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ABSTRACT

INCOMPLETE ANALYTIC HIERARCHY PROCESS (AHP) SOLUTION
METHODOLOGIES

DOGUKAN ZORLU
Industrial Engineering, MSc. Thesis, July 2023

Thesis Supervisor: Assoc. Prof. Dr. Kemal Kilig

Keywords: Analytic Hierarchy Process, Incomplete Information, Decision Making,

Pairwise Comparisons, Completion Methodologies

Analytic hierarchy process (AHP) is a well-known multi criteria decision making method.
It relies on matrices constructed through pairwise comparisons of criteria and alternatives
by decision makers. In the literature, AHP has been proven effective in assessing weights
of criteria and/or relative scores of alternatives. However, in order to utilize the AHP
method, it is necessary for the decision maker to determine complete matrices, meaning
that the decision maker must assign all pairwise comparisons into the matrices. This
requirement may not always be feasible due to reasons such as the decision maker's
inadequate knowledge in certain pairwise comparisons, uncertainty in the pairwise
comparisons, and time constraints. In the literature, several algorithms have been
proposed to address this issue, but there is no consensus on the best algorithm. In this
study, we provided a comparative analysis of the existing algorithms. Furthermore, we
also introduced new parametric heuristic algorithms for the incomplete AHP framework.
The proposed algorithms were also compared with the existing algorithms in different
experimental conditions. The performances of these methods were assessed utilizing
metrics from the literature as well as a metric developed for the incomplete AHP
framework in this research. The comparisons were conducted in two types of
experiments, i.e., numerical and empirical. According to the results of these experiments,
the developed algorithms were competitive, and even demonstrated better performance
under some experimental conditions.



OZET

TAMAMLANMAMIS ANALITIK HIYERARSI PROSESI (AHP) COZUM
METODOLOIJILERI

DOGUKAN ZORLU
Endiistri Miihendisligi, Yiiksek Lisans Tezi, Temmuz 2023

Tez Danigmani: Assoc. Prof. Dr. Kemal Kilig

Anahtar Kelimeler: Analitik Hiyerarsi Siireci, Eksik Bilgi, Karar Verme, Ikili

Karsilastirmalar, Tamamlama Y 6ntemleri

Analitik hiyerarsi prosesi (AHP) cok kriterli karar verme yontemi olarak bilinen bir
yontemdir. AHP, karar vericiler tarafindan kriterler ve alternatifler arasinda ikili
karsilagtirmalarla olusturulan matrislere dayanir. Literatiirde, bu yontemin kriterlerin
agirliklarim1 ve/veya alternatiflerin goreceli puanlarmi degerlendirmede etkili oldugu
kamitlanmistir. Fakat, AHP ydnteminden yararlanmak icin karar vericinin tam matrisler
olusturmasi gereklidir, yani karar vericinin biitlin ikili karsilagtirmalar1 matrislere atamasi
gerekir. Bu gereklilik, uzmanin bazi ikili karsilastirmalarda yetersiz bilgiye sahip olmasi,
ikili karsilagtirmalardaki belirsizlik ve zaman sinirlamasi gibi nedenlerden dolay1 her
zaman mimkin olmayabilir. Literatlirde, bu sorunu ele almak icin birkac algoritma
Onerilmistir, fakat en iyi algoritma konusunda fikir birligi yoktur. Bu ¢alismada, mevcut
algoritmalarin karsilasgtirmali bir analizini sunduk. Ayrica, tamamlanmamis AHP
cergevesi igin yeni parametrik sezgisel algoritmalar da tanittik. Tanitilan algoritmalar,
farkli deneysel kosullarda mevcut algoritmalarla da karsilastirilmistir. Bu yontemlerin
performanslari, literatiirdeki metriklerin yani sira bu arastirmada tamamlanmamis AHP
cergevesinde gelistirilen bir metrik kullanilarak degerlendirilmistir. Karsilastirmalar,
sayisal ve deneysel olmak iizere iki tiir deneyde gerceklestirilmistir. Bu deneylerin
sonuglarina gore, tanitilan algoritmalar rekabetgi bir performans sergilemis ve bazi
deneysel kosullar altinda daha iyi performans gdstermistir.
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1. INTRODUCTION

Decision making deals with the process of determining and selecting alternatives
according to the preferences of decision makers. It should consider the pros and cons of
each choice. It is a crucial phenomenon since people are always making decisions in their
social lives, business, and economics. However, determining the priority of each
alternative can be challenging, especially when the number of alternatives is enormous,
and subjectivity is an issue. This challenge arises from the ambiguity of the alternatives
or complexity of the decision-making process itself. In order to address this challenge,
decision makers might rely on knowledge of the relative importance of alternatives rather
than on extracting their exact value. Some researchers have suggested that eliciting
judgments on two alternatives separately is easier than eliciting judgments on all
alternatives simultaneously. Choo et al. (2016) proposed that the use of pairwise
comparison is the preferred methodology to extract human preferences, as this approach
evaluates options in a binary manner, making it less cognitively demanding than
evaluating all options at once. This consideration might be all the more important
considering the work of Miller (1956), who suggested that the human brain stores a
limited amount of information which includes between five and nine items in working

memory.

Another common issue is transitiveness. In the ideal scenario data, which comes from
decision makers are transitive, meaning that if alternative A has a higher utility than that
of B and B has a higher utility than that of C, then A has a higher utility than that of C.
Note that consistency and transitivity are interconnected concepts. The presence of
consistency leads to transitivity. Unfortunately, real-world situations are complicated by
perturbations, noise, or subjective biases, which make it challenging to achieve

consistency and transitivity (Davis 1958, Saaty 1977, Bessi et al. 2015).
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One of the effective methodologies that deals with the decision-making phenomenon
even if the above challenges are present is analytic hierarchy process (AHP), which was
introduced by Saaty (1972, 1977). AHP is a decision-making methodology designed to
support decision makers when dealing with complex problems that includes multiple
subjective and conflicting criteria (Ishizaka and Labib, 2011). According to Emrouznejad
and Marra (2017), AHP is considered to be a leading decision-making approach since it
includes subjective factors to be taken into account. AHP has been successfully applied
in a wide range of fields such as, warehouse network evaluation (Korpela and
Lehmusvaara 1999), supplier selection (Chamodrakas et al., 2010), project selection
(Amiri, 2010), the health sector (Saaty and Vargas, 1998), marketing (Wind and Saaty,
1980), university evaluation (Lee, 2010), human resource manager selection
(Kusumawardani and Agintiara, 2015), and other various domains.

AHP is a very flexible approach and can handle many situations, some of which have
already been mentioned. However, it has several limitations, some of which are ranking
reversal, complexity, sufficient expertise knowledge, and incomplete data. The ranking
reversal issue refers to a situation in which the relative ranking of alternatives changes
when new alternatives are added or deleted. In other words, the ranking of alternatives is
not consistent. The complexity issue may arise from the nature of the decision-making
problem itself. When the problem includes numerous criteria and alternatives, the
pairwise comparisons might become more complex and time-consuming. The correctness
and reliability of AHP is highly related to the decision maker who is the expert of the
subject under consideration. A lack of expertise in a decision maker may lead to
inconsistent or unreliable results. Missing data may cause a major issue in AHP since
consistency and accuracy highly depend on complete and precise data on the pairwise
comparisons. Several solutions to these challenges have been published in AHP literature.
However, they are out of the scope of this research except for the issue of incomplete data
in AHP.

Handling incomplete data in pairwise comparison matrices has been a frequently
discussed topic in the AHP literature. Several studies have suggested a methodology
which copes with the incompleteness issue (e.g., Harker, 1987a; Harker, 1987b; Carmone
et al., 1997; Bozdki et al., 2010; Gomez-Ruiz et al., 2010; Oliva et al., 2017; Zhou et al.,
2018; Menci et al., 2018; Oliva et al., 2018). These studies can be classified into two

subsets: reconstructing methods and sparse methods. Reconstructing methods aim to fill
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in the missing entries in the pairwise comparison matrix, and then identify the rankings
and priorities. In contrast, sparse methods utilize the pairwise comparison matrix as it is,
without modification, to determine the rankings and priorities. Although there are many
studies on reconstructing methods in the AHP literature (Harker, 1987a; Carmone et al.,
1997; Bozoki et al., 2010; Gomez-Ruiz et al., 2010; Zhou et al., 2018), sparse methods
have also been the subject of recent research (Oliva et al., 2017; Menci et al., 2018; Oliva
et al., 2018).

There are several reasons why pairwise comparison matrix in AHP can be incomplete,
such as time complexity, insufficient knowledge or vagueness about expertise in certain
comparisons, and loss of collected data. In AHP, it is sufficient to conduct n(n-1)/2, where
“n” represents the alternative number, pairwise comparisons per criterion since AHP
assumes that the data collected from decision makers is reciprocal. This means that if A
is rated as three times better than B, then B must be rated as one-third as good as A.
Moreover, the diagonal entries of the pairwise comparison matrix must be one since each
element is equivalent to itself. Thus, it is sufficient to complete one triangular section of
the matrix (ex. upper right triangular). When the alternatives or criteria number are huge,
it may be inefficient or time consuming to gather all of the necessary entries. When the
decision maker has not established a strong perspective on certain assessments, it may be
preferable to let them skip the question rather than compel them to make an unreliable
estimate. Carmone et al. (1997) conducted an experimental study in which entries are
removed from matrices having various sizes of 10, 15, 20. The results of the study
demonstrated that it is possible to eliminate up to 50% of the entries in the pairwise

comparison matrix without causing a significant decrease in the outcome.

When determining priorities, the goal is to establish a consistent matrix whose entries
represent the ratios of one priority to another. The entries in this matrix should match the
pairwise comparison matrix collected from the decision maker. Moreover, it should have
minimal deviation when slight inconsistencies are present. Several approaches to derive
these priorities can be found in the AHP literature. According to Saaty (1977), the
preferred priorities can be determined by the principal eigenvector w. Following Saaty's
innovative work, several methods for deriving priority vectors have been proposed. One
of these was created by Crawford and Williams (1985). These authors addressed the issue
of rank reversal in the eigenvector method and adapted an alternative technique called the

logarithmic least squares method.



The incomplete AHP literature has also benefited from work in other disciplines to
address the issues of calculating missing entry or determining priorities. Harker (1987b)
suggested an approach for filling the missing entries based on the concept of connecting
path. This approach involves calculating all indirect comparisons based on the transitivity
rule and taking the geometric mean of these comparisons to assess the missing entry.
Zhou et al. (2018) utilized decision-making and trial evaluation laboratory (DEMATEL)
methodology and adapted it to reconstruct an incomplete pairwise comparison matrix.
Olivia and colleagues (2017) adopted the eigenvector introduced by Saaty to sparse
context to derive priorities. In 2018, Menci and colleagues introduced three alternative
methodologies for finding priorities in sparse settings. These techniques are based on
well-known methods in the several literatures including Metropolis-Hastings Markov
chains (Metropolis et al., 1953), Heat-Bath Markov chains (Achlioptas et al., 2005), and
formation control (Fax and Murray, 2004).

Evaluating the accuracy of priorities is another important issue. There are various
evaluation metrics available in the literature, including consistency index, consistency
ratio, and compatibility index. However, when using these indices, which were designed
for complete pairwise comparison matrices, on incomplete pairwise comparison matrices,
it is essential to consider the assumptions and meanings behind them. For instance, in a
sparse setting where some entries are zero, the compatibility index becomes meaningless
because the elementwise product of the missing entries yields 0 which reduces the
compatibility index. The decline in the compatibility index is not due to the integrity of
the assigned values, but rather it arises from the emptiness of the matrix. Furthermore,
using the consistency index of an incomplete matrix is inappropriate since it assumes a
complete matrix. Therefore, when the pairwise comparison matrix is incomplete, it may
be necessary to develop new metrics or modify existing ones to evaluate priorities

accurately.

This research focuses on incomplete pairwise comparison matrix methodologies in the

context of AHP. Some of the key accomplishments of this study are as follows:

1. Novel parametric heuristic algorithms were created to handle an incomplete

pairwise comparison matrix in the context of AHP.



2. A new metric, that is suitable for incomplete context, was developed. The
relationships between the newly introduced metric and the metrics that are
suitable in incomplete AHP framework were analyzed, and correlations were

investigated.

3. Methodologies for handling incomplete pairwise comparison matrices in
incomplete AHP literature were statistically compared among themselves and
with the proposed algorithms by several metrics under varying experimental
designs.

4. Methodologies were evaluated through both numerical and empirical studies.

The rest of this thesis is organized as follows. Chapter 2 covers preliminary definitions
and notations. Chapter 3 provides a review of existing algorithms in the literature. Chapter
4 introduces proposed parametric heuristic algorithms and explains the motivation behind
them. The numerical and empirical experimental designs are also introduced in chapter
4. Chapter 5 presents, results and discussion. Chapter 6 concludes this research and

discusses future research areas.



2. GENERAL NOTATIONS AND PRELIMINARIES

2.1. General Notations

Number of alternatives are demonstrated as n. Vectors are represented using italic,
boldface, and lowercase letters (e.g., vector v is shown as v), whereas matrices are denoted
using italic and uppercase letters (e.g., matrix A is shown as A). Additionally, the (i, /)"
entry of a matrix A is represented by 4;;, and the i*" entry of a v is represented by v;. If
we have a vector v that belongs to R™, then D(v) is an n x n diagonal matrix where the
it" diagonal entry is v;. An identity matrix is denoted by I,,. Furthermore, A o B
represents the Hadamard product, which is the element-wise product of two matrices A

and B that have the same dimensions.

2.2. Preliminaries

Definition 1: Analytic hierarchy process (AHP) is a multi-decision-making method that
was developed by Saaty (1972, 1977). In general, AHP involves four main steps including
problem modelling, pairwise comparison matrix creation, priority weights calculation and
consistency measurement. In the first step a hierarchical structure is created by breaking
down the decision problem into smaller components. The second step involves creating
pairwise comparison matrices (PCMs) to assess the relative importance of alternatives.
Each element in the PCM is usually determined by using a Saaty scale of values ranging
from 1to 9 (Table 1). In the third step the priority weights of the alternatives are calculated

based on the PCMs. In the last step, the consistency of the PCMs is measured for



reliability. The main objective of AHP is to prioritize the alternatives and allocate weight

to each of them in accordance with the pairwise comparisons.

Table 1 Saaty scale

Definition Intensity of Importance
Equal Importance 1
Moderate Importance 3
Strong Importance 5
Demonstrated Importance 7
Extreme Importance 9
Intermediate Values 2,4,6,8

Definition 2: Pairwise Comparison Matrix (PCM) Let X be a n x n PCM, where X;;

represents the relative importance of it" criteria on j* criteria. Moreover, X should satisfy

the following conditions.

1/X; ifi#j

In the context of incomplete AHP, it can be modified as follows.
Xij if itis known
Ajj ‘[ 1 ifi=j (2.2)
0 otherwise

Definition 3: True Priority Vector v = [v4, vy, ..., V,] is the ideal depiction of the
decision maker’s preferences. It can be used as a benchmark for evaluating the

performance of the process.

Definition 4: Calculated Priority Vector w = [wy, wy, ..., w, ] is the weight of the
alternatives derived by a methodology. According to Saaty (1977) w is reproduced by the
principal right eigenvector which corresponds to the maximum eigenvalue of the PCM
(Equation 2.3). The main objective is to extract a weight vector that closely mates the true
priority vector. In other words, to minimize the deviation between the calculated priority
vector and the true priority vector. Large deviation can be seen as inconsistency in the

process.



XW = 2Apax W (2.3)

Definition 5: Consistency Index (Cl) and Consistency Ratio (CR) were characterized

by Saaty.

The Consistency Index is defined in equation 2.4.

Cl = Amax =7 (2.4)

n-1
The Consistency Ratio is expressed below.

_a
R == (2.5)

where RI is the Random Index, which is the average of the consistency indexes obtained
from randomly generated PCMs. It depends on the dimension of PCMs and some of the
values of RI are shown below (Table 2) (Hayrapetyan, 2019). If CR < 0.1 then the derived
PCM can be acceptable, which means PCM is sufficiently consistent. If CR = 0, PCM is
fully consistent (Saaty, 1977).

Table 2 Random index values

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 052 089 113 125 135 143 147 15

Definition 6: Theoretical Pairwise Comparison Matrix (W) is a n x n matrix which is

calculated from w. The value of W;; is the ratio of i* entry of w over j** entry of w.

Definition 7: True Theoretical Pairwise Comparison Matrix (V) is a n x n matrix

which is constructed fromv. V;; is the ratio of it" of v entry over j* entry of v.

Definition 8: Kendall’s Correlation Index (Kendall’s tau, t) is an index, which was
created by Kendall (1938), for identifying the degree of relevance between two vectors
(v, w) based on ordinal or ranked data. It evaluates the strength of the association between
these vectors. Kendall’s tau can change between -1 and 1. If T = +1, it shows that v and w
have the identical order. On the other hand, if T = -1, it means that they have opposite
order. In other words, if tau is closer to 1, it shows that two vectors are correlated. If tau
is closer to -1, it represents that two vectors are anti-correlated. Lastly, if tau is closer to

0, it means that two vectors have no correlation.



Two pairs of values (v;, w;) and (v;, w;) are concordant if both v;< v; and w;< w; or
both v; > v; and w; > w;. Two pairs of values (v;, w;) and (v}, w;) are discordant if both
v; < v; and w; > w; or both v; > v; and w;< w;. Moreover, if v; = v; or w; = w; the
pairs are considered to be neither concordant nor discordant. Let v and w belongs to R",

then = is calculated as follow.

— 2d¢] - 1DD
nn-1)

(2.6)

where C represents the set of concordant pairs and D represents the set of discordant pairs.

Definition 10: Compatibility Index Value (CIV), which is a metric described by Saaty
(1994), demonstrates the deviation between X and W. CIV is defined in equation 2.7.

CIV =% LY (2.7)

l]w

Note that, when a matrix X is fully consistent, X and W are exactly equal. This means that
the CIV of matrix X and W would be equal to 1. On the other hand, if matrix X is
inconsistent, CIV will be greater than 1 (Saaty, 1994)

Definition 11: Modified Compatibility Index Value (MCI1V), is modified version of
CIV, is created for incomplete AHP setting in this research. It measures only the deviation
between the cells assigned by the decision maker and the corresponding entries of W. Let

m be the number of the missing data of PCM. Then, MCIV is described as below.

MCIV = ——Y7% 37 (2.8)

l]w

Definition 12: Generic Compatibility Index between V and W (GCIV-VW), was
defined by Ahmed and Kilic (2022). It illustrates the deviation between V and W. As in
CIV, GCIV-VW also equals 1 if fully consistency presents. In practical application matrix
V is unknown, so that matrix X and/or W were usually used to assess the calculated priority
vectors in the literature. However, in an empirical and a numerical application true
priority vector may be known. In such a context, GCIV-VW metric can be utilized to

assess methodologies. GCIV-VW is demonstrated as follows.

GCIV— VW =3 yn =2 (2.9)

W'I]



Definition 12: Euclidean Distance (Euc), measures the distance between two objects in
a space. Euclidean distance is commonly used in many areas such as statistics, data
analysis and machine learning. Euclidean distance is characterized as follows.

Euc = /Wy —v1)2 + (Wy — )% + -+ (W, — 1,,)? (2.10)

Definition 13: Central Processing Unit Time, is a metric which evaluates the time for
which a central processing unit (CPU) was employed for processing commands of

operating system.

2.2.1. Graph Theory

Let G be a graph, represented as G = (V, E) where V is a set of nodes (vertices), and E is
a set of edges. Node i are shown as v; and edge between node i and node j are indicated
as (v;, v;). An edge from v; to v; in E indicates that there is a connection between them.
A graph is undirected if for any edge (v;, v;) in E, (v, v;) must present in E. In a
connected graph, there must be at least one path between any pair of nodes in G such that
all nodes on that path must be connected by edges. In a connected graph there are no
disconnected subsets of nodes. In the context of AHP, it is a common practice to assume
PCM is undirected because of the reciprocal property of PCM. In the continuation of this
research, the connectedness of PCM is another assumption since some methodologies in
incomplete AHP literature encloses it such as the Metropolis Hastings and the Heat Bath
algorithms developed by Menci et al. (2018). Therefore, numerical and empirical

experiments were analyzed accordingly.

An adjacency matrix of a graph with n nodes is a n x n matrix, represented by M.
Adjacency matrix is a fundamental concept since it provides analysis of the connectivity

of a graph and degree of nodes. The entries of M are either 1 or 0.

M, = {1 if there is an edge between v; and v; (2.11)

0 otherwise

The neighborhood of node i, denoted as N(i), is identified as the set of nodes that are

adjacent to node i. For an undirected graph it can be represented as follows.

N(') = {v,-, v]' EV: (v,-, v]) € E} (212)
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For an undirected graph, the degree of node i, represented as deg(i), is the number of

nodes which are adjacent to node i. It can be shown as equation 2.13.
deg(i) = [{v;, v; €V:(v;, v;) EE}] (2.13)
Moreover, it can be found by utilizing adjacency matrix of an undirected graph as follows.
deg(i) = Xy,ev Mi; (2.14)
The degree matrix of a graph, denoted as DG, is a diagonal matrix whose entries equal
the degree of the nodes or 0, represented as below.

_ deg(i) ifi =j
DG;; = 2.1
Gij { 0 otherwise (2.15)

The degree vector of a graph, denoted as d, whose entries equal the degree of the nodes.
A n x nmatrix L is irreducible if there is no P, which is a n x n permutation matrix whose

rows and columns having exactly one 1 and other entries are 0, such that,

o (2.16)

where Ly, ismxm, Ly, iS(n —m) x (n —m), L1, iSn X (n —m), and m is an integer with
0 < m < n. Moreover, in the case of undirected graphs, a matrix L is irreducible if and

only if its structure corresponds to a connected graph G (Oliva et al., 2018).

2.2.2.  Markov Chains

The definitions presented in the Markov chains will be helpful in comprehending certain

methodologies utilized to solve the sparse setting, especially in chapters 3.4 and 3.5.

Definition 14: Discrete Time Markov Chain (DTMC), let Z be a finite or countable set
of the Markov chain, which is called state space of the chain. A DTMC is a sequence of

random variables X,, X;, . . . taking values in the set Z, satisfying the following equation.
P(Xn+1 = Xns1 | Xo = %0, -+« Xno1 = Xn_q, X = %p) = P(Xpgq = Xy | X = x7) (2.17)

forall xg, . .., x, ,x,+1 € Zand n € N, where P(X | Y) defines the conditional probability
of X given Y. In other words, a DTMC is a stochastic model that defines a series of events,
where the likelihood of each future state depends solely on the current state and not on

any of the previous states.
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Definition 15: Single Step Transition Matrix (P), let Z contains n states. Transition
matrix is a n x n square matrix which consists of the probabilities of moving between
states of the chain in a single time unit. Let P;; defines the probability of moving from

state i to state j in a single step. Furthermore, the transition matrix must include two
properties (2.18 and 2.19).

;i =0 (2.18)
Definition 16: Time Homogeneous Markov Chain, a Markov chain is time-
homogeneous if the transition probabilities constant over time, i.e., it satisfies the

following condition,
PXps1=j| Xn=1)=P(X;=j| X, =1i) forallneN (2.20)
In time homogeneous MC,
P(Xn+1) = PT p(Xy) (2.21)
where p(X,,) represents probability distribution of X,,.

For homogenous DTMC, let the n-step transition probability of being in state j given that

the chain was in state i, is represented as P;; and n-step transition matrix is denoted as P".

According to Chapman-Kolmogorov equations (Dobrow, 2016),
p(+m) = pnpm form, n> 0 (2.22)

Definition 17: Irreducible Markov Chain, is a Markov chain where all the states in the
state space communicate with each other (single class). State i is accessible from state j

if P]; is positive for some n > 0. Any state i and j in the state space communicate each

other if both are accessible from each other. Moreover, irreducibility of transition matrix,

yields irreducibility of Markov chain.

Definition 18: Period of Markov Chain, the period of state i, denoted as d(i), is defined

as follows.
d(i) = gcd{n > 0: P} >0} (2.23)

where “ged” refers to the greatest common divisor. If d(i) = 1, then state 1 is said to be

aperiodic. Note that P; > 0 is an adequate condition for aperiodicity. When a Markov
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chain is irreducible, and all states are aperiodic then Markov chain is called aperiodic
Markov chain. Moreover, periodicity is a class property, i.e., if state i communicates with
state j and is periodic/aperiodic, then state j is also periodic/aperiodic. Therefore, when a
Markov chain is irreducible, there is a single class in which all states have the same
periodicity property. Hence, if single step transition matrix is irreducible and for any i in

state space has P;; > 0, then Markov chain is aperiodic.

Definition 19: Limiting Distribution (m) of a Markov chain is a probability distribution
such that,

lim P/} =m; (2.24)

n—oo Y

In other words, the probabilities of being in each state converge after some steps to a
certain value which is independent of the initial distribution of the states.

Note that, if a Markov chain with finite state space is aperiodic and irreducible, then it

has a limiting distribution.

Remark 1: Suppose an irreducible but not aperiodic Markov chain with n states, let P is
its transition matrix. Then for any g € (0,1), matrix BP + (1 — B)I, is aperiodic and

its left dominant eigenvector is the same with P (Menci et al., 2018).

13



3. METHODOLOGIES IN INCOMPLETE AHP LITERATURE

In experimental designs several incomplete AHP methodologies in literature namely
Harker (1987a), Bozdki et al. (2010), Oliva et al. (2017), Zhou et al. (2018) and Menci et
al. (2018) were compared. These incomplete AHP methodologies in literature are

summarized in this chapter.

3.1. Harker

Harker (1987a) created a new matrix B and used its principal right eigenvector to assign

missing entries of A.

The derivation can be depicted as follows.

1. Establish a matrix B as,
0 if A;j is missing
A otherwise

ij
where m; represents the number of missing entries in the i’th row.

2. Calculate the principal right eigenvector w and eigenvalue A of B.

3. Fill the missing entries of A by using w (if A;; is missing, assign it as w;/wj)
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3.2. DEMATEL

Zhou et al. (2018) proposed a DEMATEL based solution methodology to derive priorities
in the context of incomplete AHP. DEMATEL is a kind of structural modelling technique,
applicable to examine the cause-and-effect relationships between alternatives. It can be
applied effectively to extract the interrelationships among alternatives within a complex
system. Moreover, it can provide the ranking of these alternatives (Si et al., 2018). It has
demonstrated its effectiveness in various fields, including but not limited to risk
assessment (Li et al., 2020), supply chain management (Wu et al., 2017), and stock
selection (Shen and Tzeng, 2015). There are two important matrices in DEMATEL
including DRM and TRM. DRM is direct relation matrix, and it contains direct relations.
TRM is total relation matrix, and it includes both indirect and direct relations. DEMATEL
consists of five steps namely determining quality characteristics, deriving the DRM,
normalizing DRM, constructing TRM and classifying factors. Zhou et al. (2018) adapted
DEMATEL methodology into AHP framework in four steps. The purpose is extracting
complete pairwise comparison matrix using incomplete pairwise comparison matrix. In
the first step, the incomplete pairwise comparison matrix is converted into DRM and then
DRM is normalized. This conversion is generated as follows. Let A be the incomplete
PCM, D be the DRM.

D, :{ A;; if A;j is assigned by decision maker (3.2)

0 otherwise
After the creation of DRM, the sum of each row and column is calculated for the
normalization step. The maximum of the row sum and column sum is identified and is
utilized to normalize DRM, which is denoted as ND. Normalization step is shown as in

equation 3.3.

D

ND = _ (3.3)

n
D)
( i=1 Y j=1 Y
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In the second step TRM, denoted as T, is created by using ND as below.

T=lim(ND+ ND? + .-+ ND™)

m—0oo

=lim (ND (I, — ND™)(I, — ND)™1)

m—oo

=ND(l, — ND)™! (3.4)

Zhou et al. (2018) emphasized that the progression from 1 to infinity represents the
gradual discovery of indirect relationships between each pair in DRM. Sometimes TRM
may not be calculated as above formula because of the nonexistence of inverted matrix
(singularity of matrix). For these situations Zhou et al. (2018) designed an experiment to

see the convergence of lim (ND + ND? + ---+ ND™). According to their experiment,

Mmoo
they observed that convergence of limit is very quick (m is around 5 in most cases). They
suggested that it is appropriate to set m to be a specific integer like m = 5 and approach
TRM with that assumption. In the experimental designs in this study, we approached
TRM as utilizing coefficient of 25.

In the third step of their methodology, a complete pairwise comparison matrix is
constructed from TRM with satisfying reciprocal property. The construction is made as

following algorithm.

Algorithm 1: Conversion from TRM to PCM

1: Input: the matrix Ty, x

2: Construct: a matrix P, » ,
3:fori=1,...,ndo
4

forj=I1,...,ndo

’I‘..
5: p..= |2
Lj Tji
6: P.. = i
Ji P
7: Output: P

DEMATEL based solution methodology abbreviated as Dematel in the continuation of

this research.
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In the last step the missing values of A are derived by using P as follows.

A = { A;; if Ajj was assigned by the decision maker
ij~

P;; otherwise (3:5)

Note 1: Following 4 methodologies are related with the sparse setting. In the context of
sparse setting PCM is filled differently. In the nominal case, the diagonal entry of the
PCM is assigned as 1, but in the sparse context it is assigned as 0. The missing entries
also filled as 0 in the sparse setting. Therefore, while constructing the degree matrix (DG),
the diagonal entries of PCM are not considered.

Example 1: Let PCM is assigned as follows.

1 - 2 05
— - 1 3 - ce_ce ol
A= 05 034 1 025|° where “- represents the missing value.
2 - 4 1

Then, in the sparse context, it is demonstrated as below.

0O 0 2 05
a=[0 0 3 0

05 034 0 0.25

2 0 4 0

Furthermore, its degree matrix is considered as below.

2 0 00
1o 1 0 o0
DG‘0030
0 0 0 2

Note 2: The connectedness of the G, which is derived from A, is an assumption for the

following 4 methodologies in order to calculate the priorities.
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3.3. Sparse Eigenvector

The motivation behind the Sparse Eigenvector method developed by Oliva et al. (2017)
is coming from the following result. When there is missingness but no perturbation,
entries in the PCM are transitive and accurate, the principal right eigenvector of DG~A is
the same as the true priority vector v. Based on this outcome, they suggested using the
principal right eigenvector of DG~A as calculated priority vector w. The ideology

resembles the eigenvector method created by Saaty.

3.4. Metropolis-Hastings

Menci et al. (2018) constructed the Metropolis-Hastings method to extract priorities in
the case of the sparse setting. Their motivation behind the methodology is inspired by the
Metropolis Hastings Markov chain. They suggested constructing a matrix P, which has

the same structure as the connected graph G, utilizing A. The derivation is as follows.

mln{l,d—} )
ij~ 1 . d;Ayi P . '
1 - d_z Zke N(i) mln{l, dkk} lfl =]
0 otherwise

where d is the degree vector and N(i) is the neighborhood of node i.

Similar to the Sparse Eigenvector methodology, when there is no perturbation the left

dominant eigenvector of P gives the true priority vector v (Menci et al., 2018).

Note that the matrix P is a form of transition probability matrix of a Markov chain by

construction. It holds the following two properties (2.18 and 2.19).

Because G is undirected, connected and contains finite states, the Markov chain is
irreducible since there is a single class, and all states can communicate with each other.
When there is no perturbation, the Markov chain is aperiodic, so that the Markov Chain
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has limiting distribution, which is determined by the left dominant eigenvector (Menci et

al., 2018). The limiting distribution was taken as the calculated priority vector w.

However, when dealing with perturbations, it cannot be guaranteed that the Markov chain
will exhibit aperiodicity (Menci et al., 2018). In order to ensure convergence, a modified
version of the Markov chain was employed by them. Therefore, they used convex

combination of PT and I,, as shown below.
P = BPT + (1 —p)I,, where g € (0,1) (3.7)

Note that irreducibility property is not affected by convex combination. Moreover, P is
aperiodic and its left dominant eigenvector is the same with P (Remark 1). Therefore, the
new Markov chain has a limiting distribution, which is used for approaching the true
priority vector v. The algorithm they proposed for reaching the limiting distribution of P

is as follows.

Note 3: w;(k +1) represents the probability of the Markov chain will be in state i state at
the step k+1.

Algorithm 2: Metropolis-Hastings

1: Input: the matrix A,, » ,, , random parameter
2: Obtain: the matrix B, « ,, , and the vector d
3: Initialization

4 fori=1,...,ndo

5: w;(0) =random (0, 1)
6: Standardize w(0)

7: Synchronous Iteration

8 wi(k+1) = (BP; + 1 =) wi(K) + B Zjeng P wi(k)
9: Output: w

Note that, in their research they proposed more than one method for initialization
procedure. However, in this research standardized random positive rational numbers were
utilized. Initialization is necessary for determining the initial condition of the Markov
chain. The aim of the synchronous iteration is approaching the limiting distribution. After

several iterations the change between iterations becomes tiny. In this research, 0.000001
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was used as a terminating condition. If all states change became less than 0.000001, the
algorithm stopped, and w(k+1) was taken as calculated priority vector. Moreover, in

experimental setups parameter § was generated as in equation 3.12.

B = random(0, 1) (3.8)

3.5. Heat-Bath

Menci et al. (2018) created the Heat-Bath method in order to derive priorities for the
sparse setting. Their motivation behind the methodology gets inspired by Heat-Bath

Markov chain.

They proposed forming a matrix P that is adapted from A as below. It can be shown that
P has the same structure as the graph G.

)4 . ..
T+ if (i,j) € E
.. = 1 P .
Py 1 =¥ Zken) Ty ar ifi=j (39)
0 otherwise
where y is a random parameter which must satisfy the following condition.
1
V< max{d;} (3.10)

Note that similar to the Metropolis-Hasting method the matrix P is a form of transition
probability matrix by construction. It is known that G is undirected, connected and
contains finite states by assumption. Therefore, the Markov chain is irreducible.

Moreover, since the diagonal entries are positive, it is aperiodic.

1
max{d;

1
Yien) Pij =¥ Zjena T+ Ay < }ZjeN(i) 1 <1 (3.11)

Consequently, since the row sum is 1 all diagonal entry must satisfy the below condition.

P,>1-—% _>p (3.12)

max{d;} —

Therefore, there exists a limiting distribution w. When there is no perturbation, this
limiting distribution becomes the true priority vector (Menci et al., 2018). On the other

hand, in the existence of perturbations they suggested approaching the true priority vector
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by the limiting distribution w. The algorithm they proposed for attaining the limiting

distribution of P is as below.

Algorithm 3: Heat-Bath

1: Input: the matrix 4,, « , , random parameter y
2: Construct: the matrix B, x ,,
3: Initialization

4 fori=1,...,ndo

5: w;(0) =random (0, 1)
6:  Standardize w(0)

7: Synchronous Iteration

8 wi(K+1) = Yie nayugy Pii wi(K)
9

: Output: w

Note that, they recommended several methodologies for initialization procedure. In this
research, standardized random positive rational numbers were used. The goal of
synchronous iteration is to reach the limiting distribution. As the iterations progress, the
changes gradually diminish. In the experimental designs, a value of 0.000001 was
employed as a termination criterion. When the change in all states became less than
0.000001, the algorithm terminated, and w(k+1) became the calculated priority vector.

Furthermore, in experimental designs parameter y was generated as below.

y = randomuniform(0, ;) (3.13)

max{d;}

3.6. Sparse Logarithmic Least Squares

The latest approach within the sparse setting is the sparse logarithmic least squares
(SLLS), which was introduced by Menci et al. (2018). This algorithm is inspired by a
widespread method logarithmic least square (LLS) developed by Crawford (1987). As an
adaptation, the SLLS algorithm aims to approach the true priority vector v. In other words,

the objective is detecting a vector (w) which ensures the log quadratic minimization of
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the error between pairwise comparison matrix A and theoretical pairwise comparison

matrix W. The following equation (3.14) demonstrates the derivation of w.
w = arg minxeRﬁ{Z? ZineN(i)(lnAij — In( i_; D% (3.14)

The algorithm they used to approach such w is shown below. For further information,
e.g., the theorem and the derivation behind the algorithm, see Menci et al. (2018).

Algorithm 4: Sparse Logarithmic Least Squares

1: Input: g
2: Initialization

3: fori=l,...,ndo

4: r;(0) = random positive real number

5: w; (0) = expo (r; (0))

6: Si= XjencIn4;;

7: Synchronous Iteration

8: ri(k+1)=7ry(K) + B Yjency(rj(K) — 7i(K)) + Bs;
9: w;(k+1) = expo(r;(k+1))

10: Output: w

Note that, in the experimental designs in this research a value of 0.000001 and 30000
(70000 was used only in one experiment since in that experiment convergence was slow)
were used as a termination criterion. When the change in all states became less than
0.000001 or the changes could not be less than 0.000001 in 30000 iterations, the algorithm
stopped and returned w(k+1) as the calculated priority vector. Furthermore, Menci et al.

(2018) suggested to employ £ such that,

1

’8 = max{d;} (3'15)
Therefore, in this research g was chosen as below.
B = randomuniform (0, ;) (3.16)

max{d;}

Note that the logarithmic least squares method is widely used in AHP literature both in

standard setting and incomplete setting. For example, in the incomplete case Menci et al.
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(2018) and Bozoki et al. (2010) utilized logarithmic least square as objective. Therefore,
both methodologies can reach the same calculated priority vector. The difference between
them is the algorithm they used. For instance, Menci et al. was inspired by the Fax and
Murrays formation control algorithm (Fax and Murray, 2004; Olfati-Saber et al., 2007)
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4. PARAMETRIC HEURISTIC ALGORITHMS, THE NUMERICAL AND
EMPIRICAL STUDY EXPERIMENTAL DESIGN

4.1. Parametric Heuristic Algorithms

A natural approach to complete the missing element in the pairwise comparisons matrix
is to take the geometric average of all the indirectly calculated comparisons of missing
entry (Harker, 1987b). However, a limitation of this approach is that as the number of
alternatives increases, the number of indirect comparisons grows significantly, which
results in a time complex. The parametric heuristics proposed in this article derive its
motivation from this idea. It decreases the time complexity by using some of the indirect
comparisons. Moreover, some of the proposed heuristics weigh these indirect
comparisons based on their lengths. By length, it is meant to how many arcs the path has.
In order to achieve indirect comparisons, it utilizes graph theory. Paths which reach
missing values by transitivity are examined. After all the paths leading to the missing
value are found, the missing value is calculated by taking the geometric average of the
value of these paths. The value of the paths is calculated as the product of its arcs. One
advantage of using the geometric average is that it preserves the reciprocal property of

the matrix, which is an assumption of AHP.

Let A;; and Aj; be the missing value and the paths from i to j having values as z;, z,, ...,
7. It is known that the assigned values from decision maker preserve reciprocal property
and path length is calculated as product of its arcs, thus any path from i to j has the inverse
value of the path from j to i if they use the same arc set but in reverse order. Moreover, if

there is a path having specific arc set, the existence of the reverse order is guaranteed
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since the graph is undirected. Then the paths from j to i having values as 1/z;, 1/z,, ...,

1/z,. Therefore, the geometric average of the missing values is reciprocal.
Example 2: Finding missing value by paths and geometric average methodology.

Let the pairwise comparison matrix be as follows, where “- represents the missing value.

1 - 5 05 2
- 1 - 025 05
A=102 - 1 025 -
2 4 4 1 5
05 2 — 02 1

Paths having length less than or equal to three that start from node 1 and end with node

2, length and value are as below.

Pl: A;3 — Azy — Ay, length: 3, value: 5 x 0.25x 4=5
P2: A4 — Ay, length: 2, value: 0.5 x 4 =2

P3: A4 — Ass— Agy, length: 3, value: 0.5 x5x 2=5
P4: A;s — As,, length: 2, value: 2 x 2 =4

P5: A;s — Asy— Ay, length: 3, value: 2x 0.2 x4=1.6

Therefore, Ay, is: /5 X2 X 5x4x 1.6 = 3.17

Paths having length less than or equal to three that start from node 2 and end with node

1, their length and value are as below.

P6: Ay, — Ays — A3q, length: 3, value: 0.25 x 4 x 0.2 =0.2
P7: A,y — Ayq, length: 2, value: 0.25 x 2 =0.5

P8: A, — As,— Asq, length: 3, value: 0.5 x 0.2 x 2=0.2
P9: A,s — Asq, length: 2, value: 0.5 x 0.5=0.25

P10: A,, — A,s— Asq, length: 3, value: 0.25 x 5 x 0.5 =0.625

Accordingly, A4, is: ¥0.2 X 0.5 x 0.2 x 0.25 X 0.625 = 0.315

In the example above, all paths having length less than or equal to three were found for
two missing entries, since the matrix size is five and missing entries are six there is small

number of paths. However, as the number of alternatives increases, the number of paths
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will increase. For example, in a 25 x 25 matrix with having two missing entries, the total
number of paths that reach to these two missing entries having two and three lengths are
46 (23 x 2) and 1012 (23 x 22 x 2) respectively. Moreover, in a 25 x 25 matrix there
are paths with having from 2 to 24 arcs for these missing entries. Note that the above
example is only restricted to two missing entries, the total number of paths that need to
be derived will also increase as the number of missing entries rises. In order to avoid this
complexity, instead of looking at all paths, this study suggests examining paths that
contain a limited number “k” of arcs. Choosing “k” means, not only evaluating path
lengths of “k”, but also evaluating paths with lengths of less than “k”. For example, k =
4 suggests taking into account the paths of having lengths of 2, 3, 4 (0 is trivial and 1
means there is a direct path from i to j, in this case A;; is not a missing value). The
motivations behind considering small values are time complexity and the belief that the
information is stored on paths that have few arcs sufficient to approach the true value. As
the length of a path increases, the opportunity of forming path increases since more
combinations can be achieved by adding indirect relations. Therefore, choosing small “k”
decreases the complexity of the algorithm. Furthermore, the chance of revealing less
perturbation may increase, since perturbations accumulate while multiplying the arcs.
However, there is a tradeoff which is the chance of information being lost. It could be
that the most accurate information is stored on the longest path. In the ideal case when
there is no perturbation, paths which have length of two are enough to derive the missing

values correctly, considering the graph is connected.

Moreover, in this study the importance levels of the paths are investigated. As the length
of the arcs increases, the number of interactions increases. This may cause the possibility
of an increase in deformation. Therefore, while taking the geometric average, paths

having different lengths were weighted.

The consistency of the algorithms in the AHP literature is a popular debate subject. There
are several methodologies to improve the consistency of the algorithms in literature such
as Cao et al. (2008) and Gomez-Ruiz et al. (2010). The methodology was proposed by
Gomez-Ruiz et al. (2010) modifies the highest perturbation between pairwise comparison
matrix and theoretical pairwise comparison matrix. The relation between perturbation and

the matrices is as below.

A=W o E (4.1)
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where E represents the perturbation matrix. The idea behind the algorithm is changing the
highest perturbation, so that it develops the consistency of the algorithm in a better way.
They proposed to change the entry which is farthest from one. Their algorithm is

demonstrated as follows (Algorithm 5).

Algorithm 5: Improving Consistency Ratio

Lilnput: A, « ., W xn

2: Calculate: E,, » ,,

3: Find: E;; that is farthest from one

4: Replace: A;; and Aj; with 0 and the corresponding diagonal entries of i, j with 2

5: Calculate: new w according to updated 4,, «x »,

6: Replace: A;; with %, Aj; with % and the diagonal entries of i, j with 1
j i

7: Output: A

Based on these considerations, the following heuristics namely Transitivity of Length of
Two (TLT) (Algorithm 6) and Transitivity of Length of not Exceeding Three (TLET)
(Algorithm 7) were proposed in this study. The length parameter “k” was selected as two
in the TLT, and three in the TLET. As highlighted before, length parameter three means
investigating paths both length of two and three. The importance parameter is only
considered in the TLET because TLT utilizes only paths of length two. In this study, the
importance coefficient of TLET was parameterized as one and two. If the parameter value
is two, paths of length two are counted twice and paths of length three are counted once.
However, if the parameter value is one, both are considered only once when calculating

the geometric average.

Example 3: Consider the values of the above paths (Example 2), the geometric average

for A;, must be calculated as follows if the importance level parameter is taken as two.

V5 X22x5x4%2%x 1.6 =3.068 (4.2)

The main reason for choosing the importance level close is the fact that paths of length
two and paths of length three are exposed to similar perturbations, there is an additional

arc which leads to extra multiplication in paths of length three.
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In addition, the effect of improving the consistency method (Gomez-Ruiz et al., 2010) on
the completed matrix created by the algorithms was adapted. For each algorithm three
different scenarios, which are based on the number of entries that change (NEC), were
evaluated. In the first scenario, the method was not utilized, no entry was changed. In the
second scenario, the method iterated twice. In the third scenario, the method was
executed four times. Thus, 9 (3 due to importance levels (1, 2) or path lengths parameters
(2, 3) x 3 due to NEC parameters (0, 2, 4)) algorithms having different parameters were
revealed. Finally, the calculated priority vector of the matrices generated by these
algorithms are founded by using principal right eigenvector.

Algorithm 6: Transitivity of Length of Two (TLT)

1: Input: 4, ,,, NEC

2: Calculate: missing humber of A

3: Create: 0 matrix M, » ,,

3:fori=1,...,ndo

4: forj=1,..,ndo

5. If(4; =0andi<j)

6 Find and Store: all paths (length of 2) from i to j by using A
7 If (Paths were found)

8: Calculate: Geometric average of these paths

9 Assign: Geometric average to M;; and reciprocal of it to Mj;
10: Reduce: missing number by 2

11: Assign: non-zero values of M to A

12: while (there is missing number)

13: fori=l1,...,ndo

14: forj=1,...,ndo

15: If (4;; =0andi<j)

16: Find and Store: all paths (length of 2) from i to j by using A
17: If (Paths were found)

18: Calculate: Geometric average of these paths

19: Assign: Geometric average as 4;; and reciprocal of it as A4j;
20: Reduce: missing number by 2

21: Iterate: Improving Consistency Ratio (A) NEC times
22: Derive: principal right eigenvector of A

23: Output: w
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In the algorithm, there are two loops. The purpose of the first loop is to derive the paths
that are associated with the missing entry by using only the matrix assigned by the
decision maker. However, in the second loop paths are generated by utilizing the matrix
assigned by the decision maker, the values extracted by the first loop and the values that
are calculated during the second loop. The reason behind the existence of the second loop
IS in some cases the first loop is not enough to fill in all the missing values only adhering
to the decision maker, even though the matrix derived by the decision maker is connected
(see ex. 4). The reason is the constraint of the path lengths (in this algorithm it is two).
While calculating the missing values, the primacy of the algorithm is to make a derivation
only over the values assigned by the decision maker since they are assumed as expert
knowledge. Therefore, solely the matrix assigned by the decision maker is used in the
first loop. If there are still any missing entries after the first loop, the algorithm enters the
second loop and remains in the second loop until there is no missing entry. After the
missing values are calculated, the Improving Consistency Ratio algorithm is iterated NEC
times. Finally, the calculated priority vector of the completed matrix is obtained by
utilizing the principal right eigenvector.

Example 4: Suppose that the decision maker filled in a matrix as follows.

1 01 0 O
01110
A=I1 1 1 1 O
011 11
0 00 11

The matrix that the algorithm can complete in the first loop, although the matrix is

connected, is as follows.

[11110]
[1 1 1 1 1|
A*=l1 1 1 1 1]
l11111J
011 1 1

There are values that cannot be filled in the matrix. Therefore, there is a need for the

second loop.
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Algorithm 7: Transitivity of Length of not Exceeding Three (TLET)

1: Input: A4, « ,,, NEC, importance
2: Calculate: missing number of A
3: Create: 0 matrix M,, » ,
3:fori=1,...,ndo

4. forj=1,..,ndo

5 If (4;; =0andi<j)

6 Find and Store: all paths (length of 2, 3) from i to j with their path length by using A
7 If (Paths were found)

8 Calculate: Geometric average of these paths based on path length and importance
9 Assign: Geometric average to M;; and reciprocal of it to Mj;

10: Reduce: missing number by 2

11: Assign: non-zero values of M to A

12: while (there is missing number)

13: fori=l1,...,ndo

14: forj=1,..,ndo

15: If (4;; =0andi<j)

16: Find and Store: all paths (length of 2, 3) from i to j with their path lengths by using A
17: If (Paths were found)

18: Calculate: Geometric average of these paths based on path length and importance
19: Assign: Geometric average as 4;; and reciprocal of it as 4;;

20: Reduce: missing number by 2

21: Iterate: Improving Consistency Ratio (A) NEC times
22: Derive: principal right eigenvector of A

23: Output: w

As in the TLT algorithm, there are two loops in this algorithm and the purposes of the
loops are the same, they differ only in content. Identifying paths with a length of three
and consideration of the importance level in the geometric average are additional
requirements in TLET. After the PCM is completed, the Improving Consistency Ratio
algorithm is executed based on NEC parameter. Lastly, priority values are calculated by

using the principal right eigenvector method.

In this algorithm, depending on the size of the matrix, the number of missing entries and

the software used, there is a chance to obtain an undefined value while accumulating the
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values of paths. If the matrix size is high and the missing numbers in the PCM are low,
the algorithm finds an excessive number of paths while deriving the missing entry.
Depending on the values of these paths, a high (low) number that is undefined in the
software can be obtained from the multiplication of the values while calculating
geometric average. A viable action in this case is to set this undefined high (low) number
to the highest (lowest) valid number in the software. While performing the numerical
experimental analysis in this research, this situation solely occurred in some iterations
when the matrix size was 25 and the missingness ratio was 20 percent. This number was
set as the highest or lowest value in the software depending on the value it has. According
to the results of the experiment, no deflecting results were observed (see the result and
discussion chapter, the algorithm was competitive in the case of matrix size 25 or missing
ratio 0.2).

4.2. The Numerical Experimental Design

An approach was developed in order to mimic the process of a decision maker assigning
pairwise comparisons. This methodology was adapted from the experimental setup
developed by Ahmed and Kilic (2022) to the incomplete AHP context. The adapted
methodology assumes that the decision maker uses a specific weight vector and expresses
preferences through pairwise comparisons. The pairwise comparison matrix should
constitute inconsistency and missing entries due to the decision maker inconsistency,
limited knowledge of decision maker about some alternatives, uncertainty in the
comparisons, and time constraints. To simulate this process, a numerical dataset was
created. The dataset included PCMs of three matrix sizes (n = 5, 15, 25) three levels of
inconsistencies (low, medium, high) and four missing ratios (0.2, 0.3, 0.4, 0.5). In sum,
36 (3 matrix sizes x 3 inconsistency levels x 4 missing ratios) numerical experimental
conditions were obtained. The subsequent algorithm (Algorithm 8) was initially

implemented to generate random inconsistent PCMs.
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Algorithm 8: Creating random PCM

1: Create: random normalized vector v,

random uniform perturbation coefficient c, and 0 matrix 4, x »
2:fori=1,...,ndo
3 forj=1,...,ndo
4 if (i = j)
5 A =1
6: elif (i <j)
7 a=v;/vj-cxXv;/v;
8 b=v;/v;+cxXv;/v
9

A;; =uniform (a, b)

ij

10: A]I. = 1/Al]

Here, vector v represents the true priority vector that the decision maker should adhere to
achieve the true theoretical pairwise comparison matrix. The inconsistency arises from
the utilization of parameter ¢ and the uniform operation. To maintain the integrity of the

AHP structure, the diagonal entries are kept as 1, and the reciprocal property is preserved.

The existence of randomness leads the matrices to exhibit diverse degrees of
inconsistencies. In order to quantify the inconsistency of these matrices, the Consistency
Ratio (CR) was utilized. Matrices exhibiting a CR value ranging from 0 to less than 0.03
were considered as a low level of inconsistency. Matrices with a CR value between 0.03
and less than 0.06 were classified as a medium (med) level of inconsistency. Matrices
with a CR value between 0.06 and less than 0.1 were taken into account as a high level
of inconsistency. Matrices that surpassed 0.1 CR value were labeled inadequately

consistent and thus were not used.

In order to introduce missing entries, some random entries in the generated matrix were
set to zero based on the missing ratios (0.2, 0.3, 0.4 and 0.5), no changes were made to
the diagonal entries. The number of missing entries were determined by the missing ratio
and the multiplication of the number of entries in the upper-right triangle of the matrix,
excluding the diagonal entries. In cases where the multiplication was not an integer, the

value was rounded up. For instance, let matrix size be 10 and the missing ratio be 0.3.
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The upper-right triangle without the diagonal entries, there are a total of 45 entries
(Equation 4.3).

(nxn-1)
—2 =

Therefore, the number of missing entries was set as 14 (Equation 4.4).
[45 x 0.3] = 14 (4.4)

Subsequently, any entries that had set to zero were determined, and its reciprocal entry

45 (4.3)

were also set to zero. Connectedness of the incomplete pairwise comparison matrix was
an assumption in some methodologies that were utilized in this study. Therefore, the
connectedness of the newly generated incomplete matrix was also examined. If it was
connected, the methodologies computed the priority vector and were assessed according
to the metrics. In case the matrix was not connected, a new random incomplete pairwise
comparison matrix was created until it was connected.

For each numerical experimental condition, a total of 100 connected incomplete pairwise
comparison matrices were produced and analyzed. As a result, 3600
(36 experimental conditions X 100 matrices) connected incomplete pairwise

comparison matrices were obtained.

4.3. The Empirical Experimental Design

An empirical experiment including the participation of students from Sabanci1 University,
Istanbul was conducted. In this experiment, 30 students were asked to compare the
geographic size of 15 countries and to fill two matrices. In the first matrix, the students
were expected to leave cells empty for which they were uncertain or preferred not to fill
in. In the second matrix, they were asked to fill in the matrix completely referring to the
cells they had filled in the first matrix. Participants were required to adhere the Saaty scale
(Table 1) while they were assigning the cells. The priority vectors of the first matrices
were determined utilizing the incomplete AHP methodologies. However, the priority
vectors of the second matrices were identified using the principal right eigenvector
method (Saaty, 1977). The comparison of the incomplete AHP methodologies among
themselves was made using the calculated priority vectors of the first matrices and true
priority vectors. The accuracy of filling the uncertain comparisons was examined by

comparing the calculated priority vectors of both the Saaty methodology and the
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incomplete AHP methodologies with the true priority vectors. The discussion was
whether it is more suitable to leave the uncertain comparisons for the incomplete AHP
methods to fill or to let the decision maker estimate them.

It is necessary that the decision maker have relevant knowledge about the subject in AHP.
The reasons for choosing the geographic size of countries as the subject were that they
are a kind of cultural knowledge therefore likely to be known, and they have a natural
scale. The fact that they have quantitative values enabled the identification of the true
priority vector, as shown below (Table 3). Thus, the priority vectors computed by the
methodologies could be evaluated and compared.

Table 3 Normalized true priority vector of empirical experiment

Countries Corresponding Priority Vector Value
Chile 0.1

Colombia 0.151
Egypt 0.133
France 0.073
Germany 0.047
Greece 0.017
Japan 0.05
Morocco 0.059
Portugal 0.012
Senegal 0.026
Spain 0.067
Sweden 0.06
Thailand 0.068
Turkey 0.104
United Kingdom 0.032

The experiment was approved by the Sabanci University ethics committee. Moreover,
before it was conducted by participants, the written informed consent form had been taken
from the participants. The estimated duration of the experiment was approximately 10

minutes. However, additional time was granted to the participants who asked.
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5. RESULTS AND DISCUSSIONS

5.1. Numerical Experimental Design

The existing six algorithms in literature, namely Harker, Dematel, Sparse Eigenvector,
Metropolis-Hastings, Heat-Bath, and SLLS, along with the parametric heuristics TLT and
TLET algorithms, were compared in terms of six performance metrics, including Cl,
Kendall's tau, MCIV, Euclidean distance, GCIV-VW and central processing unit time.

The TLT algorithm was examined in three different ways according to the NEC parameter
(NEC =0, NEC =2, NEC =4). The TLET algorithm was analyzed in six different ways
regarding the NEC and importance parameters (three different NEC values =0, 2, 4, and

two different importance values = 1, 2).

Before comparing results of the methodologies, the relationships between performance
metrics were examined in order to reduce the complexity since there are six different
metrics and to see the behavior between the metrics. For this purpose, the correlation
coefficient was utilized. Data was collected for each experimental condition from each
algorithm. In order to avoid oversampling of the proposed heuristics, only one TLT
algorithm and one TLET algorithm were selected from the three TLT algorithms and six
TLET algorithms, namely TLT - NEC = 2 and TLET - NEC = 2, importance = 2. This

selection was randomly made.

In order to observe the relationships among the metrics, data generated from numerical
experimental setup were gathered. Five metrics out of six metrics (Cl, Kendall's tau,
MCIV, Euclidean distance, and GCIV-VW) measure the accuracy and deviation of the
algorithms' performance, while one metric (central processing unit time) examines the

algorithm's process time. Therefore, the relationships among only the five metrics, which
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are related with accuracy and deviation, were investigated by using correlation

coefficients.

Since four algorithms namely Sparse Eigenvector, Metropolis-Hastings, Heat-Bath, and
SLLS had a sparse setting, the CI values could not be derived. These values had been
assigned zero during the numerical experimental setup. Consequently, when examining
the relationships between the Cl and the other four metrics, the data from these four
algorithms could not be used. The analysis for CI was conducted only based on data
collected from the Harker, the Dematel, the TLT - NEC = 2, and the TLET - NEC = 2,

importance = 2 algorithms.

The correlation coefficient values were interpreted as follows: (0, 0.3) or (-0.3, 0) indicate
a weak, (0.3, 0.7) or (-0.3, -0.7) define a moderate, and (0.7, 1) or (-0.7, -1) specify a
strong linear relationship (Ratner, 2009). The relationships between metrics are shown in
table 4, and the strong linear relationships are demonstrated in figures 1 and 2. Strong
linear relationships were highlighted in bold.

Table 4 Correlation coefficients between metrics

Metrics Correlation Coefficient

Kendall's tau — GCIV-VW -0.511
Kendall's tau — MCIV -0.074
Kendall's tau — Euclidean distance -0.576
Kendall's tau — Cl -0.012
GCIV-VW - MCIV 0.001
GCIV-VW - Euclidean distance 0.857
GCIV-VW - CI -0.078
Euclidean distance — MCIV -0.036
Euclidean distance — CI -0.126
MCIV - CI 0.87
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Figure 1 Strong linear relationship between GCIV-VW and Euclidean distance
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The correlation coefficient between GCIV-VW and Euclidean distance was 0.857, and
the correlation coefficient between MCIV and CI was 0.87, which proposed a strong
linear relationship. Therefore, it was assumed that Euclidean distance can be interpreted
with GCIV-VW, as well as CI with MCIV. Note that the relationships were investigated
as only linearly, there may exist another type of relations. This is out of the scope of this
research. However, it was noted as a future study subject. In this study, the aim was to
reduce the complexity caused by metric numbers in a meaningful way. Therefore, only
two out of these four metrics were used, while comparing the algorithms. Another

contribution of this result rather than reducing the metric number, is the advantage of
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being able to make interpretations about the CI values to some degree. As mentioned
earlier, the Cl values for the four algorithms could not be extracted because of their sparse
setting. However, thanks to the relationship between MCIV and Cl, it becomes possible
to make inferences. Therefore, MCIV was chosen among the two. GCIV-VW was chosen
instead of Euclidean distance since it was created in the context of AHP. In short, the
algorithms outputs were decided to compare using four metrics instead of six, these were
GCIV-VW, MCIV, Kendall's tau, and central processing unit time.

In order to reduce complexity comes from the algorithm number before comparing all
algorithms, the parametric algorithms were grouped, and the algorithm that would yield
the best statistical results based on the metrics within each group was distinguished.
Therefore, one TLT algorithm was chosen from the three TLT algorithms, and one TLET
algorithm was selected from the six TLET algorithms. Subsequently, a total of eight
algorithms (the two proposed algorithms and the six algorithms from the literature) were
compared according to the metrics.

Tukey HSD and Games Howell tests were utilized as a statistical comparison test. The
Tukey HSD test assumes samples have equal variances (Lee and Lee, 2018). It was
employed when the GCIV-VW, MCIV, and Kendall's tau metrics were compared, since
the algorithms outputs had equal or close variances. On the other hand, the Games Howell
test, which can be used when inequality of variances existed (Lee and Lee, 2018), was
used to compare the central processing unit time where were significant deviations on
variances among the outputs of the algorithms. Statistical differences were examined at

the significance level of 0.05.

In the experimental conditions, there were three parameters including matrix size, missing
ratio, and consistency. The 36 experimental conditions result were grouped into 10 cases
for each metrics these are high consistency, med consistency, low consistency, matrix
size 5, matrix size 15, matrix size 25, missing ratio 0.2, missing ratio 0.3, missing ratio
0.4, and missing ratio 0.5. While creating the cases, one parameter of experimental
conditions was kept constant, and the data were collected accordingly. For example, in
the matrix size 5 case, considering three consistency levels and four missing ratios, a total
of 1200 (3 x 4 x 100 simulations/experimental design) data were gathered. Therefore,
there were 1200 (3 x 4 x 100) data in the consistency and matrix size cases, while there

were 900 (3 x 3 x 100) data in the missing ratio cases.
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5.1.1. TLT Comparisons

The TLT algorithms (NEC = 0, NEC = 2, NEC = 4) were compared statistically based on
three metrics namely GCIV-VW, MCIV, and Kendall's tau. Since these algorithms
displayed similar processing time values, their comparison based on central processing
unit time was omitted. The following tables (Table 5, 6 and 7) illustrate the comparisons
of these three algorithms for a total of 30 cases (10 cases for each three metrics). Entries

demonstrating statistical disparities were highlighted in bold.

Table 5 Results of the Tukey HSD test for matrix size cases

Metric i j Mean Diff. Sig. Mean Diff. Sig. Mean Diff. Sig.
(i-j) n=5 (i-fj)n=15 (i-fj)n=25
NEC=0 NEC=2 -0.018 0.003 -0.001 0.574 -0.001 0.961
GCIV-VW  NEC=0 NEC=4 -0.023 <0.001 -0.001 0.179 -0.001 0.886
NEC=2 NEC=4 -0.006 0.941 -0.000 0.999 -0.000 1.000
NEC=0 NEC=2 -0.020 <0.001 -0.002 0.976 -0.001 1.000
MCIV NEC=0 NEC=4 -0.025 <0.001 -0.003 0.656 -0.001 1.000
NEC=2 NEC=4 -0.005 0.020 -0.001 0.998 -0.000 1.000
NEC=0 NEC=2 0.019 0.522 0.004 0.916 0.002 0.992
Kendall NEC=0 NEC=4 0.025 0.176 0.005 0.859 0.002 0.976
NEC=2 NEC=4 0.006 1.000 0.000 1.000 0.000 1.000
Table 6 Results of the Tukey HSD test for consistency cases
Metric i j Mean Diff. Sig. Mean Diff. Sig. Mean Diff. Sig.
(i-j) Low (i-j) Med (i-j) High
NEC=0 NEC=2 -0.002 0.310 -0.007 0.002 -0.010 0.269
GCIV-VW  NEC=0 NEC=4 -0.002 0.047 -0.010 <0.001 -0.014 0.033
NEC=2 NEC=4 -0.001 0.998 -0.002 0.959 -0.003 0.997
NEC=0 NEC=2 -0.002 0.026  -0.007 <0.001 -0.013 <0.001
MCIV NEC=0 NEC=4 -0.002 0.001 -0.009 <0.001 -0.018 <0.001
NEC=2 NEC=4 -0.000 0.995 -0.002 0.278 -0.004 0.228
NEC=0 NEC=2 0.005 0.918 0.009 0.860 0.011 0.830
Kendall NEC=0 NEC=4 0.007 0.724 0.014 0.318 0.011 0.838
NEC=2 NEC=4 0.002 1.000 0.005 0.995 -0.000 1.000
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Table 7 Results of the Tukey HSD test for missing ratio cases

Metric i j Mean Sig. Mean Sig. Mean  Sig. Mean Sig.
()02 ()03 (i-j) 0.4 (i) 05
NEC=0 NEC=2 -0.007 0.110 -0.007 0.258 -0.007 0.471 -0.005 0.950
GCIV-VW NEC=0 NEC=4 -0.008 0.028 -0.008 0.060 -0.010 0.081 -0.008 0.634
NEC=2 NEC=4 -0.001 1.000 -0.002 1.000 -0.003 0.996 -0.003 0.999
NEC=0 NEC=2 -0.007 0.016 -0.008 0.006 -0.008 0.002 -0.006 0.157
MCIV NEC=0 NEC=4 -0.009 <0.001-0.010 <0.001-0.012 <0.001 -0.008 0.003
NEC=2 NEC=4 -0.002 0.999 -0.002 0.995 -0.003 0.792 -0.003 0.944
NEC=0 NEC=2 0.012 0.647 0.008 0.971 0.006 0.996 0.008 0.987
Kendall ~NEC=0 NEC=4 0.013 0579 0.008 0.957 0.012 0.833 0.010 0.946
NEC=2 NEC=4 0.001 1.000 0.001 1.000 0.005 0.998 0.002  1.000

Note that MCIV and GCIV-VW are a distance metric, while Kendall is a similarity
metric. There is no significant difference among the three algorithms in terms of the
Kendall metric. However, according to the GCIV-VW and MCIV metrics, there are
statistically significant differences in particular cases. According to GCIV-VW, in cases
including matrix size 5, low consistency, med consistency, high consistency, and missing
ratio 0.2 statistically differences were observed. According to MCIV, in cases namely
matrix size 5, low consistency, med consistency, high consistency, missing ratio 0.2,
missing ratio 0.3, missing ratio 0.4, and missing ratio 0.5 statistically differences were
obtained. NEC = 0 outperforms the other two algorithms in these cases. Furthermore, no
statistical difference was observed between NEC = 2 and NEC = 4, except the case of
matrix size 5 based on MCIV. In that case NEC = 2 displays statistically superiority over
NEC = 4. The fact that the NEC = 0 algorithm outperforms the other two algorithms
demonstrates that the increase in the NEC parameter is not beneficial in terms of the
MCIV and GCIV-VW metrics in the TLT algorithm. Therefore, among the TLT

algorithms NEC = 0 was selected.

5.1.2. TLET Comparisons

The statistical comparison of the six TLET algorithms were conducted based on three
metrics, which are GCIV-VW, MCIV, and Kendall's tau. Since the processing time values
of the algorithms were similar, their statistical comparison based on central processing

unit time was not investigated. Comparisons were made among six algorithms, so that
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resulted in 15 different comparisons for each 30 cases. Due to limited space and for the
sake of compactness, only cases where there was at least one statistically significant
difference between any of the algorithms were presented in tables below (Table 8, 9 and
10) and in the appendix chapter (Table 27, 28, 29, 30, 31 and 32). The representation in
the tables is as follows: The case title is indicated above the tables. Mean differences
between algorithms and corresponding significance values are displayed within the cells.
The upper value in the cell corresponds to the mean difference, and the lower value
indicates the significance value. The mean difference was obtained by subtracting the
algorithm in the column from the algorithm in the row. Only the right upper triangle was
demonstrated, the bottom left triangle was not presented since the left bottom triangle is
negative of the right upper triangle in terms of mean differences, and the same in terms
of the significance values. The diagonal entries were also not indicated as was considered

trivial. Entries that show statistical differences were highlighted in bold.
Note 3: "importance” was abbreviated as "imp™ in the tables.

Table 8 Results of the Tukey HSD test for missing ratio 0.2 case based on GCIV-VW

NEC=2, NEC=4, NEC=0, NEC=2, NEC=4,

imp=1 imp=1 imp=2 imp=2 imp=2
NEC =0, -0.007 -0.008 0 -0.006 -0.007
imp=1 0.170 0.052 1.00 0.23 0.085
NEC =2, -0.001 0.007 0 -0.001
imp=1 1.00 0.165 1.00 1.00
NEC =4, 0.008 0.001 0
imp=1 0.05 1.00 1.00
NEC =0, -0.006 -0.007
imp=2 0.224 0.082
NEC =2, -0.001
imp =2 1.00

NEC=2, NEC=4, NEC=0, NEC=2, NEC=4,
imp=1 imp=1 imp=2 imp=2 imp=2
NEC =0, -0.014 -0.018 0 -0.012 -0.014
imp=1 <0.001 <0.001 1.00 <0.001 <0.001
NEC =2, -0.004 0.014 0.002 -0
imp=1 0.165 <0.001 0.91 1.00
NEC =4, 0.018 0.006 0.004
imp=1 <0.001 0.002 0.222
NEC =0, -0.012 -0.014
imp=2 <0.001 <0.001
NEC =2, -0.002
imp=2 0.856

Table 9 Results of the Tukey HSD test for matrix size 5 case based on MCIV
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Table 10 Results of the Tukey HSD test for missing ratio 0.2 case based on MCIV

NEC=2, NEC=4, NEC=0, NEC=2  NEC=4,
imp=1 imp=1 imp=2 imp=2 imp=2

NEC =0, -0.001 -0.008 -0 -0.007 -0.008
imp=1 0.033 0.002 1.00 0.04 0.003
NEC = 2, -0.002 0.007 0 -0.001
imp=1 0.998 0.034 1.00 0.999
NEC = 4, 0.008 0.002 0
imp=1 0.002 0.997 1.00
NEC =0, -0.007 -0.008
imp =2 0.04 0.003
NEC = 2, -0.002
imp =2 0.998

When examining the obtained results, there are no significant differences among the
algorithms in terms of the Kendall metric. However, significant differences appeared
between the algorithms in particular cases. Based on the GCIV-VW metric, significant
differences were obtained in the cases of matrix size 5 (Table 27), med consistency (Table
28), and missing ratio 0.2 (Table 8). In cases matrix size 5 and med consistency, the
algorithms NEC = 0, importance = 1 and NEC = 0, importance = 2 demonstrated
significantly better results compared to other algorithms. However, for the missing ratio
0.2 case, only NEC = 0, importance = 2 dominated statistically over another algorithm.
In terms of the MCIV metric, significant differences emerged in the cases of matrix size
5 (Table 9), med consistency (Table 29), high consistency (Table 30), missing ratio 0.2
(Table 10), missing ratio 0.3 (Table 31), and missing ratio 0.5 (Table 32). The algorithms
NEC = 0, importance = 1 and NEC = 0, importance = 2 displayed significantly better

results in these cases.

Nine cases out of 30 indicated statistically significant differences. In these cases,
generally, the algorithms NEC = 0, importance = 1 and NEC = 0, importance = 2 showed
better performance. They do not create a statistically significant difference between each
other. However, in one case only the NEC = 0, importance = 2 algorithm displayed
superiority over the NEC = 4, importance = 1 algorithm. Moreover, the importance level
of the dominated algorithm was 1. Therefore, the NEC = 0, importance = 2 algorithm was

selected among the TLET algorithms.

The algorithms with having NEC parameters as zero displayed statistically superiority
over the algorithms with having NEC parameters as two and four in the cases where

statistically significance difference exists. This result might propose that a rise in the NEC
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value diminishes the MCIV and GCIV-VW performances. However, depending only on
the importance values there was not any dominance over the algorithms. Although the
importance parameter does not severely affect these metrics, its variation might create
differences under certain cases (e.g., missing ratio 0.2 case based on GCIV-VW).

5.1.3.  All Algorithms Comparisons

Eight algorithms, namely Harker, Dematel, Sparse Eigenvector, Metropolis-Hastings,
Heat-Bath, SLLS, TLT-NEC=0, and TLET-NEC=0, importance = 2 were statistically
compared based on four metrics, including GCIV-VW, MCIV, Kendall's tau, and central
processing unit time. 40 cases resulted in 28 different comparisons among the eight
algorithms were considered. Due to limited space and conciseness, only the cases where
there was a statistical difference between any of the algorithms were included in the
tables. Initially, the tables corresponding to GCIV-VW, MCIV, and Kendall's tau metrics
were presented and discussed below (Table 11, 12, and 13) and in the appendix (Table 33
and 34) for comparing the accuracy of the algorithms. While comparing the accuracy,
comparisons of the algorithms were investigated extensively since the results had been
close. Therefore, some additional tables were indicated after statistical comparisons based
on these 3 metrics. Subsequently, the tables associated with central processing unit time
were revealed and discussed in order to compare computation time performance. The

representation and purpose of the tables align with the TLET Comparisons section.

Table 11 Results of the Tukey HSD test for matrix size 25 case based on GCIV-VW

_ TLET
Metropolis  iestBath  SLLS ~ Harker  Dematel L' NEC=0,
Hastings NEC =0 e
imp=2
Sparse -0.001 0 0.001 -0 0 0 0
Eigenvector | 0.871 0.996 0.504 0.999 0.999 0.999 0.996
Metropolis 0.001 0.002 0 0.001 0.001 0.001
Hastings 0.414 0.019 0.995 0.531 0.513 0.403
0.001 -0.001 -0 -0 0
Heat Bath 0.921 0.88 1.00 1.00 1.00
-0.001 -0.001 -0.001 -0.001
SLLS 0.161 0.854 0.865 0.926
Harker 0.001 0.001 0.001
0.939 0.932 0.873
0 0
Dematel 1.00 1.00
TLT-NEC=0 0
= 1.00
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Table 12 Results of the Tukey HSD Test for med consistency case based on MCIV

. TLET
Metropolis \\ i Bath  SLLS Harker  Dematel TLT NEC =0,
Hastings NEC =0 . _
imp =2
Sparse -0.003 -0.001 0 -0 -0 -0 0
Eigenvector 0.07 0.863 1.00 1.00 1.00 1.00 1.00
Metropolis 0.001 0.003 0.003 0.003 0.002 0.003
Hastings 0.795 0.017 0.108 0.083 0.169 0.048
Heat Bath 0.002 0.001 0.001 0.001 0.001
0.584 0.923 0.888 0.968 0.79
-0.001 -0 -0.001 -0
SLLS 0.999 1.00 0.993 1.00
0 -0 0
Harker 1.00 1.00 1.00
-0 0
Dematel 1.00 1.00
TLT-NEC=0 0
= 1.00

Table 13 Results of the Tukey HSD Test for high consistency case based on MCIV

. TLET
Metro_polls Heat Bath SLLS Harker Dematel TLT_ NEC =0,
Hastings NEC =0 e
imp=2
Sparse -0.006 -0.002 0.001 -0 0 -0 0.001
Eigenvector 0.028 0.931 0.993 1.00 1.00 1.00 1.00
Metropolis 0.003 0.007 0.005 0.006 0.005 0.006
Hastings 0.472 0.001 0.063 0.014 0.036 0.009
Heat Bath 0.003 0.002 0.002 0.002 0.003
0.476 0.983 0.85 0.952 0.783
-0.002 -0.001 -0.002 -0.001
SLLS 0.963 0.999 0.987 1.00
Harker 0.001 0 0.001
1.00 1.00 0.999
-0.001 0
Dematel 1.00 1.00
_ 0.001
TLT-NEC=0 1.00

Statistically significant differences were not observed in most cases. Out of a total of 30
cases, only in five cases (Table 11, 12, 13, 33 and 34) at least one statistically significant
difference was acquired. The cases where statistically significant differences were
obtained are as follows, matrix size 25 based on GCIV-VW (Table 11), med consistency
based on MCIV (Table 12), high consistency based on MCIV (Table 13), matrix size 5
based on MCIV (Table 34), and matrix size 25 based on Kendall (Table 33). Even though
statistically significant differences were obtained in these cases, the occurrences of these

differences are limited. In the cases of matrix size 25 based on Kendall, matrix size 5
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based on MCIV, and matrix size 25 based on GCIV-VW, the only statistically significant
difference acquired was that the SLLS algorithm outperforms the Metropolis Hastings
algorithm. In the case of med consistency based on MCIV, the SLLS and the TLET-NEC
= 0, importance = 2 algorithms dominate the Metropolis Hastings algorithm. Lastly, in
the case of high consistency based on MCIV, the Sparse Eigenvector, the SLLS, the
Dematel, the TLT-NEC = 0, and the TLET-NEC = 0, importance = 2 algorithms have
superiority over the Metropolis Hastings algorithm. The algorithms achieved similar
statistical outcomes in three performance metrics in most of the cases. The Metropolis
Hastings algorithm is dominated in cases where statistical differences were observed,
while the SLLS algorithm dominates. Moreover, the second algorithm that has most
superiority over the Metropolis Hastings algorithm is the TLET-NEC = 0, importance =
2 algorithm.

In addition to these statistical significance tests the algorithms' average performances
were ranked based on the Kendall, GCIV-VW, and MCIV metrics for each 30 cases. The
algorithms displaying the best and worst two average performances in each case were
demonstrated in the tables below (14, 15 and 16) and in the appendix chapter (35, 36 and
37). "x" in the table shows that the algorithm in corresponding case is either one of the
two best performing algorithms or one of the two worst-performing algorithms. The

algorithms were indicated in rows, while the cases were shown in columns.

Note 4: In the tables the abbreviations are as follows, “N” for matrix size, “MR” for

missing ratio, and “Con” for consistency.
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Table 14 The best two algorithms in terms of mean based on GCIV-VW

MR MR MR MR Low

NS N15 N25 0.2 0.3 0.4 0.5 Con

Med
Con

High
Con

Sparse X
Eigenvector

Metropolis
Hastings

Heat Bath X

SLLS X X X X X X X

Harker

Dematel X X X

TLT-NEC=0

TLET
NEC =0, imp=2

Table 15 The best two algorithms in terms of mean based on MCIV

MR MR MR MR Low

N5 N 15 N 25 0.2 0.3 0.4 0.5 Con

Med
Con

High
Con

Sparse

Eigenvector X

Metropolis
Hastings

Heat Bath

SLLS X X X X X X X X

Harker

Dematel X

TLT-NEC =0

TLET
NEC =0, imp=2

46




Table 16 The worst two algorithms in terms of mean based on GCIV-VW

MR MR MR MR Low Med High

NS N 15 N25 0.2 0.3 0.4 0.5 Con Con Con

Sparse
Eigenvector

Metropolis
Hastings

Heat Bath X X X X X

SLLS

Harker X X X X X

Dematel

TLT-NEC=0 X

TLET
NEC =0, imp=2

Based on the tables indicating the best two algorithms (Table 14, 15 and 35), the SLLS
algorithm appears most frequently, followed by the TLET-NEC = 0, importance = 2
algorithm. These two algorithms were also the most two algorithms that have statistically
significant dominance over. Moreover, these two algorithms were not observed as the
worst two algorithms in terms of average performance in any case. Based on the tables
demonstrating the two worst algorithms (Table 16, 36 and 37), the Metropolis Hastings
and the Heat Bath algorithms are displayed generally as the two worst algorithms in terms
of average performance based on these metrics. Among these two algorithms, the Heat
Bath algorithm is seen once as among two best algorithms (missing ratio 0.5 based on
GCIV-VW (Table 14)), while the Metropolis Hastings algorithm could not be observed

as one of the best two algorithms in any case.

There is diversity in the algorithms exhibiting the best/worst two average performances
on a case basis. However, this diversity is limited. Certain algorithms, namely SLLS and
TLET-NEC =0, importance = 2, Metropolis Hastings and Heat Bath were the best/worst

two performances on average in a considerable number of cases.

SLLS and TLET-NEC = 0, importance = 2 algorithms, which have most frequent

demonstration among the best two performances on average basis across these three
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metrics, were analyzed further to identify their superiority over each other on an instance
basis. The number of instances where one algorithm outperformed the other per case was
determined. The results were indicated in the following tables (Table 17, 18 and 19). The
numbers in the tables display the quantity of superiority instance over the other algorithm
in case basis. The tables do not show instances where there is equality, but they can be

extracted by subtracting the column sum from the total number of simulations.

Note that in missing ratio cases there are 900 instances, in matrix size and consistency
cases there are 1200 instances.

Table 17 The number of instances that algorithms have better performance in each case
based on GCIV-VW

MR MR MR MR Low Med High

GCIV-VW N5 NI5 N25 5 43 04 05 Con Con Con

SLLS 623 | 680 | 764 | 524 | 499 | 517 | 527 | 651 | 660 | 756
TLET 562 | 520 | 436 | 376 | 401 | 383 | 358 | 543 | 539 | 436
NEC =0, imp=2

Table 18 The number of instances that algorithms have better performance in each case
based on MCIV

MR MR MR MR Low Med High

MCIV N5~ NI5 N2> %5 03 04 05 Con Con  Con
SLLS 1176 | 1200 | 1200 | 900 900 900 876 | 1192 | 1197 | 1187
TLET

Necsbme=2|] 1 0| o oo o] 1| 1]3]o0

Table 19 The number of instances that algorithms have better performance in each case
based on Kendall

MR MR MR MR Low Med High

Kendall N5 N15 N2> 5 93 04 05 Con Con  Con
SLLS 33 | 268 | 370 | 160 | 161 | 178 | 172 | 52 | 248 | 371
TLET 21 | 186 | 220 | 89 | 105 | 110 | 123 | 25 | 189 | 213

NEC =0, imp=2
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The MCIV outcomes were as expected because of the objective function utilized in SLLS.
The SLLS algorithm objective aims to minimize the logarithmic quadratic error between
the pairwise comparison matrix derived from the decision maker (A) and the theoretical
pairwise comparison matrix (W) and MCIV reveals the disparity between A and W.
Nevertheless, it is important to remember that the SLLS algorithm was not able to
establish statistically significant dominance over the TLET-NEC = 0, importance = 2
algorithm in any case. Moreover, according to Kendall and GCIV-VW results the SLLS
algorithm has more competitive performance than the TLET-NEC = 0, importance = 2
algorithm. However, the TLET algorithm still provides a considerable number of
advantages. Therefore, there might be a reason for choosing TLET-NEC = 0, importance

= 2 in some conditions.

The statistically significance test results in the 10 cases according to the algorithms
computation time performance are shown below (Table 20, 21 and 22) and in the
appendix (38, 39, 40, 41, 42, 43 and 44). Note that the differences are provided in units
of seconds.

Table 20 Results of the Games Howell test for matrix size 5 case based on central
processing unit time

_ TLET
Metropolis -t Bath  SLLS Harker  Dematel LT Nec=o,
Hastings NEC =0 e
imp=2
Sparse -0.005 -0.008 -0.019 0 -0 0 0
Eigenvector | <0001 | <0001 | <0.001 0.997 0.994 0.194 0.611
Metropolis -0.003 -0014 0.005 0.005 0.005 0.005
Hastings 0.136 <0001 | <0001 | <0001 | <0001 | <0.001
et Bath -0.011 0.008 0.008 0.008 0.008
0.001 <0001 | <0001 | <0001 | <0.001
SLLS 0.019 0.019 0.019 0.019
<0001 | <0001 | <0001 | <0.001
-0 0 0
Harker 0.825 0.55 0.944
0.0002 0
Dematel 0.033 0.181
_ -0
TLT-NEC=0 oo
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Table 21 Results of the Games Howell test for matrix size 25 case based on central
processing unit time

TLET

Metropolis TLT _
Hastings Heat Bath SLLS Harker Dematel NEC = 0 l\_IEC = 0,
imp=2
Sparse -0.042 -0.079 -0.18 -0 -0 -0.002 -0.031
Eigenvector | <0.001 <0.001 <0.001 0.478 1.00 <0.001 <0.001
Metropolis -0.037 -0.138 0.041 0.042 0.04 0.011
Hastings <0.001 <0.001 <0.001 <0.001 <0.001 0.21
-0.101 0.078 0.079 0.077 0.048
Heat Bath <0.001 <0.001 <0.001 <0.001 <0.001
SLLS 0.18 0.18 0.179 0.149
<0.001 <0.001 <0.001 <0.001
0 -0.001 -0.03
Harker 0.537 <0.001 <0.001
Dematel -0.002 -0.031
<0.001 <0.001
_ -0.029
TLT-NEC=0 o001

Table 22 Results of the Games Howell test for high consistency case based on central
processing unit time

. TLET
Metropolis TLT _
Hastings Heat Bath SLLS Harker Dematel NEC = 0 l\_lEC = 0,
imp=2
Sparse -0.022 -0.046 -0.071 -0 0 -0.001 -0.011
Eigenvector <0.001 <0.001 <0.001 0.88 0.997 0.002 <0.001
Metropolis -0.023 -0.049 0.022 0.022 0.022 0.011
Hastings 0.028 <0.001 <0.001 <0.001 <0.001 0.026
Heat Bath -0.025 0.045 0.046 0.045 0.034
0.413 <0.001 <0.001 <0.001 <0.001
SLLS 0.071 0.071 0.07 0.06
<0.001 <0.001 <0.001 <0.001
0 -0 -0.011
Harker 0.461 0.125 <0.001
Dematel -0.001 -0.011
<0.001 <0.001
_ -0.011
TLT-NEC=0 <0.001

Based on central processing unit time, the SLSS algorithm was dominated by all other
algorithms in 5 cases (Table 20, 21, 39, 40 and 44). Other 5 cases it was dominated by
all except the Heat Bath algorithm (Table 22, 38, 41, 42 and 43). The Heat Bath and
Metropolis Hastings algorithms generally displayed inferior performance compared to
algorithms other than SLSS. The inferior performance of the SLSS, the Heat Bath and

the Metropolis Hastings algorithms might be related to their convergence (termination)
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parameters selected by this research. However, for precise convergence, the termination
parameter must be strict, which may increase the converge time of the algorithms. The
Sparse Eigenvector, the Harker and the Dematel algorithms generally had superiority.
However, the TLT and TLET algorithms demonstrated their superiority on a case basis
depending on the number of paths found by these algorithms. For example, in the case of
matrix size 5, where the number of possible paths is low (Table 20), the TLT algorithm
outperformed the Dematel algorithm, while there is no statistically significant difference
observed with the Sparse Eigenvector and the Harker algorithms. Furthermore, there is
no statistically significant difference between the TLET algorithm and the Dematel, the
Harker, and the Sparse Eigenvector algorithms in this case. However, in the case of
matrix size 25, where the number of possible paths is high (Table 21), the Dematel, the
Harker, and the Sparse Eigenvector algorithms outperformed the TLT and the TLET
algorithms.

Although there are statistically significant differences between algorithms, the central
processing unit time of the algorithms are generally within acceptable levels. For
example, in the matrix size 25 case the SLSS algorithm instance having a maximum
computation time had 10.48 seconds computation time. However, these numbers may
become significant when increasing the number of instances or dealing with more

extreme cases.

Note that central processing unit time is highly dependent on how algorithms are coded.
An expert in coding can achieve better computation time. Consequently, the mean
differences between algorithms may alter. In this study, objectivity was tried to be ensured

by coding the algorithms by a single reference person.

5.2. Empirical Experimental Design

Numerical studies enable us to generate different experimental conditions and to compare
algorithms’ performances. Compared to empirical studies, in numerical studies data
might be generated more quickly and easily. However, despite efforts to reflect real

eliciting processes, real-world situations include uncertainties and unknowns. Therefore,
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in this study, along with numerical experimental design, comparison of algorithms was

also conducted in empirical experimental design.

The data obtained from the empirical experiment, which is applied on 30 Sabanci
University students, was cleaned. Although the countries' geographical sizes were
selected in order to reflect expert knowledge, the students may not have had a tendency
towards this cultural knowledge. Furthermore, the experiment and algorithms are
dependent on principles, namely connectivity, consistency, and applicability. The
incomplete methodologies include the connectivity assumption. Therefore, the first
matrix that is assigned by the participants must form a connected graph to compare
algorithms. In order to use the PCMs created by participants, their CR values must be less
than or equal to 0.1. The participants were required to fill the cells in the matrices in a
readable manner, adhering to the Saaty scale. Moreover, when completing the second

matrix, it was necessary to maintain the filled cells of the first matrix for coherency.

In order to analyze consistency, the second matrices composed by the participants were
utilized. The reason for using the second matrices rather than the first was completeness
of the second matrices. Consistency check is important since it allows to understand the
attitude exhibited by the participants in responding to the experiment and their knowledge
to a degree. It was assumed that the inconsistent filling of the matrices by the participants
indicated that they did not pay sufficient attention to the experiment, or they have
inadequate knowledge about the subject. 8 participants out of 30 did not assign sufficient
consistency. In addition to this metric, the Kendall metric was examined to assess the
knowledge of the participants. Thus, one data for which the Kendall metric was calculated
negatively by all the algorithms, was eliminated. Furthermore, 3 data were eliminated
because of the lack of connectivity of the first matrix and 3 data were removed due to not
adhering to the experimental applicability. Consequently, 15 data remained. The number

of acceptances and non-acceptances along with reasons are tabulated below (Table 23).
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Table 23 The number of acceptances and non-acceptances

Explanations Amounts

Participants 30

Acceptances 15

Non-Acceptances 15
e Consistency
e Connectivity
o Applicability
e Kendall

= W w o

Priority vectors of these accepted 15 data’s first matrix were derived by the 15 incomplete
AHP methodologies namely the existing six algorithms in the literature and the nine
proposed parametric algorithms. Priority vectors of 15 data’s second matrix were
calculated by the Saaty eigenvector method. As a result, 16 different priority vectors were
obtained for each data, and they were assessed utilizing the true priority vector based on
three metrics including Kendall, GCIV-VW and MCI V.

One of the objectives of this experiment is to compare incomplete AHP methodologies.
The second objective is to determine the decision maker's attitude towards uncertain
pairwise comparisons. Should the decision maker predict the uncertain pairwise
comparisons, or should the prediction process be left to the incomplete AHP
methodologies? The decision maker's prediction process on the missing entries was

simulated by asking the participants to compose the second matrix in this experiment.

Algorithm performances based on each metric are presented in the tables below (Table
24, 25 and 26). The algorithm that achieves the best outcome for each data in each metric
is highlighted in bold. The mean values of the 15 performances of each algorithm
according to each metric are provided in the bottom row of the corresponding tables. The

algorithms that yield one of the two best mean results is emphasized in bold in this row.

Note that the MCIV metric developed for incomplete AHP methodologies. Therefore,
when examining this metric, the priority vectors obtained from the second matrices using
the Saaty eigenvector method were not considered. Consequently, only incomplete AHP

methodologies were compared according to MCIV.
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The TLT - NEC = 0 algorithm among the TLT algorithms, the TLET-NEC = O,
importance = 2 algorithm among the TLET algorithms yielded the best mean
performance, like in the numerical experimental design, in terms of these three metrics.
Therefore, only the TLT - NEC = 0 algorithm and TLET - NEC = 0, importance = 2
algorithm were demonstrated as TLT and TLET respectively.

In the tables below, the Sparse Eigenvector algorithm is demonstrated as "SE", the
Metropolis Hastings algorithm is represented as "MH", the Heat Bath algorithm is
denoted as "HB".

Table 24 Results of the empirical design according to Kendall metric

Saaty| SE | MH | HB | SLLS | Harker | Dematel | TLT | TLET
Al 0,21 | 0,29 | 0,27 | 0,30 | 0,30 0,22 0,32 0,32 0,32
A2 037 | 037|037 | 0,30 | 0,31 0,37 0,37 0,37 0,37
A3 0,54 | 0,52 | 0,56 | 0,56 | 0,56 0,52 0,54 0,54 0,54
Ad 0,08 | 0,09 | 0,05 | 0,07 | 0,10 0,09 0,10 0,08 0,10
A5 0,10 | 0,20 | 0,10 | 0,20 | 0,14 0,12 0,10 0,10 0,10
A6 054 | 0451 045 | 0,47 | 0,47 0,43 0,43 0,43 0,43
A7 0,54 | 0,52 | 0,56 | 0,54 | 0,49 0,52 0,50 0,52 0,52
A8 049 | 0,16 | 0,14 | 0,24 | 0,16 0,16 0,20 0,22 0,18
A9 0,24 | 0,28 |1 0,24 | 0,31 | 0,28 0,28 0,28 0,28 0,28

A10 0,311035)]031] 0,39 | 0,35 0,35 0,37 0,37 0,37
All 0,28 10,31 ] 0,30 | 0,30 | 0,30 0,31 0,30 0,30 | 0,31
Al2 0,16 | 0,20 | 0,18 | 0,20 | 0,20 0,20 0,22 0,22 0,22
Al3 0,16 | 0,27 | 0,17 | 0,23 | 0,23 0,29 0,27 0,29 0,27
Al4 0,40 | 0,44 | 0,44 | 0,42 | 0,45 0,39 0,45 0,45 0,45
A15 0,10 | 0,26 | 0,16 | 0,20 | 0,24 0,24 0,26 0,26 | 0,26
Mean | 0,302 | 0,307 | 0,288 | 0,302 | 0,305 | 0,300 0,314 10,316 | 0,315

The algorithm exhibiting the best performance according to Kendall had demonstrated
variability across dataset. However, on average, the two algorithms that performed the
best were the TLT and TLET algorithms. However, the Metropolis Hastings algorithm

displayed the lowest mean performance.
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Table 25 Results of the empirical design according to MCIV metric

SE MH HB | SLLS | Harker | Dematel | TLT | TLET

Al 1,020 11,022 | 1,021 ] 1,020 1,020 1,020 1,021 | 1,020
A2 1,07511,076 | 1,074 | 1,073 1,076 1,076 1,076 | 1,076
A3 1,071 11,080 | 1,077 | 1,070 1,072 1,071 1,071 | 1,071
A4 1,022 11,023 1,022 | 1,022 1,023 1,022 1,022 | 1,022
A5 1,141 11,133 ] 1,131 | 1,132 1,142 1,142 1,142 | 1,142
A6 1,09511,097 11,0991 1,094 | 1,095 1,095 1,095 | 1,095
A7 1,079 11,078 | 1,079 | 1,078 1,080 1,079 1,079 1 1,079
A8 1,062 | 1,062 11,060 | 1,060 | 1,064 1,062 1,063 | 1,061
A9 1,122 11,128 | 1,122 | 1,121 1,124 1,124 1,124 | 1,124
A10 | 1,072 11,074|1,073 | 1,072 1,072 1,072 1,072 | 1,072
A1l |1,044 11,044 1,044 ] 1,043 1,044 1,044 1,044 | 1,044
A12 | 1,059 |1,060] 1,060 1,058 | 1,059 1,059 1,059 | 1,059
Al13 |1,0111(1,0111,011] 1,011 1,011 1,012 1,012 | 1,011
Al14 |1,034]1,035]|1,0351] 1,034 1,035 1,034 1,035 1,034
A15 | 1,054 | 1,064 | 1,056 | 1,053 1,055 1,058 1,060 | 1,054
Mean | 1,064 | 1,066 | 1,064 | 1,063 | 1,065 1,065 1,065 | 1,064

The algorithm that demonstrates the highest performance based on MCIV did not show

variability across datasets. It was the SLLS algorithm as expected due to the objective

function of SLLS. On average, the Sparse Eigenvector and the SLLS algorithms were the

top two performing algorithms. However, the Metropolis Hastings algorithm exhibited

the lowest mean performance.

Table 26 Results of the empirical design according to GCIV-VW metric

Saaty| SE | MH | HB | SLLS | Harker | Dematel | TLT | TLET
Al 1,661 1,713 |1,646 | 1,661 1,702 | 1,734 1,680 1,676 | 1,696
A2 1,660 | 1,627 | 1,615 1,649 1,672 | 1,618 1,621 1,615 1,622
A3 1,556 | 1,499 | 1,429 | 1,433 | 1,492 | 1,485 1,478 1,476 | 1,478
A4 1,623 | 1,711 11,758 | 1,737 | 1,741 | 1,728 1,723 1,725 | 1,721
A5 1,773 11,765 11,742 11,740 | 1,756 | 1,767 1,768 1,768 | 1,768
A6 1,556 11,398 | 1,416 | 1,432 | 1,402 | 1,401 1,401 1,402 | 1,403
A7 1,227 11,226 | 1,223 | 1,229 | 1,237 | 1,245 1,229 1,228 | 1,229
A8 1,340 |1 1,868 | 1,826 | 1,837 | 1,842 | 2,146 1,823 1,791 | 1,859
A9 1,678 11,666 | 1,646 | 1,668 | 1,703 | 1,652 1,644 1,644 | 1,651
A10 | 1,526 11,529 1,490 1,487 | 1,524 | 1,532 1,530 1,530 | 1,531
All | 1,647 |1,643]|1,649]|1,655| 1,668 | 1,642 1,646 1,647 | 1,644
Al2 11,938 11,940 1,928 11,931 1,923 | 1,936 1,932 1,931 | 1,934
A13 11,825]1,589| 1,586 | 1,589 | 1,594 | 1,583 1,605 1,605 | 1,601
Al4 11,373 11,374 1,390 1,393 | 1,373 | 1,401 1,371 1,371 | 1,374
Al15 | 1,660 | 1,506 | 1,502 | 1,504 | 1,544 | 1,557 1,524 1,524 | 1,531
Mean | 1,603 | 1,604 | 1,590 | 1,596 | 1,612 | 1,628 | 1,598 | 1,596 | 1,603
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The algorithm that shows the highest performance according to GCIV-VW exhibited
variability across datasets. The Metropolis Hastings and TLT algorithms are the two
algorithms that performed best on average. Conversely, the Harker algorithm

demonstrated the lowest mean performance.

After examining the best performances based on each data and mean, the metric
performances were compared utilizing statistical tests such as Tukey's HSD and Games
Howell in order to analyze statistically significant differences. Consequently, no
statistically significant differences were observed among the mean performances of the
algorithms. The Tukey's HSD test results for each metric were presented in the appendix
chapter (Table 45, 46 and 47).
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6. CONCLUDING REMARKS AND FUTURE WORK

The contribution of this research can be summarized in four main aspects. First of all, six
algorithms from the incomplete analytic hierarchy process (AHP) literature were
introduced and comparatively analyzed in several experimental conditions. Secondly, two
novel parametric heuristics, namely TLT and TLET that are suitable for the incomplete
AHP framework, were developed. Nine methodologies were generated from these
parametric heuristics by assigning different parameters. Three of them by referencing
TLT and six of them by referencing TLET were developed. These nine algorithms and

the six existing algorithms were also compared in different experimental conditions.

Thirdly, these 15 algorithms’ performances were assessed using six metrics that are
appropriate for the incomplete AHP framework. Five of these were existing metrics from
literature and they were taken into consideration. The remaining metric, namely MCIV,
was developed for the incomplete AHP framework in this study. Among these metrics,
five of them measure accuracy, and one of them assesses computational time. The

relationships between the accuracy metrics were analyzed.

Lastly, two experimental setups consisting of one numerical and one empirical setup were
introduced within the incomplete AHP framework. In the numerical experimental setup,
10 different experimental cases were generated based on matrix size, consistency, and
missing ratio. In these 10 cases, 15 algorithms were statistically compared according to
several metrics, including Kendall’s tau, MCIV, GCIV-VW, and central processing unit
time. The empirical setup was conducted with the participation of 30 Sabanci University
students. In this setup, the 15 incomplete AHP methodologies were statistically compared

among themselves based on different metrics including Kendall’s tau, MCIV, GCIV-VW.
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In addition, the decision maker's attitude towards uncertain pairwise comparisons were

also examined by using Kendall’ tau and GCIV-VW metrics.

In the numerical experimental design, firstly the three TLT algorithms and six TLET
algorithms were statistically compared among themselves and decided the best of the TLT
and TLET one. Subsequently, these two selected algorithms and the six existing
algorithms were statistically compared. The algorithms generally demonstrated close
comparative results in terms of the Kendall, MCIV, and GCIV-VW metrics. However, in
some experimental cases, the TLET and the SLSS algorithms exhibited statistical
superiority. On the other hand, according to central processing unit time statistical
differences among the algorithms were observed in each experimental case. The SLSS
algorithm exhibited the worst performance based on central processing unit time due to

its convergence time in each case.

In the empirical experimental design, the algorithms exhibited no statistically significant
differences. However, there was diversity on the algorithms that perform one of the best
two algorithms according to mean in each metric. In contrast to the numerical
experimental setup, there is an additional algorithm to understand the decision maker's
attitude towards uncertainty. Based on the comparative results of empirical experimental
design, it could be preferable for the decision maker to rely on incomplete AHP

methodologies than to make predictions about uncertain comparisons.

While the empirical experimental design results showed some alignment with the
numerical experimental design results, they also exhibited differences in several metrics
performance. For instance, the fact that the TLET algorithm performed among the top
two algorithms in terms of the Kendall metric and that the SLSS algorithm was among
the top two algorithms in terms of the MCIV metric indicates the consistency of the
experimental design outcomes. However, inconsistency arose in the GCIV-VW metric,
in which the Metropolis Hastings algorithm performed among the best two algorithms in
the empirical experimental design but among the worst two algorithms in the numerical
experimental design. This discrepancy might have appeared due to the presence of
uncertainties in the real-world situations or factors in the empirical experimental design
such as the limited number of participants or their lack of knowledge about the subject of

the experiment.
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As a future research direction, a sensitivity analysis can be conducted on the parametric
heuristics. Different path lengths and various importance parameter values can be
analyzed based on the performance metrics and obtained tradeoffs. Another option is to
conduct a more comprehensive empirical experiment by involving a larger number of
participants with more domain knowledge. An additional option to consider could be
exploring relationships between metrics utilizing different principles, aside of correlation

such as polynomial or nonlinear relationships.
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APPENDIX

The tables related to the TLET Comparisons section are as below.

Table 27 Results of the Tukey HSD test for matrix size 5 case based on GCIV-VW

NEC=2, NEC=4, NEC=0, NEC=2, NEC=4
imp=1 imp=1 imp=2 imp=2 imp=2

NEC =0, -0.014 -0.017 0 -0.01 -0.012
imp=1 0.05 0.004 1.00 0.368 0.161
NEC = 2, -0.003 0.014 0.004 0.002
imp=1 0.999 0.04 0.995 1.00
NEC = 4, 0.017 0.007 0.005
imp=1 0.003 0.824 0.965
NEC =0, -0.01 -0.012
imp =2 0.323 0.135
NEC = 2, -0.002
imp =2 1.00

Table 28 Results of the Tukey HSD Test for med consistency case based on GCIV-VW

NEC=2, NEC=4, NEC=0, NEC=2 NEC=4,
imp=1 imp=1 imp=2 imp=2 imp=2

NEC =0, -0.006 -0.007 0 -0.005 -0.006
imp=1 0.059 0.005 1.00 0.135 0.021
NEC =2, -0.001 0.006 0.001 -0.001
imp=1 0.998 0.056 1.00 1.00
NEC =4, 0.007 0.002 0.001
imp=1 0.005 0.983 1.00
NEC =0, -0.005 -0.006
imp=2 0.13 0.02
NEC =2, -0.001
imp =2 1.00
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NEC =0,
imp=1
NEC = 2,
imp=1
NEC = 4,
imp=1
NEC =0,
imp=2

NEC = 2,
imp=2

NEC =0,
imp=1
NEC =2,
imp=1
NEC = 4,
imp=1
NEC =0,
imp=2

NEC =2,
imp=2

NEC =0,
imp=1
NEC =2,
imp=1
NEC = 4,
imp=1
NEC =0,
imp=2

NEC =2,
imp=2

Table 29 Results of the Tukey HSD test for med consistency case based on MCIV

NEC=2, NEC=4, NEC=0, NEC=2, NEC=4,
imp=1 imp=1 imp=2 imp=2 imp=2
-0.005 -0.007 0 -0.005 -0.006
<0.001 <0.001 1.00 <0.001 <0.001

-0.002 0.005 0.001 -0.001
0.57 <0.001 1.00 0.973
0.007 0.002 0.001

<0.001 0.211 0.995

-0.005 -0.006

<0.001 <0.001

-0.002

0.753

Table 30 Results of the Tukey HSD test for high consistency case based on MCIV

NEC=2, NEC=4, NEC=0, NEC=2, NEC=4,
imp=1 imp=1 imp=2 imp=2 imp=2
-0.01 -0.013 0 -0.008 -0.01
<0.001 <0.001 1.00 <0.001 <0.001

-0.004 0.01 0.001 -0.001
0.497 <0.001 0.996 1.00

0.013 0.005 0.003
<0.001 0.089 0.761
-0.008 -0.011

<0.001 <0.001

-0.002

0.952

Table 31 Results of the Tukey HSD test for missing ratio 0.3 case based on MCIV
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NEC=2, NEC=4, NEC=0, NEC=2, NEC=4,
imp=1 imp=1 imp=2 imp=2 imp=2
-0.005 -0.007 0 -0.005 -0.006

0.198 0.027 1.00 0.336 0.079
-0.002 0.005 0.001 -0.001
0.998 0.19 1.00 1.00
0.007 0.002 0.001
0.026 0.987 1.00
-0.005 -0.006
0.325 0.076
-0.001
0.999




Table 32 Results of the Tukey HSD test for missing ratio 0.5 case based on MCIV

The tables related with All Algorithms Comparisons section are as below.

NEC=2, NEC=4, NEC=0, NEC=2, NEC=4,
imp=1 imp=1 imp=2 imp=2 imp=2
NEC =0, -0.004 -0.008 0 -0.003 -0.004
imp=1 0.433 0.002 1.00 0.876 0.435
NEC =2, -0.004 0.005 0.001 0
imp=1 0.634 0.421 0.999 1.00
NEC =4, 0.008 0.005 0.004
imp=1 0.002 0.197 0.631
NEC =0, -0.003 -0.005
imp =2 0.868 0.423
NEC =2, -0.001
imp =2 0.999

Table 33 Results of the Tukey HSD test for matrix size 25 case based on Kendall

Sparse
Eigenvector

Metropolis
Hastings

Heat Bath

SLLS

Harker

Dematel

TLT-NEC=0

. TLET
Metro_polls Heat Bath SLLS Harker Dematel TLT_ NEC =0,
Hastings NEC =0 e
imp=2
0.003 0.001 -0.003 0.001 -0.001 -0.001 -0.001
0.761 1.00 0.826 1.00 1.00 1.00 1.00
-0.002 -0.006 -0.002 -0.004 -0.004 -0.004
0.958 0.048 0.943 0.524 0.524 0.459
-0.004 -0 -0.002 -0.002 -0.002
0.514 1.00 0.99 0.99 0.982
0.004 0.002 0.002 0.002
0.56 0.955 0.955 0.973
-0.002 -0.002 -0.002
0.994 0.994 0.988
0 -0
1.00 1.00
-0
1.00
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Table 34 Results of the Tukey HSD test for matrix size 5 case based on MCIV

. TLET
Metropolis i Bath  SLLS Harker  Dematel LT NEC=0,
Hastings NEC =0 . _
imp =2
Sparse -0.003 -0.002 0 -0 -0 -0.001 0
Eigenvector 0.071 0.751 1.00 1.00 1.00 0.991 1.00
Metropolis 0.001 0.003 0.003 0.003 0.002 0.003
Hastings 0.896 0.021 0.129 0.131 0.439 0.056
Heat Bath 0.002 0.001 0.001 0.001 0.002
0.485 0.871 0.873 0.995 0.698
-0.001 -0.001 -0.001 -0
SLLS 0.999 0.998 0.92 1.00
-0 -0.001 0
Harker 1.00 0.999 1.00
-0.001 0
Dematel 0.999 1.00
= 0.001
TLT-NEC=0 0.983
Table 35 The best two algorithms in terms of mean based on Kendall
MR MR MR MR Low Med High
N'5 N 15 N25 0.2 0.3 0.4 0.5 Con Con Con
Sparse
Eigenvector
Metropolis
Hastings
Heat Bath
SLLS X X X X X X X X X X
Harker
Dematel X X
TLT-NEC=0 X X X X
TLET
NEC =0, imp=2 X X X X
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Table 36 The worst two algorithms in terms of mean based on MCIV

MR MR MR MR Low

NS N15 N25 0.2 0.3 0.4 0.5 Con

Med
Con

High
Con

Sparse
Eigenvector

Metropolis
Hastings

Heat Bath X X X X X X X X

SLLS

Harker

Dematel

TLT-NEC=0

TLET
NEC =0, imp=2

Table 37 The worst two algorithms in terms of mean based on Kendall

MR MR MR MR Low

N5 N15 N25 0.2 0.3 0.4 0.5 Con

Med
Con

High
Con

Sparse
Eigenvector

Metropolis
Hastings

Heat Bath X X X X X X

SLLS

Harker X X

Dematel

TLT-NEC =0 X

TLET
NEC =0, imp=2
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Table 38 Results of the Games Howell test for matrix size 15 case based on central
processing unit time

Sparse
Eigenvector

Metropolis
Hastings

Heat Bath

SLLS

Harker

Dematel

TLT-NEC=0

: TLET
Metropolis 1 Bath ~ sLLS Harker ~ Dematel T NEC =0,
Hastings NEC =0 L

imp=2

-0.019 -0.046 -0.064 -0 -0 -0 -0.003
<0.001 <0.001 <0.001 0.997 1.00 0.058 <0.001

-0.026 -0.044 0.019 0.019 0.019 0.016

0.007 <0.001 <0.001 <0.001 <0.001 <0.001

-0.018 0.046 0.046 0.045 0.042

0.545 <0.001 <0.001 <0.001 <0.001

0.064 0.064 0.064 0.061

<0.001 <0.001 <0.001 <0.001

0 -0 -0.003

1.00 0.296 <0.001

-0 -0.003

0.144 <0.001

-0.003

<0.001

Table 39 Results of the Games Howell test for low consistency case based on central
processing unit time

Sparse
Eigenvector

Metropolis
Hastings

Heat Bath

SLLS

Harker

Dematel

TLT-NEC=0

. TLET
Metropolis TLT _
Hastings Heat Bath SLLS Harker Dematel NEC = 0 l\_lEC = 0,
imp=2
-0.025 -0.042 -0.098 -0 -0 -0.001 -0.011
<0.001 <0.001 <0.001 0.703 0.703 <0.001 <0.001
-0.017 -0.074 0.025 0.025 0.024 0.013
0.08 <0.001 <0.001 <0.001 <0.001 0.001
-0.057 0.042 0.042 0.041 0.03
0.017 <0.001 <0.001 <0.001 <0.001
0.098 0.098 0.098 0.087
<0.001 <0.001 <0.001 <0.001
0 -0.001 -0.011
1.00 0.002 <0.001
-0.001 -0.011
0.002 <0.001
-0.011
<0.001
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Table 40 Results of the Games Howell test for med consistency case based on central
processing unit time

. TLET
Metropolis i Bath  sLLs Harker ~ Dematel LT NEc=o,
Hastings NEC =0 L
imp=2
Sparse -0.019 -0.045 -0.094 -0 0 -0 -0.011
Eigenvector | <0.001 <0.001 <0.001 1.00 1.00 0.024 <0.001
Metropolis -0.026 -0.075 0.019 0.019 0.019 0.008
Hastings <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
-0.049 0.045 0.045 0.044 0.033
Heat Bath 0.015 <0001 | <0001 | <0001 | <0.001
SLLS 0.094 0.094 0.093 0.082
<0.001 <0.001 <0.001 <0.001
0 -0 -0.011
Harker 1.00 0.033 <0.001
Dematel -0.0005 -0.011
0.024 <0.001
_ -0.011
TLT-NEC=0 Py

Table 41 Results of the Games Howell test for missing ratio 0.2 case based on central
processing unit time

. TLET
Metropolis TLT _
Hastings Heat Bath SLLS Harker Dematel NEC = 0 l\_lEC = 0,
imp=2
Sparse -0.02 -0.037 -0.079 -0 -0 -0 -0.012
Eigenvector <0.001 <0.001 <0.001 1.00 0.805 0.442 <0.001
Metropolis -0.018 -0.06 0.02 0.019 0.019 0.008
Hastings 0.075 0.005 <0.001 <0.001 <0.001 0.07
Heat Bath -0.042 0.037 0.037 0.037 0.025
0.192 <0.001 <0.001 <0.001 <0.001
SLLS 0.079 0.079 0.079 0.067
<0.001 <0.001 <0.001 <0.001
-0 -0 -0.012
Harker 0.921 0.625 <0.001
-0 -0.012
Dematel 0.999 <0.001
_ -0.012
TLT-NEC=0 <0.001
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Table 42 Results of the Games Howell test for missing ratio 0.3 case based on central
processing unit time

. TLET
Metropolis 1 Bath ~ sLLS Harker ~ Dematel T NEC =0,
Hastings NEC =0 L
imp=2
Sparse -0.017 -0.049 -0.084 -0 -0 -0.001 -0.012
Eigenvector | <0.001 <0.001 <0.001 0.999 1.00 <0.001 <0.001
Metropolis -0.031 -0.067 0.017 0.017 0.017 0.006
Hastings 0.004 <0.001 <0.001 <0.001 <0.001 0.014
-0.036 0.049 0.049 0.048 0.037
Heat Bath 0.38 <0001 | <0001 | <0001 | <0.001
SLLS 0.084 0.084 0.084 0.073
<0.001 <0.001 <0.001 <0.001
0 -0.001 -0.012
Harker 1.00 0.007 <0.001
Dematel -0.001 -0.012
0.004 <0.001
_ -0.011
TLT-NEC=0 Py

Table 43 Results of the Games Howell test for missing ratio 0.4 case based on central
processing unit time

_ TLET
Metropolis TLT _

Hastings Heat Bath SLLS Harker Dematel NEC = 0 l\_lEC = 0,

imp=2
Sparse -0.023 -0.044 -0.091 -0 0 -0.001 -0.011
Eigenvector | <0.001 <0.001 <0.001 0.205 1.00 0.005 <0.001
Metropolis -0.021 -0.068 0.022 0.023 0.022 0.011
Hastings 0.135 0.004 <0.001 <0.001 <0.001 0.011
-0.047 0.044 0.044 0.044 0.033

Heat Bath 0.218 <0001 | <0001 | <0001 | <0.001
SLLS 0.09 0.091 0.09 0.079
<0.001 <0.001 <0.001 <0.001
0 -0 -0.011

Harker 0.075 0.905 <0.001
-0.001 -0.012

Dematel 0.001 <0.001
_ -0.011
TLT-NEC=0 20,001
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Table 44 Results of the Games Howell test for missing ratio 0.5 case based on central

processing unit time

. TLET
Metro_polls Heat Bath SLLS Harker Dematel TL-E NEC =0,
Hastings NEC =0 L
imp=2
Sparse -0.028 -0.046 -0.097 -0 0 -0.001 -0.01
Eigenvector | <0.001 <0.001 <0.001 1.00 1.00 <0.001 <0.001
Metropolis -0.018 -0.068 0.028 0.028 0.027 0.018
Hastings 0.102 <0.001 <0.001 <0.001 <0.001 0.007
-0.051 0.046 0.046 0.045 0.036
Heat Bath 0.012 <0.001 <0.001 <0.001 <0.001
SLLS 0.097 0.097 0.096 0.086
<0.001 <0.001 <0.001 <0.001
Harker 0 -0.001 -0.01
0.999 <0.001 <0.001
-0.001 -0.01
Dematel <0001 | <0.001
_ -0.009
TLT-NEC=0 o001

The tables related to the Empirical Experimental Design Results section are as

below.

Table 45 Results of the Tukey HSD test based on Kendall in empirical design

. TLET
Sparse Metropolis ~ Heat TLT _
Eigenvector ~ Hastings Bath SLSS  Harker  Dematel NEC=0 ’\:Eg;g '
Saat -0.006 0.013 -0.001 | -0.004 0.002 -0.013 -0.015 -0.013
¥ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sparse 0.019 0.005 0.002 0.008 -0.007 -0.009 -0.007
Eigenvector 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Metropolis -0.014 | -0.017 | -0.011 -0.026 -0.029 -0.027
Hastings 1.00 1.00 1.00 1.00 1.00 1.00
-0.003 0.003 -0.012 -0.015 -0.013
Heat Bath 1.00 | 1.00 1.00 1.00 1.00
0.006 -0.009 -0.011 -0.009
SLSS 1.00 1.00 1.00 1.00
Harker -0.015 -0.017 -0.015
1.00 1.00 1.00
-0.003 -0.001
Dematel 1.00 1.00
TLT- 0.002
NEC=0 1.00
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Table 46 Results of the Tukey HSD test based on MCIV in empirical design

Sparse
Eigenvector

Metropolis
Hastings

Heat Bath

SLLS

Harker

Dematel

TLT-NEC=0

. TLET
Metropolis \\ i Bath  SLLS Harker  Dematel TLT NEC =0,
Hastings NEC =0 L
imp =2
-0.002 -0 0.001 -0.001 -0.001 -0.001 -0
1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.002 0.003 0.001 0.001 0.001 0.002
1.00 1.00 1.00 1.00 1.00 1.00
0.002 -0.001 -0 -0.001 0
1.00 1.00 1.00 1.00 1.00
-0.002 -0.002 -0.002 -0.002
1.00 1.00 1.00 1.00
0 -0 0.001
1.00 1.00 1.00
-0 0
1.00 1.00
0.001
1.00

Table 47 Results of the Tukey HSD test based on GCIV-VW in empirical design

Saaty

Sparse
Eigenvector

Metropolis
Hastings

Heat Bath

SLSS

Harker

Dematel

TLT-
NEC=0
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. TLET

_Sparse Metro_polls Heat SLSS  Harker Dematel TLT_ NEC=0,

Eigenvector Hastings Bath NEC=0 imp=2
-0.001 0.013 0.007 -0.009 | -0.026 0.004 0.007 0
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.014 0.007 -0.008 | -0.025 0.005 0.008 0.001

1.00 1.00 1.00 1.00 1.00 1.00 1.00

-0.007 | -0.022 | -0.039 -0.009 -0.006 -0.013

1.00 1.00 1.00 1.00 1.00 1.00

-0.015 | -0.032 -0.002 0.001 -0.007

1.00 1.00 1.00 1.00 1.00

-0.017 0.013 0.016 0.009

1.00 1.00 1.00 1.00

0.030 0.033 0.026

1.00 1.00 1.00

0.003 -0.004

1.00 1.00

-0.007

1.00




