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ABSTRACT

USING MACHINE LEARNING TO ESTIMATE CUSTOMERS’ VALUATIONS
IN A SINGLE PRODUCT PRICING PROBLEM

KHOSRO PARVIZ NADERI VARANDI

INDUSTRIAL ENGINEERING M.SC. THESIS, July 2023

Thesis Supervisor: Asst. Prof. Ezgi Karabulut Türkseven
Thesis co-supervisor: Asst. Prof. Burak Gökgür

Keywords: Pricing, Machine Learning, Optimization, Customers’ Valuation

Estimating customers’ valuations is a goal in retail to learn the customers’ willingness
to pay for a product so that the seller can set better price levels and in turn increase
revenue. In a single product setting, the strategy determines the optimal price level
that generates the highest revenue (reward). A key criterion that affects these prices
is the customer profiles in the market. In e-commerce businesses, there is big data
consisting of the customers’ sales information. Analyzing and processing this data
will provide further insight into the market and the customer profiles, and therefore
is promising to contribute to increasing sales revenues. This thesis aims to estimate
the customers’ valuations and find the optimal price that brings the highest revenue
by applying machine learning algorithms to customer sales information.

Throughout this thesis, a range of algorithms has been developed to estimate cus-
tomer valuations, considering various market structures and the level of prior knowl-
edge available. These market structures encompass parameters such as the number
of segments, the segment distributions, and their order, and scenarios such as having
deterministic or probabilistic valuations. In the offline setting, where a full dataset
is available, the algorithms are designed to obtain initial estimates of valuations, in-
cluding their lower and upper bounds when they are probabilistic, the distribution
of segments, the order of these distributions, and the number of segments in the
market. Furthermore, algorithms have been developed for the online setting, where
sales information is gathered gradually. The primary objective in this scenario is
to increase the seller’s revenue through ongoing analysis and decision-making. The
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results obtained from the proposed algorithms and methods indicate their success
in estimating the market structure and achieving high revenues, which closely align
with the expected revenue. These findings highlight the effectiveness and efficiency
of the developed algorithms in estimating customer valuations and optimizing rev-
enue for the seller. Overall, the research demonstrates the value of the developed
algorithms and methods in estimating crucial parameters, optimizing revenue, and
achieving revenue levels that are in line with expected revenue values which we ex-
pect to achieve based on the true values of the market structure. These findings
have significant implications for businesses operating in different market structures,
enabling them to make informed pricing decisions and increase their overall revenue
potential.
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ÖZET

TEK ÜRÜNLÜ FIYATLANDIRMA PROBLEMINDE MAKINE OĞRENMESI
ILE MÜŞTERILERIN DEĞERLENDIRME TAHMINI

KHOSRO PARVIZ NADERI VARANDI

ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, TEMMUZ 2023

Tez Danışmanı: Yar. Doç. Ezgi Karabulut Türkseven
Tez Eş Danışmanı: Yar. Doç. Burak Gökgür

Anahtar Kelimeler: Fiyatlandırma, Makine Öğrenmesi, Eniyileme, Ürün
Değerlemeleri

Müşterilerin değerlemelerini tahmin etmek, perakendede müşterilerin bir ürün için
ödemeye istekli oldukları tutarı öğrenmek amacıyla, satıcıların daha iyi fiyat se-
viyeleri belirlemelerine ve dolayısıyla geliri artırmalarına yardımcı olan bir hedeftir.
Elde edilmek istenen strateji tek ürünlü pazarda en yüksek geliri (ödülü) üreten fiyat
seviyesini belirler. Bu fiyat seviyesini etkileyen en temel kriter, pazardaki müşteri
profilleridir. E-ticaret işletmelerinde, müşteri satış bilgilerinden oluşan büyük veri
bulunmaktadır. Bu verinin analizi ve işlenmesi, pazar ve müşteri profilleri hakkında
daha fazla içgörü sağlama ve dolayısıyla satış gelirlerini artırmaya katkıda bulunma
potansiyeli taşımaktadır. Bu tez, müşterilerin değerlemelerini tahmin etmeyi ve en
yüksek geliri getiren en uygun fiyatı bulmayı amaçlamakta olup, bunu yapmak için
makine öğrenmesi algoritmalarını müşteri satış bilgilerine uygulamayı amaçlamak-
tadır.

Bu tezde, müşteri değerlemelerini tahmin etmek için çeşitli algoritmalar geliştir-
ilmiştir; farklı pazar yapıları ve mevcut önbilgi düzeyleri dikkate alınmıştır. Bu
pazar yapıları, segment sayısı, segment dağılımları ve sıralamaları gibi parametreleri
kapsar ve deterministik veya rassal değerlemelerin bulunması gibi senaryoları içerir.
Çevrimdışı öğrenme adımlarında, algoritmalar değerlemelerin başlangıç tahminlerini
elde etmek üzere tasarlanmıştır; bunlar, rassal olduğunda dağılımın alt ve üst sınır-
larını, segment dağılımını, bu dağılımların sırasını ve pazardaki segment sayısını
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içerir. Ayrıca, satış bilgilerinin kademeli olarak toplandığı çevrimiçi öğrenme al-
goritmaları geliştirilmiştir. Bu algoritmaların temel amacı, sürekli analiz ve karar
verme yoluyla satıcının gelirini artırmaktır. Önerilen algoritmalar ve yöntemlerden
elde edilen sonuçlar, pazar yapısını tahmin etme ve yüksek gelir elde etme konusun-
daki başarısını göstermekte olup, beklenen gelire yakın sonuçlar ortaya koymaktadır.
Bu bulgular, geliştirilen algoritmaların müşteri değerlemelerini tahmin etme ve satıcı
için geliri optimize etme konusundaki etkinliğini ve verimliliğini vurgulamaktadır.
Genel olarak, araştırma geliştirilen algoritmaların ve yöntemlerin önemli parame-
treleri tahmin etme, geliri enbüyükleme ve beklenen gelir değerlerine uyumlu gelir
seviyelerine ulaşma konusundaki değerini göstermektedir. Bu bulgular, farklı pazar
yapılarında faaliyet gösteren işletmeler için önemli sonuçlar doğurur; bu sonuçlar,
bilinçli fiyatlandırma kararları alabilmelerini ve genel gelir potansiyellerini artır-
malarını sağlar.
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1. Introduction and Literature Review

Companies operating in the retail sector use different pricing strategies intensively
in order to increase the revenue obtained from the products they offer to their
customers. With the developments in information technology and data science, it is
observed that the methods retailers deploy for presenting prices to their customers
have changed significantly. In particular, retailers that expand their operations to
online sales channels can learn about customers’ buying behaviors by analyzing
their purchasing preferences and hence design meaningful and effective methods for
offering prices to different customer groups. Tesco, a UK-based retail company,
analyzes the shopping carts of its customers, creates customer segments, and offers
price discrimination policies to its customers (Clive, Terry & Tim, 2004; Davenport,
Mule & Lucker, 2011). (Davenport et al., 2011) proposes a method for predicting
customer needs based on data analysis. The authors suggest that by analyzing
patterns in customer behavior and using machine learning techniques, companies
can gain insight into their customers’ future needs and preferences. This allows
them to tailor their offerings and marketing strategies to better meet the evolving
needs of their customers, leading to increased customer satisfaction and loyalty.
Large retail companies such as Safeway and Kroger also offer different price levels
by monitoring their customers’ purchasing activities in real-time through online
channels (Clifford, 2012; Farnham, 2013). In Safeway’s “just for U” program, digital
coupons for personalized deals are extended to individual consumers either online or
through the “just for U” app. The CEO of Safeway, Steve Burd, told analysts in 2013
(Ross, 2013): “There’s going to be a point where our shelf pricing is pretty irrelevant
because we can be so personalized in what we offer people.” According to the results
of a survey conducted by Accenture in 2016, it has been observed that 58% of
customers tend to respond positively to price promotions designed using their past
purchase information through online channels (Accenture, 2016). With the rapid
growth of online sales (According to the analysis of eMarketer, a market research
company, it is predicted that e-commerce sales will grow by 8.9% worldwide and have
a volume of approximately six trillion dollars by the end of 2023 (eMarketer, 2023)),
companies seize unique opportunities to both improve the customer experience and
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increase revenues. Firms with sales operations in their online channels can collect
a large amount of transactional data about the purchasing behavior of customers.
The opportunity to instantly monitor this data and the reaction of customers to
current offered prices are of great importance for e-commerce companies to learn
product valuations (the highest price level that customers will be willing to pay to
buy the relevant product) and to develop effective price policies to increase their
revenue.

This research aims to learn the customers’ valuations (demand learning) in order to
increase the seller’s revenue for a retail firm that sells a single product in an online
channel. The main aim of this research is to analyze the interaction between pricing
and learning decisions in the presence of a multi-segment market structure with a
diverse customer pool for a product that the seller tries to increase revenue for by
considering the problem in the context of a learning mechanism. The objectives
stated within the scope of this research are achieved in two stages:

• In the first stage of this research which is a warm-up phase, the efficiency of
the single pricing mechanism in the process of learning the parameters of the
problem are examined assuming that the customers’ valuations are unknown
by the retailer. The criterion to be taken into account in this learning process
is the accuracy of the estimated parameters.

• In the second phase which is called online, followed by the offline phase, the
estimated parameters from the warm-up period is used to maximize revenue
while gaining knowledge about the parameters of the problem through the
learning method to be developed.

The research questions to which we will seek answers in this research are given
below:

• How effectively can machine learning-based algorithms solve the pricing prob-
lem?

• How much does the learning problem slow down with less market prior knowl-
edge?

• How much does the accuracy of developed algorithms drop with less market
prior knowledge? What is the importance of market prior knowledge?

• How successful are the approaches with deterministic methods in cases where
there are random product valuations?

Algorithms are implemented within the framework of reinforcement learning in the
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two phases of the research. Most of the algorithms in the reinforcement learning
literature are designed for models with discrete structures unlike the problem dis-
cussed in this research. Assumptions such as differentiability and noise level variance
stipulated by the proposed algorithms for models with a continuous structure such
as our problem are invalid for the reward function in this project. For this reason,
it is not possible to directly apply an existing algorithm in the reinforcement learn-
ing literature. Within the scope of this research, reinforcement learning algorithms
will be designed for problems with reward functions in a piecewise linear function
structure. The algorithm presented in the machine learning literature for learning
piecewise linear functions (Ferrari-Trecate & Muselli, 2002) is solved as an offline
learning problem. Reinforcement learning algorithms, on the other hand, solve on-
line problems by nature. Our aim is to design an online learning algorithm with
a piecewise linear function and use it as a module in the reinforcement learning
algorithm.

This thesis makes significant contributions to the fields of dynamic pricing and
learning customers’ product valuations in both operations management and com-
puter science literature. In the operations management literature, traditional pricing
models often rely on complex mathematical models and assumptions to find opti-
mal prices for revenue maximization. However, this work offers a more general and
versatile framework for pricing, applicable to any product and retail domain. It
avoids relying on numerous assumptions and can be applied in a wide range of re-
tail scenarios, making it more practical and adaptable. In the computer science
literature, existing works on machine learning for pricing problems often focus on
customized customer attributes. In contrast, this research presents a more inclu-
sive and generalized framework that is independent of customer attributes but relies
solely on their buying preferences. This learning mechanism is designed to estimate
customer valuations and set price levels to maximize seller revenue effectively. The
research further contributes to the development of machine learning algorithms for
estimating customers’ valuations and maximizing revenue. Instead of using existing
algorithms, various novel algorithms have been proposed throughout the thesis, ad-
dressing different stages of the problem. These algorithms are easy to understand,
implement, and apply to online channel data, requiring only offered prices and cus-
tomer buying preferences. Additionally, the thesis investigates the problem under
various scenarios and levels of prior market knowledge, providing valuable insights
into pricing strategies and revenue maximization in different market structures. In
summary, the contributions of this thesis can be summarized as follows:

• Presenting a general framework for product pricing based solely on offered
prices and customers’ buying preferences, applicable across diverse retail do-
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mains.

• Developing user-friendly machine learning algorithms for estimating relevant
parameters and maximizing revenue.

• Exploring different market scenarios and levels of prior knowledge to gain
deeper insights into pricing strategies.

• Offering valuable knowledge and strategies for pricing in various market struc-
tures.

It is possible to divide the researches in the operations management literature into
two groups as studies in which the supply is unlimited and limited. In this project,
the focus is on researches in the relevant literature where the supply is unlimited.
The studies that assume that the product inventory is not limited are taken into ac-
count in the learning literature since the product inventories are available whenever
the demand arises. In addition, after the studies that assume unlimited supply for
the product, studies that consider the limited inventory scenario are also presented
in order to more clearly indicate the contribution of this work to the learning liter-
ature. (Billstroem & Thore, 1964) and (Thore, 1964) first studied the pricing and
learning problem in the operations management literature. In these two studies, it
is presented with which pricing rules a monopolist firm can increase its income in
the presence of a linear demand function whose parameters are unknown. (Thore,
1964) presents a dynamic pricing approach with the notion that if a prior price in-
crease resulted in an increase in revenue, the price should be increased again, and
vice versa. Similarly, if a prior price decrease led to an increase in revenue, the
price should be decreased again, and vice versa. (Thore, 1964) also suggests that
the magnitude of the price adjustment should depend on the difference between the
last two revenue observations. Two pricing rules are specified, and the resulting dy-
namical systems’ convergence properties are analyzed. (Billstroem & Thore, 1964)
perform simulation experiments for one of these pricing rules. They test the rule in
both a deterministic demand setting and a scenario where a normally distributed
disturbance term is added to the demand. Furthermore, they extend the model to
incorporate inventory replenishment and provide a rule of thumb for choosing an
optimal constant for the pricing rule. As a result of these two studies, the learn-
ing problem of a product’s demand with different pricing policies has attracted the
attention of researchers. (Baetge, Bolenz, Ballwieser, Hömberg & Wullers, 1975)
expanded upon the simulated findings of (Billstroem & Thore, 1964) by examining
non-linear demand curves and analyzing the optimal selection of a constant in the
pricing rules. (Aoki, 1973) studied the pricing problem of a firm that cannot ob-
serve the parameters of the demand function of the product it offers to the market.
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Using the methods in stochastic adaptive control theory, he examined the efficiency
of learning the demand function with the Bayesian approach. The objective is to
minimize the surplus demand function, and the author demonstrates the theoretical
possibility of computing the optimal Bayesian approach using dynamic program-
ming. However, in numerous scenarios, a closed-form solution is not available. To
overcome this, the author proposes two alternative approximation policies. The first
method, Certainty Equivalent Pricing (CEP), selects the optimal price for each de-
cision moment based on current parameter estimates. The second method, referred
to as an approximation under static price expectation, involves the firm acting as
though the chosen price will remain throughout the remainder of the selling period.
Following this study, studies of learning the demand for a single product with the
Bayes method were conducted in different problem frameworks. (Chong & Cheng,
1975) formulated the optimal pricing problem as a Bayesian dynamic program in
which they assume the demand function is linear with two unknown parameters and
normally distributed disturbance terms. They show when the slope of the demand
function is known, certainty equivalent pricing is the optimal policy. For the un-
known slope and intercept case, they propose three approximations to the optimal
policy. (Nguyen, 1984) explored the behavior of a monopolistic firm in a market
with random demand. The firm faces uncertainty about the demand and can learn
about it over time using Bayesian learning. The study shows that the firm’s pric-
ing strategy depends on the degree of uncertainty about demand and the learning
speed. When the firm is highly uncertain about demand, it sets a high price to
compensate for the risk. However, as the firm learns about demand, it reduces the
price to increase market share. The learning speed affects the firm’s pricing strategy,
and the more quickly the firm learns, the more aggressive it can be in setting a low
price. The paper also discusses the implications of the findings for firms in real-
world markets. (Nguyen, 1997) also studied demand learning for a single product
with the Bayes method. (Wruck, 1989) considers optimal pricing of durable and
non-durable goods in a two-period model in which the distribution of willingness-
to-pay is learned by Bayesian updating a uniform prior. The optimal price policy
is determined by solving a dynamic program. (Lobo & Boyd, 2003) consider the
same setting as (Chong & Cheng, 1975) and compare the performance of four pric-
ing policies with each other by simulation. (Qu, Ryzhov & Fu, 2013) introduced a
pricing model based on Bernoulli distribution, where the expectation of demand is
a logit function of price, and the unknown parameters are subject to a normal prior.
However, due to the complexity of this distributional form, the authors discussed
the challenges of calculating posterior distributions and proposed an approximation
method. Additionally, they introduced a Bayesian-greedy price policy, which is also
computationally challenging, and provided a method to compute an approximation.
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To compare the performance of the proposed pricing policies, the authors conducted
a numerical study and compared them with a few alternative policies. (Kwon, Lipp-
man & Tang, 2012) investigated the optimal markdown pricing strategy for a retailer
who faces uncertain demand and can learn about it over time. The study develops a
model that incorporates Bayesian learning and dynamic pricing to determine the op-
timal markdown price. The results suggest that the retailer should set a high initial
price and then reduce it over time as demand uncertainty decreases. The optimal
markdown price depends on the learning speed, the initial price, and the distribu-
tion of demand uncertainty. The paper also provides insights into how the optimal
markdown pricing strategy changes with different market conditions and shows that
the retailer can achieve higher profits by using the proposed pricing strategy than
by using a static pricing strategy. The findings of the study are relevant for retailers
who face dynamic market conditions and can use pricing strategies to maximize their
profits. In (Birge, Chen & Keskin, 2021)’s study, the pricing problem of a company
selling a product to a combination of forward-looking and myopic customers is ex-
amined. The company faces uncertainty regarding the customers’ behavior, arrival
pattern, and product valuations, which together comprise the demand model. The
company implements markdown policies over multiple selling periods, sequentially
lowering the product price and observing demand to gain insight into the demand
model. They analyze these policies to determine their effectiveness in accommo-
dating a range of forward-looking customer behaviors. The study is conducted in
a Bayesian framework where the seller has a prior belief distribution on different
demand models, and the effectiveness of the policies is measured by the expected
cumulative profit loss compared to a clairvoyant who has complete knowledge of the
demand model.

In addition to the Bayesian method, studies that adopt the parametric approach
have also taken their place in the learning literature in operations management.
(Lobo & Boyd, 2003) examine a linear demand function expressed as dt(pt) =
a − b(pt) + et, where a and b are unknown and assumed to have priors with nor-
mal distributions, and et is a normal distribution with known parameters. The
authors evaluate three pricing policies: (i) a static policy that uses the prior distri-
butions without updating them, (ii) a myopic policy that updates the distributions
but only focuses on the current period without considering future periods, and (iii)
a myopic policy with dithering, which adds a random perturbation to the price to
stimulate the learning process and increase the information gained. The authors
demonstrate through numerical examples that the myopic policy with dithering
generates higher revenue than the static or myopic policy. (Carvalho & Puterman,
2005) analyze a dynamic pricing scenario where the demand follows a logistic distri-
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bution characterized by two unknown parameters. Through a numerical assessment
of various heuristic approaches, the authors show that a "one-step lookahead" policy,
which forgoes immediate revenue in favor of obtaining a more precise estimate of
the unknown demand parameters, performs better than a myopic policy. (Broder
& Rusmevichientong, 2012) assumed that the demand for the product sold by a
monopolist firm is Bernouilli-distributed, and the distribution parameters are not
known by the firm. The aim of the company is to determine a price policy that will
minimize the loss of income due to the inability to observe the demand parameters.
In this study, a price policy based on the maximum probability estimation that
works effectively under certain conditions is developed, and a lower bound study
on price policy is presented. (den Boer & Zwart, 2014) explore a broader range of
generalized linear single-product demand models and demonstrate through a specific
example that the practice of certainty equivalent pricing lacks strong consistency.
To address this issue, they suggest a pricing strategy that selects the price closest
to the certainty equivalent price while ensuring a minimum level of price dispersion.
This dispersion, as measured by the sample variance of selling prices, ensures that
the prices converge toward the optimal price. (Den Boer, 2014) extends this policy
to multiple products and assumes that the parameters of the demand function for
products are not known by the firm. He has developed a pricing policy that updates
the optimal price level to certain rules according to parameter estimates obtained
by using statistical estimation techniques in each time period. (Bu, Simchi-Levi
& Xu, 2020) studied the impact of pre-existing offline data on online learning in
dynamic pricing. A single-product dynamic pricing problem over a T-period selling
horizon is studied, where demand in each period is influenced by the product price
using an unknown parameter linear demand model. The seller has some pre-existing
offline data prior to the start of the selling horizon and aims to minimize regret of
the online learning process by utilizing both pre-existing offline data and sequential
online data. The optimal regret rate of the online learning process is characterized
based on the size, location, and dispersion of the offline data.

There are also studies that take into account nonparametric demand models. (Klein-
berg & Leighton, 2003) examined algorithms for determining prices in a basic market
scenario, where a seller has an infinite supply of a single good and interacts with a
group of n potential buyers one at a time. The seller proposes a price between 0
and 1 for each transaction, and the buyer decides whether to accept or reject the
offer based on their own private valuation of the good. They tried to answer the
question of how valuable it is for the seller to know the demand curve. In this re-
gard, they analyzed three cases - identical, random, and worst-case valuations and
derived upper and lower bounds for each case. (Lim & Shanthikumar, 2007) con-
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sider dynamic pricing strategies that are robust in the face of model uncertainty,
using the classical pricing framework of (Gallego & Van Ryzin, 1994). They take a
robust approach, where the demand function is not learned over time but assumed
to lie in some known uncertainty set. (Eren & Maglaras, 2010) examined two sce-
narios where the initial inventory is infinite, and the time horizon is finite. In these
scenarios, a willingness-to-pay demand model with an unknown WtP distribution
function F is assumed. The aim is to maximize the worst-case competitive ratio
across all possible F, which is defined as the ratio of expected revenue generated by
a pricing strategy without knowledge of F to the expected revenue that could have
been obtained if F was known. In the first scenario, there is no learning involved,
whereas in the second scenario, the time horizon is split into two periods, with price
experimentation permitted in the first period but not the second. For both situa-
tions, optimal pricing policies are determined through closed-form calculations. The
results indicate that even experimenting with prices at a few points can significantly
improve revenue performance. Additionally, the relative benefit of ongoing learning
diminishes beyond a certain point. (Besbes & Zeevi, 2012) explore a multi-product
problem with a finite inventory of each product and a finite time horizon. The de-
mand function is unknown, except that it satisfies certain basic conditions. Their
goal is to maximize the worst-case competitive ratio. They analyze two versions
of the problem: one with discrete allowable prices and the other with continuous
allowable prices. They present an algorithm that consists of an exploration phase
and an exploitation phase. For the discrete allowable price case, they create a simple
linear programming-based policy that determines the fraction of time each allowable
price point should be applied. For the continuous allowable price case, they choose
the "best" price to be applied throughout the exploitation phase. They prove that
all the policies they develop are asymptotically optimal when the volume of sales
grows large. (Cheung, Simchi-Levi & Wang, 2017) discuss a dynamic pricing prob-
lem where the demand function is not known, and price experimentation is used as
a demand learning tool. However, sellers often face constraints on price changes in
practice. The article proposes a dynamic pricing model where the demand function
is unknown but belongs to a finite set, and the seller can make at most "m" price
changes during "T" periods. The objective is to minimize the worst-case regret,
and a pricing policy that incurs a regret of O(log(m)T ) is proposed. The pricing
policy is implemented at Groupon, and a field study shows a significant impact on
revenue and bookings. (Ferreira, Simchi-Levi & Wang, 2018) examined a revenue
management problem faced by retailers who aim to optimize their revenue from
multiple products with limited inventory over a finite selling season. The prob-
lem involves unknown demand parameters that require learning from sales data,
resulting in an exploration-exploitation trade-off. The authors introduced a class of
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dynamic pricing algorithms based on the machine learning technique of Thompson
sampling to address this trade-off under the presence of inventory constraints. The
proposed algorithms demonstrated both strong theoretical performance guarantees
and promising numerical performance results compared to other similar algorithms.
(Miao & Wang, 2021) focus on the price-based network revenue management (NRM)
problem with demand learning. The retailer’s objective is to determine the prices
of n products dynamically over a finite selling season, subject to m resource con-
straints, to maximize cumulative revenue. This paper proposes a nonparametric
demand model with mild technical assumptions that are typical of commonly used
demand functions. The study introduces a novel robust ellipsoid method adapted
to the NRM setting. Overall, this paper offers novel insights and efficient solutions
for addressing the NRM problem with demand learning.

In the operations management learning literature, there are also pricing and learning
studies in the presence of limited inventory. (Lazear, 1984) examines a basic model
in which a company sells a single product for a maximum of two periods. In the
initial period, a group of potential customers visit the store, and if none of them
make a purchase, the company adjusts their prior belief about the product’s value,
updates the selling price, and attempts to sell it during the second period. Through
this model, the author demonstrates that the expected profit can be enhanced by
having two selling periods instead of one. Furthermore, the study extends the model
in various ways, including incorporating strategic behavior by customers who may
delay their purchase decision in anticipation of a potential price reduction. (Sass,
1988) expands on Lazear’s model and explores the relation between the optimal
pricing strategy and the number of potential buyers. (Aviv & Pazgal, 2006) initiated
a research stream on the application of Bayesian learning in the context of dynamic
pricing with finite inventory. The authors considered a scenario where customers
arrive according to a Poisson process with an unknown arrival rate and purchase a
product with a known probability which is a function of the current selling price. The
authors utilized Bayesian updates of a Gamma prior to learn the unknown arrival
rate and subsequently derived a differential equation to characterize the optimal
continuous-time pricing policy. (Besbes & Zeevi, 2009) start a stream of literature
that attempts to learn the optimal static price in an incomplete information setting.
They analyzed the pricing problem of a single product offered to customers by a
monopolist firm within a finite planning horizon in order to maximize its expected
revenue. In the problem environment, it is assumed that the basic relationship
between price and demand function is unknown. They developed single product
pricing policies that learned the demand function and determined price levels that
would maximize expected revenue. In addition, they presented performance analyses
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related to the learning policies developed. (Ferreira et al., 2018) address a price-
based network revenue management problem. In the problem environment, it is
aimed to maximize the expected revenue to be obtained from the sale of products in
a limited planning horizon of a retailer that has more than one product with limited
inventory. They assume that the parameters of the demand function are not known
to the retailer. They predicted that these parameter values will be learned from sales
data. For this purpose, they presented pricing algorithms using Thompson sampling.
In addition, it has been shown that the developed algorithms achieve both strong
theoretical performance guarantees and promising numerical performance results.
(Miao & Chao, 2021) discussed the product variety and pricing problem together.
The purchasing behavior of the customers is designed with the multi-state preference
model (Multinomial Logit). They developed a learning algorithm that balances
demand learning and revenue and compared the performance of this algorithm with
the assumption that the demand function is known. An upper limit is presented for
the developed algorithm, and it is shown with numerical results that the algorithm
performs very well.

The computer science community has contributed significantly to the literature on
dynamic pricing and learning. Rather than providing mathematical analyses of
pricing policies, these researches tend to focus on the design of realistic models
for electronic markets and the application of machine learning techniques. This
approach offers the advantage of being able to model a wide range of demand-
influencing phenomena, including competition, fluctuating demand, and strategic
buyer behavior. However, a potential drawback is that these models can be exces-
sively complex to analyze analytically, and insights into the performance of various
pricing strategies can only be obtained through numerical experiments. (Shakya,
Oliveira & Owusu, 2009) examine the impact of demand uncertainty on dynamic
pricing using Evolutionary Algorithms (EAs). The study uses a realistic stochastic
model to analyze the performance of different EAs in dynamic pricing problems
under various demand scenarios. The results show that EAs can be effective in
optimizing pricing strategies in uncertain market conditions and can outperform
traditional pricing methods. Furthermore, the paper suggests that higher demand
fluctuations may not necessarily harm a firm’s profitability and that EAs can be
more reliable in finding accurate pricing policies in high demand fluctuation scenar-
ios. (Ramezani, Bosman & La Poutré, 2011) also deployed evolutionary algorithms
for dynamic pricing. (Shakya, Kern, Owusu & Chin, 2012) Combined neural net-
works and evolutionary algorithms together to optimize pricing policies. They built
a neural network-based demand model and used evolutionary algorithms to optimize
policy over the build model. (Gupta & Pathak, 2014) developed a general architec-
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ture using machine learning models for dynamic pricing by adapting personalized
adaptive pricing in online retail which can be a primary driver for online purchases.
The study proposes a framework using machine learning, data mining, and statisti-
cal methods to predict customer purchase behavior and select an appropriate price
range based on dynamic pricing. The framework is tested on a large dataset for
an e-commerce firm and shows encouraging results, reducing error rates and deter-
mining better price ranges appropriate for both the customer and the organization.
The study focuses on predicting purchase decisions based on adaptive or dynamic
pricing of a product, using different data sources such as visit attributes, visitor
attributes, purchase history, web data, and context understanding. The framework
can be applied to various industries working in online mode and can be customized
to specific applications. (Javanmard & Nazerzadeh, 2019) discuss a pricing problem
faced by a company that sells a large number of products with various features to
customers over time. The company aims to maximize revenue by offering prices that
depend on customer and product characteristics. The article proposes a Regularized
Maximum Likelihood Pricing (RMLP) policy that leverages the structure of demand
parameters to obtain a logarithmic regret in T. The policy’s regret scales linearly
with the sparsity of the optimal solution and logarithmically with the dimension.
(Ban & Keskin, 2021) study the dynamic pricing of a product that its price can be
adjusted by the seller at the individual customer level by using information about
customers’ characteristics. They assume a personalized demand model in which the
parameters are dependent on the customers’ characteristics and the relationship be-
tween the customer features and the product demand can be learned by the seller
through sales observations over a selling horizon. They design near-optimal pricing
policies for tackling the problem using machine learning techniques.

Our work lies in the unlimited supply and nonparametric category, and we will
develop algorithms in the framework of machine learning techniques to solve the
problem of pricing a single product in the presence of a multi-segment market struc-
ture considering different aspects of customers’ behavior such as the valuations being
deterministic or probabilistic and market prior knowledge to maximize the revenue
for the seller.

In summary, the original value of this research can be listed as follows:

• [Interdisciplinary] This research, which will examine an operations manage-
ment problem with a strong machine learning infrastructure will set an exam-
ple for the contribution of interdisciplinary work both in the academic world
and in the world of practice. It is expected that this analysis, where none
of the mentioned areas will be sufficient alone, will lead to machine learning
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cooperation with different problems from the field of operations management
in the future.

• [Contribution to the Academic Literature of Operations Management and Ma-
chine Learning] Even though our research is basically in a position to provide
analyses on pricing policies, the tools that provide these analyzes will not be
ready-to-use and 100% compatible algorithms for the problem we are trying
to solve. Different algorithms based on the different levels of knowledge we
have regarding the customers’ behaviors and the market structures will be de-
veloped and mathematical problems that are solved from time to time will be
adapted to our model.
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2. Problem Definition

The learning model we plan to use in our problem consists of two decision makers,
a seller, and an unlimited customer cluster. The dynamic between the seller and
the customer works as follows as shown in Figure 2.1: In each iteration, the seller
determines the price for the product in his hand and presents this price to the
incoming customer. This product has a valuation to the customer, and the customer
based on his valuation for the product and the offered price chooses to buy the
product or not. Essentially, if the offered price to the customer is less than the
customers’s valuation, then that customer would buy the product, otherwise, he
would not buy the product. These valuations are the highest price that customers
are willing to pay for the product which we refer to them as customers’ valuations
vi(i = 1, . . . ,n). The information conveyed to the seller is the information on whether
the customer buys the product or does not buy the product. Using this preference
information, the seller updates its price in the next iteration and offers the product
at a new price to the next customer from the unlimited customer cluster. In each
iteration, only one customer’s preference information is learned. It is generally
accepted that the customer cluster for which we have limited information is divided
into subsets called segments (n segments), that customers in the same segment have
the same or similar preference profile, and customers in different segments have
different preference profiles. Depending on the application areas, the number of
segments, the probability distributions of the segments, and the limited preference
profiles of this cluster can be known. However, the segment to which a specific
customer belongs cannot be known until the customer informs the purchase decision.
Therefore, there is no option to customize the price offered by the seller according
to the segment of the customer. Such customer-seller interactions are common in
the e-commerce industry (Ferreira et al., 2018; Miao & Chao, 2021).
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Figure 2.1 Information flow between seller and customer

The goal here is to find the price that maximizes the seller’s revenue. For the seller to
find the optimal price, he needs to know sets of parameters: the number of segments
that customers are coming from, valuations of the customers, and their distribution
in the segments. By knowing these, the seller can easily find the optimal price as
follows:

(2.1) P ∗ = arg max
i=1,. . . ,n

{(1−
i−1∑
j=1

δj)×vi}

In which n is the number of segments, vi is the valuation for customers in segment
i, and δi is the probability of being in the segment i(i = 1, . . . ,n) for customers in
that segment.

We investigate the problem in two phases. In the first phase referred to as Offline
learning, We are provided with a dataset with size T as {(xt,yt)} (t = 1, ...,T ) in
which xt is the price offered by the seller, and yt is the feedback of the customer
(1 for buying, and 0 for not buying). The primary objective of this phase is to
solely learn the parameters of the problem. Accordingly, we will develop algorithms
for tackling the problem considering various levels of market structure knowledge
available to us. These include the known or unknown number of segments, known
or unknown probability distribution of segments, deterministic or probabilistic cus-
tomers’ valuations, and uniform or non-uniform customers’ valuations.

14



The subsequent phase, known as Online Learning, differs from the Offline Learning
phase in that we no longer have access to a complete dataset. Instead, customers
arrive individually, one at a time. Upon the arrival of each customer, we employ the
estimated parameters obtained from the Offline Learning phase to determine the
price offered to them. The ultimate goal in this phase is to maximize the seller’s
reward. Similarly to the Offline Learning phase, the development of distinct al-
gorithms is contingent upon the prior knowledge we possess regarding the market
structure. These algorithms are tailored to adapt to various levels of market struc-
ture knowledge, thereby facilitating effective decision-making in the pricing process.

Our research approach involves a progressive reduction of prior knowledge regard-
ing the market structure, starting from the highest level of knowledge and gradually
eliminating it. This progressive elimination of knowledge is aimed at making the
problem increasingly challenging until we reach a point where no information regard-
ing the market structure is available. At this point, the objective is to determine the
optimal price for maximizing the seller’s reward, despite the absence of any prior
knowledge about the market structure. By systematically examining the problem
under different levels of knowledge, we aim to enhance our understanding of pric-
ing strategies and optimize the seller’s revenue in scenarios where limited or no
information about the market structure is available.
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3. Offline Learning

The primary objective of the Offline Learning phase, as previously stated, is to learn
the unknown parameters associated with the problem. In this phase, our focus is
not on offering prices to maximize rewards but rather on utilizing the given dataset
to learn the underlying parameters. This phase can be regarded as a warm-up stage
where the estimated parameters by offline learning will be passed to the next phase
(online learning) for reward maximization. We will develop algorithms tailored to
different levels of foreknowledge concerning the market structure. These algorithms
will be applied to the dataset of size T , enabling us to estimate and learn the
remaining unknown parameters. The subsequent sections of this chapter will delve
into the investigation of the problem under various scenarios, each exploring different
aspects and levels of market structure knowledge. By thoroughly examining these
scenarios, we aim to shed light on effective parameter estimation techniques in the
context of machine learning and pricing.

3.1 Case where the number of segments (n), segment distributions (δ)

and their order are known

The problem we will examine in the first step will be the problem of learning the
selling price that maximizes the total revenue in the case of a single product type
(A) and n customer segments. The defining features of the customer segments
defined between i = 1, ...,n are the value they attach to product A vAi and the
probability of a customer being in segment i δi. Without loss of generality, we
can assume that the segments are in ascending order according to their vAi values
vA1 < vA2 < ... < vAn. In this scenario with the highest level of foreknowledge,
we assume the number of segments n, segments’ distribution δi’s, and their order
are known, and the valuations are deterministic. Here, the ordering refers to the
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correspondence between each δ value and its respective segment. In this scenario
only the product valuations are unknown. Our aim is to learn and estimate these
values.

Since we do not have access to a real dataset for analysis, we will generate syn-
thetic data to facilitate our study. Specifically, we will create a dataset denoted as
{(xt,yt)}, comprising T data points. The continuous prices xt will be generated
within the range of (0,100), while the buying preferences yt will take binary values
of either 0 or 1 (1 for buying the product, and 0 for not buying the product). Con-
sequently, the synthetic preference dataset will exhibit a structure resembling that
shown in Table 3.1:

Table 3.1 Synthetic preference dataset

Offered Prices Buying Preferences
x1 1
x2 0
x3 1
. .
. .
. .

xT 0

3.1.1 Proposed Algorithm 1

The learning problem we propose in this scenario is based on learning the parameters
of the pricing problem (customers’ valuations) through the expected probability of
purchase function shown in Figure 3.1. The first challenge we encounter during the
learning problem using preference data is the process of converting the preference
data with the structure 0-1 (the customer bought or did not buy when the price xt

was suggested) to the expected function data (the probability of the customer to
buy when the price xt is offered). As mentioned earlier, the dataset we collect in
the current system has the binary structure (x,y) for each suggested price x and
preference information y ∈ {0,1}.
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Figure 3.1 Expected purchase probability as a function of suggested price in the
presence of deterministic product valuations

In cases where the suggested price options are discrete, the expected value can be
taken as the average of the y values associated with the same price x, but this
approach loses its validity when the suggested prices are a continuous set. The
method we apply as a solution is the k - Nearest Neighbors (kNN) algorithm, which
is frequently used in the world of machine learning (Kramer & Kramer, 2013).
Taking the value of k as a hyperparameter, the algorithm takes the k suggested
price values closest to x for each x-value and assigns the average (ŷ) of the y-values
corresponding to those prices as the expected purchase probability of x. Although
this method works well, its performance is highly dependent on the hyperparameter
k. Figure 3.2 shows the (xt, ŷt) values obtained when kNN is applied with different
k values to the {(xt,yt)} dataset consisting of T = 1000 data points. As can be seen
in Figure 3.2(a), choosing a low value of k increases the volatility in the estimated
probability of purchase values while choosing a high value of k subtracts the function
estimating the expected probability from the cascading function structure in Figure
3.1, as in Figure 3.2(b). As a result of this information and our observations after
the experiments, the method we apply to obtain the {(xt, ŷt)} data is to apply the
kNN algorithm to the dataset in the {(xt,yt)} form, by taking the k value as a value
between 3% and 5% of the number of data points in the preference dataset.

In this case, the applied learning method is designed as a standard clustering algo-
rithm. Each value of the expected purchase probability function is a cluster, and
the height of each cluster is the target value of that cluster. Due to the nature of
our problem, the expected purchase probability function in an n-segment market
structure will consist of n+1 clusters; The target value of the first cluster will be 1
and the target value of the n+1th cluster will be 0. These target values essentially
represent the purchase probabilities pi’s associated with each cluster.
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Figure 3.2 Estimates of the expected probability of purchase with kNN applied for
different k values in the presence of deterministic product valuations

(a) T = 1000,k = 25

(b) T = 1000,k = 100

Our aim is to learn the starting and ending points of the sets on the x-axis. To
achieve this, the proposed learning algorithm calculates the initial estimates of the
product valuations by offline learning among randomly generated prices using a
uniform distribution in the range of [0,100] during the T iteration, called the warm-
up period.

3.1.1.1 On the converting the preference dataset

The initial step in our proposed algorithm involves converting the dataset {(xt,yt)}
to {(xt, ŷt)} by computing the average of the y values. This conversion process
holds significant importance as the resulting converted dataset is utilized for clus-
tering purposes. Therefore, it is crucial to ensure an appropriate conversion of the
dataset to facilitate accurate parameter estimation. A key factor in this conversion
is the hyperparameter k, which plays a vital role in shaping the expected purchase
probability function. We have observed that the value of this hyperparameter has a
substantial impact on the smoothness of the purchase probability function’s shape,
ultimately influencing the quality of the obtained clustering results. A higher value
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of k leads to a smoother shape, enabling improved clustering outcomes. Alterna-
tively, achieving a smooth shape for the purchase probability function can also be
accomplished by performing multiple conversions of the preference dataset. To do
this, we introduce a new hyperparameter called nconverison which determines the
number of times the dataset is converted. When the value of this hyperparameter
is greater than 1, the preference dataset is initially converted, followed by subse-
quent conversions of the previously converted dataset for nconversion − 1 times. For
example, if the value of this hyperparameter is set to 2, the {(xt,yt)} dataset is first
converted using KNN to obtain {(xt, ŷt)}, and then KNN is applied once again on
{(xt, ŷt)} to obtain {(xt, ˆ̂yt)}.

Figure 3.3 The effect of applying one or two rounds of kNN on expected purchase
probability estimates in the presence of deterministic product valuations

(a) (xt, ŷt) values obtained as a result of one round of kNN

(b) (xt, ˆ̂yt) values obtained as a result of two rounds of kNN

Figure 3.3 illustrates the effect of dataset conversion by applying KNN algorithm,
executed once and twice. The dataset size remains constant, as does the value
assigned to the hyperparameter k in both instances. By applying the conversion
twice, a smoother shape of the expected purchase probability function is achieved.
This enhanced smoothness offers potential advantages during the clustering phase
of the algorithm, facilitating a more precise estimation of the problem’s parameters.

Our proposed algorithm is as follows:
20



• Convert the dataset for nconversion times

– For each price, take the average of yt’s for k nearest data points

– If nconversion > 1 :
Convert the converted dataset nconversion −1 times

• Cluster the data points

– Using k-means clustering algorithm

– Using only one feature vector (ˆ̂y values)

– Calculate the target values (pi’s)

• Estimate the parameters

– Estimate the vi’s based on the clustered data points

• Find the optimal price

The first step of Algorithm 1 involves converting the preference data to a format
suitable for clustering. In this algorithm, there is an option to perform multiple
conversions on the dataset. When the hyperparameter nconversion is greater than
1, the preference data is first converted, and then the converted dataset is further
converted for nconversion − 1 iterations. In our experiments, we opt to perform the
conversion process twice, as it yields a well-smooth purchase probability function
that is conducive to clustering. Consequently, our converted dataset is of the form
{(xt, ˆ̂yt)}.

In the next step, we need to cluster the data points in the converted dataset. A stan-
dard clustering algorithm to be applied to a dataset consisting of two-dimensional
vectors considers the distances in both coordinates when calculating the distance
between the elements. The outcome of such an approach is that the observed out-
put points are clustered in such a way that they divide the price range between
[0,100] by similar lengths. While the desired ideal clusters require the ˆ̂y values of
the points to be close to the cluster center, the scale of the price values depends on
the market structure and should not affect the learning process much. For this rea-
son, the clustering algorithm we apply uses only ˆ̂y information, not two-coordinate
(x, ˆ̂y) information for the distance calculation. To initiate the clustering process,
we need to compute the target values (purchase probabilities) pi. Assuming the
probability of being in segment i is δi, we calculate the target values for each cluster
using the following formula:
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(3.1) pi = 1−
i−1∑
j=1

δj

Once the target values (purchase probabilities) have been calculated, we proceed
to cluster the data points in the converted dataset based on their ˆ̂y values. For
each point (xt, ˆ̂yt) in the converted dataset, we calculate the distance between the
ˆ̂yt value and the target values pi of each cluster. Subsequently, the point (xt, ˆ̂yt) is
assigned to the cluster whose target value is closest to the ˆ̂y value:

(3.2) arg min
i=1,. . . ,n+1

|ˆ̂yt −pi| ∀t = 1, ...,T

Upon completion of the clustering process on the converted dataset, we obtain clus-
ters that consist of prices x’s and ˆ̂y values. These clusters provide us with the
necessary information to estimate the customers’ valuations. To estimate vi’s, we
take the average of the maximum and minimum prices in two consecutive clusters
which basically gives us the middle point of these two clusters:

(3.3) v̂i =
max{xt

i}+min{xt
i+1}

2

In which, xt
i’s are the prices in cluster i, and xt

i+1’s are the prices in cluster i+1.

Finally, by estimating the vi’s and knowing the δi’s we can calculate the optimal
price by Eq 2.1.

3.1.2 Outlier elimination

During the clustering process of the converted data points, it is observed that some
data points are inaccurately assigned to clusters that differ from their true cluster,
i.e., the cluster to which they ideally belong. These data points can be regarded
as outliers within the clusters identified by the clustering method. This situation
can pose challenges when estimating the parameters, as the accuracy of parameter
estimates relies on the data points within the identified clusters. To address this
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issue, it becomes necessary to identify the misclustered data points and devise an
appropriate approach for handling them. The method employed to identify such
data points is the Interquartile Range (IQR) method.

As can be seen in the region marked with red in Figure 3.4(a), some of the elements
of the third set, which are expressed in light blue, are in the middle of the elements
of the fourth set, which are expressed in light green. In the desired ideal clusters,
the price (x) values of the points belonging to the same cluster are expected to be
consecutive. Our solution to this problem is to remove the outliers on the x-axis of
each cluster from the clusters after calculating them with the rule Q1 − 1.5 × IQR

and Q3 +1.5×IQR (Tukey, 1977). The new clusters obtained after this process can
be seen in Figure 3.4(b).

Figure 3.4 Identifying the wrongly clustered data points (outliers) with the IQR
method and eliminating them

(a) Before outlier elimination

(b) After outlier elimination

In the proposed algorithms, when addressing outliers, we consistently employ the
IQR method to identify these data points. Subsequently, we proceed with a straight-
forward approach of removing these outliers from the dataset.

3.1.3 Simulation

To evaluate the proposed algorithm, we will conduct a simulation study that en-
compasses various market structures, allowing us to analyze and discuss the results.
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Table 3.2 presents the different settings we intend to test during the evaluation pro-
cess. In this study, we focus on a single feature vector consisting of the converted
preference values (ˆ̂y). In order to handle outliers within the dataset, we apply the
IQR method. This method enables us to identify outliers and subsequently eliminate
them from the dataset.

During the simulation study, we begin with a small dataset size of T = 50, and grad-
ually increase the dataset size up to T = 1000. This approach allows us to analyze
the impact of dataset size on the accuracy of the algorithm. Additionally, we aim to
determine if we can obtain accurate estimates close to the true valuations within the
warm-up period using smaller datasets. To ensure robustness and reliability of the
results, each setting is replicated 200 times, providing a comprehensive evaluation
of the algorithm’s performance across different scenarios and dataset sizes.

Table 3.2 Setting of the simulation study for estimating the valuations in the presence
of deterministic valuations and known segment distributions

Number of segments n 4
Number of data points T [50,100,250,500,1000]

Number of nearest neighbors k [5,7,9,11,13,15,20,25,30,35,50]
Number of data conversion nconversion [1,2]

Non-uniform valuations vi [20, 50, 70, 80]

In this simulation study, we examine two distinct distributions: 1) an increasing
distribution denoted as δi = [0.1,0.2,0.3,0.4], and 2) a decreasing distribution de-
noted as δi = [0.4,0.3,0.2,0.1]. The outcomes of the simulation study are presented
in Table 3.3, illustrating various settings and distributions. The average estimated
values for customers’ valuations are reported, along with their corresponding average
absolute percent deviation (Error%). The error is calculated as follows:

(3.4) 1
n

n∑
i=1

(| v̂i −vi

vi
|)

In which v̂i denotes the estimated valuation of segment i and vi denotes the real
valuation of segment i.
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Table 3.3 Simulation results for estimated valuations in the presence of deterministic
valuations and known segment distributions

δi = [0.1, 0.2, 0.3, 0.4] δi = [0.4, 0.3, 0.2, 0.1]
Estimated Valuations

Error%
Estimated Valuations

Error%
v̂1 v̂2 v̂3 v̂4 v̂1 v̂2 v̂3 v̂4

T = 50

k = 5
nconversion = 1 38.75 56.47 68.33 80.79 27.52 30.61 41.85 55.37 72.40 24.94
nconversion = 2 33.79 56.13 68.84 78.22 21.28 26.43 44.72 58.43 69.56 18.07

k = 7
nconversion = 1 34.53 51.17 69.10 79.65 19.18 22.41 44.69 60.69 74.06 10.85
nconversion = 2 27.78 47.33 65.41 77.33 13.54 21.93 46.12 65.83 75.94 7.10

k = 9
nconversion = 1 31.58 46.11 67.35 79.72 17.45 22.09 41.75 67.23 75.39 9.17
nconversion = 2 32.16 48.94 66.45 79.48 17.16 23.28 44.60 65.52 79.22 8.64

k = 11
nconversion = 1 34.71 54.02 65.36 80.15 22.10 21.95 51.42 67.58 80.32 4.11
nconversion = 2 28.06 48.49 66.44 79.98 12.11 23.95 48.58 66.04 78.11 7.65

T = 100

k = 5
nconversion = 1 38.68 55.02 67.57 79.05 27.02 30.07 43.17 57.66 69.98 23.54
nconversion = 2 38.38 52.82 64.85 77.06 27.15 26.45 44.76 59.45 72.83 16.69

k = 7
nconversion = 1 37.22 48.87 69.28 78.84 22.70 24.34 42.53 63.60 73.16 13.58
nconversion = 2 31.10 48.73 65.07 78.09 16.86 23.06 47.58 65.83 75.36 7.98

k = 9
nconversion = 1 34.81 44.69 70.16 78.93 21.56 23.68 42.77 68.70 75.18 10.19
nconversion = 2 31.69 47.10 65.63 78.84 17.99 22.76 46.70 64.07 75.92 8.49

k = 11
nconversion = 1 29.76 50.67 64.16 79.11 14.90 24.76 50.76 64.00 78.82 8.84
nconversion = 2 29.87 47.82 67.72 79.43 14.42 23.74 47.05 66.30 76.31 8.63

k = 13
nconversion = 1 27.56 49.28 67.61 80.41 10.80 20.57 50.86 66.06 76.88 3.52
nconversion = 2 23.82 48.88 65.55 81.32 7.33 22.89 49.95 70.01 79.06 3.94

k = 15
nconversion = 1 23.99 53.75 67.40 81.29 8.19 22.53 50.68 66.18 80.79 5.12
nconversion = 2 24.95 48.18 64.80 78.79 9.33 20.36 46.74 66.68 79.25 3.49

T = 250

k = 5
nconversion = 1 39.48 56.98 69.49 79.15 28.29 31.43 41.62 57.15 71.25 25.81
nconversion = 2 36.10 52.48 67.23 78.87 22.70 25.63 44.12 61.08 74.12 15.00

k = 10
nconversion = 1 32.33 54.53 70.04 80.15 17.75 23.37 45.23 60.29 74.85 11.67
nconversion = 2 29.80 50.58 67.69 79.28 13.59 21.07 47.66 65.12 76.14 5.46

k = 15
nconversion = 1 23.55 53.72 68.46 80.49 7.00 23.09 48.94 64.97 79.40 6.39
nconversion = 2 27.80 50.46 69.47 79.76 10.24 20.54 50.47 67.67 78.35 2.26

k = 20
nconversion = 1 20.00 55.28 69.88 79.94 2.70 21.22 50.47 65.64 76.73 4.33
nconversion = 2 23.82 49.05 67.87 79.50 6.17 20.95 48.77 65.58 79.60 3.51

k = 25
nconversion = 1 26.47 52.26 68.31 80.50 9.98 21.27 49.21 66.81 77.48 3.91
nconversion = 2 25.43 51.15 69.43 80.54 7.74 18.90 50.17 68.60 80.53 2.12

k = 30
nconversion = 1 27.38 52.83 69.02 80.87 11.26 20.44 48.96 67.15 79.40 2.27
nconversion = 2 26.68 51.35 69.42 80.52 9.39 20.34 50.21 68.86 79.93 0.96

T = 500

k = 10
nconversion = 1 32.60 55.88 71.37 80.05 19.20 23.24 45.25 62.78 76.78 10.01
nconversion = 2 28.50 52.21 68.99 79.73 12.17 21.52 47.25 64.84 76.39 6.25

k = 15
nconversion = 1 25.05 54.87 67.32 80.15 9.75 22.13 50.55 63.66 78.23 5.74
nconversion = 2 26.29 51.76 68.49 79.49 9.44 20.89 48.54 65.83 77.20 4.20

k = 20
nconversion = 1 22.58 54.12 71.77 80.31 6.01 20.50 50.81 66.15 76.48 3.51
nconversion = 2 24.85 51.94 70.11 79.46 7.24 20.45 50.34 69.45 77.66 1.66

k = 25
nconversion = 1 28.54 53.15 69.87 79.93 12.32 21.10 48.13 64.99 78.35 4.61
nconversion = 2 25.23 49.82 69.66 79.65 6.86 20.08 49.34 69.36 80.11 0.69

k = 30
nconversion = 1 23.11 54.11 69.95 79.58 6.09 20.32 50.52 67.07 78.97 2.03
nconversion = 2 21.67 49.69 69.69 79.05 2.64 20.15 49.43 69.85 78.86 0.88

k = 35
nconversion = 1 20.33 51.59 69.40 80.09 1.45 20.03 51.60 67.73 79.17 1.91
nconversion = 2 23.22 50.06 68.88 80.14 4.49 20.02 49.47 69.39 79.13 0.78

k = 50
nconversion = 1 22.58 50.86 70.16 80.27 3.80 20.44 50.53 68.09 80.31 1.59
nconversion = 2 21.92 50.20 69.51 80.01 2.68 19.97 50.14 69.00 79.24 0.70

T = 1000

k = 10
nconversion = 1 33.55 57.38 68.42 79.03 21.49 24.77 45.36 61.63 76.26 12.44
nconversion = 2 29.12 53.31 69.67 79.86 13.22 20.65 48.50 65.01 76.73 4.36

k = 15
nconversion = 1 25.86 55.68 68.63 79.47 10.82 21.75 49.15 64.28 77.92 5.31
nconversion = 2 27.57 51.07 69.36 79.61 10.35 20.71 49.31 67.22 78.04 2.85

k = 20
nconversion = 1 21.77 54.30 70.89 79.85 4.73 21.02 51.73 64.79 75.21 5.50
nconversion = 2 23.76 52.39 71.31 79.81 6.43 20.03 48.58 67.29 78.06 2.32

k = 25
nconversion = 1 27.28 52.81 70.54 80.05 10.71 20.64 50.17 65.85 78.12 2.96
nconversion = 2 23.10 51.18 69.65 79.74 4.67 19.95 50.87 69.33 77.86 1.41

k = 30
nconversion = 1 24.58 52.42 69.73 80.02 7.03 19.89 50.17 66.44 77.91 2.14
nconversion = 2 21.75 50.95 70.15 79.88 2.76 20.03 49.45 68.31 78.92 1.26

k = 35
nconversion = 1 23.82 52.54 69.27 80.08 6.33 20.09 50.01 67.74 78.29 1.46
nconversion = 2 21.92 51.38 69.93 79.92 3.14 20.06 49.82 68.87 79.04 0.87

k = 50
nconversion = 1 22.55 51.72 70.26 79.93 4.17 20.19 50.02 67.74 79.18 1.30
nconversion = 2 21.99 50.11 69.94 80.07 2.59 20.01 50.14 69.94 78.98 0.43

One noteworthy observation is that as the number of data points (T ) increases, we
achieve more accurate estimates of valuations close to their true values with lower
errors. This is attributed to the diminished fluctuations in the converted dataset
when more data points are available, resulting in a more stable dataset that is
less prone to wrongly cluster the data points which facilitates valuations estimation.
Furthermore, it is evident that increasing the value of the hyperparameter k leads to
more accurate estimation. However, it is essential to consider the value of k relative
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to the size of the dataset, as excessively large values may yield poorer estimates.
Hence, the selection of the hyperparameter k should be proportional to the dataset
size, T . Additionally, the impact of the hyperparameter nconversion on estimation
performance can be observed. The results indicate that settings involving double
conversion of the data exhibit lower errors compared to cases where the data is
converted only once. This can be attributed to the increased smoothness of the
purchase probability function resulting from the additional conversion step, which
reduces fluctuations and, consequently, the likelihood of misassigning data points
to incorrect clusters. Therefore, better estimation outcomes can be obtained by
employing a two-step conversion process. In conclusion, it is evident that with a
sufficiently large dataset, an appropriate value of k, and employing two conversions
of the preference data, accurate estimates with minimal errors can be achieved.

3.1.4 Random distributions

In the previous simulation study, our investigation focused on two distributions with
distinct patterns, one characterized by increasing values and the other exhibiting
decreasing values, thereby possessing an orderly and structured nature. Nonetheless,
it is imperative to acknowledge that real-world problems do not always adhere to
such neat distributions. In numerous instances, the distribution of customers across
segments assumes a random structure. For instance, the proportions of customers
assigned to two segments may be relatively small and closely aligned, while the
proportion for another segment could markedly differ and be large. Consequently,
the distribution of customers does not exhibit a uniform structure similar to the
increasing and decreasing distributions previously examined.

To accommodate this inherent variability in customer distributions, an additional
distribution is incorporated into our study: the random distribution featuring a
minimum probability assigned to each segment. Here, the minimum probability de-
notes a lower threshold representing the likelihood of customers belonging to specific
segments. To execute our experiments, we initially generate a random distribution
for the segments, incorporating a minimum probability of R. Subsequently, we gen-
erate a dataset based on this distribution. This approach serves to evaluate the
robustness of the proposed Algorithm 1. Specifically, we aim to determine whether
our algorithm can provide accurate estimates close to the true values of customers’
valuations when customers are distributed randomly among the segments.
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3.1.5 Simulation

Table 3.4 Setting of the simulation study for estimating the valuations in the presence
of deterministic valuations and known random segment distributions

Number of segments n 4
Number of data points T 500

Number of nearest neighbors k [20,50]
Number of data conversion nconversion 2

Non-uniform valuations vi [20, 50, 70, 80]
Minimum probability for random distribution R 0.05

To evaluate the efficacy of the proposed Algorithm 1 in handling random distribu-
tions, a comprehensive simulation study encompassing diverse market structures will
be conducted. The different settings selected for assessing the algorithm’s perfor-
mance are outlined in Table 3.4. It is noteworthy that only a single feature vector
(ˆ̂y values) is considered in this study. Building upon the observation that better
estimates are achieved by converting preference data twice, we exclusively examine
the scenario where the dataset undergoes conversion twice.

To ascertain the effectiveness of the proposed algorithm in the context of ran-
dom distributions, we also undertake experiments involving two additional distri-
butions for comparative purposes: 1) an increasing distribution, denoted as δi =
[0.1,0.2,0.3,0.4], and 2) a decreasing distribution, denoted as δi = [0.4,0.3,0.2,0.1].
Furthermore, to evaluate the impact of outlier elimination, we investigate two cases:
one where the IQR method is applied to identify and eliminate outliers, and another
where the IQR method is not utilized, allowing outliers to remain and potentially
influence the estimation process. Each setting is subjected to 200 replications, en-
suring a robust analysis of the algorithm’s performance across various scenarios.

Table 3.5 Simulation results for estimated valuations in the presence of deterministic
valuations and known random segment distributions

With applying IQR Without applying IQR
Estimated Valuations

Error%
Estimated Valuations

Error%
v̂1 v̂2 v̂3 v̂4 v̂1 v̂2 v̂3 v̂4

k = 20
δi = [0.1, 0.2, 0.3, 0.4] 24.44 51.11 69.79 79.85 8.66 28.07 49.41 68.97 79.73 13.83
δi = [0.4, 0.3, 0.2, 0.1] 20.27 50.02 67.53 77.96 4.33 21.05 47.85 67.13 77.70 6.64

δi = Random with R = 0.05 21.16 48.19 65.26 78.01 7.43 22.47 47.45 64.15 77.99 9.04

k = 50
δi = [0.1, 0.2, 0.3, 0.4] 21.08 50.63 69.79 79.92 5.60 22.05 50.19 70.10 79.92 6.26
δi = [0.4, 0.3, 0.2, 0.1] 20.20 50.24 69.29 79.45 3.97 20.42 50.15 69.78 79.83 3.99

δi = Random with R = 0.05 20.49 49.49 67.66 79.66 5.74 20.38 49.91 68.39 79.61 6.02
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The outcomes of the simulation study are summarized in Table 3.5, showcasing the
results obtained for different settings and distributions. The table presents the aver-
age estimated values for customers’ valuations, accompanied by their corresponding
average absolute percent deviation (Error%). The error is calculated using Equation
3.4.

The obtained results reveal a consistent trend across all hyperparameter k values
and various distributions: applying the IQR method leads to more accurate esti-
mates of valuations close to the true values, exhibiting lower error rates compared
to scenarios where this data cleansing technique is not applied. Furthermore, when
comparing k = 20 and k = 50, it becomes evident that employing a larger value
of k (k = 50) yields improved valuation estimates with lower errors, irrespective
of whether the IQR method is employed or not. Regarding the robustness of the
proposed algorithm, the estimation errors for the random distribution are compa-
rable to those observed in other distributions. In some cases, the errors are even
lower, indicating that the algorithm demonstrates robustness in accurately estimat-
ing customers’ valuations regardless of the underlying distribution. These findings
emphasize the algorithm’s ability to handle varying distribution types effectively
and provide reliable estimations.

3.1.6 Smart learning

It appears that certain valuations can be directly learned from the original data with-
out the need for data conversion and subsequent clustering. Specifically, the first
(v1) and last (vn) valuations can be easily derived from the original data. When con-
sidering very low prices, customers consistently provide "buying" feedback as these
prices are lower than the valuation of the first segment. Consequently, regardless
of the segment they originate from, customers always make purchases at such low
prices. Conversely, when it comes to very high prices, customers consistently provide
"not buying" feedback since these prices surpass the valuations of the last segment,
making the product undesirable for purchase. Leveraging these buying preferences,
the first and last valuations can be directly inferred from the original dataset. To
achieve this, the following approach is employed:

• Firstly, the dataset is sorted along the x-axis. Starting from the lowest price,
the search is conducted for a "not buying" feedback (0). Once such a point
is identified, it becomes a breaking point, and all preceding data points, each
associated with a "buying" feedback (1), form the first cluster.
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• Subsequently, the search begins from the highest price towards lower prices,
aiming to locate a "buying" feedback (1). Upon finding this point, it too
becomes a breaking point, and all subsequent data points, each accompanied
by a "not buying" feedback (0), constitute the last cluster.

• For the data points falling between these two breaking points, the standard
data conversion and clustering processes are performed to identify the re-
maining clusters, and subsequently, the valuations are estimated as previously
outlined.

This approach not only enables the direct derivation of the first and last valuations
from the original dataset but also reduces computational costs significantly. Figure
3.5 exemplifies the application of smart learning technique.

Figure 3.5 The effect of applying smart learning technique on expected purchase
probability estimates in the presence of deterministic product valuations

(a) Before applying smart learning

(b) After applying smart learning

3.1.7 Probabilistic valuations following the Uniform distribution

Up until now, our analysis has been based on deterministic valuations, assuming
that all customers within each segment have identical valuations and are equally
willing to pay for the product. However, this assumption may not accurately reflect
real-world scenarios, as individuals within a segment may assign different values
to a product, even when sharing similar attributes. To address this limitation, we
introduce the concept of probabilistic valuations, which allows for varying valuations
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within a segment. Probabilistic valuations refer to the notion that the valuations
of customers within a given segment i can fluctuate within a specified range [li,ui].
Consequently, when a price is presented to a customer from segment i, their valuation
will assume a value within this range, which may differ from the valuations of other
customers within the same segment.

To incorporate probabilistic valuations into our analysis, we modify the generation
of the synthetic dataset. After generating the continuous prices (xt), we account
for valuation deviations by introducing a percentage deviation (p%) to the original
valuations of each segment. For instance, if vi represents the valuation of segment
i and the valuations are subject to a percentage deviation of p%, the valuation of
a customer from this segment can vary within the range [vi × (1 − p/100),vi × (1 +
p/00)] according to an uniform distribution. Hence, when a customer arrives, their
buying preference is determined by comparing the offered price with a valuation
that is chosen from this range uniformly. It is important to note that the parameter
governing the deviation of valuations remains constant across all segments; in other
words, all valuations experience a uniform percentage change, such as 5%, 10%, and
so forth.

Figure 3.6 The effect of uniform probabilistic valuations on expected purchase prob-
ability function

(a) Deterministic valuations

(b) Probabilistic valuations with 5% deviation from true values

Probabilistic valuations not only impact the valuations themselves but also influence
the shape of the purchase probability function. This effect is demonstrated in Fig-
ure 3.6. In the presence of deterministic valuations, Figure 3.6(a) reveals a distinct
decline in the ˆ̂y values when transitioning from one cluster to another. This decline
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is characterized by sharp drops, indicating a clear distinction between the clusters.
However, when probabilistic valuations are considered, as depicted in Figure 3.6(b),
the sharp drops observed in the deterministic case transform into a more gradual
decline. The inclusion of probabilistic valuations smooths out the transitions be-
tween clusters, resulting in a more continuous and nuanced change in the purchase
probability function. Consequently, the boundaries between clusters become less
pronounced, allowing for a smoother and more realistic representation of customer
preferences and purchase behavior.

By incorporating the concept of probabilistic valuations, our objective is to evaluate
the performance of the proposed Algorithm 1 in estimating valuations when such
probabilistic valuations are present. To achieve this goal, an extensive simulation
study will be conducted, aiming to observe and assess the efficiency of the algorithm.

3.1.8 Simulation

The simulation study will involve the generation of synthetic data sets where proba-
bilistic valuations exist. These data sets will be designed to capture the variation in
valuations within each segment, considering the range specified by the probabilistic
valuation concept. By applying Algorithm 1 to these synthetic data sets, we will
be able to analyze its performance in estimating the valuations accurately and effi-
ciently. By conducting this comprehensive simulation study, we aim to gain insights
into the strengths and limitations of Algorithm 1 when dealing with probabilistic
valuations.

Table 3.6 Setting of the simulation study for estimating the valuations in the presence
of uniform probabilistic valuations and known segment distributions

Number of segments n 4
Number of data points T 500

Number of nearest neighbors k 20
Number of data conversion nconversion 2

Non-uniform valuations vi [20, 45, 55, 80]
Minimum probability for random distribution R [0.05, 0.1, 0.15]

Valuation percentage deviation p [5%, 10%, 20%]

To assess the effectiveness of Algorithm 1 in handling probabilistic valuations, a
comprehensive simulation study encompassing diverse market structures will be con-
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ducted. The different settings selected for assessing the algorithm’s performance are
outlined in Table 3.6. The simulation study focuses on the scenario where the
dataset undergoes two conversions, as it has been observed that this approach leads
to improved estimation results. We investigate five different probability distribu-
tions: an increasing distribution (δi = [0.1,0.2,0.3,0.4]), a decreasing distribution
(δi = [0.4,0.3,0.2,0.1]), and three random distributions with varying minimum prob-
ability (R) values. This variation in distributions allows for an examination of the
algorithm’s performance across different levels of randomness. Additionally, we ana-
lyze the impact of employing a smart learning technique. Two cases are considered:
one where the smart learning method is applied to identify the first and last valu-
ations from the original dataset, and another where this method is not used, and
valuations are estimated conventionally. We also investigate the impact of different
values for the valuation percentage deviation p% on the algorithm’s performance.
This analysis aims to understand how the algorithm performs when valuations devi-
ate within larger intervals. This investigation allows us to evaluate the algorithm’s
robustness in estimating valuations when faced with larger intervals of deviation. To
handle outliers present in the dataset, the IQR method is employed. Each setting
undergoes 200 replications, ensuring a robust evaluation of the algorithm’s perfor-
mance across diverse scenarios.

Table 3.7 Simulation results for estimated valuations in the presence of uniform
probabilistic valuations and known segment distributions

With applying smart learning Without applying smart learning
Estimated Valuations

Error%
Estimated Valuations

Error%
v̂1 v̂2 v̂3 v̂4 v̂1 v̂2 v̂3 v̂4

p = 0%

δi = [0.1, 0.2, 0.3, 0.4] 21.37 44.85 55.78 79.73 4.52 21.47 44.64 55.44 79.83 5.94
δi = [0.4, 0.3, 0.2, 0.1] 20.25 44.63 55.04 78.36 3.71 20.09 44.71 55.04 78.04 4.65

δi = Random with R = 0.05 20.42 43.61 57.27 78.33 6.78 20.22 44.22 56.53 77.22 7.63
δi = Random with R = 0.1 20.47 43.98 56.38 78.85 5.48 20.36 43.78 56.45 79.06 6.06
δi = Random with R = 0.15 20.59 44.04 56.03 79.17 5.28 20.26 44.23 55.87 79.68 5.41

p = 5%

δi = [0.1, 0.2, 0.3, 0.4] 21.40 45.09 55.20 81.97 5.04 22.31 45.04 55.59 79.64 7.14
δi = [0.4, 0.3, 0.2, 0.1] 20.11 44.31 55.20 79.12 3.76 20.20 44.54 54.77 76.72 4.70

δi = Random with R = 0.05 20.11 43.99 56.95 79.45 5.82 20.35 44.34 57.95 78.15 6.98
δi = Random with R = 0.1 20.32 44.26 56.61 80.21 5.62 20.09 43.82 56.51 79.53 5.83
δi = Random with R = 0.15 20.49 43.70 56.30 80.70 4.83 20.24 44.39 56.38 79.11 5.73

p = 10%

δi = [0.1, 0.2, 0.3, 0.4] 21.11 44.80 56.10 84.95 6.77 22.02 44.95 55.38 79.81 7.78
δi = [0.4, 0.3, 0.2, 0.1] 19.49 44.56 55.13 81.78 4.49 20.20 44.63 55.67 75.94 5.44

δi = Random with R = 0.05 19.65 43.41 57.07 82.28 6.79 20.29 43.42 57.35 77.28 7.20
δi = Random with R = 0.1 19.69 43.53 56.46 82.91 6.20 20.24 43.80 56.21 78.74 6.45
δi = Random with R = 0.15 19.70 43.83 55.86 83.32 5.48 20.29 43.81 56.34 79.13 6.09

p = 20%

δi = [0.1, 0.2, 0.3, 0.4] 20.49 43.41 56.21 91.49 9.45 21.84 43.21 56.42 78.93 7.48
δi = [0.4, 0.3, 0.2, 0.1] 18.22 43.54 56.72 86.65 7.66 20.11 43.90 56.13 75.73 6.69

δi = Random with R = 0.05 17.98 43.01 57.16 88.24 9.41 20.05 43.49 57.60 77.68 7.99
δi = Random with R = 0.1 18.37 41.82 56.59 88.48 8.80 20.15 42.62 57.09 78.13 7.07
δi = Random with R = 0.15 18.45 42.90 56.71 89.42 8.53 20.16 43.21 56.57 78.74 6.80

Table 3.7 provides a comprehensive summary of the simulation study’s findings,
32



presenting the results obtained under various settings.

One crucial aspect to discuss is the impact of implementing smart learning technique.
Across all examined scenarios, with the exception of the last one, it is evident that
employing smart learning leads to improved outcomes; more accurate estimates
of valuations, closely aligned with their true values, and lower error rates. The
heightened accuracy primarily stems from the improved estimation of first and last
valuations, as the smart learning approach directly utilizes the preference dataset
for estimating these values. An additional observation indicates that as the range
of valuation fluctuations widens, the disparity in error rates between utilizing smart
learning and not implementing it diminishes. However, when valuations undergo
significant changes within a considerably wide interval, such as in the case of p = 20%,
smart learning does not perform optimally, resulting in higher error rates compared
to scenario where this method is not applied.

Furthermore, as the range of possible valuation variations expands (represented by
higher p% values), the error in valuation estimation increases. This phenomenon
is attributed to the fact that wider intervals of fluctuating valuations lead to a
more monotonous shape of the purchase probability function, deviating from the
characteristic step-like pattern. Consequently, the algorithm encounters difficulties
in accurately identifying the boundaries between clusters, thereby resulting in poorer
estimation outcomes. This change in the shape of purchase probability function can
be seen in Figure 3.6.

Figure 3.7 The effect of minimum probability for random distribution (R) on ex-
pected purchase probability function

(a) R = 0.05

(b) R = 0.2

Additionally, when the minimum probability of belonging to a segment (R) increases,
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the error in estimation decreases. This phenomenon arises from the fact that higher
values of R yield more distinct clusters, enabling the algorithm to more accurately
identify and delineate these clusters. Consequently, the algorithm generates more
accurate estimates, as illustrated in Figure 3.7.

3.1.9 Probabilistic valuations following the Weibull distribution

In the previous section, our investigation focused on probabilistic valuations, where
the valuations of customers within each segment changed uniformly within a spec-
ified interval. In this section, we aim to explore an alternative scenario of prob-
abilistic valuations, wherein the customer valuations within a segment follow the
Weibull distribution instead of the uniform distribution. Our objective is to assess
the performance of Algorithm 1 in the presence of this particular scenario.

To accomplish this, we utilize the Weibull distribution to model the valuations of the
segments. The Weibull distribution is characterized by two parameters: α, which
determines the shape of the distribution, and λ, which determines the scale. For
our analysis, we set α to a fixed value of 2 (α = 2), as it is commonly employed
in pricing problems. To determine the appropriate value for λ, we derive it such
that the expectation of the Weibull distribution (E(X)) equals the valuations of the
segments, as indicated by the following equation:

(3.5) vi = λi ×gamma(1+ 1
α

)

In which vi is the true valuation of segment i. By solving the above equation, we
can determine the λ value for each segment. Subsequently, we draw samples from
the Weibull distribution using the obtained λi values. The methodology employed
for generating the preference dataset involves generating random prices (xt) within
the range of (0,100). For each data point xt, we assign it to a segment based on the
segments’ distribution δi, and subsequently, for that particular segment’s valuation,
we generate a random valuation based on a Weibull distribution with predefined α

and λi values, obtained through the Eq.3.5.
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3.1.10 Simulation

To evaluate the efficacy of Algorithm 1 in dealing with probabilistic valuations drawn
from the Weibull distribution, an extensive simulation study will be conducted,
encompassing various market structures. The simulation setting employed will be
consistent with the setting described in section 3.1.8, with the only distinction being
that customers’ valuations will no longer follow a uniform distribution. Instead, they
will be sampled from the Weibull distribution.

Table 3.8 Simulation results for estimated valuations in the presence of weibull
probabilistic valuations and known segment distributions

With applying smart learning Without applying smart learning
Estimated Valuations

Error%
Estimated Valuations

Error%
v̂1 v̂2 v̂3 v̂4 v̂1 v̂2 v̂3 v̂4

δi = [0.1, 0.2, 0.3, 0.4] 10.57 27.00 48.24 99.00 30.80 11.60 26.67 48.06 87.07 26.07
δi = [0.4, 0.3, 0.2, 0.1] 7.26 35.16 62.46 97.11 29.95 15.87 35.95 61.68 88.86 16.00

δi = Random with R = 0.05 7.80 36.98 60.58 97.55 29.95 16.15 37.30 59.79 86.70 16.03
δi = Random with R = 0.1 7.80 34.88 57.55 97.94 29.47 16.36 35.08 57.99 87.57 16.69
δi = Random with R = 0.15 7.67 34.21 56.58 98.30 29.08 15.72 33.63 56.66 86.84 15.87

The initial observation from the results indicates that smart learning is ineffective
when valuations follow a Weibull distribution. Across all five different distribu-
tions considered, the use of smart learning for valuation estimation yields higher
errors compared to not utilizing smart learning. This outcome can be attributed to
challenges in estimating the first and last valuations. The wide range from which
customers derive their valuations contributes to this issue. Consequently, in the
smart learning approach, it is possible to encounter a 0-value preceding v1 or a 1-
value succeeding v4, resulting in estimations that deviate significantly from their true
values. This phenomenon is depicted in Figure 3.8. When examining the random
distributions, it is observed that as the minimum probability R increases, the error
decreases, which corroborates previous findings. Overall, the proposed algorithm
fails to accurately estimate valuations, primarily due to the shape of the purchase
probability function. In the presence of Weibull-distributed valuations, this function
exhibits a monotonic and smooth form, making it challenging to distinguish between
clusters. This difficulty is evident in Figure 3.8.
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Figure 3.8 The effect of Weibull-distributed valuations on expected Purchase prob-
ability function

(a) With applying smart learning

(b) Without applying smart learning

3.2 Case where the number of segments (n) and segment distributions

(δ) are known, but segment ordering is unknown

In this case, the segments in the market and their distribution are known, while
the comparison between the product valuations of the segments (in other words,
in which order the segments will be lost as the suggested price is increased) is not
known. More precisely, while we have access to the δi values, we do not know which
specific segment’s distribution corresponds to each δi value.

Estimating customers’ valuations in this scenario entails solving a series of problems.
Considering the known segment distribution values and the unknown order, for the
y-axis values of the expected purchase probability function, at most n! different
options are available. Since the number of segments in the markets we are interested
in is not very high, the n! value is at a reasonable level for individual counting.

Our work under this scenario is to apply the clustering process for all possible
orders of the δi values at the end of the warming period consisting of T iterations
and to choose the order with the lowest clustering error. The mentioned error is the
square error calculated as the squares of the differences between ˆ̂y and the target
height (purchase probability) of the cluster (pi) to which it is assigned for each (x, ˆ̂y)
element. The calculation is as follows:
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(3.6) errorclustering =
n+1∑
i=1

|clusteri|∑
j=1

( ˆ̂yij −pi)2

In which |clusteri| is the length of the cluster i, ˆ̂yij is the ˆ̂y value for the jth element
of cluster i, and pi is the purchase probability of cluster i.

3.2.1 Simulation

A simulation study will be conducted to evaluate the clustering performance of the
proposed Algorithm 1 in accurately identifying the underlying distribution order. As
the market under investigation comprises four distinct segments (n = 4), there will
be a total of 24 possible combinations of segment distribution orders. Consequently,
for each replication of the simulation, the algorithm will be iterated 24 times to de-
termine the true order of the provided distribution. The true valuations considered
for this study will remain consistent with previous simulation studies, denoted as
vi = [20,45,55,80]. Three different distribution scenarios will be examined: an in-
creasing distribution represented by δi = [0.1,0.2,0.3,0.4], a decreasing distribution
characterized by δi = [0.4,0.3,0.2,0.1], and a random distribution with a minimum
probability threshold of R = 0.15. It is worth noting that our observations have indi-
cated higher accuracy rates when employing smart learning techniques. Therefore,
the simulation will be conducted exclusively with smart learning enabled. Various
values for the dataset size (T ) will be taken into account, and the value of k will be
adjusted proportionally to the dataset’s size. To ensure robustness and reliability,
the experiments will be repeated 200 times, with each repetition involving different
warm-up period lengths (T ).

The experimental findings pertaining to this study are presented in Table 3.9. Each
row of the table displays different values for T (dataset size) and their corresponding
k values. For each combination, the probability of selecting the correct order is
reported based on 200 replications. Additionally, the percentage deviation between
the error amount of the selected order after the warm-up period and the error amount
of the correct order is provided for each distribution scenario. Simulation runs were
not conducted for certain settings in this study. Specifically, for the increasing
and decreasing distribution scenarios, the last two settings (T = 15000,T = 20000)
were excluded. This decision was made based on the observation that sufficiently
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high probabilities could already be achieved with smaller datasets, rendering the
larger ones unnecessary for these distributions. Similarly, in the case of the random
distribution, the settings T = 6000, T = 7000, and T = 8000 were omitted. This
was due to the low probabilities obtained with these dataset sizes, indicating the
need for larger datasets to obtain more reliable results in the random distribution
scenario.

Table 3.9 Simulation results on the effect of the length of the warm-up period on
finding the right sequence in the presence of deterministic valuations, known distri-
bution, and unknown order

δi = [0.1, 0.2, 0.3, 0.4] δi = [0.4, 0.3, 0.2, 0.1] δi = Random with R = 0.15
Percent Probability of Percent Probability of Percent Probability of

deviation between choosing the deviation between choosing the deviation between choosing the
error amounts right sequence error amounts right sequence error amounts right sequence

T = 1000,k = 20 9.150% 0.520 10.356% 0.525 7.783% 0.345
T = 2000,k = 20 4.184% 0.620 4.930% 0.575 3.417% 0.415
T = 5000,k = 20 1.753% 0.735 1.331% 0.785 2.018% 0.391
T = 6000,k = 25 0.453% 0.890 0.746% 0.840 - -
T = 7000,k = 30 0.323% 0.925 0.214% 0.955 - -
T = 8000,k = 35 0.188% 0.965 0.198% 0.975 - -
T = 10000,k = 50 0.002% 0.995 0.000% 1.000 0.768% 0.735
T = 15000,k = 50 - - - - 0.557% 0.775
T = 20000,k = 100 - - - - 0.303% 0.855

The results demonstrate a clear relationship between dataset size (T ) and the prob-
ability of accurately identifying the true order. Specifically, as the dataset size
increases, the probability of identifying the true order also increases. This phe-
nomenon can be attributed to the diminishing fluctuations and increased stability
in the shape of the purchase probability function, resulting in improved clustering
accuracy. Consequently, the likelihood of successfully discovering the true order
becomes more pronounced. In scenarios involving both increasing and decreasing
distributions, employing a dataset consisting of 10,000 data points yields an almost
perfect probability of identifying the true order. Therefore, in such cases, confidently
determining the true order becomes a relatively straightforward task, substantiating
the efficacy of our learning method.

Conversely, in instances characterized by random distributions, the likelihood of
accurately identifying the true order diminishes significantly. Even with a dataset
comprising 20,000 data points, the probability of correctly identifying the true order
remains at a modest 85%. This limitation primarily arises from the close proximity
of segment probabilities, which poses challenges for the algorithm in distinguishing
between them.
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3.3 Case where only the number of segments (n) is known

In this section, the focus shifts to a lower level of foreknowledge regarding the mar-
ket structure. While the number of segments is known, the distribution of these
segments becomes unknown. The objective is to estimate both the customers’ valu-
ations and the distribution of segments through offline learning using the preference
dataset. Two scenarios are investigated under this limited knowledge availability.
The first scenario assumes that the unknown parameters follow a uniform distribu-
tion, while the second scenario considers a non-uniform distribution.

3.3.1 Uniform Valuations and Uniform Segments’ Distribution

In this scenario, we have less foreknowledge regarding the market structure. We as-
sume only number of segments n is known, while the customers’ valuations (vi)’s and
segments’ distribution (δi)’s are unknown. We also assume that these parameters
(vi and δi) are uniformly distributed and the valuations are deterministic. These
parameters are uniformly distributed within the range of (0,100) and (0,1) respec-
tively. For example, if we consider the case of having four segments (n = 4), the
valuations vi’s would be [20,40,60,80], and the distribution δi for each segment is
uniformly set at 0.25, signifying that the probability of each segment is 25%.

3.3.1.1 Proposed Algorithm 2

In this scenario, we are to estimate the valuations and the segments’ distribution
through the provided dataset. We assume we are provided with a full dataset of size
T . The proposed algorithm to achieve our goal is outlined as follows:

• Convert the dataset

– For each price, take the average of yt’s for k nearest data points

• Cluster the data points

– Using k-means clustering algorithm
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– Using different number of features

• Estimate the parameters

– Estimate the vi’s and δi’s based on the clustered data points

• Find the optimal price

By calculating the ŷ values for all offered prices as explained in Algorithm 1, we
will have our converted dataset as {(xt, ŷt)} which is the first step in our proposed
algorithm.

In the next step, the converted dataset {(xt, ŷt)} is subjected to clustering into n+1
distinct clusters. To accomplish this, we employ the K-means clustering algorithm
(Hartigan & Wong, 1979). The clustering process is based on two columns within our
converted dataset, which serve as the features for clustering. We can consider either
both columns as features or solely the ŷ values. Therefore, we introduce an additional
hyperparameter called nfeatures which determines the number of features utilized in
the clustering procedure. It takes values of either 1 or 2. When set to 1, the K-means
clustering algorithm solely considers the ŷ values for clustering, whereas a value of 2
incorporates both columns of the converted dataset for clustering. Prior to applying
the K-means clustering algorithm, the values along both axes are normalized within
the range of 0−1.

Upon completion of the clustering process on the converted dataset, we obtain clus-
ters that consist of prices x’s and ŷ values. These clusters provide us with the
necessary information to estimate the parameters pertinent to our problem, namely
the valuations and segments’ distribution.

To estimate vi’s, we take the average of the maximum and minimum prices in two
consecutive clusters which basically gives us the middle point of these two clusters:

(3.7) v̂i =
max{xt

i}+min{xt
i+1}

2

In which, xt
i’s are the prices in cluster i, and xt

i+1’s are the prices in cluster i+1.

To estimate the distribution of the segments, first, we need to calculate the average
of ŷ values (¯̂y) for each cluster as Eq.3.8 which gives us the purchase probability
for customers in that cluster. Then, we can calculate the segments’ distribution by
subtracting the ¯̂y values for two consecutive clusters as Eq.3.9:
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(3.8) ¯̂yi =
∑

t∈i ŷt

|clusteri|

In which, |clusteri| shows the number of data points in cluster i.

(3.9) δ̂i = ¯̂yi − ¯̂yi+1

¯̂yi represents the purchase probability for customers in cluster i. As we transition
from one cluster to the next, a certain proportion of customers is lost due to an
increase in their valuations. Consequently, the purchase probabilities exhibit a de-
scending order. The lost portion during this transition signifies the proportion of
customers within a segment. Therefore, by subtracting the purchase probability
values we can estimate the probability distribution of customers in the segments
(δi).

Finally, by estimating the vi’s and δi’s we can calculate the optimal price by Eq.2.1.

3.3.1.2 Simulation

To test the performance of the proposed algorithm, we will generate datasets with
different numbers of data points, and subsequently, we will execute simulations on
these datasets employing diverse settings. The objective is to observe how our pro-
posed algorithm effectively estimates the valuations and the segments’ distribution.
Table 3.10 provides an overview of the settings utilized in the simulation runs.

Table 3.10 Setting of the simulation study for estimating the valuations and seg-
ments’ distribution in the presence of deterministic and uniform valuations and
segments’ distribution

Number of segments n 4
Number of data points T [100,200,500,1000]

Number of nearest neighbors k [4, 5, 6, 10, 15, 20, 25]
Number of feature vectors nfeatures [1,2]

We consider a market structure with 4 segments. In order to examine the impact
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of dataset size (T ) on estimation accuracy, we will utilize datasets with varying size
values. Furthermore, we will experiment with different values of the hyperparameter
k to analyze its effect on the estimation accuracy. Additionally, we will explore the
effectiveness of clustering using one and two feature vectors to determine which
approach yields better results.

Table 3.11 Simulation results for estimated valuations and distribution with apply-
ing 1 feature vector in the presence of deterministic and uniform valuations and
segments’ distribution

n = 4, nfeatures = 1
Estimated Valuations Estimated distribution

v̂1 v̂2 v̂3 v̂4 δ̂1 δ̂2 δ̂3 δ̂4 Error%

T = 100

k = 4 31.93 47.48 57.08 69.55 0.25 0.25 0.25 0.25 12.03
k = 5 30.13 42.80 58.25 68.73 0.26 0.22 0.25 0.25 11.30
k = 6 28.95 45.80 59.98 74.35 0.23 0.24 0.25 0.26 10.27

k = 10 27.03 44.85 59.43 76.80 0.26 0.24 0.24 0.23 8.96
k = 15 25.63 44.95 60.73 76.70 0.27 0.22 0.23 0.22 10.37
k = 20 20.85 37.48 59.73 76.70 0.22 0.24 0.24 0.22 6.04
k = 25 23.13 41.05 58.68 75.68 0.19 0.22 0.24 0.21 10.32

T = 200

k = 4 35.38 45.68 54.65 67.58 0.25 0.25 0.25 0.25 14.44
k = 5 30.00 44.78 59.23 70.68 0.23 0.27 0.27 0.22 14.04
k = 6 29.70 42.48 57.23 72.00 0.24 0.25 0.26 0.24 10.32

k = 10 32.90 44.93 58.58 73.43 0.26 0.24 0.22 0.25 13.37
k = 15 23.60 43.30 56.28 76.35 0.25 0.25 0.24 0.23 6.20
k = 20 21.55 41.23 60.30 79.38 0.24 0.23 0.26 0.24 4.16
k = 25 21.80 39.20 57.85 78.43 0.22 0.24 0.26 0.24 4.80

T = 500

k = 4 36.90 48.13 55.65 63.83 0.25 0.25 0.25 0.25 16.54
k = 5 35.60 43.50 56.50 68.33 0.23 0.25 0.28 0.24 16.54
k = 6 34.43 41.88 56.90 69.55 0.22 0.26 0.27 0.23 15.76

k = 10 28.28 41.40 54.93 70.25 0.24 0.22 0.25 0.26 11.16
k = 15 26.13 42.60 61.65 72.63 0.25 0.25 0.23 0.25 7.44
k = 20 24.63 42.03 59.48 75.95 0.24 0.23 0.25 0.25 5.81
k = 25 23.65 39.70 57.28 77.35 0.23 0.23 0.25 0.26 5.85

T = 1000

k = 4 37.75 46.90 55.95 66.05 0.25 0.25 0.25 0.25 16.27
k = 5 32.03 44.03 57.18 66.85 0.23 0.24 0.26 0.26 13.83
k = 6 32.55 43.73 56.00 70.90 0.24 0.23 0.27 0.24 13.77

k = 10 31.35 43.13 59.68 69.13 0.26 0.23 0.22 0.25 12.85
k = 15 27.68 41.75 58.00 73.98 0.25 0.22 0.24 0.25 8.48
k = 20 27.33 43.48 60.80 74.55 0.26 0.25 0.23 0.24 8.79
k = 25 24.48 42.95 61.68 76.43 0.25 0.25 0.24 0.24 5.76
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Table 3.12 Simulation results for estimated valuations and distribution with apply-
ing 2 feature vectors in the presence of deterministic and uniform valuations and
segments’ distribution

n = 4, nfeatures = 2
Estimated Valuations Estimated distribution

v̂1 v̂2 v̂3 v̂4 δ̂1 δ̂2 δ̂3 δ̂4 Error%

T = 100

k = 4 27.13 44.05 60.23 75.05 0.31 0.22 0.09 0.38 26.02
k = 5 24.43 43.28 60.58 77.78 0.28 0.17 0.27 0.27 11.65
k = 6 22.75 40.65 58.68 77.20 0.28 0.24 0.15 0.31 12.95

k = 10 23.83 40.58 59.75 77.60 0.27 0.23 0.25 0.23 6.31
k = 15 20.55 38.88 60.70 79.25 0.25 0.23 0.22 0.26 4.14
k = 20 21.95 40.28 60.15 79.85 0.22 0.27 0.21 0.21 7.81
k = 25 22.50 42.53 61.63 78.83 0.20 0.21 0.28 0.19 11.43

T = 200

k = 4 26.38 41.10 58.33 73.28 0.32 0.16 0.20 0.32 19.50
k = 5 26.13 41.95 59.63 74.83 0.25 0.24 0.23 0.28 8.48
k = 6 23.65 42.18 56.00 75.20 0.25 0.21 0.26 0.28 8.49

k = 10 22.35 42.40 59.50 78.00 0.27 0.26 0.21 0.25 6.30
k = 15 21.65 41.30 60.08 79.30 0.23 0.28 0.23 0.24 5.10
k = 20 20.85 40.40 60.45 80.23 0.23 0.27 0.25 0.23 4.22
k = 25 20.28 39.85 59.75 79.73 0.21 0.29 0.23 0.23 5.99

T = 500

k = 4 27.65 42.08 56.78 72.93 0.25 0.26 0.21 0.28 10.80
k = 5 25.70 42.08 55.58 74.20 0.26 0.24 0.20 0.29 11.67
k = 6 24.28 41.68 58.98 75.18 0.24 0.24 0.30 0.22 9.50

k = 10 22.93 41.90 60.75 78.68 0.23 0.27 0.28 0.21 8.14
k = 15 21.18 41.55 61.00 80.33 0.23 0.27 0.26 0.23 4.62
k = 20 21.18 40.95 59.28 79.73 0.24 0.23 0.27 0.24 4.03
k = 25 20.30 40.10 60.08 79.78 0.23 0.25 0.27 0.24 3.10

T = 1000

k = 4 28.65 46.15 60.45 73.73 0.28 0.28 0.12 0.32 21.81
k = 5 27.28 42.93 58.08 73.83 0.26 0.29 0.16 0.29 15.28
k = 6 27.40 44.03 60.55 75.73 0.28 0.25 0.21 0.26 10.40

k = 10 24.28 43.55 60.65 78.20 0.25 0.25 0.25 0.24 5.22
k = 15 21.98 41.75 59.55 79.15 0.24 0.25 0.26 0.24 3.34
k = 20 20.35 40.18 58.95 79.80 0.25 0.24 0.25 0.25 0.95
k = 25 21.35 41.58 59.93 79.88 0.24 0.25 0.24 0.25 2.22

Table 3.13 True values of valuations and segments’ distribution in the presence of
deterministic and uniform valuations and distribution in a market structure with 4
segments

v1 v2 v3 v4 δ1 δ2 δ3 δ4

20 40 60 80 0.25 0.25 0.25 0.25

Table 3.11 presents the simulation results corresponding to the scenario where only
one column (ŷ) from the converted dataset is considered for clustering. In Table
3.12, on the other hand, the simulation results are displayed for the scenario where
both columns of the converted dataset are taken into consideration. The average
estimated values of vi and δi, along with the corresponding error values, are provided.
These results are based on 200 replications. The true values of valuations and the
distribution of segments can be found in Table 3.13. The error is computed using
the following formula:
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(3.10) 1
2n

n∑
i=1

(| v̂i −vi

vi
|+ | δ̂i − δi

δi
|)

In which v̂i is the estimated valuation of segment i, vi is the real valuation of segment
i, δ̂i is the estimated probability of being in segment i, and δi is the real probability
of being in segment i.

In several instances, the proposed algorithm demonstrates success in estimating the
vi and δi values, closely approximating their true values with minimal error. It
is important to note that the error is significantly influenced by the size of the
dataset and the chosen value of k. These two values should exhibit a proportional
relationship to ensure accurate parameter estimation by the algorithm. While an
increase in the dataset’s size does not necessarily guarantee low error in parameter
estimation, the selection of an appropriate k value becomes crucial. The findings
indicate that, generally, considering both feature vectors for clustering leads to more
precise parameter estimates, closely aligning with their true values. Among the
various experimental settings, the best result is achieved when employing 1000 data
points, k = 20, and both feature vectors, resulting in an error of less than 1%.
This outcome reinforces the effectiveness of the proposed algorithm in accurately
estimating the parameters of the problem when they are uniformly distributed.

3.3.2 Non-uniform Valuations and Non-uniform Segments’ Distribution

Assuming uniformity for valuations and distribution of segments may not accurately
reflect real-world scenarios. Due to market dynamics, it is more likely that customers
from different segments are distributed non-uniformly. For example, the proportion
of customers willing to pay a low price for the offered product differs from those
willing to pay a high price. Similarly, the valuations of customers may also exhibit
non-uniform distribution patterns. With these considerations in mind, we aim to
address this limitation by introducing a more realistic problem setting in this section.
Specifically, we incorporate customers’ valuations and segments’ distribution that
are non-uniformly distributed. We proceed by applying the proposed algorithm
discussed in Section 3.3.1.1 to this problem, assessing the algorithm’s effectiveness
in accurately estimating the problem’s parameters.
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3.3.2.1 Simulation

In order to incorporate non-uniform valuations, we assume the following values:
[20,50,55,60]. Additionally, for non-uniform distribution, we consider two distri-
butions: [0.1,0.2,0.3,0.4] and [0.4,0.3,0.2,0.1]. By utilizing these values, we can
create various market structures where one or two of these parameters exhibit non-
uniformity. This allows us to analyze and compare the performance of the proposed
algorithm in estimating the parameters under different market structures.

Table 3.14 Setting of the simulation study for estimating the valuations and seg-
ment distributions in the presence of deterministic and non-uniform valuations and
segment distributions

Number of segments n 4
Number of data points T 1000

Number of nearest neighbors k 20
Number of data conversion nconversion 2
Number of feature vectors nfeatures 2

Table 3.15 Simulation results for estimated valuations and distribution with applying
2 feature vectors in the presence of deterministic and non-uniform valuations and
segment distributions

Customers’ Valuations Segments’ Distribution Average Absolute Percent Deviation
Market 1 (Real) 20 40 60 80 0.4 0.3 0.2 0.1

Market 1 (Estimate) 20.068 39.904 59.413 79.489 0.394 0.293 0.205 0.100 1.093
Market 2 (Real) 20 40 60 80 0.1 0.2 0.3 0.4

Market 2 (Estimate) 20.549 40.575 60.261 79.910 0.101 0.205 0.297 0.388 1.585
Market 3 (Real) 20 50 55 60 0.25 0.25 0.25 0.25

Market 3 (Estimate) 20.680 48.185 58.157 78.891 0.243 0.316 0.418 0.017 29.241
Market 4 (Real) 20 50 55 60 0.1 0.2 0.3 0.4

Market 4 (Estimate) 24.223 52.001 59.552 79.743 0.103 0.397 0.479 0.010 40.618
Market 5 (Real) 20 50 55 60 0.4 0.3 0.2 0.1

Market 5 (Estimate) 20.329 44.825 55.582 77.633 0.376 0.247 0.350 0.019 27.689

In Table 3.15, the customers’ valuations and segments’ distribution of five different
market structures along with the average of the estimates of these values, and the
mean absolute percent deviation of the actual values after 200 replications of simu-
lation are reported. The values of hyperparameters T , k and nfeatures are specified
in Table 3.14. To ensure a smoother purchase probability function, we employ a
two-times data conversion approach in this simulation study. Furthermore, for the
identification and handling of outliers, we utilize the IQR method.

In accordance with these results, the learning method gives successful results regard-
less of the segments’ distribution in cases where customers’ valuations have equal
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intervals (Market 1 and Market 2). In these cases, the proposed algorithm accu-
rately estimates both the valuations and the distribution with low error. However,
for market structures characterized by uneven distribution on the x-axis (Market 3,
Market 4, and Market 5), the proposed algorithm fails to accurately estimate both
sets of parameters. The reason is attributed to the K-means algorithm, which works
effectively when dealing with evenly distributed data points. In the cases of market
structures 4 and 5, where data points are unevenly distributed on both axes, and in
market structure 3, where only data points are unevenly distributed on the x-axis,
the K-means method proves ineffective. These findings highlight the necessity of de-
vising a solution for cases where data points do not adhere to uniform distribution
patterns.

As observed in the results of this section the proposed Algorithm 2 was effective in
estimating valuations and distributions when they followed a uniform distribution.
However, it encountered challenges when dealing with non-uniform distributions.
Therefore, in the next section, the research focus shifts towards addressing the sce-
nario where diverse distributions exist on both the x-axis (valuations) and the y-
axis (probability of purchase). Building upon the available foreknowledge about the
market structure, the research aims to develop learning methods that improve the
accuracy of parameter estimation for the problem at hand. These algorithms are
designed to handle the complexity arising from diverse distributions and enhance
the estimation process.

3.3.3 Estimating segments’ distribution (δi) through discrete prices

In order to estimate the valuations and distribution of segments when only the
number of segments is known, we adopt an approach where the price values in the
preference dataset are no longer continuous but discrete. In the offline phase, where
we are provided with a complete dataset {(x,y)}, it comprises m distinct discrete
price values (x) which are in the range of (0,100), with each price being offered
to customers m′ times along with the binary buying preferences (y). The discrete
preference dataset provided by the seller is structured as Table 3.16. Based on this
dataset, we will introduce an algorithm to estimate the parameters of interest.
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Table 3.16 Discrete preference dataset

Offered Prices Buying Preferences
x1 1

m′ times {
. 1
. 0
. 0

x1 1
x2 1

m′ times {
. 0
. 0
. 0

x2 1
. .
. .
. .

xm 1

m′ times {
. 0
. 0
. 1

xm 1

3.3.3.1 Deterministic valuations

In this section, our focus is on estimating the distribution of segments (δi) when
confronted with deterministic valuations. We assume that the number of segments
n is already known.

The learning problem we propose in this scenario revolves around the expected
probability of purchase function. Similar to previous algorithms, we cannot directly
utilize the preference dataset to learn the parameters. Instead, we need to transform
this dataset with a 0-1 structure into expected function data. Considering the
discrete nature of the suggested price options, we can calculate the expected value
as the average of the y values associated with the same price x. Consequently, for
each price x, we compute the average of the corresponding y values and assign the
resulting value to price x as its expected purchase probability (ŷ). By doing so, our
preference dataset {(x,y)} is transformed into {(x, ŷ)}. The Figure below illustrates
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the form of the expected purchase probability function when discrete prices are
offered.

Figure 3.9 Expected purchase probability as a function of discrete suggested prices
in the presence of deterministic valuations

Figure 3.9 depicts the graphical representation of the expected purchase probability
function in scenarios where offered prices are discrete and valuations are determinis-
tic. In contrast to the continuous price scenario, wherein a smooth and uninterrupted
trend was observed in the shape of this function, the discrete price scenario exhibits
a distinct and discrete pattern characterized by sharp declines when transitioning
between clusters. After converting the discrete preference dataset, we can employ
this converted dataset for clustering and estimating the distribution of segments.

3.3.3.2 Proposed algorithm for estimating the segments’ distribution

(Distribution Estimation Algorithm)

The following outlines the proposed algorithm for estimating the distribution of
segments when the number of segments (n) is known, using the provided discrete
preference dataset:

• Convert the dataset

– For each price x in the preference dataset, take the average of y values
associated with the same price x and assign the resulting value as its
expected purchase probability (ŷ)

• Cluster the converted dataset
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– Using k-means clustering algorithm

• Estimate the distribution of segments

– Estimate the δi’s based on the clustered data points

The initial step in our proposed algorithm involves converting the preference dataset,
which has m ∗ m′ data points. As previously stated, our learning problem revolves
around the expected purchase probability function. To compute these expected
values and convert our dataset, for each price value x in the preference dataset,
we gather all m′ associated y values corresponding to the same price x. Then we
calculate the average of these y values and assign the resulting average value as the
expected purchase probability (ŷ) for the price x. By implementing these steps, the
dataset will be transformed into a converted format, denoted as {(x, ŷ)}, consisting
of m data points. The resulting converted dataset exhibits a structure resembling
that shown in Table 3.17:

Table 3.17 Converted discrete preference dataset

Offered Prices Expected Purchase Probability
x1 ŷ1

x2 ŷ2

x3 ŷ3

. .

. .

. .
xm ŷm

Subsequently, in the following step, the converted dataset {(x, ŷ)} undergoes clus-
tering to partition it into n + 1 distinct clusters. This clustering process utilizes
the K-means algorithm. The algorithm relies on two columns from our converted
dataset, which act as the features for clustering. Similar to the proposed Algorithm
2, we can consider either both columns as features or solely the ŷ values. Prior
to applying the K-means clustering algorithm, the values along both axes are nor-
malized to fall within the range of 0 − 1. This normalization step ensures that the
features are on a consistent scale and helps facilitate accurate clustering.

After the completion of the clustering process on the converted dataset, we obtain
clusters comprising of prices (x) and corresponding expected purchase probabilities
(ŷ) values. These clusters provide us with the necessary information to estimate the
segments’ distribution.
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To estimate the distribution of the segments, first, we need to calculate the average
of ŷ values (¯̂y) for each cluster as Eq.3.11 which gives us the purchase probability
for customers in that cluster. Then, we can calculate the segments’ distribution by
subtracting the ¯̂y values for two consecutive clusters as Eq.3.12:

(3.11) ¯̂yi =
∑

t∈i ŷt

|clusteri|

In which, |clusteri| shows the number of data points in cluster i.

(3.12) δ̂i = ¯̂yi − ¯̂yi+1

¯̂yi represents the purchase probability for customers in cluster i. As we transition
from one cluster to the next, a certain proportion of customers is lost due to an
increase in their valuations. Consequently, the purchase probabilities exhibit a de-
scending order. The lost portion during this transition signifies the proportion of
customers within a segment. Therefore, by subtracting the purchase probability
values we can estimate the probability distribution of customers in the segments
(δ̂i).

3.3.3.3 Simulation

To evaluate the performance of the Distribution Estimation Algorithm in estimating
the distribution of segments in the presence of deterministic valuations, two simula-
tion studies were conducted. These studies involved considering various values for
m, m′, and distributions. The objective was to assess the algorithm’s effectiveness
under different conditions.

In the first simulation study, both columns in the converted dataset were used for
clustering. The valuations considered for this study were vi = [18,43,56,81]. The
purpose of this study was to analyze the algorithm’s performance when utilizing both
features for clustering. In the second simulation study, only the ŷ values column in
the converted dataset was employed for clustering. The valuations considered for
this study were vi = [8,46,56,81]. The rationale behind changing the valuations in
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this study was to disrupt the uniformity or near-uniformity of the data points. This
change aimed to assess the impact of using one versus two feature vectors in the
clustering process.

By conducting these two simulation studies, we aimed to gain insights into the
performance of the algorithm under different scenarios and determine the effect of
utilizing different feature vectors on the clustering results and subsequent distribu-
tion estimation.

The outcomes of these simulation studies, comprising 200 replications, are presented
in Tables 3.18 and 3.19.

In these tables, the median of the estimated values for the segments’ distribution
is reported, accompanied by their corresponding average absolute percent deviation
error (Error%). The calculation of the error is performed using the following formula:

(3.13) 1
n

n∑
i=1

(| δ̂i − δi

δi
|)

In which δ̂i denotes the estimated distribution of segment i and δi denotes the real
distribution of segment i.

This error metric quantifies the average percentage deviation between the estimated
values and the true values of the segments’ distribution. It provides a measure of the
accuracy of the algorithm’s estimations, allowing for a comparison of performance
across different scenarios considered in the simulation study.

Table 3.18 Estimated segments’ distribution by Distribution Estimation Algorithm
using two feature vectors in the presence of deterministic valuations

True Distribution

Error %

True Distribution

Error %

True Distribution

Error %
δ1 = 0.1 δ2 = 0.2 δ3 = 0.3 δ4 = 0.4 δ1 = 0.4 δ2 = 0.3 δ3 = 0.2 δ4 = 0.1 Random with R = 0.1

Estimated Distribution Estimated Distribution Estimated Distribution
δ̂1 δ̂2 δ̂3 δ̂4 δ̂1 δ̂2 δ̂3 δ̂4 δ̂1 δ̂2 δ̂3 δ̂4

m = 20

m′ = 50 0.100 0.200 0.300 0.400 13.208 0.392 0.312 0.189 0.100 12.278 0.389 0.208 0.165 0.155 15.581
m′ = 100 0.098 0.200 0.299 0.400 9.653 0.400 0.298 0.203 0.100 8.771 0.411 0.224 0.145 0.142 10.602
m′ = 150 0.097 0.197 0.299 0.399 7.657 0.399 0.301 0.200 0.101 7.079 0.357 0.203 0.150 0.170 8.675
m′ = 200 0.099 0.200 0.301 0.400 6.389 0.401 0.302 0.199 0.101 5.802 0.395 0.220 0.146 0.140 6.884
m′ = 250 0.098 0.200 0.300 0.399 5.450 0.401 0.298 0.202 0.100 5.283 0.406 0.216 0.150 0.151 6.456
m′ = 500 0.100 0.199 0.301 0.400 4.082 0.400 0.302 0.199 0.100 3.653 0.385 0.194 0.148 0.145 4.733
m′ = 1000 0.100 0.199 0.298 0.401 2.820 0.400 0.300 0.200 0.100 2.751 0.385 0.194 0.145 0.150 3.370

m = 50

m′ = 20 0.099 0.218 0.290 0.392 13.513 0.387 0.290 0.214 0.100 13.016 0.343 0.268 0.168 0.154 17.060
m′ = 40 0.101 0.200 0.299 0.400 8.456 0.397 0.299 0.199 0.100 8.891 0.395 0.211 0.162 0.141 11.004
m′ = 60 0.100 0.199 0.302 0.399 6.969 0.396 0.303 0.196 0.100 7.701 0.379 0.215 0.145 0.145 7.955
m′ = 80 0.101 0.201 0.298 0.398 6.281 0.399 0.301 0.202 0.099 6.087 0.409 0.212 0.142 0.145 7.016
m′ = 100 0.098 0.200 0.302 0.398 5.552 0.399 0.303 0.199 0.098 5.568 0.400 0.204 0.153 0.146 6.076
m′ = 200 0.100 0.199 0.299 0.399 3.629 0.400 0.299 0.201 0.100 3.949 0.388 0.222 0.157 0.150 4.349
m′ = 400 0.100 0.202 0.300 0.400 2.964 0.399 0.299 0.201 0.100 2.743 0.399 0.222 0.151 0.143 3.383

The results in Table 3.18 indicate that the proposed algorithm demonstrates success
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in estimating the distribution with low error, particularly when the dataset size
is not very small. As the dataset size increases, the error decreases. This can be
attributed to the reduced fluctuations in the expected purchase probability function,
leading to a more consistent trend that facilitates accurate distribution estimation
by the algorithm. Furthermore, the estimation error does not exhibit significant
variations across different distributions and m values. This finding highlights the
robustness of the proposed algorithm, as it consistently performs well regardless of
the specific characteristics of the dataset. With a preference dataset size of 5000, the
estimation error is approximately 5%, which can be considered low for accurately
estimating the distribution. This suggests that the proposed algorithm is reliable
and effective in estimating the distribution of segments. In conclusion, based on
the analysis of the simulation study, it can be affirmed that the proposed algorithm
is robust and successful in estimating the distribution, especially when applied to
datasets of reasonable size.

Table 3.19 Estimated segments’ distribution by Distribution Estimation Algorithm
using one feature vector in the presence of deterministic valuations

True Distribution

Error %

True Distribution

Error %

True Distribution

Error %
δ1 = 0.1 δ2 = 0.2 δ3 = 0.3 δ4 = 0.4 δ1 = 0.4 δ2 = 0.3 δ3 = 0.2 δ4 = 0.1 Random with R = 0.1

Estimated Distribution Estimated Distribution Estimated Distribution
δ̂1 δ̂2 δ̂3 δ̂4 δ̂1 δ̂2 δ̂3 δ̂4 δ̂1 δ̂2 δ̂3 δ̂4

m = 20

m′ = 50 0.112 0.207 0.220 0.372 21.271 0.368 0.190 0.235 0.147 33.720 0.343 0.167 0.195 0.165 19.397
m′ = 100 0.099 0.200 0.284 0.392 13.594 0.398 0.295 0.201 0.102 8.964 0.379 0.181 0.181 0.147 13.900
m′ = 150 0.100 0.204 0.285 0.392 10.017 0.398 0.300 0.197 0.101 7.278 0.392 0.203 0.154 0.155 9.972
m′ = 200 0.099 0.199 0.298 0.399 6.586 0.400 0.300 0.202 0.101 6.038 0.403 0.212 0.148 0.145 7.585
m′ = 250 0.100 0.199 0.300 0.400 5.823 0.400 0.299 0.199 0.101 5.838 0.388 0.213 0.148 0.163 6.245
m′ = 500 0.100 0.200 0.298 0.402 3.610 0.400 0.301 0.199 0.100 3.680 0.390 0.209 0.145 0.146 4.713
m′ = 1000 0.100 0.201 0.301 0.401 2.768 0.400 0.299 0.203 0.100 2.733 0.384 0.233 0.142 0.147 3.192

m = 50

m′ = 20 0.143 0.259 0.219 0.340 31.189 0.320 0.184 0.267 0.186 47.297 0.307 0.183 0.209 0.186 28.397
m′ = 40 0.113 0.217 0.223 0.373 17.497 0.358 0.169 0.254 0.164 41.558 0.348 0.161 0.220 0.173 18.370
m′ = 60 0.098 0.201 0.276 0.393 10.524 0.386 0.256 0.226 0.117 13.010 0.373 0.157 0.191 0.169 13.633
m′ = 80 0.093 0.197 0.289 0.394 8.343 0.398 0.287 0.206 0.106 8.203 0.366 0.199 0.180 0.159 10.236
m′ = 100 0.093 0.195 0.298 0.398 7.073 0.400 0.292 0.204 0.102 5.858 0.339 0.221 0.167 0.172 8.053
m′ = 200 0.099 0.200 0.299 0.399 4.148 0.400 0.300 0.202 0.099 3.847 0.412 0.185 0.150 0.152 5.453
m′ = 400 0.100 0.201 0.300 0.399 2.706 0.400 0.300 0.201 0.100 2.713 0.417 0.212 0.139 0.156 3.336

Based on the results presented in Table 3.19, it is evident that when only one
feature vector is used for clustering, the resulting error is higher compared to the
case where two feature vectors are considered. This can be attributed to the impact
of fluctuations in the expected values on the clustering process when only one feature
vector is utilized. The absence of additional information from the second feature
vector may lead to less accurate clustering. However, it is worth noting that when
the size of the dataset is large, the fluctuations in the expected values become less
significant, and the data points are clustered more accurately even with the use of
a single feature vector. This is evident from the estimation error of large datasets,
which is quite close to the estimation error observed when two feature vectors are
considered.
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Overall, when utilizing a reasonably large dataset, the proposed algorithm demon-
strates success in estimating the distribution regardless of the number of features
used for clustering. While the inclusion of additional features may improve clus-
tering accuracy in certain cases, the algorithm can still provide reliable estimations
with sufficient data even when utilizing only one feature vector.

3.3.3.4 Probabilistic valuations

When probabilistic valuations are considered, the structure of the expected purchase
probability function undergoes changes, as observed earlier. In Figure 3.10, the
structure of the expected purchase probability function is illustrated in the presence
of probabilistic valuations. Instead of sharp declines observed in the deterministic
cases, a distinct discrete gradual decrease in the expected probability values can be
observed.

Figure 3.10 Expected purchase probability as a function of discrete suggested prices
in the presence of probabilistic valuations

3.3.3.5 Simulation

In this section, we aim to conduct a similar simulation study as we did in Section
3.3.3.3, with the difference being that the valuations are now probabilistic. This
is done to assess the performance of the Distribution Estimation Algorithm in this
particular scenario. The valuation percentage deviation (p%) considered for this sce-
nario is 5%. In this simulation, we consider both columns in the converted dataset as
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features for clustering. Considering the observations made in the simulation study
conducted in Section 3.3.3.3 by using two feature vectors for clustering, where no
significant difference was observed between different distributions, we will simplify
the comparison between the deterministic and probabilistic cases by focusing on a
single distribution. For the purpose of this comparison, we will consider a distri-
bution consisting of values δi = [0.1,0.2,0.3,0.4]. This will allow us to specifically
evaluate the performance and differences between the deterministic and probabilistic
scenarios in estimating the distribution of segments. The results of this simulation
study are presented in Table 3.20, providing insights into the algorithm’s perfor-
mance and accuracy in estimating the distribution of segments under probabilistic
valuation conditions.

Table 3.20 Estimated segment distributions by Distribution Estimation Algorithm
using two feature vectors in the presence of deterministic and probabilistic valuations

Probabilistic Valuations (p% = 5%) Deterministic Valuations
True Distribution

Error %

True Distribution

Error %
δ1 = 0.1 δ2 = 0.2 δ3 = 0.3 δ4 = 0.4 δ1 = 0.1 δ2 = 0.2 δ3 = 0.3 δ4 = 0.4

Estimated Distribution Estimated Distribution
δ̂1 δ̂2 δ̂3 δ̂4 δ̂1 δ̂2 δ̂3 δ̂4

m = 20

m′ = 50 0.095 0.234 0.295 0.364 15.111 0.100 0.200 0.300 0.400 13.208
m′ = 100 0.098 0.229 0.296 0.366 11.521 0.098 0.200 0.299 0.400 9.653
m′ = 150 0.098 0.227 0.298 0.372 10.394 0.097 0.197 0.299 0.399 7.657
m′ = 200 0.100 0.229 0.297 0.370 9.328 0.099 0.200 0.301 0.400 6.389
m′ = 250 0.098 0.227 0.301 0.369 8.586 0.098 0.200 0.300 0.399 5.450
m′ = 500 0.100 0.229 0.300 0.368 7.933 0.100 0.199 0.301 0.400 4.082
m′ = 1000 0.100 0.230 0.300 0.369 7.010 0.100 0.199 0.298 0.401 2.820

m = 50

m′ = 20 0.105 0.234 0.288 0.345 17.990 0.099 0.218 0.290 0.392 13.513
m′ = 40 0.099 0.212 0.297 0.367 11.259 0.101 0.200 0.299 0.400 8.456
m′ = 60 0.097 0.214 0.292 0.365 10.168 0.100 0.199 0.302 0.399 6.969
m′ = 80 0.097 0.205 0.299 0.368 8.120 0.101 0.201 0.298 0.398 6.281
m′ = 100 0.099 0.204 0.302 0.369 7.888 0.098 0.200 0.302 0.398 5.552
m′ = 200 0.097 0.210 0.296 0.368 6.387 0.100 0.199 0.299 0.399 3.629
m′ = 400 0.098 0.212 0.295 0.368 5.585 0.100 0.202 0.300 0.400 2.964

In the table, the median of the estimated values for the segments’ distribution is
provided, along with their corresponding average absolute percent deviation error
(Error%). Upon examining the results, it is evident that for each m and m′ value,
the estimation error for probabilistic valuations is higher compared to the determin-
istic case. This discrepancy can primarily be attributed to the expected purchase
probabilities. In the case of probabilistic valuations, the transition from one cluster
to another is less distinct compared to the deterministic scenario. This leads to
estimations with higher errors, as the algorithm encounters challenges in accurately
capturing the subtle changes in the expected purchase probabilities. However, it
is worth noting that with a reasonably large dataset, the proposed algorithm still
demonstrates the capability to estimate the distribution with relatively low errors.
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For instance, when utilizing a dataset size of 5000, the estimation error is around
8%. Although not negligible, this error can still be considered acceptable when
estimating the distribution. In summary, while the estimation errors are higher
for probabilistic valuations compared to deterministic cases, the algorithm’s per-
formance remains promising, particularly when employed on datasets of sufficient
size.

3.4 Case where all of the parameters are unknown

In this section, we aim to estimate the number of segments (n) in the market while
having the lowest level of foreknowledge about the market structure, including un-
known values for n (number of segments), vi (valuations), and δi (distribution of
segments). However, we focus specifically on the scenario where deterministic val-
uations are present. The objective is to develop an algorithm that can infer the
appropriate number of segments in the market based on the available data. In this
case, we make use of the discrete preference dataset. By analyzing the patterns and
characteristics of the discrete preference dataset, we aim to estimate the underlying
segmentation of customers without prior knowledge of the specific market structure.
Through this analysis, we can gain insights into the potential number of segments
in the market, contributing to a better understanding of customer behavior and
market dynamics in the presence of deterministic valuations.

3.4.1 Proposed algorithm for estimating the number of segments (Num-

ber of Segments Estimation Algorithm)

Our proposed algorithm for estimating the number of segments in the market, con-
sidering the lowest level of foreknowledge and the presence of deterministic valua-
tions, is outlined as follows:

• Start with an assumption of a minimum number of segments (n′ = 1)

• Apply Distribution Estimation Algorithm to the provided discrete preference
dataset assuming n = n′
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• Calculate the fitting error of clustered data points

• Feasibility check:

– Deacresaing cluster centers

– Difference between cluster centers > 0.05

• If feasibility checks True:

– Increment n′ and go to step 2.

• If feasibility checks False:

– Stop applying the Distribution Estimation Algorithm and go to next step

• Pick the estimated distribution with the lowest fitting error.

• The number of elements in the estimated distribution vector is the estimated
value for the number of segments (n̂)

By following this algorithm, we aim to estimate the number of segments in the
market by iteratively adjusting the assumed number of segments and evaluating
the quality of the resulting segmentation. The algorithm enables us to adaptively
determine the appropriate number of segments based on the characteristics of the
preference dataset, providing insights into the market structure without prior knowl-
edge.

In our proposed algorithm, we begin by assuming that the number of segments
in the market is 1 (n′ = 1). Subsequently, we employ the Distribution Estimation
Algorithm on the given preference dataset, assuming that the number of segments
is n′ (n = n′). By implementing the Distribution Estimation Algorithm, we obtain
an estimated distribution (δ̂i) for the segments and clustered data points. Following
this, we proceed to calculate the fitting error of the clustered data points. This error
is calculated using the following formula:

(3.14) errorfitting = 1
n′ +1

n′+1∑
i=1

|clusteri|∑
j=1

ŷij − centeri

In which n′ is the assumed number of segments, |clusteri| is the length of cluster i,
ŷij is the ŷ value for element j in cluster i, and centeri is the center of cluster i in
y axis.
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The fitting error quantifies the level of agreement between the observed preference
values and the expected values derived from the estimated distribution. This metric
serves as an indicator of how well the estimated distribution aligns with the actual
data points, enabling the evaluation of the accuracy of the algorithm in capturing
the underlying segmentation of the market.

In each iteration of the algorithm, after applying the Distribution Estimation Algo-
rithm and obtaining the estimated distribution and fitting error, a feasibility check
is performed. This feasibility check aims to verify if the centers of the clusters in
the y-axis exhibit a decreasing trend and if the differences between these centers are
at least 0.05. The rationale behind this feasibility check is as follows: As mentioned
earlier, when transitioning from one cluster to the next, a portion of customers are
lost due to an increase in valuations. Consequently, the purchase probabilities rep-
resented by the cluster centers in the y-axis should generally exhibit a decreasing
pattern. If the cluster centers do not demonstrate a decreasing trend, it suggests
that the clustering may not be based on an appropriate number of segments. More-
over, the choice of 0.05 as the threshold for differences between cluster centers is
motivated by the idea that if these differences are less than this value, it indicates
that the data points within these clusters likely belong to a single cluster rather than
multiple distinct clusters. By conducting this feasibility check, we can assess the
suitability of the clustering and make informed decisions regarding the number of
segments in the market based on the observed trends and differences in the cluster
centers.

After performing the feasibility checks and determining that they have become false,
the algorithm proceeds to the next step. In this step, the estimated distribution
with the lowest fitting error from the stored vector is selected. The stored vector
contains the estimated distributions and their corresponding fitting errors obtained
during the iterative process. By selecting the estimated distribution with the lowest
fitting error, we prioritize the distribution that best aligns with the actual data
points. The number of elements in this selected estimated distribution vector serves
as the estimated value for the number of segments (n̂) in the market. This value
represents the algorithm’s estimation of the underlying segmentation based on the
preference dataset and the iterative process of applying the Distribution Estimation
Algorithm, feasibility checks, and selection based on fitting error. By following this
approach, the algorithm leverages the fitting error as a criterion for choosing the
most suitable estimated distribution, which in turn provides an estimation for the
number of segments in the market.
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3.4.2 Simulation

In order to evaluate the performance of the proposed Number of Segments Estima-
tion Algorithm in estimating the number of segments in the presence of determin-
istic valuations without any prior knowledge of the market structure, two simula-
tion studies were conducted. These studies involved considering one distribution
δi = [0.1,0.2,0.3,0.4] and various values for m and m′.

In the first simulation study, both columns in the converted dataset were used for
clustering. The valuations considered for this study were vi = [18,43,56,81]. The
objective was to investigate the effect of using different numbers of features for clus-
tering and assess the algorithm’s performance under such conditions. In the second
simulation study, only the ŷ values column in the converted dataset was utilized for
clustering. The valuations considered for this study were vi = [8,46,56,81]. The pur-
pose of this study was to explore the impact of non-uniformity in valuations on the
performance of the algorithm. Both simulation studies consisted of 200 replications
to ensure robust results. The outcomes of these simulation studies are presented in
Tables 3.21 and 3.22. These tables provide a comprehensive overview of the algo-
rithm’s performance in estimating the number of segments under different scenarios.

By analyzing the results, we can assess the algorithm’s effectiveness and gain in-
sights into the impact of using different numbers of features for clustering and non-
uniformity in valuations on the accuracy of the estimated number of segments.

Table 3.21 Probability of estimating the true number of segments using two feature
vectors in the presence of deterministic valuatoins

Probability of finding Probability of finding
the true number the true number

of segments of segments

m = 20

m′ = 50 0.53

m = 50

m′ = 20 0.34
m′ = 100 0.67 m′ = 40 0.43
m′ = 150 0.78 m′ = 60 0.58
m′ = 200 0.89 m′ = 80 0.79
m′ = 250 0.91 m′ = 100 0.85
m′ = 500 0.98 m′ = 200 0.98
m′ = 1000 1.00 m′ = 400 1.00

In Table 3.21, the probability of accurately estimating the true number of segments
using two feature vectors in the converted dataset is reported for different values of
m and m′.
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The results indicate that as the size of the dataset increases, the probability of
correctly estimating the number of segments also increases. This can be attributed
to the fact that with a larger dataset, the expected purchase probability function
exhibits reduced fluctuations. The function maintains a more consistent and stable
trend, enabling the algorithm to cluster the data points more accurately and estimate
the parameters with higher precision.

Moreover, when the dataset size remains the same, by offering 20 distinct prices
(m = 20), the probability of accurate estimation tends to be higher. This is due to
the fact that each price is offered more frequently (higher m′ values), resulting in a
more robust and reliable expected purchase probability function. Consequently, the
algorithm can estimate the parameters more accurately in such scenarios.

With a dataset size of 10,000, the probability of accurately estimating the number
of segments is reported to be 98%. This high probability verifies the success of the
proposed algorithm in accurately estimating the number of segments. Therefore, if
the seller has the opportunity to obtain a larger dataset, it is recommended to do
so as it increases the probability of accurately estimating the number of segments
and improving the overall effectiveness of the algorithm.

Table 3.22 Probability of estimated number of segments using one feature vector in
the presence of deterministic valuatoins

Probability of estimated number of segments
n̂ = 1 n̂ = 2 n̂ = 3 n̂ = 4 n̂ = 5 n̂ = 6 n̂ = 7

m = 20

m′ = 50 0.000 0.000 0.000 0.020 0.085 0.330 0.565
m′ = 100 0.000 0.000 0.000 0.090 0.315 0.345 0.250
m′ = 150 0.000 0.000 0.000 0.255 0.420 0.280 0.045
m′ = 200 0.000 0.000 0.000 0.330 0.490 0.160 0.020
m′ = 250 0.000 0.000 0.000 0.470 0.445 0.080 0.005
m′ = 500 0.000 0.000 0.000 0.765 0.225 0.010 0.000
m′ = 1000 0.000 0.000 0.000 0.955 0.045 0.000 0.000

Probability of estimated number of segments
n̂ = 1 n̂ = 2 n̂ = 3 n̂ = 4 n̂ = 5 n̂ = 6 n̂ = 7

m = 50

m′ = 20 0.000 0.000 0.000 0.000 0.000 0.015 0.985
m′ = 40 0.000 0.000 0.000 0.000 0.020 0.085 0.895
m′ = 60 0.000 0.000 0.000 0.000 0.035 0.120 0.845
m′ = 80 0.000 0.000 0.000 0.000 0.130 0.225 0.645
m′ = 100 0.000 0.000 0.000 0.010 0.285 0.270 0.435
m′ = 200 0.000 0.000 0.000 0.180 0.565 0.240 0.015
m′ = 400 0.000 0.000 0.000 0.760 0.220 0.020 0.000
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Table 3.22 presents the probability of estimating different values as the number of
segments (n̂). Upon analysis, it is observed that when only one feature vector is
considered, the probability of estimating the number of segments as 4 (which is
the true value) is lower compared to the case where two feature vectors are used.
Furthermore, with m = 20, these probabilities tend to be higher compared to the
case where m = 50. This suggests that when a smaller number of distinct prices
is offered, the algorithm is more likely to estimate the true number of segments
accurately. In scenarios with smaller datasets, the estimated number of segments is
generally greater than 4. However, as the size of the dataset increases, this estimate
converges towards the true value of 4. This implies that with a larger dataset, the
algorithm becomes more effective in accurately estimating the number of segments.

In summary, the results in Table 3.22 indicate that the probability of correctly esti-
mating the number of segments is influenced by the number of feature vectors used
for clustering, the number of distinct prices offered (m), and the size of the dataset.
Employing two feature vectors tends to improve the accuracy of the estimation,
and a larger dataset enhances the algorithm’s ability to converge towards the true
number of segments.
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4. Online Learning

In the previous chapter, the focus was primarily on learning the unknown param-
eters of the problem using a full dataset. However, in this chapter, the objective
shifts towards maximizing the reward of the problem. To achieve this, an additional
component called online learning is introduced to the offline learning process. The
online learning phase follows offline learning meaning we initialize online learning
with the estimates obtained in the offline learning phase. In online learning, we no
longer have access to the entire dataset upfront. Instead, customers arrive individ-
ually, and upon their arrival, we offer them a price and receive feedback regarding
their purchase preference (i.e., whether they buy or not). Consequently, each time
a customer arrives, we obtain a data point (x,y) consisting of the offered price x

and the customer’s buying preference y. We incorporate this data point into our
original dataset, update the converted dataset, and subsequently re-estimate the
parameters. This iterative process, performed for a specific number of iterations
(niter), constitutes online learning. By incorporating online learning into the overall
learning process, the research aims to enhance reward maximization. This iterative
approach allows for continuous adaptation and updating of the estimated parameters
based on real-time customer interactions and feedback. The integration of online
learning offers a more dynamic and adaptive approach to reward optimization.

The key distinction between offline and online learning lies in the incremental nature
of data acquisition in online learning, where the dataset gradually expands with
the arrival of each customer. Additionally, unlike offline learning, where prices are
uniformly offered within the range of (0,100), online learning adopts a more strategic
and structured approach to price offerings.

4.1 Deterministic Valuations
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In the first scenario, the problem is investigated in the presence of deterministic
valuations. It is assumed that the number of segments (n) and their distribution
(δi) are known, while the customers’ valuations (vi) remain unknown. In the context
of online learning, there are two main objectives to consider. The first objective is
to improve the estimates of the unknown parameters (customers’ valuations in this
scenario) that were obtained from the offline learning process. By incorporating
real-time customer interactions and feedback, online learning allows for continuous
refinement and enhancement of these parameter estimates. The second objective
is to maximize the achieved reward during the online learning phase by offering
different prices.

To obtain more accurate estimates of customers’ valuations, it is not necessary to
offer prices uniformly across the entire price range. Instead, we should focus on of-
fering prices in the vicinity of estimated valuations. The rationale behind this lies in
the fact that obtaining more accurate valuation estimates requires additional infor-
mation within the neighborhood of valuations to distinguish between clusters. Since,
for each element (x,y) in the preference dataset, we consider only the k nearest data
points to calculate ˆ̂y values, it suffices to offer prices within that neighborhood. By
doing so, the offered prices can influence the ˆ̂y values of the estimated valuations,
leading to a more precise estimation. Regarding the objective of reward maximiza-
tion, it is logical to offer customers the estimated valuations. For a given segment i,
when prices are offered in the interval (vi−1,vi], all customers within that segment
will make a purchase since the offered prices are lower than their valuations. Higher
prices result in increased revenue; thus, offering vi to customers maximizes revenue.

Considering these factors, our approach for price offerings entails presenting one of
the estimated valuations v̂i to incoming customers. In the online learning phase,
we employ the epsilon-greedy technique. At each iteration, there is a probability
ϵ of offering the estimated valuation that yields the highest reward, while with a
probability of 1 − ϵ, we randomly offer one of the other estimated valuations to the
incoming customer.

4.1.1 Proposed Online Algorithm 1

The proposed algorithm is as follows:

• Provided with dataset of size T , estimate the valuations in offline mode by
Algorithm 1 (v̂initial

i )
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• v̂i = v̂initial
i

• For niter iterations:

– Offer price x to the incoming customer

∗ Calculate the revenue yielded by each v̂i

∗ With probability ϵ offer the v̂i that yields the highest revenue

∗ With probability 1− ϵ offer one of the other v̂i’s randomly

– Getting the customers’ feedback y

– Add the new data point (x,y) to the existing dataset

– Re-calculate the ˆ̂y values of the data points in the converted dataset

– Re-cluster

– Re-estimate the customers’ valuations and replace the v̂i’s with the new
estimates

The initial step involves utilizing a dataset comprising T data points to derive an ini-
tial estimate of valuations (v̂initial

i ) by offline learning using Algorithm 1. Through-
out this process, we make certain assumptions, namely that the order and distri-
bution of segments are known in advance, and that valuations are deterministic.
Upon obtaining the initial valuation estimates, we transition to the online learning
phase.During each iteration of the online learning phase, we offer a price to the in-
coming customer. To determine these prices, we first calculate the revenue generated
by the latest valuation estimates (v̂i) using the following equation:

(4.1) revenuei = ((1−
i−1∑
j=1

δj)× v̂i) i = 1, ...,n

In which δi is the probability of customers being in segment i, and v̂i is the estimated
valuation of segment i.

Subsequently, we adopt the epsilon-greedy approach, where with probability ϵ, we
offer the v̂i that yields the highest revenuei, and with probability 1−ϵ, we randomly
select one of the other v̂i’s. The offered price (x) is presented to the customer, and
we collect their feedback (y). Next, we incorporate the newly acquired data point
(x,y) into our existing dataset and recalculate the ˆ̂y values for each element in the
dataset, resulting in the creation of the new converted dataset. We then re-cluster
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the data points, employing the method described in Algorithm 1. Finally, based
on the clusters identified, we re-estimate the valuations. This iterative process is
repeated for niter iterations to obtain the final estimated valuations (v̂final

i ).

4.1.2 Simulation

In order to evaluate the performance of Online Algorithm 1 in terms of valuations’
accuracy and the average reward achieved during the online learning phase, a com-
prehensive simulation study will be conducted. This study will encompass various
market structures to ensure a thorough assessment. The selected settings for evalu-
ating the algorithm’s performance are presented in Table 4.1. The simulation study
focuses on a scenario where the dataset undergoes two conversions, with the outliers
eliminated using the IQR method. We will investigate three distributions: increasing
distribution, decreasing distribution, and random distribution. To begin, a warm-
up phase will be initiated, consisting of 1000 data points to obtain initial estimates
of customers’ valuations. Subsequently, the online learning phase will proceed for
1000 iterations to improve these estimates and observe the average reward collected
during this phase. Different values of ϵ will be considered to examine the impact
of this hyperparameter on the algorithm’s performance and the resulting outcomes.
To ensure a robust evaluation of the algorithm’s performance across diverse scenar-
ios, each setting will undergo 100 replications. This rigorous approach guarantees a
comprehensive assessment of the algorithm’s performance in various scenarios.

Table 4.1 Setting of the simulation study for estimating the valuations by online
learning in the presence of deterministic valuations and known distribution

Number of segments n 4
Number of data points T 1000

Number of iterations in online learning phase niter 1000
Number of nearest neighbors k 50
Number of data conversion nconversion 2

Non-uniform valuations vi [20, 45, 55, 80]
Minimum probability for random distribution R 0.15

Epsilon ϵ [0.5, 0.6, 0.7]
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Table 4.2 Simulation results for initial and final estimated valuations by online learn-
ing in the presence of deterministic valuations and known distribution

δi = [0.1,0.2,0.3,0.4]
Initial Estimated Valuations Final Estimated Valuations

Error% Average Reward Expected Reward
v̂initial

1 v̂initial
2 v̂initial

3 v̂initial
4 v̂final

1 v̂final
2 v̂final

3 v̂final
4

ϵ = 0.5 20.200 45.017 54.933 79.908 20.039 45.000 54.999 80.000 0.133 28.913 40.500
ϵ = 0.6 20.419 45.176 54.931 79.870 20.055 45.000 54.587 80.000 0.620 30.176 40.500
ϵ = 0.7 19.806 44.994 54.835 79.982 20.315 45.000 53.201 80.000 1.671 31.764 40.500

δi = [0.4,0.3,0.2,0.1]
Initial Estimated Valuations Final Estimated Valuations

Error% Average Reward Expected Reward
v̂initial

1 v̂initial
2 v̂initial

3 v̂initial
4 v̂final

1 v̂final
2 v̂final

3 v̂final
4

ϵ = 0.5 20.082 44.783 55.394 79.551 20.000 45.000 54.997 79.988 0.048 15.651 27.000
ϵ = 0.6 20.007 45.038 54.858 79.342 20.000 45.000 54.741 79.944 0.297 16.654 27.000
ϵ = 0.7 20.213 44.822 55.004 79.800 20.011 45.000 53.545 79.945 1.333 17.513 27.000

δi = Random with R = 0.15
Initial Estimated Valuations Final Estimated Valuations

Error% Average Reward Expected Reward
v̂initial

1 v̂initial
2 v̂initial

3 v̂initial
4 v̂final

1 v̂final
2 v̂final

3 v̂final
4

ϵ = 0.5 20.182 45.047 55.074 80.079 20.000 45.000 54.949 80.000 0.118 18.316 29.025
ϵ = 0.6 20.099 45.008 55.149 79.865 20.000 45.000 54.592 79.998 0.563 19.019 28.350
ϵ = 0.7 19.818 44.761 55.222 79.768 20.042 45.000 53.235 79.997 1.560 20.841 29.925

The simulation results, representing the median values over 100 replications, are pre-
sented in Table 4.2. The first four columns provide the initial estimated valuations
(v̂initial

i ) obtained through offline learning. Subsequently, the following columns
present the final estimates of valuations (v̂final

i ) after applying online learning.

The "Error%" metric indicates the average absolute percent deviation between the
final estimates and the true valuations. It is calculated as follows:

(4.2) 1
n

n∑
i=1

(| v̂
final
i −vi

vi
|)

The "Average Reward" metric corresponds to the collected reward during the online
learning phase. In this phase, the seller offers a price to incoming customers, and if
a customer purchases the product, the seller earns a reward. The reported reward
values in the results represent the average of rewards collected during the online
learning phase:

(4.3) rewardaverage = 1
niter

niter∑
j=1

xj ×yj

In which xj is the offered price to the jth incoming customer in the online learning
phase, and yj is the customer’s buying preference.
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The "Expected Reward" metric refers to the theoretical reward that is expected to
be earned in the long run. It is calculated based on the true parameters of the
problem:

(4.4) rewardexpected = max
i=1,. . . ,n

{(1−
i−1∑
j=1

δj)×vi}

As the epsilon value increases, there is a corresponding increase in the estimation
error. This can be attributed to the fact that a higher epsilon value emphasizes
the estimated valuation with the highest reward, generating more data points in its
vicinity. Consequently, more information is generated for this particular valuation,
leading to a more accurate estimation. However, the improvement in the estima-
tion of other valuations is limited. Conversely, a lower epsilon value allows for the
improvement of all valuations, resulting in a decrease in estimation error.

Furthermore, an increase in the epsilon value leads to an increase in the average
collected reward during the online learning phase, bringing it closer to the expected
reward. This effect is observed because a higher epsilon value results in offering
the price with the highest reward more frequently over multiple iterations, thereby
increasing the average collected reward.

It is evident that there exists a trade-off between estimation error and the average
collected reward. Therefore, the choice of the epsilon value is dependent on the
seller’s objective. If the seller aims to achieve more accurate valuations, a low
epsilon value should be selected. Conversely, if the goal is to maximize the collected
reward, increasing the epsilon value would be more suitable.

In other words, with low values of epsilon, the seller focuses on exploration, actively
seeking to gather more information and improve the estimation of valuations. This
exploration allows for a more comprehensive understanding of the valuations and
reduces the estimation error. On the other hand, high values of epsilon prioritize
exploitation, where the seller capitalizes on the valuation with the highest reward.
By exploiting this high-reward valuation, the seller can maximize their collected
reward. However, this emphasis on exploitation may result in less improvement in
the estimation of other valuations, leading to a higher estimation error. In summary,
low epsilon values promote exploration and lead to improved valuation estimates,
while high epsilon values prioritize exploitation and maximize the collected reward.
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4.1.3 Asymmetric penalty for estimation errors

An important problem encountered in the online learning phase in the presence
of deterministic product valuations is that the penalty for estimation errors is not
symmetrical. This asymmetry can be explained with an example: When the product
valuations of the segments (vi) are [20,45,55,80], respectively, and the distribution of
the segments (δi) is [0.1,0.2,0.3,0.4], the strategy that maximizes the total reward is
P ∗ = 45 (Calculated by Eq. 2.1). When this price is offered, the expected reward will
be (45) × (0.9) = 40.5 (Calculated by Eq. 4.4), since all customers will buy except
the first segment. If this value is calculated as 44 as a result of the estimation
error, when the price offered to the customer is 44, the expected reward will be
(44) × (0.9) = 39.6, since all customers will buy again except the first segment; if
the estimate is calculated as 46 and the price offered to the customer is 46, this
time the expected reward will decrease to (46) × (0.7) = 32.2, since all customers
in the second segment will lose together with the first segment. As observed, the
estimation error for these two cases are similar, but the consequences of this error
differ significantly. The reward lost due to the asymmetry between the valuations’
estimation carries substantial importance.

This asymmetry created by the same amount of estimation error has led to the
update of the exploitation step, where the price expected to bring the highest reward
in the online learning phase will be proposed. In the case of full exploitation (ϵ = 1),
at each iteration of the online learning phase, the price to be offered is the estimated
valuation that brings the highest reward. Let’s denote this value as priceestimated.
The recommendation at this stage for overcoming the estimations error is to offer
a price α units below the priceestimated to the incoming customer at each iteration
of the online learning phase. We denote this offered price to the customers as
priceoffered:

(4.5) priceoffered = priceestimated −α

This α value functions as a hyperparameter in our algorithm.

4.1.4 Simulation
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In order to investigate the impact of the new hyperparameter α on the reward col-
lected during the online learning phase, a simulation study will be conducted. The
simulation settings will be similar to the previous simulation study discussed in Sec-
tion 4.1.2. However, in this study, we will increase the values for the hyperparameter
ϵ to assess its impact on approaching the expected reward. For the hyperparameter
α, a value of 0.5 will be considered. Additionally, we will examine cases where α

is not applied in order to observe its effect on the collected reward. By comparing
the results between the cases with and without α, we can assess the significance of
this hyperparameter in optimizing the reward collection process during the online
learning phase. The selected settings for evaluating the algorithm’s performance are
presented in Table 4.3.

Table 4.3 Setting of the simulation study for estimating the valuations by online
learning with applying alpha hyperparameter in the presence of deterministic valu-
ations and known distribution

Number of segments n 4
Number of data points T 1000

Number of iterations in online learning phase niter 1000
Number of nearest neighbors k 50
Number of data conversion nconversion 2

Non-uniform valuations vi [20, 45, 55, 80]
Minimum probability for random distribution R 0.15

Epsilon ϵ [0.90, 0.95, 0.99]
Alpha α [0.0, 0.5]

The simulation results, representing the median values over 100 replications, are
presented in Table 4.4. Once again, we observe that as the ϵ value increases, the
estimation error also increases. In this study, the errors are higher compared to
the previous study, and we have already discussed the reasons behind this observa-
tion. The increased errors can be attributed to the emphasis on exploitation rather
than exploration, which limits the improvement in estimating valuations accurately.
When considering the same ϵ value, applying α leads to significantly higher errors
compared to the case where α is not applied. This result suggests that the inter-
ruption of the learning process by offering prices different than the estimated values
hinders the accurate estimation of valuations.
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Table 4.4 Simulation results for initial and final estimated valuations by online learn-
ing with applying alpha hyperparameter in the presence of deterministic valuations
and known distribution

δi = [0.1,0.2,0.3,0.4]
Initial Estimated Valuations Final Estimated Valuations

Error% Average Reward Expected Reward
v̂initial

1 v̂initial
2 v̂initial

3 v̂initial
4 v̂final

1 v̂final
2 v̂final

3 v̂final
4

ϵ = 0.90
α = 0 20.174 44.734 54.876 80.092 23.071 45.000 50.612 79.968 5.956 34.121 40.500
α = 0.5 20.187 44.852 54.886 79.989 40.384 44.991 55.297 80.470 25.834 38.224 40.500

ϵ = 0.95
α = 0 19.970 45.194 55.029 79.733 23.585 45.000 50.353 79.978 6.612 34.835 40.500
α = 0.5 20.365 45.181 54.966 79.830 40.544 45.044 55.300 80.367 26.078 38.726 40.500

ϵ = 0.99
α = 0 20.281 45.049 54.778 79.883 25.425 45.000 50.045 79.919 8.982 35.255 40.500
α = 0.5 20.128 45.103 55.006 79.985 40.811 45.000 55.148 80.023 26.839 39.291 40.500

δi = [0.4,0.3,0.2,0.1]
Initial Estimated Valuations Final Estimated Valuations

Error% Average Reward Expected Reward
v̂initial

1 v̂initial
2 v̂initial

3 v̂initial
4 v̂final

1 v̂final
2 v̂final

3 v̂final
4

ϵ = 0.90
α = 0 20.263 45.014 54.983 79.579 23.265 45.000 50.523 79.658 6.500 19.475 27.000
α = 0.5 20.029 44.953 54.834 79.854 27.041 45.129 55.192 79.940 11.904 24.033 27.000

ϵ = 0.95
α = 0 20.084 45.100 54.980 79.823 24.581 45.000 50.303 79.838 8.639 19.878 27.000
α = 0.5 19.950 45.146 55.059 79.573 35.992 45.114 55.302 79.142 20.963 24.525 27.000

ϵ = 0.99
α = 0 20.052 45.068 54.959 79.420 26.158 45.000 50.237 79.686 10.484 20.252 27.000
α = 0.5 20.046 45.220 55.039 79.735 37.956 45.085 55.200 78.647 23.793 24.817 27.000

δi = Random with R = 0.15
Initial Estimated Valuations Final Estimated Valuations

Error% Average Reward Expected Reward
v̂initial

1 v̂initial
2 v̂initial

3 v̂initial
4 v̂final

1 v̂final
2 v̂final

3 v̂final
4

ϵ = 0.90
α = 0 20.215 44.949 55.358 79.829 21.892 45.000 50.865 79.933 4.451 23.166 30.825
α = 0.5 20.113 44.778 55.311 79.802 29.387 44.918 55.186 80.363 12.885 26.728 29.700

ϵ = 0.95
α = 0 20.028 44.945 55.187 79.708 23.516 45.000 50.518 79.989 7.116 23.364 30.150
α = 0.5 20.020 45.018 54.820 79.858 35.264 44.987 54.844 80.450 20.488 27.032 30.150

ϵ = 0.99
α = 0 20.113 44.876 54.976 79.711 24.453 45.000 50.430 79.808 8.631 22.698 28.575
α = 0.5 19.993 45.120 54.627 79.823 35.253 44.893 54.499 80.083 21.173 28.330 30.375

As the ϵ value increases, the collected reward moves closer to the expected reward.
The rewards obtained in this study are higher than those in the previous study,
which was expected as the emphasis is on exploitation rather than exploration. For
the same ϵ value, the application of α leads to a significant increase in the average
collected reward. This indicates that offering prices below the estimated valuations,
as facilitated by α, contributes to enhancing the overall reward. Specifically, in the
case of the increasing distribution with ϵ = 0.99 and α = 0.5, an average reward of
97.01% of the expected reward was achieved during the online learning phase.

4.1.5 Decaying Alpha

In the previous section, we observed that deducting a fixed value of α from the
estimated price offered to customers proves beneficial, leading to higher rewards
in the online learning process. However, this method presents a challenge. As we
repeatedly re-estimate valuations during the online phase, our estimates become
more accurate and approach the true valuations. Nevertheless, by subtracting a
fixed value from these estimates to derive the offered price, we eventually fall short
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of the true valuations, resulting in a loss of rewards due to the underestimation.
As depicted in Figure 4.1, the first and second estimates of vi deviate significantly
from its true value. Offering these estimates as prices to customers would lead to
the loss of customers from segment i, consequently decreasing our reward. The
third and fourth estimates of vi are much closer to its true value, but still, if we
were to offer these estimates as prices to customers, we would lose rewards due
to the overestimation of the true value of vi. However, by deducting α from the
estimated values, we can potentially gain rewards since the offered prices would be
lower than the valuations of customers in segment i. Nonetheless, after deducting α,
the disparity between the offered price and the true value (represented by red lines)
remains considerable for the third and fourth estimates, resulting in a partial loss
of reward. If we could reduce these differences, we would achieve greater rewards.

Figure 4.1 Effect of hyperparameter α on the obtained reward

Our proposed approach suggests that instead of utilizing a fixed value for α through-
out the entire online learning phase, we decay the value of α as the estimates of a
valuation approach its true value. This adjustment ensures that the offered price
is sufficiently close to the true value, leading to increased rewards. To implement
the decaying alpha approach, we examine the moving average of estimated prices.
We posit that when the moving averages exhibit significant fluctuations, it indicates
that the estimates are distant from the true value, prompting the algorithm to im-
prove its estimation of a valuation towards its true value. In such cases, a larger
value of α is required. Conversely, when the moving averages exhibit minimal fluc-
tuation and maintain a steady trend, it is likely that the algorithm has converged
to the true value of the valuation it seeks to estimate. Thus, we can decay the α

value. Based on this rationale, by monitoring the moving averages of the estimated
prices, we can decay the value of α whenever the moving averages maintain a steady
trend. The decaywindow serves as a hyperparameter in our algorithm, defining the
window within which we calculate the moving averages. Furthermore, we require a
metric to determine if the trend of the moving averages remains stable. To address
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this, we introduce a new hyperparameter, decaythreshold. Whenever the difference
between the moving averages is below this threshold, we can assume a steady trend
among the moving averages. However, we cannot decay α whenever this difference
is below the decaythreshold. Otherwise, α would quickly converge to zero, rendering
the concept of decaying alpha meaningless. Moreover, the intuition behind decaying
α based on the difference between moving averages is that the estimates become sta-
ble, implying that they are in proximity to the true values. However, it is possible
for the difference to be small while the estimates are still far from the true values.
This can occur when the algorithm becomes stuck in a different region rather than
the vicinity of the true values. To overcome this limitation, we introduce another
hyperparameter called decaystep. Instead of decaying α whenever the difference falls
below the threshold, we reduce α if the differences remain below the threshold for
a consecutive number of decaystep times. This ensures that the estimates stabi-
lize within a neighborhood before α is decayed. If the estimates change, we halt the
reduction of α until they stabilize again. This approach prevents α from quickly con-
verging to zero, allowing its effect to be traced during the learning process. Lastly,
for decaying α, we introduce a decayrate hyperparameter, which determines the rate
of decay. The process of decaying α can be summarized as follows:

• At each iteration i > decaywindow of the online learning phase:

– Calculate the moving average of estimated prices (MAi) through
decaywindow window size

– Calculate the absolute difference between two consecutive moving aver-
ages as:
diff = |MAi−MAi−1|

MAi−1

– If diff ≤ decaythreshold for decaystep iterations consecutively :
Decay alpha by decayrate

We initiate the computation of moving averages after a specified number of
decaywindow iterations. Prior to this point, there are not enough estimates to cal-
culate the moving averages. Additionally, since we are examining consecutive mov-
ing averages, we begin calculating the differences after the decaywindow iterations.
Hence, we have established the condition i > decaywindow. Subsequently, we compute
the absolute differences between consecutive moving averages. If these differences
consistently fall below the decaythreshold for a consecutive number of decaystep it-
erations, we proceed with the decay of alpha by a factor of decayrate rate. This
approach guarantees that alpha is decayed only when the consecutive absolute dif-
ferences satisfy the specified criterion.
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4.1.6 Simulation

To examine the impact of decaying alpha on the collected reward in the online
learning phase, a simulation study will be conducted. The hyperparameter α will be
assigned an initial value of 0.5, which will progressively decrease using the decaying
alpha method as the learning process advances. A value of 1 will be chosen for ϵ,
representing full exploitation. The chosen settings for evaluating the algorithm’s
performance are outlined in Table 4.5. Each specific setting will be replicated 100
times to ensure robustness and reliable results.

Table 4.5 Setting of the simulation study during the online learning phase with
applying decaying alpha in the presence of deterministic valuations and known dis-
tribution

Number of segments n 4
Number of data points T 1000

Number of iterations in online learning phase niter 1000
Number of nearest neighbors k 50
Number of data conversion nconversion 2

Non-uniform valuations vi [20, 45, 55, 80]
Epsilon ϵ 1
Alpha α 0.5

Decay rate decayrate [0.70, 0.80, 0.90, 0.95, 0.99]
Decay threshold decaythreshold [0.000, 0.010, 0.001]

Decay step decaystep 50
Moving average window size decaywindow [10, 25, 50, 100]

The results of the simulation study are presented in Table 4.6. The first column
displays the median of the average rewards obtained during the online learning
phase. The subsequent column represents the final value of α after undergoing
multiple decays. The third column indicates the number of times α has been de-
cayed. Upon analyzing the results, it is evident that the implementation of decaying
alpha has led to an improvement in the collected reward, surpassing the rewards ob-
tained in the previous simulation study. Notably, in the case of decaywindow = 100,
decayrate = 0.99, and decaythreshold = 0.000, the collected reward reached a value of
39.927, which closely approximates the expected reward by 98.6%. This significant
enhancement in rewards underscores the effectiveness of decaying alpha as a method
to maximize rewards during the learning process.
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Table 4.6 Simulation results for obtained average reward during online learning phase
with applying decaying alpha in the presence of deterministic valuations and known
distribution

δi = [0.1,0.2,0.3,0.4]
decaythreshold = 0.000 decaythreshold = 0.010 decaythreshold = 0.001

Average Reward Final Alpha #Alpha Average Reward Final Alpha #Alpha Average Reward Final Alpha #Alpha

decaywindow = 10

decayrate = 0.70 36.682 0.000 57.000 38.941 0.000 20.000 38.567 0.000 25.000
decayrate = 0.80 37.413 0.000 74.000 39.406 0.006 20.000 39.320 0.002 26.000
decayrate = 0.90 39.211 0.002 53.000 39.714 0.061 20.000 39.590 0.032 26.000
decayrate = 0.95 39.639 0.083 35.000 39.766 0.179 20.000 39.753 0.132 26.000
decayrate = 0.99 39.694 0.389 25.000 39.640 0.409 20.000 39.846 0.385 26.000

decaywindow = 25

decayrate = 0.70 37.699 0.000 38.000 38.999 0.000 20.000 38.879 0.000 21.000
decayrate = 0.80 38.474 0.000 41.500 39.318 0.006 20.000 39.354 0.005 21.000
decayrate = 0.90 39.538 0.014 34.000 39.806 0.061 20.000 39.639 0.055 21.000
decayrate = 0.95 39.820 0.132 26.000 39.641 0.179 20.000 39.779 0.170 21.000
decayrate = 0.99 39.860 0.401 22.000 39.816 0.409 20.000 39.812 0.405 21.000

decaywindow = 50

decayrate = 0.70 38.634 0.000 25.000 38.970 0.001 19.000 39.049 0.001 19.000
decayrate = 0.80 39.055 0.001 26.500 39.359 0.007 19.000 39.379 0.007 19.000
decayrate = 0.90 39.538 0.036 25.000 39.681 0.068 19.000 39.653 0.068 19.000
decayrate = 0.95 39.766 0.162 22.000 39.749 0.189 19.000 39.780 0.189 19.000
decayrate = 0.99 39.731 0.409 20.000 39.808 0.413 19.000 39.712 0.413 19.000

decaywindow = 100

decayrate = 0.70 39.293 0.002 15.000 39.124 0.001 18.000 39.009 0.001 18.000
decayrate = 0.80 39.451 0.014 16.000 39.461 0.009 18.000 39.482 0.009 18.000
decayrate = 0.90 39.598 0.075 18.000 39.705 0.075 18.000 39.669 0.075 18.000
decayrate = 0.95 39.884 0.220 16.000 39.703 0.199 18.000 39.890 0.199 18.000
decayrate = 0.99 39.927 0.421 17.000 39.903 0.417 18.000 39.698 0.417 18.000

To explore the convergence of the collected average reward towards the expected
reward, a further simulation study was conducted with an increased number of
iterations during the online learning phase. The settings for this study are presented
in Table 4.7. The results of this extended study can be found in Table 4.8.

Table 4.7 Setting of the simulation study during the online learning phase with
applying decaying alpha in the presence of deterministic valuations and known dis-
tribution

Number of segments n 4
Number of data points T 1000

Number of iterations in online learning phase niter 2000
Number of nearest neighbors k 50
Number of data conversion nconversion 2

Non-uniform valuations vi [20, 45, 55, 80]
Epsilon ϵ 1
Alpha α [0.25, 0.50, 1.00]

Decay rate decayrate [0.95, 0.99]
Decay threshold decaythreshold 0.001

Decay step decaystep 50
Moving average window size decaywindow [ 50, 100]
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Table 4.8 Simulation results for obtained average reward during a longer online
learning phase (2000 iterations) with applying decaying alpha in the presence of
deterministic valuations and known distribution

δi = [0.1,0.2,0.3,0.4]
α = 0.25 α = 0.50 α = 1.00

Average Reward Final Alpha #Alpha Average Reward Final Alpha #Alpha Average Reward Final Alpha #Alpha

decaywindow = 50
decayrate = 0.95 40.075 0.034 39.000 40.016 0.068 39.000 39.995 0.135 39.000
decayrate = 0.99 39.989 0.169 39.000 39.922 0.338 39.000 39.815 0.676 39.000

decaywindow = 100
decayrate = 0.95 40.058 0.036 38.000 39.899 0.071 38.000 39.977 0.142 38.000
decayrate = 0.99 40.110 0.171 38.000 39.983 0.341 38.000 39.676 0.683 38.000

The results indicate that with 2000 iterations of online learning, using decaywindow =
100, decayrate = 0.99, decaythreshold = 0.001, and an initial α value of 0.25, an aver-
age reward of 40.11 was achieved. This corresponds to 99% of the expected reward,
demonstrating the algorithm’s success in maximizing the seller’s reward and its con-
vergence towards the expected reward. These findings underscore the effectiveness
of the algorithm in optimizing the reward and its ability to approach the desired
target.

A further simulation study was conducted with an increased number of iterations
during the online learning phase to demonstrate the convergence of the algorithm.
The results of this study are presented in Table 4.9. After conducting the online
learning for 5000 iterations, an average reward of 40.196 was obtained, which cor-
responds to 99.25% of the expected reward. Notably, this average reward is higher
than the previously obtained results, confirming that the algorithm converges to the
expected reward over the long run. This serves as strong evidence of the algorithm’s
ability to optimize rewards and achieve convergence towards the desired outcome.

Table 4.9 Simulation results for obtained average reward during a longer online
learning phase (5000 iterations) with applying decaying alpha in the presence of
deterministic valuations and known distribution

δi = [0.1, 0.2, 0.3, 0.4]
α = 0.25

Average Reward Final Alpha #Alpha
decayrate = 0.99

40.196 0.093 98.000decaywindow = 100
decaythreshold = 0.001

4.2 Probabilistic Valuations, non-overlapping intervals
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In Section 3.1.7, the concept of probabilistic valuations was examined, focusing on
the estimation of valuations through offline learning. In this section, our objec-
tive is to employ online learning in conjunction with probabilistic valuations, with
the aim of exploring its impact on the collected reward during the online learn-
ing phase. Specifically, we investigate probabilistic valuations with non-overlapping
intervals where the intervals within which valuations change are distinct intervals
without overlapping with each other. It should be noted that probabilistic valua-
tions introduce alterations to the conventional calculation of expected reward. In the
forthcoming section, we will delve into the methodology of computing the expected
reward in the context of probabilistic valuations.

4.2.1 Expected Reward in the presence of probabilistic valuations

In our previous discussions, we defined pi as the purchase probability for cluster i

and pi+1 as the purchase probability for the subsequent cluster, i + 1, in the con-
text of deterministic valuations. In the case of deterministic valuations, where we
observe sharp declines from one cluster to the next, the purchase probabilities can
be computed based on the offered prices and pi values. However, for probabilistic
valuations, these declines exhibit a gradual pattern, as illustrated in Figure 4.2.

Figure 4.2 Expected reward in the presence of probabilistic valuations

In the presence of probabilistic valuations, the valuation vi changes for each customer
within the segment i, falling within the range of (li,ui). Consequently, it becomes
evident that the purchase probability for offered prices lower than li is pi, while the
purchase probability for prices greater than ui is pi+1, as customers from segment i

will be lost when faced with prices exceeding ui. The question then arises: what is
the purchase probability for prices offered between li and ui?

To address this question, we assume a linear decrease in purchase probability be-
tween pi and pi+1 for prices within the range of li and ui, as depicted by the yellow
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dashed line in the Figure 4.2. To incorporate this linear characteristic, we intro-
duce a parameter λ, where λ ∈ (0,1), and represent the prices between the lower
bound li and upper bound ui as li + λ × (ui − li) for segment i. By employing this
price representation, the purchase probability for each of these price values can be
expressed as pi − λ × (pi − pi+1). Consequently, the expected reward for each price
within segment i can be calculated as [li + λ × (ui − li)] × [pi − λ × (pi − pi+1)]. Our
aim is to maximize this expression, as it allows us to achieve the largest possible
expected rewards. Expanding this expression results in a polynomial expression in-
volving λ. By taking the derivative of this expression and equating it to zero, we
can determine the value of λ∗

i , which is computed as follows:

(4.6) λ∗
i = pi(ui − li)− li(pi −pi+1)

2(pi −pi+1)(ui − li)

The value of λ∗
i provides us with the optimal parameter value, enabling us to com-

pute the price and its corresponding purchase probability for segment i, thereby
maximizing the reward within that specific segment. In order to calculate the ex-
pected reward in our problem, considering the presence of probabilistic valuations,
we follow a three-step process. First, we determine the value of λ∗

i for each segment.
Next, we calculate the reward for each segment based on the corresponding opti-
mal parameter value. Finally, the maximum reward obtained across all segments
represents the expected reward in our problem.

For the given case with vi = [20,45,55,80], δi = [0.1,0.2,0.3,0.4], and p = 5%,
the optimal values for λ are determined as follows: λ∗ = [0.25,0,0,0]. Sub-
sequently, we can calculate the expected rewards for each segment. The ex-
pected rewards for the respective segments are as follows: rewardexpected =
[19.0125,38.4750,36.5750,30.4000]. Hence, the expected reward for the overall prob-
lem is determined as 38.475.

4.2.2 Simulation

In order to assess the performance of the proposed Online Algorithm 1 and its
proximity to the expected reward, a simulation study will be conducted in the
presence of probabilistic valuations. The study will explore various settings, which
are outlined in Table 4.10. By deploying the Online Algorithm 1 in these different
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settings, we aim to observe the achieved rewards and evaluate their proximity to the
expected reward.

Table 4.10 Setting of the simulation study during the online learning phase with
applying decaying alpha in the presence of probablistic valuations and known dis-
tribution

Number of segments n 4
Number of data points T 1000

Number of iterations in online learning phase niter 1000
Number of nearest neighbors k 50
Number of data conversion nconversion 2

Non-uniform valuations vi [20, 45, 55, 80]
Epsilon ϵ 1
Alpha α [0.0, 0.5]

Decay rate decayrate [0.95, 0.99]
Decay threshold decaythreshold 0.001

Decay step decaystep 50
Moving average window size decaywindow [ 50, 100]

Valuation percentage deviation p% 5%

Table 4.11 Simulation results for obtained average reward during online learning
phase by applying decaying alpha in the presence of probabilistic valuations and
known distribution

δi = [0.1,0.2,0.3,0.4]
α = 0.0 α = 0.5

Average Reward Final Alpha #Alpha True interval Online% (avg) True interval Offline% (avg) Average Reward Final Alpha #Alpha True interval Online% (avg) True interval Offline% (avg)

decaywindow = 50
decayrate = 0.95 35.749 0.000 0.000 0.963 0.840 36.862 0.189 19.000 0.938 0.760
decayrate = 0.99 35.749 0.000 0.000 0.963 0.840 37.107 0.413 19.000 0.885 0.810

decaywindow = 100
decayrate = 0.95 35.749 0.000 0.000 0.963 0.840 36.901 0.199 18.000 0.960 0.820
decayrate = 0.99 35.749 0.000 0.000 0.963 0.840 37.245 0.417 18.000 0.950 0.710

The simulation study results are presented in Table 4.11, which comprises 100 repli-
cations. In the first column, the median of the average rewards obtained during the
online learning phase is displayed. The second column presents the final value of
α, after multiple decays. The third column indicates the number of times α has
been reduced throughout the study. Moving to the fourth column, it shows the per-
centage of time that the algorithm offers a point within the optimal interval during
the online learning phase. The optimal interval refers to the range that yields the
highest expected reward. In this specific case, the optimal interval is the second
interval, denoted as [42.75, 47.25]. This metric assesses the algorithm’s ability to
make pricing decisions that align with the optimal range. Finally, the last column
demonstrates the percentage of time that the estimated value of the valuation for
the segment with the highest expected reward, as obtained from the offline learning
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phase, falls within the optimal interval. This metric evaluates the accuracy of the
estimated valuation for the segment with the highest potential for reward.

The results indicate an increase in the percentage of time that the algorithm offers
a price within the optimal interval during the online learning phase, which demon-
strates an improvement in the estimation of valuations by the algorithm in this
phase. The highest average reward achieved is 37.245, which corresponds to 96.8%
of the expected reward (38.475). However, there is room for further improvement.
In the current algorithm, the estimated valuations are represented by the middle
points of the changing intervals. Yet, according to the derived formula 4.6, there
may be another value within that range that yields the highest reward. Therefore,
instead of offering the middle points, if we offer the value that maximizes the ex-
pected reward, we can potentially attain higher rewards during the online learning
phase.

To accomplish this, we need to know the lower and upper bounds of the intervals
within which the valuations are changing. In the upcoming section, we will develop
methods to estimate these bounds. Subsequently, we will utilize the formula 4.6 to
offer prices in a more structured manner during the online learning phase, enabling
us to obtain higher rewards. This approach aims to refine the pricing strategy by
incorporating valuation bounds.

4.2.3 Proposed methods for estimating the lower and upper bounds of

probabilistic valuations

In the context of probabilistic valuations, the valuation vi for customers within
segment i changes within the range [li,ui]. In this section, our objective is to develop
methods to estimate these bounds for each valuation. By accurately estimating the
lower bound li and upper bound ui, we can effectively capture the range of valuations
for customers in segment i. These estimation methods will enable us to refine our
understanding of customer valuations and inform the pricing strategy accordingly.

4.2.3.1 Method 1
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Figure 4.3 showcases a distinct pattern where, as we approach the lower bound of
interval i within which the valuation vi changes probabilistically, there is a consistent
trend up to li followed by a gradual decrease in the ˆ̂y values of the prices up to a
certain point, which represents the upper bound ui of this interval. Beyond this
point, we observe another steady trend in the ˆ̂y values. The blue vertical lines
indicate the middle points of the intervals or the valuations vi, the green vertical
lines show the corresponding lower and upper bounds of these valuations, and the
orange horizontal lines represent the purchase probabilities pi for clusters.

Figure 4.3 Shape of the expected purchase probability function in the presence of
probabilistic valuations along with the lower and upper bounds of the valuations

Based on this observation, we propose a method to estimate the bounds of the
intervals. Since each interval i comprises of two clusters i and i + 1, We suggest
starting from the middle point of interval i and calculating the differences between
the purchase probabilities pi and pi+1 and the ˆ̂y values of the prices in this interval.
As we move to the left of the middle point, these differences gradually decrease until
they reach a certain point where they start to fluctuate. Similarly, as we move to
the right of the middle point, the differences increase until they also reach a point of
fluctuation. We believe these points of decrease and increase in the differences reflect
the lower and upper bounds of the intervals, respectively. These points capture the
underlying behavior of the probabilistic valuations.

Therefore, in our first method by analyzing the behavior of the differences between
purchase probabilities pi and ˆ̂y values, we can identify the points at which these
differences start to fluctuate, indicating the lower and upper bounds of the intervals.
This approach aims to leverage the observed patterns to estimate the valuation
bounds more accurately.

The proposed method for estimating the bounds is as follows:

• Identify the clusters and estimate the valuations for each segment based on
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the given dataset and proposed Algorithm 1.

• For each estimated valuation v̂i within segment i:

– Calculate two difference vectors as:

∗ differencesdecreasing = pi − ˆ̂y for data points in cluster i.

∗ differencesincreasing = pi+1 − ˆ̂y for data points in cluster i+1.

– Begin from the estimated valuation v̂i and move towards the left. Com-
pare the consecutive differences differencesdecreasing and verify that they
are consistently decreasing. If at any point these differences cease to de-
crease, identify that point as the estimated lower bound l̂i for valuation
vi.

– Similarly, start from the estimated valuation v̂i and move towards the
right. Compare the consecutive differences differencesincreasing and en-
sure that they are consistently increasing. If these differences stop in-
creasing at any point, recognize that point as the estimated upper bound
ûi for valuation vi.

In the process of comparing consecutive differences (differencesj and
differencesj+1) to estimate the upper and lower bounds, there may be instances
where certain points exhibit fluctuations or outliers that do not align with the over-
all trend. To mitigate the influence of these points, we introduce a hyperparameter
called differencefactor. The differencefactor is multiplied by the first difference
(differencesj) when conducting the comparison. By incorporating this factor, we
aim to ensure that the subsequent differences (differencesj+1) are sufficiently larger
or smaller than the initial difference, thus helping us identify the correct points corre-
sponding to the upper and lower bounds. The introduction of the differencefactor

serves as a mechanism to filter out potential outliers or fluctuations, enabling us
to focus on the points that reflect the underlying behavior of the valuation inter-
vals more accurately. It adds an additional level of control and robustness to the
estimation process.

4.2.3.2 Method 2

Our second method for estimating the lower and upper bounds involves examining
the largest and smallest prices within clusters that are close to the corresponding
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purchase probabilities. We can express this method algorithmically as follows:

• Identify the clusters and estimate the valuations for each segment based on
the given dataset and proposed Algorithm 1.

• For each estimated valuation v̂i within segment i:

– Estimate the lower bound l̂i by finding the largest price within cluster i

that is in close proximity to the corresponding purchase probability pi.

– Find the smallest price within cluster i + 1 that is in close proximity to
the purchase probability pi+1, and assign it as the estimatedupper bound
ûi for the valuation vi.

To Estimate the lower and upper bounds accurately, we consider the differences
between the buying probabilities and the ˆ̂y values within each cluster i as |pi − ˆ̂y|.
To determine the prices that are close to the purchase probabilities, we introduce a
hyperparameter called pricethreshold. This hyperparameter serves as a measurement
of the closeness between the ˆ̂y values of the prices and the buying probabilities pi

in cluster i. Therefore, the largest and smallest prices in cluster i that satisfy the
following inequality will be estimated as the lower and upper bounds of valuaiton
vi:

(4.7) |pi − ˆ̂y| ≤ pricethreshold

This method allows us to dynamically estimate the lower and upper bounds by
considering the prices within the clusters that align closely with the purchase prob-
abilities. By utilizing these specific prices, we can effectively define the boundaries
of the valuation intervals for each segment.

4.2.3.3 Method 3

In addition to the previous two methods, we introduce a hybrid method that com-
bines elements from both methods to achieve a balanced estimation of the bounds.
This hybrid method involves taking the average of the estimated bounds obtained
from methods 1 and 2. The steps for the hybrid method are as follows:

• Apply method 1: Estimate the lower and upper bounds for each valuation vi as
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l̂method1
i and ûmethod1

i by comparing the consecutive differences and identifying
the points where the differences stop decreasing or increasing, respectively.

• Apply method 2: Estimate the lower and upper bounds for each valuation vi

as l̂method2
i and ûmethod2

i by examining the largest and smallest prices within
clusters close to the corresponding purchase probabilities.

• Calculate the average of the lower bounds obtained from methods 1 and 2 to
determine the hybrid lower bound for each valuation:
l̂method3
i = (l̂method1

i + l̂method2
i )/2

• Calculate the average of the upper bounds obtained from methods 1 and 2 to
determine the hybrid upper bound for each valuation:
ûmethod3

i = (ûmethod1
i + ûmethod2

i )/2.

By averaging the bounds obtained from both methods, the hybrid method aims to
strike a balance and leverage the strengths of each approach. This can result in a
more robust and accurate estimation of the lower and upper bounds, considering
the insights gained from both methods simultaneously.

4.2.4 Estimating the lower and upper bounds of probabilistic valuations

by offline learning

Having developed methods for estimating the lower and upper bounds, we are now
equipped to apply these methods to various datasets for learning the bounds.

In a similar manner to the offline learning approach for estimating the parameters of
the problem, we can also apply the developed methods for estimating the bounds in
offline mode. In this algorithm, denoted as "Offline Bounds Estimation" we assume
that a complete dataset of size T is provided, generated uniformly within the range
of (0,100). We subsequently employ the proposed methods on the entire dataset to
estimate the bounds.
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Figure 4.4 Estimating the lower and upper bounds of probabilistic valuations by
Offline Bounds Estimation

4.2.5 Simulation

A simulation study was conducted to evaluate the efficacy of three developed meth-
ods in estimating the lower and upper bounds of probabilistic valuations in an offline
mode, where a complete dataset of size T was provided. The experimental settings
are summarized in Table 4.12. Various dataset sizes were considered to investigate
the impact on estimation accuracy. Hyperparameter k was selected proportionally
to the dataset size. The identification and elimination of outliers were accomplished
using the IQR method. Additionally, two different values for valuation percent-
age deviation (p%) were examined to assess the methods’ performance across wider
intervals. Each experimental setting was replicated 200 times.
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Table 4.12 Setting of the simulation study for estimating the lower and upper bounds
of probabilistic valuations by applying the three developed methods and offline
bounds estimation

Number of segments n 4
Number of data points T [1000, 5000, 10000]

Number of nearest neighbors k [50, 75, 100]
Number of data conversion nconversion 2

Non-uniform valuations vi [20, 45, 55, 80]
Non-uniform distribution δi [0.1, 0.2, 0.3, 0.4]

Difference factor for comparing differencefactor [1.05, 1.1]
the consecutive differences

Threshold for measuring the closeness pricethreshold 0.01
of prices to the purchase probabilities

Valuation percentage deviation p% [5%, 10%]

Table 4.13 simulation results for estimated lower and upper bounds of probabilistic
valuations by applying the three developed methods and offline bounds estimation

p% = 5,differencefactor = 1.05
l1 u1 l2 u2 l3 u3 l4 u4

Error19 21 42.75 47.25 52.25 57.75 76 84
l̂1 û1 l̂2 û2 l̂3 û3 l̂4 û4

T = 1000,k = 50
Method 1 15.771 23.719 41.106 48.746 50.505 59.222 74.165 87.602 2.218
Method 2 17.242 23.296 41.674 48.795 50.412 59.770 73.251 85.775 1.882
Method 3 16.434 23.645 41.349 49.019 50.300 59.749 73.198 86.764 2.237

T = 5000,k = 75
Method 1 18.204 21.124 42.999 46.839 52.563 57.490 76.396 85.085 0.454
Method 2 18.896 20.980 42.989 46.994 52.323 57.639 76.288 84.113 0.150
Method 3 18.542 21.089 42.948 46.993 52.442 57.625 76.310 84.628 0.282

T = 10000,k = 100
Method 1 18.520 21.068 43.040 46.879 52.631 57.256 76.567 84.583 0.404
Method 2 19.106 20.910 43.024 47.016 52.459 57.397 76.444 83.899 0.226
Method 3 18.813 21.059 43.017 46.950 52.557 57.354 76.463 84.266 0.281

p% = 10,differencefactor = 1.1
l1 u1 l2 u2 l3 u3 l4 u4

Error18 22 40.5 49.5 49.5 60.5 72 88
l̂1 û1 l̂2 û2 l̂3 û3 l̂4 û4

T = 1000,k = 50
Method 1 15.368 24.157 39.679 49.157 49.227 61.316 71.230 91.090 1.363
Method 2 17.018 23.283 40.212 48.870 49.557 61.399 71.546 88.950 0.693
Method 3 16.139 23.804 39.884 49.034 49.463 61.592 71.367 90.035 1.068

T = 5000,k = 75
Method 1 17.510 21.904 41.461 48.516 50.617 59.638 73.422 88.909 0.855
Method 2 18.320 21.612 41.357 48.746 50.408 59.972 72.815 87.706 0.608
Method 3 17.933 21.761 41.518 48.651 50.525 59.690 73.210 88.351 0.696

T = 10000,k = 100
Method 1 17.821 21.773 41.458 48.341 50.741 59.304 73.135 88.474 0.821
Method 2 18.417 21.541 41.446 48.405 50.466 59.475 72.938 87.546 0.788
Method 3 18.133 21.682 41.469 48.293 50.656 59.409 73.069 88.023 0.746

Table 4.13 presents the median values for the estimated lower and upper bounds
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obtained from the three developed methods by applying offline bounds estimation,
accompanied by the corresponding estimation errors. The reported error is com-
puted as the mean absolute error between the estimated and true values of the
lower and upper bounds, using the following formula:

(4.8) Error = 1
n

n∑
i=1

(|l̂i − li|+ |ûi −ui|)

Here, l̂i and ûi denote the estimated lower and upper bounds of valuation i, while li

and ui represent the true values of the lower and upper bounds of the same valuation
i. The error is averaged across n valuations.

The results demonstrate the estimation error decreases as the dataset size increases.
This observation implies that the methods employed exhibit greater robustness in
accurately estimating the lower and upper bounds when a larger number of data
points are available. Specifically, when considering datasets comprising 5000 and
10000 data points, the estimation error remains below 1 unit for both scenarios
involving p = 5% and p = 10%. This outcome highlights the efficacy of the developed
methods in successfully estimating the bounds.

The results obtained from the various offline and online learning methods demon-
strate their effectiveness in successfully estimating the bounds, particularly when
dealing with relatively large datasets. With accurate estimates of the bounds, we
can now proceed to the next phase of the online learning process, which involves
offering prices in a more rigorous manner to maximize the collected reward. To
facilitate this, a new algorithm has been developed, which will be discussed in the
upcoming section. This algorithm aims to leverage the estimation of bounds to
enhance the pricing strategy, ultimately leading to increased reward collection.

4.2.6 Proposed Online Algorithm 2

In Online Algorithm 1, when dealing with probabilistic valuations, we estimate the
valuations using conventional methods and consider them as the middle points of the
intervals where the valuations change. These estimated valuations are then offered to
the customers. However, through analysis of the expected reward in the presence of
probabilistic valuations, we have observed that offering a price other than the middle
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point within the changing interval may lead to higher rewards. To determine the
optimal price within each interval, we need to know the lower and upper bounds
of these intervals. With the accurate estimation methods we have developed for
these bounds, we can leverage Equation 4.6 to identify the price that maximizes
the reward based on the purchase probabilities. Therefore, instead of offering the
middle points, in Online Algorithm 2, we propose offering the price that brings the
highest reward at each iteration of the online learning process. This approach aims
to increase the collected reward throughout the online learning phase, moving closer
to the expected reward. The Online Algorithm 2 is outlined as follows:

• Provided with dataset of size T , estimate the lower and upper bounds of
valuations in offline mode by Offline Bounds Estimation [l̂initial

i , ûinitial
i ]

• [l̂i, ûi] = [l̂initial
i , ûinitial

i ]

• For niter iterations:

– Offer price x to the incoming customer

∗ Find the optimal interval

∗ With probability ϵ offer the price in the optimal interval that yields
the highest reward

∗ With probability 1 − ϵ offer a price uniformly distributed in the op-
timal interval

– Getting the customers’ feedback y

– Add the new data point (x,y) to the existing dataset

– Re-calculate the ˆ̂y values of the data points in the converted dataset

– Re-cluster

– Re-estimate the lower and upper bounds and replace the [l̂i, ûi]’s with the
new estimates

The proposed Online Algorithm 2 consists of both offline and online learning phases.
In the offline learning part, where we are provided with a dataset of size T , we
estimate the lower and upper bounds using Offline Bounds Estimation with the
hybrid method to obtain initial estimates of the bounds [l̂initial

i , ûinitial
i ].

Moving on to the online learning phase, we aim to offer prices to customers in a
way that maximizes the collected reward. At each iteration of online learning, the
first step is to identify the optimal interval, which is the interval that contains the
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price with the highest reward. To determine the optimal interval, we calculate the
λ̂∗

i value for each estimated interval [l̂i, ûi] using the following equation:

(4.9) λ̂∗
i = pi(ûi − l̂i)− l̂i(pi −pi+1)

2(pi −pi+1)(ûi − l̂i)

By utilizing the estimated lower and upper bounds along with the calculated λ̂∗
i

values, we can find the estimated optimal price x̂i that maximizes the reward in
interval i as:

(4.10) x̂i = l̂i + λ̂∗
i × (ûi − l̂i)

Once the estimated optimal price x̂i is determined, we calculate the purchase prob-
ability p̂i for that price as:

(4.11) p̂i = pi − λ̂∗
i × (pi −pi+1)

Subsequently, we calculate the expected reward for each interval as:

(4.12) rewardi
expected = x̂i × p̂i

The interval with the highest expected reward is then identified as the estimated
optimal interval, denoted by [l̂optimal, ûoptimal].

For offering prices to customers, we employ the epsilon-greedy method. With a
probability of ϵ, we offer the price in the estimated optimal interval that brings
the highest reward (already calculated for each interval). With a probability of
1 − ϵ, we offer a price uniformly distributed within the estimated optimal interval
[l̂optimal, ûoptimal].

The offered price (x) is presented to the customer, and their feedback (y) is col-
lected. This new data point (x,y) is incorporated into the existing dataset, and
the ˆ̂y values for each element in the dataset are recalculated, resulting in the cre-
ation of a new converted dataset. The data points are then re-clustered using the
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method described in Algorithm 2. Finally, based on the identified clusters, the lower
and upper bounds are re-estimated using Offline Bounds Estimation with the hy-
brid method and replaced with [l̂i, ûi] values. This iterative process is repeated for
niter iterations, allowing for continuous improvement and refinement of the pricing
strategy based on customer feedback and the estimated bounds.

4.2.7 Simulation

A simulation study was conducted to assess the performance of Online Algorithm 2
in collecting rewards during the online learning phase with probabilistic valuations.
The study considered different settings, including the initial value of k, which was
set to 125, equivalent to 5% of the dataset size used in the offline learning phase.
During the online learning phase, the value of k was adjusted proportionally to the
increasing dataset size. Additionally, the effect of different ϵ values was examined
to analyze their impact on the collected rewards. Additionally, the online learning
phase was performed for a longer period to observe the convergence of the algorithm
toward the expected reward. The detailed settings of this study are presented in
Table 4.14.

Table 4.14 Setting of the simulation study for evaluating the Online Algorithm 2 in
the presence of probabilistic valuations and known distribution

Number of segments n 4
Number of data points T 2500

Number of iterations in online learning phase niter [1000, 2500]
Number of nearest neighbors k [125,...,175]
Number of data conversion nconversion 2

Non-uniform valuations vi [20, 45, 55, 80]
Non-uniform distribution δi [0.1, 0.2, 0.3, 0.4]

Epsilon ϵ [0.5, 0.7, 0.9, 1.0]
Difference factor for comparing differencefactor 1.05

the consecutive differences
Threshold for measuring the closeness pricethreshold 0.01
of prices to the purchase probabilities

Valuation percentage deviation p% 5%

The results from the simulation study, as presented in Table 4.15, show the median
of average rewards for different values of ϵ and niter based on 100 replications. It
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is observed that as the value of ϵ increases, the average reward collected during the
online learning phase also increases. This is in line with expectations, as offering
prices with higher rewards more frequently leads to higher average rewards. The
highest reward achieved with 1000 iterations was 37.586, corresponding to 97.69% of
the expected reward. Importantly, this outperforms the reward obtained by applying
Online Learning 1, which was 37.245.

To conduct a longer online learning phase, the ϵ value is set to 1, as it yielded
the highest average reward. With 2500 iterations, the average reward achieved was
37.809, corresponding to 98.27% of the expected reward. This demonstrates the
convergence of the algorithm towards the expected reward. These findings highlight
the effectiveness of estimating the bounds and offering prices based on the highest
reward in achieving greater rewards during the online learning phase compared to
offering middle points.

Table 4.15 Average rewards obtained by Online Algorithm 2 in the presence of
probabilistic valuations and known distribution

Average Reward Expected Reward

niter = 1000

ϵ = 0.5 35.883

38.475
ϵ = 0.7 36.705
ϵ = 0.9 37.279
ϵ = 1.0 37.586

niter = 2500 ϵ = 1.0 37.809

4.2.8 Applying the Alpha hyperparameter in the presence of probabilistic

valuations

In the context of deterministic valuations, it has been observed that incorporating a
deduction of the α value from our estimated price leads to the attainment of higher
rewards. This deduction helps mitigate the impact of overshooting the valuation
estimates. However, when addressing probabilistic valuations, the nature of cus-
tomers’ valuations is inherently random and undergoes changes upon the arrival of
each customer. Consequently, the deduction of the α value does not ensure that
the offered price will fall below the customer’s valuation. Nevertheless, in order to
examine the impact of this hyperparameter on the average reward collected when
dealing with probabilistic valuations, a simulation study was conducted. This study
employed the same experimental setup as the previous simulation, encompassing
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1000 online iterations, an ϵ value of 1, and varied values of α. The corresponding
results are presented in Table 4.16.

Table 4.16 Average rewards obtained by Online Algorithm 2 by applying the hyper-
parameter Alpha in the presence of probabilistic valuations and known distribution

Average Reward Expected Reward
α = 0.00 37.586

38.475α = 0.25 37.148
α = 0.50 36.693

The results from the simulation study, as presented in Table 4.16, show the median
of average rewards for different values of α based on 100 replications.

The results indicate that utilizing a non-zero value for α leads to diminished rewards.
This outcome can be attributed to two primary reasons. Firstly, in this model,
the objective is to identify the optimal price and offer it to customers. Deducting
the α value results in offering lower prices, consequently yielding reduced rewards.
Secondly, given the stochastic nature of customers’ valuations, deducting α leads to
offering prices that are occasionally lower than their valuations, but not consistently.
Consequently, it can be inferred that the utilization of this hyperparameter in the
presence of probabilistic valuations is not advantageous and results in decreased
rewards.

In the previous algorithms developed, the process of converting the preference
dataset involved calculating the average buying preferences, resulting in ŷ or ˆ̂y val-
ues. These values served as the basis for determining the offered prices during the
online learning phase. However, we aim to introduce the concept of expected reward
for prices and develop a new algorithm to offer prices to incoming customers based
on the expected rewards associated with each price.

Let’s consider the preference dataset provided as {(xt,yt)}, where xt represents the
price offered by the seller and yt denotes the customer’s feedback (1 for buying
and 0 for not buying). To calculate the reward for each price xt, we can compute
rt = xt ∗ yt. If the customer buys the product (yt = 1) the reward achieved by this
purchase is as much as the offered price xt (rt = xt), and if the customer does not
buy the product (yt = 0), there is no reward for the seller (rt = 0). This allows us to
create a new dataset, referred to as the reward dataset, in the form of {(xt,yt, rt)}.
Consequently, in order to offer prices to customers based on the rewards these prices
bring, we require a conversion process.
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In this new conversion process, instead of averaging the y values of the k nearest
data points for each price xt, we calculate the average of the r values of the k

nearest data points for each price xt. This provides us with the expected reward for
each price (r̂t), effectively converting our dataset into {(xt,yt, r̂t)} format. Through
this conversion, we gain insight into which prices are more likely to yield higher
rewards based on their expected values. Consequently, we can offer these prices to
customers during the online learning phase to maximize the rewards achieved. In
this section, we focus on probabilistic valuations characterized by non-overlapping
distinct intervals within which these valuations change for incoming customers.

4.2.9 Proposed Reward Algorithm 1

Our proposed algorithm for offering prices to customers based on the expected
rewards of the prices under the presence of probabilistic valuations and non-
overlapping intervals is as follows:

• Offline phase

– Provided with the preference dataset {(xt,yt)} of size T , derive the re-
ward dataset {(xt,yt, rt)} and convert it to obtain the converted dataset
{(xt,yt, r̂t)}.

– Find the optimal interval [l̂optimal, ûoptimal] by estimating the lower and
upper bounds of valuations via Offline Bounds Estimation and the hybrid
method

– Set the initial value for ϵ : ϵ = ϵ0

• Online phase

– For niter iterations:

∗ Offer price x to the incoming customer

· With probability ϵ offer the price in the optimal interval with the
highest expected reward r̂

· With probability 1 − ϵ offer a price uniformly distributed in the
optimal interval

∗ Getting the customers’ feedback y
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∗ Cacluate the reward r for the new data point (x,y)

∗ Add the new data point (x,y,r) to the existing reward dataset

∗ Re-calculate the r̂ values of the data points in the converted dataset

∗ Increase the ϵ value

In the offline phase, we are provided with a preference dataset {(xt,yt)} of size T .
From this dataset, we derive the reward dataset {(xt,yt, rt)} by calculating the re-
ward rt for each price xt. This reward dataset is converted using the KNN method
as described earlier. The resulting converted dataset takes the form {(xt,yt, r̂t)}.
These datasets will be utilized in the online learning phase for price offerings and
updates. To offer prices in the online learning phase, it is crucial to determine the
optimal interval where the price with the highest expected reward resides. This
interval can be estimated based on the provided preference dataset using the same
procedure as Online Algorithm 2. By following the steps outlined in that algo-
rithm, we can identify the estimated optimal interval [l̂optimal, ûoptimal], which will
be employed in the online learning phase.

The subsequent step in the offline phase is to set the initial value for ϵ. Similar to
the previous online algorithms, this algorithm employs the epsilon-greedy technique.
However, there is a difference in this algorithm: the ϵ value is not fixed throughout
the online learning phase but increases as the learning progresses. The rationale
behind using an increasing ϵ value is to ensure convergence to the price with the
highest expected reward within the optimal interval during the online learning phase.
Without such convergence, the algorithm may offer prices that do not maximize
the reward, resulting in the average collected reward deviating from the expected
reward. By starting with an initial ϵ value less than 1, the algorithm can explore
the optimal interval, refine its estimates of expected rewards, and converge towards
the price with the highest expected reward. Subsequently, by gradually increasing
the ϵ value to 1 and maintaining it for a certain number of iterations while offering
the price with the highest expected reward, the algorithm can exploit that price and
attain more rewards, thereby increasing the average collected reward. In order to
implement this increasing ϵ approach, we have considered two methods:

The first method involves initializing ϵ with an initial value (ϵ0) and continuously
increasing it during a specific number of iterations in the online learning phase until
it reaches a value of 1. After reaching the value of 1, ϵ remains fixed for the remaining
online learning iterations, allowing for the exploitation of the price with the highest
expected reward.
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Figure 4.5 Increasing Epsilon continuously

In the second method, we also begin with an initial value of ϵ (ϵ0). However, instead
of continuously increasing its value, we fix it for a certain number of iterations and
then increment it by a specific value. We repeat this process, maintaining the new
value of ϵ for a set number of iterations before increasing it again. This pattern
continues until the ϵ value reaches 1. For the remaining duration of the online
learning phase, we exploit the price with the highest expected reward.

Figure 4.6 Increasing Epsilon periodically

After establishing a fixed initial value for ϵ, we move to the online learning phase.
Within this phase, we offer prices derived from the optimal interval obtained during
the offline phase. With a probability of ϵ, we offer the price with the highest expected
reward r̂, while with a probability of 1 − ϵ, we offer a price uniformly distributed
within the optimal interval. Within this algorithm, it is necessary to offer prices
within the estimated optimal interval. However, it is possible that these estimates
do not encompass the prices with the highest rewards. Consequently, by offering
prices within such interval, it may be challenging to achieve high rewards. To
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mitigate this issue, we introduce a new hyperparameter called the scale. This scale
value is used to widen the interval within which prices will be offered. For instance,
if the value of this hyperparameter is s, and the estimated lower and upper bounds
of the optimal interval are l̂optimal and ûoptimal, prices will be offered in the range of
(l̂optimal(1− s)),(ûoptimal(1+ s)).

Upon receiving feedback (y) from incoming customers, we calculate the correspond-
ing reward (r). Subsequently, we incorporate this new data point (x,y,r) into the
existing reward dataset and recompute the r̂ values for the prices within the con-
verted dataset. This iterative process is repeated for a predetermined number of
iterations (niter).

4.2.10 Simulation

To assess the effectiveness of the proposed Reward Algorithm 1 in achieving higher
rewards, a simulation study was conducted. Similar to previous online algorithms,
the value of k in this algorithm is proportional to the size of the dataset and increases
during the online learning phase. Specifically, we use 5% of the dataset size as the
value for k. In the offline phase, where we are provided with the preference dataset,
it undergoes two conversions to determine the estimated optimal interval. The IQR
method is utilized to identify and eliminate outliers from the dataset during this
process. However, when converting the reward dataset to calculate the expected
rewards, we perform the conversion only once and do not consider outliers. The
complete setting of this simulation study can be found in Table 4.17, which outlines
the specific settings and hyperparameters used for the evaluation. Each setting
undergoes 100 replications of the simulation.
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Table 4.17 Setting of the simulation study for evaluating the Reward Algorithm 1
in the presence of probabilistic valuations, non-overlapping intervals, and known
distribution

Number of segments n 4
Number of data points T 2500

Number of iterations in online learning phase niter 5000
Number of nearest neighbors k [125,...,375]
Number of data conversion nconversion [1, 2]

Non-uniform valuations vi [20, 45, 55, 80]
Non-uniform distribution δi [0.1, 0.2, 0.3, 0.4]

Initial epsilon ϵ0 [0.00, 0.25, 0.50, 0.75, 1.00]
Difference factor for comparing differencefactor 1.05

the consecutive differences
Threshold for measuring the closeness pricethreshold 0.01
of prices to the purchase probabilities

Scale factor for widening the scale 0.05
optimal interval

Valuation percentage deviation p% 5%

The results of the simulation study are presented in Table 4.18, which includes the
median of average rewards collected during the online learning phase, as well as the
median of average rewards collected during the last 1000 iterations of the online
learning phase, for different initial epsilon (ϵ0) values. We used 80% of the online
learning phase (4000 iterations) for increasing the ϵ value to explore the optimal
interval, and in the final 20% of the online learning (1000 iterations), its value was
fixed to 1 for exploiting the prices with the highest rewards. It is observed that
increasing the initial epsilon value leads to higher average rewards during the online
learning phase. There is a relatively small difference in the rewards obtained using
the two different adaptive epsilon methods. However, when considering the average
rewards during the last 1000 iterations of the online learning phase, an interesting
pattern emerges. Initially, the average reward increases as epsilon increases. How-
ever, there comes a point where further increases in epsilon lead to a decrease in
the average reward. This indicates that full exploitation (ϵ = 1) does not always
result in the highest reward. Instead, starting with an epsilon value less than 1
allows for exploration, and gradually increasing epsilon allows the algorithm to con-
verge towards the optimal price, leading to higher rewards. The highest average
reward obtained during the last 1000 iterations is 38.117, achieved with an initial
epsilon value of 0.75 (ϵ0 = 0.75). This corresponds to 99.07% of the expected reward
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(38.475). These results demonstrate the success of the algorithm in estimating prices
with high rewards and increasing the revenue for the seller.

Table 4.18 Average rewards obtained by Reward Algorithm 1 in the presence of
probabilistic valuations, non-overlapping intervals, and known distribution

Continous Epsilon Periodic Epslion

Average Reward Average Reward during last 1000 iteration Average Reward Average Reward during last 1000 iteration

ϵ0 = 0.00 36.964 37.895 36.949 38.046
ϵ0 = 0.25 37.246 37.868 37.231 38.072
ϵ0 = 0.50 37.487 38.065 37.458 38.080
ϵ0 = 0.75 37.730 38.117 37.693 37.965
ϵ0 = 1.00 37.861 37.738 37.975 37.988

4.3 Probabilistic Valuations, overlapping intervals

In the previous section, we examined the scenario where customers’ valuations ex-
hibited distinct intervals without any overlap. In such cases, accurate estimation of
bounds, identification of the optimal interval, and offering prices within that inter-
val based on their expected rewards proved successful. Consequently, we achieved
high average rewards that closely aligned with the expected reward. However, in
this section, our objective is to investigate probabilistic valuations characterized by
intervals that are no longer distinct, but rather exhibit points of overlap. This situ-
ation arises for instance when customers’ valuations, such as [20,45,55,80], deviate
within an interval of 15%. Consequently, the second interval ([38.25,51.75]) and the
third interval ([46.75,63.25]) overlap with each other. Within this context, our focus
is to assess the performance of the developed methods for estimating bounds and
to determine an effective approach for offering prices that maximizes the achieved
reward.

To assess the effectiveness of Method 3 (Hybrid Method) in estimating the lower
and upper bounds of probabilistic valuations vi = [20,45,55,80] with a deviation of
15% (p% = 15%), we conducted a simulation study with various settings. The study
involved 100 replications, and the obtained results are presented in Table 4.19.
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Table 4.19 The estimated lower and upper bound of probabilistic valuations where
the intervals overlap

δi = [0.1,0.2,0.3,0.4]
l1 u1 l2 u2 l3 u3 l4 u4

l̂3 − û217 23 38.25 51.75 46.75 63.25 68 92
l̂1 û1 l̂2 û2 l̂3 û3 l̂4 û4

T = 2500

k = 62
differencefactor = 1.05 17.207 22.942 40.290 48.248 50.272 60.948 70.996 91.642 1.885
differencefactor = 1.10 16.953 22.584 39.535 48.595 49.520 61.749 69.927 92.008 0.119
differencefactor = 1.15 16.822 22.878 39.082 48.801 49.554 61.936 69.333 92.018 0.132

k = 83
differencefactor = 1.05 16.378 23.746 39.036 48.688 49.413 61.955 68.681 92.677 0.191
differencefactor = 1.10 16.517 23.538 38.609 48.821 49.176 62.598 69.275 92.479 0.147
differencefactor = 1.15 16.364 23.213 38.430 49.010 49.255 63.146 68.263 92.550 0.117

k = 125
differencefactor = 1.05 15.085 23.980 37.895 48.879 49.089 64.514 67.379 93.782 0.183
differencefactor = 1.10 15.249 24.093 37.133 48.886 49.062 63.543 67.363 93.972 0.204
differencefactor = 1.15 14.990 24.789 37.441 48.786 48.955 64.122 67.807 93.925 0.182

T = 5000

k = 125
differencefactor = 1.05 16.595 22.624 39.060 48.713 49.128 62.586 69.155 92.444 0.183
differencefactor = 1.10 16.613 22.930 38.756 48.865 49.148 62.304 68.497 92.420 0.163
differencefactor = 1.15 16.591 23.154 38.612 49.073 49.334 62.719 68.506 92.444 0.163

k = 166
differencefactor = 1.05 16.056 23.312 38.392 48.903 49.174 63.088 67.904 93.003 0.206
differencefactor = 1.10 16.035 23.724 38.137 48.746 49.017 63.409 67.817 92.826 0.188
differencefactor = 1.15 16.000 23.669 38.212 48.796 49.053 63.109 67.848 93.028 0.215

k = 250
differencefactor = 1.05 14.944 24.359 37.483 48.905 49.197 63.786 67.059 94.080 0.263
differencefactor = 1.10 14.878 24.529 36.787 48.827 49.093 64.518 67.103 94.219 0.250
differencefactor = 1.15 14.914 25.103 36.774 48.855 49.079 65.051 66.591 94.151 0.246

The reported values in Table 4.19 represent the medians of the estimated bounds
obtained under different settings. In this particular case, where the second and third
intervals overlap, we also provide the difference between the lower bound of the third
interval and the upper bound of the second interval l̂3 − û2.

Upon examination, it becomes apparent that Method 3 (hybrid method) demon-
strates success in estimating the majority of lower and upper bounds, with the
exception of u2 and l3. For these specific bounds, the estimated values closely ap-
proximate each other, as evidenced by the small difference (l̂3 − û2). In fact, these
estimates correspond to the midpoints between the true values of u2 and l3. The
presence of such minimal differences indicates the detection of overlapping inter-
vals. Leveraging this observation, we propose a novel algorithm for price offering,
which takes into account the expected rewards while considering the presence of
overlapping intervals.

4.3.1 Proposed Reward Algorithm 2

In order to address the challenges posed by probabilistic valuations and overlapping
intervals, we introduce a novel reward-based algorithm. This algorithm builds upon
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Reward Algorithm 1 by incorporating modifications that involve identifying and
merging overlapping intervals. The proposed algorithm is outlined as follows:

• Offline phase

– Provided with the preference dataset {(xt,yt)} of size T , derive the re-
ward dataset {(xt,yt, rt)} and convert it to obtain the converted dataset
{(xt,yt, r̂t)}.

– Find the optimal interval [l̂optimal, ûoptimal] by estimating the lower and
upper bounds of valuations via Offline Bounds Estimation and the hybrid
method

– Check for overlapping intervals. If there are overlapping intervals, merge
them (merged interval)

– Find the interval for offering prices during online learning (price interval):

∗ If there is a merged interval:

· If the optimal interval is within the merged interval:
price interval = merged interval

· Otherwise:
price interval = optimal interval

∗ If there is no merged interval:

· price interval = optimal interval

– Set the initial value for ϵ : ϵ = ϵ0

• Online phase

– For niter iterations:

∗ Offer price x to the incoming customer

· With probability ϵ offer the price in the price interval with the
highest expected reward r̂

· With probability 1 − ϵ offer a price uniformly distributed in the
price interval

∗ Getting the customers’ feedback y

∗ Cacluate the reward r for the new data point (x,y)
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∗ Add the new data point (x,y,r) to the existing reward dataset

∗ Re-calculate the r̂ values of the data points in the converted dataset

∗ Increase the ϵ value

The first two steps of the offline phase closely resemble those of Reward Algorithm
1, encompassing the derivation of the reward dataset, converted dataset, and iden-
tification of the optimal interval.

Subsequently, we try to detect overlapping intervals. As previously discussed, the
presence of a small difference between the upper and lower bounds of consecutive
intervals serves as an indicator of overlap. Leveraging this concept, we introduce the
intervalthreshold hyperparameter to establish a criterion for determining the mag-
nitude of a "small" difference. Following the estimation of bounds, if the difference
between the upper bound of one interval and the lower bound of the subsequent in-
terval falls below the defined threshold, we infer the presence of overlap and merge
these intervals. Through this iterative process for all intervals, we obtain a unified
interval known as the merged interval.

Next, we embark on identifying the interval suitable for price offerings to customers
during the online learning phase. Diverging from Reward Algorithm 1, where the
offering interval consistently aligns with the optimal interval, Reward Algorithm 2
introduces variations. Specifically, if a merged interval exists, we verify whether the
estimated optimal interval falls within this merged interval. If it does, we utilize
the merged interval for price offerings during online learning. In the case that the
estimated optimal interval lies outside the merged interval or if no merged interval is
present, we revert to using the estimated optimal interval for price offerings during
online learning.

The subsequent steps of Reward Algorithm 2 closely resemble those of Algorithm 1,
involving price offerings within the determined interval, a reward-based and epsilon-
greedy approach for price selection, customer feedback integration, dataset updates,
recalculation of expected rewards, and iterative execution for a specified number of
iterations (niter).

4.3.2 Simulation

In order to evaluate the efficacy of the proposed Reward Algorithm 2 in achiev-
ing higher rewards when dealing with overlapping intervals, a simulation study was
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conducted. Similar to the previous simulation study, the value of parameter k in
this algorithm is directly proportional to the size of the dataset and is incrementally
adjusted during the online learning phase. In the offline phase, where we have access
to the preference dataset, two initial values for k were considered: 62 and 125, which
correspond to 2.5% and 5% of the dataset size during this phase, respectively. Dur-
ing the offline phase, the preference dataset undergoes two conversions to determine
the estimated lower and upper bounds. The IQR method is employed to detect and
remove outliers from the dataset during this estimation process. However, when
converting the reward dataset to calculate the expected rewards, the conversion is
performed only once and outliers are not taken into consideration. The values of
the differencefactor and scale hyperparameters are determined in proportion to the
percentage deviation of valuations. To increment the ϵ value during the online learn-
ing phase, the first method is employed, continuously increasing ϵ. The complete
configuration of this simulation study is presented in Table 4.20, which provides a
comprehensive overview of the specific settings and hyperparameters employed for
the evaluation. Each setting underwent 100 replications of the simulation.

Table 4.20 Setting of the simulation study for evaluating the Reward Algorithm 2
in the presence of probabilistic valuations, overlapping intervals, and known distri-
bution

Number of segments n 4
Number of data points T 2500

Number of iterations in online learning phase niter 5000
Number of nearest neighbors k [62,125]
Number of data conversion nconversion [1, 2]

Non-uniform valuations vi [20, 45, 55, 80]
Non-uniform distribution δi [0.1, 0.2, 0.3, 0.4]

Initial epsilon ϵ0 [0.00, 0.25, 0.50, 0.75]
Difference factor for comparing differencefactor 1.15

the consecutive differences
Threshold for measuring the closeness pricethreshold 0.01
of prices to the purchase probabilities

Scale factor for widening the scale 0.15
optimal interval

Valuation percentage deviation p% 15%
Threshold for detecting intervalthreshold 2

overlapping intervals

The results of the simulation study are presented in Table 4.21, which includes the
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median of average rewards collected during the online learning phase, the median
of average rewards collected during the last 1000 iterations of the online learning
phase, and the percentage of instances where the right interval (i.e., the interval
containing the optimal price with the highest reward) was identified, for various
initial epsilon (ϵ0) values. Consistent with the previous simulation study, 80% of
the online learning phase (4000 iterations) was allocated for increasing the value
of epsilon (ϵ) to explore the optimal interval. In the remaining 20% of the online
learning phase (1000 iterations), ϵ was fixed at 1 to exploit prices yielding the highest
rewards. The highest average reward attained during the final 1000 iterations was
36.119, achieved when employing an initial epsilon value of 0.50 (ϵ0 = 0.50). This
corresponds to 99.50% of the expected reward (36.30). These outcomes demonstrate
that the integration of intervals and the offering of prices within the merged interval
lead to the attainment of high rewards, closely approximating the expected rewards.
Moreover, the algorithm is successful in identifying the right interval for offering
prices. Furthermore, these results affirm the effectiveness of the proposed Algorithm
2 in increasing revenue for the seller.

Table 4.21 Average rewards obtained by Reward Algorithm 2 in the presence of
probabilistic valuations, overlapping intervals, and known distribution

initial k = 62 initial k = 125

Average Reward Average Reward during last 1000 iteration right interval percentage Average Reward Average Reward during last 1000 iteration right interval percentage

ϵ0 = 0.00 33.745 35.993 1.000 29.596 35.953 1.000
ϵ0 = 0.25 34.352 35.997 1.000 31.146 36.005 1.000
ϵ0 = 0.50 34.739 36.119 1.000 32.698 35.818 1.000
ϵ0 = 0.75 35.253 35.910 1.000 34.442 35.819 1.000

4.4 Realized Revenue when there is no prior knowledge regarding the

market structure

In this chapter, we explored the rewards that can be achieved when we have knowl-
edge regarding the number of segments (n) and their distribution (δi) in the market.
Now, our focus is on assessing the rewards attainable when dealing with the lowest
level of foreknowledge regarding the market structure, where all parameters (n,vi, δi)
are unknown.

With the algorithms developed in the previous chapter, we can estimate the number
of segments (n) and their distribution (δi), allowing us to subsequently estimate the
valuations (vi). By estimating all the relevant parameters in the problem, we can
utilize Equation 2.1 to find the estimated optimal price that maximizes revenue.

101



As observed in the results of Section 3.4, number of segments cannot be estimated
accurately all the time. Yet, we claim that even with a wrong estimate of the n,
the optimal price we estimate based on the estimated values of the parameters of
the problem achieves rewards close to the expected reward. Our main focus in this
section is to investigate this.

Once we have the estimated optimal price, we can compare the revenue achieved by
this estimated optimal price with the revenue achieved by the true optimal price.
This comparison allows us to gauge the extent to which we can approach the true
revenue using the developed algorithms in the previous chapter, in scenarios where
all parameters of the problem are initially unknown. This analysis provides insights
into the performance and effectiveness of the developed algorithms in estimating the
optimal price and achieving revenue close to the true optimal revenue, even when
confronted with limited foreknowledge about the market structure. It demonstrates
the potential for these algorithms to guide decision-making and revenue optimization
when facing uncertain market conditions.

4.4.1 Simulation

In order to observe the revenues achieved by the estimated optimal prices obtained
through the developed algorithms, several simulation studies were conducted. The
first simulation study was conducted in the presence of deterministic valuations vi =
[8,46,56,81] using one feature vector in the converted dataset for clustering. This
study involved considering different distributions and dataset sizes. Additionally,
the hyperparameter α introduced in Section 4.1.3 was applied in this simulation to
investigate its effect on the achieved reward. The value considered for alpha was
α = 100

2m . Each setting of the simulation was replicated 200 times to ensure reliable
results and account for variability. The objective of these simulation studies was to
assess the performance and effectiveness of the developed algorithms in estimating
optimal prices and achieving revenues. By analyzing the obtained results, insights
can be gained into the ability of the algorithms to approach the true revenue in
various scenarios and the impact of different factors, such as distributions, dataset
sizes, and the hyperparameter α, on the achieved reward.

In the reported results, the median of six values is presented, including:

n̂: This represents the estimated number of segments in the market. It is obtained
through the Number of Segments Estimation Algorithm, which estimates the un-
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derlying segmentation based on the available data.

x̂: This denotes the estimated optimal price based on the estimated number of
segments (n̂) and their distribution (δ̂i). The calculation of x̂ can be performed as
follows:

(4.13) x̂ = arg max
i=1,. . . ,n̂

{(1−
i−1∑
j=1

δ̂j)× v̂i}

Realized revenue by x̂: This represents the revenue achieved if x̂ is offered to cus-
tomers in the real market structure. To calculate this, first we find the x̂ such
that vi < x̂ ≤ vi+1. This ensures that x̂ falls within the price range between two
consecutive valuations (vi and vi+1). then we calculate the purchase probability of
customers when x̂ is offered as 1−∑i

j=1 δj . Finally, the realized revenue is calculated
as:

(4.14) revenuerealized = (1−
i∑

j=1
δj)∗ x̂

The true optimal price (xoptimal) and true revenue refer to the optimal price and
revenue achieved in the real market structure. These values are determined based
on the actual market structure.

The deviation percentage between the realized revenue and the true revenue is a
metric that indicates how close the realized revenue is to the true revenue. It is
calculated as (revenuerealized−revenuetrue)

revenuetrue
∗ 100. This metric provides a quantitative

measure of the relative difference between the revenue achieved in the simulation
study (realized revenue) and the revenue that would be achieved in the real market
(true revenue). A smaller deviation percentage indicates a closer approximation of
the true revenue by the realized revenue. The deviation percentage allows for an
assessment of the accuracy and effectiveness of the developed algorithms in estimat-
ing and approaching the true revenue in the absence of complete knowledge about
the market structure and parameters.
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Table 4.22 Realized revenue by applying the Number of Segments Estima-
tion Algorithm in the presence of deterministic valuations and distribution δi =
[0.1,0.2,0.3,0.4]

δi = [0.1,0.2,0.3,0.4]

n̂

Estimated Optimal Realized Revenue Optimal True Revenue Deviation percentage
n̂

Estimated Optimal Realized Revenue Optimal True Revenue Deviation percentage
Price by Price by between True Revenue & Price by Price by between True Revenue &
(x̂) x̂ xoptimal xoptimal Realized Revenue (x̂) x̂ xoptimal xoptimal Realized Revenue

m = 20

m′ = 50
α = 0 7.00 52.50 33.25 46.00 41.40 -19.69

m = 50

m′ = 20
α = 0 7.00 55.00 34.30 46.00 41.40 -17.15

α = 2.5 7.00 50.00 35.00 46.00 41.40 -15.46 α = 1 7.00 52.00 34.30 46.00 41.40 -17.15

m′ = 100
α = 0 6.00 52.50 33.25 46.00 41.40 -19.69

m′ = 40
α = 0 5.00 45.00 22.40 46.00 41.40 -45.89

α = 2.5 6.00 47.50 38.50 46.00 41.40 -7.00 α = 1 7.00 51.00 34.30 46.00 41.40 -17.15

m′ = 150
α = 0 5.00 50.00 33.25 46.00 41.40 -19.69

m′ = 60
α = 0 7.00 51.00 34.30 46.00 41.40 -17.15

α = 2.5 5.00 45.00 40.50 46.00 41.40 -2.17 α = 1 7.00 50.50 34.30 46.00 41.40 -17.15

m′ = 200
α = 0 5.00 47.50 33.25 46.00 41.40 -19.69

m′ = 80
α = 0 7.00 50.00 32.90 46.00 41.40 -20.53

α = 2.5 5.00 45.00 40.50 46.00 41.40 -2.17 α = 1 7.00 48.00 35.70 46.00 41.40 -13.77

m′ = 250
α = 0 5.00 47.50 33.25 46.00 41.40 -19.69

m′ = 100
α = 0 6.00 49.00 32.90 46.00 41.40 -20.53

α = 2.5 5.00 45.00 40.50 46.00 41.40 -2.17 α = 1 6.00 47.00 37.45 46.00 41.40 -9.54

m′ = 500
α = 0 4.00 47.50 33.25 46.00 41.40 -19.69

m′ = 200
α = 0 5.00 47.00 32.90 46.00 41.40 -20.53

α = 2.5 4.00 45.00 40.50 46.00 41.40 -2.17 α = 1 5.00 46.00 41.40 46.00 41.40 0.00

m′ = 1000
α = 0 4.00 47.50 33.25 46.00 41.40 -19.69

m′ = 400
α = 0 4.00 47.00 32.90 46.00 41.40 -20.53

α = 2.5 4.00 45.00 40.50 46.00 41.40 -2.17 α = 1 4.00 46.00 41.40 46.00 41.40 0.00

Table 4.22 presents the simulation results for distribution δi = [0.1,0.2,0.3,0.4], re-
vealing several important observations. Firstly, when the α hyperparameter is not
applied, a significant difference is observed between the realized revenue and the
true revenue. In some cases, this difference even increases with larger dataset sizes.
This disparity can be attributed to the overshooting of the optimal price, which
leads to the loss of a portion of customers and subsequently decreases the overall
reward.

However, when the α hyperparameter is applied, the deviation percentage between
the realized revenue and the true revenue is equal to or less than the case where α is
not applied. This demonstrates the effectiveness of applying the alpha hyperparam-
eter in reducing the disparity between the realized and true revenue. Additionally, as
the size of the dataset increases, the deviation percentage decreases and converges to
0. This highlights the positive impact of dataset size on the accuracy of the realized
revenue.

Furthermore, it is worth noting that in some cases, even when the estimated number
of segments is not the true value, the deviation percentage remains very small. This
suggests that, despite an incorrect estimation of the number of segments, the price
offered is still close to the optimal price. Consequently, the developed algorithms
can be employed for price offering purposes.

Table 4.23 Realized revenue by applying the Number of Segments Estima-
tion Algorithm in the presence of deterministic valuations and distribution δi =
[0.4,0.3,0.2,0.1]

δi = [0.4,0.3,0.2,0.1]

n̂
Estimated Optimal Realized Revenue Optimal True Revenue Deviation percentage

n̂
Estimated Optimal Realized Revenue Optimal True Revenue Deviation percentage

Price by Price by between True Revenue & Price by Price by between True Revenue &
(x̂) x̂ xoptimal xoptimal Realized Revenue (x̂) x̂ xoptimal xoptimal Realized Revenue

m = 20

m′ = 50 α = 0 7.00 45.00 15.75 46.00 27.60 -42.93

m = 50

m′ = 20 α = 0 7.00 43.50 16.20 46.00 27.60 -41.30
α = 2.5 7.00 42.50 22.50 46.00 27.60 -18.48 α = 1 7.00 40.50 16.20 46.00 27.60 -41.30

m′ = 100 α = 0 6.00 45.00 15.00 46.00 27.60 -45.65
m′ = 40 α = 0 7.00 46.00 16.20 46.00 27.60 -41.30

α = 2.5 6.00 45.00 25.50 46.00 27.60 -7.61 α = 1 7.00 44.50 22.50 46.00 27.60 -18.48

m′ = 150 α = 0 5.00 47.50 14.25 46.00 27.60 -48.37
m′ = 60 α = 0 7.00 47.00 15.90 46.00 27.60 -42.39

α = 2.5 5.00 45.00 25.50 46.00 27.60 -7.61 α = 1 7.00 45.00 25.80 46.00 27.60 -6.52

m′ = 200 α = 0 5.00 47.50 14.25 46.00 27.60 -48.37
m′ = 80 α = 0 7.00 46.00 20.40 46.00 27.60 -26.09

α = 2.5 5.00 45.00 27.00 46.00 27.60 -2.17 α = 1 7.00 45.50 26.40 46.00 27.60 -4.35

m′ = 250 α = 0 5.00 47.50 14.25 46.00 27.60 -48.37
m′ = 100 α = 0 7.00 46.00 21.60 46.00 27.60 -21.74

α = 2.5 5.00 45.00 27.00 46.00 27.60 -2.17 α = 1 7.00 45.00 25.80 46.00 27.60 -6.52

m′ = 500 α = 0 4.00 47.50 14.25 46.00 27.60 -48.37
m′ = 200 α = 0 5.00 47.00 14.10 46.00 27.60 -48.91

α = 2.5 4.00 45.00 27.00 46.00 27.60 -2.17 α = 1 5.00 46.00 27.00 46.00 27.60 -2.17

m′ = 1000 α = 0 4.00 47.50 14.25 46.00 27.60 -48.37
m′ = 400 α = 0 4.00 47.00 14.10 46.00 27.60 -48.91

α = 2.5 4.00 45.00 27.00 46.00 27.60 -2.17 α = 1 4.00 46.00 27.60 46.00 27.60 0.00
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Table 4.23 displays the simulation results for distribution δi = [0.4,0.3,0.2,0.1]. Sim-
ilar to the previous results, the impact of the α hyperparameter is evident in reducing
the deviation percentage between the realized revenue and the true revenue.

As the dataset size increases, the deviation percentage decreases and approaches
0 when α is applied. This signifies the effectiveness of the α hyperparameter in
aligning the realized revenue closer to the true revenue.

Furthermore, it is notable that the difference in deviation percentage between the
cases where α is applied and not applied can be significant for certain dataset sizes.
This discrepancy arises due to the overshooting of the optimal price and the char-
acteristics of the distribution itself. In such cases, the application of the α hyper-
parameter plays a crucial role in reducing the deviation and improving the realized
revenue.

Table 4.24 Realized revenue by applying the Number of Segments Estimation Al-
gorithm in the presence of deterministic valuations and random distribution with
minimum probability R = 0.1

Random distribution with R = 0.1

n̂

Estimated Optimal Realized Revenue Optimal True Revenue Deviation percentage
n̂

Estimated Optimal Realized Revenue Optimal True Revenue Deviation percentage
Price by Price by between True Revenue & Price by Price by between True Revenue &
(x̂) x̂ xoptimal xoptimal Realized Revenue (x̂) x̂ xoptimal xoptimal Realized Revenue

m = 20

m′ = 50
α = 0 7.00 47.50 15.84 46.00 27.60 -38.15

m = 50

m′ = 20
α = 0 7.00 46.00 15.45 46.00 26.91 -36.18

α = 2.5 7.00 45.00 21.73 46.00 29.67 -17.96 α = 1 7.00 46.00 16.08 46.00 27.60 -39.04

m′ = 100
α = 0 6.00 47.50 15.45 46.00 26.91 -37.43

m′ = 40
α = 0 7.00 47.00 16.96 46.00 27.37 -30.89

α = 2.5 6.00 45.00 22.08 46.00 27.14 -13.04 α = 1 7.00 48.00 20.52 46.00 30.07 -28.26

m′ = 150
α = 0 5.00 47.50 19.88 46.00 31.05 -29.52

m′ = 60
α = 0 7.00 48.00 19.10 46.00 28.06 -23.93

α = 2.5 5.00 45.00 25.20 46.00 28.98 -7.61 α = 1 7.00 47.00 19.35 46.00 27.14 -24.97

m′ = 200
α = 0 5.00 47.50 16.15 46.00 28.29 -38.28

m′ = 80
α = 0 7.00 47.50 18.70 46.00 28.52 -29.48

α = 2.5 5.00 45.00 24.30 46.00 28.06 -3.50 α = 1 7.00 48.00 19.37 46.00 27.01 -19.03

m′ = 250
α = 0 5.00 47.50 15.10 46.00 28.06 -39.09

m′ = 100
α = 0 7.00 47.00 19.12 46.00 27.37 -25.79

α = 2.5 5.00 45.00 23.50 46.00 26.45 -2.17 α = 1 7.00 46.00 21.73 46.00 28.06 -13.31

m′ = 500
α = 0 4.00 47.50 14.25 46.00 26.22 -39.58

m′ = 200
α = 0 5.00 47.00 16.94 46.00 26.68 -30.79

α = 2.5 4.00 45.00 26.10 46.00 26.68 -2.17 α = 1 5.00 46.00 23.84 46.00 28.29 -4.35

m′ = 1000
α = 0 4.00 47.50 14.25 46.00 28.98 -40.13

m′ = 400
α = 0 4.00 47.00 13.82 46.00 26.22 -40.72

α = 2.5 4.00 45.00 26.78 46.00 27.37 -2.17 α = 1 4.00 46.00 27.06 46.00 28.52 0.00

Table 4.24 presents the simulation results for a random distribution with a minimum
probability of R = 0.1. The results align with the previous findings, reinforcing
the observations regarding the impact of deploying the α hyperparameter and the
dataset size on the deviation percentage and the convergence of the realized revenue
to the true revenue.

As observed in the previous simulations, when α is applied and the dataset size
increases, the deviation percentages become smaller, indicating a closer approxima-
tion of the realized revenue to the true revenue. This highlights the effectiveness of
the α hyperparameter in mitigating deviations and improving the accuracy of the
revenue estimation.

By considering these findings, it is evident that the developed algorithms, when
combined with the α hyperparameter and larger datasets, can yield more accurate
and reliable estimates of the revenue in scenarios where a random distribution with
a minimum probability is present. These insights emphasize the importance of these
factors in achieving better performance and more precise revenue predictions.
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In the second simulation study, probabilistic valuations with 5% deviations were
considered, and the focus was on assessing the realized revenues with minimal fore-
knowledge regarding the market structure. The objective was to determine the
impact of deploying the α hyperparameter on improving these revenues. The sim-
ulation results for different distributions are presented in Tables 4.25, 4.26, and
4.27.

These tables provide insights into the realized revenues achieved in the presence of
probabilistic valuations and with the least degrees of knowledge about the market
structure. By analyzing the results, it can be observed whether deploying the α

hyperparameter leads to improvements in the realized revenues.

The findings from these simulation studies enable a comprehensive understanding
of the performance of the developed algorithms in scenarios with probabilistic valu-
ations. They shed light on the effectiveness of the algorithms and the significance of
the α hyperparameter in enhancing the achieved revenues when dealing with limited
foreknowledge and probabilistic valuations.

Table 4.25 Realized revenue by applying the Number of Segments Estima-
tion Algorithm in the presence of probabilistic valuations and distribution δi =
[0.1,0.2,0.3,0.4]

δi = [0.1,0.2,0.3,0.4]

n̂

Estimated Optimal Realized Revenue Optimal True Revenue Deviation percentage
n̂

Estimated Optimal Realized Revenue Optimal True Revenue Deviation percentage
Price by Price by between True Revenue & Price by Price by between True Revenue &
(x̂) x̂ xoptimal xoptimal Realized Revenue (x̂) x̂ xoptimal xoptimal Realized Revenue

m = 20

m′ = 50
α = 0 7.00 50.00 34.90 43.70 39.33 -11.26

m = 50

m′ = 20
α = 0 7.00 53.00 34.30 43.70 39.33 -12.79

α = 2.5 7.00 47.50 35.00 43.70 39.33 -11.01 α = 1 7.00 52.00 34.30 43.70 39.33 -12.79

m′ = 100
α = 0 7.00 47.50 34.90 43.70 39.33 -11.26

m′ = 40
α = 0 7.00 50.00 35.56 43.70 39.33 -9.59

α = 2.5 7.00 45.00 37.96 43.70 39.33 -3.49 α = 1 7.00 49.00 35.49 43.70 39.33 -9.77

m′ = 150
α = 0 7.00 47.50 34.90 43.70 39.33 -11.26

m′ = 60
α = 0 7.00 49.00 35.56 43.70 39.33 -9.59

α = 2.5 7.00 45.00 37.96 43.70 39.33 -3.49 α = 1 7.00 48.00 35.70 43.70 39.33 -9.23

m′ = 200
α = 0 7.00 47.50 34.90 43.70 39.33 -11.26

m′ = 80
α = 0 7.00 47.00 35.56 43.70 39.33 -9.59

α = 2.5 7.00 45.00 37.96 43.70 39.33 -3.49 α = 1 7.00 46.00 36.80 43.70 39.33 -6.43

m′ = 250
α = 0 7.00 47.50 34.90 43.70 39.33 -11.26

m′ = 100
α = 0 7.00 47.00 35.56 43.70 39.33 -9.59

α = 2.5 7.00 45.00 37.96 43.70 39.33 -3.49 α = 1 7.00 46.00 36.80 43.70 39.33 -6.43

m′ = 500
α = 0 7.00 47.50 34.90 43.70 39.33 -11.26

m′ = 200
α = 0 7.00 45.00 37.96 43.70 39.33 -3.49

α = 2.5 7.00 45.00 37.96 43.70 39.33 -3.49 α = 1 7.00 44.00 39.03 43.70 39.33 -0.77

m′ = 1000
α = 0 7.00 47.50 34.90 43.70 39.33 -11.26

m′ = 400
α = 0 7.00 45.00 37.96 43.70 39.33 -3.49

α = 2.5 7.00 45.00 37.96 43.70 39.33 -3.49 α = 1 7.00 44.00 39.03 43.70 39.33 -0.77

Table 4.25 displays the simulation results for distribution δi = [0.1,0.2,0.3,0.4]. Un-
like the deterministic case, where the deviation percentage is generally smaller when
the α hyperparameter is deployed, in some cases of m and m′, the deviation per-
centage is greater when α is used in the presence of probabilistic valuations. This
discrepancy can be attributed to the nature of probabilistic valuations, where the
values can vary for customers within a segment. Consequently, simply deducting a
fixed value of α does not guarantee that the offered price falls below the optimal
price, leading to potential deviations in the realized revenue.

However, it is important to note that with a large dataset, the difference between
the realized revenue and the true revenue is not significant. This suggests that, even
though the deviation percentage may be higher when deploying the α hyperparam-
eter, the overall impact on revenue is not substantial.
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Considering these results, it is advisable for sellers to gather large datasets when-
ever possible. Larger datasets enable more accurate estimations and help minimize
the deviation between the realized revenue and the true revenue, especially in sce-
narios involving probabilistic valuations. These findings emphasize the importance
of dataset size in obtaining reliable revenue estimations when dealing with limited
foreknowledge and probabilistic valuations.

Table 4.26 Realized revenue by applying the Number of Segments Estima-
tion Algorithm in the presence of probabilistic valuations and distribution δi =
[0.4,0.3,0.2,0.1]

δi = [0.4,0.3,0.2,0.1]

n̂

Estimated Optimal Realized Revenue Optimal True Revenue Deviation percentage
n̂

Estimated Optimal Realized Revenue Optimal True Revenue Deviation percentage
Price by Price by between True Revenue & Price by Price by between True Revenue &
(x̂) x̂ xoptimal xoptimal Realized Revenue (x̂) x̂ xoptimal xoptimal Realized Revenue

m = 20

m′ = 50
α = 0 7.00 47.50 16.73 43.70 26.22 -36.20

m = 50

m′ = 20
α = 0 7.00 45.00 16.20 43.70 26.22 -38.22

α = 2.5 7.00 45.00 23.18 43.70 26.22 -11.58 α = 1 7.00 45.50 15.60 43.70 26.22 -40.50

m′ = 100
α = 0 6.00 47.50 16.73 43.70 26.22 -36.20

m′ = 40
α = 0 7.00 47.00 18.08 43.70 26.22 -31.03

α = 2.5 7.00 45.00 23.18 43.70 26.22 -11.58 α = 1 7.00 46.00 20.70 43.70 26.22 -21.05

m′ = 150
α = 0 6.00 47.50 16.73 43.70 26.22 -36.20

m′ = 60
α = 0 7.00 47.00 18.08 43.70 26.22 -31.03

α = 2.5 6.00 45.00 23.18 43.70 26.22 -11.58 α = 1 7.00 46.00 20.70 43.70 26.22 -21.05

m′ = 200
α = 0 6.00 47.50 16.73 43.70 26.22 -36.20

m′ = 80
α = 0 7.00 47.00 18.08 43.70 26.22 -31.03

α = 2.5 6.00 45.00 23.18 43.70 26.22 -11.58 α = 1 7.00 46.00 20.70 43.70 26.22 -21.05

m′ = 250
α = 0 6.00 47.50 16.73 43.70 26.22 -36.20

m′ = 100
α = 0 7.00 47.00 18.08 43.70 26.22 -31.03

α = 2.5 6.00 45.00 23.18 43.70 26.22 -11.58 α = 1 7.00 44.00 23.10 43.70 26.22 -11.90

m′ = 500
α = 0 6.00 42.50 25.50 43.70 26.22 -2.75

m′ = 200
α = 0 7.00 45.00 23.18 43.70 26.22 -11.58

α = 2.5 6.00 40.00 24.00 43.70 26.22 -8.47 α = 1 7.00 44.00 25.54 43.70 26.22 -2.60

m′ = 1000
α = 0 6.00 42.50 25.50 43.70 26.22 -2.75

m′ = 400
α = 0 7.00 45.00 23.18 43.70 26.22 -11.58

α = 2.5 6.00 40.00 24.00 43.70 26.22 -8.47 α = 1 7.00 44.00 25.54 43.70 26.22 -2.60

Table 4.27 Realized revenue by applying the Number of Segments Estimation Al-
gorithm in the presence of probabilistic valuations and random distribution with
minimum probability R = 0.1

Random distribution with R = 0.1

n̂

Estimated Optimal Realized Revenue Optimal True Revenue Deviation percentage
n̂

Estimated Optimal Realized Revenue Optimal True Revenue Deviation percentage
Price by Price by between True Revenue & Price by Price by between True Revenue &
(x̂) x̂ xoptimal xoptimal Realized Revenue (x̂) x̂ xoptimal xoptimal Realized Revenue

m = 20

m′ = 50
α = 0 7.00 47.50 18.76 43.70 27.09 -25.63

m = 50

m′ = 20
α = 0 7.00 48.50 16.06 43.70 25.35 -31.42

α = 2.5 7.00 45.00 21.59 43.70 25.78 -16.01 α = 1 7.00 48.00 18.20 43.70 26.66 -30.22

m′ = 100
α = 0 7.00 47.50 18.90 43.70 26.22 -19.91

m′ = 40
α = 0 7.00 49.00 18.46 43.70 26.00 -22.43

α = 2.5 6.00 45.00 23.45 43.70 26.66 -12.53 α = 1 7.00 46.00 21.46 43.70 27.09 -19.34

m′ = 150
α = 0 6.00 47.50 19.43 43.70 26.66 -19.58

m′ = 60
α = 0 7.00 47.00 21.30 43.70 27.09 -18.18

α = 2.5 6.00 45.00 24.43 43.70 27.09 -8.47 α = 1 7.00 48.00 19.80 43.70 25.13 -20.20

m′ = 200
α = 0 6.00 47.50 19.42 43.70 26.22 -17.38

m′ = 80
α = 0 7.00 47.00 20.40 43.70 26.00 -18.53

α = 2.5 6.00 45.00 23.30 43.70 25.35 -8.47 α = 1 7.00 46.00 20.70 43.70 26.22 -14.66

m′ = 250
α = 0 6.00 47.50 21.65 43.70 26.88 -13.78

m′ = 100
α = 0 7.00 47.00 22.18 43.70 26.66 -15.62

α = 2.5 6.00 45.00 23.26 43.70 26.44 -8.47 α = 1 7.00 46.00 23.67 43.70 26.22 -10.76

m′ = 500
α = 0 6.00 47.50 21.23 43.70 24.47 -12.50

m′ = 200
α = 0 7.00 46.00 23.23 43.70 26.22 -13.76

α = 2.5 6.00 45.00 25.20 43.70 27.53 -8.47 α = 1 7.00 46.00 22.85 43.70 25.35 -8.63

m′ = 1000
α = 0 6.00 47.50 24.14 43.70 27.31 -8.25

m′ = 400
α = 0 7.00 45.00 24.19 43.70 27.53 -12.47

α = 2.5 6.00 45.00 23.48 43.70 25.56 -8.47 α = 1 6.00 44.00 25.84 43.70 26.88 -3.38

The same observations can be made for the results in Tables 4.26, and 4.27. In
both cases, applying the α hyperparameter does not consistently result in improved
realized revenues. The impact of α can vary depending on the specific distribution
and dataset size.

However, it is evident that using large datasets consistently leads to higher realized
revenues that are closer to the true revenue. The availability of more data points
allows for more accurate estimations and reduces the deviation between the realized
revenue and the true revenue.

These findings highlight the significance of dataset size in obtaining reliable rev-
enue estimates when dealing with probabilistic valuations and limited foreknowl-
edge. While the impact of the α hyperparameter may vary, sellers are advised to
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focus on gathering large datasets to enhance the accuracy of revenue predictions
and approach the true revenue more closely.

In summary, the algorithm developed for estimating the number of segments and
their distribution demonstrates successful results in accurately estimating these pa-
rameters and providing prices that yield revenue close to the expected revenue. Even
in cases where the number of segments is not estimated accurately, the estimated
optimal price based on the estimated parameters of the problem yields rewards
pretty close to the expected reward. For the case of deterministic valuations, the
deployment of the hyperparameter α improves the realized revenue. Additionally,
utilizing large datasets leads to a convergence of the realized revenue towards the
true revenue. These findings emphasize the importance of considering α and gath-
ering extensive datasets to enhance revenue estimation accuracy in scenarios with
deterministic valuations. On the other hand, for the case of probabilistic valua-
tions, the impact of the α hyperparameter on the realized revenue is not consis-
tently positive. However, employing large datasets consistently brings the realized
revenue closer to the true revenue. This highlights the significance of utilizing ex-
tensive datasets to achieve more accurate revenue estimates in scenarios involving
probabilistic valuations. Overall, the combination of deploying α, especially in de-
terministic valuations, and utilizing large datasets is crucial for improving revenue
estimation accuracy and approaching the true revenue. These findings provide valu-
able insights for decision-makers in pricing strategies and underscore the importance
of data-driven approaches in revenue optimization.
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5. Conclusion

In chapters 3 and 4, several algorithms were developed to address the estimation of
unknown parameters and reward maximization in the pricing problem.

In the offline learning phase, the research began with a high level of prior knowledge
about the market structure, including known numbers of segments, their distribu-
tions, and their order. When dealing with deterministic valuations, the proposed
Offline Algorithm 1 successfully estimated customers’ valuations with low error rates,
especially when the preference dataset had a reasonable size and outliers were elim-
inated through double conversion. Additionally, smart learning, where the first and
last valuations were learned separately, resulted in better estimation. In the case
of probabilistic valuations, the proposed algorithm accurately estimated valuations,
but applying smart learning in cases of wide valuation intervals did not lead to ac-
curate estimates. For wide intervals, it was better to estimate valuations without
applying smart learning.

As the level of prior knowledge decreased, the research focused on the scenario where
the order of segment distributions was unknown. The proposed method for finding
the correct order by trying all possible orders and applying Offline Algorithm 1 was
effective in identifying the correct order with high probabilities.

The investigation then moved to the scenario where segment distributions were
unknown, and only the number of segments was known. The proposed Offline Al-
gorithm 2 successfully estimated customers’ valuations and segment distributions,
but only when these parameters followed a uniform distribution. In cases with non-
uniform valuations and distributions, the research proposed offering discrete prices
instead of continuous prices to estimate the unknown parameters. The Distribu-
tion Estimation Algorithm was introduced for estimating segment distributions and
subsequently customers’ valuations. The results showed successful estimations with
low error, and larger datasets resulted in lower estimation errors, suggesting the
collection of large datasets whenever possible.

Finally, the research addressed scenarios with the least prior knowledge about the
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market structure, where all parameters were unknown. The Number of Segments
Estimation Algorithm was proposed to estimate the number of segments, distribu-
tions, and customers’ valuations based on discrete prices. The proposed algorithm
generally succeeded in estimating these parameters. In cases where the algorithm
did not accurately capture the true number of segments, the estimated optimal
prices based on the estimated parameters still yielded rewards close to the expected
levels.

In the online learning phase with the objective of reward maximization, several
algorithms were developed to achieve this goal.

For deterministic valuations, Online Algorithm 1 was proposed to offer prices dur-
ing the online learning phase. It was observed that offering prices lower than the
estimated price to customers resulted in increased rewards during this phase. This
strategy of offering lower prices allowed for more customer purchases and higher
revenue generation.

For probabilistic valuations, two scenarios were investigated. In the first scenario,
involving non-overlapping intervals, offering prices lower than the estimated prices
did not increase the reward. Instead, offering prices within the estimated intervals
with the highest expected reward brought higher rewards. Methods were developed
to estimate the lower and upper bounds of these intervals, and a formula was derived
to offer prices within these estimated bounds, leading to achieving high rewards close
to the expected levels. This approach allowed for effective price setting, considering
the range of valuations and maximizing revenue potential.

In situations where probabilistic valuations had overlapping intervals, it was ob-
served that merging the overlapping intervals and offering prices within this merged
interval achieved higher rewards. Moreover, a new algorithm was developed, fo-
cusing on the expected reward of the prices rather than their expected purchase
probability. This approach proved successful in achieving high rewards by offering
prices within the merged intervals, effectively accounting for the overlapping nature
of the valuations.

Overall, the developed algorithms and strategies demonstrated their effectiveness
in maximizing rewards during the online learning phase, regardless of the type of
valuations present. These findings highlight the importance of adaptive pricing
strategies that consider the uncertainty in customer valuations and leverage real-
time feedback to optimize revenue. The proposed algorithms offer practical and
effective solutions for online pricing decisions in dynamic markets.
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