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ABSTRACT

OPTIMIZING STRATEGIC AND OPERATIONAL DECISIONS OF CAR
SHARING SYSTEMS UNDER DEMAND SUBSTITUTION AND

UNCERTAINTY

SİNAN EMRE KOŞUNDA

INDUSTRIAL ENGINEERING M.S. THESIS, JUNE 2023

Thesis Supervisor: Asst. Prof. Esra Koca Paç
Thesis Co-Supervisor: Asst. Prof. Beste Başçiftci

Keywords: Car Sharing, substitution, electric vehicles, sustainable operations,
stochastic mixed-integer programming, decomposition algorithms

Optimizing car sharing systems under demand uncertainty is an emerging problem
that aims to ensure profitable and sustainable operations with quality of service
concerns when a mix fleet of vehicles including internal combustion and electrical
engines is considered. To address this problem, we propose a two-stage stochas-
tic mixed-integer program leveraging spatial-temporal networks that capture the
strategic and operational decisions of these systems over a multi-period planning
horizon. We optimize the location decisions of regions to serve with purchasing
decisions of the vehicles while considering parking capacities, satisfying one-way
and round-trip car rental requests, and relocating cars between open regions un-
der each demand realization. We introduce demand substitution to this problem
by extending the multi-commodity formulation, and further prove that the corre-
sponding second-stage problem has a totally unimodular constraint matrix. As our
solution approach, we provide a branch-and-cut based decomposition algorithm with
enhancements. Our case study demonstrates the benefits of incorporating strategic
and operational decisions along with the demand substitution, and provides insights
for region opening and fleet allocation plans under demand uncertainty. We further
present an extensive computational study highlighting the performance of the pro-
posed solution algorithm with significant speedups.
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ÖZET

TALEP BELİRSİZLİĞİ VE İKAME ALTINDA ARAÇ PAYLAŞIM
SİSTEMLERİNDE GÖZLEMLENEN STRATEJİK VE OPERASYONEL

KARARLARIN OPTİMIZASYONU

SİNAN EMRE KOŞUNDA

ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, HAZİRAN 2023

Tez Danışmanı: Dr. Öğr. Üyesi Esra Koca Paç
Tez Eş Danışmanı: Dr. Öğr. Üyesi Beste Başçiftci

Anahtar Kelimeler: Araç Paylaşımı, İkame, Elektrikli Araçlar, Sürdürülebilir
Operasyonlar, Stokastik Karma Tam Sayılı Programlama, Ayrıştırma Algoritması

Talep belirsizliği altında araç paylaşım sistemlerinin optimizasyonu problemi, belirli
bir hizmet kalitesinde karlı ve sürdürebilir operasyonlar yürütmek amacıyla ortaya
çıkmıştır. Benzinli ve elektrikli gibi farklı tipte araçlardan oluşabilen karma filolar ile
çoklu dönemler boyunca istenilen servis kalitesinde operasyonları yürütebilmek için
stratejik ve operasyonel problemlerin dikkatli bir şekilde çözülmesi gerekmektedir.
Bu tezde, böyle bir problemin çözümü için sistemin mekân-zamansal ağ temsilin-
den faydalanılarak iki-aşamalı bir stokastik karma tam sayılı program önerilmiştir.
Servis sağlayacak bölgelerin park alanı kapasiteleri, tek yönlü ve gidiş-dönüş araç ki-
ralama talep senaryoları ve servis bölgeleri arasında araçların yerlerinin düzeltilmesi
operasyonları düşünülerek servis bölgelerinin lokasyonları ve kullanılacak araçların
satın alma kararları optimize edilmiştir. Sonrasında, sisteme belirli bir araç için olan
talebin başka bir araç ile sağlanması (talep ikamesi) opsiyonu eklenmiş ve çoklu
emtia formülasyonu genişletilerek bu durum da matematiksel modele eklenmiştir.
Ayrıca, bu durumda dahi ikinci aşama modelinin tamamen unimodüler kısıt matri-
sine sahip olduğu ispatlanmıştır. Problemlerin çözümü için ayrıştırma temelli dal-
ve-kesi algoritmaları geliştirilmiş ve algoritmalar farklı stratejilerle iyileştirilmiştir.
Vaka analizi çalışmalarında, stratejik ve operasyonel kararları talep ikamesi opsiy-
onu ile birlikte değerlendirmenin faydaları vurgulanmış ve servis bölgesi açma ve filo
yerleşim planı kararları için içgörüler elde edilmiştir. Ayrıca, önerilen çözüm algorit-
malarının performansını vurgulayan kapsamlı bir hesaplama çalışması sunulmuştur.
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1. INTRODUCTION

Car sharing has been an emerging area of smart city operations by utilizing vehicles
in a more efficient manner while reducing congestion and providing environmental
benefits with the help of its sharing ecosystem (U.S. Department of Transportation,
2016). In car sharing services, customers rent cars for a certain amount of time,
where they pick up and drop off the vehicles at regions that are served by these
service provider companies. Enabling pick up and drop off locations to be different
from each other provides flexibility to the customers by allowing one-way trips in
addition to the round-trips, in which these locations are the same. Nevertheless,
this necessitates more complex operational planning, as the car sharing companies
need to ensure rebalancing of vehicles between different service regions through-
out their daily operational plans. Another complexity arises when the customer
demand is not fully known in advance. Furthermore, different customer segments
can prefer different vehicle types, leading to consideration of various vehicle types
simultaneously in fleet management and allocation. Consequently, the car sharing
companies need to determine their service regions while taking into account a mix
fleet of vehicles and their operational planning under demand uncertainty.

Transportation sector constitutes the largest source of emissions of carbon dioxide in
the United States (U.S. Congressional Budget Office, 2022). Thus, increasing usage
of electric vehicles (EVs) within the mobility systems are projected to significantly
alleviate the impact of emissions over the next decade. Despite of their fuel-efficiency
and environmental benefits, the major concerns against the mass adoption of EVs are
the higher purchasing costs compared to internal combustion vehicles (ICVs), range
anxiety and limited charging infrastructure. Therefore, instead of the ownership of
EVs, car sharing companies can provide rental services to the customers through
these vehicles. This approach can further eliminate the concerns of the customers
by removing the higher cost of purchasing and providing charging infrastructure
within the parking stations operated by the car sharing companies (Brandstätter,
Leitner & Ljubić, 2020). As car sharing services are mainly operating in urban areas,
range anxiety can be mitigated with easier access to the charging infrastructure.
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Nevertheless, with the improvements in the battery technologies, most of the recently
sold EVs in the United States in 2022 have longer range with more than 240 miles
(U.S. Vehicle Technologies Office, 2023). Such a driving range is significantly larger
than the distance travelled in majority of the car sharing trips, considering the car
sharing operations of various companies in the United States (He, Mak, Rong &
Shen, 2017) and Germany (Ströhle, Flath & Gärttner, 2019). These factors can
eliminate the need of recharging of EVs throughout the day, which can make them
more attractive to the customers and easier to operate for the car sharing companies.

Although EVs are becoming an important component of the car sharing services,
their operations need to be jointly considered with the ICVs as these companies
can have existing fleets with ICVs and adoption of EVs by customers can require a
transitional period (Abouee-Mehrizi, Baron, Berman & Chen, 2021). For instance,
the largest car sharing companies, such as Zipcar and Share Now, operate a mix
fleet with electric and internal combustion vehicles. Thus, the joint consideration
of both vehicle types constitute a critical concern during this transition. Moreover,
since the purchasing cost of EVs is higher than ICVs, environmental consciousness
of the companies need to be explicitly captured while constructing the mixed fleet
of electric and internal combustion vehicles. Therefore, to increase the percentage
of the EVs in the fleet, we consider carbon emission constraints that should be
taken into account, which guarantee that the average carbon emission of the fleet is
limited by a given unit carbon emission allowance. In their study, Chang, Yu, Shen
& Xu (2017) investigate the effects of limiting the overall carbon emission rates on
the car usages and refer the trade-off between the carbon emission reduction and
the car sharing company’s revenue. Although a similar approach, which is adopted
from the most commonly used carbon emission calculation protocol (Greenhouse
Gas Protocol, 2023), is considered in production planning problems (Absi, Dauzère-
Pérès, Kedad-Sidhoum, Penz & Rapine, 2013,1), it has not been utilized in the
literature in optimizing the car sharing systems over a fleet of a company. To this
end, we consider restricting the average CO2 emission of the purchased cars.

As car sharing companies need to consider a mix fleet of vehicles, the demand for
each vehicle type need to be incorporated into the planning of service region de-
sign, operations and repositioning activities. To this end, leveraging substitution
between different vehicle types in satisfying customer demand provides flexibility in
operations with higher quality of service and results in higher revenues. In addition
to the vehicles with different fuel technologies, mix fleets can be classified in terms
of the vehicle segments based on a vehicle’s total cargo and interior passenger vol-
umes, and substitution between different vehicle types can become further favorable
in satisfying the customer demand corresponding to each segment. Although the
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value of substitution has been demonstrated across various operations management
problems in efficiently matching supply and demand, its value and integration to car
sharing operations have not been investigated. To address these problems, we study
the strategic and operational decision making of the car sharing companies with a
mix fleet of vehicles by capturing the uncertainty in customer demand and integra-
tion of substitution between different vehicle types. The goal of the companies is
to maximize their net profits over this multi-period planning problem, while taking
into account the revenue obtained from round-trip and one-way rentals and the cost
of serving regions and rebalancing vehicles between them for satisfying customer
demand. Consequently, our contributions can be summarized as follows:

• We propose a service region design and operational planning problem for a
car sharing company with a mix fleet of vehicles by using spatial-temporal
networks to model the round-trip and one-way rentals along with the reposi-
tioning trips. To integrate uncertainty in customer demand, we formulate this
problem as a two-stage stochastic mixed-integer program that maximizes the
net profit of the company, where the first-stage problem determines which re-
gions to serve and how to allocate the fleet of each vehicle type to each region
under a budget limitation and carbon emission considerations. Given these de-
cisions, the second-stage problem optimizes the operational plans under each
demand realization.

• We introduce substitution to this problem by allowing customer demand of
each vehicle type to be satisfied by its potential alternatives, with a penalty
incurred by the car sharing company from its regular prices for incentiviz-
ing such trips. To formulate this problem, we propose a two-stage stochastic
mixed-integer program that extends our spatial-temporal network representa-
tion to capture the substitute trips for round-trip and one-way rentals for each
vehicle type, and show that it generalizes our initial formulation.

• We develop an exact decomposition based algorithm to solve the resulting
challenging problems, where we leverage the structure of the proposed for-
mulations. We further provide computational enhancements to improve the
efficiency of the algorithm. Our computational study illustrates significant
speed-ups obtained by our solution algorithm with enhancements in compari-
son to the off-the-shelf solvers.

• We present an extensive case study based on real data sets. Our findings
demonstrate that introducing substitution to the car sharing operations sig-
nificantly impacts service region design, fleet management decisions, demand
satisfaction and operational plans. We provide various managerial insights
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that can be summarized as follows:

– When substitution is allowed between different vehicle types, customer
demand can be satisfied more, leading to higher quality of service and
higher profits. Depending on the demand distribution across different
service regions, this can further impact which regions to serve.

– When the budget of the company for constructing its fleet is smaller, the
impact of substitution becomes larger, leading to higher percentage im-
provements in net profit in comparison to the plans without substitution.

– With substitution, car sharing companies need to perform less relocation
trips between different service regions over time, since one-way trips can
be utilized more to satisfy the necessary rebalancing operations.

– Depending on the penalty amount of substitution incurred by the car
sharing company, amount of rental trips that are satisfied by alternative
vehicle types changes, where the smaller penalty values leads to higher
substitution rates.

– Carbon emission limitations considered affect the fleet allocation to each
vehicle type, such as electric and internal combustion vehicles, impacting
the value of substitution remarkably.

The remainder of the thesis is organized as follows. In Chapter 2, we provide the
relevant literature. In Chapter 3, we first present the problem statement with the
spatial-temporal network, and then formulate the service region and operational
planning problems by introducing substitution. In Chapter 4, we present our solu-
tion algorithm, and in Chapter 5, we provide our detailed case study with various
insights, showcasing the importance of the presented models and the computational
efficiency of the solution algorithm. Chapter 6 concludes the thesis with final re-
marks.
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2. LITERATURE REVIEW

The demand for car sharing services is increasing rapidly due to the recent econom-
ical and environmental circumstances, and the constant growth of transportation
requirements in daily lives, which brings new problems for car sharing companies.
Excessive competition and increasing costs also make companies to deal with the
strategic and operational decisions more seriously. Thus, the literature on various
aspects of car sharing systems is growing fast (Ferrero, Perboli, Rosano & Vesco,
2018; Nansubuga & Kowalkowski, 2021).

The problems observed in car sharing systems are studied from different perspec-
tives under different assumptions and modeling approaches. Earlier studies on car
sharing systems consider a deterministic setting where all problem parameters are
known beforehand (e.g. Boyacı, Zografos & Geroliminis, 2015; Chang et al., 2017;
de Almeida Correia & Antunes, 2012; Gambella, Malaguti, Masini & Vigo, 2018;
Nair & Miller-Hooks, 2014) while recent studies are mostly focused on stochastic
settings where some problem parameters, i.e. the demand, are not known with cer-
tainty (e.g. Çalık & Fortz, 2019; He et al., 2017; Kaspi, Raviv & Tzur, 2014; Lu,
Chen & Shen, 2018; Zhang, Lu & Shen, 2021). The latter studies also differ from
each other based on the modeling scheme used for dealing with uncertainty. Marko-
vian models (e.g. Kaspi et al., 2014), robust optimization (e.g. He et al., 2017) and
two-stage stochastic programming (e.g. Lu et al., 2018) are the three main modeling
approaches used in these studies. Besides, there are many studies using simulation
to evaluate different strategical and/or operational strategies for car sharing sys-
tems (e.g. Barth & Todd, 1999; Jorge, Correia & Barnhart, 2014; Kaspi et al., 2014;
Pfrommer, Warrington, Schildbach & Morari, 2014).

Since location decisions are expensive strategic decisions, they should be carefully
made by the firms to optimize their performances and operations over a long term.
We refer the interested reader to the book by Laporte, Nickel & Saldanha da Gama
(2015) for a review of different location problems and their application areas. Locat-
ing the stations and fleet sizing and positioning are the two main decisions considered
in the literature on car sharing systems. A variety of papers in the car sharing liter-
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ature consider both of these decisions (e.g. Boyacı et al., 2015; Çalık & Fortz, 2019;
de Almeida Correia & Antunes, 2012; He et al., 2017; Zhang et al., 2021), however
a fewer of these studies consider the additional operational decisions including the
accepted/rejected reservations, relocation, charging EVs, etc. On the other hand,
there are studies that focus on the operational decisions and optimize only the ve-
hicle flows between the stations to maximize the profit (e.g. Chang et al., 2017;
Gambella et al., 2018; Kaspi et al., 2014; Lu et al., 2018; Pfrommer et al., 2014).

Other aspects that create a distinction between the studies in the car sharing liter-
ature are the types of the vehicles (identical or different) and the types of the trips
allowed (one-way, round-trip or mixed) in the system. Although car sharing compa-
nies have several different car types in their fleets in practice, there are only a very
few studies that consider a mix fleet of vehicles (Abouee-Mehrizi et al., 2021; Chang
et al., 2017). To the best of our knowledge, Abouee-Mehrizi et al. (2021) is the only
study that considers a mixed fleet with a focus on the interplay between electric
and traditional vehicles. The authors model the problem as a queuing network and
derive conditions under which it is optimal to use EVs in the system. As pointed
out by Chang et al. (2017), one-way trips give a great flexibility to the customers
for planning their trips, but managing the system with one-way trips is a harder
and costly problem for the companies due to the supply-demand imbalance across
the stations caused by one-way trips. Accordingly, studies considering one-way trips
mostly focus on the relocation actions for mitigating this imbalance - see the review
by Illgen & Höck (2019) for the studies on relocation problems arising in one-way
car sharing systems. Ferrero et al. (2018) states that almost 50% of the papers
(among 137 papers published between 2001 and 2016) in the car sharing literature
focus on only one-way trips. However, in practice, the companies allowing one-way
trips also offer round trips with slightly less charges. For instance, ZipCar offers a
new service ZipCar Flex in UK where both one-way and round-trips are allowed.
Hence, considering both trip types in the system makes the study more realistic.

Increasing customers awareness and the successful performance increases in EVs,
encourage car sharing companies to include EVs in their fleets. Accordingly, the
research on green car sharing problems has grown recently (Ferrero et al., 2018).
When the fleet includes EVs, additional operations such as charging decisions for
EVs and locating charging stations might be also considered in the problem (e.g.
He, Ma, Qi & Wang, 2021; Zhang et al., 2021). Besides, the affects of car sharing
systems on carbon emissions are analyzed from different perspectives such as con-
sidering customer behaviour on transportation mode and car type selection, total
distance traveled, and availability of EVs (Amatuni, Ottelin, Steubing & Mogollón,
2020; Chang et al., 2017; Jung & Koo, 2018; Luna, Uriona-Maldonado, Silva & Vaz,
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2020). However, to the best of our knowledge, the carbon emission constraints are
considered in the design stage of a car sharing system only in Chang et al. (2017).
The carbon emission constraints of Chang et al. (2017) consider the actual flow of
vehicles and calculate the exact emission of the system. However, the common ap-
proach for determining the emission for a system, product, etc. is to determine the
average carbon emission per unit used or produced (Absi et al., 2013; Greenhouse
Gas Protocol, 2023), and we adapt this approach in our study.

Product substitution is widely used in manufacturing systems. In these systems,
production plans are arranged with respect to the stochastic demand. When the de-
mand is realized, some of the items may be stocked out. For these items, a company
or manufacturer may want to avoid loss of sales and utility. Thus, the company can
use downward substitution for this stocked out item. For this substitution system,
a higher valued production is substituted downward for a stock out lower valued
item to have higher customer satisfaction rates. However, it may not be profitable
to substitute for every item combination. So, production plan is optimized accord-
ingly. This system provides customers to have equally good alternatives. From
customers perspective, their utility increases. However, companies may encounter
some cost. There are different studies for product substitution. Dawande, Gavir-
neni, Mu, Sethi & Sriskandarajah (2010) developed a model to minimize the total
cost which is summation of changeover, holding and substitution cost. For the
manufacturer, demand for a lower valued product can be satisfied from inventory
by considering holding cost, from changing the produced product by considering
changeover cost, or from substitution by considering downward substitution cost.
Rao, Swaminathan & Zhang (2004) works on a single period multi-product inven-
tory problem, and one-way downward substitution is allowed. In the first stage,
they decide whether a product is produced and amount of the product. After the
demand is realized, substitution is made if necessary. Liu, Ma, Hu, Jin, Li, Chang
& Yu (2019) develops the optimal production strategy for a multi period stochastic
hybrid manufacturing/remanufacturing system. Downward substitution is allowed
to lower risk of lost sales. Similar to this study, Shumsky & Zhang (2009) models
a multi-period capacity allocation problem with multiple product types. After the
allocation decisions and demand realization, if a product is stocked out, by one level
downward substitution, demand can be satisfied. Different from downward subtitu-
tion studies, Xu, Yao & Zheng (2011) considers an inventory system over a selling
season with a single replenishment with two products that can be substituted for
each other. A substitution may be offered by supplier with a discount price and
this offer may be accepted by a customer. Feng, Li, Lu & Shanthikumar (2022) de-
veloped a formulation for a dynamic model that uses uncertain sources as product
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inventories and allocation of these products with consideration of the flexibility of
substitution to meet the uncertain demand. Different from some studies on network
revenue management their study analyzes decisions of firm with respect to inventory
allocation for substitution to meet the demand. The downward substitution in car
sharing systems is studied in Smet (2021). They focus on vehicle substitution in car
sharing systems with round-trip rentals. They developed two-stage stochastic model
to maximize expected profit under uncertain demand. First stage variables include
vehicle assignment of mixed fleet of cars to locations and second stage includes re-
course actions of acceptance or rejection of requests. Substitution is allowed, but
similar to the manufacturing processes, only downward substitution can be done.
On the other hand, only round-trip rentals are considered, thus vehicle movements
between different zones are ignored. This approach makes the problem easier with
respect to systems with one-way rentals.

Our motivation is to consider an operational problem for a mixed fleet of vehicles
under uncertain demand for both one-way and round-trip rentals with strategic re-
gion opening and fleet sizing decisions. To this end, we develop a mixed integer
stochastic programming model. In the first stage of which region opening, fleet
size of each car type with respect to the given budget and carbon emission rates,
and the allocation of this fleet to service zones are decided. In the second stage
we construct a spatial-temporal network for vehicle movements in each scenario to
represent revenue of uncertain demand for one-way and round-trip rentals. Fur-
thermore, we define substitution among each type of car to increase car sharing
company’s revenue by enhancing demand satisfaction levels and decreasing demand
loss. To increase computational efficiency, we develop a cutting-plane based solution
algorithm tailored for this problem. We study the effect of different parameter set-
tings for carbon emission and penalty rates, budget values, and value of substitution
for managerial insights. We summarize the related literature in Table 2.1 to indicate
the contribution of our work.
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3. PROBLEM FORMULATIONS

In this chapter, we formally introduce the service region and operational planning
problem for optimizing strategic and operational decisions of car sharing systems
with a mix fleet of cars under demand uncertainty and car type substitution. We
first present the problem statement with the spatio-temporal network that is used
for capturing the operational level decisions in Chapter 3.1. Then, we propose
the service region and operational planning problem under demand uncertainty in
Chapter 3.2. Finally, we generalize this problem and introduce car type substitution
in Chapter 3.3 by allowing demand of each car type to be satisfied by its alternatives.

3.1 Problem Statement and Spatial-Temporal Network

We consider a car sharing company that plans its service regions and fleet sizes for
its mix fleet of cars while taking into account operational decisions under demand
uncertainty. Customer demand can be identified through reservation of one-way
trips and round-trips, where the one-way trips allow customers to pick up and drop
off their cars at different service regions and the round-trips require customers to
drop off their cars to their pick up location. The operational decisions are based on
the car movements to satisfy one-way and round-trip customer demand and relocate
cars when it is necessary. In particular, relocation trips are conducted by the car
sharing company to rebalance the cars from one service region to another depending
on the fleet allocation and customer demand.

The goal of the car sharing company is to maximize its annual profit by consider-
ing the revenue obtained from the one-way and round-trips along with the cost of
relocating cars and operating service regions. Company has a budget limitation in
constructing its fleet, which consists of a mixture of car types to satisfy needs of
different customer groups. To this end, the cars can be classified in terms of the
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customer market segments they will be preferred by or in terms of its fueling tech-
nology such as internal combustion and electric vehicles. For this study, we focus
on an environmentally-aware company that aims to design its fleet while taking into
account its carbon emissions. Thus, purchase of internal combustion cars needs to
be adjusted with the purchase of electric cars to satisfy the emission targets for the
fleet.

We formulate this problem through two-stage stochastic mixed-integer programs,
where the first-stage problems determine the strategic decisions including which re-
gions to serve and how to construct the fleet and allocate to these regions. Given
these decisions, the second-stage problems optimize the operational plans corre-
sponding to the car movements resulting from one-way, round-trip and relocation
trips under each demand realization. We approach this problem through two differ-
ent formulations where the initial formulation does not allow substitution of demand
through different car types and the latter formulation introduces substitution to in-
crease profitability and customer satisfaction. Both formulations share the same
set of strategic level decisions, resulting in the same first-stage problem. How-
ever, the second-stage problems of these formulations differ as allowing substitution
complicates the problem significantly, requiring development of alternative formula-
tions. To capture the operational decisions, both formulations benefit from spatial-
temporal networks, which consider car movements on different service regions over
a multi-period planning horizon.

In the first-stage problem, the car sharing company determines which regions to
serve from the set of possible service regions, denoted by I. The binary variable zi

indicates whether region i ∈ I is opened or not. To construct its fleet and allocate
them to the open regions, the company considers car types from the set K. The
integer variable xik indicates the number of type k ∈ K cars allocated to region i ∈ I

at the beginning of the planning. To open and operate a service region i ∈ I, the
company needs to pay a fixed cost of fi. Furthermore, company has a budget of B for
purchasing the cars, where each car type k ∈ K has a cost of ck and emission amount
of ek. To adjust the carbon emissions of the fleet, a threshold value H is considered
to ensure that the average carbon emissions of the purchased vehicles is less than
this value. Since car sharing companies that utilize EVs can have charging stations
at the parking locations of these vehicles, we consider parking stations dedicated
to EVs to have charging facilities (Brandstätter et al., 2020; Chang et al., 2017).
This further allows the company to start their operational daily planning with fully
charged EVs which can remove the need for additional recharging throughout that
day considering the longer driving ranges.
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We consider the operational level problem over T time periods under demand un-
certainty. These time periods correspond to the subperiods of a representative day
for capturing the daily operations. To incorporate the operational level problem to
the strategic level problem, the net profit obtained by this problem is scaled by mul-
tiplying it with D, where D represents the number of operational days considered
in the annual planning. The uncertainty is represented through demand scenarios,
which are captured by set W , that are sampled from a given distribution. Each
scenario w ∈ W has a probability of occurrence πw. We represent the customer
demand through one-way trips and round-trips between service regions and time
periods. In particular, for trips starting at period t ∈ {0,1, . . . ,T −1} and ending at
period s ∈ {1, . . . ,T}, the parameter dijktsw represents the demand for one-way trips
from region i ∈ I to region j ∈ I \{i} of car type k ∈ K in scenario w ∈ W , and the
parameter diktsw represents the demand for round-trips for region i ∈ I of car type
k ∈ K in scenario w ∈ W .

To characterize the movement of the cars in the operational level problem, we con-
struct a spatial-temporal network G = (N,A) with a node set N and an arc set A.
Each node corresponds to a service region and time pair, which is denoted in the
form of nit representing region i ∈ I at period t ∈ {0,1, · · · ,T}, where t = 0 repre-
sents the status at the beginning of the operational planning. The directed arcs in
this network indicate the movement of cars over time and space from one region to
another from one time period to another. This network uses arcs of four different
types as follows:

• One-way arcs in the form (nit,njs) correspond to the car flows of one-way trips
from region i to region j from period t to period s. The capacity of this arc
in scenario w for each car type k depends on the demand amount dijktsw.

• Round-trip arcs in the form (nit,nis) correspond to the car flows of round-trips
for region i from period t to period s. The capacity of this arc in scenario w

for each car type k depends on the demand amount diktsw.

• Relocation arcs in the form (nit,nj,t+ζij
) correspond to the car flows organized

by the car sharing company to ensure rebalancing from region i to region j

from period t to t + ζij . Here, ζij denotes the time that is needed to travel
from region i to j. These arcs are assumed to have sufficiently large capacity
to ensure relocation operations.

• Idle arcs in the form (nit,ni,t+1) for t = 1, . . . ,T −1, correspond to the cars that
are not used at region i at the end of period t after considering the flows on
the relevant one-way arcs, round-trip arcs and relocation arcs. The capacities
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of these arcs for each car type k is the corresponding parking capacity of the
region i, which is Ck

i .

Table 3.1 Capacities and Unit Flow Revenues of Arc Types

Arc Type Capacity (uakw) Revenue (rak)
Idle Arc a = (nit,ni,t+1) Ck

i 0
One-Way Arc a = (nit,njs) dijktsw rone

k (s− t)
Round-Trip Arc a = (nit,nis) diktsw rtwo

k (s− t)
Relocation Arc a = (nit,nj,t+ζij

) ∞ −rrelζij

We denote the sets of one-way, round-trip, relocation and idle arcs by Aone, Atwo,
Arel, Aidle, respectively, where A represents the union of these four arc sets. Fur-
thermore, to represent the arcs whose origin node is nit, we define the set σ+(nit),
and for the arcs whose destination node is nit, we define the set σ−(nit). Table
3.1 provides a summary of each arc type belonging to the spatial-temporal network
with their arc capacities and unit flow revenues. For representing the arc capaci-
ties of each arc a for car type k in scenario w, we define the parameter uakw. For
representing the unit revenue of each arc a for car type k, we define the parameter
rak. In terms of the costs, one-way and round-trip arcs return profit by satisfying
customer demand, whereas relocation arcs incur cost due to the resources used by
the car sharing company to ensure rebalancing between different regions and time
periods. Since car sharing companies generally adopt a time-based payment system
that prices the trips based on their durations, the profit of one-way and round-trip
arcs are computed based on the rental duration. Here, rone

k and rtwo
k represent the

revenue of a car type k per time unit for one-way trips and round-trips, respectively.
Similarly, the cost of relocation arcs depend on the duration of the arc multiplied
by the unit time cost of relocating cars, denoted by rrel. For the idle arcs, company
does not incur any additional cost, as the parking costs are included in the fixed
cost of operating the service regions.

Figure 3.1 A Spatial-Temporal Network Example

nA,0 nA,1 nA,2

nB,0 nB,1 nB,2

Types of Arcs:

Idle Arc

Relocation Arc
Round-Trip Arc

One-Way Arc

Figure 3.1 provides a visual representation of the spatial-temporal network with two
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regions A and B over three time periods {0,1,2} with sample one-way and round-
trips. We note that each car type k ∈ K corresponds to a different commodity that
flows through our spatial-temporal network with its own set of one-way, round-trip,
relocation and idle arcs. When substitution is integrated into this spatial-temporal
network, then the demand of a customer for a specific car type can be satisfied
by an another type of car, which implies that one-way and round-trip arcs can be
shared across different commodities in the network. To address this issue, we define
additional commodities as we introduce the operational problem with substitution
in Chapter 3.3 by extending the flows in the arcs from the commodity of each car
type to its multiple commodity types to explicitly capture the potential substitutions
between different types of cars for satisfying the customer demand.

3.2 Service Region and Operational Planning Problem (SROP)

To address the operational planning problem of the car sharing company, we define
the integer decision variable yakw, which represents the number of cars of type k ∈ K

in scenario w ∈ W that are flowing on arc a ∈ A over the spatial-temporal network.
Combining above, we formulate the service region and operational planning (SROP)
problem as follows:

max −
∑
i∈I

fizi +D
∑

w∈W

∑
a∈A

∑
k∈K

πwrakyakw(3.1a)

s.t. xik ≤ Ck
i zi ∀i ∈ I, ∀k ∈ K,(3.1b) ∑

i∈I

∑
k∈K

ckxik ≤ B,(3.1c)

∑
i∈I

∑
k∈K

ekxik ≤ H
∑
i∈I

∑
k∈K

xik,(3.1d)

∑
a∈σ+(nit)

yakw −
∑

a∈σ−(nit)
yakw =


xik if t = 0

0 if t ∈ {1, ...,T −1}

−xik if t = T

(3.1e)

∀i ∈ I, ∀k ∈ K, ∀w ∈ W

yakw ≤ uakwzi ∀a = (nit,nis) ∈ Atwo, ∀k ∈ K, ∀w ∈ W,(3.1f)

yakw ≤ uakwzi ∀a = (nit,njs) ∈ Aone, ∀k ∈ K, ∀w ∈ W,(3.1g)

yakw ≤ uakwzj ∀a = (nit,njs) ∈ Aone, ∀k ∈ K, ∀w ∈ W,(3.1h)

yakw ≤ Ck
i zi ∀a = (nit,ni,t+1) ∈ Aidle, ∀k ∈ K, ∀w ∈ W,(3.1i)
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zi ∈ {0,1} ∀i ∈ I,(3.1j)

xik ∈ Z+ ∀i ∈ I, ∀k ∈ K,(3.1k)

yakw ∈ Z+ ∀a ∈ A, ∀k ∈ K, ∀w ∈ W.(3.1l)

The objective function (3.1a) maximizes the total profit by considering the cost of op-
erating service regions, expected revenue obtained from satisfying customer demand
and expected cost of rebalancing cars between opened service regions. Constraint
(3.1b) ensures that the number of cars allocated to each open service region for
each car type does not exceed their associated parking capacities. Constraint (3.1c)
corresponds to the total purchasing budget of the company in constructing its mix
fleet of cars. Constraint (3.1d) limits the total adjusted amount of CO2 emissions
by restricting the average emission amount over the purchased vehicles. In other
words, the average carbon emission of the fleet which is given by

∑
i∈I

∑
k∈K ekxik∑

i∈I

∑
k∈K xik

should not exceed the unit carbon allowance H for each car the company owns.

Constraints (3.1e) are the flow balance constraints over the spatial-temporal network
under every scenario w ∈ W . More specifically, at the beginning of the planning for
the operational problem with T time periods, each open service region i ∈ I has xik

cars for each car type k ∈ K. During the intermediate time periods t ∈ {1, · · · ,T −1},
the number of cars leaving each node of the network is equal to the number of cars
entering that node for every car type k ∈ K. At the last operational time period
T , each open service region i ∈ I has xik cars for each car type k ∈ K, returning to
their initial allocation. This consideration is done to have the same initial number
of cars at each region for operating the car share system every T periods. Moreover,
as EVs are considered, allowing these vehicles to be fully charged at their parking
spots at the end of T time periods is necessary.

Constraint (3.1f) guarantees that the flow on the arcs corresponding to the round-
trips should not exceed the capacity of their arcs over the open service regions.
Similarly, constraints (3.1g) and (3.1h) are for the flows corresponding to the one-
way trips by limiting the flow amounts on the relevant arcs when both origin and
destination regions are opened. Constraint (3.1i) considers the parking capacity of
each open service region through the idle arcs for each car type. The remainder
constraints ensure the integrality of the service region opening, fleet allocation and
operational car flow decisions.

Next in order, we reformulate the SROP problem (3.1) as a two-stage stochastic
program in (3.2), where the first-stage represents the strategic level planning prob-
lem and determines the service region opening z and fleet allocation decisions x.
Given these decisions, we define the second-stage problem for every scenario w ∈ W
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as θw(z,x) optimizing the operational plan over the spatial-temporal network by
maximizing the expected revenue minus the relocation costs.

max −
∑
i∈I

fizi +D
∑

w∈W

πwθw(z,x)(3.2a)

s.t. (3.1b)− (3.1d),

zi ∈ {0,1}, xik ∈ Z+ ∀i ∈ I, ∀k ∈ K,(3.2b)

where for each scenario w;

θw(z,x) =max
∑
a∈A

∑
k∈K

rakyakw(3.3a)

s.t.
∑

a∈σ+(nit)
yakw −

∑
a∈σ−(nit)

yakw =


xik if t = 0

0 if t ∈ {1, ...,T −1}

−xik if t = T

(3.3b)

∀i ∈ I, ∀k ∈ K,

yakw ≤ uakwzi ∀a = (nit,nis) ∈ Atwo, ∀k ∈ K,(3.3c)

yakw ≤ uakwzi ∀a = (nit,njs) ∈ Aone, ∀k ∈ K,(3.3d)

yakw ≤ uakwzj ∀a = (nit,njs) ∈ Aone, ∀k ∈ K,(3.3e)

yakw ≤ Ck
i zi ∀a = (nit,ni,t+1) ∈ Aidle, ∀k ∈ K,(3.3f)

yakw ∈ Z+ ∀a ∈ A, ∀k ∈ K.(3.3g)

This reformulation allows the second-stage problem to be solved efficiently by relax-
ing the integrality assumption on the flow variables y as follows.

Proposition 1. Constraint matrix of the subproblem (3.3) under any scenario w ∈
W is totally unimodular.

Proof. We observe that constraints (3.3b) represent the flow conservation con-
straints, corresponding to a node-arc incidence matrix, which is totally unimodular.
Since the capacity constraints (3.3c) - (3.3f) define a unit row for each round-trip
arc, two unit rows for each one-way arc, and a unit row for each idle arc, we can
ignore them. Then, the result follows. □
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3.3 Service Region and Operational Planning Problem with

Substitution (SROP-S)

A challenge for the SROP problem is that the demand for one-way trips and round-
trips are lost if there are no available cars in the type requested by the customers.
Nevertheless, in practice, car sharing companies can substitute between different car
types by providing alternative options to the customers in case the specific car type
requested by the customer is not available. This leads to flexibility in operations,
higher customer satisfaction and better quality of service, which are desirable. To
address this issue within planning, we introduce substitution to the SROP problem
by allowing demand of one car type to be satisfied by another car type.

To model this problem over the spatial-temporal network, we introduce additional
commodities in the form of a flow of a specific car type that is used for satisfying
demand of the same or an alternative type of car. We define the set of commodities
as L, where each commodity l ∈ L can be represented as the flow of car type k1 ∈ K

that is used for satisfying the demand of car type k2 ∈ K. To this end, if k1 is
equal to k2, then the demand of that car type is satisfied by itself, which is the case
with no substitution. However, if k1 is different than k2, then substitution occurs
by satisfying the demand of car type k2 with a different type k1. Subsequently, we
propose two different commodity sets for each car type k ∈ K. First, let F k represent
the set of commodities that use car type k ∈ K. Secondly, let F̂ k represent the set
of commodities that can be used to satisfy the demand for car type k ∈ K. We note
that for every car type k ∈ K, the set F k ∩ F̂ k returns a single commodity which
represents the case without substitution where the demand of car type k is satisfied
by itself. Hence, the commodities in the sets ∪k∈K(F k ∩ F̂ k) and L\∪k∈K(F k ∩ F̂ k)
represent the no substitution and substitution cases, respectively. Additionally,
the commodity set L can be written as L = ∪k∈KF k = ∪k∈KF̂ k. To limit the
substitution amount and potential customer dissatisfaction, we define a penalty
parameter for substituted rentals as pl per time unit for every l ∈ L \ ∪k∈K(F k ∩
F̂ k), which is discounted from rental price of the car. Thus, for each car type
k ∈ K, we revise the revenue parameter defined in Table 3.1 by introducing r′

al for
every a ∈ Aone ∪ Atwo and l ∈ L, where r′

al = rak for l ∈ F k ∩ F̂ k, and r′
al = rak − pl

for l ∈ F̂ k \ (F k ∩ F̂ k). Since substitution is utilized for satisfying demand, the
idle and relocation arcs are only defined over the commodities l ∈ ∪k∈K(F k ∩ F̂ k),
corresponding to the set of commodities representing the flows with no substitution,
which further represents the commodities considered in the SROP problem. Thus,
for each car type k ∈ K, for every a ∈ Aidle ∪Arel, r′

al = rak for l ∈ F k ∩ F̂ k.
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For illustrating the commodities and integration of substitution to the operational
planning problem, we provide the following example setting with two car types.

Example 1 (Multicommodity Flows with Substitution). We consider a car sharing
company that classifies its cars into two types based on its fueling technology. More
specifically, let k = E represent electric vehicles and let k = G represent internal
combustion vehicles. As we consider substitution, the demand of each vehicle type
can be satisfied by the other vehicles. To this end, we define four commodities to
represent these relationships:

• Commodity E-E: Electric cars used to satisfy the demand for electric cars

• Commodity E-G: Electric cars used to satisfy the demand for internal combus-
tion cars

• Commodity G-G: Internal combustion cars used to satisfy the demand for in-
ternal combustion cars

• Commodity G-E: Internal combustion cars used to satisfy the demand for elec-
tric cars

First, observe that commodities E-E and G-G correspond to the car flows with no
substitution where the demand of each car type is satisfied by the same type of car.
On the other hand, commodities E-G and G-E represent the substitution possibilities
by allowing the demand of each car type to be satisfied by the other one. By using
these four different commodities, we define F E = {E-E,E-G} for electric cars and
F G = {G-G,G-E} for internal combustion cars, since commodities E-E and E-G use
electric cars, whereas commodities G-G and G-E use internal combustion cars. On
the other hand, we define F̂ E = {E-E,G-E} for electric cars and F̂ G = {E-G,G-G}
for internal combustion cars, to construct the sets of commodities that are used for
satisfying the demand of each car type.

Under this setting, the flows on the spatial-temporal network is in terms of these
commodities, where one-way and round-trip arcs have car flows for each of the four
commodities, and idle and relocation arcs include flows only for the commodities
E-E and G-G. Table 3.2 provides the objective function coefficients of each of the
arc flows over the commodities in the operational problem by using the values of
the revenue parameter r′

al over every a ∈ A and l ∈ L, whenever the corresponding
commodity is defined on that arc.
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Table 3.2 Objective Function Coefficients of the Multicommodity Arc Flows in the
Operational Problem for the Example (r′

al)

Commodities Using Car Type E Commodities Using Car Type G
Arc types E-E E-G G-G G-E

Idle a = (nit,ni,t+1) 0 - 0 -
One-way a = (nit,njs) rone

E (s− t) (rone
E −pE-G)(s− t) rone

G (s− t) (rone
G −pG-E)(s− t)

Round-trip a = (nit,nis) rtwo
E (s− t) (rtwo

E −pE-G)(s− t) rtwo
G (s− t) (rtwo

G −pG-E)(s− t)
Relocation a = (nit,nj,t+ζij

) −crel
E ζij - −crel

G ζij -

For constructing the operational problem with substitution, we introduce the integer
variable yalw, for a ∈ Aone ∪Atwo, l ∈ L and a ∈ Aidle ∪Arel, l ∈ ∪k∈KF k ∩ F̂ k, which
indicates the number of cars of commodity l in scenario w ∈ W that are flowing on arc
a over the spatial-temporal network. We formulate the resulting Service Region and
Operational Planning with Substitution (SROP-S) problem as a two-stage stochastic
program in (3.4). Similar to the SROP problem, the first-stage problem optimizes
the service region opening z and fleet allocation decisions x. Given these decisions,
we revise the second-stage problem for every scenario w ∈ W by defining θ̄w(z,x)
that allows substitution between different car types.

max −
∑
i∈I

fizi +D
∑

w∈W

πwθ̄w(z,x)(3.4a)

s.t. (3.1b)− (3.1d),

zi ∈ {0,1}, xik ∈ Z+ ∀i ∈ I, ∀k ∈ K,(3.4b)

where for each scenario w;

θ̄w(z,x) = max
∑

a∈Aone∪Atwo

∑
l∈L

r′
alyalw +

∑
a∈Arel

∑
k∈K

∑
l∈F k∩F̂ k

r′
alyalw(3.5a)

s.t.
∑

l∈F k

∑
a∈σ+(nit)

yalw −
∑

l∈F k

∑
a∈σ−(nit)

yalw =


xik if t = 0

0 if t ∈ {1, ...,T −1}

−xik if t = T

(3.5b)

∀i ∈ I, ∀k ∈ K,∑
l∈F̂ k

yalw ≤ uakwzi ∀a = (nit,nis) ∈ Atwo, ∀k ∈ K,(3.5c)

∑
l∈F̂ k

yalw ≤ uakwzi ∀a = (nit,njs) ∈ Aone, ∀k ∈ K,(3.5d)

∑
l∈F̂ k

yalw ≤ uakwzj ∀a = (nit,njs) ∈ Aone, ∀k ∈ K,(3.5e)

19



yalw ≤ Ck
i zi ∀a = (nit,ni,t+1) ∈ Aidle, ∀l ∈ F k ∩ F̂ k, ∀k ∈ K,(3.5f)

yalw ∈ Z+ ∀a ∈ Aone ∪Atwo, l ∈ L,(3.5g)

yalw ∈ Z+ ∀a ∈ Aidle ∪Arel, l ∈ F k ∩ F̂ k, ∀k ∈ K.(3.5h)

Under each demand realization of scenario w ∈ W , objective function of the second-
stage problem (3.5a) maximizes the revenue obtained from one-way and round-trips
minus the relocation cost and penalty of substitution. Constraints (3.5b) correspond
to the flow balance constraints. Different than the second-stage problem of the
SROP problem, for each car type k ∈ K, the flows over the multicommodities are
summed over F k, the set of commodities using car type k, to ensure the flow balance.
Constraints (3.5c) - (3.5e) are analogous to constraints (3.3c) - (3.3e) in representing
round-trips and one-way trips, whereas the flows for each car type k ∈ K are summed
over F̂ k to consider the set of car flows satisfying the demand of car type k. Lastly,
constraint (3.5f) ensures that for each car type k ∈ K, the idle cars at the end of each
period are within the parking limit of the corresponding region and flow through its
regular commodity as defined through F k ∩ F̂ k.

Proposition 2. Constraint matrix of the subproblem (3.5) under any scenario w ∈
W is totally unimodular.

Proof. Proof: Consider the constraint matrix of (3.5b) -(3.5f) for a given scenario
w ∈ W . Observe that the balance constraints (3.5b) define a node-arc incidence
matrix. The remaining constraints (3.5c)-(3.5f) partition the arc set into three
groups: (3.5c) is written only for round-trip arcs, (3.5d) and (3.5e) are for one-way
arcs and (3.5f) is for idle arcs. Since (3.5f) defines a unit row for each idle arc, we
can ignore them. Moreover, both Fk and F̂k partition the commodity set L into k

subsets. In other words, a variable yalw is seen only in one of the constraints (3.5c)
if a ∈ Atwo. Similarly, yalw is seen in one of the constraints (3.5d) and in one of the
(3.5e) if a is a ∈ Aone.

Let G1,G2,G3,G4 be the set of rows due to constraints (3.5b), (3.5c), (3.5d), and
(3.5e), respectively. We will prove that for any subset R of rows of the constraint
matrix, there exists a partition R1, R2 of R such that the difference between these
subsets is {0,1,−1} in any column. For any R, we construct our rule for partition
as follows:

• All rows in R ∩G1 will be included in R1.

• Each row in R ∩ G2 corresponds to an arc a = (nit,nis) ∈ Atwo and car type
k ∈ K:
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– If R ∩ G1 includes the rows for i, t,k and i,s,k, then we can include the
row for a,k to any of R1 and R2.

– If R ∩ G1 includes the row for i, t,k but not for i,s,k, then we add the
row for a,k to R1.

– If R ∩ G1 includes the row for i,s,k but not for i, t,k, then we add the
row for a,k to R2.

• Each row in R∩G3 and R∩G4 corresponds to an arc a = (nit,njs) ∈ Aone and
car type k ∈ K.

– If R∩ (G3 ∪G4) includes two rows for a,k, then we can include one of the
rows to R1 and the other one to R2.

– If R ∩ (G3 ∪G4) includes only one row for a,k, then

∗ if R ∩ G1 includes both of the rows for i, t,k and j,s,k, then we can
include the row for a,k to any of R1 and R2.

∗ if R ∩ G1 includes the row for i, t,k but not for j,s,k, then we add
the row for a,k to R1.

∗ if R ∩ G1 includes the row for j,s,k but not for i, t,k, then we add
the row for a,k to R2.

Note that the partition of rows in R ∩ G2 and R ∩ (G3 ∪ G4) are independent from
each other since they include different columns, i.e. G2 includes the variables defined
for two-way arcs while G3 ∪ G4 includes the variables for one-way arcs. Hence, due
to the construction of R1 and R2, the difference between the summation of rows in
R1 and R2 will be in {0,−1,1} for any column (variable), and the result follows. □

We benefit from the totally unimodularity of the constraint matrix of this second-
stage problem as we design our exact solution algorithm to solve the challenging
SROP-S problem.

Remark 1. We note that the SROP-S problem is a generalization of the SROP
problem. More specifically, when F k = F̂ k for every car type k ∈ K, then each
of these sets only include one commodity flow corresponding to the case when the
demand of car type k is satisfied by the car type k itself. This reduces the SROP-
S problem to the SROP problem as substitution is disregarded. Thus, by adjusting
the car types allowed for substitution, the car sharing company can determine its
flexibility level through leveraging the SROP-S problem.
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4. SOLUTION ALGORITHM

The two-stage stochastic programming models presented in the previous chapter
are large-scale mixed integer programs (MIP) due to the potentially large number
of scenario-dependent decision variables and constraints. The most popular pro-
cedure for solving this type of large-scale stochastic optimization models is to use
the L-Shaped method (Van Slyke & Wets, 1969) which is actually the application
of Benders decomposition (Benders, 1962) for solving two-stage stochastic linear
programs. The main advantage of Benders decomposition for solving two-stage
stochastic programs is that the second-stage problem decomposes for each scenario
when the first-stage variables are fixed. By benefiting from our results in Proposi-
tions 1 and 2, we make use of this decomposing structure of our stochastic MIPs to
develop an efficient branch-and-cut algorithm with computational enhancements.

In the subsequent sections, we present our Benders decomposition algorithm for
SROP and SROP-S, which is an iterative process by solving a relaxed master prob-
lem (RMP) and generating cuts to be added for this problem accordingly. For both
SROP and SROP-S, we keep the first stage decision variables z and x in the Benders
RMP, but as their second-stage problems are different, the subproblems solved and
the cuts generated are different as explained below.

4.1 Benders Decomposition for SROP

In our decomposition algorithm for SROP, in addition to the first stage decision
variables z and x that will be considered in RMP we define auxiliary decision vari-
ables Qw to approximate the optimal value of the subproblem for scenario w ∈ W .
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Accordingly, at an intermediate step of the algorithm, we solve the following RMP:

max −
∑
i∈I

fizi +D
∑

w∈W

πwQw(4.1a)

s.t. (3.1b)− (3.1d),(3.1j),(3.1k)

O(z,x,Q) ≥ 0,(4.1b)

Qw ≤ Uw ∀w ∈ W,(4.1c)

where O(z,x,Q) ≥ 0 represents the optimality cuts generated and added to RMP
until that iteration, and Uw represents an upper bound for the net profit that can be
obtained under scenario w ∈ W . Since keeping the cars idle in their service regions in
all periods through the idle arcs is a feasible solution for the subproblem (3.3) under
any z and x solution, Benders feasibility cuts are not needed in our algorithm. Uw

can be easily determined as the total profit of satisfying all demand under scenario
w ∈ W by ignoring the decisions of the problem.

Given an optimal solution (ẑ, x̂,Q̂) for RMP, we solve the dual of the second-stage
problem (3.3) as our subproblem for each scenario w ∈ W in (4.2). To this end, dual
variables (β,α,γ1,γ2,λ) are associated with the constraints (3.3b), (3.3c), (3.3d),
(3.3e), (3.3f), respectively.

min
∑
i∈I

∑
k∈K

x̂ik(βi0kw −βiT kw)+
∑
i∈I

∑
a∈Atwo(i)

∑
k∈K

uakwẑiαakw

+
∑
i∈I

∑
a∈Aone(i+)

∑
k∈K

uakwẑiγ
1
akw +

∑
i∈I

∑
a∈Aone(i−)

∑
k∈K

uakwẑiγ
2
akw

+
∑
i∈I

∑
k∈K

Ck
i ẑi(

∑
a∈Aidle(i)

λakw)

(4.2a)

s.t. βitkw −βjskw +γ1
akw +γ2

akw ≥ rak a = (nit,njs) ∈ Aone, k ∈ K,(4.2b)

βitkw −βiskw +αakw ≥ rak ∀a = (nit,nis) ∈ Atwo, k ∈ K,(4.2c)

βitkw −βj,t+ζij ,kw ≥ rak ∀a = (nit,nj,t+ζij
) ∈ Arel, k ∈ K,(4.2d)

βitkw −βi,t+1,kw +λakw ≥ 0 ∀a = (nit,ni,t+1) ∈ Aidle, k ∈ K,(4.2e)

γ1
akw,γ2

akw ≥ 0 ∀a ∈ Aone, k ∈ K,(4.2f)

αakw ≥ 0 ∀a ∈ Atwo, k ∈ K,(4.2g)

λakw ≥ 0 ∀a ∈ Aidle, k ∈ K,(4.2h)

where Atwo(i), Aone(i+), Aone(i−), Aidle(i) represent the subsets of arcs that are
defined for region i ∈ I. More specifically, Atwo(i) = {a = (nit,nis) ∈ Atwo : t,s ∈
{0, . . . ,T}, t < s} represents the set of all round-trip arcs incident to nodes defined
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for region i ∈ I, Aone(i+) = {a = (nit,njs) ∈ Aone : t,s ∈ {0, . . . ,T}, t < s, j ∈ I} and
Aone(i−) = {a = (njt,nis) ∈ Aone : t,s ∈ {0, . . . ,T}, t < s, j ∈ I} represent the set of
all one-way arcs with the origin and destination, respectively, of region i ∈ I, and
Aidle(i) = {a = (nit,ni,t+1) ∈ Aidle : t ∈ {0, . . . ,T − 1}} gives the set of all idle arcs
defined for region i ∈ I.

At each iteration of the algorithm, we first solve the RMP and get its optimal
solution (ẑ, x̂,Q̂). Given this solution, we solve the subproblem (4.2) and obtain
its optimal solution as (β̂,α̂, γ̂1, γ̂2, λ̂) for every scenario w ∈ W . If its objective
function value is overestimated in the current optimal solution of RMP, i.e. if the
optimal value of the subproblem for w is smaller than Q̂w, then we add the following
optimality cut to RMP for scenario w ∈ W :

∑
i∈I

∑
k∈K

xik(β̂i0kw − β̂iT kw)+
∑
i∈I

∑
a∈Atwo(i)

∑
k∈K

uakwziα̂akw +
∑
i∈I

∑
a∈Aone(i+)

∑
k∈K

uakwziγ̂
1
akw

+
∑
i∈I

∑
a∈Aone(i−)

∑
k∈K

uakwziγ̂
2
akw +

∑
i∈I

∑
k∈K

Ck
i zi(

∑
a∈Aidle(i)

λ̂akw)−Qw ≥ 0

(4.3)

4.2 Benders Decomposition for SROP-S

Similar to the previous section, to solve SROP-S with Benders decomposition we
first introduce auxiliary decision variables Q̄w to approximate the optimal value of
the subproblem for scenario w ∈ W . Hence, the following RMP will be solved at an
intermediate iteration of the algorithm for SROP-S:

max −
∑
i∈I

fizi +D
∑

w∈W

πwQ̄w(4.4a)

s.t. (3.1b)− (3.1d),(3.1j),(3.1k)

Ō(z,x,Q̄) ≥ 0,(4.4b)

Q̄w ≤ Ūw w ∈ W,(4.4c)

where Ō(z,x,Q̄) ≥ 0 includes optimality cuts generated until that iteration. Since
SROP-S is a generalization of SROP, the feasible solution of keeping all vehicles idle
in their initial regions for all periods is also a feasible solution for the subproblem of
SROP-S. Hence, we do not need to consider feasibility cuts in our algorithm. The
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upper bound Ūw can be computed in a similar manner as in SROP model.

Given an optimal solution (ẑ, x̂, ˆ̄Q) for RMP, we solve the dual of the second-stage
problem (3.5) as our subproblem for each scenario w ∈ W by relating the dual
variables (β,α,γ1,γ2,λ) with the constraints (3.5b)-(3.5f), respectively:

min
∑
i∈I

∑
k∈K

x̂ik(βi0kw −βiT kw)+
∑
i∈I

∑
a∈Atwo(i)

∑
k∈K

uakwẑiαakw

+
∑
i∈I

∑
a∈Aone(i+)

∑
k∈K

uakwẑiγ
1
akw +

∑
i∈I

∑
a∈Aone(i−)

∑
k∈K

uakwẑiγ
2
akw

+
∑
i∈I

∑
k∈K

Ck
i ẑi(

∑
a∈Aidle(i)

λakw)

(4.5a)

s.t.βitk1w −βjsk1w +γ1
ak2w +γ2

ak2w ≥ ral ∀a = (nit,njs) ∈ Aone,(4.5b)

∀k1,k2 ∈ K, l ∈ F k1
∩ F̂ k2

,

βitk1w −βisk1w +αak2w ≥ ral ∀a = (nit,nis) ∈ Atwo, ∀k1,k2 ∈ K,(4.5c)

l ∈ F k1
∩ F̂ k2

,

βitkw −βj,t+ζij ,kw ≥ ral ∀a = (nit,nj,t+ζij
) ∈ Arel, ∀k ∈ K,(4.5d)

l ∈∈ F k ∩ F̂ k,

βitkw −βi,t+1,kw +λakw ≥ 0 ∀a = (nit,ni,t+1) ∈ Aidle, ∀k ∈ K,(4.5e)

γ1
akw,γ2

akw ≥ 0 ∀a ∈ Aone, ∀k ∈ K,(4.5f)

αakw ≥ 0 ∀a ∈ Atwo, ∀k ∈ K,(4.5g)

λakw ≥ 0 ∀a ∈ Aidle, ∀k ∈ K.(4.5h)

Let (β̂,α̂, γ̂1, γ̂2, λ̂) be the optimal solution of the dual subproblem for scenario
w ∈ W given by (4.5). If its objective function value is overestimated in the current
optimal solution (ẑ, x̂, ˆ̄Q) of RMP, i.e. if the optimal value of the subproblem for w

is smaller than ˆ̄Qw, then we add the following optimality cut to RMP for scenario
w ∈ W :

∑
i∈I

∑
k∈K

xik(β̂i0kw − β̂iT kw)+
∑
i∈I

∑
a∈Atwo(i)

∑
k∈K

uakwziα̂akw +
∑
i∈I

∑
a∈Aone(i+)

∑
k∈K

uakwziγ̂
1
akw

+
∑
i∈I

∑
a∈Aone(i−)

∑
k∈K

uakwziγ̂
2
akw +

∑
i∈I

∑
k∈K

Ck
i zi(

∑
a∈Aidle(i)

λ̂akw)− Q̄w ≥ 0

(4.6)
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4.3 Computational Enhancements

To enhance our solution algorithm, we implement the Bender’s decomposition al-
gorithms by building a single search tree for the RMP. This is accomplished by
employing the lazy constraint callback feature of the off-the-shelf solver. When a
new incumbent solution is found in the branch-and-cut tree, the lazy constraint
callback is invoked to solve the subproblems for each scenario for the current in-
cumbent solution. If the optimal value of the subproblem for w ∈ W is smaller than
Qw (or Q̄w), then an optimality cut is added to the RMP. If no cut is violated
for any scenario, then the current solution is considered as a new incumbent solu-
tion. Following the literature, we use the multi-cut version of the algorithm where
an optimality cut is added separately for each subproblem (Rahmaniani, Crainic,
Gendreau & Rei, 2017).

The naive implementation of the Benders or L-Shaped algorithm mostly does not
perform well because of the information lost in RMP due to the decision variables
and constraints removed to the subproblems. Rahmaniani, Crainic, Gendreau &
Rei (2018) summarizes, tests and compares different acceleration strategies that are
proposed and used in the literature to overcome this drawback of the algorithm. In
our computational experiments, we test the following acceleration strategies for our
branch-and-cut algorithms for SROP and SROP-S:

1.1 Initial solution: As a warm-start strategy, we provide initial solutions for the
problems by solving relatively small-scale problems with a randomly selected
single scenario. In other words, we solve the MIP formulations of the problems
by assuming that we have a single scenario, and we use the first stage solution
obtained from these MIPs as an initial solution for our RMP.

1.2 Initial Benders cuts: Given the initial solution found in the previous item,
we construct the corresponding Benders optimality cuts for each subproblem,
and add these cuts to RMPs as initial cuts. These cuts enable the algorithm
to have better (smaller) upper bounds in the earlier iterations.

1.3 Improving the LP relaxation: Lazy constraint callback and user cut
callback are two important features of the off-the-shelf solvers that add cuts
to the problems at different times. Lazy constraint callback is called when an
integer candidate solution is found for the RMP while the user cut callback is
called at any fractional solution. Since the Benders’ cuts are valid inequalities
for RMPs we add them also at fractional solutions using the user cut callback
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feature of the off-the-shelf solver. Following the literature, instead of adding
user cuts at any node of the branch-and-cut tree, we add them only in the
root node until the improvement in the relative optimality gap is very small.
In this way, we improve the LP relaxations of RMPs at the root node of the
branch-and-cut tree as much as possible.
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5. COMPUTATIONAL STUDY

Our computational study demonstrates the value of the proposed models in terms
of the service region, fleet design and operational planning decisions with the in-
tegration of substitution, along with the computational efficiency of the solution
approach. In Chapter 5.2, from a modeling point of view, we highlight the impact
of our modeling approach and the key problem parameters on optimal solutions
from various perspectives with managerial insights. In Chapter 5.3, we investigate
the effectiveness of our decomposition-based algorithms compared to the solution of
MIPs by a commercial solver. Before proceeding to the results, we first describe the
generation of problem instances used in our experiments in section 5.1.

5.1 Experimental Setup

We generate problem instances that represent the real case as much as possible
by using the parameter settings explained in Lu et al. (2018) which is based on the
data set of Zipcar in the Boston-Cambridge, Massachusetts area. Different than this
study, we consider a car sharing company that aims to determine service regions and
build its fleet from a mixture of vehicle types. Specifically, we focus on a company
building a fleet from two different car types K = {E,G} where E and G represent
the electrical and internal combustion cars, respectively. We search for the prices
and carbon emissions of different car models available in the market (see,(e.g. 8
Billion Trees, 2023; Toyota, 2023; US Environmental Protection Agency, 2023) ),
and accordingly set c = [34K,27K] and e = [0,0.75]. We assume that the unitary
carbon allowance is H = 0.5 unless otherwise is stated. Note that due to the carbon
emission constraints (3.1d), H = 0.5 implies that for every two internal combustion
cars purchased one electric car should be also purchased. We investigate the effect
of the value of H in the last part of Chapter 5.2.
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Table 5.1 Capacities and Fixed Costs for Each Service Region

Region (i) 1 2 3 4 5 6 7 8 9
Capacity for each car type(Ck

i ) 6 9 7 6 8 9 8 9 6
Fixed cost (fi)($K) 345 367.5 352.5 345 360 367.5 360 367.5 345

We consider an area that is divided into 9 equal possible service regions, i.e. |I| =
9. We generate the parking space capacities of each region for each car type Ck

i

randomly from U [6,9] for i ∈ I and k ∈ K. Similar to Lu et al. (2018), we set the
annual unit parking space cost to $3500 for each internal combustion car in each
region. For the electric car parking spaces, due to the charging system operations,
we set a higher parking space cost which is $4000. We assume that the fixed rental
cost for each service region is $300K. To determine the total fixed cost fi for
opening service region i ∈ I and locating the parking spaces, we add the total cost
of the parking spaces to the rental cost of the region. For instance, for region 1,
f1 = 300K +6× (3500+4000) = 345K. The parking space capacities and fixed costs
for these regions can be seen in Table 5.1.

We consider a daily operational plan by dividing 24 hours into |T | = 12 periods. This
can be done in different ways. For instance, one can simply divide 24 hours into
12 equal length periods. Alternatively, one can represent the rush-hours by using
more periods of shorter length while merging several hours into one period during
the off-hours. We use the first one by assuming that each period has the length of 2
hours. Since we make a daily plan for the trips, we set D = 365 as a normalization
factor for combining the yearly fixed costs with the daily profits.

We determine the relocation times (in terms of periods) between the service regions
based on the distance between them such that ζij = 1 if regions i and j are neighbors,
and ζij = 2 otherwise. In addition to the fact that it takes more time to travel
between two non-neighbor regions, we consider this setting to discourage frequent
relocation actions between two regions that are far away from each other.

We consider the duration of the trips while generating the demand for the trips
between regions. In other words, we assume that the probability of observing a
demand for a long duration trip is very small compared to the shorter duration trips
inspiring from the study of Ströhle et al. (2019) where it is empirically shown that
majority of the trips are short in terms of duration and distance. More specifically,
similar to the Lu et al. (2018)’s study, we assume that the demand for a one-way
or round-trip with a duration less than or equal to |T |

3 is 0, 1, and 2 with the
probabilities 0.8, 0.15, 0.05, respectively. If the duration of a trip is larger than
|T |
3 , since it is less likely to occur, the demand is 0 with probability 0.8, and 1
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with probability 0.2. We use this demand distribution for generating all demand
scenarios between all pairs of regions, and assume that the probability of realizing
each scenario is the same, i.e. πw = 1

|W | .

Following the settings of Lu et al. (2018), we set the revenue for one-way and round-
trips as rone

k = $12 and rtwo
k = $7.75 per hour for each car type k. We also assume that

the relocation cost is crel = $8 per hour. In the model SROP-S, we set the penalty
cost for substitution to p = 2 unless otherwise is stated. For illustrative purposes, in
the subsequent section, we consider this problem instance with |W | = 100 scenarios
and analyse the results in detail from different perspectives.

5.2 Model Insights

Service Region and Fleet Sizing Decisions. We first investigate the prof-
itability of the company under different budget constraints and with and without
substitution. The annual net profit, revenue from different trip types, the fixed cost
of opening service regions and the cost of relocating cars at the optimal solutions of
the models SROP and SROP-S under different budget levels are given in Table 5.2.
Note that the demand that can be satisfied by the company depends on the service
region opening decisions. In other words, the demand of a potential service region
will be lost if a service region is not opened there. Hence, to increase the profit
the company should cover more demand by opening more service regions. On the
other hand, opening a service region is not sufficient to cover the demand by itself,
since there should be sufficiently many vehicles located to that region to satisfy that
demand. Therefore, both the total fixed cost of opening service regions and the
net profit increase with the budget of fleet sizing, and this can be seen in Table 5.2
for both models. When the budget is multiplied by 2 (B = 2M vs B = 4M), the
net profit increases approximately by a multiple of 5 in both models. In the fourth
column, we present the payback periods for the initial investment given by the ratio
of the budget to the annual net profit. Payback period represents the number of
years to cover the initial cost of the investment B (by ignoring the other economi-
cal factors such as the maintenance costs, annual interest rates, etc.). Note that it
takes almost 12 years to cover the initial investment of 2 millions while the duration
reduces to 4 years when the initial investment is twice in the model SROP. On the
other hand, increasing the budget does not affect the payback period after a certain
budget level as each region has a vehicle capacity. Moreover, this payback period
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reduces in SROP-S, which will be discussed in the next part. Hence, an important
observation from Table 5.2 is that, if it is possible, the company should allocate
more budget for building the fleet to increase the annual net profit, and the payback
period will be shorter for larger initial budget levels.

Table 5.2 Revenue and Cost Values of SROP and SROP-S Under Different Budget
Levels

Budget Net Payback Revenue($K) Cost($K) Solution
Model ($M) Profit($K) Period (yr) Total One-Way Round-Trip Fixed Relocation Time (s)

SROP

2 172.41 11.60 1672.06 405.15 1266.91 1447.50 52.15 4600
2.5 318.61 7.85 2200.87 648.68 1552.19 1807.50 74.78 3989
3 494.63 6.07 2744.33 949.23 1795.10 2160.00 89.70 2156

3.5 728.87 4.80 3675.00 1627.61 2047.39 2850.00 96.13 862
4 934.31 4.28 4253.78 1938.98 2314.79 3210.00 109.50 564

SROP-S

2 231.40 8.64 1715.72 411.71 1304.01 1447.50 36.82 14761
2.5 411.17 6.08 2565.25 993.59 1571.66 2115.00 39.10 19078
3 612.70 4.90 3164.92 1315.66 1849.26 2505.00 47.22 6379

3.5 862.34 4.06 3771.12 1701.05 2070.07 2850.00 58.78 2403
4 1081.53 3.70 4358.28 2018.46 2339.83 3210.00 66.78 601

From Table 5.2, we see that the revenue from round-trip arcs is higher than the
one-way trips in all settings. But note that the difference decreases with the budget
as more vehicles are purchased and more service regions are opened. For instance,
in SROP, while the return from round-trips is almost three times larger than the
revenue from one-way trips when B = 2M , they are very close when B = 4M . If
the company has lower budget values, less service regions are opened. Thus, the
proportion of the demand that can be satisfied for one-way rentals decreases since
both starting and ending service regions must be opened to satisfy one-way rental
demand. Hence, the returns from different trip types depend on the fleet sizing and
service region decisions. Moreover, the relocation costs are very small compared to
the other cost and return components, but they also increase with the budget due
to the same reasons.

The last column of Table 5.2 represents the solution time of the models with given
settings in seconds. We use Benders decomposition with enhancements for solving
these models (details of solution algorithms are explained in Section 5.3). Note that
it is harder to solve the problem when the budget is low, and as higher budget values
relax the problem the solution time decreases dramatically.

Value of Substitution. We next discuss the effect of substitution by comparing
the detailed analysis of the optimal values of the models SROP and SROP-S under
different budget B levels. Note that, SROP-S is a generalization of SROP since any
feasible solution for the latter is also feasible for the first. Hence, the optimal value
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of SROP-S should be greater than or equal to the optimal value of SROP, and the
difference between the optimal values of these models can be regarded as the value
of substitution.

From Table 5.2, we observe that the total net profit increases with subsitution. For
instance, the net profit increases by 34.21% and 29.05% due to substitution when
the budget is B = 2M and B = 2.5M , respectively. Note that the total service
region opening costs are the same for SROP and SROP-S when the budget is B ∈
{2M,3.5M,4M}, and it is larger for SROP-S in the other budget levels.

In Table 5.2, we see that the main difference in the revenue is due to the one-way
trips covered by these two models especially when the budget is at a medium level.
For instance, the revenue obtained from one-way trips increases by 53% and 39%
due to substitution when the budget is B = 2.5M and B = 3M , respectively.

Comparing the results for B = 3M and B = 3.5 in Table 5.2 reveals that the value of
substitution decreases with the budget. Note that if there exists no budget, carbon
emission and capacity constraints, the ideal solution would be to satisfy all demand
by its own car type. Hence, when the budget for fleet sizing is larger, since more
cars will be available in the service regions, satisfying the demand by the actual car
type demanded will occur more, and the value of substitution will decrease. But,
as it can be observed from Table 5.2, though the effect of substitution is smaller
compared to B = 3M , the total net profit is increased by 18.31% due to substitution
when the budget is B = 3.5M . Note that the total service region opening costs are
the same for the models in these budget levels.

We also observe an interesting result from Table 5.2 where the total relocation
cost of SROP-S is lower than that of SROP under all budget levels. We note that
substitution between different car types works as a relocation in SROP-S. In other
words, instead of using a worker to relocate a vehicle between two regions (and
observing a cost), using that vehicle for satisfying the demand for the other vehicle
type (and getting a return) helps the company to balance the cars at the service
regions, and this reduces the relocation costs and increases the return.
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Table 5.3 Value of Substitution and Average Flows for B = $3M

Average Flow Subs. Objective Achieved
Penalty (p) Commodity One-way Round-Trip Relocation Idle Rate(%) Increase(%) Increase(%)

→ ∞
E-E 66.74 70.96 15.55 80.90

- - -
E-G - - - -

(E : 48,G : 48)
G-G 67.12 70.78 15.17 82.46
G-E - - - -

4
E-E 81.52 63.28 7.61 48.94 -

19.00 64.85
E-G 7.97 4.12 - - 5.57

(E : 46,G : 53)
G-G 86.21 69.07 8.97 59.99 -
G-E 10.64 7.91 - - 8.60

2
E-E 80.25 62.90 7.46 47.97 -

23.88 81.50
E-G 9.12 5.18 - - 6.59

(E : 46,G : 53)
G-G 84.55 68.17 8.71 59.07 -
G-E 11.77 8.97 - - 9.61

→ 0
E-E 79.77 61.97 7.18 48.83 -

29.30 100
E-G 10.02 5.86 - - 7.31

(E : 46,G : 53)
G-G 84.59 66.94 8.90 59.66 -
G-E 13.36 9.68 - - 10.69

In Table 5.3, we present the average number of one-way and round-trips, relocation
actions, and idle vehicles waiting in the service regions under different substitution
penalty prices p when the budget is B = 3M . Note that p → ∞ represents SROP
since SROP-S reduces to SROP when p → ∞ as substitution will not be used in
this case. For the other extreme case, where substitution is allowed and not penal-
ized, p → 0, we consider a very small but positive p value (p = 0.001) to observe
meaningful results for different commodities. Considering two car types, we have
four commodities in SROP-S, and the commodity a − b represents the case where
the demand for car type b is satisfied by car type a, for a,b ∈ {E,G}. Note that the
company gains money over the flows on one-way and round-trip arcs, loses money
due to the flows on relocation arcs, and has no gain or cost on the flows on idle arcs
(though they might be also perceived as loss on potential profit).

From Table 5.3, we observe that the average number of idle vehicles and the reloca-
tion actions decrease dramatically with substitution. Note that the average number
of idle vehicles is around 80 for both car types in SROP while it is less than 50
and 60 for electric and internal combustion cars, respectively, in SROP-S. Similarly,
the average number of relocation movements are around 15 and 8 in SROP and
SROP-S, respectively. Hence, substitution provides the company a flexibility for
eliminating the non-value adding operations (relocation and being idle in our case)
and increasing the net profit. Moreover, as it can be seen in Table 5.3, one-way
trips are preferred more when substitution is allowed since one-way trips also serve
as relocation and their unit profit is larger. Additionally, average number of one-way
trips increases while the average number of round-trip trips decreases in SROP-S
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compared to SROP.

When we compare the results of SROP-S for different penalty p ∈ {0,2,4} values, we
observe that though the average flows of substitution commodities (E −G and G−
E) decrease, the average number of trips do not change so much for each commodity.
Hence, we can say that the solution of SROP-S is robust with respect to the different
values of p except the case p → ∞ which represents SROP.

In the last three columns of Table 5.3, we present the percentage of substitution,
increase in the net profit and the relative increase in the net profit for different p

values. As it is expected, the substitution rates and the net profit increases when p

is decreasing. Moreover, the substitution rates are larger for ICVs under all settings.
Since ICV is cheaper, when substitution is allowed, the company buys more ICV
(the numbers of electric and internal combustion cars purchased are given under the
column Penalty in parenthesis) and uses them for satisfying the demand for electric
cars. To calculate Achieved Increase rates for each penalty parameter, we take
the ratio of the percentage increase in the net profit under that penalty parameter
to the increase in the net profit when p → 0. For instance, though the net profit is
increased by 19% when p = 4 compared to p → ∞, this increase actually corresponds
to the 64.85% of the maximum possible increase in the net profit, showing that
a significant amount of increase is achieved with the substitutions. Appendix A
provides additional results on the value of substitution when the car sharing company
has higher budget.

Demand Satisfaction Levels. We next discuss the demand satisfaction rates for
these two models under two different budget levels. For different penalty p ∈ {0,2,4}
values, demand satisfaction rates are very similar. Thus, in the following tables and
figures, penalty value is taken as 2. Notice that the demand that can be covered
strongly depends on the service region opening decisions. Hence, in Table 5.4 we
report the demand satisfaction rates with respect to two different values. We first
present the number of service regions opened under the column SR. In columns 4
and 5, we give the percentage of the satisfied demand for electric (EV) and ICVs
with respect to the total demand of the service regions opened. In columns 6 and 7,
we report these percentages with respect to the total demand of the whole system.
In the remaining columns, the percentage of the satisfied demand for each region is
given. Positions of these regions, i.e. 1-a, 2-a, etc., with respect to each other can
be seen in Figures 5.1 and 5.2 where the demand satisfaction rates for the regions
are illustrated visually with different colors.

From Table 5.4, we see that SROP has higher demand satisfaction levels for both
car types compared to SROP-S when B = 3M and only the demand of opened
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Table 5.4 Demand Satisfaction Rates for SROP and SROP-S Under Different Budget
Parameters

SR(%) Total(%) Service Region Based Demand Satisfaction(%)
Budget Model SR EV ICV EV ICV 1-a 2-a 3-a 1-b 2-b 3-b 1-c 2-c 3-c

3M SROP 6 81.57 81.37 42.53 42.25 82.94 81.24 83.02 0.00 0.00 83.43 86.23 86.5 0.00
SROP-S 7 76.28 77.25 50.57 51.13 79.98 78.61 81.59 0.00 0.00 78.93 83.85 81.48 79.26

3.5M SROP 8 72.19 74.24 59.35 60.76 75.63 74.96 77.03 73.81 0.00 76.20 78.53 77.98 75.75
SROP-S 8 76.01 77.08 62.50 63.10 79.32 78.57 81.24 77.48 0.00 80.37 82.3 82.35 79.80

Figure 5.1 Visual Comparison of Demand Satisfaction Rates of SROP (left) and
SROP-S (right) for B = 3M

service regions are considered. On the other hand, the demand satisfaction rates are
higher for SROP-S with respect to the total demand of the system under the same
budget level. Note that the number of service regions opened are not the same for
SROP and SROP-S when B = 3M . Hence, when B = 3M , SROP-S opens one more
service region and this reduces the demand satisfaction rates of the other service
regions opened (see the last 9 columns). This shows the trade-off between opening
a new service region and satisfying more demand by serving less regions under a
limited budget for fleet sizing. SROP-S allocates some of the purchased cars to the
additional region it opens, region 3-c, and due to this fact, the demand satisfaction
rates in the other opened regions decrease compared to SROP. But note that this
decision increases the total net profit of the company by 23.87% (see Table 5.2).
When B = 3.5M , since the number of opened regions is the same for both models,
the demand satisfaction levels are larger for SROP-S in all opened regions. Figures
5.1 and 5.2 illustrate these observations. In Figure 5.1, since SROP opens less
service regions, demand satisfaction levels are higher (darker) in all opened regions.
In Figure 5.2, since both models open the same regions, the demand satisfaction
rates are larger (darker) in SROP-S in all regions. Additionally, note that the
regions that are decided to be served by SROP are also covered by SROP-S. Hence,
the service region opening decisions are not affected so much by the substitution
decision though additional ones might be opened in SROP-S due to the flexibility
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it provides to the company.

Figure 5.2 Visual Comparison of Demand Satisfaction Rates of SROP (left) and
SROP-S (right) for B = 3.5M

Carbon emission. We report the results of SROP and SROP-S under two different
budget levels B ∈ {3M,3.5M} and two different carbon emission allowances H ∈
{0.3,0.5} in Table 5.5. As the problems become more restricted for small H values,
the net profit increases with H. Note that the value of substitution becomes more
prominent when the problem is more restricted, i.e. H = 0.3 and B = 3M with more
than 58% increase in net profit.

The unitary carbon allowance H directly affects the percentage of the car types
in the fleet and this can be observed from Table 5.5. Although the fleet sizes are
very close under different H levels, the ratio of the number of electric and internal
combustion cars changes significantly. As the internal combustion cars are cheaper
but have larger emissions, the percentage of internal combustion cars in the fleet
increases with H. This also affects the number of service regions opened. Appendix
A provides visual comparisons of demand satisfaction rates of SROP and SROP-S
models under different budget levels. Notice that more service regions are opened
by both models when H = 0.3 compared to H = 0.5. For smaller H values, since
more EVs are purchased and there are separate parking space capacities for electric
and internal combustion cars, the models prefer to open more service regions to use
these electric cars for satisfying more demand.
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Table 5.5 The Effect of Carbon Emission Allowance on Planning Decisions

B H Model Obj.($K) Obj. Inc.for Subs.(%) Obj. Inc.for H(%) SR # of Cars (G/E) Total # of Cars

3M
0.3

SROP 269.5 - - 8 38/58 96
SROP-S 427.3 58.52 - 8 38/58 96

0.5
SROP 494.6 - 83.52 6 48/48 96
SROP-S 612.7 23.88 43.38 7 53/46 99

3.5M
0.3

SROP 461.5 - - 9 44/68 112
SROP-S 645.0 39.76 - 9 44/68 112

0.5
SROP 728.9 - 57.94 8 59/56 115
SROP-S 862.4 18.32 33.70 8 59/56 115

5.3 Computational Performances

In the second part of our computational study, we evaluate the performance of our
decomposition based solution algorithm for solving large problem instances. We
consider problem instances with |W | ∈ {50,100,200} scenarios under two different
budget levels B ∈ {3M,3.5M}, and generate three random problem instances for
each setting. We set the time limit to four hours. For both of the models SROP
and SROP-S, we compare the Deterministic Equivalent Formulations (DEF) of the
models SROP and SROP-S given in Chapter 3, and the Branch-and-Cut algorithms
without (B&C) and with the enhancements (B&C+) presented in Chapter 4. In
our preliminary experiments, we test all enhancements stated in Chapter 4.3, and
observe that contribution of the last enhancement is limited compared to the first
two. Hence, we omit enhancement 1.3, and use 1.1 and 1.2 in our B&C+ algorithm.
All tests are performed on a personal computer running Microsoft Windows 10 64
bit operating system at Intel i5-10210U 1.60 GHz processor with 16 GB RAM at
8 threads. All formulations and algorithms are implemented and solved in Gurobi
9.5.2 and Phyton interface with the default settings.

We present the results in Table 5.6 where ST and Gap represent the solution time
(in seconds) and the optimality gap, respectively. If the solver terminates due to the
time limit, it is stated as TL under the column ST, and the optimality gap reported
by the solver at the end of the time limit is presented under the column Gap. If
no feasible solution could be found by the solver within the time limit, we note it
as N/A under the column Gap. For each instance, we emphasize the best result in
terms of the solution time and the optimality gap in bold.

As it can be seen from Table 5.6, the single stage formulations DEF can be solved to
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Table 5.6 Computational Comparison of Model Types for Different Parameters and
Problem Sizes

SROP SROP-S
|W | B Ins DEF B&C B&C+ DEF B&C B&C+

($) # ST Gap(%) ST Gap(%) ST Gap(%) ST Gap(%) ST Gap(%) ST Gap(%)

50

3M
1 1085 0.00 1326 0.00 1282 0.00 5681 0.00 3138 0.00 2961 0.00
2 1513 0.00 1478 0.00 1537 0.00 6208 0.00 3768 0.00 2457 0.00
3 719 0.00 1359 0.00 1258 0.00 5314 0.00 3974 0.00 3483 0.00

3.5M
1 690 0.00 653 0.00 510 0.00 2731 0.00 1442 0.00 593 0.00
2 692 0.00 551 0.00 317 0.00 3191 0.00 1261 0.00 770 0.00
3 640 0.00 485 0.00 427 0.00 3525 0.00 1291 0.00 1325 0.00

100

3M
1 4093 0.00 2555 0.00 2156 0.00 TL 100.00 6379 0.00 6076 0.00
2 3823 0.00 2817 0.00 2886 0.00 TL 100.00 6451 0.00 6167 0.00
3 3080 0.00 2449 0.00 2281 0.00 TL 39.60 7053 0.00 6532 0.00

3.5M
1 2486 0.00 1144 0.00 862 0.00 10997 0.01 2403 0.00 1310 0.00
2 2368 0.00 1318 0.00 1336 0.00 12203 0.01 2974 0.00 2440 0.00
3 2417 0.00 1039 0.00 988 0.00 TL 0.00 3298 0.00 2558 0.00

200

3M
1 TL 35.31 4444 0.00 3507 0.00 TL N/A TL 0.02 11175 0.00
2 TL 100.00 6859 0.00 5236 0.00 TL 100.00 TL 3.26 10120 0.00
3 14110 0.00 5085 0.00 6185 0.00 TL 100.00 TL 17.43 TL 0.69

3.5M
1 11192 0.00 3115 0.00 1403 0.00 TL 73.89 5476 0.00 3810 0.00
2 12404 0.00 2171 0.00 1470 0.00 TL N/A 4963 0.00 2980 0.00
3 10332 0.00 1838 0.00 1628 0.00 TL 80.06 6140 0.00 6317 0.00

optimality within the time limit only for small problem instances. The gaps reported
for DEF demonstrate that it is hard to obtain a good quality solution for large prob-
lem instances using DEF. On the other hand, the decomposition based algorithms
B&C and B&C+ perform better than DEF almost in all problem instances. Both
algorithms solve SROP instances within the time limit, but the solution times are
mostly better for B&C+. The size of SROP-S is larger than SROP for a given
instance since the number of commodities in these models are four and two, respec-
tively. Therefore, it is harder to solve SROP-S, in general, and this can be observed
from Table 5.6. Again, the best algorithm for solving SROP-S is B&C+, which
means that the enhancements presented in Chapter 4 improves the performance of
the algorithm B&C. Moreover, the problems become relatively easier to solve for
larger B levels.
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6. CONCLUSION

In this thesis, we study the service region design and operational planning problem
for a car sharing company that constructs a mixed fleet of gasoline ICVs and EVs
under the demand uncertainty for one-way and round-trip rental requests and the
carbon emission constraints. We introduce substitution to the problem by allowing
satisfying the demand for a specific car type using the other type. We develop a two-
stage stochastic mixed-integer programming model for the problem, and propose
an exact decomposition based algorithm. Our computational experiments reveal
the success of our algorithm in solving larger problem instances compared to the
off-the-shelf solver. We discuss the impact of different problem parameters on the
decisions of the problem through a case study based on real data sets. The results of
the case study indicate the value of substitution for both increasing the profit of the
company and the demand satisfaction level of the customers. Since substitution gives
a flexibility to the car sharing company, we observe that less rebalancing operations
are required when substitution is allowed. Besides, the results show the important
effect of the fleet sizing budget and the carbon emission allowance on the service
region opening and the fleet allocation decisions.

As future research directions, the model considered in this thesis can be extended
from several directions. First, we assume that the customers accept substitution
independent from the car type that is substituted and the price offered. In a future
research, substitution should be studied in more detail by including the customer
behaviour and also the pricing strategy of the company for substitution. Second,
in this study we approximate the demand for the next T periods using two-stage
stochastic programming, and a more appropriate approach might be to formulate
the problem as a multi-stage stochastic program which is more challenging to solve.
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APPENDIX A
Value of Substitution under Higher Budget

Table A.1 provides the value of substitution when budget B = $3.5M . Compared
to Table 5.3, number of cars purchased increases due to the increase in budget from
B = $3M to B = $3.5M . Thus, there is less need for substitution, resulting in
slightly less increases in net profit values. Similar to the previous results, majority
of maximum potential return is achieved under various penalty parameter values.
Additionally, car flows are robust to the changes in penalty parameters.

Table A.1 Value of Substitution and Average Flows for B = $3.5M

Average Flow Subs. Objective Achieved
Penalty Commodity One-way Round-Trip Relocation Idle Rate(%) Increase(%) Return(%)

→ ∞
E-E 114.69 77.53 15.26 61.70

- - -
E-G - - - -

(E : 56,G : 59)
G-G 117.39 81.04 17.66 69.28
G-E - - - -

4
E-E 110.14 73.14 9.52 55.35 -

14.46 63.89
E-G 10.31 5.98 - - 6.07

(E : 56,G : 59)
G-G 114.09 75.68 10.90 59.59 -
G-E 12.51 7.06 - - 7.17

2
E-E 108.24 72.35 9.50 54.02 -

18.32 80.93
E-R 12.05 6.92 - - 7.08

(E : 56,G : 59)
G-G 112.21 74.98 10.63 59.22 -
G-E 13.82 8.17 - - 8.21

→ 0
E-E 108.01 71.08 9.50 55.38 -

22.62 100
E-G 13.35 7.70 - - 7.85

(E : 56,G : 59)
G-G 111.77 73.73 10.54 59.12 -
G-E 15.46 9.23 - - 9.23

Demand Satisfaction Levels under Lower Carbon Parameter Value

Figures A.1 and A.2 provide which regions are open and how demand is satisfied
under different budget levels when H = 0.3. Since the problem becomes more re-
strictive due to lower carbon parameter value of H = 0.3, demand satisfaction rates
are smaller compared to the cases when H = 0.5. Different than Figures 5.1 and 5.2,
which have different open service regions under SROP and SROP-S models, when
the model becomes more restrictive in terms of carbon allowance, then both models
open the same set of service regions in both Figures A.1 and A.2. On the other
hand, demand satisfaction percentages are higher under the SROP-S model in all
open service regions by utilizing substitution in satisfying customer demand.
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Figure A.1 Visual Comparision of Demand Satisfaction for H=0.3 and B=3M

Figure A.2 Visual Comparision of Demand Satisfaction for H=0.3 and B=3.5M
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