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ABSTRACT

INCOMPLETEANALYTIC HIERARCHY PROCESS (AHP) SOLUTION
METHODOLOGIES

DOJUKAN ZORLU
Industrial Engineering, MSc. Thesis, July 2023

Thesis Supervisor: Assoc. Prof. Dr

Keywords: Analytic Hierarchy Process, Incomplete Information, Decision Making,

PairwiseComparisons, Completion Methodologies

Analytic hierarchyprocess (AHP) is a weknown multi criteria decision making method.

It relies on matrices constructed through pairwise comparisons of criteria and alternatives
by decision makers. In thgerature, AHP has been proven effective in assessing weights
of criteria and/or relative scores of alternatividswever, in order to utilize the AHP
method, it is necessary for the decision maker to determine complete matrices, meaning
that the decisionomaker must assign all pairwise comparisons into the matrices. This
requirement may not always be feasible due to reasons such dscib®n makeés
inadequate knowledge in certain pairwise comparisons, uncertainty in the pairwise
comparisons, and timeonstraints.In the literature, several algorithms have been
proposed to address this issue, but there is no consensus on the best algorithm. In this
study, we provided a comparative analysis of the existing algorithms. Furthermore, we
also introduced newgrametric heuristic algorithms for the incomplete AHP framework.
The proposed algorithms were also compared with the existing algorithms in different
experimental conditions. The performances of these methods were assessed utilizing
metrics from the literare as well as a metric developed for the incomplete AHP
framework in this research. The comparisons were conducted in two types of
experiments, i.e., numerical and empirical. According to the results of these experiments,
the developed algorithms werenapetitive, and even demonstrated better performance
under some experimental conditions.
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TAMAMLANMAWALKTKK HKYERARKK PROSESK (At
METODOL OJ KL ERK
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Endg¢stri M¢ hendsTeiiiTdgmmuz2023 ksek Li san
Tez DanékmaPéeonf As doc Ke mal Kel é-
Anahtar Kelimeler: Analitik Hiyerar«ki S,
Karkél akt ér mal ar , Tamaml ama Y°nt

Analitik hi y e rpeosesi (AHP) cok kriterli karar verme yontemi olarak bilinen bir
yontemdir. AHP, kararv er i ci | er taraféndan kriterler
r

karkél akt érmal arla olukturulan matrislere
ajérl ekl aréné velveya alternatiflerin g°©°r
kaneét | aakatAKR yéntemindeén yararlanmak icin karar vericinin tam matrisler

ol uktur masé gereklidir, yani karar wvericin
gerekir Bu gereklilik, uzmanén bazé ikil:@
ki karkeéel akt ér mal ardaki belirsizlik ve
zaman mumkin olmayabilir. Literatirde, bu sorunu ele almak icin birka¢ algoritma

°nerilmiktir, fakat en iyl algoritma konu:
al goritmal ar én karkél akt éer mal é bir anal i
-er-evesi i -1 n yeni parametri k sezgisel a
farkl & deneysel kokull arda mevcut m@nl gori't
performansl ar é, l i teratg¢grdeki metri klerin
-er-evesinde geliktirilen bir metrik kull
sayeéesal ve deneysel ol mak ¢zer e ildin t ¢r
sonu-laréna g°°re, tanétéelan algoritmalar
deneysel kokull ar alteéenda daha iyl perforr
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1. INTRODUCTION

Decision making deals with the process of determining and selecting alternatives
according tahe preferences of decision makelt should consider the pros and cons of
each choice. It is a crucial phenomenon since people are atvekysg decisions their

social Ives business,and economics. Howeverdetermining the priority of each
alternativecan be challengingespecially when the number of alternatives is enormous,
and subijectivity is an issue. This challenge arises frambiguity of the altaratives

or complexity of the decisiemaking process itself. In order to address thisllenge
decision makers might rely on knowledge of the relative importance of alternatives rather
than on extracting their exact value. Some researclnenge suggestd that eliciing
judgments on two alternatives separatedyeasierthan elicitng judgments on all
alternatives simultaneously. Choo et al. (2016) propabat the use of pairwise
comparison is the preferred methodology to extract human preferendes, &ggproach
evaluates options in a binary mannemaking it less cognitively demanding than
evaluating all options at onc&his consideration might be all the more important
considering the work oMiller (1956), who suggested that the human brain staes
limited amount of information which includes between five and nine items in working

memory.

Anothercommon issue is transitiveness. In the ideal scenario whteh comes from
decision makers are transitive, meaning that if alternative A hagherutility thanthat

of B and B has higher utility thanthat of C, then A has higher utility thanthat of C.

Note that consistency and transitivity are interconnected concepts. The presence of
consistency leads to transitivity. Unfortunately, veakld Stuations are complicated by
perturbations, noise, or subjective biases, which make it challenging to achieve

consistency and transitivity (Davis 1958, Saaty 1977, Bessi et al. 2015).
1



One of the effective methodologies that deals i decisionmaking gnenomenon

even if the above challenges are preseanadytic hierarchyproces§AHP), which was
introduced by Saaty (1972, 1977). AHP is a decismaking methodology designed to
support decision makers when dealing with complex problems that includeglenu
subjective and conflicting criteria (Ishizaka and Labib, 2011). According to Emrouznejad
and Marra (2017), AHP is considered toddeading decisionmaking approach since it
includes subjective factors to be taken into account. AHP has been fulbcegplied

in a wide range of fieldssuch as warehouse network evaluation (Korpela and
Lehmusvaara 1999), supplier selection (Chamodrakas et al., 2010), project selection
(Amiri, 2010),the health sector (Saaty and Vargas, 1998), marketing (Wind aaigt,Sa
1980), university evaluation (Lee, 2010), human resource manager selection
(Kusumawardani and Agintiara, 2015), astervarious domains.

AHP is a very flexible approach and can handle many situations, somaiabf have
alreadybeenmentioned. Howesr, it has several limitations, somewvaiiich are ranking
reversal, complexitysufficient expertiseknowledge andincompletedata. The ranking
reversal issue refers to a situationwhich the relative ranking of alternatives changes
when new alternatives are added or deleted. In other words, the ranking of alternatives is
not consistent. The complexity issue may arise from the nature of the deneskimg
problem itself. When the problenmcludes numerous criteria and alternatives, the
pairwise comparisons might become more complex anddonsuming. The correctness

and reliability of AHPis highly related to the decision maker who is the expert of the
subject under consideratiod lack of expertisein a decision makemay leadto
inconsistent or unreliable results. Missing data may cause a major issue in AHP since
consistency and accuracy highly depend on complete and precise data on the pairwise
comparisonsSeveral solutions to thesballengesave been published AHP literature.
However they areout of thescopeof this researcbxceptfor theissue ofincomplete data

in AHP.

Handling incomplete data in pairwise comparison matrices has been a frequently
discussed topic in the AHRerature.Several studieshave suggestd a methodology
which copes with the incompleteness isig.(Harker, 1987a; Harker, 1987b; Carmone

et al., 1997; Bozoki et al., 2010; GorAeaiz et al., 2010; Oliva et al., 2017; Zhou et al.,
2018; Menci et al.2018; Oliva et al., 2018). These studies can be classified into two

subsets: reconstructimgethodsand sparsenethods Reconstructing methods aim to fill

2



in the missing entries in the pairwise comparison matrix, and then identify the rankings
and priorites. In contrast, sparse methods utilize the pairwise comparison matrix as it is,
without modification, to determine the rankings and priorities. Although there are many
studies on reconstructing methods in the AHP literature (Harker, 1987a; Carmone et al.
1997; BozOki et al., 2010; Gom&uiiz et al., 2010; Zhou et al., 2018), sparse methods
have also been the subject of recent research (Oliva et al., 2017; Menci et al., 2018; Oliva
et al., 2018).

There are several reasons why pairwise comparison mat&P can be incomplete,

such as time complexity, insufficient knowledge or vagueness about expertise in certain
comparisons, and loss of collected data. In AHP, it is sufficient to condutj/@(rwhere

find represents the alternative number, pairwisegarisons per critesh since AHP
assumes that the data collected frdecision makerss reciprocal This means that if A

is rated as three times better than B, then B must be rated -#sirdnas good as A.
Moreover, the diagonal entries of the pairwgsenparison matrix must be one since each
element is equivalent to itself. Thus, itsigfficientto complete one triangular section of

the matrix (ex. upper right triangular). When the alternatives or criteria nuarébuge

it may be inefficient or tira consuming to gather aif the necessary entries. When the
decision maker has not established a strong perspective on certain assessments, it may be
preferable to let them skip the question rather than compel them to make an unreliable
estimate. Carmonet al. (1997) conducted an experimental study in which entries are
removed from matrices having various siz#sl0, 15, 20. The results of the study
demonstrated that it is possible to eliminate up to 50% of the entries in the pairwise

comparison matrix whout causing a significant decrease in the outcome.

When determining priorities, the goal is to establish a consistent matrix whose entries
represent the ratios of one priority to another. The entries in this matrix should match the
pairwise comparison matrix collected from the decision maker. Moreogéqutd have
minimal deviation when slight inconsistencies are presaveral approaches to derive

these prioritiescan be foundn the AHP literature. According to Saai{l977), the
preferred priorities can be determined by the principal eigenvecteollowing Saaty's
innovativework, several methods for deriving priority vectors hbeen proposeddne

of thesewascreated by Crawford and Williams (1985). Eeeauthoraddressed the issue

of rank reversal in the eigenvector method and adapted an alternative technique called the

logarithmic least squares method.



The incompleteAHP literature hasalso benefited fromwork in otherdisciplinesto
address the issues of aalEting missing entry or determining prioritiddarker (1987b)
suggested an approach for filling the missing entries based on the concept of connecting
path.This approach involves calculating all indirect comparisons based on the transitivity
rule and t&ing the geometric mean of these comparisons to assess the neissing

Zhou et al. (2018) utilized decisianaking and trial evaluation laboratory (DEMATEL)
methodology and adaptedto reconstructin incomplete pairwise comparison matrix.
Olivia and colleagues(2017) adopted the eigenvector introduced by Saaty to sparse
context to derive prioritiedn 2018, Menci and colleagues introduced three alternative
methodologies for finding priorities in sparse settings. These techniques are based on
well-known methods in the several literaturiesluding MetropolisHastings Markov
chains (Metropolis et al., 1953), Heaath Markov chains (Achlioptas et al., 2005), and
formation control (Fax and Murray, 2004).

Evaluating the accuracy of priorities is anothempariant issue. There are various
evaluation metrics available in the literature, includoogsistencyindex, consistency

ratio, andcompatibility index. However, when using these indices, whieledesigned

for complete pairwise comparison ma&$ on hcomplete pairwise comparison matrices,

it is essential to consider the assumptions and meanings behind them. For instance, in a
sparse setting where some entries are zer@pthgatibilityindex becomes meaningless
becausethe elementwise product of thmmissing entries yields 0 which reductse
compatibility index. The decline ithe mmpatibility index is not due to the integrity of

the assigned values, buattherit arises from the emptiness of the matrix. Furthermore,
using theconsistencyindex of & incomplete matrix is inappropriate since it assumes a
complete matrix. Therefore, when the pairwise comparison matrix is incomplete, it may
be necessary to develop new metrics or modify existing ones to evaluate priorities

accurately.

This research foceson incomplete pairwise comparison matrix methodologies in the

context ofAHP. Some of the key accomplishments of this study are as follows:

1. Novel parametric heuristic algorithms were created to haswlancomplete

pairwise comparison matrix in the cemt of AHP.



2. A new metri¢ that is suitable for incomplete contextas developed The
relationships between the newly introduced metric and the métatsare
suitablein incomplete AHRrameworkwere analyzed, and correlations were

investigated.

3. Methodologies for handling incomplete pairwise comparison matrices
incompleteAHP literaturewere statistically compared among themselves and
with the proposed algorithmsy several metriceinder varyng experimental
designs

4. Methodologies were evaluated through both numerical and empirical studies.

The rest of thighesisis organized as followshapter2 covers preliminary definitions

and notationsChapter3 provides a review of existing algorithinghe literatureChapter

4 introduces proposed parametric heuristic algorithms and explains the motivation behind
them.The numerical and empirical experimental desigrealso introduced in chapter

4. Chapter5 presents, resultand discussionChapte 6 concludes this research and

discusses future research areas.



2. GENERAL NOTATIONS AND PRELIMINARIES

2.1. General Notations

Number of alternatives are demonstratedna¥ectors are represented usiitglic,
boldfaceand lowercasketters (e.g.yector v is shown ag, whereas matrices are denoted
usingitalic anduppercase letters (e.g., matrix A is showipsAdditionally, the "GQ

entry of a matrixA is represented by , and théQ entry of avis represented by.. If

we have a vector that belongs ta , then D(v) is am x n diagonal matrix where the

‘Q diagonal entry iso:; An identity matrixis denoted byO. Further mor e,
represents the Hadamard product, which is the elemise product of two matrices

andB that have the same dimensions.

2.2. Preliminaries

Definition 1: Analytic hierarchy process (AHP)is a multidecisioamaking method that

was developed by Saaty (1972, 1977). In general, AHP involves four maimstepsg
problem modelling, pairwise comparison matrix creation, priority weights calculation and
consistency measurement. In the fitsfpsa hierarchical structure is created by breaking
down the decision problem into smaller components. The second step involves creating
pairwise comparisonmatrices (PCMs) to assess the relative importance of alternatives.
Each element in the PCM is uslyadetermined by using a Saaty scale of values ranging
from 1to 9 (Tabld). In the third step the priority weights of the alternatives are calculated

based on thd®CMs. In the last step, the consistency of tR€Ms is measuredor



reliability. The main bjective of AHP is to prioritize the alternatives and allocate weight

to each of them in accordance with the pairwise comparisons.

Tablel Saaty scale

Definition Intensity of Importance
Equal Importance 1
Moderatelmportance 3
Strong Importance 5
Demonstrated Importance 7
Extreme Importance 9
Intermediate Values 2,4,6,8

Definition 2: Pairwise Comparison Matrix (PCM) Let X be an x n PCM, where®
represents the relative importancébfcriteria onQ criteria. MoreoverxX should satisfy
the followingconditions.

p¥d "QQ Q

O >0 andd ‘90 0 (2.1)

In the context of incomplete AHP, it can im@dified as follows
O  QO®WQE £ V¢
0 = o) nQ Q (2.2)
11 €I VA Q
Definition 3: True Priority Vector v=[o , o, @., is the ideal depiction of the
decision maker 6s preferences. It can be

performancef the process.

Definition 4: Calculated Priority Vector w = [ , @, & .] is the weight of the
alternatives derived by a mettmogy. According to Saaty (197W)is reproduced by the
principal right eigenvector which corresponds to the maximum eigenvalue of the PCM
(Equation2.3). The main objective is to extract a weight vector that closely mates the true
priority vector. In otler words, to minimize the deviation between the calculated priority
vector and the true priority vector. Large deviation can be seen as inconsistency in the

process.



XW=Ff o4 W (2.3)

Definition 5: Consistency Index Cl) and Consistency Ratio CR) were characterized

by Saaty.
The Consistencindexis definedin equation 2.4.

#) fote (2.4)

The Consistency Ratio expressedbelow.
#2 — (2.5)

whereRl is the Random Index, which is the average of the consistency indexes obtained
from randomly generated PCMs.depends on the dimensionPEMs and some of the
values oRl are showrbelow (Table 2jHayrapetyan, 2019). ER 0.1 then the derived

PCM can be acceptable, which means PCM is sufficiently consistent. If CR = 0, PCM is
fully consistent (Saaty, 1977).

Table2 Random index values

n 1 2 3 4 5 6 7 8 9 10

RI 0 0O 052 089 113 1.25 135 143 147 15

Definition 6: Theoretical Pairwise Comparison Matrix (W) is an X n matrix which is

calculated fronw. Thevaluel 4 is the ratio ofQ entry ofwover’Q entry ofw.

Definition 7: True Theoretical Pairwise Comparison Matrix (V) is an x n matrix

which is constructetomv. & is the ratio ofQ | #entry aver’Q entry ofv.

Definition 8: KenddglKKlds aCob B aneirfdexiwhiowdd | nd e x
created by Kendall (1938), for identifying the degree of relevance between two vectors

(v, w) based omrdinal or ranked data. It evaluates the strength of the association between
these vectors. Ke n d a-1 drddlsIf Ut +l litshoves thavardda n g e b €
have the identical order. On the other hand)sf-1, it means that they have opposite

order. In other words, if tau is closer to 1, it shows that two vectors are correlated. If tau

is closer to-1, it represents thawo vectors are antiorrelated. Lastly, if tau is closer to

0, it means that two vectors have no correlation.



Two pairs of valuesd(;

bothoy> ogando i
0:< ozando :
pairs are considered to beither concordant nor discordant. ketndw belongs tos ,

thenUis calculated afollow.

SS S8 (26)

where C represents the set of concordant pairs and D represents the set of discordant pairs.

Definition 10: Compatibility Ind ex Value CIV ), which is a metric described by Saaty
(1994), demonstrates the deviation betw¥amdW. CIV is definedin equation 2.7.

#)6—B B & — (2.7)

Note thatwhen a matrixXis fully consistentX andW are exactly equal. This means that
the CIV of matrix X and W would be equal to 1. On the other hand, if ma¥ixs
inconsistentCIV will be greater than 1 (Saaty, 1994)

Definition 11: Modified Compatibility Index Value (MCIV ), is modified version of

CIV, is created for incomplete AHP setting in this research. It measures only the deviation
betweerthe cells assigned by the decision makmit the corresponding entries\uf Let

m bethe number of the missing data of PCM. THEGIV is describeds below.

-#)6—B B & — (2.8)

Definition 12: Generic Compatibility Index betweenV and W (GCIV-VW), was
defined byAhmed and Kilic(2022) It illustrates the devign betweerV andW. As in

CIV, GCIV-VW alsoequals 1f fully consistery presentsin practical application matrix
Vis unknown, so that matrixand/onWwereusually used tassesghe calculated priomt
vectorsin the literature. However, in an empirical and a numerical application true
priority vector may be known. In such a conte®CIV-VW metric can be utilized to

assess methodologigsCIV-VW is demonstrateds follows

"'#)®7 —B B —— (2.9)



Definition 12: Euclidean Distance Euc), measures the distance between two objects in
a space Euclidean distance is commonly used in many areas such as statistics, data
analysis and machine learning. Euclidean distanckasacterized as follows

06w o o o o E o, o, (2.10)

Definition 13: Central Processing Unit Time,is a metric which evaluates the time for
which a central processing unit (CPU) was employed for processing commands of

operating systa.

2.2.1. Graph Theory

Let G be a graph, represented as G = (V, E) where V is a set of nodes (vertices), and E is

a set of edges. Node i are showrpaand edge between node i and node j are indicated

as ©:; o2). An edge fronp:to o=in E indicatedhat there is a connection between them.

A graph is undirected if for any edge ( os) in E, (05 o) must present in E. In a
connected graph, there must be at least one path between any pair of nodes in G such that
all nodes on that path must bennected by edges. In a connected graph there are no
disconnected subsets of nodes. In the context of AHP, it is a common practice to assume
PCM is undirected because of tieeiprocalproperty of PCM. In the continuation of this
researchthe connectedssof PCM is another assumption since some methodologies in
incomplete AHP literature encloses it suchtesMetropolis Hastings artle Heat Bath
algorithms developed by Menci et al. (2018). Therefore, numerical and empirical

experimentsvereanalyzel accordingy.

An adjacency matrix of a graph with nodes is an x n matrix, represented biyl.
Adjacencymatrix is a fundamental concegince it provides analysis of the connectivity
of a graph and degree of nodes. The entridg afe either 1 or O.

_ p EORIWHEQEMO O QHE R

T €I VA Q

(2.11)

The neighborhoodf nodei, dended asN(i), is identified as the set of nodes that are

adjacent to node i. For an undirected graph it can be represeritdid\as.

N() = {o

Vi(oy 09N E} (2.12)

10



For an undirected graph, the degree of nipaepresented agdeg(i), is the number of

nodes which are adjacent to nod# tan be shown as equation 2.13.

deg(i)=|{o; 0= N V: (009N E} | (2.13)

Moreover, it can be found by utilizinglmcency matrix of an undirected graph as follows
deg(i)=B,. 0 (2.14)

The degree matrix of a graph, denoted&} is a diagonal matrix whose entries equal
the degree of the nodes or 0, representdubisy.

o~ NQQ EEEE

= 21

©0© T E£®RI 00 0 (215
The degree vector of a graph, denoted,ashose entries equal tidegree of the nodes.
A nx nmatrixL is irreducible if there is nB, which is an x n permutation matrix whose
rows and columns having exactly one 1 and other entries are Ghstich

. 0
PLP="" & (2.16)

whered ismxmo0 is(n 1 (m) 1dJ mph T (,andinis annteger with
0 <m < n. Moreover, in the case of undirected graphs, a matiirreducible if and

only if its structure corresponds to a connected grapBIBg et al., 2018)

2.2.2. Markov Chains

The definitions pesented in the Markov chains will be helpful in comprehending certain

methodologies utilized to solve the sparse setting, especialhaiptes 3.4 and 3.5.

Definition 14: Discrete Time Markov Chain (DTMC), let Z be a finite or countable set

of the Markovchain, which is called state space of the chain. A DTMC is a sequence of

random variable® , @, . . .taking values in the set Z, satisfying the followeguation.
PO =0 |®=wn,...0 =0 ,0=0)=PO® =0 |® =w)(17)
forallw,...,.w , N~ ZandnN N, whereP(X | Y) defines the conditional probability

of X given Y. In other words, a DTMC is a stochastic model that defines a series of events,
where the likelihood of each futureat® depends solely on the current state and not on

any of the previous states.
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Definition 15: Single Step Transition Matrix (P), let Z containa states. Transition
matrix is an x n square matrix which consists of the probabilities of moving between
states of the chain in a single time unit. Detdefines the probability of moving from
state i to state j in a single stdpurthermore, le transition matrix must include two
propeties(2.18 and 2.D).

v 0 (2.18)
B 0 p (2.19)

Definition 16: Time Homogeneous Markov Chain a Markov chain is time
homogeneous if the transition probabilities constant over time, i.e., it satisfies the

following condition,
PO =j|® =i)=PE =g& =i) forallny N (2.20)
In time homogeneous MC,
p& )=P'p@) (2.21)
where p( ) represents probability distribution af .

For homogenous DTMC, let thestep transition probability of being in state j given that

the chain was in state i, is representedl aand nstep transition matrix is denotedi@s.

According to ChapmaKolmogorov equations (Dobrow, 2016),

0 00 formn Tt (2.22)

Definition 17: Irreducible Markov Chain , is aMarkov chainwhereall the states in the
state space communicate with each other (single clss$g i is accessible from state |

if O is positive for som@& 0. Any state i and j in the state space communicate each

other if both are accessible from each other. Moreover, irreducibility of transition matrix,

yields irreducibility of Markov chain.

Definition 18: Period of Markov Chain, the period of state denotel asd(i), is defined

as follows
d(i) = gcd{n > 0:0 > 0} (2.23)

where fAigcdo refers to the greatest common

aperiodic. Note thab > 0 is an adequate condition for aperiodicity. When a Markov

12



chain is irreducible, and all states are aperiodic then Markov chain is called aperiodic
Markov chain. Moreovemeriodicityis a class property, i.e., if state i communicates with
state | and is periodic/aperiodic, then state | is also periodic/aperiodic. Therefore, when a
Markov chain is irreducible, there is a single class in which all states have the same
periodicity propertyHence, if single step transition matrix is irreducible and for any i in

state spachas0 > 0, then Markov chain is aperiodic.

Definition 19: Limiting Distribution () of a Markov chain is a probability distribution

such that,

ILED A (2.24)
In other wordsthe probabilities of being in each state converge after some steps to a
certain value which is independent of the initial distribution of the states.

Note that, if a Markov chain with finite state space is aperiodic and irredudian it

has a limiting distribution.

Remark 1: Suppose an irreducible but not aperiodic Markov chain with n statess let
its transition matrix. Then for afly™ T1ip , matrixf 0 p I "Ois aperiodic and

its left dominant eigenvector is tkame withP (Menci et al., 2018)
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3. METHODOLOGIES IN INCOMPLETE AHP LITERATURE

In experimental designs several incomplete AHP methodologies in litenadannely
Harker (1987a), Bozoki et al. (2010), Oliva et al. (2017), Zhou et al. (2018) and Menci et

al. (2018) werecompaed. These incomplete AHP methodologies in literature are

summarized in thishapter

3.1. Harker

Harker (1987a) created a new matBiandused its principal right eigenvector to assign

missing entriesf A.

Thederivationcan be depicted as follows

1.

Establish a matriB as,

T & QB Qi QEQ
6 = p | nQ Q (3.1)
6 £ NI 0 QNI Q

wherel represents the number of missing

Calculate the principal right eigenvecteand eigenvalue.. of B.

Fill the missing entries oA by usingw (if 6 is missing, assign it as./

14
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3.2. DEMATEL

Zhou et al. (2018) proposed a DEMATEL based solution methodology to derive priorities
in the context of incomplet®HP. DEMATEL is a kind of structural modelling technique,
applicable to examine the catemed-effect relationships between alternatives. It can be
applied effectively to extract the interrelationships among alternatives within a complex
system. Moreover, it can providlee ranking of these alternatives (Si et al., 2018). It has
demonstrated its effectiveness in various fields, including but not limited to risk
assessment (Li et al., 2020), supply chain management (Wu et al., 2017), and stock
selection (Shen and Tzeng)15). There are two important matrices in DEMATEL
includingDRM and TRM. DRM is direct relation matrix, and it contains direct relations.
TRM is total relation matrix, and it includbsthindirect and direct relations. DEMATEL
consistsof five stepsnamel determining quality characteristics, deriving the DRM,
normalizing DRM, constructing TRMndclassifying factors. Zhou et al. (2018) adapted
DEMATEL methodology into AHP framework ifour steps. Theurposeis extracting
complete pairwise comparison matusing incomplete pairwise comparison matrix. In
the first step, the incomplepairwise comparison matrix is converted into DRM and then
DRM is normalized. This conversion is generated as followsAlle¢ the incomplete
PCM, D be the DRM.

o = 0 Q& Qi i QQ&MXHI) Qu@?QQl ! (3.2

L1 E®MI VQ Q

After the creation of DRM, the sum of each row and column is calculated for the
normalizdion step. The maximum of the row sum and column sum is identifiedsand
utilized tonormalize DRM, which is denoted &D. Normalization step ishownasin

equation 3.3.
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In the second step TRM, denotedTass created by usinyD as below
T=a4Qé 0 6O E 00O
:(xo MMé OO 0O O 00
=600 (0O (3.4)

Zhou et al. (2018emphasized that the progression from 1 to infinity represents the
gradual discovery of indirect relationships between each pair in.[3khetimes TRM

may not be calculated as above formula because of the nonexistence of inverted matrix
(singularity of matix). For these situations Zhou et al. (2018) desttan experiment to

see the convergence of Q& O 0 O E 'O . According to their experiment,

they observed that convergence of limit is very quick (m is around 5 in most cases). They
suggestedhat it is appropriate to set m to be a specific integer like m = 5 and approach
TRM with that assumptionn the experimental designs in this study, we approached
TRM as utilizing coefficient of 25.

In the third step of their methodology, a complete paewcomparison matrix is
constructed from TRM with satisfying reciprocal property. The construction is made as

following algorithm.

Algorithm 1. Conversion from TRM to PCM

1: Input: thematrix"Y
2: Construct: a matrix0

3:fori=1,é, dm

4. for | =1 ,do é, n
5: 5= —

6: 0 =—

7: Output: P

DEMATEL based solution methodolo@bbreviated as Dematel in thentinuation of

this research.
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In the last step the missing valuesAadire derived by using as follows

., _ 0 Q® 0 wioi i "QOEIAID 'Q 0 Qb6 QOB | 3

0 = 5 ¢eni oo o ©9
Note 1: Following 4 methodologies are related with the sparse setting. In the context of
sparse setting PCM is filled differently. In the nominal case, the dibgomiy of the
PCM isassigned ag, but in the sparse context itassigned ab. The missing entries
also filled as 0 in the sparse setting. Therefore, while constructing the degree Dfajrix (

the diagonal entries of PCM are not considered.

Example 11 et PCMis assigneas follows.

A wh-Breefiresents the missing

e leWa)
oB 3
C..

p

— Y]
T 7@ T
C

Then, in the sparse context, it is demonstrated as below.

~rgas
583
~

A~ 9qgn
S-S\
C

Furthermore, its degree matrix is considered as below.

¢ MM T
Dg= T P T T
T T o T
T T T G

Note 2: The connectedness of the G, whicldéived fromA, is an assumption for the

following 4 methodologies in order talculatethe priorities.
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3.3. Sparse Eigenvector

The motivation behind the Sparse Eigenvector method develop@tiViayet al. (2017)

iIs coming from the following result. When there is missingness but no perturbation,
entries in the PCM are transitive and accurateptimeipal righteigenvector o "00 is

the same as the true priority vectoBased on this outcome, they suggested using the
principal right eigenvector oD "0O0 as calculated priority vectow. The ideology

resembles the eigenvector method created by Saaty.

3.4. Metropolis-Hastings

Menci et al. (2018) constructed the Metropdfiastings method to extract priorities in
the case of the sparse setting. Their motivation behind the methodwionggired by the
Metropolis Hastings Markov chain. They suggested constructing a rRatnkich has

the same structure as the connected grapltilizjng A. The derivation iss follows

5 H -

v = m (36)
Y p gB. @ "prhT
Vg T WD 0QI Q

whered is the degree vector and N(i) is theighborhood of node i.

Similar to the Sparse Eigenvector methodology, when there is no @idarithe left

dominant eigenvector ¢ gives the true priority vector (Menci et al, 2018)

Note that the matri¥ is a form of transition probability matrix of a Markov chain by

construction. It holds the following two properti{@s18 and 2.D).

Because G is undirected, connected and contains finite states, the Markov chain is
irreducible since there is a singlesdaand all states can communicate with each other.
When thee is no perturbation, the Markov chainaperiodic, so that the Markov Chain
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has limiting distribution, which is determined by the left dominant eigenvector (Menci et

al., 2018). The limiting ditributionwas taken athe calculated priority vectan.

However, when dealing with perturbations, it cannot be guaranteed that the Markov chain
will exhibit aperiodicity(Menci et al., 2018)In order to ensure convergence, a modified
version of the Mawov chain was employed by them. Therefore, they used convex

combination o) and’O as shown below.

0 10 p T O wherd N T1ip (3.7

Note that irreducibility property is not affected by convex combination. Moreovisr,
aperiodic and its left dominant eigenvector is the sameRvERemark 1). Therefore, the
new Markov chain has a limiting distribution, which is used for approachiagrue
priority vectorv. The algorithm they proposed for reaching the limiting distributioR of

is as follows.

Note 3: <z :(k +1) represents the probability of the Markov chain will betatei state at
thestepk+1.

Algorithm 2. Metropolis-Hastings

1: Input: the matrixo , random parametér

2: Obtain: the matrk 0 , and the vectod

3: Initialization

4: fori =1,doé, n

5: ©+(0) =random (0, 1)

6: Standardizew(0)

7: Synchronous lIteration

8 ook +1) = T 0 p T odk)+T By 0
9: Output: w

Note that, in their research they proposed more than one method for initialization
procedure. However, in this research standardized random positive rational numbers were
utilized. Initialization is necessary for determining the initial condition of thekiMa

chain. The aim of the synchronous iteration is approaching the limiting distribution. After

several iterations the changetween iterationsecomes tiny. In this research, 0.000001
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was used as a terminating condition. If all states change becantiesle€:000001, the
algorithm stopped, andi(k+1) was taken as calculated priority vectdtoreover in

experimentaketus parametdr was generateds in equation 3.12

I =random(0p) (3.8

3.5. Heat-Bath

Menci et al. (2018) created the Hd&xth method in order to derive priorities for the
sparse setting. Their motivation behind the methodology gets inspired byBatbat

Markov chain.

They proposed forming a matrixthat is adaptettom A as below. It can be shown that
P has the same structure as the graph G.

VL=, p B, — N0 0 (3.9
r m £®DI 0 Q

where is a random parameter which must satisfy the following condition.

(3.10)

[ =

Note that similar to the Metropolidasting method the matriR is a form of transition
probability matrix by construction. It is known that G is undirected, connected and
contains finite states by assumption. Therefore, the Markov chain is irreducible.

Moreover, since the diagonal entries are positive aperiodc.

~

B. 8 [ By

B. p p (3.11)

Consequently, since the row sum is 1 all diagonal entry must satisfy the below condition.

~ |

L P & T (3.12)

Therefore, there exists a limiting distributiomn When there is no perturbation, this
limiting distribution becomes the true priority vectdignci et al., 2018). On the other

hand, in the existence of perturbations they suggested approaching theotityevactor
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by the limiting distributionw. The algorithm they proposed for attaining the limiting

distribution ofP is as below.

Algorithm 3: Heat-Bath

1: Input: the matrixo , randomparametef
2: Construct: the matrk 0

3: Initialization

4. fori =1,doé, n
5: < (0) =random (0, 1)
6: Standardizew(0)
7: Synchronous Iteration
8

9

O (k +1) =B. ‘ 6

: Output: w

Note that, they recommended sevenathodologies for initialization procedure. In this
research, standardized random positive rational numbers were used. The goal of
synchronous iteration is to reach the limiting distribution. As the iterations progress, the
changes gradually diminish. Ime& experimental designs, a value of 0.000001 was
employed as a termination criterion. When the change in all states became less than
0.000001, the algorithm terminated, antk+1) became the calculated priority vector.

Furthermore, in experimental desigrerametef was generated as below.

[ randomuniform(0—-g-) (3.13)

3.6. Sparse Logarithmic Least Squares

The latest approach within the sparse setting is the sparse logarithmic least squares
(SLLS), which was introduced by Menci et al. (2018). This algorithm is inspired by a
widespread methliblogarithmic least square (LL8eveloped by Crawford (1987). As an
adaptation, the SLLS algorithm aims to approach the true priority wedtosther words

the objective is detecting a vect@v) which ensures the log quadratic minimization of
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the error between pairwise comparison ma&iand theoretical pairwise comapson
matrix W. The followingequation (3.14)lemonstrates the derivatiofiw.

Ol x®., BB, 16b [ (3.14)

The algorithm they used to approach sucks shown below. For further information,
e.g., theheorem and the derivation behind the algorithm, see Menci et al. (2018).

Algorithm 4: Sparse Logarithmic Least Squares

1: Input: T

2: Initialization

3: fori =1,doé, n

4: »(0) = random positive real number
5: < =:(0)=expo (»:(0))

6: v=Bj g | b

7: Synchronous Iteration

8: >(k+1)=p(k) +T Bpgi >0 >0 TV
9: o (k+1)= expo((k+1))
10: Output: w

Note that, in the experimental designs in this research a value of 0.000001 and 30000
(70000 was used only in one experiment since in that experiment convergence was slow)
were used as a terminatia@niterion. When the change in all states became less than
0.000001 or the changes could not be less than 0.000001 in 30000 iterations, the algorithm
stopped and returneg(k+1) as the calculated priority vector. Furthermore, Menci et al.

(2018) suggested to employsuch that,

i = (3.15)
Therefae, in this researdh was chosen as below.

I randomuniform (O—¢5) (3.16)

Note that the logarithmic least squares method is widely used in AHP literature both in

standard setting and incomplete setting. &@mple, irthe incomplete case Menci et al.
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(2018) and Bozoki et al. (2010) utilized logarithmic least sqaaabjective. Therefore,

both methodologies can reach the same calculated priority vector. The difference between
them is the algorithm they used. Rostarce Menci et alwasinspired by the Fax and
Murrays formation control algorithm (Fax and Murray, 2004; Ol&sber et al., 2007)
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4. PARAMETRIC HEURISTIC ALGORITHMS, THE NUMERICAL AND
EMPIRICAL STUDY EXPERIMENTAL DESIGN

4.1. Parametric Heuristic Algorithm s

A natural approach to complete the missing element in the pairwise comparisons matrix
is to take the geometric average of all the indirectly calculated compaokaomssing

entry (Harker, 1987b). However, a limitation of this approach is that as the number of
alternatives increases, the number of indirect comparigomss significantly, which

resuts in a time complexThe parametric heurissgroposed in this articlderiveits
motivation fromthis idea. It decreases the time complexity by using some of the indirect
comparisons Moreover, some of the proposed heuristie®igh these indirect
comparisons based on their lengtBg.length, itis meanto how many arcs the pattas

In orderto achieve indirect comparisons, it utilizes graph the®atls which reach
missing values by transitivitgre examinedAfter all the paths leading to the missing
value are found, the missing value is calculated by taking the geomedragawotthe

value ofthese pathsThe value othe paths is calculated as the product of itsabme
advantage of using the geometric average is that it preserves the reciprocal property of

the matrix, which is an assumption of AHP.

Let0 and0 be the missing value and the paths from i to j having valugs as, € ,

a . It is known that the assigned valdesmm decision makepreserve reciprocal property
and path length is calculated as product of its arcs, thus any path from i thg hragrse
value of the path from j to i if they use the same arc set but in reverse order. Moreover, if

there is a path having specific arc set, the existence of the reverse order is guaranteed

24



since the graph is undirected. Then the paths from j teingavalues as #/, 14, ¢é ,

1/&4 . Therefore, the geometric average of the missing values is reciprocal.
Example 2: Finding missing value by paths and geometric average methodology
Let the pairwise comparison matrix be as follpws w h-@repeesei# the missing value

p v T® C
o P T8 U T,
A= p T UL o~
IIC T T p Ul"'l
U® ¢ m pV

n

Pathshaving length less than or equalttweethat start from node 1 and end with node
2, length and value are as below.

P10 10 z0 ,length:3 value5 025 4=5
P2:0 T 0 ,length:2 value.05 4=2

P3:0 70 70 ,length:3,value:05 5 2=5
P4:0 T 0 ,length:2, value2 2=4

P50 70 70 ,length:3,value:2 0.2 4=16

Thereforep is:u ¢ v T pH P X

Pathshaving length less than or equalthmeethat start from node 2 and end with node

1, their length and value are as below.

P6:0 10 10 ,length:3 value0.25 4 0.2=0.2
P7.0 10 ,length:2, value:025 2=05

P8:0 10 70 ,length:3,value:0.5 02 2=02
P9:0 10 ,length:2, value05 05=0.25

P10:6 10 710 ,length:3,value:0.255 0.5=0.625

Accordingly,0 is:/M& TW T& TR U TP CUL TW P U

In the example above, all pathavinglengthless than or equal tbireewerefound for
two missing entriessince the matrix size fsve and missing enigsaresix there is small

number of paths. However, #ge number of alternatives increases, the numbpatbfs
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will increase For example, in a 25 25 matrix with havingwo missing entes thetotal

number of pathghat reaclio these twamissing entieshavingtwo andthreelengthsare

46 (23 2)and1012(23 22 ) respectively. Moreover, in a 2525 matrix there

are paths with having from 2 @4 arcsfor these missing enties Note that the above
example is onlyestricted tawo missing enties thetotal number of paths that need to

be derivedwill also increase as the number of missing entries risesder to avoid this
complexity, instead of looking at all paths, tlsisidy suggests examinirgaths that
contain alimited numberi ka@afar c s . C h o o s inot gnly fevaloating @adhn s |,
lenghs offi k, but also evaluating paths wikngtts of | ess t han AkOo.
4 suggests takingto account the paths tiavinglengthsof 2, 3, 4 (0 is trivial and 1
means there is a direct path from i to j, in this caseis not a missing value). The
motivations behind considering small values are time complexity and the thali¢he
informationis stored on paths that have feressufficient to approach the true value. As

the length of a path increases, the opportunity of forming path increases since more
combinations can be achieved by adding indirectrelstion Ther ef or e, choos
decreases the complexity of the aigom. Furthermore, the chance of revealing less
perturbation may increase, since perturbations accumulate while multiplying the arcs.
However, there is a tradeoff which is the chance of information being lost. It could be
that the most accurate informatics stored on the longest path. In the ideal case when
there is no perturbation, paths which have leftivo are enough to derive the missing

values correctly, considering the graph is connected.

Moreover in this studythe importance levels dfie pahsare investigatedAs the length
of the arcs increases, the number of interactions increases. Thimwuusahe possibility
of an increase irdeformatia. Therefore, while taking the geometric average, paths

having different lengths were weighted

Theconsistency of the algorithms in the AHP literature is a popular debate subject. There
are several methodologies to improve the consistency of the algorithms in literature such
as Cao et al. (200&8nd GomezRuiz et al. (2010)The methodology was propasbéy
GomezRuiz et al. (2010) modifies the highest perturbation between pairwise comparison
matrix and theoretical pairwise comparison matrix. The relation between perturbation and

the matrices is as below.

A=® ©O (4.1)



whereE represents the perturbation matrix. The idea behind the algorithm is changing the
highest perturbation, so that it develops the consistency of the algorithm in a better way.
They proposed to change the entry which is farthest from one. Their algorithm is
demonstrateds follows (Algorithm 5)

Algorithm 5: Improving Consistency Ratio

L:nput: 6  hw

2: CalculateiO

3: Find:O that is farthest from one

4: Replace® ando with 0 and the correspondindiagonal entries of i, j with 2

5: Calculateneww according to updated

6: Replaced with—, & with—and the diagonal entries dfj with 1

7. Output: A

Based on theseonsiderationsthe following heuristiceamelyTransitivity of Length of
Two (TLT) (Algorithm 6) and Transitivity of Length of not Exceeding Three (TLET)
(Algorithm 7)were proposed in this studyh& length parametér kvias selected dw/o

in the TLT, andthreein the TLET. As highlighted before, length parameti@reemeans
investigating paths both length oo and three The importance parameter is only
considered in the TLET because TLT utilizes only paths of letwgthin this study, the
importance coefficient of TLET was parameteriasdneandtwo. If the parameter value
is two, paths of lengtitwo are countedwice and paths of lengtthreearecountedonce
However, if the parameter valuease bothare considered only once when calculating

the geometric average

Example 3: Consider the values of the above paths (Example 2), the geometric average

for0 must ke calculated as follows if the importance level parameter is tak@roas

MW ¢ v 1 pH a8ty (4.2)

The main reason for choosing the importalesel closeis the fact thapaths of length
two andpaths of lengthhreeare exposed teimilar perturbaons, there is an additional

arc which leads to extraultiplication in path®f lengththree
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In addition, the effect amprovingthe consistencynethod GomezRuiz et al, 2010)on
the completed matrigreated bythe algorithms was adapte&or each algorithnthree
different scenarios, which are basedtbenumber of entries that change (NE@gre
evaluated. In the firgcenariothe method was not utilized, no entry was changethe
secondscenario the methoditerated twice. In the third scenarigp the method was
executed four timeJ hus, 93 due toimportance level§l, 2)or path lengthparameters
(2,3) 3dueto NEC parameter®, 2, 4) algorithmshaving different parameteveere
revealed Finally, the calculated priority vector of the matés generated by these
algorithmsarefounded by using principal right eigenvector.

Algorithm 6: Transitivity of Length of Two (TLT)

Lilnput: & h %#

2: Calculate: missing number oA

3: Create: 0 matrix 0

3:fori= 1, deé¢, n

4. forj = 1do ¢é, n

5. If@® kOandic<)j)

6 Find andStore: all paths (length of 2) from i to j by usiyg
7 If (Paths were found)

8: Calculate: Geometric average of these paths

9 Assign: Geometric averag® 0 and reciprocal of it td
10: Reduce:missing number by 2

11: Assign: non-zero values o to A

12: while (there is missing numbger

13: fori =1,do é, n

14. forj =1,do é, n

15: If (© k Oandi<j)

16: Find andStore: all paths (length of 2) from i to j by usinyg
17: If (Paths were found)

18: Calculate: Geometric average of these paths

19: Assign: Geometric average & and reciprocal of it a8
20: Reduce:missing number by 2

21:lterate: Improving Consistency Rati®\] NEC times
22: Derive: principal right eigenvector ok

23:Output: w
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In the algorithm, there are two loops. The purpose of the first loop is to derive the paths
that are associated with the missing entry by using only the matrix assigned by the
decision makerHowever, in the second loop paths are generated by utilizing the matrix
assigned by the decision maker, the values extracted by the first loop and the values that
are calculated during the second loop. The reason behind the existence of the second loop
isin some cases the first loop is not enough to fill in all the missing values only adhering
to the decision maker, even though the matrix derived by the decision maker is connected
(see ex. 4). The reasathe constraint of the path lengths (in this aildpon it is two).

While calculating the missing values, thenpacy of the algorithm i makea derivation

only over the valuesssigned by the decision mals@nce they are assumed as expert
knowledge Thereforesoldy the matrix assigned by the dston maker is used in the

first loop.If there are still ay missingentriesafter tte first loop the algorithm enters the
second loop and remaims the second loopntil there is no missingntry. After the

missing valuesre calculated, the ImprogrConsistency Ratidgorithm is iteratedNEC

times Finally, the calculatedpriority vector of the completed matrix isbtainedby

utilizing the principalright eigenvector.

Example 4: Suppose that the decision maker filled in a matrix as follows.

p M p T T
T pp P T
A=p p p p T
't p p p p7
Ut m t p pY

The matrix thatthe algorithmcan complete in the first loop, although the matrix is

connected, is as follows.

p PP PTG
P PP P P
=P opopopopn
‘b pp P P
Ut pp p oY

There are valuethat cannot be filled in the matriX herefore, there is a neéar the

second loop.
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Algorithm 7: Transitivity of Length of not Exceeding Three (TLET)

1:lnput: & h %#mportance

2: Calculate: missing number oA

3: Create: 0 matrix{

3:fori= 1, deé, n

4: forj = 1do €, n

5 1f©® kOandi<j)

6 Find andStore: all paths(length of 2, 3¥rom i to j with their path length by usiny
7 If (Paths were found)

8: Calculate: Geometric average of these paths based on path length and importanc
9 Assign: Geometric average i0 and reciprocal of it td

10: Reduce:missing numbeby 2

11: Assign: nonzero values oM to A

12: while (there is missing numbger

13: fori =1 ,do é, n

14;  forj =1 ,do é, n

15: If (& K Oandi<j)

16: Find andStore: all paths(length of 2, 3¥rom i to j with their path lengths by usirg
17: If (Paths were found)

18: Calculate: Geometric average of these paths based on path length and importi
19: Assign: Geometric average @ and reciprocal it aso

20: Reduce:missing numbeby 2

21: Iterate: Improving Consistency Ratidyf NEC times
22: Derive: principal right eigenvector ok

23:Output: w

As in the TLT algorithm, there atevo loops in this algorithm and the purposes of the
loops are the same, they differ only in contédéntifying paths with a length athree

and consideration of the importance level in the geometric average are additional
requirements iIMLET. After the PCMis completedthe Improving Consistency Ratio

algorithm is executethased on NEC parametdmastly, priority valuesre calculatedy

usingthe principalkight eigenvector method.

In this algorithm, depending on the size of the matri&,rthmber of missing entries and

the software used, there is a chance to obtain an undefined value while accumulating the
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values of paths. If theatrix size is high and the misgimumbers in the PChMrelow,

the algorithm findsan excessivenumber ofpaths while deriving the missing entry.
Depending on the valued these paths, high (low) number that is undefined in the
software can be obtained from the multiplication of the valwbde calculating
geometric averagé\ viable action in this case ie set this undefinedigh (low)number

to the highes{lowes) valid number in the softwaréVhile performing thenumerical
experimentalnalysis in this research, this situat®wsiely occurredin some iterations
when the matrix sizvas25 and the missgnesgatio was20 percentThis number was
setasthe highest or lowest value the softwarelepending on the value it hasccording

to the results of the experimemio deflectingresuts were observed (see the result and
discussion chapter, the algtin was competitive in the case of matrix size 25 or missing
ratio 0.2)

4.2. The Numerical Experimental Design

An approach was developed in order to mimic the process of a decisionassikging
pairwise comparisons. This methodology was adapted ftmmexperimental setup
developed byAhmed and Kilic (2022)o the incomplete AHP contexthe adapted
methodologyassumes that thdecision makeuses a specific weight vector and expresses
preferenes through pairwise comparisonBhe pairwise comparison matrishould
constituteinconsisteny and missing entries due tbe decision makefnconsistency
limited knowledge of decision makerabout some alternatives uncertainty in the
comparisons, andrnie constraints To simulate this process, a numerical dataset was
created. The dataset includBCMs of three matrix sizen(= 5, 15, 25) three levels of
inconsistenies (low, medium, high) and four missing ratios (0.2, 0.3, 0.4, 0l&)sum

36 (3 matiix sizes 3 inconsistency levels 4 missing ratios) numericaxperimental
conditiors were obtained. The subsequent algorithrfAlgorithm 8) was initially

implemented to genemtandom inconsisteMCMs.
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Algorithm 8: Creating random PCM

1: Create: random normalized vector

random uniform perturbation coefficiecitandO matrixo

2:for i =1 ,do é, n
3: forj=1, @&, n

4 if (ik J)

S 0 =1

6: elif (i <})

/ a=o./

8 b=o./

9 & = uniform (a, b)

10: 0O =1/0

Here, vectow represents the true priority vector that the decision maker should adhere to
achieve the true theoretical pairwise comparison mafie. inconsistency arises from
the utilization of parametarand the uniform operatioff.o maintain the integrity of the

AHP structure, the diagonal entries are kept as 1, and the reciprocal properbersed

The existence of randomness leads the matricesexhibit diverse degrees of
inconsistenies In order to quantify the inconsistgnof these matrices, the Consisty

Ratio (CR) was utilizedVatrices exhibiting a CR value ranging from 0 to less than 0.03
were considered as a low level of inconsistency. Matrices with a CR value between 0.03
and less than 0.06 were classified as a medmed) level of inconsistencyMatrices

with a CR value between 0.06 and less than 0.1 were taken into account as a high level
of inconsistency. Matrices thaurpassedd.1 CR value were labeledinadequately

consistent and thus were nated

In order b introducemissingentries somerandomentriesin the generated matrix were
set tozerobased on the missingtios (0.2, 0.3, 0.4and0.5), no changesveremade to
the diagonal entrie§henumber of missing entriegeredetermined by the missing ratio
and the multiplicabn of the number of entries in the upgéght triangleof the matrix
excluding the diagonal entries. In cases whererthkiplication was not an integer, the

value was rounded up. For instank,matrix size bel0 and the missing ratio be 0.3.
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The upperright triangle without the diagonal entries, there are a totalSokentries
(Equation4.3).
— TV (4.3)

Therefore, thenumber of missing entries was setldsEquatiord.4).

Gduv MO pr1 (4.4)
Subsequently, any entries thetdset b zerowere determined, and its reciprocal entry
were also set taera Connectedness ofieincompletepairwise comparison matriwas
an assumption in some methodologies that were utilized in this. Sthéyefoe, the
connectedness of the newly generatembmpletematrix was also examined If it was
connected, the methodologies computed the priority vectdwereassessedccording
to themetrics In case the matrix was not connected, a rewdomincomplete pairwise
comparison matrix wasreateduntil it was connected.
For eacmumericalexperimentatondition a total of 10@connected incomplete pairwise
comparison matrices were produced and analyzed. As a result,3600
RBeAZDAOEART DBEOEIDd @natrices) connected incomplete pairsd

comparisormatrices wer@btained.

4.3. The Empirical Experimental Design

An empirical experiment including the part
Istanbul was conducted. In this experiment, 30 students were asked to compare the
geographicsize of 15 countries and to filvb matrices.In the first matrix, the students

were expected to leave cells empty for which they were uncertain or preferred not to fill
in. In the second matrix, they were asked to filha matrixcompletely referrindo the

cells they had filled in the first matrix. Participants were required to adhere the Saaty scale
(Table 1) while they were assigning the cells. The priority vectors of the first matrices
were determined utilizing the incomplete AHP methodologiesvé¥er, the priority
vectors of the second matrices were identified using the prindglail eigenvector
method (Saaty, 1977). The comparison of the incomplete AHP methodotogasy
themselvesvasmade using the calculated priority vectors of the firatrioes and true
priority vectors. The accuracy of filling the uncertain comparisons was examined by

comparing the calculated priority vectors of both thaaty methodologyand the
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incomplete AHP methodologies with the true priority vectors. The discussam
whether it is more suitable to leave the uncertain comparisons for the incomplete AHP
methods to fill or tdet the decision maker estimatem.

It is necessarthatthe decision maker have relevant knowledgeut the subject in AHP.

The reasons for choosinlge geographicsize of countriesasthe subject werdhat they

are a kind of cultural knowledge therefdikeely to be knownand they have natural

scale. The fact that they have quantitative valuebledahe identification of the true
priority vector, as showbelow (Table 3). Thus, the priority vectors computed by the
methodologies could be evaluated and compared.

Table3 Normalized true priority vector of empirical experiment

Countries Corresponding Priority Vector Value
Chile 0.1
Colombia 0.151

Egypt 0.133
France 0.073
Germany 0.047
Greece 0.017
Japan 0.05
Morocco 0.059
Portugal 0.012
Senegal 0.026
Spain 0.067
Sweden 0.06
Thailand 0.068
Turkey 0.104
United Kingdom 0.032

The experiment was approved by MNMdeeverSabanc
beforeit was conducted by participants, the written informed consent form had been taken
from theparticipants. The estimated duration of the experiment was approximately 10

minutes However, additional time was granted to the participants who asked.
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5. RESULTS AND DISCUSSIONS

5.1. Numerical Experimental Design

The existing six algorithmsin literature namely Harker, Bmate] Sparse Eigenvector,
MetropolisHastings, HeaBath, and5SLLS, along with the parametric heuristics TLT and
TLET algorithms,were compared in terms ddix performance metricancluding Cl,
Kendall's tau, M1V, Euclideandistance GCIV-VW andcentralprocessingunit time.

The TLT algorithm was examined in three different waysording tahe NEC parameter
(NEC =0, NEC =2, NEC = 4). The TLET algorithm wasalyzedn six different ways
regarding the NEC and importaaparameters (three different NEC valady 2, 4, and

two different importance valuesl, 2).

Before comparing results of the methodologies, the relationbleifpveen performance
metricswere examined m order to reduce the complexigince there r@ six different
metricsand to see the behavior between the metkos this purposethe correlation
coefficient was utilizedDatawas collected for each experimahtonditionfrom each
algorithm. In order bt avoid oversamplingf the proposed heuriss, only one TLT
algorithm and one TLET algorithm were selected from the three TLT algorithms and six
TLET algorithms namelyTLT - NEC = 2 and TLET- NEC = 2, importance = Z his

selection was randdgnmade

In order to observe the relationskiggmong the metricgjatagenerated from numerical
experimental setupvere gatheredrive metricsout of six metrics(Cl, Kendall's tau,
MCIV, Euclideandistance, and GCIAXYW) measure the accuracy and deviation of the
algorithms' performance, while one metfcentral processingunit time) examine the

algorithm's process time. Therefore, the relationships amolydhe five metricswhich
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are related with accuracy and deviationere investigated byusing correlation

coefficients.

Since four algorithmsanely Sparse Eigenvector, Metropehastings, HeaBath, and
SLLS had a sparse setting, tke values could not bderived. These valudsgad been
assignedzeroduring tre numericakxperimerdl setup Consegently, when examining
the relationships betweeheCl and the othefour metrics, the data from these four
algorithmscould not be used.The analysidor Cl was conducteanly based on data
collected fromthe Harker,the Dematel,the TLT - NEC = 2, andhe TLET - NEC = 2,

importance = algorithms

The correlation coefficient values were interpreted as follows: (0, 0.9).8¢ Q) indicate
a weak, (0.3, 0.7) or@.3,-0.7) definea moderate, and (0.7, 1) e0(7, -1) specifya
strong linear relationship (Ratner, 2009). THatienshps between metricagre shown in
table 4 and the strong linear relationshigre demonstratedh figures 1 and 2 Strong
linear relationshipsverehighlighted in bold

Table4 Correlation coefficients between metrics

Metrics Correlation Coefficient
Kendall's tau GCIV-VW -0.511
Kendall's tau MCIV -0.074
Kendall's tau Euclidean distanc -0.576
Kendall's tau CI -0.012
GCIV-VW i MCIV 0.001
GCIV-VW i Euclidean distance 0.857
GCIV-VW i CI -0.078
Euclidean distance MCIV -0.036
Euclidean distance ClI -0.126
MCIV i CI 0.87
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