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ABSTRACT 

 

 

INCOMPLETE ANALYTIC HIERARCHY PROCESS (AHP) SOLUTION 

METHODOLOGIES 

 

 

DOĴUKAN ZORLU 

Industrial Engineering, MSc. Thesis, July 2023 

Thesis Supervisor: Assoc. Prof. Dr. Kemal Kēlē­ 

 

Keywords: Analytic Hierarchy Process, Incomplete Information, Decision Making, 

Pairwise Comparisons, Completion Methodologies 

 

Analytic hierarchy process (AHP) is a well-known multi criteria decision making method. 

It relies on matrices constructed through pairwise comparisons of criteria and alternatives 

by decision makers. In the literature, AHP has been proven effective in assessing weights 

of criteria and/or relative scores of alternatives. However, in order to utilize the AHP 

method, it is necessary for the decision maker to determine complete matrices, meaning 

that the decision maker must assign all pairwise comparisons into the matrices. This 

requirement may not always be feasible due to reasons such as the decision maker's 

inadequate knowledge in certain pairwise comparisons, uncertainty in the pairwise 

comparisons, and time constraints. In the literature, several algorithms have been 

proposed to address this issue, but there is no consensus on the best algorithm. In this 

study, we provided a comparative analysis of the existing algorithms. Furthermore, we 

also introduced new parametric heuristic algorithms for the incomplete AHP framework. 

The proposed algorithms were also compared with the existing algorithms in different 

experimental conditions. The performances of these methods were assessed utilizing 

metrics from the literature as well as a metric developed for the incomplete AHP 

framework in this research. The comparisons were conducted in two types of 

experiments, i.e., numerical and empirical. According to the results of these experiments, 

the developed algorithms were competitive, and even demonstrated better performance 

under some experimental conditions. 
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ÖZET 

 

 

TAMAMLANMAMIķ ANALĶTĶK HĶYERARķĶ PROSESĶ (AHP) ¢¥Z¦M 

METODOLOJĶLERĶ 

 

 

DOĴUKAN ZORLU 

End¿stri M¿hendisliĵi, Y¿ksek Lisans Tezi, Temmuz 2023 

Tez Danēĸmanē: Assoc. Prof. Dr.  Kemal Kēlē­ 

 

Anahtar Kelimeler: Analitik Hiyerarĸi S¿reci, Eksik Bilgi, Karar Verme, Ķkili 

Karĸēlaĸtērmalar, Tamamlama Yºntemleri 

 

Analitik hiyerarĸi prosesi (AHP) çok kriterli karar verme yöntemi olarak bilinen bir 

yöntemdir. AHP, karar vericiler tarafēndan kriterler ve alternatifler arasēnda ikili 

karĸēlaĸtērmalarla oluĸturulan matrislere dayanēr. Literat¿rde, bu yºntemin kriterlerin 

aĵērlēklarēnē ve/veya alternatiflerin gºreceli puanlarēnē deĵerlendirmede etkili olduĵu 

kanētlanmēĸtēr. Fakat, AHP yönteminden yararlanmak için karar vericinin tam matrisler 

oluĸturmasē gereklidir, yani karar vericinin b¿t¿n ikili karĸēlaĸtērmalarē matrislere atamasē 

gerekir. Bu gereklilik, uzmanēn bazē ikili karĸēlaĸtērmalarda yetersiz bilgiye sahip olmasē, 

ikili karĸēlaĸtērmalardaki belirsizlik ve zaman sēnērlamasē gibi nedenlerden dolayē her 

zaman mümkün olmayabilir. Literatürde, bu sorunu ele almak için birkaç algoritma 

ºnerilmiĸtir, fakat en iyi algoritma konusunda fikir birliĵi yoktur. Bu ­alēĸmada, mevcut 

algoritmalarēn karĸēlaĸtērmalē bir analizini sunduk. Ayrēca, tamamlanmamēĸ AHP 

­er­evesi i­in yeni parametrik sezgisel algoritmalar da tanēttēk. Tanētēlan algoritmalar, 

farklē deneysel koĸullarda mevcut algoritmalarla da karĸēlaĸtērēlmēĸtēr. Bu yºntemlerin 

performanslarē, literat¿rdeki metriklerin yanē sēra bu araĸtērmada tamamlanmamēĸ AHP 

­er­evesinde geliĸtirilen bir metrik kullanēlarak deĵerlendirilmiĸtir. Karĸēlaĸtērmalar, 

sayēsal ve deneysel olmak ¿zere iki t¿r deneyde ger­ekleĸtirilmiĸtir. Bu deneylerin 

sonu­larēna gºre, tanētēlan algoritmalar rekabet­i bir performans sergilemiĸ ve bazē 

deneysel koĸullar altēnda daha iyi performans gºstermiĸtir. 
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1. INTRODUCTION  

 

 

Decision making deals with the process of determining and selecting alternatives 

according to the preferences of decision makers. It should consider the pros and cons of 

each choice. It is a crucial phenomenon since people are always making decisions in their 

social lives, business, and economics. However, determining the priority of each 

alternative can be challenging, especially when the number of alternatives is enormous, 

and subjectivity is an issue. This challenge arises from the ambiguity of the alternatives 

or complexity of the decision-making process itself.  In order to address this challenge, 

decision makers might rely on knowledge of the relative importance of alternatives rather 

than on extracting their exact value. Some researchers have suggested that eliciting 

judgments on two alternatives separately is easier than eliciting judgments on all 

alternatives simultaneously. Choo et al. (2016) proposed that the use of pairwise 

comparison is the preferred methodology to extract human preferences, as this approach 

evaluates options in a binary manner, making it less cognitively demanding than 

evaluating all options at once. This consideration might be all the more important 

considering the work of Miller (1956), who suggested that the human brain stores a 

limited amount of information which includes between five and nine items in working 

memory.  

Another common issue is transitiveness. In the ideal scenario data, which comes from 

decision makers are transitive, meaning that if alternative A has a higher utility than that 

of B and B has a higher utility than that of C, then A has a higher utility than that of C. 

Note that consistency and transitivity are interconnected concepts. The presence of 

consistency leads to transitivity. Unfortunately, real-world situations are complicated by 

perturbations, noise, or subjective biases, which make it challenging to achieve 

consistency and transitivity (Davis 1958, Saaty 1977, Bessi et al. 2015). 
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One of the effective methodologies that deals with the decision-making phenomenon 

even if the above challenges are present is analytic hierarchy process (AHP), which was 

introduced by Saaty (1972, 1977). AHP is a decision-making methodology designed to 

support decision makers when dealing with complex problems that includes multiple 

subjective and conflicting criteria (Ishizaka and Labib, 2011). According to Emrouznejad 

and Marra (2017), AHP is considered to be a leading decision-making approach since it 

includes subjective factors to be taken into account. AHP has been successfully applied 

in a wide range of fields such as, warehouse network evaluation (Korpela and 

Lehmusvaara 1999), supplier selection (Chamodrakas et al., 2010), project selection 

(Amiri, 2010), the health sector (Saaty and Vargas, 1998), marketing (Wind and Saaty, 

1980), university evaluation (Lee, 2010), human resource manager selection 

(Kusumawardani and Agintiara, 2015), and other various domains. 

AHP is a very flexible approach and can handle many situations, some of which have 

already been mentioned. However, it has several limitations, some of which are ranking 

reversal, complexity, sufficient expertise knowledge, and incomplete data. The ranking 

reversal issue refers to a situation in which the relative ranking of alternatives changes 

when new alternatives are added or deleted. In other words, the ranking of alternatives is 

not consistent. The complexity issue may arise from the nature of the decision-making 

problem itself. When the problem includes numerous criteria and alternatives, the 

pairwise comparisons might become more complex and time-consuming. The correctness 

and reliability of AHP is highly related to the decision maker who is the expert of the 

subject under consideration. A lack of expertise in a decision maker may lead to 

inconsistent or unreliable results. Missing data may cause a major issue in AHP since 

consistency and accuracy highly depend on complete and precise data on the pairwise 

comparisons. Several solutions to these challenges have been published in AHP literature. 

However, they are out of the scope of this research except for the issue of incomplete data 

in AHP.  

Handling incomplete data in pairwise comparison matrices has been a frequently 

discussed topic in the AHP literature. Several studies have suggested a methodology 

which copes with the incompleteness issue (e.g., Harker, 1987a; Harker, 1987b; Carmone 

et al., 1997; Bozóki et al., 2010; Gomez-Ruiz et al., 2010; Oliva et al., 2017; Zhou et al., 

2018; Menci et al., 2018; Oliva et al., 2018). These studies can be classified into two 

subsets: reconstructing methods and sparse methods. Reconstructing methods aim to fill 
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in the missing entries in the pairwise comparison matrix, and then identify the rankings 

and priorities. In contrast, sparse methods utilize the pairwise comparison matrix as it is, 

without modification, to determine the rankings and priorities. Although there are many 

studies on reconstructing methods in the AHP literature (Harker, 1987a; Carmone et al., 

1997; Bozóki et al., 2010; Gomez-Ruiz et al., 2010; Zhou et al., 2018), sparse methods 

have also been the subject of recent research (Oliva et al., 2017; Menci et al., 2018; Oliva 

et al., 2018).  

There are several reasons why pairwise comparison matrix in AHP can be incomplete, 

such as time complexity, insufficient knowledge or vagueness about expertise in certain 

comparisons, and loss of collected data. In AHP, it is sufficient to conduct n(n-1)/2, where 

ñnò represents the alternative number, pairwise comparisons per criterion since AHP 

assumes that the data collected from decision makers is reciprocal. This means that if A 

is rated as three times better than B, then B must be rated as one-third as good as A. 

Moreover, the diagonal entries of the pairwise comparison matrix must be one since each 

element is equivalent to itself. Thus, it is sufficient to complete one triangular section of 

the matrix (ex. upper right triangular). When the alternatives or criteria number are huge, 

it may be inefficient or time consuming to gather all of the necessary entries. When the 

decision maker has not established a strong perspective on certain assessments, it may be 

preferable to let them skip the question rather than compel them to make an unreliable 

estimate. Carmone et al. (1997) conducted an experimental study in which entries are 

removed from matrices having various sizes of 10, 15, 20. The results of the study 

demonstrated that it is possible to eliminate up to 50% of the entries in the pairwise 

comparison matrix without causing a significant decrease in the outcome. 

When determining priorities, the goal is to establish a consistent matrix whose entries 

represent the ratios of one priority to another. The entries in this matrix should match the 

pairwise comparison matrix collected from the decision maker. Moreover, it should have 

minimal deviation when slight inconsistencies are present. Several approaches to derive 

these priorities can be found in the AHP literature.  According to Saaty (1977), the 

preferred priorities can be determined by the principal eigenvector w. Following Saaty's 

innovative work, several methods for deriving priority vectors have been proposed. One 

of these was created by Crawford and Williams (1985). These authors addressed the issue 

of rank reversal in the eigenvector method and adapted an alternative technique called the 

logarithmic least squares method.  
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The incomplete AHP literature has also benefited from work in other disciplines to 

address the issues of calculating missing entry or determining priorities. Harker (1987b) 

suggested an approach for filling the missing entries based on the concept of connecting 

path. This approach involves calculating all indirect comparisons based on the transitivity 

rule and taking the geometric mean of these comparisons to assess the missing entry. 

Zhou et al. (2018) utilized decision-making and trial evaluation laboratory (DEMATEL) 

methodology and adapted it to reconstruct an incomplete pairwise comparison matrix. 

Olivia and colleagues (2017) adopted the eigenvector introduced by Saaty to sparse 

context to derive priorities. In 2018, Menci and colleagues introduced three alternative 

methodologies for finding priorities in sparse settings. These techniques are based on 

well-known methods in the several literatures including Metropolis-Hastings Markov 

chains (Metropolis et al., 1953), Heat-Bath Markov chains (Achlioptas et al., 2005), and 

formation control (Fax and Murray, 2004). 

Evaluating the accuracy of priorities is another important issue. There are various 

evaluation metrics available in the literature, including consistency index, consistency 

ratio, and compatibility index. However, when using these indices, which were designed 

for complete pairwise comparison matrices, on incomplete pairwise comparison matrices, 

it is essential to consider the assumptions and meanings behind them.  For instance, in a 

sparse setting where some entries are zero, the compatibility index becomes meaningless 

because the elementwise product of the missing entries yields 0 which reduces the 

compatibility index. The decline in the compatibility index is not due to the integrity of 

the assigned values, but rather it arises from the emptiness of the matrix. Furthermore, 

using the consistency index of an incomplete matrix is inappropriate since it assumes a 

complete matrix. Therefore, when the pairwise comparison matrix is incomplete, it may 

be necessary to develop new metrics or modify existing ones to evaluate priorities 

accurately. 

This research focuses on incomplete pairwise comparison matrix methodologies in the 

context of AHP. Some of the key accomplishments of this study are as follows: 

1. Novel parametric heuristic algorithms were created to handle an incomplete 

pairwise comparison matrix in the context of AHP. 
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2. A new metric, that is suitable for incomplete context, was developed. The 

relationships between the newly introduced metric and the metrics that are 

suitable in incomplete AHP framework were analyzed, and correlations were 

investigated. 

3. Methodologies for handling incomplete pairwise comparison matrices in 

incomplete AHP literature were statistically compared among themselves and 

with the proposed algorithms by several metrics under varying experimental 

designs.  

4. Methodologies were evaluated through both numerical and empirical studies. 

The rest of this thesis is organized as follows. Chapter 2 covers preliminary definitions 

and notations. Chapter 3 provides a review of existing algorithms in the literature. Chapter 

4 introduces proposed parametric heuristic algorithms and explains the motivation behind 

them. The numerical and empirical experimental designs are also introduced in chapter 

4. Chapter 5 presents, results and discussion. Chapter 6 concludes this research and 

discusses future research areas. 
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2. GENERAL NOTATIONS AND PRELIMINARIES  

 

 

2.1. General Notations 

 

Number of alternatives are demonstrated as n. Vectors are represented using italic, 

boldface, and lowercase letters (e.g., vector v is shown as v), whereas matrices are denoted 

using italic and uppercase letters (e.g., matrix A is shown as A). Additionally, the ὭȟὮ   

entry of a matrix A is represented by ὃ , and the Ὥ  entry of a v is represented by ○░. If 

we have a vector v that belongs to ᴙ , then D(v) is an n ×  n diagonal matrix where the 

Ὥ   diagonal entry is ○░.  An identity matrix is denoted by Ὅ. Furthermore, A ƺ B 

represents the Hadamard product, which is the element-wise product of two matrices A 

and B that have the same dimensions.  

 

2.2. Preliminaries 

 

Definition 1: Analytic hierarchy process (AHP) is a multi-decision-making method that 

was developed by Saaty (1972, 1977). In general, AHP involves four main steps including 

problem modelling, pairwise comparison matrix creation, priority weights calculation and 

consistency measurement. In the first step a hierarchical structure is created by breaking 

down the decision problem into smaller components. The second step involves creating 

pairwise comparison matrices (PCMs) to assess the relative importance of alternatives. 

Each element in the PCM is usually determined by using a Saaty scale of values ranging 

from 1 to 9 (Table 1). In the third step the priority weights of the alternatives are calculated 

based on the PCMs. In the last step, the consistency of the PCMs is measured for 
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reliability. The main objective of AHP is to prioritize the alternatives and allocate weight 

to each of them in accordance with the pairwise comparisons.  

Table 1 Saaty scale 

Definition Intensity of Importance 

Equal Importance 1 

Moderate Importance 3 

Strong Importance 5 

Demonstrated Importance 7 

Extreme Importance 9 

Intermediate Values 2, 4, 6, 8 

 

Definition 2: Pairwise Comparison Matrix (PCM) Let X be a n × n PCM, where ὢ  

represents the relative importance of Ὥ  criteria on Ὦ  criteria. Moreover, X should satisfy 

the following conditions. 

 ὢ  > 0 and ὢ
ρȾὢ    ὭὪ Ὥ Ὦ

ρ           ὭὪ Ὥ Ὦ
 (2.1) 

In the context of incomplete AHP, it can be modified as follows. 

 ὃ  = 

           ὢ      ὭὪ Ὥὸ Ὥί Ὧὲέύὲ

   ρ              ὭὪ Ὥ Ὦ
       π            έὸὬὩὶύὭίὩ

     (2.2) 

Definition 3: True Priority Vector v = [○, ○, é, ○▪] is the ideal depiction of the 

decision makerôs preferences. It can be used as a benchmark for evaluating the 

performance of the process. 

Definition 4: Calculated Priority Vector w = [◌ , ◌, é, ◌▪] is the weight of the 

alternatives derived by a methodology. According to Saaty (1977) w is reproduced by the 

principal right eigenvector which corresponds to the maximum eigenvalue of the PCM 

(Equation 2.3). The main objective is to extract a weight vector that closely mates the true 

priority vector. In other words, to minimize the deviation between the calculated priority 

vector and the true priority vector. Large deviation can be seen as inconsistency in the 

process. 
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 Xw = ⱦ□╪● w (2.3) 

Definition 5: Consistency Index (CI) and Consistency Ratio (CR) were characterized 

by Saaty.  

The Consistency Index is defined in equation 2.4. 

 #)  
ⱦ□╪●   

  
 (2.4) 

The Consistency Ratio is expressed below.  

 #2   (2.5) 

where RI is the Random Index, which is the average of the consistency indexes obtained 

from randomly generated PCMs. It depends on the dimension of PCMs and some of the 

values of RI are shown below (Table 2) (Hayrapetyan, 2019). If CR  0.1 then the derived 

PCM can be acceptable, which means PCM is sufficiently consistent. If CR = 0, PCM is 

fully consistent (Saaty, 1977). 

Table 2 Random index values 

n 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.52 0.89 1.13 1.25 1.35 1.43 1.47 1.5 

 

Definition 6: Theoretical Pairwise Comparison Matrix (W) is a n × n matrix which is 

calculated from w. The value ÏÆ ὡ  is the ratio of Ὥ   entry of w over Ὦ  entry of w. 

Definition 7: True Theoretical Pairwise Comparison Matrix (V) is a n ×  n matrix 

which is constructed from v. ὠ  is the ratio of Ὥ ÏÆ v entry over Ὦ  entry of v. 

Definition 8: Kendallôs Correlation Index (Kendallôs tau, Ű) is an index, which was 

created by Kendall (1938), for identifying the degree of relevance between two vectors 

(v, w) based on ordinal or ranked data. It evaluates the strength of the association between 

these vectors. Kendallôs tau can change between -1 and 1. If Ű = +1, it shows that v and w 

have the identical order. On the other hand, if Ű = -1, it means that they have opposite 

order. In other words, if tau is closer to 1, it shows that two vectors are correlated. If tau 

is closer to -1, it represents that two vectors are anti-correlated. Lastly, if tau is closer to 

0, it means that two vectors have no correlation. 
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Two pairs of values (○░, ◌░) and (○▒, ◌▒) are concordant if both ○░<  ○▒ and ◌░< ◌▒ or 

both ○░ >  ○▒ and ◌░ > ◌▒. Two pairs of values (○░, ◌░) and (○▒, ◌▒) are discordant if both 

○░ <  ○▒  and ◌░ > ◌▒ or both ○░ >  ○▒ and ◌░< ◌▒. Moreover, if ○░ =  ○▒   or ◌░ = ◌▒ the 

pairs are considered to be neither concordant nor discordant. Let v and w belongs to  ᴙ , 

then Ű is calculated as follow. 

   
ȿȿ  ȿȿ

  
 (2.6) 

where C represents the set of concordant pairs and D represents the set of discordant pairs. 

Definition 10: Compatibility Ind ex Value (CIV ), which is a metric described by Saaty 

(1994), demonstrates the deviation between X and W. CIV is defined in equation 2.7. 

 #)6  В В ὢ
◌▒

◌░
 (2.7) 

Note that, when a matrix X is fully consistent, X and W are exactly equal. This means that 

the CIV of matrix X and W would be equal to 1. On the other hand, if matrix X is 

inconsistent, CIV will be greater than 1 (Saaty, 1994) 

Definition 11: Modified Compatibility Index Value ( MCIV ), is modified version of 

CIV, is created for incomplete AHP setting in this research. It measures only the deviation 

between the cells assigned by the decision maker and the corresponding entries of W. Let 

m be the number of the missing data of PCM. Then, MCIV is described as below. 

 -#)6  В В ὃ
◌▒

◌░
  (2.8) 

Definition 12: Generic Compatibility Index between V and W (GCIV -VW), was 

defined by Ahmed and Kilic (2022). It illustrates the deviation between V and W. As in 

CIV, GCIV-VW also equals 1 if fully consistency presents. In practical application matrix 

V is unknown, so that matrix X and/or W were usually used to assess the calculated priority 

vectors in the literature. However, in an empirical and a numerical application true 

priority vector may be known. In such a context, GCIV-VW metric can be utilized to 

assess methodologies. GCIV-VW is demonstrated as follows. 

 '#)667  В В
◌░

◌▒

○▒

○░
 (2.9) 



10 

 

Definition 12: Euclidean Distance (Euc), measures the distance between two objects in 

a space. Euclidean distance is commonly used in many areas such as statistics, data 

analysis and machine learning. Euclidean distance is characterized as follows. 

 Ὁόὧ ◌ ○ ◌ ○ Ễ ◌▪ ○▪  (2.10) 

Definition 13: Central Processing Unit Time, is a metric which evaluates the time for 

which a central processing unit (CPU) was employed for processing commands of 

operating system. 

 

2.2.1. Graph Theory 

Let G be a graph, represented as G = (V, E) where V is a set of nodes (vertices), and E is 

a set of edges. Node i are shown as ○░ and edge between node i and node j are indicated 

as (○░, ○▒). An edge from ○░ to ○▒ in E indicates that there is a connection between them. 

A graph is undirected if for any edge (○░, ○▒) in E, (○▒, ○░) must present in E. In a 

connected graph, there must be at least one path between any pair of nodes in G such that 

all nodes on that path must be connected by edges. In a connected graph there are no 

disconnected subsets of nodes. In the context of AHP, it is a common practice to assume 

PCM is undirected because of the reciprocal property of PCM. In the continuation of this 

research, the connectedness of PCM is another assumption since some methodologies in 

incomplete AHP literature encloses it such as the Metropolis Hastings and the Heat Bath 

algorithms developed by Menci et al. (2018). Therefore, numerical and empirical 

experiments were analyzed accordingly. 

An adjacency matrix of a graph with n nodes is a n ×  n matrix, represented by M.  

Adjacency matrix is a fundamental concept since it provides analysis of the connectivity 

of a graph and degree of nodes. The entries of M are either 1 or 0.  

 ὓ  = 
ρ    ÉÆ ὸὬὩὶὩ Ὥί ὥὲ ὩὨὫὩ ὦὩὸύὩὩὲ ○░ ὥὲὨ ○▒

π    έὸὬὩὶύὭίὩ
 (2.11) 

The neighborhood of node i, denoted as N(i), is identified as the set of nodes that are 

adjacent to node i. For an undirected graph it can be represented as follows. 

 N(i) = {○░, ○▒  ɴ  V: (○░, ○▒)  ɴE}  (2.12) 
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For an undirected graph, the degree of node i, represented as deg(i), is the number of 

nodes which are adjacent to node i. It can be shown as equation 2.13. 

  deg(i) = | {○░, ○▒  ɴ  V: (○░, ○▒)  ɴE} |  (2.13) 

Moreover, it can be found by utilizing adjacency matrix of an undirected graph as follows. 

 deg(i) = В ὓ  ○▒ɴ  (2.14) 

The degree matrix of a graph, denoted as DG, is a diagonal matrix whose entries equal 

the degree of the nodes or 0, represented as below. 

 ὈὋ = 
    ὨὩὫὭ          ÉÆ É Ê
             π            έὸὬὩὶύὭίὩ

 (2.15) 

The degree vector of a graph, denoted as d, whose entries equal the degree of the nodes. 

A n ×  n matrix L is irreducible if there is no P, which is a n ×  n permutation matrix whose 

rows and columns having exactly one 1 and other entries are 0, such that, 

 PTLP =
ὒ ὒ
π ὒ

 (2.16) 

where ὒ  is m × m, ὒ  is (n ī m) Ĭ (n ī m), ὒ  is n Ĭ (n ī m), and m is an integer with 

0 < m < n. Moreover, in the case of undirected graphs, a matrix L is irreducible if and 

only if its structure corresponds to a connected graph G (Oliva et al., 2018). 

  

2.2.2. Markov  Chains 

The definitions presented in the Markov chains will be helpful in comprehending certain 

methodologies utilized to solve the sparse setting, especially in chapters 3.4 and 3.5. 

Definition 14: Discrete Time Markov Chain (DTMC), let Z be a finite or countable set 

of the Markov chain, which is called state space of the chain. A DTMC is a sequence of 

random variables ὢ, ὢ, . . . taking values in the set Z, satisfying the following equation. 

 P(ὢ  = ὼ  | ὢ = ὼ, . . . ὢ  = ὼ , ὢ  = ὼ) = P(ὢ  = ὼ  | ὢ  = ὼ) (2.17) 

for all ὼ, . . ., ὼ ,ὼ   ɴZ and n  ɴN, where P(X | Y) defines the conditional probability 

of X given Y. In other words, a DTMC is a stochastic model that defines a series of events, 

where the likelihood of each future state depends solely on the current state and not on 

any of the previous states. 
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Definition 15: Single Step Transition Matrix (P), let Z contains n states. Transition 

matrix is a n ×  n square matrix which consists of the probabilities of moving between 

states of the chain in a single time unit. Let ὖ  defines the probability of moving from 

state i to state j in a single step. Furthermore, the transition matrix must include two 

properties (2.18 and 2.19). 

 ὖ  0 (2.18) 

 В ὖ  ρ (2.19) 

Definition 16: Time Homogeneous Markov Chain, a Markov chain is time-

homogeneous if the transition probabilities constant over time, i.e., it satisfies the 

following condition, 

 P(ὢ  = j |  ὢ  = i) = P(ὢ = Ê | ὢ = i)  for all n ɴ  N  (2.20) 

In time homogeneous MC, 

 p(ὢ ) = PT p(ὢ )   (2.21) 

where p(ὢ ) represents probability distribution of ὢ . 

For homogenous DTMC, let the n-step transition probability of being in state j given that 

the chain was in state i, is represented as ὖ  and n-step transition matrix is denoted as ὖ . 

According to Chapman-Kolmogorov equations (Dobrow, 2016), 

 ὖ ὖὖ     for m, n π (2.22) 

Definition 17: Irreducible Markov Chain , is a Markov chain where all the states in the 

state space communicate with each other (single class). State i is accessible from state j 

if  ὖ  is positive for some n  0. Any state i and j in the state space communicate each 

other if both are accessible from each other. Moreover, irreducibility of transition matrix, 

yields irreducibility of Markov chain. 

Definition 18: Period of Markov Chain, the period of state i, denoted as d(i), is defined 

as follows. 

 d(i) = gcd{n > 0:  ὖ  > 0} (2.23) 

where ñgcdò refers to the greatest common divisor. If d(i) = 1, then state i is said to be 

aperiodic. Note that ὖ > 0 is an adequate condition for aperiodicity. When a Markov 



13 

 

chain is irreducible, and all states are aperiodic then Markov chain is called aperiodic 

Markov chain. Moreover, periodicity is a class property, i.e., if state i communicates with 

state j and is periodic/aperiodic, then state j is also periodic/aperiodic. Therefore, when a 

Markov chain is irreducible, there is a single class in which all states have the same 

periodicity property. Hence, if single step transition matrix is irreducible and for any i in 

state space has ὖ  > 0, then Markov chain is aperiodic. 

Definition 19: Limiting Distribution ( ) of a Markov chain is a probability distribution 

such that, 

 ÌÉÍ
ᴼ
 ὖ ʌ (2.24) 

In other words, the probabilities of being in each state converge after some steps to a 

certain value which is independent of the initial distribution of the states.  

Note that, if a Markov chain with finite state space is aperiodic and irreducible, then it 

has a limiting distribution. 

Remark 1: Suppose an irreducible but not aperiodic Markov chain with n states, let P is 

its transition matrix. Then for any ‍  ɴπȟρ, matrix  ‍ὖ  ρ ‍Ὅ is aperiodic and 

its left dominant eigenvector is the same with P (Menci et al., 2018). 
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3. METHODOLOGIES IN INCOMPLETE AHP LITERATURE  

 

 

In experimental designs several incomplete AHP methodologies in literature namely 

Harker (1987a), Bozóki et al. (2010), Oliva et al. (2017), Zhou et al. (2018) and Menci et 

al. (2018) were compared. These incomplete AHP methodologies in literature are 

summarized in this chapter. 

 

3.1. Harker  

 

Harker (1987a) created a new matrix B and used its principal right eigenvector to assign 

missing entries of A.  

The derivation can be depicted as follows. 

1. Establish a matrix B as, 

 ὄ  = 

                  π               ὭὪ ὃ Ὥί άὭίίὭὲὫ

   ρ Í                 ὭὪ Ὥ Ὦ
          ὃ                  έὸὬὩὶύὭίὩ

  (3.1) 

where Í  represents the number of missing entries in the iôth row. 

2. Calculate the principal right eigenvector w and eigenvalue ɚmax of B. 

3. Fill the missing entries of A by using w (if ὃ  is missing, assign it as ◌░/◌▒) 
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3.2. DEMATEL  

 

Zhou et al. (2018) proposed a DEMATEL based solution methodology to derive priorities 

in the context of incomplete AHP. DEMATEL is a kind of structural modelling technique, 

applicable to examine the cause-and-effect relationships between alternatives. It can be 

applied effectively to extract the interrelationships among alternatives within a complex 

system. Moreover, it can provide the ranking of these alternatives (Si et al., 2018). It has 

demonstrated its effectiveness in various fields, including but not limited to risk 

assessment (Li et al., 2020), supply chain management (Wu et al., 2017), and stock 

selection (Shen and Tzeng, 2015). There are two important matrices in DEMATEL 

including DRM and TRM. DRM is direct relation matrix, and it contains direct relations. 

TRM is total relation matrix, and it includes both indirect and direct relations. DEMATEL 

consists of five steps namely determining quality characteristics, deriving the DRM, 

normalizing DRM, constructing TRM and classifying factors. Zhou et al. (2018) adapted 

DEMATEL methodology into AHP framework in four steps. The purpose is extracting 

complete pairwise comparison matrix using incomplete pairwise comparison matrix. In 

the first step, the incomplete pairwise comparison matrix is converted into DRM and then 

DRM is normalized. This conversion is generated as follows. Let A be the incomplete 

PCM, D be the DRM.  

 Ὀ  = 
  ὃ      ὭὪ ὃ  Ὥί ὥίίὭὫὲὩὨ ὦώ ὨὩὧὭίὭέὲ άὥὯὩὶ

 π                                                             έὸὬὩὶύὭίὩ
 (3.2) 

After the creation of DRM, the sum of each row and column is calculated for the 

normalization step. The maximum of the row sum and column sum is identified and is 

utilized to normalize DRM, which is denoted as ND. Normalization step is shown as in 

equation 3.3. 

 ND = 
 ȟ   

 (3.3) 
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In the second step TRM, denoted as T, is created by using ND as below. 

 T = ὰὭά
ᴼ
ὔὈ ὔὈ Ễ ὔὈ  

             =ὰὭά
ᴼ
ὔὈ Ὅ ὔὈ Ὅ ὔὈ   

     = ὔὈὍ ὔὈ                              (3.4) 

Zhou et al. (2018) emphasized that the progression from 1 to infinity represents the 

gradual discovery of indirect relationships between each pair in DRM. Sometimes TRM 

may not be calculated as above formula because of the nonexistence of inverted matrix 

(singularity of matrix). For these situations Zhou et al. (2018) designed an experiment to 

see the convergence of ὰὭά
ᴼ
ὔὈ ὔὈ Ễ ὔὈ . According to their experiment, 

they observed that convergence of limit is very quick (m is around 5 in most cases). They 

suggested that it is appropriate to set m to be a specific integer like m = 5 and approach 

TRM with that assumption. In the experimental designs in this study, we approached 

TRM as utilizing coefficient of 25. 

In the third step of their methodology, a complete pairwise comparison matrix is 

constructed from TRM with satisfying reciprocal property. The construction is made as 

following algorithm. 

Algorithm  1: Conversion from TRM to PCM  

1: Input: the matrix Ὕ    

2: Construct: a matrix ὖ    

3: for i =1, é, n do 

4:      for j =1, é, n do 

5:            ὖ  =   

6:            ὖ  = 
 

 

7: Output:  P 

 

DEMATEL based solution methodology abbreviated as Dematel in the continuation of 

this research. 
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In the last step the missing values of A are derived by using P as follows. 

 ὃ  = 
     ὃ    ὭὪ ὃ ύὥί ὥίίὭὫὲὩὨ ὦώ ὸὬὩ ὨὩὧὭίὭέὲ άὥὯὩὶ

     ὖ                                                                     έὸὬὩὶύὭίὩ
 (3.5) 

Note 1: Following 4 methodologies are related with the sparse setting. In the context of 

sparse setting PCM is filled differently. In the nominal case, the diagonal entry of the 

PCM is assigned as 1, but in the sparse context it is assigned as 0. The missing entries 

also filled as 0 in the sparse setting. Therefore, while constructing the degree matrix (DG), 

the diagonal entries of PCM are not considered. 

Example 1: Let PCM is assigned as follows. 

A = 

ρ ς πȢυ
ρ σ

πȢυ πȢστρ πȢςυ
ς τ ρ

 , where ñ-ñ represents the missing value. 

Then, in the sparse context, it is demonstrated as below. 

A = 

π π ς πȢυ
π π σ π
πȢυ πȢστπ πȢςυ
ς π τ π

  

Furthermore, its degree matrix is considered as below. 

DG = 

ς π π π
π ρ π π
π π σ π
π π π ς

 

Note 2: The connectedness of the G, which is derived from A, is an assumption for the 

following 4 methodologies in order to calculate the priorities. 
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3.3. Sparse Eigenvector 

 

The motivation behind the Sparse Eigenvector method developed by Oliva et al. (2017) 

is coming from the following result. When there is missingness but no perturbation, 

entries in the PCM are transitive and accurate, the principal right eigenvector of ὈὋὃ is 

the same as the true priority vector v. Based on this outcome, they suggested using the 

principal right eigenvector of ὈὋὃ as calculated priority vector w. The ideology 

resembles the eigenvector method created by Saaty.  

 

3.4. Metropolis-Hastings 

 

Menci et al. (2018) constructed the Metropolis-Hastings method to extract priorities in 

the case of the sparse setting. Their motivation behind the methodology is inspired by the 

Metropolis Hastings Markov chain. They suggested constructing a matrix P, which has 

the same structure as the connected graph G, utilizing A. The derivation is as follows. 

 ὖ  = 

ừ
Ử
Ừ

Ử
ứ
                         

ȟ
▀░

▀▒

▀░
                          ὭὪ ○░ȟ○▒  ɴ  %

ρ  
▀░
 В  άὭὲρȟ

▀░

▀▓
   ɴ              ὭὪ Ὥ Ὦ

                             π                                       έὸὬὩὶύὭίὩ

 (3.6) 

where d is the degree vector and N(i) is the neighborhood of node i. 

Similar to the Sparse Eigenvector methodology, when there is no perturbation the left 

dominant eigenvector of P gives the true priority vector v (Menci et al., 2018).  

Note that the matrix P is a form of transition probability matrix of a Markov chain by 

construction. It holds the following two properties (2.18 and 2.19). 

Because G is undirected, connected and contains finite states, the Markov chain is 

irreducible since there is a single class, and all states can communicate with each other. 

When there is no perturbation, the Markov chain is aperiodic, so that the Markov Chain 
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has limiting distribution, which is determined by the left dominant eigenvector (Menci et 

al., 2018). The limiting distribution was taken as the calculated priority vector w.  

However, when dealing with perturbations, it cannot be guaranteed that the Markov chain 

will exhibit aperiodicity (Menci et al., 2018). In order to ensure convergence, a modified 

version of the Markov chain was employed by them. Therefore, they used convex 

combination of ὖ  and Ὅ  as shown below. 

   ὖ  ‍ὖ ρ ‍Ὅ, where ‍  ɴπȟρ  (3.7) 

Note that irreducibility property is not affected by convex combination. Moreover, ὖ is 

aperiodic and its left dominant eigenvector is the same with P (Remark 1). Therefore, the 

new Markov chain has a limiting distribution, which is used for approaching the true 

priority vector v. The algorithm they proposed for reaching the limiting distribution of P 

is as follows.  

Note 3: ◌░(k +1) represents the probability of the Markov chain will be in state i state at 

the step k+1. 

Algorithm  2: Metropolis-Hastings  

1: Input: the matrix ὃ   , random parameter ‍ 

2: Obtain: the matrix ὖ   , and the vector d 

3: Initialization  

4:      for i =1, é, n do 

5:            ◌░(0)  = random (0, 1) 

6:      Standardize w(0) 

7: Synchronous Iteration           

8:            ◌░(k +1)  =  ‍ὖ  ρ ‍ ◌░(k)  +  ‍  В   ὖ ɴ  ◌▒(k)   

9: Output:  w 

 

Note that, in their research they proposed more than one method for initialization 

procedure. However, in this research standardized random positive rational numbers were 

utilized. Initialization is necessary for determining the initial condition of the Markov 

chain. The aim of the synchronous iteration is approaching the limiting distribution. After 

several iterations the change between iterations becomes tiny. In this research, 0.000001 
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was used as a terminating condition. If all states change became less than 0.000001, the 

algorithm stopped, and w(k+1) was taken as calculated priority vector. Moreover, in 

experimental setups parameter ‍ was generated as in equation 3.12. 

 ‍ = random(0, ρ)  (3.8) 

 

3.5. Heat-Bath 

 

Menci et al. (2018) created the Heat-Bath method in order to derive priorities for the 

sparse setting. Their motivation behind the methodology gets inspired by Heat-Bath 

Markov chain.  

They proposed forming a matrix P that is adapted from A as below. It can be shown that 

P has the same structure as the graph G. 

 ὖ  = 

ừ
Ừ

ứ                                                  ὭὪ ÉȟÊ ɴ %

   ρ  ‎В  
  
   ɴ             ὭὪ Ὥ Ὦ

                          π                             έὸὬὩὶύὭίὩ

 (3.9) 

where ‎ is a random parameter which must satisfy the following condition. 

 ‎
▀░

 (3.10) 

Note that similar to the Metropolis-Hasting method the matrix P is a form of transition 

probability matrix by construction. It is known that G is undirected, connected and 

contains finite states by assumption. Therefore, the Markov chain is irreducible. 

Moreover, since the diagonal entries are positive, it is aperiodic.  

 В  ὖ  ᶰ ‎В  
  
  

▀░
В  ρ   ρ ᶰ  ᶰ  (3.11) 

Consequently, since the row sum is 1 all diagonal entry must satisfy the below condition. 

 ὖ ρ  
▀░

▀░
 π (3.12) 

Therefore, there exists a limiting distribution w. When there is no perturbation, this 

limiting distribution becomes the true priority vector (Menci et al., 2018). On the other 

hand, in the existence of perturbations they suggested approaching the true priority vector 
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by the limiting distribution w. The algorithm they proposed for attaining the limiting 

distribution of P is as below. 

Algorithm  3: Heat-Bath  

1: Input: the matrix ὃ   , random parameter ‎ 

2: Construct: the matrix ὖ    

3: Initialization  

4:      for i =1, é, n do 

5:            ◌░(0) = random (0, 1) 

6:      Standardize w(0) 

7: Synchronous Iteration           

8:            ◌░(k +1) = В   ὖ ɴ ᷾  ◌▒(k)   

9: Output:  w 

 

Note that, they recommended several methodologies for initialization procedure. In this 

research, standardized random positive rational numbers were used. The goal of 

synchronous iteration is to reach the limiting distribution. As the iterations progress, the 

changes gradually diminish. In the experimental designs, a value of 0.000001 was 

employed as a termination criterion. When the change in all states became less than 

0.000001, the algorithm terminated, and w(k+1) became the calculated priority vector. 

Furthermore, in experimental designs parameter ‎ was generated as below. 

 ‎  randomuniform(0, 
▀░

)  (3.13) 

 

3.6. Sparse Logarithmic Least Squares 

 

The latest approach within the sparse setting is the sparse logarithmic least squares 

(SLLS), which was introduced by Menci et al. (2018). This algorithm is inspired by a 

widespread method logarithmic least square (LLS) developed by Crawford (1987). As an 

adaptation, the SLLS algorithm aims to approach the true priority vector v. In other words, 

the objective is detecting a vector (w) which ensures the log quadratic minimization of 
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the error between pairwise comparison matrix A and theoretical pairwise comparison 

matrix W. The following equation (3.14) demonstrates the derivation of w. 

 ◌  ὥὶὫ άὭὲ ᴙɴ В В ÌÎὃ   ÌÎ 
●░

●▒
 ᶰ   (3.14) 

The algorithm they used to approach such w is shown below. For further information, 

e.g., the theorem and the derivation behind the algorithm, see Menci et al. (2018). 

Algorithm  4: Sparse Logarithmic Least Squares  

1: Input: ‍ 

2: Initialization  

3:      for i =1, é, n do 

4:           ►░(0) = random positive real number 

5:           ◌░ (0) = expo (►░ (0)) 

6:           ▼░ = В ÌÎὃ▪
ἲɴἚἱ  

7: Synchronous Iteration           

8:            ►░(k+1) = ►░(k) + ‍В ►▒ἳ   ►░ἳ  ‍▼░  ἲɴἚἱ  

9:            ◌░(k+1) = expo(►░(k+1)) 

10: Output:  w 

 

Note that, in the experimental designs in this research a value of 0.000001 and 30000 

(70000 was used only in one experiment since in that experiment convergence was slow) 

were used as a termination criterion. When the change in all states became less than 

0.000001 or the changes could not be less than 0.000001 in 30000 iterations, the algorithm 

stopped and returned w(k+1) as the calculated priority vector. Furthermore, Menci et al. 

(2018) suggested to employ ‍ such that, 

 ‍  
▀░

  (3.15) 

Therefore, in this research ‍ was chosen as below. 

 ‍  randomuniform (0, 
▀░

)  (3.16) 

Note that the logarithmic least squares method is widely used in AHP literature both in 

standard setting and incomplete setting. For example, in the incomplete case Menci et al. 
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(2018) and Bozoki et al. (2010) utilized logarithmic least square as objective. Therefore, 

both methodologies can reach the same calculated priority vector. The difference between 

them is the algorithm they used. For instance, Menci et al. was inspired by the Fax and 

Murrays formation control algorithm (Fax and Murray, 2004; Olfati-Saber et al., 2007) 
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4. PARAMETRIC HEURISTIC ALGORITHMS, THE NUMERICAL AND 

EMPIRICAL STUDY EXPERIMENTAL DESIGN  

 

 

4.1. Parametric Heuristic Algorithm s 

 

A natural approach to complete the missing element in the pairwise comparisons matrix 

is to take the geometric average of all the indirectly calculated comparisons of missing 

entry (Harker, 1987b). However, a limitation of this approach is that as the number of 

alternatives increases, the number of indirect comparisons grows significantly, which 

results in a time complex. The parametric heuristics proposed in this article derive its 

motivation from this idea. It decreases the time complexity by using some of the indirect 

comparisons. Moreover, some of the proposed heuristics weigh these indirect 

comparisons based on their lengths. By length, it is meant to how many arcs the path has. 

In order to achieve indirect comparisons, it utilizes graph theory. Paths which reach 

missing values by transitivity are examined. After all the paths leading to the missing 

value are found, the missing value is calculated by taking the geometric average of the 

value of these paths. The value of the paths is calculated as the product of its arcs. One 

advantage of using the geometric average is that it preserves the reciprocal property of 

the matrix, which is an assumption of AHP.  

Let ὃ  and ὃ  be the missing value and the paths from i to j having values as ᾀ, ᾀ, é, 

ᾀ. It is known that the assigned values from decision maker preserve reciprocal property 

and path length is calculated as product of its arcs, thus any path from i to j has the inverse 

value of the path from j to i if they use the same arc set but in reverse order. Moreover, if 

there is a path having specific arc set, the existence of the reverse order is guaranteed 
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since the graph is undirected. Then the paths from j to i having values as 1/ᾀ, 1/ᾀ, é, 

1/ᾀ. Therefore, the geometric average of the missing values is reciprocal. 

Example 2: Finding missing value by paths and geometric average methodology. 

Let the pairwise comparison matrix be as follows, where ñ-ñ represents the missing value. 

A = 

ụ
Ụ
Ụ
Ụ
ợ
ρ υ πȢυ ς

ρ πȢςυπȢυ
πȢς ρ πȢςυ
ς τ τ ρ υ
πȢυ ς πȢς ρỨ

ủ
ủ
ủ
Ủ

 

Paths having length less than or equal to three that start from node 1 and end with node 

2, length and value are as below. 

P1: ὃ  ï ὃ  ɀ ὃ , length: 3, value: 5  0.25  4 = 5 

P2: ὃ  ï ὃ , length: 2, value: 0.5  4 = 2 

P3: ὃ  ï ὃ ï ὃ , length: 3, value: 0.5  5  2 = 5 

P4: ὃ  ï ὃ , length: 2, value: 2  2 = 4 

P5: ὃ  ï ὃ ï ὃ , length: 3, value: 2  0.2  4 = 1.6 

Therefore, ὃ  is: Ѝυ ς υ τ ρȢφ σȢρχ 

Paths having length less than or equal to three that start from node 2 and end with node 

1, their length and value are as below. 

P6: ὃ  ï ὃ  ï ὃ , length: 3, value: 0.25  4  0.2 = 0.2 

P7: ὃ  ï ὃ , length: 2, value: 0.25  2 = 0.5 

P8: ὃ  ï ὃ ï ὃ , length: 3, value: 0.5  0.2  2 = 0.2 

P9: ὃ  ï ὃ , length: 2, value: 0.5  0.5 = 0.25 

P10: ὃ  ï ὃ ï ὃ , length: 3, value: 0.25  5  0.5 = 0.625 

Accordingly, ὃ  is: ЍπȢς πȢυ πȢς πȢςυπȢφςυ πȢσρυ 

In the example above, all paths having length less than or equal to three were found for 

two missing entries, since the matrix size is five and missing entries are six there is small 

number of paths. However, as the number of alternatives increases, the number of paths 
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will increase. For example, in a 25  25 matrix with having two missing entries, the total 

number of paths that reach to these two missing entries having two and three lengths are 

46 (23  2) and 1012 (23  22 ς)  respectively. Moreover, in a 25  25 matrix there 

are paths with having from 2 to 24 arcs for these missing entries. Note that the above 

example is only restricted to two missing entries, the total number of paths that need to 

be derived will also increase as the number of missing entries rises. In order to avoid this 

complexity, instead of looking at all paths, this study suggests examining paths that 

contain a limited number ñkò of arcs. Choosing ñkò means, not only evaluating path 

lengths of ñkò, but also evaluating paths with lengths of less than ñkò. For example, k = 

4 suggests taking into account the paths of having lengths of 2, 3, 4 (0 is trivial and 1 

means there is a direct path from i to j, in this case ὃ  is not a missing value). The 

motivations behind considering small values are time complexity and the belief that the 

information is stored on paths that have few arcs sufficient to approach the true value. As 

the length of a path increases, the opportunity of forming path increases since more 

combinations can be achieved by adding indirect relations. Therefore, choosing small ñkò 

decreases the complexity of the algorithm. Furthermore, the chance of revealing less 

perturbation may increase, since perturbations accumulate while multiplying the arcs. 

However, there is a tradeoff which is the chance of information being lost. It could be 

that the most accurate information is stored on the longest path. In the ideal case when 

there is no perturbation, paths which have length of two are enough to derive the missing 

values correctly, considering the graph is connected.  

Moreover, in this study the importance levels of the paths are investigated. As the length 

of the arcs increases, the number of interactions increases. This may cause the possibility 

of an increase in deformation. Therefore, while taking the geometric average, paths 

having different lengths were weighted.  

The consistency of the algorithms in the AHP literature is a popular debate subject. There 

are several methodologies to improve the consistency of the algorithms in literature such 

as Cao et al. (2008) and Gomez-Ruiz et al. (2010). The methodology was proposed by 

Gomez-Ruiz et al. (2010) modifies the highest perturbation between pairwise comparison 

matrix and theoretical pairwise comparison matrix. The relation between perturbation and 

the matrices is as below. 

 A = ὡ   Ὁ  (4.1) 
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where E represents the perturbation matrix. The idea behind the algorithm is changing the 

highest perturbation, so that it develops the consistency of the algorithm in a better way. 

They proposed to change the entry which is farthest from one. Their algorithm is 

demonstrated as follows (Algorithm 5). 

Algorithm  5: Improving Consistency Ratio  

1: Input: ὃ   ȟὡ    

2: Calculate: Ὁ    

3:  Find: Ὁ  that is farthest from one 

4:  Replace: ὃ  and ὃ with 0 and the corresponding diagonal entries of i, j with 2 

5:  Calculate: new w according to updated ὃ    

6:  Replace: ὃ with 
◌░

◌▒
, ὃ  with 

◌▒

◌░
 and the diagonal entries of i, j with 1 

7:   Output: A 

 

Based on these considerations, the following heuristics namely Transitivity of Length of 

Two (TLT) (Algorithm 6) and Transitivity of Length of not Exceeding Three (TLET) 

(Algorithm 7) were proposed in this study. The length parameter ñkò was selected as two 

in the TLT, and three in the TLET. As highlighted before, length parameter three means 

investigating paths both length of two and three. The importance parameter is only 

considered in the TLET because TLT utilizes only paths of length two. In this study, the 

importance coefficient of TLET was parameterized as one and two. If the parameter value 

is two, paths of length two are counted twice and paths of length three are counted once. 

However, if the parameter value is one, both are considered only once when calculating 

the geometric average. 

Example 3: Consider the values of the above paths (Example 2), the geometric average 

for ὃ  must be calculated as follows if the importance level parameter is taken as two. 

 Ѝυ ς υ τ ρȢφ σȢπφψ  (4.2) 

The main reason for choosing the importance level close is the fact that paths of length 

two and paths of length three are exposed to similar perturbations, there is an additional 

arc which leads to extra multiplication in paths of length three.  
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In addition, the effect of improving the consistency method (Gomez-Ruiz et al., 2010) on 

the completed matrix created by the algorithms was adapted. For each algorithm three 

different scenarios, which are based on the number of entries that change (NEC), were 

evaluated. In the first scenario, the method was not utilized, no entry was changed. In the 

second scenario, the method iterated twice.  In the third scenario, the method was 

executed four times. Thus, 9 (3 due to importance levels (1, 2) or path lengths parameters 

(2, 3)  3 due to NEC parameters (0, 2, 4)) algorithms having different parameters were 

revealed. Finally, the calculated priority vector of the matrices generated by these 

algorithms are founded by using principal right eigenvector. 

Algorithm 6: Transitivity of Length of Two (TLT)   

1: Input: ὃ   ȟ.%# 

2: Calculate: missing number of A  

3: Create: 0 matrix ὓ     

3: for i = 1, é, n do  

4:    for j = 1, é, n do 

5:       If (ὃ   ḳ 0 and i < j)  

6:          Find and Store: all paths (length of 2) from i to j by using A 

7:          If (Paths were found)  

8:             Calculate: Geometric average of these paths 

9:                Assign: Geometric average to ὓ  and reciprocal of it to ὓ   

10:              Reduce: missing number by 2 

11: Assign: non-zero values of M to A 

12: while (there is missing number) 

13:    for i =1, é, n do  

14:       for j =1, é, n do 

15:          If (ὃ  ḳ 0 and i < j)  

16:             Find and Store: all paths (length of 2) from i to j by using A 

17:             If (Paths were found)  

18:                Calculate: Geometric average of these paths 

19:                Assign: Geometric average as ὃ  and reciprocal of it as ὃ   

20:                Reduce: missing number by 2 

21: Iterate:  Improving Consistency Ratio (A) NEC times 

22: Derive: principal right eigenvector of A  

23: Output: w 
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In the algorithm, there are two loops. The purpose of the first loop is to derive the paths 

that are associated with the missing entry by using only the matrix assigned by the 

decision maker. However, in the second loop paths are generated by utilizing the matrix 

assigned by the decision maker, the values extracted by the first loop and the values that 

are calculated during the second loop. The reason behind the existence of the second loop 

is in some cases the first loop is not enough to fill in all the missing values only adhering 

to the decision maker, even though the matrix derived by the decision maker is connected 

(see ex. 4). The reason is the constraint of the path lengths (in this algorithm it is two). 

While calculating the missing values, the primacy of the algorithm is to make a derivation 

only over the values assigned by the decision maker since they are assumed as expert 

knowledge. Therefore, solely the matrix assigned by the decision maker is used in the 

first loop. If there are still any missing entries after the first loop, the algorithm enters the 

second loop and remains in the second loop until there is no missing entry. After the 

missing values are calculated, the Improving Consistency Ratio algorithm is iterated NEC 

times. Finally, the calculated priority vector of the completed matrix is obtained by 

utilizing the principal right eigenvector. 

Example 4: Suppose that the decision maker filled in a matrix as follows. 

A = 

ụ
Ụ
Ụ
Ụ
ợ
ρ π ρ π π
π ρ ρ ρ π
ρ ρ ρ ρ π
π ρ ρ ρ ρ
π π π ρ ρỨ

ủ
ủ
ủ
Ủ

 

The matrix that the algorithm can complete in the first loop, although the matrix is 

connected, is as follows. 

A* = 

ụ
Ụ
Ụ
Ụ
ợ
ρ ρ ρ ρ π
ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ
π ρ ρ ρ ρỨ

ủ
ủ
ủ
Ủ

 

There are values that cannot be filled in the matrix. Therefore, there is a need for the 

second loop.  
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Algorithm 7: Transitivity of Length of not Exceeding Three (TLET)   

1: Input:  ὃ   ȟ.%#, importance 

2: Calculate: missing number of A  

3: Create: 0 matrix ὓ     

3: for i = 1, é, n do  

4:    for j = 1, é, n do 

5:       If (ὃ  ḳ 0 and i < j)  

6:          Find and Store: all paths (length of 2, 3) from i to j with their path length by using A 

7:          If (Paths were found)  

8:             Calculate: Geometric average of these paths based on path length and importance 

9:             Assign: Geometric average to ὓ  and reciprocal of it to ὓ   

10:           Reduce: missing number by 2 

11: Assign: non-zero values of M to A 

12: while (there is missing number) 

13:    for i =1, é, n do  

14:       for j =1, é, n do 

15:          If (ὃ ḳ 0 and i < j)  

16:             Find and Store: all paths (length of 2, 3) from i to j with their path lengths by using A 

17:             If (Paths were found)  

18:                Calculate: Geometric average of these paths based on path length and importance 

19:                Assign: Geometric average as ὃ  and reciprocal of it as ὃ   

20:                Reduce: missing number by 2 

21: Iterate:  Improving Consistency Ratio (A) NEC times 

22: Derive: principal right eigenvector of A  

23: Output: w  

 

As in the TLT algorithm, there are two loops in this algorithm and the purposes of the 

loops are the same, they differ only in content. Identifying paths with a length of three 

and consideration of the importance level in the geometric average are additional 

requirements in TLET. After the PCM is completed, the Improving Consistency Ratio 

algorithm is executed based on NEC parameter. Lastly, priority values are calculated by 

using the principal right eigenvector method. 

In this algorithm, depending on the size of the matrix, the number of missing entries and 

the software used, there is a chance to obtain an undefined value while accumulating the 
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values of paths. If the matrix size is high and the missing numbers in the PCM are low, 

the algorithm finds an excessive number of paths while deriving the missing entry. 

Depending on the values of these paths, a high (low) number that is undefined in the 

software can be obtained from the multiplication of the values while calculating 

geometric average. A viable action in this case is to set this undefined high (low) number 

to the highest (lowest) valid number in the software. While performing the numerical 

experimental analysis in this research, this situation solely occurred in some iterations 

when the matrix size was 25 and the missingness ratio was 20 percent. This number was 

set as the highest or lowest value in the software depending on the value it has. According 

to the results of the experiment, no deflecting results were observed (see the result and 

discussion chapter, the algorithm was competitive in the case of matrix size 25 or missing 

ratio 0.2). 

 

4.2. The Numerical Experimental Design 

 

An approach was developed in order to mimic the process of a decision maker assigning 

pairwise comparisons. This methodology was adapted from the experimental setup 

developed by Ahmed and Kilic (2022) to the incomplete AHP context. The adapted 

methodology assumes that the decision maker uses a specific weight vector and expresses 

preferences through pairwise comparisons. The pairwise comparison matrix should 

constitute inconsistency and missing entries due to the decision maker inconsistency, 

limited knowledge of decision maker about some alternatives, uncertainty in the 

comparisons, and time constraints.  To simulate this process, a numerical dataset was 

created. The dataset included PCMs of three matrix sizes (n = 5, 15, 25) three levels of 

inconsistencies (low, medium, high) and four missing ratios (0.2, 0.3, 0.4, 0.5). In sum, 

36 (3 matrix sizes  3 inconsistency levels  4 missing ratios) numerical experimental 

conditions were obtained. The subsequent algorithm (Algorithm 8) was initially 

implemented to generate random inconsistent PCMs. 
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Algorithm  8: Creating random PCM  

1: Create: random normalized vector v,  

                  random uniform perturbation coefficient c, and 0 matrix ὃ     

2: for i =1, é, n do  

3:      for j =1, é, n do 

4:           if (i ḳ j) 

5:                ὃ  = 1 

6:           elif (i < j) 

7:                a = ○░ / ○▒ ï c  ○░ / ○▒ 

8:                b = ○░ / ○▒ + c  ○░ / ○▒ 

9:                ὃ   = uniform (a, b) 

10:              ὃ   = 1 / ὃ  

 

Here, vector v represents the true priority vector that the decision maker should adhere to 

achieve the true theoretical pairwise comparison matrix. The inconsistency arises from 

the utilization of parameter c and the uniform operation. To maintain the integrity of the 

AHP structure, the diagonal entries are kept as 1, and the reciprocal property is preserved. 

The existence of randomness leads the matrices to exhibit diverse degrees of 

inconsistencies. In order to quantify the inconsistency of these matrices, the Consistency 

Ratio (CR) was utilized. Matrices exhibiting a CR value ranging from 0 to less than 0.03 

were considered as a low level of inconsistency. Matrices with a CR value between 0.03 

and less than 0.06 were classified as a medium (med) level of inconsistency. Matrices 

with a CR value between 0.06 and less than 0.1 were taken into account as a high level 

of inconsistency. Matrices that surpassed 0.1 CR value were labeled inadequately 

consistent and thus were not used. 

In order to introduce missing entries, some random entries in the generated matrix were 

set to zero based on the missing ratios (0.2, 0.3, 0.4 and 0.5), no changes were made to 

the diagonal entries. The number of missing entries were determined by the missing ratio 

and the multiplication of the number of entries in the upper-right triangle of the matrix, 

excluding the diagonal entries. In cases where the multiplication was not an integer, the 

value was rounded up. For instance, let matrix size be 10 and the missing ratio be 0.3. 
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The upper-right triangle without the diagonal entries, there are a total of 45 entries 

(Equation 4.3). 

 
  

  τυ  (4.3) 

Therefore, the number of missing entries was set as 14 (Equation 4.4). 

 ổτυ  πȢσỖ  ρτ  (4.4) 

Subsequently, any entries that had set to zero were determined, and its reciprocal entry 

were also set to zero. Connectedness of the incomplete pairwise comparison matrix was 

an assumption in some methodologies that were utilized in this study. Therefore, the 

connectedness of the newly generated incomplete matrix was also examined. If it was 

connected, the methodologies computed the priority vector and were assessed according 

to the metrics. In case the matrix was not connected, a new random incomplete pairwise 

comparison matrix was created until it was connected. 

For each numerical experimental condition, a total of 100 connected incomplete pairwise 

comparison matrices were produced and analyzed. As a result, 3600 

(3φ ÅØÐÅÒÉÍÅÎÔÁÌ ÃÏÎÄÉÔÉÏÎÓ 100 matrices) connected incomplete pairwise 

comparison matrices were obtained. 

 

4.3. The Empirical Experimental Design 

 

An empirical experiment including the participation of students from Sabancē University, 

Istanbul was conducted. In this experiment, 30 students were asked to compare the 

geographic size of 15 countries and to fill two matrices. In the first matrix, the students 

were expected to leave cells empty for which they were uncertain or preferred not to fill 

in. In the second matrix, they were asked to fill in the matrix completely referring to the 

cells they had filled in the first matrix. Participants were required to adhere the Saaty scale 

(Table 1) while they were assigning the cells.  The priority vectors of the first matrices 

were determined utilizing the incomplete AHP methodologies. However, the priority 

vectors of the second matrices were identified using the principal right eigenvector 

method (Saaty, 1977). The comparison of the incomplete AHP methodologies among 

themselves was made using the calculated priority vectors of the first matrices and true 

priority vectors. The accuracy of filling the uncertain comparisons was examined by 

comparing the calculated priority vectors of both the Saaty methodology and the 
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incomplete AHP methodologies with the true priority vectors. The discussion was 

whether it is more suitable to leave the uncertain comparisons for the incomplete AHP 

methods to fill or to let the decision maker estimate them.  

It is necessary that the decision maker have relevant knowledge about the subject in AHP. 

The reasons for choosing the geographic size of countries as the subject were that they 

are a kind of cultural knowledge therefore likely to be known, and they have a natural 

scale. The fact that they have quantitative values enabled the identification of the true 

priority vector, as shown below (Table 3). Thus, the priority vectors computed by the 

methodologies could be evaluated and compared.  

Table 3 Normalized true priority vector of empirical experiment 

Countries Corresponding Priority Vector Value 

Chile 0.1 

Colombia 0.151 

Egypt 0.133 

France 0.073 

Germany 0.047 

Greece 0.017 

Japan 0.05 

Morocco 0.059 

Portugal 0.012 

Senegal 0.026 

Spain 0.067 

Sweden 0.06 

Thailand 0.068 

Turkey 0.104 

United Kingdom 0.032 

 

The experiment was approved by the Sabancē University ethics committee. Moreover, 

before it was conducted by participants, the written informed consent form had been taken 

from the participants. The estimated duration of the experiment was approximately 10 

minutes. However, additional time was granted to the participants who asked. 
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5. RESULTS AND DISCUSSIONS 

 

 

5.1. Numerical Experimental Design 

 

The existing six algorithms in literature, namely Harker, Dematel, Sparse Eigenvector, 

Metropolis-Hastings, Heat-Bath, and SLLS, along with the parametric heuristics TLT and 

TLET algorithms, were compared in terms of six performance metrics, including CI, 

Kendall's tau, MCIV, Euclidean distance, GCIV-VW and central processing unit time.  

The TLT algorithm was examined in three different ways according to the NEC parameter 

(NEC = 0, NEC = 2, NEC = 4). The TLET algorithm was analyzed in six different ways 

regarding the NEC and importance parameters (three different NEC values = 0, 2, 4, and 

two different importance values = 1, 2). 

Before comparing results of the methodologies, the relationships between performance 

metrics were examined in order to reduce the complexity since there are six different 

metrics and to see the behavior between the metrics. For this purpose, the correlation 

coefficient was utilized. Data was collected for each experimental condition from each 

algorithm. In order to avoid oversampling of the proposed heuristics, only one TLT 

algorithm and one TLET algorithm were selected from the three TLT algorithms and six 

TLET algorithms, namely TLT - NEC = 2 and TLET - NEC = 2, importance = 2. This 

selection was randomly made. 

In order to observe the relationships among the metrics, data generated from numerical 

experimental setup were gathered. Five metrics out of six metrics (CI, Kendall's tau, 

MCIV, Euclidean distance, and GCIV-VW) measure the accuracy and deviation of the 

algorithms' performance, while one metric (central processing unit time) examines the 

algorithm's process time. Therefore, the relationships among only the five metrics, which 
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are related with accuracy and deviation, were investigated by using correlation 

coefficients. 

Since four algorithms namely Sparse Eigenvector, Metropolis-Hastings, Heat-Bath, and 

SLLS had a sparse setting, the CI values could not be derived. These values had been 

assigned zero during the numerical experimental setup. Consequently, when examining 

the relationships between the CI and the other four metrics, the data from these four 

algorithms could not be used. The analysis for CI was conducted only based on data 

collected from the Harker, the Dematel, the TLT - NEC = 2, and the TLET - NEC = 2, 

importance = 2 algorithms.  

The correlation coefficient values were interpreted as follows: (0, 0.3) or (-0.3, 0) indicate 

a weak, (0.3, 0.7) or (-0.3, -0.7) define a moderate, and (0.7, 1) or (-0.7, -1) specify a 

strong linear relationship (Ratner, 2009). The relationships between metrics are shown in 

table 4, and the strong linear relationships are demonstrated in figures 1 and 2. Strong 

linear relationships were highlighted in bold. 

Table 4 Correlation coefficients between metrics 

Metrics Correlation Coefficient 

Kendall's tau ï GCIV-VW -0.511 

Kendall's tau ï MCIV -0.074 

Kendall's tau ï Euclidean distance -0.576 

Kendall's tau ï CI -0.012 

GCIV-VW ï MCIV  0.001 

GCIV-VW ï Euclidean distance 0.857 

GCIV-VW ï CI -0.078 

Euclidean distance ï MCIV -0.036 

Euclidean distance ï CI -0.126 

MCIV ï CI 0.87 










































































