these theories have 
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limited accuracy due to their assumptions made for field variables. To obtain precise 

thickness-wise stress components, both theories require a subsequent step such as solving 

the Cauchy's equilibrium equations [91,111–113].  To address these issues, it may be 

necessary to use ESL Higher-Order Shear Deformation Theories (HSDT) or LW theories 

to model the VSCLs [114,115]. Using the Third Order Shear Deformation Theory 

(TSDT)  and a new p-version FE, Akhavan et al. [116] investigated the behavior of VSCL 

plates with curvilinear fibers subjected to large deflection and stresses and found that 

large deflection of VSCLs reduces when the fiber orientation linearly varies in the plate.  

Compared to ESL HSDTs, LW theories, on the other hand, provide more accurate local 

response predictions, and thereby more accurate state of 3D stress fields in thick 

laminated composite structures [97,114,117]. There is a wide range of applications in the 

literature that utilize LW theories for modeling VSCLs [118–122]. An important study in 

this field was conducted by Pagani et al. [118], in which the buckling performance of 

VSCLs with misaligned fibers were modeled using an LW approach and utilizing 

Carrera's unified formulation (CUF). Diaz et al. [120] utilized Fagiano et al.'s LW 

interlaminar stress recovery methodology [122] in modeling VSCLs to obtain continuous 

stress profiles through-the-thickness of laminate. In another study, Yazdani et al. [121] 

used a p-type FEM supplemented with thickness-wise displacement functions to account 

for the ZZ behavior in the asymmetric VSCL plates in a LW manner.  

In laminated composite or sandwich structures, the ESL theories do not precisely capture 

the ZZ effect which is caused by the severe transverse anisotropy. This is because the 

ESL does not account for the thickness-wise discontinuity of the first derivatives of in-

plane displacements [123]. Therefore, ESLs may not always accurately capture the 3D 

state of stress. On the other hand, modeling multiple-layered thick composite laminates 

with LW models features a significant challenge due to the increase in the number of 

unknown variables leading to a dramatic computational cost [89]. Moreover, the use of 

these techniques with high-order Lagrange/Legendre polynomials would result in a high 

complexity, regardless of accounting for the thickness-wise discontinuity in the slope of 

the in-plane displacements [124,125]. From the other side, while the LW methods capture 

the state of stresses with higher accuracy as compared to ESL methods, the continuity of 

the transverse stresses is still not assured [10]. In response to these issues, ZZ theories 

were devised to minimize the computational cost by keeping the number of kinematic 

variables constant without scarifying the accuracy [100–103].  
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The first ZZ theory was proposed by Di Sciuva [99], to model the multilayered composite 

and sandwich structures. In ZZ theories, piecewise ZZ distributions of in-plane 

displacements as well as the constant transverse shear stresses are captured through-the-

thickness of the laminate/lamina while keeping a fixed number of kinematic variables 

with no regard to the number of material layers [22,126–131]. To capture the actual stress 

fields with admissible computational cost, special attention was dedicated to the 

development of various ZZ theories. In this regard, many studies implemented higher-

order terms in previously proposed ZZ functions [22,97,126,132,133].  To avoid 

discontinuous shear stresses during the static analysis of constant/variable laminates, 

Luan et al. [134] employed the Hellinger-Reissner mixed variational principle. His study 

used different order ZZ kinematics to form governing equations of bending and 

stretching, which were then solved by using a mixed inverse Differential Quadrature 

Method (DQM). To obtain accurate predictions of the in-plane response of the shear 

deformable composite plates, Murakami [92] developed a plate theory based on 

Reissner’s variational principle [90]. The theory, which later referred to as Murakami’s 

ZZ function (MZZF) [104], and included ZZ shaped functions to approximate the 

thickness-wise variation of the in-plane displacements. MZZF was included in linear and 

higher-order expansions for in-plane and out-plane displacements to model the layered 

structures [135]. Gupta et al. [136] used MZZF function in the linear/non-linear static 

analysis of VSCL shells. To account for geometrical nonlinearities, he used a nine-node 

isoparametric element and von Kármán relations.  

In combining MZZF with numerous structural theories (beam/plate/shell theories of 

various orders linear/higher-order), Carrera et al. [137] proposed a unified formulation 

(CUF) which treated the  displacements as the unknowns variables. Demasi et al. [138–

140] took one step further and expanded the CUF to a more general form named the 

General Unified Formulation (GUF). In GUF, all displacements are independently 

expanded of the same order along the thickness direction for ESL, ZZ (MZZF), and LW 

theories. The independent modeling of each displacement component in GUF allows for 

a larger number of axiomatic theories compared to CUF.  Both CUF and GUF have been 

used for modeling the VSCLs. For instance, Demasi et al. [141] extended the GUF to the 

case of fourth-order triangular shell elements with variable thickness in VSCLs. VSCLs 

have extended beyond straight plates and many investigations have been conducted on 

the cylindrical, conical, and doubly curved shell VSCLs [142–145]. Tornabene et al. 
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[146,147] investigated the static and dynamic response of the singly and doubly curved 

VSCLs. In his modeling approach, a combination of higher-order theories in the 

framework of CUF, and the governing equations were solved locally by the generalized 

DQM. In another study, Tornabene et al. [142] included MZZF in various HSDTs to 

capture the ZZ effect in a soft-core SP with curvilinear fibers in the skins under static 

loading. There are also other studies that have used the strong form of the Unified 

Formulation (UF) to reduce the computational cost. Ojo et al. [148] proposed a 

geometrically nonlinear Strong Unified Formulation (SUF), and demonstrated the 

improved response of VS composites under large deflections by analyzing their 3D stress 

state. In another study, Patni et al. [149] used a Unified displacement-hierarchical 

Serendipity Lagrange Finite element (UF-SLE) to remove anomalies (mathematical 

singularities) caused by the presence of the absolute value in the fiber orientation function 

to predict accurate 3D stress fields even around local features of  VSCLs. 

In the literature, attempts to model the VSCLs include both higher-order and ZZ theories 

as well as UFs which accommodate the former two. These efforts have covered the 

prediction of the normal and transverse shear deformations, the thickness-wise variation 

of the ZZ effect because of the presence of anisotropy in multi-layered structures, and 

fulfilling the thickness-wise continuity of the displacements and the interlaminar 

transverse stresses [150–152]. No matter what order theory is employed to model VSCLs, 

accurate approximation of the curved fiber paths requires fine discretization of the 

geometric domain. Even for basic sine/cosine fiber paths, a minimum third-order element 

type is required unless the kinematic equations account for the curvature of the fibers. 

Nonetheless, this can be computationally incommodious. Therefore, there is a pressing 

need for an alternative and computationally efficient approach. Given that the ZZ theories 

are introduced to improve the thickness-wise distribution of the in-displacement fields, 

the ZZ function should be chosen so that the desired accuracy is obtained, especially for 

unsymmetric and arbitrary lay-ups [153] with curved fiber path in the layers. In this 

context, the RZT was developed by Tessler et al. [22,23] for investigating the static 

response of sandwich beams, composite plates, and shell structures, might be a suitable 

candidate theory for analyzing the VSCLs. Since the concentration of this thesis is on 

RZT, the literature review for the RZT and the research on VSCLs based on this theory 

will be provided in a separate sub-section.   
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1.5.2 FG material modeling. 

Understanding the mechanical behavior of the FG material laminates is crucial to be able 

to use them effectively in engineering structures. Current efforts in literature on these 

layered structures have mainly focused on the modeling of FG core/face sheet in the SPs 

and/or on single/multi-layered plates using analytical and numerical approaches. Some 

examples of noteworthy papers on modeling of FG materials include the following 

studies. Vel et al. [154] developed an accurate analytical method to capture the 3D 

deformations of FG thick rectangular plates and employed the Mori-Tanaka/self-

consistent approaches to determine the effective material properties. Kumari et al. [155] 

investigated orthotropic Levy-type plates using the elasticity approach and reported that 

the in-plane variation of material properties highly improves flexural behavior. Pan [156] 

proposed an accurate 3D solution for rectangular FG anisotropic elastic single/bi-layered 

composite plates exposed to sinusoidal pressure, based on Pagano's [157] solution. 

Handling 3D analytical solutions can be time-consuming and challenging because of their 

mathematical complexity. Therefore, these solutions can be used for straight forward 

geometries and boundary conditions [64]. To address these problems, 3D continuum 

element FEM can be replaced by 3D analytical solutions to expand the domain of 

solutions to complex geometries while preserving the accuracy. Nonetheless, albeit 

having accuracy in results, solid element solutions come at a significant cost particularly 

for tailored FG structures which demand for very fine discretization along the grading 

direction.  

As alternatives to analytical and 3D FEM solutions, meshless methods have gained 

attention to accurately analyze isotropic/FG composite and SPs with varying shapes and 

boundary conditions. Fouaidi et al. [158] combined the FSDT and Multiquadric radial 

basis functions to investigate the linear bending response of FG composite beams. In his 

study, the effective Young's modulus and the equivalent Poisson's ratio were obtained by 

the modified Halpin-Tsai model and the rule of mixture, respectively. In another study, 

Karamanli et al.[159], employed a quasi-3D theory of shear deformation and the 

Symmetric Smoothed Particle Hydrodynamics (SSPH) method to analyze the static 

response of bidirectional FG material sandwich beams under various boundary 

conditions. Based on SSPH and Reddy-Brick’s TSDT, Li et al. [160] proposed an 

improved accurate approach using the Taylor’s series expansion to analyze the bending 

behavior of the bi-directional FG material beams. Ferreira [161,162] studied the structural 
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deformations of FG plates by utilizing the meshless collection approach employing Multi 

Quadrics basic functions and TSDT. Several challenges associated with meshless 

methods are as difficulty of boundary conditions enforcement, increased number of 

variables by Lagrange multipliers, the augmented computational cost of iteration due to 

the insufficient/incomplete convergence [163], instability, and lack of accuracy 

[164,165]. Hence, the use of a proper approximate displacement-based method can be a 

good way to counteract these problems. 

The CPT has been reported to be used in the static analysis of thin FG plates. For instance, 

Zenkour et al. [166] investigated the bending response of FG-SPs under sinusoidal 

thermo-mechanical loads and compared the results obtained by CPT with other HSDTs 

and analytical solutions based on the Navier procedure. Due to the limitations of the 

CPTs, the research on FG composite plates concentrated on a more accurate approach, 

FSDT. In this context, Reddy et al. [167] studied the axisymmetric bending and stretching 

of circular and annular FG plates, and correlated the results of FSDT with those of CPT. 

Mantari et al. [168] used a FSDT to evaluate the impact of the shear correction factor and 

material variation on the static behavior of FG plates. To investigate the nonlinear 

bending behavior of the FG plates, Singha et al. [169] developed a high-precision 

formulation based on FSDT by taking into account the position of the exact/physical 

neutral plane to obtain the correct transverse shear stresses from the equilibrium 

equations. In addition, some studies on FG plates using FSDTs have attempted to reduce 

the need for shear correction factor while increasing accuracy. Thai et al. [170] proposed 

a new four unknown FSDT for structural and vibration analysis of FG-SPs with FG skins 

and an isotropic core. The theory did not require shear correction factors because 

transverse shear stresses were calculated directly from equilibrium of transverse shear 

forces. For predicting the static behavior of doubly curved shells and revolving laminated 

panels made of FG material, Tornabene et al. [171] devised a 2D Generalized Differential 

Quadrature (GDQ) solution based on FSDT which included the initial curvature via 

generalization of the Reissner-Mindlin theory. Although the FSDT is simple and efficient 

for analyzing thin to moderate plates, the results obtained for thick FG plates remain 

rudimentarily rough and the accuracy is highly dependent on the proper selection of the 

shear correction factor [172,173].  

To address associated problems with CPTs and FSDTs as well as improving the accuracy, 

many studies concentrated on developing and implementing HSDTs  in analyzing FG 
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structures [174–176]. Using a HSDT and assuming a quadratic thickness-wise 

distribution for the transverse shear stresses to avoid the need for shear correction factors, 

Gulshan Taj et al. [175] investigated the static behavior of FG plates. For analyzing 

bending of FG-SPs, Daikh et al. [177] suggested an HSDT and showed the material 

gradation impact on deflection and stresses. Many non-polynomial HSDTs have recently 

been proposed to improve the accuracy and computational cost of the previous HSDTs. 

For instance, Mahi et al. [178] proposed a theoretical hyperbolic model for shear 

deformation for  FG-SPs’ bending. To study the static flexural and vibration response in 

FG plates, Mantari et al. [176,179] developed a novel non-polynomial HSDT to account 

for proper distribution of the transverse shear strains through the FG plate’s thickness and 

avoid the need shear correction factor. HSDTs offer better accuracy than simpler 

approaches like CLT and FSDT in representing strain and stress fields of FG structures 

[10]. However, the presence of multiple layers of FG material in structures further limits 

the applicability of HSDTs due to the complexity of the mathematical equations in 

adaptation to varying material properties. As a result, because of the inclusion of more 

dependent unknowns by the increase in the power of the thickness coordinate, and the 

need for shear correction factors to adjust thickness-wise transverse stresses in HSDTs 

[180], some other studies implemented and improved the LW theories for more precise 

predictions of the 3D state of stresses the FG structures. These studies have discretized 

the in-plane displacement and transverse fields by 2D and 1D interpolations respectively 

[10].  

In this context, a higher-order LW approach was used by Pandey et al. [181] to study the 

static and dynamic characteristics of FG-SPs while maintaining the interlaminar 

displacement continuity. An LW multi-layered shell model based on isogeometric 

formulation and the assumption of 
0C -continuous transverse displacement was presented 

by Liu et al. [182] to analyze laminated composites and FG-SPs. Hirane et al. [183] 

proposed a novel 
0C -continuous LW FEM for analyzing the static and free vibration of 

FG-SPs which employed a higher-order displacement field for the core and a first-order 

displacement field for the face sheets to ensure layer continuity. Although LW theories 

accurately calculate interlaminar stress and predict the ZZ shape of displacements, they 

have a high number of unknowns when dealing with many layers of a thick laminated 

composite or FG material plates. This is because the LW models treat each layer 

separately and combine them using interlaminar relations to maintain displacement 
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continuity and stress equilibrium [184]. This procedure leaves these methods susceptible 

to drastic computational costs when it comes to analyzing the behavior of FG laminates. 

Aiming to reduce the number of the DOF of the problem and the computation, UFs, which 

combine multiple axiomatic theories such as ZZ theories, were adopted to FG structures’ 

analysis [10]. Carrera et al. [185] studied the effect of thickness stretching in single and 

multilayered FG plate and shell structures by utilizing the CUF, for linear to fourth-order 

thickness expansion of transverse displacement. He pointed out that if transverse normal 

strain effects are not considered, classical theory refinements may be ineffective. Mantari 

et al. [186] used the CUF to accommodate five different non-polynomial displacement 

fields of sinusoidal, tangential, exponential, hyperbolic, and modified sinusoidal to 

analyze the static response of simply supported FG single and SPs subjected to a bi-

sinusoidal load. Rahmani et al. [187] investigated the vibration and bending properties of 

FG beams by combining the CUF with isogeometric analysis. In addition to using CUF 

for analyzing the mechanical behavior of FG composite plates, many other studies have 

adopted Demasi’s GUF [141]. Gorgeri et al. [188] analyzed free vibration and bending 

behavior of FG cylindrical sandwich panels using formulation S-GUF formulation. The 

SUF-GUF enables tuning the kinematic description of displacement fields independently 

in different thickness subregions of heterogeneous material layers of complex FG 

problem.  

Recalling that the major limitation of displacement-based ESL methods is the lack of 

consideration of the 
1C -discontinuity (

0C -continuity) of in-plane displacements in the 

thickness direction [123], any prediction with UFs in the form of ESL approaches without 

taking into account ZZ functions would not be flawless. Incorporating ZZ displacements 

leads to a more computationally accurate and efficient formulation [123]. The 

effectiveness of including the discontinuity of the first displacement derivative in 

axiomatic modeling has been demonstrated in many studies [189,190]. In recent years, 

the trial to capture the ZZ displacements in FG sandwich structures has prompted the 

development and use of accurate ZZ-based modeling approaches. An FE model based on 

ZZ theory was developed by Khan et al.[191] for the static response and free vibration of 

FG material beams. Linear interpolation and cubic Hermite interpolation were both used 

in this model to handle axial displacement and deflection respectively. Nath et al. [192] 

proposed a ZZ theory for investigating the behavior of a multilayered FG cylindrical shell 

and rectangular plate under static loading and free vibration. To approximate the in-plane 
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displacements, linear LW and cubic global terms were used. In his ZZ theory, Hamilton's 

principle was utilized to derive the governing equations. Natarajan et al. [193] 

investigated the flexural and free vibrational behavior of FG-SPs by means of a higher-

order ZZ shear flexible element, QUAD-8. To study the bending of FG plates, Garg et al. 

[194] developed a higher-order ZZ theory based on which the transverse shear and 

transverse normal stresses are continuous at interlaminar spaces, and the transverse shear 

stresses vanish at the bounding surfaces of the laminate. Neves et al. [195] presented a 

theory for the static analysis of FG-SPs by modifying the MZZF. The theory included a 

hyperbolic sine term for in-plane displacement expansion and a quadratic transverse 

displacement evolution term to account for thickness-wise deformation and stretching 

effect.  

In ZZ modeling approaches, ZZ function enhances the global responses of the base ESL 

model and determines the accuracy of predictions [196]. Di Sciuva's [99] and Murakami's 

ZZ [104] functions are two major ZZ functions which have been utilized either directly 

or as the basis for additional ZZ theories for analyzing FG structures. In terms of accuracy, 

Gherlone [153] and Iurlaro [197] found that Di Sciuva's ZZ function surpassed MZZF. 

The RZT, which was created from Di Sciuva's ZZ theory has recently been used in several 

investigations of FG laminated structures and composites while representing the same 

level of accuracy as TSDT [198]. As well as conventional structures, FG/VSCL structures 

can be analyzed using RZT. Thus, the RZT can deliver reliable results while maximizing 

computational efficiency. The next section will go over the RZT and the studies 

conducted on modeling of VSCL and FG structures by this theory. 

1.5.3 The RZT and the VSCL and FG composites’ modeling 

The RZT formulation [22,23], as briefly discussed, was initially developed for analyzing 

laminates with straight fibers with CS. However, the theory has been used in different 

studies to simulate the behavior of the constant/variable-stiffness composite laminates as 

well as FG materials. Having seven kinematic variables, RZT defines unique ZZ 

functions and thickness-wise slopes for the in-plane displacements by using the 

differences of transverse shear stiffness of the plies and the laminate’s average rigidity 

[6,28,89,94,199]. Numerous studies have shown that for a large range of span-to-

thickness ratios, RZT predicts stress and strain states as accurately as LW and exact 

solutions for laminates with highly heterogenous materials, resulting in the transverse 
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shear flexibility between the layers, with low computational complexity [22–28]. 

Furthermore, the RZT does not require the enforcement of transverse shear stress 

continuity along the thickness of the laminate. This indeed increases the accuracy of 

results and allows for the use of  0C -continuous representation of the in-plane 

displacements [22]. Therefore, the elements developed based on RZT, due to the 

implementation of 0C -continuous formulation, provide appropriate estimations of in-

plane displacements without shear-locking and with a compromise between the prediction 

capability and computational cost [200,201]. For instance, with constraining the first and 

second shear strains to be constant on the edges of the element, Versino et al. [89] 

developed a three-node triangle RZT element and showcased the best predictive 

capability and fast convergence of  his element for a diverse set of span-to-thickness ratios 

and heterogenous laminates. This study was later improved by Wimmer et al. [202] who 

applied and edge-based smoothed element technique to improve convergence rate of  

Versino’s three-node triangle RZT element for the stresses for thin/thick plates with 

regular/irregular meshes. The effectiveness of RZT’s linear analysis has been verified for 

CSCLs in many previous studies. However, unlike UD fiber-reinforced composite 

structures, relatively less effort has paid to capturing the 3D stress fields in VSCLs [152] 

and/or FG laminated structures based on RZT.  

In recent years, the utilization of the RZT method has attracted the attention of researchers 

for simulating the behavior of curvilinear fiber-reinforced composite laminates. To give 

an example, for analyzing and optimizing composite SPs with soft-core and 

straight/curvilinear fiber-reinforced skins, an RZT-based shell element was presented in 

ref. [203] and shown that curvilinear fiber reinforcement improved the laminates 

performance. Patni et al. [152] proposed an approach relying on UF-SLE by employing 

MZZF and the RZT function to predict true stress fields in structural analysis of 

composites with curvilinear fibers. According to his study, the results obtained from the 

UF-RZT formulation were more accurate than other ESL approaches for examined cases. 

Additionally, Hasim et al. [6] proposed an Iso-geometric formulation based on RZT to 

perform static analysis of the laminates and sandwich panels with curvilinear fibers.  

As for the FG laminated structures, Farhatnia et al.’s [204] study is considered as one of 

the pioneer studies on bending and buckling modeling of FG material metal/ceramic thick 

beams using the RZT. In another study, an analytical solution was presented for vibration 

analysis of cantilevered FG sandwich beams on the basis of RZT [205]. The model used 
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infinite sublayers to model the material gradient in the FG face layers. Di Sciuva et al. 

[206] used the RZT to study the bending and free vibration of SPs made of FG materials 

and found that, despite its simplicity, RZT predictions of displacements, stresses, and 

frequencies outperform those of  FSDT and TSDT. In a similar study, Iurlaro et al. [198] 

extended the RZT to laminated FG material plates by eliminating material property 

discontinuities, allowing the new model to predict transverse shear stresses in FG material 

laminated structures. According to his study, under various boundary and load conditions, 

the RZT results for bending and free vibration of SPs with FG material layers are more 

accurate than traditional FSDT and TSDT reference solutions. Dorduncu [207] combined 

RZT and the PDDO to develop a non-local model to investigate the static bending 

behavior of FG plates. Dorduncu [208] also proposed a nonlocal beam model based on 

RZT to analyze adhesively bonded graded modulus beams. In his study, Peridynamics 

Least Square Minimization (PDLSM) was successfully used to calculate accurate RZT 

stresses. 

1.6 Summary 

To summarize, the modeling techniques of FG materials (i.e., core, face sheet, plate) and  

VSCLs mainly include 3D elasticity solutions [156,174,209,210], and advanced 

computational techniques such as meshless [159,161,162,164,207,211–215] or mesh-

dependent (i.e., based on LW [93–98] or ESL theories [85–92,109], ZZ theories 

[129,131,136,194], UF [137,140]) methods. RZT by accounting to the ZZ effect, provides 

accurate approximations of complex deformations and state of stress fields of CS/VS 

composites and SPs with isotropic/FG layers, and requires less calculation effort than the 

LW, HSDTS, and 3D theories. Thus, it meets the requirement of VSCL/FG design in 

terms of the trade-off between the accuracy and computational costs and can be reliably 

used as fast and robust analysis to in design platforms of such structures [203].  

1.7 Outline 

Keeping the objective of the current research in mind, this thesis is structured in logical 

sequences. The first part of this study in the second chapter focuses on enhancing RZT 

formulation for composite and sandwich structures with curvilinear fiber reinforcements 

and FG layers. This model is adapted to a 3-node triangle RZT element to predict the 

linear behavior of composites for the VS/FG composites as well as SPs. A stress recovery 

formulation is also provided to accurately capture the transverse shear stresses between 
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adjacent piles continuously. By fulfilling these objectives, an efficient and reliable 

modeling RZT-based approach to address the challenges of accurate modeling of VS/FG 

composites and SPs is provided. 

The third chapter of this study delves into the numerical analysis of composite structures 

with curvilinear fibers using the proposed RZT3C formulation. It is shown in chapter that 

the proper selection of the curvilinear fiber path in the layers plays a critical role in 

tailoring the strains and stresses to be desirable within the laminate domain.  Also, the 

comparison of the CPU run-time is provided to show that the RZT3C element is more 

computationally efficient than solid elements and other elements with higher degree of 

freedom. Therefore, due to its efficiency and accuracy, the RZT3C formulation can be an 

effective tool for optimizing composite structures with curvilinear fibers. 

The fourth chapter of this investigation showcases the potential of the enhanced RZT3C 

formulation in accurately simulating FG material systems that feature curvilinear fiber 

reinforcements. The numerical solutions are provided and compared with literature 

methods and 3D FEM ones for various geometries, boundary conditions, lamination 

sequences, materials, CG profiles for the through-the-thickness variation of the FG 

material, and various UD and curvilinear fiber paths. It is shown that the RZT3C approach 

well-captures the thickness-wise distribution of the strains/stresses for these structures. 

Therefore, the enhanced RZT3C formulation can serve to accurately tailor the SPs with 

VS face sheets and FG cores.  

Finally, the last part of this study summarizes and highlights the novelty of the 

contribution of this work and concludes the findings in chapter five. 



23 

 

2 REFINED ZIGZAG THEORY FOR LAMINATES WITH CURVILINEAR 

FIBER AND FUNCTIONALLY GRADED MATERIALS 

2.1 Motivation 

As discussed in the previous chapter, the modeling approaches without including the ZZ 

functions are not suitable for predicting the mechanical behavior of VSCLs and FG 

layered structures because of their inaccuracy and/or computational cost. The RZT was 

proposed to conserve the accuracy in predicting the mechanical response of the laminated 

structures and composites efficiently. This chapter follows two objectives.  

The first objective focuses on reformulating the RZT for composites and sandwich 

structures that contain curvilinear fiber reinforcements in their plies. In these structures, 

the fiber orientation angle changes in the in-plane coordinates. Therefore, as the novel 

part of this study, the RZT displacement-strain relations are adopted and readjusted to 

incorporate the derivatives of ZZ functions with respect to spatial coordinates to reflect 

the effect of varying fiber angles in linear bending analysis of VSCLs. To develop the FE 

model, a three-node triangle non-shear locking RZT element (RZT3C) is implemented 

for the first time in literature in the proposed formulation to predict the displacements and 

stresses in the plies of VSCLs with minimal computational cost and acceptable accuracy. 

This is owing to the use of RZT formulation with constant number of kinematics as an 

ESL theory and the selected element which has the lowest possible node number. 

Therefore, the model is ideal for the optimization of fiber orientations. Moreover, to 

ensure the continuity of the transverse shear stress between the adjacent piles, the stress 

recovery formulation is presented. This posteriori procedure incorporates the in-plane 

stresses obtained from the proposed formulation in Cauchy’s equilibrium equations.  

In addition, in response to the growing interest in advanced FG materials, the model is 

expanded to include FG layers in the presence of curvilinear fibers in multilayered 

sandwich and composite plates for the first time in the literature. Therefore, the second 

objective involves enhancing the RZT3C formulation for curvilinear FRCs to 

accommodate the continuous thickness-wise variation of material for the FG layers. In 

the enhanced model, the terms for the reduced transformed stiffness, and average 

transverse shear rigidity depend on the thickness coordinate of the FG material layer(s) 

resulting in nonlinear variation of piecewise ZZ functions. The successful 

accomplishment of both objectives in this study results in the development of an ESL 
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RZT-based formulation that significantly contributes to understanding and modeling of 

composites and sandwich structures which include both curvilinear fiber-reinforced and 

FG layers. 

2.2 RZT for laminates with curvilinear fibers. 

RZT provides highly accurate static and dynamic response of thin and thick laminated 

structures by utilizing piecewise ZZ functions, ( )k

i . These functions are incorporated into 

the displacement fields vary linearly through the laminate’s thickness and satisfy all the 

boundary conditions [22,24,25]. Therefore, in this section, mathematical formulation of 

original RZT will be reformulated for structural analysis of laminated panels and 

sandwich structures with curvilinear fibers. 

2.2.1 Zigzag kinematics for the curvilinear fiber reinforced laminates 

In Fig. 2-1, a laminated plate is depicted with a total thickness of 2h  and N  orthotropic 

layers reinforced with curvilinear fibers wherein the superscript k   denotes the ( )thk  ply. 

An orthogonal reference coordinate system 1 2( , , )x x z  with the origin of (0,0,0)  is located 

at centroid of the plate. The in-plane coordinates are defined as 1 2( , )x x=x , and z  axis 

represents the through-the-thickness coordinate, h z h−   . As depicted in Fig. 2-1, the 

plate is subjected to normal pressure q  whereas it is fully constrained for any rigid body 

motion. 

 

Fig. 2-1 The kinematics of curvilinear fiber reinforced RZT plate and layer notation 

for a four-layer laminate. 

The displacement vector components of a material point in curvilinear fiber reinforced 

laminate can be defined as the same as the original RZT theory [22]:  
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( ) ( )

1 1 1 1( , ) ( ) ( ) ( ) ( ),k ku z u z z  = + +x x x x x  (2.1)  

( ) ( )

2 2 2 2( , ) ( ) ( ) ( ) ( ),k ku z v z z  = + +x x x x x  (2.2)  

( , ) ( )zu z w=x x  (2.3)  

where the RZT kinematic variables ( )u u= x  and ( )v v= x  indicate the constant uniform 

in-plane translations along with positive directions of 1x  and 2x  axes respectively. 

Moreover, the transverse deflection, ( , ) ( )zu z w=x x  is constant through the thickness of 

the laminate. In addition, the 1( ) x  and 2 ( ) x variables represent average bending 

rotations of RZT and are defined in accordance with positive directions shown in Fig. 

2-1. The contribution of the bending rotations changes linearly through the thickness of 

the laminate as given in Eqs.(2.1)-(2.2). The amplitudes of the ZZ rotations are denoted 

by ( ) ( 1,2)i i i  =x , which are coupled with ZZ functions to account for through the 

thickness ZZ distortions of the cross-sections.  The ZZ functions, 
( ) ( 1, 2)k

i i = , vary 

linearly along the thickness coordinate of individual plies. Hence, the seven RZT 

kinematic variables can be written more compactly as 
1 2 1 2[ ]Tu v w   =u .  The 

variation of the ZZ functions can be expressed as [28]: 

( ) ( ) ( ) ( 1,2)k k k

i i izb a i = + =  (2.4)  

( )

, (
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k ii
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h Q

−

=

 
= = 
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x

x
 (2.7)  

where 
( )k

ib  is the slope of the ZZ functions along the thickness direction, and 
( )k

ia enforce 

the continuity of the ZZ function through the thickness of the laminate. The parameter, 

( )k

ib  is dependent on the transformed transverse shear material moduli of individual plies, 

( ) ( ) ( 1, 2)k

iiQ i =x  [28]  and can be expressed in terms of shear moduli in material axes as: 
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( ) ( ) 2 ( ) ( ) 2 ( )

11 11 22

( ) ( ) 2 ( ) ( ) 2 ( )

22 22 11

( ) cos ( ) sin ( )

( ) cos ( ) sin ( )

k k k k k

k k k k k

Q Q Q

Q Q Q

 

 

   +
=   

+   

x x x

x x x
 (2.8)  

 As depicted in Fig. 2-2, the variation of the curvilinear fiber path and its angle, ( ) = x  

are dependent on reference surface coordinates, 1 2( , )x x=x  which results in the ZZ 

functions being a function of all spatial coordinates, ( ) ( )( , )k k

i i z  x . Hence, the 

derivatives of ZZ functions with respect to in-plane coordinates are considered in the 

present study. 

 

Fig. 2-2 The linear variation of the RZT ZZ function along the thickness of the 

rectangular laminate with curvilinear fiber path. 

2.2.2 Constitutive relations for the curvilinear fiber reinforced laminates 

The linear strain-displacement relations are given in Eqs.(2.9)-(2.18). By examining 

Eqs.(2.9), (2.15), (2.16), and (2.18), the contributions of the ZZ functions’ spatial 

derivatives to in-plane and transverse shear strain fields result in a different form of strain 

definition than that of the original RZT [23–28].  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

11 22 12 1,1 2,2 1,2 2,1

T T
k k k k k k k k k ku u u u z       = = +  +   ε ρ κ Λ μ Λ η+ +  (2.9)  

,1 ,2 ,2 ,1

T

u v u v + ρ =  (2.10)  

1,1 2,2 1,2 2,1

T

    = + κ  (2.11)  
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1,1 2,2 1,2 2,1

T

    =  μ  (2.12)  

 1 2

T
 =η  (2.13)  
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Λ  (2.14)  
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 

Λ  (2.15)  

The vectors , ,ρ κ  and μ  include membrane, bending, and ZZ strain measures, 

respectively. Additionally, η  stands for the vector of ZZ function amplitudes. In a similar 

manner, the transverse-shear strain components can be defined as:  

( ) ( ) ( ) ( ) ( ) ( )

1 2 1, ,1 2, ,2

T T
k k k k k k

z z z z z zu u u u     =  + + = +   γ γ Λ η  (2.16)  

where γ  consists of the components of the FSDT shear angles defined as: 

 1 2 ,1 1 ,2 2

TT
w w      + + γ  (2.17)  

with 

( )

( ) 1

( )

2

0

0

k

k

k

b

b


 
=  
 

Λ  (2.18)  

 To express the stress field, the 3D constitutive relations can be derived according to the 

plane stress reduced form of Hooke’s law as:  

( ) ( ) ( )

( ) ( ) ( )

k k k

k k k

     
=     

     

σ C 0 ε

τ 0 Q γ
 (2.19)  

where ( )k
σ and ( )k

τ  represent the vectors of in-plane and transverse-shear stresses. 
( )k

C

and ( )k
Q are reduced transformed stiffness matrices referred to the ( )1 2, ,x x z coordinate 

system, which are related to the elastic coefficients in the material coordinates [72]. The 

explicit form of in-plane normal and shear stress vectors as well as transverse stresses are 

shown below. Also, The terms ( ) ( , 1,2,6)k

ijC i j =  and ( , 1,2)mnQ m n =  in 
( )k

C and 

( )k
Q matrices are the ply-level reduced transformed stiffness components which are 
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obtained with passive transformation of the coordinate system from fiber reference 

(1,2,3) to global reference coordinates ( , )zx .  

( ) ( ) ( ) ( )

11 22 12

k k k k   =  σ , ( ) ( ) ( )

1 2

k k k

z z    τ  (2.20)  
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( )11 12 16
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12 22 26

12 22

16 26 66

,

k

k

k k

C C C
Q Q

C C C
Q Q

C C C

 
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= =   
   

C Q  (2.21)  

2.2.3 The principle of virtual work  

According to the principle of virtual displacements, the actual equilibrium configuration 

makes the total virtual work done equal to zero and can be expressed as: 

0U V − =  (2.22)  

in which V  represents the virtual work done by the external distributed forces, 

0 1 2( , )q x x in moving through the virtual displacement, w  and expressed as:  

( ) ( ) ( ) ( )( ( ) ( ) )k T k k T k

V

U dV  = + ε σ γ τ  (2.23)  

0

A

V wq dA =   (2.24)  

The variation of internal strain energy, U in Eq.(2.22) can be obtained by replacing 

Eqs.(2.9)-(2.15) and Eqs.(2.16)-(2.18) into Eq.(2.23), and integrating through the 

thickness that results in: 

( ( ) )T T b T T T

z z

A

U dA       = + + + + ρ P κ M μ M η S S γ S+  (2.25)  

where the stress resultants ( , , )b

z z

  
P M M S S S, , , are defined as: 

 
1

( )

11 22 12

1

kL

k

zN
T k

k z

P P P dz
+

=

 = P σ  (2.26)  
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1
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=

  =   M σ  (2.27)  
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D  is the symmetric stiffness matrix comprised of the sub-stiffness matrices of various 

loadings of the whole laminate, and ω  is the vector consisting of the RZT strain measures. 

The components of the stiffness matrices can be computed in a similar way to the Ref. 

[22] as detailed below. 
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By replacing the strain measures and ZZ amplitudes of Eqs.(2.10)-(2.13) with shear 

angles, Eq.(2.17) into Eq.(2.23), as the internal strain energy, and using the expression 

for the external work in Eq.(2.24), the equilibrium for the total virtual work, Eq.(2.22) 

can be obtained in its expanded form. The Euler-Lagrange equations and related Dirichlet 
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( )D  or Neumann ( )  boundary conditions are obtained by taking integral by parts of 

the associated virtual work statement, Eqs.(2.22)-(2.25) to relieve the virtual generalized 

displacements 1 2 1 2( , , , , , , )u v w       of any differentiation, which results in:  
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 with 

1 2 1 2( , , , , , , )u v w      = =  on D  (2.40)  

11 12 1

1

12 22 2

2

1 2

z

z

z z zn

P P P
n

P P P
n

S S S

   
    

=    
       

 (2.41)  

111 12

1 212 22

2 111 12

221 22

bb b

n

bb b

n

n

n

MM M

n MM M

n MM M

MM M

 

 

  
  

     =   
     
 

     

 on   (2.42)  

where the vectors,  1 2z z znP P S  and 
1 2 1 2

b b

n n n nM M M M     are representing the 

forces and moments acting on the laminate, and    1 2 1 2cos( , ) cos( , )n n x n x n  are the 

direction cosines of the normal outward vector on the periphery edge of the mid-plane, 

(Fig. 2-1). 

2.3 The three-node shear-locking free triangular RZT element (RZT3C) 

To solve the RZT governing equations, FE method is employed using a locking-free 

triangular element. Shear locking is the stiffer behavior of linear elements due to the 

inappropriate capturing of non-disappearing transverse shear strains while exposed to out-

of-plane bending. Among methods to avoid shear locking some can be listed as the 

reduced and selective integration techniques [216–218], the constrained assumed strain 

field [219–221], the discrete Kirchhoff technique [219,222–225], the discrete shear gap 

method, DSG, [226], strain-based FE formulation [227], the independent interpolation of 
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the shear strains to separate the bending and shear deformation energy [228–

234].  Additionally, the utilization of anisoparametric interpolation with full integration 

which does not remove the constraints over the strain energy terms, which is also used 

here, is another effective method that prevents shear locking [235–239]. To overcome the 

shear-locking of the laminated composite plate element with curvilinear fibers, an 

anisoparametric three-node constrained RZT plate element with seven unknown 

kinematic variables has been implemented. The advantageous parts of picking the three-

node triangle RZT element can be listed as: availability of modelling sophisticated 

structures, shear-locking free and ease of implementation of the constrained RZT3C 

element in comparison with the unconstrained element.  The latter one is due to the 

compatibility of the adjacent elements in their nodes, all having the same number of 

displacements DOF. Besides, the eliminated mid-nodes in the selected element enhance 

computational efficiency. In the appendix of this thesis, the process element mid-node 

elimination from the six-node triangle element to obtain the RZT3C element and 

developing its associated linear anisoparametric shape function and strain-displacement 

matrices is provided. 

2.3.1 Implementation of the three-node triangle RZT element 

Fig. 2-3 shows the schematic of the implemented triangle RZT element. As can be seen, 

the local element coordinate system consists of three orthogonal axes ( , , )x y z  in the 

centroid of the mid-plane of the element and the element level kinematic variables of RZT 

can be summarized in the vector form as T ( 1,2,3)[ ]e

i i i i xi yi xi yiu wv i  =u . The 

linear area-parametric interpolations of the in-plane translations, the bending rotations 

( 1,2)  = , and the amplitude of ZZ rotations ( 1,2)  =  can be readily written in a 

compact matrix representation using a general element shape function matrix 
e

N  which 

can be summarized as the following expression [239]: 

1

1 2 3 2

3

e

e e e e e e

e

 
 

 =   
 
 

u

u N N Ν u N u

u

 (2.43)  

Following the replacement of Eq.(2.43) in Eqs.(2.10)-(2.13) and Eq.(2.17), RZT strain 

measures can be explicitly expressed as: 
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(a) (b) 

Fig. 2-3 Three-node triangle RZT element, depicted in the global and local coordinate 

systems, with the nodal DOF in the local reference system. 

where e
B  matrix contains the components of the derivatives of the shape functions which 

are utilized for relating the strains to displacements. For more comprehensive details, the 

reader is enticed to refer to the Ref. [89]. To calculate the element stiffness matrix, it is 

necessary to solve and rewrite the principal of virtual work in Eq.(2.22) for the variation 

of e
u respectively. The element-level equilibrium equation from the mentioned 

substitutions will then take the form as the following: 

e e e=k u f  (2.45)  

where e
k  is the element stiffness, and can be explicitly shown with the following 

expression as: 

Te e edA= k B DB  (2.46)  

and e
f , the element force vector due to the normal distributed load caused by ( )q x  is 

defined as: 

( ) 0

T
e e q dA= f M  (2.47)  

where vector e
M contains the components of the third row of the shape function matrix 

e
N  in Eq.(2.43).  To predict the overall behavior of the laminate, the assembly of the 

local stiffnesses and forces to their global matrices are as follows: 
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( )
1

, , , ,
nel

e

i
 

=
 =   = =K U F k u f;  (2.48)  

where the operator   assembles the element-wise stiffness, displacement, and force to 

their corresponding components of global matrices as the following expression to apply 

the prescribed boundary conditions for the problem. 

KU = F  (2.49)  

2.4 Stress recovery 

RZT provides accurate predictions of the state of strains and stresses in the physical 

domain. Even though the through the thickness transverse shear stresses predicted in RZT 

are piecewise constant, they lack the traction continuity for the adjacent laminae due to 

the inherent displacement-based trait of RZT [6,152]. Therefore, for the sake of precise 

modeling in this research, the inter-laminar discontinuity problem in transverse shear 

stresses’ distribution with RZT is obtained by integrating in-plane stresses in 3D elasticity 

Cauchy’s equilibrium equations in the thickness direction. For the quasistatic problem 

without the presence of body forces, the 3D stress equilibrium equations are: 

, 0 ( , 1,2, )ij j i j z = =  (2.50)  

The dummy index j  represents Einstein’s summation convention where differentiation 

has been performed. At the present study with plane-stress assumption, the in-plane 

stresses, 
( )k
σ , are computed from the RZT constitutive relations as in Eq.(2.19). 

Transverse shear stresses, 1z , 2z , however, are computed by taking integration of 

Cauchy’s equilibrium equations along the thickness direction as: 

( )
( )

( ) ( ) ( ) ( )

1,1 2,2( , ) ( ) ( , 1, 2)
k

b

z

k k k k

iz i i

z

z C dz i   = − + =x x  (2.51)  

 where and 
( ) ( )kC x  are the transverse stresses in x  directions respectively at the bottom 

of the 
( )thk  lamina. Herein, due to spatial variation of Hooke’s coefficients for composite 

structures with curvilinear fiber path, 
( ) ( )kC x  vary spatially and must be calculated 

separately for every material point over the mid-plane domain by enforcing the transverse 

shear stress condition at the bounding surfaces of the laminate to be zero. 
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2.5 The enhancement of the RZT3C formulation to FG materials 

This section discusses the enhancement of the RZT formulation presented in the 

preceding sections of this chapter for the laminates with curvilinear fibers to multi-layered 

composite plates incorporating FG materials and curvilinear fiber reinforcements in their 

layers. The enhanced formulation will be used with the three-node plate element 

formulation to perform static analyses.  

2.5.1 Kinematics, and zigzag relations for FG laminates reinforced with 

curvilinear fibers 

Fig. 2-4 depicts a multi-layer plate with a uniform total thickness of 2h , and N  bonded 

linearly elastic FG material and/or orthotropic curvilinear fiber-reinforced layers. The 

effective mechanical properties throughout the laminate are distributed both by the FG 

material and the curvilinear fiber-reinforced layers. As the reference, an orthogonal 

coordinate system 1 2( , , )x x z  is taken at the center of plate's middle reference plane, mid-

plane placed on the x -plane, 1 2( , )x x=x . The z axis ranges between h−  and h  defines 

the thickness coordinate, and each layer is having constant thickness through the entire 

plate.  

 

Fig. 2-4 The RZT kinematics and notation for a three-layer laminated SP with an FG 

material core layer and curvilinear fiber reinforced face sheets (skins). 

The superscript k  denotes the 
thk layer, whereas the subscript k denotes the 

thk  interface 

between the layers k  and ( 1)k + . Transverse pressure is applied on the top surface of the 

plate, and it is constrained on the peripheral edges against rigid body motion (Fig. 2-4). 

To define the displacement field of a point in the domain of an FG material laminated 

plate with curvilinear fibers, RZT kinematics are used. Therefore, the displacement vector 
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components are obtained by superimposing the FSDT kinematics as the displacement of 

the entire laminate and a layer-wise correlation of the planar displacements as the scaled 

contribution of each single thickness ply, representing the global and local responses, 

respectively. Thus, the displacement filed can be written as: 

( ) ( )( , ) ( , ) ( , )k

G

k

Lz z z= +u x u x u x  (2.52)  

( ) ( )( , ) ( ) ( )k k

G z z= +u x u x θ x  (2.53)  

( ) [ ( ) ( ) ( )]Tu v w=u x x x x  (2.54)  

( ) ( ) ( )

1 1 2 2( , ) ( ) ( ) (, ), ( ) 0
T

L

k k kz z z    =  u x x x x x  (2.55)  

where  the uniform constant planar displacements ( )u x , and ( )v x  are along the positive 

1x  and 2x  directions. ( )w x  denotes the laminate's transverse deflection, which is constant 

throughout its thickness.  

Furthermore, the components of 
( ) ( ) ( )

1 2( , ) ( ) ( ) 0
T

k k kz   =  θ x x x are the average 

bending rotations which are positive as illustrated in Fig. 2-4. The average bending 

rotations have a continuous linear contribution along the laminate’s thickness. Also, the 

global field of displacement, 
( )k

Gu  has a linear continuous first derivative, with respect to 

the thickness direction. The local displacement field, 
( ) ( , )k

L zu x  accounts for the ZZ cross-

sectional distortions by coupling 
( ) ( ) ( 1, 2),k

i z i =x , the ZZ functions, and their 

amplitudes ( ) ( 1,2)i i i  = x .  The ZZ cross-sectional distortions, added to the planar 

displacements, are non-linearly continuous through the thickness direction. Nonetheless, 

their first derivatives show a jumping behavior in the interlaminar space of the attached 

layers.  It is clear that if 
( ) ( , )k

L zu x is set equal to zero, the RZT theory is downgraded to 

its specific case, FSDT. Thus, the RZT displacement field is characterized by seven 

kinematic variables for any number of layers and can compactly be written in the form as 

1 2 1 2[ ]Tu v w   =u .  The refined ZZ functions’ variation for the 
thk ply can be defined 

as: 
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where ( ) ( , ) ( 1,2)k

iiQ z i =x denotes the reduced transformed transverse shear stiffnesses of 

each FG ply, which are also functions of through-the-thickness direction due to the 

gradation of the material, and they are expressed as the following: 

( ) ( ) 2 ( ) ( ) 2 ( )

11 11 22

( ) ( ) 2 ( ) ( ) 2 ( )

22 22 11

( ) ( )cos ( ) ( )

o

,

,

sin ( )

( ) ( )c s ( ) ( )sin ( )

k k k k k

k k k k k

Q Q z Q z

Q Q z z

z

z Q

 

 

   +
=   

+   

x x x

x x x
 (2.57)  

Eq.(2.57) employs the variable ( ) ( )k x  to represent the curvilinear fiber angle at a specific 

location 1 2( , )x x=x  within the corresponding layer, as depicted in Fig. 2-5. Therefore, 

the transformed transverse shear stiffness terms, ( ) ( , ) ( 1,2)k

iiQ z i =x  become dependent 

on the in-plane coordinates 1 2( , )x x=x  due to the variation of the curved fiber angle 

across those coordinates. Hence, for the case of the plane-stress condition, the derivates 

of the ZZ functions should be taken into account with respect to the in-plane coordinates 

for the definition of strains, unlike the original form of the RZT. Moreover, the 

( ) ( ) ( 1, 2)k

iiQ z i =  terms show the transverse shear moduli of the thk  ply, and their values 

are continuously being regulated by a grading function in a homogenization model such 

as power-law and rule of mixture. That is, changes in the volume fraction according to a 

certain profile of the lead to continuous variations of the elasticity moduli terms through 

the thickness of FG laminae. As a result of these factors, the ZZ functions become non-

linear piecewise functions of all spatial coordinates.  

Since the ZZ function values at the plate’s bounding faces must be equal to zero, it can 

be written: 

( )( ) ( )( , ) ( , ) 0 1,2; 1, ;k k

i iz z i k N z h = = = = = x x  (2.58)  

The ( )( , ) 1,2i z iG =x  terms in Eqs.(2.56) and (2.59) represent the weighted mean 

transverse shear moduli of the corresponding ply level coefficients, 
( ) ( , )Q k

ii zx . The 

weighted average shear moduli for the FG material with curvilinear fiber reinforcement 

similar to the ZZ functions are also functions of all spatial directions. Using a partial 

thickness-wise continuity condition on transverse shear stresses, the slopes of the ZZ 

functions are expressed as: 

(( ) )

, ( )

( ,
)

,
1 ( ,

)
( , ) ;( 2, ) 1,

(Q )

k i
i

ii

k

i z k

z
b z

z
Nz

G
i k = − = =

x
x x

x
 (2.59)  



37 

 

For FG material plies, due to the non-linear dependence of the ZZ functions on the 

thickness-wise direction, z , ( ) ( , )k

ib zx  are piecewise functions having non-constant value 

along the thickness of each individual ply. Based on Eq.(2.58), it can be inferred that the 

ZZ slopes will also take zero values on the bottom and top surfaces of the laminate, and 

its thickness-wise integration will take the following form: 

( ) ( , ) 0 ( 1,2)

h

k

i

h

b z dz i
−

= = x  (2.60)  

Therefore, by replacing Eq.(2.59) in Eq.(2.60), weighted mean transverse shear stiffness 

is obtained as: 

( 1)
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1
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1

1
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 
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 x
x

 (2.61)  

 

 

Fig. 2-5 The curvilinear fiber path and the thickness-wise change of the non-linear 

RZT ZZ function for the FG material laminate. 

The derivation procedure, the relations for the strain-displacements, and stresses of the 

thk  FG/orthotropic ply with curvilinear fibers are the same as Eqs.(2.9)-(2.21). 

Analogously, the relations from the virtual work principle for the stiffness matrix 

associated with the strain measures as well as the Euler-Lagrange equations, and related 

Dirichlet or Neumann boundary conditions are the same with Eqs.(2.22)-(2.42). 

Therefore, for conciseness these equations have not been repeated here. Furthermore, for 
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the discretization of the domain of the FG material composite laminate, the RZT3C 

element can be implemented in the same as presented previously in this chapter. Herein, 

the enhanced RZT formulation for the FG material laminates also provides only a general 

average estimation of the transverse shear stresses and to obtain the components of the 

stresses continuously the stress recovery procedure has to be applied as presented.   
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3 IMPLEMENTATION OF SHEAR-LOCKING-FREE TRIANGULAR 

REFINED ZIGZAG ELEMENT FOR STRUCTURAL ANALYSIS OF 

MULTILAYERED PLATES WITH CURVILINEAR FIBERS 

3.1 Overview 

Modeling and analysis of curvilinear FRCs is quite challenging in terms of accuracy and 

computational cost owing to their VS. In this chapter, the accuracy, and increased 

capabilities of the developed model in this thesis are verified by conducting 

comprehensive numerical investigations on various benchmark cases from the literature 

for curvilinear fiber reinforced laminates with various geometries, lamination sequences, 

and materials.  

The first test case is a three-layered sandwich plate with VS face sheets which had been 

solved by the higher-order CUF and MZZF, and isogeometric formulations in the 

literature. In the second test case, as well as the effect of change in curvilinear fiber 

orientation, the change in span-to thickness ratio has also been investigated for a VS 

rectangular plate. This test case had been investigated by the higher-order GUF and 

isogemetric formulations. Additionally, a VS circular plate is selected for investigation 

of the capability of the proposed formulation in predicting the structural behavior of the 

non-rectangular geometries. Therefore, the acquired strain and stress results are compared 

and extensively validated with those of high‐fidelity 3‐D ANSYS models as well as high-

order theories and three-dimensional elasticity solutions available in the literature. The 

aim of solving these cases with the provided formulations is to demonstrate that properly 

formulated and implemented RZT can offer correct estimations of displacements, strains, 

and stress thorough-the-thickness direction of VS composites. Also, it is shown in this 

chapter that the correct predictions of stresses by the proposed RZT model results in 

successful stress recovery procedure based on Cauchy’s equilibrium equations for the 

transverse-shear stresses [152]. 

Moreover, the tabulated data obtained for the comparison of CPU runtimes for various 

elements is given in this chapter. Such a comparison shows that the implementation of 

three-node triangle RZT element formulation which had not been adopted for the static 

analysis of VSCLs before is effectively keeping the computational cost to its minimum 

level, without any extra degree of freedom and scarification of the numerical accuracy. 
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3.2 A three-layer sandwich plate with curvilinear fibers 

A laminate with the dimensions of 1.5a b m= = , representing a three-layer Sandwich 

Structure with curvilinear fibers, is analyzed under a uniform pressure of 10np kPa=  

with fully clamped boundary conditions as depicted in Fig. 2-1. The SP is made of glass-

epoxy face sheets and an isotropic soft (foam) core with the thicknesses of 0.02sh =  and 

0.06ch = , respectively. Accordingly, the span-to-thickness ratio of the laminate is 

computed as / (2 ) 15s ca h h = + = , hence resulting in a moderately thick plate. The 

mechanical properties of the constituent materials are listed in Table 3-1. This problem is 

a well-known benchmark case solved by various researchers to test the capabilities of 

new continuum mechanics approaches against accurately predicting the bending behavior 

of a given composite structure. For instance, Tornabene et al. [142] utilized CUF with 

MZZF, and various higher order functions to interpolate the thickness displacement field 

for both LW and ESL approaches where the GDQ method was used for solution. They 

showed that inclusion of ZZ functions such as MZZF is necessary to capture the through-

the-thickness ZZ behavior of sandwich structures with a soft core [142]. Therefore, this 

challenging test case is revisited herein to validate and demonstrate the bending of 

capability of enhanced RZT formulation for VS sandwich structures. The curvilinear 

paths for the reinforcing fibers in the face sheets are defined as: 

( )( )(1) sin / 0.5x a  = + , 
(3) (1) 90 = +  (3.1)  

where 
(1) and (3)  are sinusoidally varying fiber angles within the entire domain for the 

first and third plies, respectively, and the symbol   represents the maximum value of all 

fiber angles in the domain.  

To evaluate the predictive capability of the proposed formulation herein, through the 

thickness variation of stress, strains, and displacements are studied for various maximum 

fiber angles, 15,30,45,60 = , but the results are succinctly presented for only upper and 

lower bounds of these angles. 

3.2.1 The curvilinear fiber path impact on distribution of displacements 

As shown in Fig. 3-1, the through-the-thickness variation of in-plane displacements 

exhibits a highly ZZ trend due to the presence of relatively thick and soft core, which 

results in a sharp transition of stiffness between face sheets and core. It is notable from 
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Fig. 3-1 that the trend of the ZZ deformation mechanism of sandwich structures is 

negligibly affected by the presence of curvilinear fiber within the face sheet. 

Nevertheless, the change in the maximum angle of the curvilinear fibers from 15 to 60 

degrees conspicuously alters the in-plane displacement values at bounding surfaces of the 

sandwich structures. This behavior is reflected as a shift of the ZZ displacement in Fig. 

3-1.  

Table 3-1 The mechanical properties of the materials for various cases. 

Material Elastic Moduli [GPa] Poisson’s Ratios Shear Moduli [GPa] 

Glass-epoxy 

1 53.78E = ,

2 17.93E = ,

3 17.93E =   

12 0.25 =
  

13 0.25 =
  

23 0.34 =   

12 8.96G =
 

13 8.96G =
 

23 3.45G =   

Foam 0.232E =   0.2 =   0.0966G =   

Carbon-

epoxy 

1 137.9E =   

2 8.96E =  

3 8.96E =  

12 0.3 =   

13 0.3 =  

23 0.49 =  

12 7.1G =   

13 7.1G =  

23 6.21G =  

 

  

(a) (b) 

Fig. 3-1 The variation of the through the thickness planar displacements (a) 
( )

1

ku , and 

(b) 
( )

2

ku  for the SP. 

Capturing such complex deformation mechanisms is of great importance for design and 

optimization of sandwich structures with curvilinear fiber architecture; therefore, a robust 

and computationally efficient solution is required. The present RZT FE formulation 

addresses this need as demonstrated in Fig. 3-1, where the presented formulation captures 
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the physics with an almost excellent accuracy as compared to the results of the solid FE 

model or high-order theories [6,142]. In addition, solid elements are known to be 

computationally demanding, thus limiting their applicability to complex large-scale 

structures with optimization process. On the other hand, our formulation can solve this 

problem more efficiently thanks to the low number of degree-of-freedom required per 

node.  

3.2.2 The comparison of CPU runtime 

As mentioned in the first chapter, the curvilinear fiber path modelling entails a relatively 

dense mesh regardless of the theory being used; therefore, for a fixed number of elements 

in the mesh, the size of global stiffness matrix becomes direct function of single 

independent variable, i.e., degree-of-freedom per node. Given the fact that the degree-of-

freedom per node in higher-order deformation theories is two or more times greater than 

that of first-order deformation theory and/or RZT, the size of the resultant global stiffness 

matrix obtained using lower-order theories is much smaller than that of higher-order 

theories for the same discretization. Thus, the CPU time required to take the inverse of 

RZT global stiffness matrix is rather small compared to higher-order theories. Apart from 

efficiency against the high-order theories, the CPU runtime results obtained from RZT 

and solid FE analysis for the extreme case of  60 =  are compared in Table 3-2 for 

various mesh resolutions. For a fair comparison, the resolution of the mesh is kept the 

same as four cross triangles in one square for both 3D continuum and RZT3C and the 

resolution of four smaller squares contained in a larger square as the same size of the 

resolution in the previous two cases for the Quad-RZT4 elements to satisfy the continuity 

of the curvilinear fiber in the three cases.  

Also, the computer used in this comparison has the following hardware capacity: Intel(R) 

Core(TM) i7-8750H CPU @ 2.20GHz with 32.0 GB installed RAM, and 64-bit Windows 

operating system. Note that the number of DOF of the solid element is three per node 

whereas the number of DOF of RZT elements is seven per node. On the other hand, for 

the solid element modelling, the thickness coordinate of the face sheets divided by 2 

elements and core material thickness is discretized by 6 elements. As listed in Table 3-2, 

thanks to the lower number of total DOF (i.e., resulting in a smaller size of stiffness 

matrix), RZT3C becomes much more computationally preferable compared to the solid 

and Quad-RZT4 elements for all the in-plane mesh resolutions.  
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Table 3-2 The comparison of CPU runtime for various finite elements. 

Element 

Type 

Total Element 

Number 

Total Node 

Number 
Total DOF 

MATLAB 

Solution 

Time (sec) 

3D Solid 

Finite 

Element 

35 35 4 10    27731 83193  7.371  

40 40 4 10    36091 108273  8.643  

45 45 4 10    45551 136653  10.752  

50 50 4 10    56111 168333  12.568  

RZT3C 

35 35 4   2521 17647  0.485  

40 40 4   3281 22967  0.642  

45 45 4   4141  28987  0.897  

50 50 4   5101 35707  1.189  

 35 35 4   5041 35287  1.170  

Quad-RZT4 40 40 4   6561 45927  2.535  

 45 45 4   8281 57967  4.10  

 50 50 4   10201 71407  5.845  

3.2.3 The curvilinear fiber path impact on distribution of stresses 

The stress variation along the thickness coordinate should be computed accurately for 

design of  VSCL composites. To verify the accuracy of the present RZT element for stress 

predictions, the results of the in-plane and transverse-shear stress components are 

compared with those of literature obtained using high-order theories and/or solid elements 

in Figs.3-2 and 3-3, respectively. As it is seen from these graphs, the present low-order 

RZT element can attain almost identical variations of through-the-thickness in-plane 

stresses produced by continuum FE formulation. From a physical point of view, the in-

plane stress along 1x -coordinate experiences a larger variation when the value of the   

increases at the top ply. This mechanical behavior is because the larger the maximum 

fiber angle, the higher the spatial gradient of the fiber path will be, which reduces the 

number of fibers aligned along 1x -coordinate. Therefore, the stiffness of the sandwich 

structure at the top ply gets relatively smaller as the maximum fiber angle increases, 

which leads to a higher strain/stress accumulation within the top ply. Since the extreme 
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fiber angle design case, 60 = , requires high-mesh resolution to be able resolve the 

spatial variation of the curvilinear fiber reinforcement, the use of solid elements will 

obviously be computationally expensive. Consequently, it will naturally not be preferred 

as compared to computationally more efficient lower-order RZT approach, which can 

provide the same order of accuracy as demonstrated in Figs.3-2 and 3-3.  

  

(a) (b) 

Fig. 3-2 The variation of the through the thickness planar stresses (a) 
( )

11

k , and (b) 

( )

22

k  for the SP. 

  

(a) (b) 

Fig. 3-3  The variation of the through the thickness transverse shear stresses (a) 
( )

1

k

z , 

and (b) 
( )

2

k

z  for SP. 

Considering the capability of the RZT3C element for curvilinear fiber reinforced 

composite designs, this element can be a potential candidate for its implementation into 

commercial FE packages such as ANSYS, ABAQUS, etc. In addition to in-plane stress 
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accuracy, the presented RZT3C element can provide highly accurate transverse-shear 

stress distribution along the thickness of coordinate of sandwich structures with 

curvilinear fiber-reinforced face sheets as depicted in  Fig. 3-3. This through-the-

thickness stress variation is not affected by the gradient of the curvilinear fibers due to 

absorption of the shear stress within the thick and soft core. The effect of curvilinear fiber 

angles on transverse-shear stress variation will be investigated in the next test cases. 

3.3 A two-layer curvilinear fiber reinforced square plate under a uniform 

pressure 

The second case is a square laminate with two carbon-fiber reinforced plies having 

curvilinear fiber orientation. The mechanical properties of carbon/epoxy are given in 

Table 3-1. The edge size of the plate is 1a m=  and the thickness of both layers are equal 

and varies in accordance with selected span-to-thickness ratios of 10, 25, and 40. The 

geometry of plate is defined in a global rectangular Cartesian coordinate system 1 2( , , )x x z  

with its origin located at the left bottom corner of the plate. All edges of the plate are fully 

clamped and a uniformly pressure of 210 /zq KN m= −  is applied on the top surface of 

the laminate. The VS is defined by the curvilinear fiber angle in each ply as [147]: 

( )( ) ( ) ( ) ( )

1 0 1 0( ) 2 1 ( 1,2)k k k kx k   = − − + =  (3.2)  

where 1 1 /x x a=  is the normalized coordinate and 
( ) ( 0,1)k

i i =  is the upper/lower 

bounds of the fiber angles defined for the first and second layers as 

( ) ( )(1) (1)

0 1, 90,90  = −  and  ( ) ( )(2) (2)

0 1, 0,  = , respectively, where the parameter,  , 

controls the angle of the fiber orientation on the bounding edges of plate within each ply. 

Among the investigated values of 0,15,30,45 = , the through-the-thickness variations 

of mechanical responses calculated for the upper and lower bounds of the parameter, 

0, 45 =  are presented for conciseness. All the presented results are calculated at the in-

plane coordinate of the laminate, / 4 ( 1,2)ix a i= = .  

3.3.1 The through-the-thickness variation of the displacements 

Fig. 3-4 shows the variation of displacement components along the thickness coordinate 

of the laminate for case 0, 45 = , / 2 10a h = . In Fig. 3-4a, there is a slight variation in 

the slope of in-plane displacement from the bottom to the top layers. The slope of 1u  
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displacements within the top layers is about 10% larger than that of the bottom layer. This 

can be attributed to the lower stiffness of the bottom layer since the stiffness along the 1x

-axis in bottom layer is less than the top one due to the variable fiber placement adopted. 

On the other hand, an inverse behavior is observed for the  2u  displacements as shown in 

Fig. 3-4b, where the displacement slope change is predicted 25% from bottom to the top 

plies. Both of in-plane displacements obtained from our solution are almost identical to 

those of the other theories in Figs. 3-4a and b, revealing that RZT3C element can capture 

the essential mechanical response highly curvilinear fiber reinforced moderately thick 

laminates. 

In Fig. 3-4c, the comparison between the two extreme fiber orientation cases, 0, 45 = , 

indicates that when the fibers are straight, i.e., 0 =  corresponding to cross ply (0/90), 

the 1u  displacements  is less affected by the asymmetry of the plies than that of highly 

curvilinear case, 45 = . To elaborate further, the displacement in the neutral plane shifts 

to a higher value if the fibers are curvilinear as shown in Fig. 3-4c due higher asymmetry 

of fiber alignments, which results in a lower membrane stiffness of the laminate but higher 

bending stiffness. Furthermore, in Fig. 3-4d, the deflection variation computed along the 

thickness coordinate is constant, which corresponds to the average of a nonlinear 

distribution that may be obtained from a 3D continuum solution. Specifically, upon 

comparing the reference average deflections of high-order theories with our predictions, 

almost excellent match between results can be observed, thereby proving the high 

accuracy of the RZT3C element. 

3.3.2 The significance of curvilinear fiber path: distribution of in-plane 

and transverse shear stresses 

To be able to reveal the capability of the present approach in terms of predicting other 

design parameters accurately, Fig. 3-5 presents the variation of the through-the-thickness 

normal in-plane and transverse-shear stresses as a function of  different fiber orientations, 

0 =  and 45 = , for the span-to-thickness ratio of / 2 25a h = . As can be seen from 

Figs.3-5a and b that the curvilinear fiber placement reduces and balances the stress 

gradient along thickness direction causing the laminate to behave like a quasi-isotropic 

structure. As for the straight fiber placement ( 0 = ), the inverse behavior of bottom/top-

plies’ stress distribution observed in Fig. 3-5b with respect to ones in Fig. 3-5a is 



47 

 

associated with the 90 degrees shift between fiber orientations within the corresponding 

plies. 

  

(a) (b) 

  

(c) (d) 

Fig. 3-4 The through-the-thickness variation of the planar displacements , 
( )

1

ku , 
( )

2

ku  

and the transverse displacement, 
( )

3

ku  for square plate, 0,45, / 2 10a h = =  . 

This flipped stress variation as well as the balanced stress variation for curvilinear fiber 

placement are captured almost perfectly by using RZT3C element as compared to the 

reference solutions obtained by high-order theories or solid element solution [6]. As seen 

from Figs.3-5c and d, the transverse-shear stress (i.e., obtained from Cauchy’s 

equilibrium equations) for curvilinear fiber cases increases because of a decrease in the 

in-plane normal stress levels when switching from straight ( 0 = ) to curvilinear ( 45 =

) fiber placements. Remarkably, the rise in the transverse-shear stress is much smaller 

than the reduction in in-plane stress levels, thus resulting in a reduced equivalent (von 

Mises) stress. Hence, the curvilinear fiber placements provide a higher stiffness albeit the 
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increase in the transverse-shear stress. This mechanical response is well captured by the 

RZT3C element along the thickness coordinate of the laminate as compared with the 

reference solutions given in the literature [6,147], revealing superior accuracy of the 

present approach. 

  

(a) (b) 

  

(c) (d) 

Fig. 3-5 The comparison of the through the thickness variation of the in-plane normal 

and transverse shear stresses,  
( ) ( )

11 22,k k  , and 
( ) ( )

1 2,k k

z z   for square plate, 0, 45 = , 

/ 2 25a h = . 

3.3.3 The influence of span-to-thickness ratio on distribution of stresses 

To further verify the accuracy of the proposed methodology, the in-plane and transverse-

shear stress results are compared for two different span-to-thickness ratios of the 

curvilinear fiber reinforced laminates in Fig. 3-6. Note that, for conciseness of this case 

study, the stress results are only presented for 2x  coordinate. Expectedly, both stress 
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magnitudes increase as the plate thickness is reduced. Also, the linear trend of stress 

distribution tends to become nonlinear for decreasing span-to-thickness ratio of the 

laminate. As for curvilinear fiber reinforcement, such a behavior is captured well by using 

our present methodology in a linear trend, which is comparably precise with respect to 

the results produced by higher-order theories [6,147]. This indicates that the extra 

kinematic variables (associated with thickness-stretching effects) used to derive higher-

order theories becomes insignificant for obtaining accurate through-the-thickness 

distribution of in-plane/transverse-shear stresses as the laminate gets thinner (higher span-

to-thickness ratio). Thus, the results produced by the proposed formulation converge to 

the predictions of the higher-order theories as can be observed in Fig. 3-6.  

  

(a) (b) 

Fig. 3-6 The comparison of the through the thickness variation of the in-plane normal 

and transverse shear stresses, 
( )

22

k , and 
( )

2

k

z  for square plate, 45, / 2 10,40a h = =  

3.3.4 The comparison of the contours of stresses 

Furthermore, for full-field verification of RZT3C results, the stress contours are 

compared in Fig. 3-7. As can be seen from these contour plots, in-plane stresses obtained 

from RZT3C analysis are almost indistinguishable from those generated by higher-order 

theories [6]. Hence, it can be concluded that the enhanced RZT formulation in this paper 

can be used as a viable and accurate modelling platform for structural analysis of complex 

curvilinear-fiber-reinforced composite structures. 
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Fig. 3-7 The comparison of the contours obtained for normal and transverse shear 

stresses, 
( ) ( )

11 22,k k  , and 
( )

12

k  for square plate, 45, / 2 40a h = = . 

3.4 The double layered curvilinear fiber laminated circular plate 

The third case aims to demonstrate the capability of the proposed approach for modelling 

nonrectangular geometries where the curvilinear fiber placements need to conform the 

boundaries of the structural topology with a more complex pattern. To this end, a circular 

plate with two plies having curvilinear fiber orientations is modelled with fully clamped 
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boundary condition under uniform transverse pressure of ( ) 10[ ]zq z h KPa= = − . The 

circular laminate is made of carbon fiber epoxy plies with identical thickness and has a 

radius of 0.5 [ ]r m= . The mechanical properties of carbon fiber reinforced epoxy 

composite are the same as the previous case study. Curvilinear fiber paths are described 

by the mathematical relation of ( 1) 2ky x= =  for the first layer and ( 2) 4ky x= =  for the second 

layer of the circular plate. Through the thickness variations of displacements and stresses 

are computed and presented at the position of ( , ) (0.25 ,45 )r m =  for different span-to-

thickness ratios, i.e., / 2 10,15,r h = and 20 .  

3.4.1 The correlation between span-to-thickness ratio and distribution of 

displacements 

Figs. 3-8a and b compare the variation of in-plane displacements along the thickness 

direction for all the span-to-thickness ratios. Herein, the displacements vary linearly along 

the thickness coordinate. This is because there is an almost negligible effect of material 

transition between the plies on the deformation of the laminate. This physical behavior 

can be attributed to the smoothness and closeness of the fiber angles between the plies at 

the point of interest. Furthermore, the 1u  displacement is nearly zero at the neutral axis 

whereas the 2u  displacement has a finite value at the reference plate. This indicates that 

the curvilinear laminate exhibits a higher membrane response along the 2x -direction due 

to the lower number of curvilinear fibers aligned along 2x -direction than 1x -direction for 

which the membrane response is negligible.  Moreover, for thicker plates, the slope of 

both in-plane displacements becomes shallower since the deflection variation with respect 

to 1x  and 2x  coordinates decreases. As for the deflection predictions, we present average 

values of transverse deflection along the thickness coordinate in Fig. 3-8c. Overall, 

displacement components are estimated with almost the same values as the reference 3D 

continuum solutions (i.e., obtained using ANSYS Solid185 element). This reveals that 

RZT3C element is capable of accurately modeling the mechanical response of moderately 

thick circular plates which are reinforced by curvilinear fibers.  
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(a) (b) 

 

(c) 

Fig. 3-8 Comparison of the through the thickness distribution of in-plane and 

transverse displacement results for circular plate, / 2 10,15,20r h = . 

3.4.2 The correlation between span-to-thickness ratio and distribution of 

stresses 

Fig. 3-9 presents the through-the-thickness variation of in-plane and transverse stresses. 

In these graphs, the RZT3C formulation can capture identical stress variations along the 

thickness of the circular plate for a variety of span-to-thickness ratios. The perfect match 

between the computed normal stresses and the reference solutions clearly indicates that 

RZT3C element can take the first derivate of displacements accurately for a non-

rectangular geometry. In addition, the RZT3C element can predict continuous transverse-

shear stresses along the thickness coordinate of the circular plate as shown in Figs.3-9c 

and d. Expressively, the RZT3C results yield almost identically precise results of the 

ANSYS Solid185 element. This accuracy level lends itself to the efficient applicability 
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of RZT3C approach for optimizing curvilinear fiber angles even for non-rectangular 

geometries. Overall, it can be concluded that RZT3C is a viable and accurate ESL 

approach for computing displacements and stresses of thin/moderately thick geometries 

of multi-layered composite and sandwich structures with curvilinear fibers. 

  
(a) (b) 

  
(c) (d) 

Fig. 3-9 Comparison of the in-plane and transverse shear stresses for circular plate, 

/ 2 10,15,20r h = . 
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4 STRUCTURAL ANALYSIS OF SANDWICH PLATES WITH VARIABLE 

STIFFNESS COMPOSITE SKINS AND FUNCTIONALLY GRADED CORES 

USING REFINED ZIGZAG THEORY 

4.1 Overview 

This chapter presents, for the first time in literature, the structural analysis of SPs made 

of FG core and curvilinear fiber-reinforced skins. The combination of continuous 

thickness-wise variation in the volume fraction of compositional constituents in the core, 

and the variation of curvilinear fiber angle with respect to the planar coordinates in the 

skins causes a more controlled stiffness variability in these structures. To model complex 

FG material systems with curvilinear fiber reinforcements accurately, an RZT-based ESL 

structural model (enhanced RZT3C formulation) was provided in the second chapter of 

this thesis. For simplicity and computational efficiency, the model adopts the shear-

locking free three-node triangular RZT element which has not been reported to be utilized 

in any earlier research for structural analysis of FG sandwich laminates. This chapter 

comprehensively investigates several benchmark problems numerically with the 

objective of demonstrating the accuracy and boosted potential of the proposed model in 

evaluating the structural behavior of the laminates consisting of FG and VS layers.  

Due to the lack of case studies on SPs with FG cores with curvilinear fiber-reinforced 

skins in literature, the enhanced RZT3C formulation is first verified by solving two 

existing benchmark problems for SPs with FG cores and UD fiber reinforced skins 

[207,240]. Two additional test cases are presented and numerically modeled as SPs that 

curved-fiber reinforced skins overlay the FG core. The first case in the latter group 

involves further extending the existing benchmark problem in refs. [6,142,241]. In this 

study, the isotropic homogeneous core of the SP with VS skins is replaced with an FG 

one. Also, the last case is designed to investigate an SP with a non-rectangular shape, an 

FG core, and curvilinear fiber-reinforced skins, utilizing the enhanced RZT formulation. 

To confirm the accuracy of the generated results for the latter group, they are compared 

with the results of Ansys 3D model solutions. It is shown that the proposed model 

accurately captures the results of the reference solutions for all the test cases. As a result, 

the enhanced RZT3C formulation shows adequate accuracy, and flexibility in dealing 

with complex combinations of design variables of the laminates incorporating both VS 
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and FG layers. This makes the model to be robustly and reliably utilized as an analysis 

module compatible with optimization frameworks. 

4.2 The equivalent mechanical properties of FG cores 

As discussed in the first chapter of this thesis, FG materials are created by the continuous 

variation of multi-phase materials’ constituents under a certain gradient profile. This 

profile determines the distribution of non-uniform macro properties of the FG plies [55]. 

Also, in chapter one, several homogenization models were shortly listed and introduced 

as methods of estimating the equivalent properties of the FG materials. In this chapter, 

the specific adaptation of power law function and law of mixtures to FG SP layers to 

estimate the equivalent mechanical properties is presented as follows.  For the rectangular 

SP with an FG material core and orthotopic skins reinforced by unidirectional/curvilinear 

fibers as shown in Fig. 4-1, the 1,x  and 2x  axes of the orthogonal coordinate system 

define the mid-plane. Also, the normal axis of the mid-plane defines the thickness 

coordinate.  

 

Fig. 4-1 The configuration of an SP with FG material core with CS/VS face sheets. 

Based on the performance requirements, the mechanical properties of the top and bottom 

skins differ from those of the core. Table 4-1 lists the properties of materials used in the 

benchmark problems and test cases presented in this chapter.  For the FG core, the 

thickness-wise variation of Young's modulus ( )E z  follows the relation: 

( ) ( ) ( )t b bE z E E V z E= − +  (4.1)  

( )

n

b

t b

z z
V z

z z

 −
=  

− 
 (4.2)  

( )( ) 2 ( ) 1E z G z = +  (4.3)  
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where bz  and tz denote the thickness coordinates, and bE  and tE  are the elasticity moduli 

at the bottom and top of FG material layer (core) respectively. The CG exponent or index 

CGI, n  , regulates the material variation in the FG core, and ranges between 0.1  to 10  

for the test cases presented in this chapter.  

As is seen in Fig. 4-1 , for b tE E , the CGI of 10 , and 0.1  result in a stiffer and softer 

FG material core respectively. The Poisson's ratio,  , is assumed to be constant along the 

core thickness as its variation has proven to be negligible [71]. Due to material gradient 

within the FG core, the shear modulus, which is directly related to the elasticity modulus, 

becomes dependent on the thickness. Results in this chapter describe the impact of 

tailoring the FG material on distribution of displacement/strains and stresses. 

Table 4-1 The mechanical properties for the materials used in the test cases. 

Material 
Elasticity Moduli 

[GPa] 
Poisson’s Ratios Shear Moduli [GPa] 

Glass epoxy 

1 53.78E = , 

2 17.93E = ,

3 17.93E =   

12 0.25 =
  
,

23 0.34 =
  

12 8.96G =  ,

13 8.96G = ,

23 3.45G =
 
 

Foam-VS 

composite 
0.232E =   0.2 =

  
0.0966G =

  

Foam- UD 

composite 
0.104E =   0.3 =

 
 0.04G =

 
 

Carbon 

epoxy 

1 157.9E = , 

2 9.584E = ,

3 9.584E =  

12 0.32 = , 

13 0.32 = , 23 0.49 =  

12 5.930G = , 

13 5.930G = ,

23 3.227G =  

4.3 A three-layer cantilever SP with FG core and UD fiber skins 

A three-layer laminated SP with the dimensions of 1a b m= =  is analyzed under uniform 

pressure of 1np MPa=  and fully clamped boundary condition on a single edge. The skins 

are made of UD carbon fiber-reinforced epoxy resin system, and the core is an FG soft 

foam material. The equivalent material properties of the FG core are calculated based on 

mixture rule given in Eqs.(4.1)-(4.3). The mean of the elasticity moduli of the top and 

bottom surfaces of FG core ( 0.0208tE GPa=  and 0.1872bE GPa= , respectively) is 

equivalent to the elasticity modulus of a homogeneous isotropic foam. The CGI, n  in 

Eq.(4.2) controls the material variation by taking values ranging from 0.1 (soft) to 10 

(stiff). The thickness of top and bottom face sheets are identical with the value of 
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0.01sh = , and the core has the thickness of 0.08ch = . The span-to-depth ratio (STD) of 

the laminate is calculated as / 2 5a h = = , which corresponds to a thick plate. The 

orientations of the stacked laminae are [0 / 0 / 0] . Boundary conditions along 1 0x =  for 

cross-ply and uniaxial laminate are as follows 0x y x yu wv   = = = = = = = . In this 

benchmark problem, the thickness-wise stress distribution is studied for the isotropic 

homogenous core and the FG material core with various CGIs, 0.1,1,n = and 10 . To 

compare results obtained by the proposed approach of this thesis with the those of 

literature, the stress components are presented in a dimensionless form as: 

2

11 11 1 12

(2 ) 2
, z z

n n

h h

p a p a
   = =  (4.4)  

4.3.1 The relationship between the compositional gradient of the FG core 

and variation of stresses 

Figs. 4-2 and 4-3 show the variation of in-plane and transverse shear stresses of the 

cantilevered FG-SP across the thickness. To illustrate the effect of the of clamped 

boundary condition on the stress distribution, the data is collected from a near-clamp 

position, namely, 1 2( , , ) (0.2 ,0.5 , )x x z m m z . The computed thickness-wise stress data are 

compared with the results of 3D solid elements, and the PD-RZT solutions available in 

the literature [207]. As shown in Fig. 4-2, ZZ pattern in the thickness-wise in-plane stress 

distribution is owing to the abrupt change in the material properties at the interface 

between thick and soft core and the face sheet. It is noticeable from Fig. 4-2a that if the 

CGI is set to be unity, the ZZ pattern is nearly identical to that of the SP with isotropic 

homogeneous core. This behavior can be attributed to the uniform distribution of the 

stiffness along the thickness of the FG material core. However, the outer surfaces of the 

face sheets and the interface between the core and the face sheets experience a slightly 

higher level of in-plane stress for the FG-SP than for SP with the isotropic homogenous 

core. FG-SP with 1n =  exhibits less stiff behavior than the SP with a CS core. Therefore, 

FG core undergoes higher deformation thereby leading to an increase in the values of the 

in-plane stress.  

Nonetheless, as shown in Fig. 4-2b, the change from 0.1n =  to 10  conspicuously alters 

the values of the in-plane normal stresses at the interfaces between the core and the face 



58 

 

sheet as well as the bounding surfaces of SP. Upon raising the value of n  from 0.1 to 10, 

the core stiffness increases, which naturally reduces magnitude of stress/strain therein. It 

is seen that the presented model’s results show quite good congruence with results of 3D 

FEM and PD-RZT [207]. It should be stated that the accurate and computationally 

efficient calculation of deformation fields is rather critical for the design and optimization 

of FG sandwich structures. The RZT3C formulation of this study outperforms higher 

order or non-local particle-based solutions in terms of computational efficiency.  

  

(a) (b) 

Fig. 4-2 The thickness-wise variation of the normalized in-plane stress, 
( )

11

k , for the 

FG material core cantilevered SP. 

To further verify the current RZT formulation, Figs. 4-3a and b compare the transverse 

components of the shear stress for the isotropic homogenous core and FG material cores 

with various CGIs with the results of literature obtained using PD-RZT theories and/or 

solid elements. Both figures demonstrate that the enhanced RZT3C formulation can well 

match results of reference solutions in literature and 3D solid elements solution. As can 

be seen in Fig. 4-3a, for 1n = , the transverse shear stress gradually decreases from bottom 

to top of the FG core due to the higher stiffness at the bottom of the FG core whereas it 

does not change for SP with an isotropic homogenous core. It is noted that the normalized 

transverse shear stresses become maximum in the skins of SP as expected. Referring to 

Fig. 4-3b, the transverse shear stress values within the core and interfaces of core and face 

sheets for 0.1n =  are smaller than those for 10n = . An inverse relation holds for the face 

sheets since the FG core with lower stiffness value ( 0.1n = ) experiences larger 

deformation thereby leading to notably higher values of transverse shear stresses in the 
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skins. The overall results clearly reveal that on tailoring the material properties of FG 

core, the magnitudes of both axial stresses and transverse shear stresses at the interfaces 

between the core and face sheets as well as within the face sheets can be significantly 

reduced. This is quite important to design and manufacture delamination resistant SPs. 

  

(a) (b) 

Fig. 4-3 The thickness-wise variation of the normalized transverse shear stresses, 
( )

1

k

z

, for the FG material core cantilevered SP. 

4.4 A seven-layer simply supported SP: FG material core and UD fiber 

reinforced skins 

The second problem involves a symmetrical square SP made of an FG core material and 

multi-ply UD Carbon fiber-reinforced epoxy matrix face sheets. The ply orientation 

scheme of the face sheet is [0 ,90 ,0 , 0 ]s . The dimensions of plate edges are 1a b m= =  

with the total laminate thickness of 2 0.2h m= . Each skin is composed of three equal-

thickness orthotropic plies and has the total thickness of 2 0.02sh m= . The schematic of 

the simply supported SP is shown in Fig. 4-4. The stiffness of FG core with identical 

mechanical properties at its bottom and top to those used in the previous benchmark 

problem is varied along the thickness coordinate of the laminate by selecting a CG 

exponent ranging from 0.1  to 10  in Eqs.(4.1)-(4.3). A uniform bivariate sinusoidal 

pressure of 1np MPa=  is applied to the top surface of the laminate in accordance with 

the following relation: 

1 2 1 2sin( )sin( ) (0 , 0 )nP P x a x b x a x b =      (4.5)  
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 The kinematic constraints for simply supported edges across the 1 0x = and 1x a=  are as:  

0x xv w  = = = =  (4.6)  

and along the 2 0x =  and 2x b=  are as: 

0y yu w  = = = =  (4.7)  

The thickness wise stress distributions are evaluated against the results of the 3D FEM 

and reference solutions [207,240] at three different locations in Fig. 4-4 as 

1 2( , ) (0.5 ,0.5 )A x x a b , 1 2( , ) (0.75 ,0.5 )D x x a b , and 1 2( , ) (0.5 ,0.75 )E x x a b . For 

simplifying the comparison, the stress components are written in dimensionless as 

( ) ( )( )11 1 2 11 1 2, , 2 , ,z z n z zh P a     = . 

 

Fig. 4-4 Simply supported FG-SP. 

4.4.1 The FG core’s compositional gradient role: in-plane stresses 

Fig. 4-5 presents the variation of in-plane stresses along the thickness of the laminate at 

point A. The significant difference in material properties between the core and the skins 

results in a noticeable ZZ transition. Based on the stress distributions given in Figs. 4-5a 

and c, the in-plane stress profile of the laminate with the FG core of 1n =   is slightly 

greater than the one with the isotropic homogeneous core at the interfaces. This is because 

the softer FG core with ( 1n = ) undergoes higher degree of bending deformation. The fact 

that the current computational approach can capture such as minuscule difference 

between FG core of 1n =  and isotropic homogeneous core is an indication of accuracy 

and sensitivity of presented formulation.  By varying n  from 0.1 to 10, the stress gradient 
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between the core and face sheets in the thickness direction is reduced since stress 

magnitude of face sheet approaches to that of FG core as can be seen in 4-5b and d. This 

leads to quasi-isotropic structure-like response in the FG sandwich panel. As can be 

concluded from these two figures, the results are in very good agreement with both PD-

RZT  [207] or solid element solutions. 

  

(a) (b) 

  

(c) (d) 

Fig. 4-5 The thickness-wise variation of the normalized in-plane stresses, 
( )

11

k   and 

( )

22

k  ,  at point A. 

4.4.2 The FG core’s compositional gradient role: transverse shear stresses 

Figs. 4-6 and 4-7 compare the transverse shear stresses for SPs with an isotropic core and 

FG cores with various CG exponents. The transverse shear stress reaches its maximum 
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within the domain of the skins of the SP. Additionally, as the stiff material phase in the 

FG core increases with the increase of n  from 0.1 to 10, the skins experience lower levels 

of shear stress. Indeed, the higher the stiffness of the FG material, the lower the magnitude 

of bending strain/deformation and stress. However, the stiffer constituent in the FG core 

increases stress not only in the core but also in the core-skins interfaces.   

  

(a) (b) 

Fig. 4-6 The thickness-wise variation of the normalized transverse shear stresses,  

( )

1

k

z ,  at point D. 

 

 
 

(a) (b) 

Fig. 4-7 The thickness-wise variation of the normalized and transverse shear stresses, 

( )

2

k

z ,  at point E. 

The opposite reaction of the skins and the FG material core is attributed to the increase in 

stiffness of the FG material core and decrease in the strain of the skins. Thus, by adjusting 
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the material properties of the core, the level of the transverse shear stress at the interface 

between the core and the skins can clearly be minimized. It should be stated that the 

standard RZT formulation can only render average values for transverse shear stresses 

and fails to ensure their continuity at plies interfaces. However, the current formulation 

can predict transverse stress components as accurately as PD-RZT and 3D continuum 

solutions by utilizing posteriori stress recovery approach obtained from Cauchy's 

equilibrium. These findings confirm that the utilization of small number of kinematic 

variables in the current formulation does not impair the accuracy of in-plane normal and 

shear stresses. 

4.5 A three-layer fully clamped rectangular SP: FG material core and 

curvilinear fiber reinforced skins 

So far, FG sandwich panels with UD fiber reinforced orthotropic skins have been 

investigated as benchmark problems. Here, as the third example, the FG material core 

SPs with curvilinear fiber reinforcement (VS skins) will be studied to demonstrate the 

accuracy of the enhanced RZT3C formulation in predicting the bending behavior of FG-

SP plate with VS skins.   

Upon using appropriate curvilinear fiber orientations in the skins, the mechanical 

behavior of the FG-SP can be tailored to meet the technical requirements of specific 

applications. That is, the continuous variation of the elasticity modulus of the core 

material along the thickness direction as well as the in-plane variation of fiber angle in 

the skins enables steering stress fields along the desired directions. To this end, a three-

layer FG-SP composed of FG foam core and curvilinear glass fiber-reinforced epoxy 

skins is modeled under fully clamped boundary conditions and subjected to uniform 

normal pressure of ( , ) 10np z h kPa= =x . The laminate is illustrated in Fig. 2-5 and has 

the side dimensions of 1.5a b m= = . Both skins have the thickness of 0.01sh m=  and the 

thickness of the core is 0.03ch m= , resulting in a span-to-thickness ratio of 

/ 2 15a h = = . The FG core is graded along its thickness direction so that the mean of 

the elasticity modulus at the top ( 0.0464tE GPa= ) and the bottom ( 0.4176bE GPa= ) 

is equal to that of the homogeneous isotropic foam core as given in Table 4-1. The 

mechanical properties of a material point within FG material core are controlled 
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according to the power-law rule in Eqs.(4.1)-(4.3). That is, varying CG exponent, n  from 

0.1 to 10 makes the FG material core stiffer.  

To generate the curvilinear fiber path within the skins, the following mathematical 

relation is utilized.   

( )( )(1)

1sin / 0.5x a  = + , (3) (1) 90 = +  (4.8)  

Here, (1) and (3)   denote the fiber orientation at any material point in the bottom and 

top skins, respectively, defined according to reference point located at the left bottom 

corner of the plate.   is a coefficient which controls the magnitude of fiber angle in the 

ply. For this test case, thickness-wise distribution of the displacements, strains and stress 

are studied for 0.1,1,10n =  and 15 ,60 =  at 1 2( , ) (0.25 ,0.25 )x x a b . 

4.5.1 The FG core’s compositional gradient contribution to variation of 

displacements 

Fig. 4-8 illustrates the thickness-wise variation of displacement components of the FG-

SP for different n  values and 60 = . As can be seen from Figs.4-8a and b, the thickness-

wise variations of in-plane displacements follow a non-linear ZZ trend due to the presence 

of the FG material core. On the other hand, this trend is linear for the CS soft core. 

Furthermore, it is seen that the higher stiffness of the FG material core at the bottom 

surface as well as the curved fiber orientation in the lower skin prevent the abrupt 

variation in the in-plane displacements while moving from core to the bottom skin. 

However, this trend is severe between the top of FG core and the top skin. The reason 

why both bottom and top interface behave differently is associated with large difference 

in the stiffness values therein. Also, as the value of n  increases, the thickness-wise 

variation of the in-plane displacements decreases owing to the increased stiffness of the 

FG material core, which reduces bending of FG-SP.  

As for transverse displacements, FG-SP plates can have larger and smaller absolute 

displacement values than isotropic homogenous core depending on CGI value. For 

example, FG-SP is softer than SP isotropic homogenous core for 0.1n =  and 1 . This can 

be utilized to be able to tailor bending behavior of FG-SP system. The results of the 

current RZT3C formulation are in very good agreement with that of simulations based on 

the Ansys 3D continuum element. 
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4.5.2 The FG core’s compositional gradient contribution to variation of in-

plane normal and shear stresses 

The thickness-wise variations of in-plane normal and shear stresses are displayed in Fig. 

4-9 for the FG material core with different CGIs 0.1,1,10n =  and the isotropic 

homogeneous core, at a constant value of 60 = . 

  

(a) (b) 

 

(c) 

Fig. 4-8 The thickness-wise variation of the in-plane, and transverse displacements 

( ) ( )

1 2,k ku u and 
( )

3

ku for the FG-SP for 60 = . 

As illustrated in Figs. 4-9a and c, the profiles of the in-plane normal and shear stress for 

1n =  are nearly identical to those for the isotropic homogeneous core due to the evenly 

distributed stiffness of the FG material core throughout the thickness. In these graphs, the 

increase in the in-plane normal and shear stress values at the core-skin interface for 1n =  

is associated with greater bending deformation of FG-SP than SP with homogeneous core. 

Additionally, as shown in Figs. 4-9b and d, the increase in the CGI from 0.1n =  to 10  
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results in a stiffer laminate which better resists against bending and thus lead to lower 

level of strain/stress values in both skins and core-skin interfaces. Furthermore, for all 

cases given in Fig. 4-9, the magnitude of in-plane normal and shear stress variation for 

the bottom skin is smaller than the top one due to higher spatial concentration of 

curvilinear fiber in the bottom skin in the 1x  direction.  

  

(a) (b) 

  

(c) (d) 

Fig. 4-9 The thickness-wise variation of planar normal and shear stresses, 
( )

11

k  and 

( )

12

k , for the FG-SP for 60 = . 

4.5.3 The FG core’s compositional gradient and the variation of transverse 

shear stresses 

Fig. 4-10 presents thickness-wise comparisons of the transverse shear stresses for the 

homogenous isotropic core and FG material core with various CGIs. As seen from Fig. 

4-10a, both FG-SP with 1n = and SP with isotropic core have nearly identical thickness-
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wise variation of the transverse shear stress as expected. However, for 0.1n =  and 10n =

, transverse shear stress variations given in Fig. 4-10b are notably different from each 

other. To be exact, within the core and core-skin interface, transverse shear stress value 

for 0.1n =  is lower due to reduced stiffness of the core. Yet, in the bottom skin, it is 

larger due to soft core and stiffer bottom skin as a result of curvilinear fiber. Unlike 

previous benchmark problems for 0.1n = , there is no reflection symmetry in transverse 

shear stress along the thickness direction with respect to mid-plane due to the asymmetry 

in fiber orientations in both bottom and top skins. As for 10n = , due to the greater 

stiffness of the FG core which dominantly bears the transverse shear stress, there exists 

similar pattern of stress distribution in both skins. In passing, it is valuable to note that 

the results are well verified with that of 3D Ansys solutions.  

  

(a) (b) 

 Fig. 4-10 The thickness-wise variation of transverse shear stress, 
( )

1

k

z  , for the 

FG-SP for 60 = . 

To investigate the effect of curvilinear fiber placement on the thickness-wise variation of 

displacements and stresses of the FG-SP, results for the maximum fiber angles of 15 =

and 60 =  in the subsequent discussion for 0.1n = , and 10  are going to be presented.  

4.5.4 The curvilinear fiber path influence on the profiles of in-plane 

displacements 

Fig. 4-11 illustrates that the variation of the maximum curvilinear fiber angle from 

15 = to 60 = causes a shift in the through-thickness displacement from right to left, 

resulting in a decrease in displacement magnitude at the bottom skin and an increase in 
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magnitude at the top skin's outer surfaces for both CG exponents, 0.1n = and 10 . 

However, this change does not affect the non-linear ZZ trend of the displacements in 2x  

direction. To present the results more concisely, the upcoming discussions will only 

depict the results for the CG exponent 0.1n =  since the change in the maximum 

curvilinear fiber angle exhibits similar behavior for both exponents. 

  

(a) (b) 

Fig. 4-11 The thickness-wise variation of the in-plane displacement, 
( )

2

ku for the FG-

SP for 15 ,60 = , and 0.1,10n = . 

4.5.5 The curvilinear fiber path influence on the profiles of stresses 

Figs. 4-12 and 4-13 show the thickness-wise profiles of the in-plane normal, shear, and 

transverse shear stresses for curvilinear fiber angle magnitudes of 15 = , and 60 = , 

with a CG exponent, 0.1n = .  Notably, as   increases from 15  to 60 , the in-plane stress 

in 1x  direction is reduced for the bottom skin, while the opposite effect is observed for 

the top skin. This behavior is explained by the decreased and increased stiffness due to 

the spatial curvilinear fiber concentration at the bottom and top skins in 1x  direction, 

respectively. For a deeper understanding of this mechanical response, the reader may refer 

to the reference article [6], which contains the curvilinear fiber pattern for the isotropic 

homogeneous core case of this problem. Fig. 4-12b further shows that the top skin’s 

spatial concentration of fibers in 2x  direction for both maximum curvilinear fiber angles 

result in increased stiffness and higher in-plane stress as compared to the bottom skin. In 

Fig. 4-12b, almost identical through-the-thickness stress distribution for both curvilinear 

fiber angles reveal the increased overall stiffness of the laminate. Furthermore, as 
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illustrated in Fig. 4-13a, the extreme curvilinear fiber angle magnitude of  60 =  results 

in a larger range of in-plane shear stress variation in the upper skin. This behavior is not 

observed in the lower skin due to higher stiffness of the FG core at its bottom. 

  

(a) (b) 

Fig. 4-12 The thickness-wise variation of the in-plane normal stresses, 
( )

11

k and 
( )

22

k , 

for the FG-SP for 15 =  and 60 ,  and 0.1n = . 

  

(a) (b) 

Fig. 4-13 The thickness-wise variation of the in-plane and transverse shear stresses, 

( )

12

k and 
( )

2

k

z , for the FG-SP for 15 =  and 60 ,  and 0.1n = . 

For both magnitudes of the curvilinear fiber angle, the transverse shear stress variation 

exhibits no change in the soft FG material core due to shear stress absorption (Fig. 4-13b). 

However, the different patterns of the curvilinear fibers have resulted in reflection 

asymmetry of the transverse shear stress with a greater magnitude in the bottom. It is seen 

that as the magnitude of fiber angle increases, the gradient of fiber angle becomes larger 
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and greater asymmetry is observed therein. Therefore, it is critical to tailor the stress fields 

in the plies and interlaminar space of the FG-SPs to prevent failure, as extensively 

discussed in this thesis. The low-order enhanced RZT3C formulation demonstrates 

exceptional accuracy in capturing the effects of both the curvilinear fiber path and 

material gradation, generating identical thickness-wise distributions of stresses, as the 3D 

continuum elements. 

4.6 A three-layer fully clamped circular SP:  FG material core with curvilinear 

fiber reinforced skins 

The fourth case considers a three-layer circular FG material core SP with orthotropic VS 

face sheets. The plate has a specified radius of 0 0.5 [ ]r m=  and a total thickness of 

2 0.05h = , resulting in span-to-thickness ratio of 0 2 10r h = . Both skins are of the same 

thickness with 2 0.01sh m= , and the thickness of the FG material core is defined with

2 0.03ch m= . The skins are composed of glass fiber-reinforced epoxy, and the core is 

made of two distinct components similar to the FG material soft core in the previous 

problem. Specifically, the elasticity modulus of the FG material core is graded along its 

thickness, with elasticity modulus values at the top and bottom equal to those in the 

preceding case study problem. The through-the-thickness variation of the mechanical 

properties of the FG material core is similarly governed by the power-law used in the 

previous test cases. To achieve VS in the face sheets of the laminate, fibers’ orientation 

is determined through the following mathematical relation.  

( )( )( )(1) sin cos 0.5 0.5r   = + + , 
(3) (1) 90 = +  (4.9)  

where the polar coordinate system is positioned at the centroid of the circular SP, and 
(1)

, and 
(3)  are representing the fiber orientation within the bottom and top skins 

respectively. The symbol  , as in the previous problem, represents the maximum 

curvilinear fiber angle magnitude and takes the same values. The laminate is subjected to 

uniform sinusoidal transverse pressure based on the following relation: 

0

0

0

sin
2

r r
q q

r

 − 
=   

 

 (4.10)  

where the magnitude is defined as 0 10 [ ]q KPa= . Eight distinct cases are investigated by 

altering the magnitude of the curvilinear fiber angle for the different CG exponent values 
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of the soft FG and constant elastic modulus isotropic cores. Fig. 4-14 concisely depicts 

the curvilinear patterns of the fibers in the skins of the circular SP for the extreme values 

of 15 = , and 60 =   for clarity.  

 

Fig. 4-14 Different variations of fibers’ patterns in both the (a) top and (b) bottom 

skins of the circular FG-SP. 

The thickness-wise variations of displacements and stresses are computed at the position 

of ( , ) (0.25[ ],45 )r m = . For brevity, the results for the curvilinear fiber angle 

magnitude of 15 =  versus different CG exponents of the FG core will be presented 

first. Subsequently, to investigate the impact of changing the magnitude of the curvilinear 

fiber angle, the CGI will be kept constant at 10n =  for varying curvilinear fiber angle 

magnitude of 15 = , and 60 = . 

4.6.1 The effect of FG core’s compositional gradient on displacements 

Fig. 4-15 compares the thickness-wise variation of displacement components for different 

n  values of the FG core and isotropic homogenous soft core with 15 = . Consistent 

with the previous problem, Figs. 4-15a and b show that that in-plane displacements vary 

non-linearly along the thickness for the FG core with non-zero values of n  and unequal 

15 =

15 =

60 =

60 =

(a)

(b)



72 

 

elastic modulus at cores bottom and top. However, the constant value of the elastic 

modulus in the core (isotropic soft core) results in a linear profile of variation. Moreover, 

the increased stiffness of the FG core reduces the extent of the non-linearity in thickness-

wise variation of in-plane displacements in the core, which is associated with the fact that 

stiff core resists bending deformation. Thus, the physical position of the neutral plane 

experiences a smaller shift. It is observed that the magnitude of in-plane displacements is 

higher for the skins because of being placed far from the neutral plane and naturally 

experiencing more bend deformation. Nonetheless, the increase in the stiffness of the FG 

core reduces the magnitude of deformation in the outer surfaces of the skins. 

  

(a) (b) 

 

(c) 

Fig. 4-15 The thickness-wise variation of the in-plane, and transverse displacements, 

( ) ( )

1 2,k ku u and 
( )

3

ku , for the circular FG-SP for 15 = . 

In Figs. 4-15a and b, the stiffer FG core at the bottom results in a smoother transition of 

in-plane displacements at its interface with the bottom skin owing to the gradual transition 
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of stiffness. This can mitigate the displacement difference between the adjacent layers of 

FG composite structures during bending. In Fig. 4-15c, the thickness-wise variation of 

the transverse deflection of the FG-SP is shown. The results indicate that for 0.1n =  and 

1n = , the FG core is softer than the isotropic homogeneous core, whereas for 10n = , it 

is stiffer and bends less. The consistency between the linear and constant transverse 

deflection variations obtained by the enhanced RZT3C formulation and 3D solid FEM 

analysis provides two important remarks. For sandwich structures with moderately thick 

and soft FG material cores, the inclusion of higher-order and stretching terms in the 

kinematic fields is not necessary. The efficiency and accuracy of the enhanced RZT3C 

model is not affected by the change of geometry of the laminate. 

4.6.2 The effect of FG core’s compositional gradient on stresses 

Fig. 4-16 presents the variation of in-plane normal, shear, and transverse shear stresses 

for the circular SP along the thickness direction. Fig. 4-16a shows that when the core is 

linearly graded along its thickness, 1n = , there is a minor increase in the normal in-plane 

stress value on the outer surfaces of both skins. This increase is attributed to the weaker 

resistance of softer FG material core against bending than the homogeneous isotropic one. 

Additionally, the interlaminar stress between the core and the top skin increases for 1n =

whereas the one between the core and the bottom skin decreases down to nearly zero. 

This reduction in the interlaminar stress can be explained such that in the bottom face 

sheet, fibers are mainly aligned along the 1x  direction. Thus, the stiffness of the bottom 

skin approaches that of the FG core at their interface (pure epoxy stiffness). Furthermore, 

the thickness-wise stress variation in all graphs of Fig. 4-16 is unequal for the bottom and 

top skins for all n  values. For instance, in Fig. 4-16a, the variation of the in-plane stress 

in  2x  direction is greater for the top skin than the bottom skin regardless of the core being 

an isotropic or an FG material. This disparity is due to the asymmetry in the spatial 

gradient of curvilinear fibers in both VS skins, which affects the stiffness. In Fig. 4-16b 

it is demonstrated that increasing n  from 0.1  to 10  results in a decrease in the magnitude 

of the in-plane stress in the core-skins interface, and the skins. This behavior is associated 

with the increased stiffness of the FG core, leading to a reduced bending deformation. 

However, as seen in Fig. 4-16c, increasing n  does not always consistently result in a 

reduction in the value of the stress variation. The exponent 10n =  almost gives identical 

in-plane stress variation as that of 0.1n =  in the upper skin-core interface and skin, and 
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only causes a reduction in the values of the shear stress at the bottom skin-core interface 

and skin. This response relates to the redistribution of the loads due to the increased 

stiffness of skins which makes various CG profiles of the core less significant for this 

case. The extent to which an increased stiffness in one skin in a specific direction can 

affect the redistribution of loads depends on the loading conditions and the structural 

geometry of the laminate.  

  

(a) (b) 

  

(c) (d) 

Fig. 4-16 The thickness-wise variation of the planar normal and shear stresses, 
( )

22

k  

and 
( )

12

k , and transverse shear stress, 
( )

2

k

z , for the circular FG-SP for 15 = . 

As a result, this observation highlights the potential limitations of using stiffer FG cores, 

which may not always adequately reduce the stress in the desired VS skin(s) in 

equilibrium with other stresses. Therefore, there exists a persisting requirement for a 

reliable and accurate analysis tool such as the enhanced RZT3C formulation. Fig. 4-16d 

shows the thickness-wise distribution of the transverse shear stress for CGIs of 0.1n = , 

 1

  . 

  . 

  .4

  . 

 

 . 

 .4

 . 

 . 

1

   4  3    1  1  3 4   
 1

  . 

  . 

  .4

  . 

 

 . 

 .4

 . 

 . 

1

     3  1 1 3   

 1

  . 

  . 

  .4

  . 

 

 . 

 .4

 . 

 . 

1

   1  1  

 1

  . 

  . 

  .4

  . 

 

 . 

 .4

 . 

 . 

1

  1 1   



75 

 

and 10 . As is seen, by increasing n  from 0.1  to 10 , the magnitude of the transverse stress 

in the FG core and the core-skin interfaces increases owing to the increased stiffness of 

the core. For 10n = , the stiff FG core bears the bending deformation and uniformly 

transmits the transverse shear stress, leading to a reflection symmetry in transverse shear 

stress. However, for 0.1n = , the profile of stiffness gradient of the FG core in the 

thickness direction affects the load transfer mechanism and distribution of stresses within 

the SP. This gives rise to a stress peak in the upper skin.  It is worth noting that all 

structural analysis results of enhanced RZT3C and 3D solid elements are in good 

agreement for the non-rectangular FG-SPs as well. 

4.6.3 The effect of curvilinear fiber path on stresses  

To investigate the effect of curvilinear fiber path on stresses, Fig. 4-17 presents the 

thickness-wise variation of the in-plane normal, shear, and transverse shear stresses, for 

the circular FG-SP for 10n =  and fiber angle magnitudes of 15 = , and 60 . As shown 

in Fig. 4-17a, by increasing    from 15  to 60 , the in-plane stress values at the outer 

surfaces of both skins as well as the skin-core interfaces shift due to the change in the 

stiffness of the skins. That is, the increased spatial concentration of fibers in the 1x  

direction for the top skin leads to lesser strain and in turn lowers the stress variation in 

this direction. As for the bottom skin, the opposite behavior is observed. In Fig. 4-17b, 

by shifting from 15 = to 60 , the in-plane stress values at outer surfaces of the top and 

bottom skins decreases and increases respectively because of the decreased and increased 

stiffness as the magnitude of the curvilinear fiber angle increases. However, this shift only 

reduces the interlaminar stress value between the upper skin and the core, with almost no 

change in the bottom core-skin interface. This behavior is associated with the stiffer 

bottom of the FG core and increased stiffness of the lower skin in 2x  direction. Fig. 4-17c 

yields the thickness-wise variation of the in-plane shear stress for fiber orientation 

magnitudes of  15 = and 60 = . It is seen that as   rises, the magnitude of the shear 

stress between the FG material core and the skins increases. Additionally, the rise in the 

fiber angle magnitude escalates the shear stress within the bottom skin whereas it 

decreases the shear stress for the top skin towards the outer surface. Evidently, the 

contrasting increase in the stiffnesses of the top and bottom skins in 1x  and 2x  directions 

redistribute the shear stress to maintain the equilibrium state in the FG-SP. 
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(a) (b) 

  

(c) (d) 

Fig. 4-17 The thickness-wise variation of the in-plane normal and shear stresses,
( )

11

k  , 

( )

22

k  and 
( )

12

k  , and the transverse shear stress, 
( )

1

k

z  , for the circular FG-SP with 

10n = . 

Notably, for 15 = , the in-plane shear stress has much smaller thickness wise gradient. 

Fig. 4-17d, shows the thickness-wise variation of transverse shear stresses for fiber angle 

magnitudes of 15 =  and 60 . As seen, the thickness-wise profiles of the transverse 

shear stresses are not notably affected by the change in fiber angle magnitude. This is 

because the thick and stiff FG core ( 10n = ) effectively withstands the bending load and 

thus, the FG-SP does not undergo significant bending deformation in the skins. 

Essentially, the effect of change in fiber angle magnitude on transverse shear stresses is 

obscured.  According to what has been discussed so far, modifying the material gradation 

and/or fiber orientation can allow for the desired strain/stress distribution in multiple 

directions of the FG core composite SPs with VS skins. To control the specified 
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parameters, a robust analytical formulation with the admissible accuracy level and 

computing efficiency is required. The enhanced RZT3C for FG material laminates is an 

efficient and precise ESL method capable of computing strains and stresses of multi-ply 

FG composite sandwich structures, combining the curvilinear fibers, and FG material 

plies to obtain the most preferable properties. 
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5 SUMMARY AND CONCLUSIONS 

VSCLs and FG material systems are usually tailored to present admissible mechanical 

properties while preserving the integrity during their lifetime. Obtaining optimally 

tailored VSCLs and FG material structures necessitates the use of accurate and 

computationally efficient modeling approaches. Therefore, the present thesis focuses on 

the development and evaluation of a numerical tool that is accurate and computationally 

efficient for the structural modeling of VSCLs and FG materials. To this end, the RZT 

which employs a small number of kinematic variables (seven) is adopted as the 

foundation of this research. In this study, a single layer model based on revising and 

reformulating the original RZT formulation is presented to dramatically reduce the 

computational cost without losing numerical accuracy. In the model for incorporating the 

curvilinear fiber angle variation in the VS layers, the in-plane derivatives of the ZZ 

functions are considered in the calculation of strains. Also, to add to the capability of the 

model to effectively evaluate the thickness-wise distribution of displacements and 

stresses of FG-SPs, with FG cores/layers and VS skins, the formulation of the model is 

enhanced to incorporate linear/non-linear ZZ functions. To the purpose of this 

enhancement, the RZT ZZ functions in the model with incorporation of curvilinear fibers, 

are upgraded to account also for continuous thickness-wise variation of the FG materials 

in the FG layers. Furthermore, in this study a three-node shear-locking free triangular FE 

(RZT3C) is developed in an in-house MATLAB code for the static analysis of thin and 

moderately thick laminated composite plates and FG-SPs accommodating 

straight/curvilinear fibers and FG materials in their layers/skins. This element is 

implemented for the first time in literature for curvilinear FRCs and multilayered FG 

material structures.  

To investigate the capability of the proposed approach for predicting displacements and 

stresses throughout the 3D laminates, several benchmark problems with different 

geometries, lamination sequences, materials, curvilinear fiber paths, and grading profiles 

of FG material are analyzed.  The computed results by RZT3C formulation are carefully 

compared against the numerical solutions of higher-order plate theories available in 

literature as well as those of the 3D FE implementation. According to the numerical 

results, the following conclusions can be drawn:   
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• The proposed enhancements in the RZT formulation promote the model to be 

capable of analyzing plate structures with UD or curvilinear fiber reinforcements, 

as well as functionally graded material properties in the in/out of plane directions 

for the separate or same layer(s). 

• The proper selection of the right curvilinear fiber path as well as the grading 

profile or the combination of the two can mitigate the undesirable mechanical 

properties in the composites and sandwich laminates with VS/FG layers to be 

more stable. 

• The proposed model with the RZT3C element is an essential, effective, and robust 

tool due to the utilization of linear thickness-wise expansion for the kinematics 

model for the in-plane displacements and a constant one for transverse deflection. 

• Due to using the RZT as the baseline, the developed model is also consistent with 

the virtual work principle. This principle directly yields equilibrium equations and 

boundary conditions.    

• The kinematic variables of the proposed model with the RZT3C element are 

independent of the number of layers in the laminate. As a result, it has a consistent 

computational cost and efficiency. However, this does not hold true for 3D solid 

and LW elements and becomes larger with the increase in the number of layers.  

• Based on the accurate results obtained without the use of any shear correction 

factors, the contribution of the ZZ functions to the kinematics, as well as their 

derivatives to the strain-displacement relations, serve to reach the same level of 

accuracy as those of higher-order kinematics, LW, or other counterpart theories. 

• For multilayered composite and SPs with FG layers, the continuous non-linear ZZ 

functions account locally for cross-section distortions when coupled by the 

amplitudes. Therefore, the model can capture the non-linear piecewise 

distributions of in-plane displacements with linear thickness-wise expansion 

kinematics in the absence of higher-order terms.  

• The model due to relying on RZT kinematics is suitable to be efficiently 

implemented as an 
0C  FEM method with shear-locking free elements such as 

RZT3C and avoids predicting faulty over-stiff behavior during bending of 

laminates with VS/FG layers. 

• Compared to elements with four or more nodes, with its seven degrees of freedom 

per node, the 3-node triangular element minimizes the size of the global stiffness 
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matrix and force vector employed in FEM solution. As a result, the 

implementation of RZT3C element becomes computationally simpler.  

• Consistent with kinematic assumptions of RZT theory, the presented model lacks 

the 0C  continuity condition for transverse shear stresses, 1z , 2z  at layers’ 

interfaces, and offers only piecewise average values of these stresses within each 

layer of the laminate along the thickness direction. To address this issue, 

continuous transverse shear stresses are reconstructed in a posteriori stress 

recovery technique by employing Cauchy's equilibrium equations. Upon the 

utilization of this technique for thin and moderately thick laminates with 

curvilinear fibers and/or FG material layers, accurate results for the distribution 

of transverse shear stresses are obtained even with the employment of linear 

expansion of the kinematics, with RZT3C element.  

• The major weakness of the model lies in its lack of higher-order kinematic terms. 

As a result, the present approach captures physically non-linear displacements as 

linear for highly thick curvilinear fiber-reinforced composites. For the case of 

extremely thick FG plates, albeit the consideration of non-linear ZZ functions, the 

model might erroneously capture the non-linear variations of displacements along 

the thickness of FG-SPs.  Hence, the formulation of the presented model needs to 

be extended to enable observing accurate nonlinear variations of the displacement 

throughout the thickness of highly thick VSCL and FG laminated structures. 

Nonetheless, even in the presence of this limitation the presented model with the 

RZ3C element can by far effectively and accurately predict the global response of 

the structure on an average basis. 

In light of the concluding remarks above, the presented model in this study with the 

RZT3C element performs as a viable structural composite and FG material modelling 

platform and it can be conveniently implemented in commercial FE analysis software 

packages. This implementation is essential for effectively analyzing displacement, strain, 

and stresses during the optimization process of laminated composites and sandwich 

structures containing curvilinear fiber pattern as well as the FG material in their layers. 

Therefore, the utilization of the present model with the RZT3C element can serve to be 

replaced by other complex higher-order methods in the literature. This is essential to 

optimally find the most suitable curvilinear fiber path and grading profiles of materials 

for the VSCLs and FG laminated structures to increase their stiffness-to-weight ratio. 
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6 FURTURE WORK 

As for the future work, the following is briefly the list of possible research which can be 

conducted by using the current study as the base. 

• The employment of the proposed model to an optimization platform such as the 

genetic algorithm to obtain the most suitable VS/FG design parameters. This is 

important to achieve high-performance multi-stable structures without failure, 

especially in that the non-uniform stress distribution should be steered with 

curvilinear fibers and/or FG material.   

• The implementation of the proposed model for vibration and structural analysis 

of multi-layered VS and FG shell and stiffened structures and conducting 

accuracy analysis for various plate and shell elements. 

• The incorporation of the isogeometric formulation to the proposed formulation to 

ensure the continuity of the curvilinear fiber path based on non-uniform rational 

spline interpolation functions (NURBS) as one of the significant manufacturing 

constraints of the VSCLs. 

• The enhancement of the model by integrating a global stochastic model capable 

of probabilistic characterization of local defects along with a scaling technique to 

scale the properties of the defect area (local deterministic approach). This way 

gaps and overlaps and fiber misalignments in VSCLs, and material imperfections 

and porosity type defects in FG structures can be readily analyzed. 

• The adoption of the RZT(m) formulation to the presented model to avoid the 

posteriori analysis step for obtaining the continuous non-linear distribution of the 

transverse shear stresses along the thickness of the laminate.  

• The incorporation of non-linear Von Karman governing equations into the model 

in order to broaden the model's analysis span to geometric non-linearities in 

buckling and post-buckling analyses. 

• The study of damped and free vibration of plate structures with the inclusion of 

VS, FG, and piezoelectric actuators embedded layers in the first step and 

extending the study to micro-plates. 

• The implementation of the higher-order RZT theory to the proposed model to 

specifically attain accurate results for structural analysis of extremely thick VS 

and FG composite structures.  
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APPENDIX A 

Herein, the elimination process of the mid-nodes (constrained) of the six-node RZT 

triangle element, shown in Fig. A.1, has been rederived for completeness. 

 

Fig. A.1 The six-node RZT triangle element. 

( )

1 1( , ) ( ) ( )ku z u z= +x x x  (A.1)  

( )

2 2( , ) ( ) ( )ku z v z= +x x x  (A.2)  

u ( , )z z w=x  (A.3)  

The set of FSDT kinematic relations in Eqs.(A.1)-(A.3) were enhanced by including the 

contribution of ZZ functions and their amplitudes as shown in Eqs.(2.1)-(2.3). 

1 1 );( ) ( ) ( ) (y y   = =x x x x  (A.4)  

2 2 );( ) ( ) ( ) (x x  = − = −x x x x  (A.5)  

From the FSDT Eqs.(A.1)-(A.3), the transverse shear strain can be expressed as: 

1

1 1

z y

w u w

x z x
 

  
= +  +
  

 (A.6)  

 Based on the RZT kinematics given in Eqs.(2.1)-(2.3), the strain measure 1  can be 

defined as, 

1 1 1z  = −  (A.7)  

and by replacing Eq.(A.4) and Eq.(A.6) into Eq.(A.7), the strain measure can be rewritten 

as: 
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1

1

y y

w

x
  


= + −


 (A.8)  

Under the assumption of each edge of the 6-node triangle element can be separated into 

a 3-node bar element, the kinematic variables of the specified element can be interpolated 

as:   

i iN =  (A.9)  

2

1 2 12

1 1
( ( 1)) ( ( 1)) (1 )
2 2

m     =  − + + + −   (A.10)  

 with [ ( , , ), (1, ,3)]y yw i = = and 12 3i m= =  refers to the mid-point of the element. 

The variation of the transverse displacement with respect to 1x -direction in Eqs.(A.6)-

(A.8) can be expressed using the chain rule as: 

12( )(1) (1) (2) (2)1 1
2

2 2

mdw
w w w w w

d
  


= − + + −  (A.11)  

with the Jacobian of the isoparametric transformation from cartesian to natural 

coordinates as: 

1

2d

dx L


=  (A.12)  

Applying the chain rule, the derivative of the transverse deflection with respect to 1x  axis 

can be written as: 

12

(2) (1)
( )(1) (2)

1

2 ( )
( 2 )

mdw w w
w w w

dx L L


− 
= + − + 

 
 (A.13)  

 Hence, using Eq.(A.9) and Eq.(A.13) the shear strain measure 1  in Eq.(A.8) takes the 

form: 

12 12

12

12 12

(2) (1)
( ) ( )

1

(2) (1) (1) (2)

( )(1) (2)

( ) ( )(1) (2) (1) (2)

2

( )
[ ( )]

( )2
[ ( 2 ) ]

2

2 2
( )

2

m m

y y

y y y ym

m m

y y y y y y

w w

L

w w w
L

  

   


     


−
= + − +

− + −
+ − + +

+ − − − +

 (A.14)  

For very thin plates, aspect ratio higher than fifty, the shear strain measure in Eq.(A.14) 

vanishes and the discrepancy of the rotation functions 1, and 2 with 1 , and 2  approach 
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the slopes of transverse deflection [72]. Therefore, by setting constant, linear, and 

quadratic terms of   in Eq.(A.14), one can use the values of DOF in the corners’ nodal 

points to express the values of side mid-nodes on the edges of the six-node triangular 

element. Such a strategy reduces the number of the nodes of the element from six to three 

and prevents the shear locking problem which occurs by miscalculating the bending 

curvature between the adjacent elements.  

12 12

(2) (1)
( ) ( )m m

y y

w w

L
 

−
= −  (A.15)  

( )(1) (2)
( ) (2) (1) (2) (1)112 [( ) ( )]

2 8

e

y y y y

m Lw w
w    

+
= + − − −  (A.16)  

 and, 

(1) (2) (1) (2)
( ) ( )12 12

( )
( )

2

y y y y

y y

m m    
 

+ − +
− =  (A.17)  

 with ( ) (2) (1)

1 1 1

eL x x= − . If the same procedure from Eqs.(A.6)-(A.17) is repeated for the 

other direction by defining 2 z , and 2 , the mid-node transverse deflection, 
( )13m

w  can 

be expressed as: 

( )(1) (3)
( ) (1) (1) (1) (3)213 [( ) ( )]

2 8

e

x x x x

m Lw w
w    

+
= + − − −  (A.18)  

  with ( ) (1) (3)

2 2 2

eL x x= − . By comparing Eq.(A.16) and Eq.(A.18), the general form of the 

transverse deflection of the side mid-points of the six-node triangular can be expressed in 

terms its values on the corner nodes as: 

( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )1 1

( ) ( )
( ) ( ) ( ) ( )2 2

( )
[( ) ( )]

2 8

( )
[( ) ( )]

8

ab

b aa b
b a b a

y y y y

b a
b a b a

x x x x

m x xw w
w

x x

   

   

−+
= + − − −

−
− − − −

 (A.19)  

The transverse displacement field of the six-node triangular element can be interpolated 

using the area parametric coordinates and quadratic shape functions as: 

, ( 1, ,6)i iw w N i= =  (A.20)  

 

12 23 31

1 1 1 2 2 2 2 3 3

1 2 2 3 3 1

(2 1) (2 1) (2 1)

(4 ) (4 ) (4 )m m m

w L L w L L w L L w

L L w L L w L L w

     = − + − + − +     

+ + +
 (A.21)  
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 Substituting Eq.(A.19) into Eq.(A.21), and applying the condition 
1 2 3 1L L L+ + = , the 

anisoparametric constrained form of the transverse displacement field can be written in 

terms of the corner node kinematic variables as: 

3

1 2

1

[ ( ) ( ) ]i i xi xi i yi yi i

i

w w L L L   
=

= − − + −  (A.22)  

Thereby, the linear anisoparametric shape function matrix of the three-node constrained 

RZT element, takes the form below: 

1 2 1 2

( )

0 0 0 0 0 0

0 0 0 0 0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

i

i

i i i i i

e
ii

i

i

i

L

L

L L L L

L

L

L

L

L

 
 
 
 − −
 

  
 −
 
 
 − 

N  (A.23)  

 and the strain-displacement matrix, 
( )e

iB  associated with the three-node constrained 

anisoparametric triangle RZT element ( 1,...,3)i =  is defined with the shape functions’ 

derivatives of the element with respect to the planar coordinates, x , as Eq.(A.24) where 

iL  , 1iL  , 
2iL  are the shape functions of the three-node RZT element given in Ref.[89], 

and the operators, ( ) ( )
,

/ ( 1,2)ii
x i•   •  = , represent the partial derivatives in the planar 

coordinate directions, 1x  and 2x . 
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