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ABSTRACT

A HYBRID FEATURE SUBSET SELECTION METHOD BASED ON GRASP
AND RELIEF

BUSE NUR KARATEPE

DATA SCIENCE M.S. THESIS, JUNE 2023

Thesis Supervisor: Prof. Kemal Kılıç

Keywords: Feature subset selection, Relief, GRASP, filters, wrappers

The abundance of complex, high-dimensional data in various fields has amplified the
necessity for effective feature selection strategies. This thesis proposes an innovative
hybrid Feature Subset Selection technique to identify and retain the most valuable
features, thereby enhancing model interpretability and combating the curse of di-
mensionality. Our method uniquely merges the computational efficiency of filter
techniques and the precision of wrapper methods, explicitly combining the meta-
heuristic algorithm Greedy Randomized Adaptive Search Procedure (GRASP) and
a reputable feature filtering algorithm Relief. The process initiates with a com-
prehensive exploration of feature combinations, subsequently applying various filter
techniques, amongst which Relief exhibited superior performance. Additionally, Re-
lief was integrated into the construction and improvement stages of GRASP.

Experiments are conducted by checking the average 30 runs of K-Nearest Neigh-
bors scores and time. The results underscore the potency of the hybrid approach,
significantly improving model performance and demonstrating the potential of inte-
grating filter and wrapper methods for efficient feature selection in high-dimensional
datasets. This contribution allows us to maximize the accuracy of the machine-
learning model while minimizing the time dedicated to feature selection.
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ÖZET

"GRASP VE RELIEF TEMELLI BIR HIBRIT ÖZELLIK ALT KÜMESI SEÇIMI"

BUSE NUR KARATEPE

VERI BILIMI YÜKSEK LİSANS TEZİ, HAZIRAN 2023

Tez Danışmanı: Kemal Kılıç

Anahtar Kelimeler: Özellik alt kümesi seçimi, Relief, GRASP, filtreleme, wrapper

Çeşitli alanlardaki karmaşık, yüksek boyutlu verilerin bolluğu, etkili özellik seçme
stratejilerine olan ihtiyacı artırmıştır. Bu tez, en değerli özellikleri belirleyip koru-
mak, böylece modelin yorumlanabilirliğini geliştirmek ve boyutluluk lanetiyle mü-
cadele etmek için yenilikçi bir hibrit Özellik Alt Kümesi Seçimi tekniği önermek-
tedir. Yöntemimiz, metasezgisel algoritma Açgözlü Rastgele Uyarlanabilir Arama
Prosedürü (GRASP) ile saygın bir özellik filtreleme algoritması Relief’i açıkça bir-
leştirerek, filtre tekniklerinin hesaplama verimliliğini ve sarma yöntemlerinin kesin-
liğini benzersiz bir şekilde birleştirir. Süreç, özellik kombinasyonlarının kapsamlı
bir şekilde araştırılmasıyla başlar ve ardından Relief’in üstün performans sergilediği
çeşitli filtre teknikleri uygulanır. Ek olarak Relief, GRASP’ın inşaat ve iyileştirme
aşamalarına entegre edildi.

Deneyler, K-En Yakın Komşular puanlarının ve süresinin ortalama 30 kez kontrol
edilmesiyle gerçekleştirilir. Sonuçlar, model performansını önemli ölçüde artıran
ve yüksek boyutlu veri kümelerinde verimli özellik seçimi için filtre ve sarmalayıcı
yöntemleri entegre etme potansiyelini ortaya koyan hibrit yaklaşımın gücünün altını
çiziyor. Bu katkı, özellik seçimine ayrılan süreyi en aza indirirken makine öğrenimi
modelinin doğruluğunu en üst düzeye çıkarmamıza olanak tanır.
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1. INTRODUCTION

1.1 Motivation and Objective

In today’s digital age, the accessibility of data mining has greatly improved thanks
to advancements in technology. As a result, we can now work with larger and more
complex datasets at a reduced cost. This trend is particularly evident in fields such as
bioinformatics and text mining, where expansive datasets with numerous dimensions
have become increasingly common. Given the vast amount of information contained
within these datasets, it has become essential to develop effective feature selection
techniques. Feature selection plays a critical role in identifying the most relevant
and informative features, enabling us to extract valuable insights from the data.
The exploration of feature selection techniques has been ongoing since the 1990s in
the fields of statistics and machine learning, and it remains a fundamental topic in
the realm of data mining.

Figure 1.1 Pipeline for data science projects. Source (Urbanowicz et al., 2018)

The primary motivation of this study is dual-pronged: reducing the time dedicated
to feature selection and enhancing the resultant score of the machine learning model.
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Numerous methods exist for feature selection, which will be elaborated in the suc-
ceeding chapters. The significance of feature selection lies in the fact that not all
features in a dataset contribute equally to the outcome. Indeed, the removal of
redundant features can yield advantages in cost and predictive performance.

1.1.1 Do we need all the features?

To explain the motivation behind our study, we conducted an experiment that en-
gaged all possible feature combinations. Given a dataset with n features, there can
be (2n)− 1 unique combination generated, excluding only the null subset. To see
whether we need all the feature combinations, we used a classification task and its
performance.

To illustrate, we refer to the Iris dataset, renowned in machine learning for its
simplicity and clear features. This dataset comprises four features: sepal length,
sepal width, petal length, and petal width, which are used to classify three species
of Iris flowers - Setosa, Versicolour, and Virginica (Iris, 2007). We utilized a cleaned
version of this dataset, which served as the basis for our experimental procedures
Table 1.1.

In the context of our experiment, [0] denotes sepal length, [1] corresponds to sepal
width, [2] represents petal length, and [3] indicates petal width. The aim of our
analysis was to predict the Iris flower species based on these features.

Table 1.1 Iris dataset (Iris, 2007)

sepal length sepal width petal length petal width target classification
-0.90 1.02 -1.34 -1.32 0 setosa
-1.14 -0.13 -1.34 -1.32 0 setosa
-1.39 0.33 -1.40 -1.32 0 setosa
1.40 0.33 0.54 0.26 1 versicolor
0.67 0.33 0.42 0.40 1 versicolor
1.28 0.10 0.65 0.40 1 versicolor
0.55 0.56 1.27 1.71 2 virginica
-0.05 -0.82 0.76 0.92 2 virginica
1.52 -0.13 1.22 1.19 2 virginica

Each combination was tested across four different machine learning models, namely:
Decision Tree (DT), K-Nearest Neighbors (KNN), Logistic Regression (LR), and
Naive Bayes (NB). A 10-fold cross-validation method was employed for each model
to ensure reliable performance estimation. The scores for each combination and

2



model are documented in Table 1.2. This approach enabled us to identify the relative
importance of each feature while simultaneously selecting the optimal feature subset
and machine learning model.

Feature Combination DT KNN LG NB
[0] 0.6933 0.6533 0.7533 0.7267
[1] 0.4800 0.5200 0.5667 0.5667
[2] 0.9333 0.9533 0.9533 0.9533
[3] 0.9533 0.9600 0.9600 0.9533
[0, 1] 0.6467 0.7600 0.8067 0.7933
[0, 2] 0.9400 0.9400 0.9600 0.9133
[0, 3] 0.9267 0.9600 0.9467 0.9533
[1, 2] 0.9200 0.9533 0.9533 0.9133
[1, 3] 0.9267 0.9533 0.9533 0.9400
[2, 3] 0.9467 0.9667 0.9600 0.9600
[0, 1, 2] 0.9467 0.9467 0.9533 0.8800
[0, 1, 3] 0.9467 0.9533 0.9600 0.9333
[0, 2, 3] 0.9533 0.9600 0.9667 0.9600
[1, 2, 3] 0.9600 0.9667 0.9733 0.9667
[0, 1, 2, 3] 0.9600 0.9667 0.9733 0.9533

Table 1.2 Classification results for all feature combinations

Table 1.2 details the performance of the four models (DT, KNN, LR, and NB) when
trained on all possible combinations of these four features. It’s worth noting that the
highest accuracy is achieved with the feature subset [1, 2, 3], i.e., sepal width, petal
length, and petal width. This implies that these three features are the most critical
for accurately predicting the Iris flower species. Furthermore, these results indicate
that employing fewer features can achieve the same or sometimes better predictive
performance. More features do not necessarily yield better results. Considering the
computational power required, achieving high performance with fewer features is
often a more desirable outcome. This experiment underscores the significance of
effective feature selection in machine learning.

1.1.2 Why Feature Selection, not Construction?

Feature weighting, feature construction, and feature selection are three distinct tech-
niques employed in the field of machine learning to enhance the effectiveness of
models by focusing on relevant features and improving their representation.

Feature weighting involves assigning different weights to individual features within a
3



dataset. It aims to emphasize the importance of certain features while downplaying
the impact of others. This technique can be based on statistical measures, domain
knowledge, or machine learning algorithms. By assigning appropriate weights to
features, the model can give more importance to the informative ones, potentially
improving its performance.

Feature construction, on the other hand, entails creating new features from existing
ones. It involves transforming and combining existing features to generate more
informative representations of the data. Techniques such as Principal Component
Analysis (PCA) or polynomial feature construction are employed to derive new
features that capture additional information and patterns. Feature construction
aims to enhance the model’s ability to understand complex relationships within the
data.

Feature selection involves identifying the most relevant subset of features from a
larger feature space. It aims to eliminate redundant or irrelevant features that
may hinder model performance. Feature selection can be performed using various
methods, including statistical tests, wrapper methods, and embedded methods. By
selecting a subset of features that have the most significant impact on the target
variable, feature selection reduces dimensionality, improves interpretability, and may
enhance model performance by mitigating the effects of overfitting.

In summary, feature weighting assigns weights to existing features to emphasize their
importance, feature construction creates new features by transforming and combin-
ing existing ones to provide more informative representations, and feature selection
focuses on identifying the most relevant subset of features from a larger feature space.
These techniques play vital roles in feature engineering, allowing machine learning
models to leverage the most informative and discriminative features, resulting in
improved performance and interpretability. In this thesis, our primary objective
is to minimize the number of features in data science problems. The presence of
irrelevant or redundant features can lead to the curse of dimensionality, negatively
impacting the model’s performance. As highlighted by (Blumer, Ehrenfeucht, Haus-
sler & others, 1987), Occam’s Razor principle guides us towards simpler models to
prevent overfitting and enhance generalization. Hence, our focus is on feature se-
lection as the chosen approach. We opt for feature selection over feature weighting
and feature construction for several reasons. Firstly, feature weighting alone does
not reduce the number of features; it only assigns different weights to them. Sec-
ondly, feature construction, although capable of creating new features, runs the risk
of diluting the original feature meanings by generating new representations. By
prioritizing feature selection, we can effectively strike a balance between preserving
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the meaningful information contained within the original features and reducing the
complexity of the model. This approach enables us to construct more efficient and
interpretable machine learning models that generalize well to unseen data.

1.1.3 Three Feature Subset Selection techniques

Fature subset selection techniques primarily fall into three categories: filter meth-
ods, wrapper methods, and embedded methods. Filter methods involve ranking
features based on specific criteria before selecting the top ones. These criteria might
include the correlation with the output variable, mutual information, or chi-square
statistics. Filter methods are simple and fast, as they evaluate each feature in-
dependently, thus offering scalability for high-dimensional datasets. However, this
independence assumption might lead to sub-optimal feature subsets since poten-
tial feature interactions still need to be considered. On the other hand, wrapper
methods adopt a search strategy for potential feature combinations and evaluate
their worth using a specific machine learning algorithm’s performance. Unlike filter
methods, these methods account for feature interactions and dependencies, provid-
ing better performance in many cases. Common strategies for wrapper methods
include forward selection, backward elimination, and recursive feature elimination.
Nevertheless, wrapper methods are computationally expensive and prone to over-
fitting, particularly with high-dimensional datasets due to their exhaustive search
nature. The third approach, embedded methods, seeks to combine the best of both
worlds. These methods perform feature selection in the process of model training
and are usually specific to certain learning algorithms. They are less computation-
ally expensive than wrapper methods while still capturing feature interactions as
part of their design.

1.2 Problem Definition and Summary of the Results

The problem at hand involves the reduction of feature dimensionality while main-
taining high accuracy in predictive modeling tasks. Feature selection is a vital step
in machine learning that helps in mitigating the curse of dimensionality, improving
model interpretability, and reducing training times.
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In this study, we have implemented a novel hybrid approach that combines the
strengths of the Greedy Randomized Adaptive Search Procedure (GRASP) and
Relief-based feature selection methodologies. Our aim is to address the problem of
minimizing features while retaining high prediction accuracy.

From our results, we find that this GRASP and Relief-based hybrid model offers
improved accuracy compared to models that do not employ any feature selection.
The reduced feature set not only streamlined our model but also contributed to a
relatively better performance.

However, it’s essential to highlight that, despite its improvements, our hybrid ap-
proach has not outperformed certain state-of-the-art models such as ITMO and
GA. This observation invites further exploration and fine-tuning of our approach to
extract its full potential.

1.3 Contributions

This paper proposes A Hybrid Feature Subset Selection (FSS) based on the Greedy
Randomized Adaptive Search Procedure (GRASP) metaheuristic and filter-method
approach Relief. The GRASP algorithm has been widely recognized for its ability
to address high-dimensional datasets rapidly. It is a randomized algorithm which
is introduced by integrating it with Relief, a renowned feature selection algorithm.
We aim to optimize feature selection and deliver better results, especially for high
dimensional datasets. Our objective is to leverage the computational efficiency of fil-
ter methods to quickly eliminate the most irrelevant features, subsequently utilizing
the precision of wrapper methods to optimize the feature subset. This integrated
approach aims to enhance the feature selection process, enabling the model to more
accurately capture the underlying function of the target concept.

Our study commenced with an exhaustive search of all feature combinations, evalu-
ating the accuracy results for each. Given the (2n̂)-1 potential feature combinations
(where n is the number of features), our goal was to identify the subset that yielded
the highest accuracy. Once this initial stage was complete, we shifted our focus
to various filtering techniques. To establish a comprehensive comparison basis for
the Relief filter, we experimented with widely-used FSS methods such as Variance
Threshold, Selecting K Best, and Principal Component Analysis (PCA).
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Upon selecting the filter, we proceeded to experimental trials. Each feature subset
was input into the model both with and without the application of the filter, al-
lowing us to compare results across these different conditions. This experiment was
conducted for four different models, namely Decision Tree (DT), K-Nearest Neigh-
bors (KNN), Logistic Regression (LR), and Naive Bayes (NB). To ensure robustness
in our findings, we ran each model 30 times and computed the average accuracy
result. The analysis of the accuracy scores revealed that using the Relief filter led to
improved performance, validating our hybrid FSS approach. This demonstrates the
potential of integrating filter and wrapper methods for effective feature selection in
high-dimensional datasets.

1.4 Structure of the Thesis

In Section 2, a thorough literature review is presented, encompassing the relevant
research on Feature Subset Selection, Relief, and GRASP. This literature review
serves as a foundation for the current study, offering a contextual framework and
identifying the research gaps that our work aims to address.

Section 3 transitions into the Methodology section, where we introduce our novel
model, titled "A Hybrid Feature Subset Selection Based on GRASP and Relief."
This section delves into the detailed explanation of the model’s components and
explains how it synergizes the GRASP and Relief methodologies. By integrating
these approaches, our model aims to bridge the identified research gaps and provide
an innovative solution. Each step of the algorithm design and implementation is
thoroughly explained to provide a clear understanding of the model’s functioning.

Moving forward to Section 4, we designed the empirical component of our research.
This section begins by introducing the data used in the study, providing insights
into its nature and characteristics. We then proceed to describe the experiments
conducted to finalize our algorithm, which involved exploring various filtering tech-
niques to optimize the performance of our model.

Lastly, in Section 5, we present our key findings and conduct a comprehensive com-
parison between our proposed model, "A Hybrid Feature Subset Selection Based
on GRASP and Relief" and other state-of-the-art FSS models. We highlight the
strengths and limitations of our model and discuss avenues for future work and
further research.
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2. LITERATURE REVIEW

This chapter delves into the extensive body of literature that underpins our study.
We start by exploring the concept of Feature Selection, its objectives, formulations,
and primary methodologies in Section 2.1. Next, we focus on the Relief method dis-
cussed in Section 2.2, emphasizing its importance as a multivariate filter method that
effectively deals with feature interactions.. Finally, Section 2.3 examines the Greedy
Randomized Adaptive Search Procedure (GRASP), a promising metaheuristic tech-
nique that can potentially alleviate the computational strain of feature selection
while ensuring reliable performance.

2.1 Prior Literature Review on Feature Subset Selection

2.1.1 Understanding Feature Subset Selection

Feature Subset Selection (FSS) is a vital practice in machine learning and data min-
ing, featuring prominently in the literature due to its potential to enhance model
performance, simplify model interpretation, and conserve computational resources
by discarding irrelevant features (Guyon, Weston, Barnhill & Vapnik, 2003). De-
spite its significance, FSS presents a challenging NP-hard problem, necessitating the
employment of heuristic and metaheuristic techniques to combat its computational
complexity (Kohavi & John, 1997).

In a mathematical context, suppose we have a dataset D consisting of n features
f1,f2, . . . ,fn. The aim of Feature Subset Selection (FSS) is to identify a subset S
from these n features. This subset is selected such that it maximizes the predictive
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performance of a model trained on S. More formally, if we denote a quality criterion
by Q, the FSS problem can be defined as:

S∗ = argmax Q(S), where S ⊆ {f1,f2, . . . ,fn}

The solution to this optimization problem typically falls into three categories: filter
methods, wrapper methods, and embedded methods.

1. Filter methods evaluate the relevance of features based on their inherent char-
acteristics. They use metrics such as mutual information, chi-square, or correla-
tion coefficient. While they are computationally efficient, these methods might not
capture the interdependencies between features. However, certain multivariate fil-
ter methods, like Relief, are exceptions. These methods consider multiple features
simultaneously, thereby accounting for their interdependence. Urbanowicz et al.
(2018) highlight the efficiency of Relief, particularly its manageable time complexity
and robust software capabilities Urbanowicz et al. (2018).

2. Wrapper methods assess the relevance of feature subsets based on the predic-
tive performance of a specific machine learning algorithm. They evaluate each subset
by training a model on it and using the model’s performance as an indicator of the
subset’s quality. Because they account for the bias of the algorithm and interactions
between features, wrapper methods tend to outperform filter methods. However,
this superior performance comes at a cost: higher computational intensity. Sequen-
tial Forward Selection (SFS) and Sequential Backward Selection (SBS) are widely
used examples of wrapper methods Kittler (1978). However, these methods can be
computationally demanding, particularly for high-dimensional datasets. To mitigate
this, we propose using a randomized algorithm: the Greedy Randomized Adaptive
Search Procedure (GRASP). As outlined by Feo and Resende (1995), GRASP is
a metaheuristic approach designed for efficient exploration of the search space. It
strikes a balance between exploration and exploitation, making it a promising can-
didate for high-dimensional feature selection Feo & Resende (1995).

3. Embedded methods integrate feature selection within the model training pro-
cess. They take advantage of the learning algorithm’s ability to evaluate feature
importance, thereby balancing performance and computational efficiency. Exam-
ples of embedded methods include decision trees and regularized regression models
Breiman (2001)."

9



2.1.2 Use of Metaheuristics in Feature Subset Selection

Metaheuristics, derived from the combination of "heuristic" and "meta," are general-
ized approaches that can be applied to various decision-making problems. (Gandomi
& Yang, 2013) discussed the general principles and benefits of using metaheuristics,
such as their ability to address complex optimization problems, navigate large solu-
tion spaces, and strike a balance between exploration and exploitation.

Metaheuristics serve as umbrella heuristics capable of solving a wide range of prob-
lems directly or with minor modifications. There are two strategies for finding
solutions: intensification, which focuses on promising areas based on past searches,
and diversification, which explores the entire space to avoid settling on sub-optimal
solutions too quickly. A well-designed metaheuristic strikes a balance between these
aspects to deliver good feasible solutions. Some notable examples of metaheuris-
tic methods used in the past include: Genetic Algorithm (GA) (Goldberg, 1989),
Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995), Ant Colony Opti-
mization (ACO) (Dorigo & Di Caro, 1999), Simulated Annealing (SA) (Kirkpatrick,
Gelatt Jr & Vecchi, 1983), Genetic Programming (GP) (Koza, 1992), and Tabu
Search (TS) (Glover, 1989).

In the context of feature selection, applying metaheuristics offers an efficient and
effective means of navigating the vast solution space. Although they may not guar-
antee to find the optimal solution due to the NP-hard nature of the feature selection
problem, metaheuristics excel at discovering near-optimal or high-performing feature
subsets. They leverage evolutionary computation, swarm intelligence, and simulated
annealing techniques to explore different feature combinations and evaluate their
performance. This enables the identification of feature subsets that maximize pre-
dictive accuracy, minimize complexity, and enhance the generalization capabilities
of machine learning models. Additionally, metaheuristic algorithms exhibit adapt-
ability to diverse dataset types, can handle high-dimensional feature spaces, and
overcome the limitations of traditional feature selection methods. The utilization
of metaheuristics in feature subset selection has demonstrated promising results in
various domains, including bioinformatics, image processing, and financial predic-
tion. By offering a powerful and flexible approach to address complex optimization
problems, metaheuristics provide valuable insights for improving model performance
and decision-making in feature selection tasks. It is within this context that our cur-
rent study integrates the GRASP metaheuristic and Relief filter method to optimize
feature selection.
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2.2 Filtering with Relief

2.2.1 What is Relief?

The Relief algorithm is a feature selection method used to identify the most relevant
features in a dataset. It was originally introduced by (Kira & Rendell, 1992) and has
since been widely adopted in various fields, including bioinformatics and machine
learning.

The primary objective of the Relief algorithm is to capture feature interactions,
which are often crucial in understanding the underlying patterns in the data. Unlike
traditional univariate filter methods that consider each feature independently, Relief
evaluates the relevance of features by taking into account the interactions between
features and their impact on the target variable.

The algorithm operates by assigning a weight or score to each feature based on its
ability to discriminate between instances of different classes. It does this by com-
paring the feature values of the nearest neighboring instances, where the nearest
neighbors are determined based on their Euclidean distance. The algorithm consid-
ers both the features’ similarity to instances of the same class (relevance) and their
difference from instances of different classes (redundancy).

By iteratively updating the feature weights for each instance in the dataset, Relief
captures the relationships between features and their relevance to the target variable.
The final feature scores obtained from the Relief algorithm can be used to rank
the features and select the most informative subset for further analysis or model
construction.

2.2.2 Application of Relief in Literature

There are several notable applications of the Relief algorithm in the literature. Ur-
banowicz et al. (2018) provide an introduction and comprehensive review of Relief-
based feature selection, highlighting its applications in various domains including
bioinformatics, genetics, and medicine (Urbanowicz et al., 2018). Wang et al. (2006)
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Algorithm 1 Relief Algorithm
1: procedure Relief(dataset, m)
2: Initialize a weight vector W with zeros
3: for i = 1 to m do
4: Randomly select an instance R from the dataset
5: Find nearest hit H and nearest miss M for R
6: for each feature F in R do
7: W [F ] = W [F ]−diff(F,R,H)/m+diff(F,R,M)/m
8: end for
9: end for

10: Return W
11: end procedure

apply the Relief algorithm for gene selection from microarray data to improve cancer
classification accuracy (Wang, Li, Wang & Pan, 2006). Fang et al. (2018) utilize the
Relief algorithm in combination with rank correlation coefficient to identify growth-
driving genes in biological systems (Fang, Guo, Zhao, Guo & Zhao, 2018). Deekshit
et al. (2019) employ the Relief algorithm as a feature selection technique to develop
an intelligent diagnostic tool for the identification of bacterial pathogens (Deekshit,
Kumar, Sadasivuni & Sadasivuni, 2019). These studies demonstrate the versatility
and effectiveness of the Relief algorithm in various domains, showcasing its potential
for feature selection and data analysis.

2.2.3 Different Relief Models

Relief, ReliefF, and RReliefF are three algorithms used for feature selection, a critical
step in the process of building an accurate and efficient machine learning model.
Let’s delve a bit deeper into each of these:

1) Relief: The Relief algorithm is a feature selection technique designed to work
with small-to-moderate-sized datasets. Introduced by (Kira & Rendell, 1992), Relief
is capable of detecting features that are conditionally dependent, meaning it can
identify features that are useful for predicting a certain class only in conjunction with
another feature. The algorithm works by repeatedly selecting an instance randomly
and then finding its nearest neighbors from the same and different classes. It then
updates the weights of the features depending on how their values differentiate the
selected instance from its neighbors. However, Relief tends to be sensitive to noise
and works best with two-class problems.
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2) ReliefF: Recognizing the limitations of the Relief algorithm, especially its in-
ability to deal efficiently with multi-class and noisy datasets, (Kononenko, 1994)
developed an extended version known as ReliefF. ReliefF considers multiple near-
est neighbors instead of just one, which makes it more robust against noise. It also
handles incomplete and missing data, as well as multi-class problems more efficiently.

3) RReliefF: This is a variant of ReliefF specifically designed to handle regression
problems, where the output variable is a real number instead of a class label. It
estimates feature relevancies for continuous-valued outputs and works similarly to
ReliefF, but the difference in their methods lies in the way the output difference
is calculated in the weight updating process. RReliefF uses the difference of the
target variable of the selected instance and its nearest neighbors, instead of their
class labels.

2.2.4 Application of Relief in this paper

The Relief algorithm is highly advantageous due to its capability to handle both
categorical and continuous features, its robustness against noisy data, and its effi-
ciency in managing high-dimensional datasets. However, it is important to consider
certain factors that can influence the algorithm’s performance, such as the selection
of the number of neighbors and the specific distance metric employed.

In the broader context, the Relief algorithm has proven to be a valuable approach to
feature selection, particularly in capturing feature interactions, and has been widely
applied across various domains to enhance the performance and interpretability of
machine learning models. In this paper, we utilize the Relief algorithm as our initial
feature selection method and combine it with the GRASP metaheuristic.

Furthermore, this paper conducts a comprehensive analysis by examining different
Relief models and comparing them with other filtering techniques such as Variance
Threshold, Select K Best, and PCA. Through our investigation, we observed the
effectiveness of the Relief algorithm and subsequently chose to proceed with it as
our primary filtering method.
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2.3 GRASP

2.3.1 What is GRASP?

Search algorithms, particularly those used for combinatorial optimization problems,
are designed to explore the solution space efficiently to find optimal or near-optimal
solutions. A prime example of this class of algorithms is the Greedy Randomized
Adaptive Search Procedure (GRASP), introduced by Feo and Resende (Feo & Re-
sende, 1989). GRASP is a metaheuristic algorithm that combines the principles of
greedy algorithms and randomness to explore various regions of the solution space
and escape local optima, which can be beneficial when tackling complex optimization
problems.

GRASP operates in a two-stage iterative process involving a construction phase and
a local search phase.

1) Construction Phase: The construction phase aims to generate a feasible so-
lution. Unlike traditional greedy algorithms that might deterministically select the
best candidate at each step, GRASP introduces an element of randomness in this
phase. It builds the solution iteratively by adding an element selected randomly
from a Restricted Candidate List (RCL). The RCL comprises high-quality elements,
which are determined based on some greedy function criteria, but not necessarily
the best ones. This random selection ensures a diversified exploration of the solution
space.

The pseudocode for the construction phase is as follows:

Algorithm 2 Construction Phase of GRASP Algorithm
1: procedure ConstructionPhase
2: S← empty
3: while S is not a complete solution do
4: Construct a Restricted Candidate List (RCL)
5: Choose element e from RCL at random
6: Add e to solution S
7: end while
8: end procedure
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2) Improvement Phase: Once a feasible solution is constructed, the local search
phase commences. This phase seeks to enhance the solution generated in the con-
struction phase by exploring its vicinity. A neighborhood of the current solution,
which contains solutions similar to it, is examined, and the algorithm moves to a
better solution if one is available. This step is iteratively repeated until no further
improvement can be made, yielding a locally optimal solution.

The pseudocode for the local search phase is as follows:

Algorithm 3 Improvement Phase of GRASP Algorithm
1: procedure Improvement Phase
2: while there exists a solution S′ in the neighborhood of S that is better than

S do
3: Move from solution S to the better solution S′

4: end while
5: end procedure

These two phases are iteratively repeated, with each repetition producing a locally
optimal solution. After numerous iterations, the best solution across all iterations
is chosen as the final output of the GRASP algorithm.

2.3.2 Application of GRASP in Literature

The Greedy Randomized Adaptive Search Procedure (GRASP) has found wide-
ranging applications in the literature due to its ability to provide high-quality solu-
tions for combinatorial optimization problems. In the realm of operations research,
GRASP has been applied to various scheduling problems, such as job-shop, flow-
shop, and project scheduling (Festa & Pardalos, 2002). It has also been successfully
utilized for problems related to logistics, including vehicle routing, traveling sales-
man, and facility location problems (Resende & Ribeiro, 2003). In bioinformatics,
GRASP has been adopted for sequence alignment, gene recognition, and DNA frag-
ment assembly (Ribeiro & Resende, 2007). Moreover, its applications extend to
telecommunication design, such as network design and frequency assignment (Re-
sende & Werneck, 2004). As a metaheuristic, GRASP offers a flexible and robust
framework for problem-solving, which has led to its widespread usage across a mul-
titude of fields.
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2.3.3 Application of GRASP in FSS

The application of the GRASP algorithm for feature subset selection has been stud-
ied extensively in the literature. Esseghir and Idoumghar (Esseghir & Idoumghar,
2010) proposed a GRASP-based algorithm for feature selection in high-dimensional
data. They used GRASP’s robust and adaptive properties to iteratively build so-
lutions and improve upon them, focusing on both convergence speed and quality of
solutions. In each iteration, a Restricted Candidate List (RCL) was dynamically
generated based on feature relevancy measures, ensuring the inclusion of the most
relevant features and enhancing the algorithm’s search space exploration. The local
search phase aimed to refine the solutions, using the ‘2-opt’ local search method to
swap features in and out of the current solution based on their contribution to the
classifier’s accuracy.

Abreu et al. (Abreu, de Carvalho & Lorena, 2011) applied a similar methodology
that combined GRASP with a hybrid filter-wrapper approach for feature subset se-
lection in high-dimensional datasets. Their work focused on optimizing the selected
features’ relevancy and redundancy. In the construction phase, features were added
to the solution based on the correlation between the features and the target class
(relevance) and the correlation between the features themselves (redundancy). By
controlling the size of the RCL, they could manage the trade-off between exploration
and exploitation in the search process. On the other hand, their local search phase
aimed to fine-tune the solution, using a forward-backward heuristic to add or remove
features while maintaining the solution’s quality.

Another exciting work by Smiti and Elouedi (Smiti & Elouedi, 2015) presented a
GRASP-based approach for feature selection in clustering high-dimensional categor-
ical data. They combined GRASP with a k-medoids-based local search for efficient
exploration and exploitation of the search space. The construction phase involved
creating an initial solution by selecting subsets of features that minimize the within-
cluster dissimilarity. The local search phase, in turn, was responsible for refining the
initial solution, aiming to improve the clustering quality by exploring the neighbor-
hood of the current solution. Their approach demonstrated the potential of GRASP
for feature selection in unsupervised learning contexts.

2.3.4 Application of GRASP in this paper
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The application of the Greedy Randomized Adaptive Search Procedure (GRASP)
in this study is focused on feature selection in high-dimensional data. The approach
integrates a novel filtering method during the construction phase and applies a one-
in, one-out neighborhood definition during the improvement phase.

In the construction phase, the process commences with the initialization of
dataframes to store the results of each run and the accuracy of various feature sub-
sets. Subsets of features are created from the input data, and for each, the Relief
algorithm is implemented. The filtering process introduced in this stage terminates
the loop if the minimum weight of any feature falls below t1 threshold.

Following the filtering, the selected features are sorted by weight and used to train
a K-Nearest Neighbors (KNN) model. The choice of KNN is justified by its lack of
inherent feature weighting, making it an ideal classifier for this purpose. The mean
cross-validation score is computed and stored for each run.

Instead of selecting the absolute best feature, the model randomly selects a top
feature from the dataframe after iterating through all subsets of a specific size.
This approach aids in maintaining diversity. To ensure pursuit of promising feature
subsets, a check is implemented that discards the current subset if its KNN accuracy
score is less than the previous subset’s score. The output of the construction phase
is a list of feature subsets, along with their corresponding details and performance
metrics.

In the improvement phase, the feature set selected during the construction phase
and its corresponding KNN accuracy are identified. The selected and non-selected
features are ascertained by comparing with the full list of features. For each selected
feature, a list of ’neighbors’ is generated. A neighbor is defined as a feature obtained
by replacing a selected feature with a non-selected one. Each ’neighbor’ is trained
on a KNN model, and the mean cross-validation score is calculated and stored. The
scores are then sorted in descending order of accuracy. This phase aims to improve
the solution found in the construction phase by exploring the neighborhood of the
current solution.

In summary, the GRASP-based approach proposed in this study presents an approx-
imate solution to the feature selection problem, offering the potential to identify a
global optimum through randomization and local search strategies. More details
can be found in the Section 4: Methodology.
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3. METHODOLOGY

3.1 Algorithm Design

This section presents our innovative adaptation of the Greedy Randomized Adaptive
Search Procedure (GRASP) to tackle feature selection in high-dimensional data.
Our method uniquely integrates a filtering approach using Relief during the con-
struction phase, and employs the one-in, one-out neighborhood definition during
the improvement phase.

3.1.1 Construction Phase

The Construction Phase is the foundation of the algorithm, primarily responsible
for building a promising set of candidate solutions called Restricted Candidate List
(RCL). The process begins by constructing K RCLs, where K represents the total
iterations planned for this phase. Each iteration starts by initializing a solution
set, which is an empty set for the RCL. Simultaneously, the K-nearest neighbors
(KNN) accuracy for this empty set is also initialized to zero, providing a performance
baseline for feature addition.

The algorithm then determines the remaining features set (RFS) by subtracting the
currently selected features in the RCL from the total set of features. For each feature
in the RFS, a temporary promising candidate solution (TempRCL) is generated.
This TempRCL is a potential solution where the given feature is added to the current
RCL.

The Relief Score for each TempRCL is then computed. This score is a measure
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indicating the worth or importance of each feature within the TempRCL. TempRCLs
with an average Relief Score above a predefined threshold (t1) are retained in a
separate set, referred to as the "SET of TempRCLs".

The algorithm then evaluates the performance of each TempRCL within this set.
This is accomplished by calculating the KNN accuracy for each TempRCL. The
TempRCLs are then ranked according to their KNN accuracies, and the top ’t2’ are
selected for further consideration.

The algorithm randomly selects one TempRCL from this top set, and this selected
TempRCL is used to update the current RCL. This loop of operations continues
until adding a new feature to the RCL no longer improves the KNN accuracy. The
algorithm ensures the most beneficial features are included in the RCL by this
approach.

After completing each iteration, the RCL becomes a part of the RCL set only if
its KNN accuracy is above a predefined threshold (t3). This phase’s output is a
Restricted Candidate List (RCL) containing a collection of promising constructed
candidate solutions (ConstRCLs).

3.1.2 Improvement Phase

The Improvement Phase’s primary role is to refine and optimize the RCLs obtained
from the previous Construction Phase. This phase starts by taking the RCL as
input. The algorithm then iterates through each ConstRCL within the RCL.

For each ConstRCL, the algorithm generates a neighboring solution. This is done by
making minor modifications to the ConstRCL, such as the addition of one unselected
feature and removal of a selected feature. The algorithm then calculates the KNN
accuracy of this neighboring solution to evaluate its performance.

If the KNN accuracy of this neighboring solution exceeds the current maximum
observed KNN accuracy, this neighbor is considered a better solution. As such,
the algorithm updates the current RCL (now referred to as Updated Promising
Candidate Solutions or UpdatedRCL), and the maximum KNN accuracy is also
updated to reflect this improvement. This iterative process continues until the
KNN accuracy no longer improves, which suggests that a local optimum solution is
achieved.

The end output of the Improvement Phase and the overall algorithm is a set of refined
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Algorithm 4 Construction Phase
1: Construct K RCL
2: for i=1 to K do
3: Initialize NewFeatureIsBeneficial = True;
4: s=1
5: while NewFeatureIsBeneficial==True do
6: Initialize RCL(i)(s) = {};
7: KNNaccRCL(i)(s) = 0
8: RFS = All Features - RCL(i)(s)
9: for j=1 to C ← Cardinality of RFS do

10: Generate a TempRCL = RCL(i)(s+j)
11: Calculate Relief Score of TempRCL
12: if Relief Score among the features > threshold t1 then
13: Add TempRCL to "SET of TempRCLs"
14: end if
15: end for
16: for each TempRCL in "SET of TempRCLs" do
17: Calculate KNN accuracy
18: end for
19: Rank and choose the top t2 TempRCL based on KNN accuracy
20: Choose randomly one of the t2 "SET of TempRCLs", say TempRCL∗

21: s=s+1
22: RCL(i)(s) = TempRCL∗

23: if K KNNaccRCL(i)(s) < KNNaccRCL(i)(s-1) then
24: NewFeatureIsBeneficial = False
25: end if
26: end while
27: Add RCL(i)(s-1) to RCL Set
28: end for
29: Output ConstRCL
30: if KNNaccConstRCL > threshold t3 then
31: Add ConstRCL to "SET of ConstRCL"
32: end if
33: Output the "SET of ConstRCL"
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and optimized RCLs. These optimized RCLs represent the subsets of features that
are most beneficial in enhancing the predictive model’s performance.

In conclusion, our adaptation of GRASP offers an approximate solution to the fea-
ture selection problem. It selects a local optimum at each stage and potentially finds
a global optimum through its randomization and local search strategies.

Algorithm 5 Improvement Phase
1: Get "SET of ConstRCL" from the Construction Phase
2: for each i in "SET of ConstRCL" do
3: Initialize UpdatedPCS = CFS(i)
4: max KNNacc = 0
5: LocalOptimaIsEnsured = False
6: while LocalOptimaIsEnsured == False do
7: Create one neighbor of CFS(i)
8: Check KNN accuracy of that neighbor
9: if KNN accuracy of the neighbor > Max KNNacc then

10: UpdatedRCL = neighbor
11: Update Max KNNacc with KNN accuracy of the neighbor
12: else
13: LocalOptimaIsEnsured = True
14: end if
15: end while
16: end for
17: Output "ImprRCL" and choose the top t3 based on KNN accuracy

3.1.3 Iterations

Table 3.1 GRASP - Iteration 1

selected columns Relief weights weights Avg
[0] [0.0836] 0.0836
[1] [0.0391] 0.0391
[2] [0.4456] 0.4456
[3] [0.5292] 0.5292
[4] [0.0093] 0.0093
[5] [0.0106] 0.0106
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Table 3.2 GRASP - Iteration 1 - Filtering

selected columns Relief weights weights Avg
[0] [0.0836] 0.0836
[1] [0.0391] 0.0391
[2] [0.4456] 0.4456
[3] [0.5292] 0.5292
[4] [0.0093] 0.0093
[5] [0.0106] 0.0106

Table 3.3 GRASP - Iteration 1 - Choosing

selected columns Relief weights weights Avg KNN Acc RANK
[0] [0.0836] 0.0836 0.7000 3
[1] [0.0391] 0.0391 0.4917 4
[2] [0.4456] 0.4456 0.9333 2
[3] [0.5292] 0.5292 0.9583 1
[5] [0.0106] 0.0106 0.3833 5

Table 3.4 GRASP - Iteration 2

selected columns Relief weights weights Avg KNN Acc RANK
[0, 1] [0.3986, 0.2279] 0.3133 0.7917 3
[0, 2] [0.1309, 0.5843] 0.3576 0.9333 1
[0, 3] [0.2520, 0.5884] 0.4202 0.9250 2
[0, 4] [0.1515, 0.1272] 0.1393 0.6750 4
[0, 5] [0.1563, 0.1259] 0.1411 0.6750 4

Table 3.5 GRASP - Iteration 3
selected columns Relief weights weights Avg KNN Acc RANK
[0, 1, 2] [0.3611, 0.4167, 0.7355] 0.5044 0.8333 4
[0, 2, 3] [0.2557, 0.5877, 0.6200] 0.4891 0.9417 1
[0, 2, 4] [0.2326, 0.6377, 0.1400] 0.3369 0.8917 2
[0, 2, 5] [0.1805, 0.6474, 0.1700] 0.3332 0.8833 3

Table 3.6 GRASP - Iteration 4

selected columns Relief weights weights Avg KNN Acc RANK
[0, 1, 2, 3] [0.2617, 0.7343, 0.5930, ...] 0.6009 0.9333 1
[0, 1, 2, 4] [0.3041, 0.6422, 0.7410, ...] 0.4741 0.8500 3
[0, 1, 2, 5] [0.3114, 0.5962, 0.7200, ...] 0.4617 0.8583 2

Table 3.7 GRASP - Final Output

Number of Features Selected Columns Time KNN Acc
4 [0, 1, 2, 5] 16.451s 0.8583
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Table 3.8 GRASP - All Iterations

selected columns Relief weights weights Avg KNN Acc RANK
[0] [0.0836] 0.0836 0.7000 3
[1] [0.0391] 0.0391 0.4917 4
[2] [0.4456] 0.4456 0.9333 2
[3] [0.5292] 0.5292 0.9583 1
[5] [0.0106] 0.0106 0.3833 5
[0, 1] [0.3986, 0.2279] 0.3133 0.7917 3
[0, 2] [0.1309, 0.5843] 0.3576 0.9333 1
[0, 3] [0.2520, 0.5884] 0.4202 0.9250 2
[0, 4] [0.1515, 0.1272] 0.1393 0.6750 4
[0, 5] [0.1563, 0.1259] 0.1411 0.6750 4
[0, 1, 2] [0.3611, 0.4167, ...] 0.5044 0.8333 4
[0, 2, 3] [0.2557, 0.5877, ...] 0.4891 0.9417 1
[0, 2, 4] [0.2326, 0.6377, ...] 0.3370 0.8917 2
[0, 2, 5] [0.1805, 0.6474, ...] 0.3332 0.8833 3
[0, 1, 2, 3] [0.2617, 0.7343, ...] 0.6009 0.9333 1
[0, 1, 2, 4] [0.3041, 0.6422, ...] 0.4741 0.8500 3
[0, 1, 2, 5] [0.3114, 0.5962, ...] 0.4617 0.8583 2
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4. EMPIRICAL SETTING AND DATA

This chapter encompasses the details of the experiments executed throughout this
research and provides a comprehensive view of the results obtained.

4.1 Dataset

We delve into the specifics of the dataset archive in this section, followed by an
explanation of the process of dataset creation.

4.1.1 Dataset Archive

Table 4.1 Datasets

Dataset Name Source Number of feature Instance
Iris (Iris, 2007) 4 150
Kidney (Kidney, 2015) 12 158
Wine (Wine, 2007) 13 178
Breast Cancer (Cancer, 2017) 60 208
Connectionist Bench (Connectionist, 2014) 60 207

4.1.2 Dataset creation and preprocessing

This part is about how we prepared our dataset for testing our model. We wanted
to see if our model could identify and eliminate features that aren’t contributing any
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useful information. Our goal was to see if these obviously non-informative features
would be recognized and excluded by our model, demonstrating its effectiveness
in feature selection. As it mentioned in the first chapter, we conducted all the
experiments on Iris dataset first (Iris, 2007). We load the cleaned version of this
data as described in the preceding section and shown in Table 4.2. This dataset
forms the backbone of our subsequent experimental procedures.

Table 4.2 Raw data

sepal length sepal width petal length petal width target
5.1 3.5 1.4 0.2 0
4.9 3.0 1.4 0.2 0
4.7 3.2 1.3 0.2 0
4.6 3.1 1.5 0.2 0
5.0 3.6 1.4 0.2 0

To ensure a well-conditioned dataset, the next step involves scaling the data. We
achieve this by applying a StandardScaler to our dataset, a process that standardizes
features by removing the mean and scaling to unit variance. The outcome of this
scaling operation can be seen in Table 4.3. This pre-processing step is crucial when
dealing with features that have varying scales as it brings them to a common scale
without distorting the differences in the range of values or losing information.

Table 4.3 Scaled data

sepal length sepal width petal length petal width target
-0.9007 1.0190 -1.3402 -1.3154 0
-1.1430 -0.1320 -1.3402 -1.3154 0
-1.3854 0.3284 -1.3971 -1.3154 0
-1.5065 0.0982 -1.2834 -1.3154 0
-1.0218 1.2492 -1.3402 -1.3154 0

Further, we enrich our dataset by introducing new "dummy" features with uniformly
distributed values between 0 and 1. The number of these added features equals
half the original feature set. In addition, we incorporate two more columns named
"Zeros(0)" and "Ones(1)" to observe their impact on the output and test the model’s
ability to identify these dummy features. The data with added features is shown in
Table 4.4.

Upon completion of these preprocessing steps, the dataset is finally ready for sub-
sequent modeling stages, thus providing a robust foundation for our analysis.

4.2 Experiment on Relief
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sepal length sepal width petal length petal width Dummy1 Dummy2 Z 0 target
-0.9007 1.0190 -1.3402 -1.3154 0.7664 0.4988 0 1 0
-1.1430 -0.1320 -1.3402 -1.3154 0.3282 -0.2579 0 1 0
-1.3854 0.3284 -1.3971 -1.3154 -0.3758 -0.6868 0 1 0
-1.5065 0.0982 -1.2834 -1.3154 0.0403 0.5182 0 1 0
-1.0218 1.2492 -1.3402 -1.3154 -0.5211 0.8204 0 1 0

Table 4.4 Data with added dummy features

In this experiment, our aim was to assess the performance of the Relief feature se-
lection method in our machine learning pipeline. To establish a baseline, we initially
created a function, withoutFilter, which performed model training without any fea-
ture selection. We executed this function for a total of 30 runs and captured the
performance metrics for Decision Trees (DT), K-Nearest Neighbors (KNN), Logistic
Regression (LG), and Naive Bayes (NB) models, as well as the run time for each
iteration. Without any feature selection, the average performance across 30 runs
indicated that the models performed reasonably well. The result was as follows in
Table 4.5:

DT KNN LG NB SelectedCols NumOfCols Excluded time
0.96 0.95 0.96 0.95 [0, 1, 2, 3] 4 [] 0.279s
0.95 0.95 0.96 0.95 [0, 1, 2, 3] 4 [] 0.266s
0.95 0.95 0.96 0.95 [0, 1, 2, 3] 4 [] 0.272s
... ... ... ... ... ... ... ...
0.95 0.95 0.96 0.95 [0, 1, 2, 3] 4 [] 0.195s

Table 4.5 Results withoutFilter

Our primary evaluation metric was the effectiveness of the Relief feature selection.
To assess this, we implemented Relief to score our features. The Relief algorithm,
renowned for its robustness in feature selection (Urbanowicz et al., 2018), measures
the value of features by assessing how their values differentiate between instances
in close proximity within the feature space. On the selection of a random instance,
Relief identifies the closest instance from the same class, as well as the nearest
from the opposite class. The scores of features are then updated by incrementing
(or decrementing) them based on the variance in feature values within the same
(or opposite) class instances. This score is a reflection of how well the feature
distinguishes between classes.

Upon application of Relief, we preserved 80% of the highest scoring features and
eliminated the remaining 20%. In the specific case of the Iris dataset, the number
of features was reduced from four to three. We carried out another set of 30 model
training runs using the selected features, while capturing the same performance
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metrics as in the previous trials. The results are presented in Table 4.6:

DT KNN LG NB SelectedCols NumOfCols Excluded time
0.96 0.96 0.96 0.96 [1, 2, 3] 3 [0] 0.213s
0.96 0.96 0.96 0.96 [1, 2, 3] 3 [0] 0.728s
0.96 0.96 0.96 0.96 [1, 2, 3] 3 [0] 0.858s
... ... ... ... ... ... ... ...
0.96 0.96 0.96 0.96 [1, 2, 3] 3 [0] 0.269s

Table 4.6 Results with Relief

The comparative analysis between models trained with all features and those trained
with features selected by Relief, as depicted in Table 4.7, reveals a subtle improve-
ment in model performance across DT, KNN, LG, and NB subsequent to feature
selection. Additionally, there was negligible variation in the run times, indicating
that the application of Relief for feature selection could potentially enhance model
performance without imposing substantial computational costs.

DT KNN LG NB time
Without Filter (Avg) 0.9576 0.9533 0.9600 0.9533 0.2656s
Relief (3 features, Avg) 0.9600 0.9600 0.9600 0.9667 0.2694s

Table 4.7 Comparison of Classification Results: No Filter vs Relief Filter

These results demonstrate the effectiveness of Relief in improving model perfor-
mance. By removing irrelevant or redundant features, Relief makes the models
more efficient and less prone to overfitting, thereby enhancing their predictive per-
formance.

4.3 Experiment on different filtering methods

In this section, we employed various widely used filtering methods for feature selec-
tion and compared their performance with that of the Relief method and shown in
Table 4.8.

This table presents the average performance metrics for Decision Trees (DT), k-
Nearest Neighbors (KNN), Logistic Regression (LG), Naive Bayes (NB), and the
average run time for each method over 30 runs. Five feature selection methods were
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DT KNN LG NB time
withoutFilterAvg 0.9558 0.9533 0.9600 0.9533 0.2557s
varianceThresholdAvg 0.9556 0.9533 0.9600 0.9533 0.2995s
SelectKBestAvg 0.9533 0.9600 0.9600 0.9600 0.3094s
PCAAvg 0.9298 0.9533 0.9600 0.9333 0.2540s
Relief(3-features)Avg 0.9600 0.9600 0.9600 0.9667 0.3107s

Table 4.8 Comparison of Performance for Different Feature Filtering Methods

compared: no filtering (withoutFilter), Variance Threshold (varianceThreshold),
SelectKBest, Principal Component Analysis (PCA), and Relief.

It is observed that the Relief method, which retains only the top three features,
outperforms or matches the other methods in all models. Specifically, it achieved the
highest average scores in DT, KNN, LG, and NB models. Moreover, it matched the
best score in Logistic Regression models. All this is achieved while keeping the run
time competitive, suggesting that the Relief feature selection method can effectively
improve model performance without significantly impacting the computational cost,
proving to be an effective feature selection method.

4.4 Experiment on Relief with dummy features

The next phase of our experimental process entailed assessing Relief’s performance
on a dummy dataset. The primary focus of this assessment was the accuracy scores
and computational time necessary for model execution, varying in accordance with
the numOfColumns parameter of Relief.

numOfColumns selectedColumns DT KNN LG NB time
4 [0, 1, 2, 3] 0.93 0.93 0.95 0.95 0.207s

Table 4.9 Baseline Model Performance with Selected Columns

Upon establishing the baseline results, we augmented the dataset with additional
dummy features. Table 4.10 presents the performance outcomes of the models uti-
lizing this augmented dataset:

Table 4.10 demonstrates that the Relief feature selection algorithm effectively pin-
points the relevant features as [0, 1, 2, 3]. Our next step is to advance our experi-
ments on the augmented dataset, assigning the numberOfColumns parameter a value
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numOfColumns selectedColumns DT KNN LG NB time
1 [3] 0.95 0.96 0.96 0.96 0.136s
2 [2, 3] 0.94 0.96 0.95 0.95 0.490s
3 [1, 2, 3] 0.93 0.95 0.94 0.95 0.653s
4 [0, 1, 2, 3] 0.93 0.93 0.95 0.95 0.161s
5 [0, 1, 5, 2, 3] 0.93 0.96 0.95 0.96 0.330s
6 [4, 3, 2, 5, 0, 1] 0.92 0.93 0.94 0.96 0.246s

Table 4.10 Performance with Dummy Dataset

that corresponds to the raw data column count, which, in this context, is 4.
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5. RESULTS

In this section, we present the results of our experiments, which highlight the perfor-
mance of various feature selection models. We begin by providing a comprehensive
overview of the comparison models used in our study, including the Genetic Algo-
rithms (GA) and ITMO FS. These models encompass a range of feature selection
techniques and libraries that have been widely employed in the field of machine
learning.

5.1 Summary of what we did

To gain insights into the impact of feature selection, we first analyze the results
obtained from a dummy dataset based on the Iris dataset. This involves examining
the features selected by each model and their corresponding accuracy. Through this
analysis, we aim to understand the importance of feature optimization and how
different models prioritize and select relevant features.

As we move forward, our focus shifts to the evaluation of accuracy and time scores
across five different datasets. We start by exploring the performance of the ’Baseline’
model. In this context, ’Baseline’ represents a scenario where no feature elimination
is performed during the model building process.

Following that, we investigate the performance of our hybrid approach, termed our
Model. This approach combines the GRASP algorithm with Relief filtering, creating
an innovative feature selection method. We also examine the results obtained using
the Genetic Algorithms (GA) library, which is a popular feature selection library
based on evolutionary algorithms.

Lastly, we present the outcomes achieved using the ITMO_FS library. Developed
by ITMO University, the ITMO_FS library offers a wide range of advanced feature

30



selection algorithms.

By comparing the performance of these models, our goal is to assess the effectiveness
of different feature selection techniques in terms of accuracy and computational time.
This analysis is expected to provide valuable insights into the utility of each model
and its suitability for different datasets and classification tasks.

In conclusion, our results section offers a comprehensive evaluation of various feature
selection models. This allows us to identify the most effective approaches for feature
optimization. We believe that this knowledge will contribute to advancements in the
field of feature selection and aid in improving the accuracy and efficiency of machine
learning models.

5.2 Brief Information About Comparison Models

We now turn our attention to an examination of the comparison models employed
in this study:

5.2.1 ITMO FS

In our feature selection methodology, a key component is the ITMO_FS library
(FS, 2020). The library, developed by ITMO University, is a rich source of feature
selection algorithms that provides researchers and practitioners with versatile and
cutting-edge tools for data analysis.

From this diverse array of feature selection methods available in the ITMO_FS
library, we chose to experiment with the Model-based Optimization Selection (MOS)
algorithm. Our choice was motivated by our interest in exploring the potential
of embedded feature selection methods in the context of our study. Embedded
methods, such as MOS, simultaneously conduct feature selection and model learning,
a quality that often results in a good balance of performance and computational
efficiency.

The MOS algorithm embodies the principle of model-based optimization. It takes
advantage of the predictive performance of a machine learning model to guide the
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feature selection process. By evaluating the performance of different subsets of fea-
tures iteratively and gauging their impact on the model’s accuracy, MOS is capable
of identifying an optimal subset of features. This approach facilitates selection of
features that not only enhance model accuracy but also reduce computational com-
plexity by minimizing the feature set.

The effectiveness and working principle of MOS are detailed in several scholarly
articles. The paper by (Fu, Wu, Zong & Yi, 2020) elucidates the optimization
process of MOS and provides empirical evidence demonstrating its effectiveness.
Additionally, (Pilnenskiy & Smetannikov, 2020) conducts a comparative analysis of
various feature selection algorithms, including MOS, illuminating their applicability
in diverse data analysis tasks. These references serve to underline the reasons for
our selection of the ITMO_FS library and MOS for our study.

In summary, by integrating the ITMO_FS library, particularly the MOS algorithm,
into our feature selection approach, we aim to incorporate an advanced, efficient
method that optimizes classification accuracy and reduces feature dimensionality.
This method will be compared with our hybrid model, GRASP & Relief, to provide
valuable insights into the relative effectiveness of different feature selection tech-
niques in the context of our classification tasks.

5.2.2 Genetic Algoritms

Genetic Algorithms (GA) are a popular search procedure that can be utilized for
feature selection in machine learning tasks. In the context of feature selection, GA
operates based on the principles of natural selection and genetics, mimicking the
evolutionary process observed in biological systems. The goal of GA is to identify a
subset of features that optimizes the performance of a machine learning model.

One specific implementation of GA for feature selection is the "sklearn-genetic" li-
brary Genetic (2016). This library provides a Python implementation of Genetic
Algorithms and integrates seamlessly with the scikit-learn ecosystem, making it
convenient to incorporate GA-based feature selection into existing machine learning
pipelines.

The advantage of using Genetic Algorithms for feature selection lies in their ability
to explore a vast search space efficiently and effectively. GA employs mechanisms
such as crossover, mutation, and selection to generate new feature combinations
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iteratively. This iterative process gradually converges towards a subset of features
that maximizes the performance of the machine learning model.

However, it is important to note that Genetic Algorithms can be computationally
expensive due to the need to evaluate the fitness of multiple feature subsets. There-
fore, the time complexity of GA-based feature selection should be considered in
relation to the dataset size and available computational resources.

By leveraging the capabilities of Genetic Algorithms, researchers can effectively
explore and identify relevant features that contribute to the predictive performance
of machine learning models.

5.3 Performance of our model

In Table 5.2, we present the results obtained with the dummy-added dataset. Ini-
tially, the Iris dataset had 4 features, but we expanded it to 8 features. We then
applied four different Feature Selection and Search (FSS) models and recorded the
selected features for each model. The ’ALL’ model represents a scenario where
no feature elimination was performed, resulting in the fastest execution time. On
the other hand, the our model and ’Genetic Algorithm’ models exhibited promising
performance in identifying the most relevant features and achieving high accuracy.
These models selected only one feature (’3’) and produced an accuracy of 0.9583.
The ’ITMO’ model also demonstrated effective elimination, resulting in a subset of
5 selected features (’0, 1, 2, 3, 7’). Although it had a slightly lower accuracy of
0.9333, it still showcased efficient feature selection.

Model Num of Features Selected Features Accuracy Time(s)
Baseline 8 [0, 1, 2, 3, 4, 5, 6, 7] 0.9333 0.041
Our Model 1 [3] 0.9583 25.204
Genetic Algorithm 1 [3] 0.9583 2.604
ITMO 5 [0, 1, 2, 3, 7] 0.9333 18.325

Table 5.1 Model performance on Iris dataset
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5.3.1 Comparison with Sklearn’s Feature Selection Method

To place our findings in a wider perspective, we drew a comparison between the
Relief feature selection method and a popular alternative, Recursive Feature Elimi-
nation (RFE), offered by the sklearn library (Iris, 2007).

RFE is an influential feature selection method that operates by fitting a model and
progressively eliminating the least consequential features. It continues this iterative
process until the desired number of features remains. By ranking features based on
their coef or feature importances attributes, RFE seeks to minimize dependencies
and collinearity in the model.

In the context of our experiment, we employed the DecisionTreeClassifier as our
estimator, owing to its ability to rank features based on their feature importances.
The findings from this comparative study are depicted in the subsequent figure:

As it can be ssen from the graph, the most importtant feature for this dataset is [3].
And both GRASP & Releif and GA found that and eliminate all the other ones.

0 0.2 0.4 0.6 0.8 1

[3]

[2]

[4]

[5]

[0]

Scores

sklearn’s Feature Selection

5.4 Comparison on other datasets
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Accuracy Time(s)

Dataset Features Baseline OurModel GA ITMO Baseline OurModel GA ITMO

Iris 4 0.9333 0.9583 0.9583 0.9333 0.033 3.214 1.983 3.952
Kidney 12 0.8103 0.8417 0.8340 0.8103 0.036 10.881 5.282 9.066
Wine 13 0.9581 0.9933 0.9933 0.9586 0.031 30.119 7.472 5.231
Breast Cancer 30 0.9649 0.9670 0.9826 0.9648 0.068 113.214 14.692 80.261
Connectionist 60 0.8081 0.8673 0.8978 0.8456 0.042 243.608 18.505 120.067

The table presents the performance metrics of different datasets with varying num-
bers of features, evaluated using four feature selection models: Baseline, GRASP,
GA (Genetic Algorithm), and ITMO. The metrics considered are accuracy and ex-
ecution time.

For the Iris dataset, which initially had 4 features, all four models achieved high
accuracy, with the GRASP and GA models obtaining the highest accuracy of 0.9583.
The execution time was relatively low for all models, with the Baseline model being
the fastest at 0.033 seconds.

The Kidney dataset, also with 12 features, demonstrated lower overall accuracy com-
pared to the previous datasets. The GRASP model achieved the highest accuracy
of 0.8417, while the other models had lower accuracies. The execution times were
presented in seconds, with the Baseline model being the fastest at 0.036 seconds.

The Wine dataset, with 12 features, exhibited similar trends. The GRASP and GA
models achieved the highest accuracy of 0.9933, while the Baseline model showed
a slightly lower accuracy of 0.9581. The execution time varied, with the GRASP
model taking the longest at 30.119 seconds.

The Breast Cancer dataset, with 30 features, showcased high accuracies for all mod-
els, with the GA model achieving the highest accuracy of 0.9826.

Finally, the Connectionist dataset, with 60 features, displayed varied accuracies for
the different models. The GRASP model achieved the highest accuracy of 0.8978,
while the other models had slightly lower accuracies. The execution times were
presented in seconds, with the GRASP model taking the longest at execution time
at 243.608 seconds.

Overall, the table provides a comparison of accuracy and execution time for different
feature selection models across multiple datasets. It allows for an evaluation of the
effectiveness of each model in terms of accuracy and the trade-off with execution
time. Even though the Genetic Algorithm mostly outperforms thanks to its fine-
tuned features, our model also had some promising results.
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5.5 Hyperparameter Tuning

(a) t1 vs time (b) t2 vs time (c) t3 vs time

Figure 5.1 Comparison of t1, t2, and t3 parameters vs time

Hyperparameter tuning is a crucial aspect of developing robust machine learning
models. This process involves optimizing the parameters of the model that are
not learned from the data, in order to improve its performance. For our Relief-
based Greedy Randomized Adaptive Search Procedure model, the hyperparameters
of interest include ‘t1‘, ‘t2‘, ‘t3‘, and ‘K‘.

The ‘t1‘ parameter, which controls relief score, was tuned over a range from 0 to 1,
in increments of 0.1. After an exhaustive search over this range, we found that a
‘t1‘ value of 0.01 yielded the most optimal model performance.

The ‘t2‘ parameter, which controls KNN acuracy score in construction phase, was
similarly explored, over a range from 0 to 1, at specified intervals (0.1, 0.25, 0.5,
0.75, 0.9, and 1). Through this process, we discovered that the model performance
was highest when ‘t2‘ was set to 0.5.

We followed a similar approach for the ‘t3‘ parameter, which controls KNN acuracy
score in improvement phase, exploring the same range and intervals as ‘t2‘. Like
‘t2‘, we found the optimal value for ‘t3‘ to be 0.5.

Finally, we tuned the ‘K‘ parameter, which controls number of iterations. We inves-
tigated a series of possible values: 1, 5, 10, 15, 30, 50, and 100. Upon conducting
this search, we found that ‘K = 10‘ yielded the best results for our model.

By methodically exploring these hyperparameters, we were able to fine-tune our
Relief based GRASP model to achieve an optimal balance of performance and com-
putational efficiency. Future work may further refine these parameters, or investigate
additional hyperparameters to enhance the model’s performance.
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5.6 Comparative Analysis with other GRASP Models

To ascertain the effectiveness of our proposed Relief based GRASP model, we en-
gaged in a comparative analysis against other notable GRASP-based models. In
particular, we focused on FCGRASP and SAGRASP models.

The FCGRASP model was introduced by Bermejo, Gámez, and Puerta in 2011
(Bermejo, Gámez & Puerta, 2011). It’s a unique search method for feature selection
in high-dimensional data, that substantially reduces the number of wrapper evalua-
tions. This is achieved by alternating between filter and wrapper evaluations during
the feature selection process. It’s a two-step iterative algorithm that constructs a
solution and then improves it in each iteration. In the construction phase, a lighter
filter measure is used for the evaluation process while a more costly wrapper is
utilized for improving the constructed solution.

Meanwhile, SAGRASP is a model developed by Moshki et al. (Moshki, Kabiri &
Mohebalhojeh, 2015). It incorporates a modified version of the Simulated Annealing
(SA) algorithm into the GRASP framework. This helps in escaping local minimums,
further reducing wrapper evaluations per iteration, and offering implicit control over
the trade-off between solution length and precision.

Our comparative analysis offers revealing insights into the efficacy and efficiency
of the considered models. In terms of precision, our model registers a score of
0.883. Interestingly, this precision outperforms the SAGRASP model, which stands
at 0.873. However, when juxtaposed with the FCGRASP model that boasts a
precision of 0.895, our model doesn’t reach the benchmark. This margin, while
not vast, draws attention to potential areas for enhancement and fine-tuning in our
model.

Table 5.2 Comparative Analysis on Connectionist data

Precision Time(s)

Dataset | Our Model SAGRASP FCGRASP Our Model SAGRASP FCGRASP

Connectionist 0.883 0.873 0.895 248 149 2054

Shifting the lens to time efficiency, our model’s performance demonstrates both
strengths and areas of improvement. It completes its execution in 248 seconds.
While this is notably faster than the FCGRASP model, which takes a substantial
2054 seconds, it still lags behind the swift execution of the SAGRASP model at just
149 seconds. This differential in execution time underscores the balance that needs
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to be struck between precision and computational efficiency, especially in real-world
applications where time is often of the essence.

The above findings underscore the multifaceted nature of performance metrics in
model assessment. While our model shows promise, especially in precision rela-
tive to the SAGRASP model, there’s a clear avenue for refining its time efficiency.
Such comparative analyses are not just an end in themselves; they serve as cat-
alysts, directing efforts towards continuous innovation and development. In the
ever-evolving realm of GRASP-based feature selection in high-dimensional data, it’s
pivotal to iterate and evolve. Embracing feedback, both from quantitative metrics
and comparative benchmarks, is the cornerstone for future advancements in the
field.

5.7 Future Work

While the current results are promising, there are several directions for future ex-
ploration. Firstly, additional datasets could be used to test the robustness of our
model. Testing our approach on a variety of data types and domains can provide a
better understanding of its applicability and potential limitations.

Secondly, implementing sampling techniques during our experiments could bring
further insights. By varying the subsets of data our model is trained and evaluated
on, we can gain deeper knowledge of its stability and consistency.

Thirdly, we aim to apply our model to regression problems. Currently, our focus
has been mainly on classification tasks. Exploring regression problems would allow
us to understand the model’s performance in different predictive modeling contexts.

Lastly, we aim to compare our method with more state-of-the-art methods. By doing
this, we can further situate our work in the current research landscape, identify the
areas where our model excels, and recognize the ones where improvements can be
made.

By following these directions in future research, we aim to continuously improve and
refine our model, contributing to the progress in the field.
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