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ABSTRACT

SELF- AND WEAKLY- SUPERVISED DEEP LEARNING METHODS WITH
APPLICATIONS IN BIOMETRIC AND BIOMEDICAL DATA

MEHMET CAN YAVUZ

COMPUTER SCIENCE AND ENGINEERING Ph.D DISSERTATION,
JULY 2023

Dissertation Supervisor: PROF. DR. AYŞE BERRİN YANIKOĞLU YEŞİLYURT

Keywords: Variational Methods, Weakly-Labeled Data, Self-Supervised,
Pseudo-Labeling, Contrastive Learning, Beta-Divergence

This dissertation introduces novel deep learning methodologies for effectively lever-
aging weakly-labeled biomedical data and uncurated/unlabeled biometric data. The
thesis is divided into three major parts. In the first part, we present a classifier
that combines 2D and 3D classifiers that are trained with weak supervision us-
ing volume-wise labeled CT lung images. The main contribution of the thesis is a
new representation learning method, extending the contrastive learning framework
with the variational approach. In the second part of the thesis, we present a semi-
supervised approach using the variational contrastive design, applied to learning
face attributes from web-collected face images. This technique, called VCL-PL, is
specifically designed to counter the inherent noise found in the collected images.
Through various experimental setups, the method demonstrates an enhancement
in accuracy over supervised or state-of-the-art self-supervised methods. The last
part of the dissertation develops a robust self-supervised learning model, VCL, that
combines variational contrastive learning with beta-divergence. This model exhibits
better performance than state-of-the-art models when used with unlabeled, uncu-
rated, and noisy datasets. Through the development of these methodological ad-
vancements and the introduction of novel datasets, this dissertation contributes to
learning from weakly-labeled data in the medical domain and introduces the vari-
ational contrastive learning approach that better handles noisy data and low data
regimes, in the biometric domain.
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ÖZET

KENDINDEN- VE ZAYIF- DENETIMLI DERIN ÖĞRENME YÖNTEMLERI
ILE BIYOMETRI VE BIYOMEDIKAL VERILERDEKI UYGULAMALARI

MEHMET CAN YAVUZ

BILGISAYAR BILIMLERI VE MUHENDISLIGI DOKTORA TEZİ,
TEMMUZ 2023

Tez Danışmanı: PROF. DR. AYŞE BERRİN YANIKOĞLU YEŞİLYURT

Anahtar Kelimeler: Varyasyonel Yöntemler, Zayıf Etiketlenmiş Veri, Kendinden
Denetimli, Sahte Etiketleme, Karşıt Öğrenme, Beta-Divergence

Bu tez, zayıf etiketlenmiş biyomedikal verileri ve düzensiz/etiketsiz biyometrik veri-
leri etkili bir şekilde kullanmak için yeni derin öğrenme metodolojilerini tanıtır. Tez
üç ana bölüme ayrılmıştır. İlk bölümde, hacim bazında etiketlenmiş CT akciğer
görüntüleri kullanılarak zayıf denetimle eğitilmiş 2D ve 3D tekniklerini kullanan iki
sınıflandırıcı sunulmaktadır. Tezin ana katkısı, varyasyonel yaklaşımla karşılaştır-
malı öğrenme çerçevesini genişleten yeni bir temsil öğrenme yöntemidir. Tezin ikinci
bölümünde, web’ten toplanan yüz görüntülerinden yüz özelliklerini öğrenmek için
uygulanan varyasyonel karşılaştırmalı tasarımı kullanan bir yarı denetimli yaklaşım
sunuyoruz. Bu teknik, VCL-PL olarak adlandırılır ve toplanan görüntülerde bulunan
doğal gürültüyü karşılamak için özellikle tasarlanmıştır. Çeşitli deneysel kurulum-
lar aracılığıyla, yöntem denetimli veya güncel öz denetimli yöntemler üzerinde bir
doğruluk artışı gösterir. Tezin son bölümünde, varyasyonel karşılaştırmalı öğrenme
ile beta-diverjans formülizasyonunu birleştiren dayanıklı bir öz denetimli öğrenme
modeli, VCL, geliştirilir. Bu model, etiketsiz, düzensiz/etiketsiz ve gürültülü veri
kümeleriyle kullanıldığında güncel modellerden daha iyi performans sergiler. Bu
metodolojik ilerlemelerin geliştirilmesi ve yeni veri kümelerinin tanıtılmasıyla, bu
tez, tıbbi alanda zayıf etiketlenmiş verilerden öğrenmeye katkıda bulunur ve biy-
ometrik alanda gürültülü verileri ve düşük veri rejimlerini daha iyi ele alan varyasy-
onel karşılaştırmalı öğrenme yaklaşımını tanıtır.
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CHAPTER 1

INTRODUCTION

...tune the algorithms to observe their subtle symphony...

– a robot proverb

From social networks to medical imaging systems, we are generating and collecting
data at an unprecedented pace. While this data is invaluable to building artificial
intelligence systems, it is challenging to design machine algorithms that can leverage
data that is unlabelled or only weakly-labelled, and also possibly noisy. This is
particularly true in the field of biomedical and biometric data where the sheer volume
and the complexity of data pose tremendous opportunities if we can overcome the
challenges.

Machine learning, especially deep learning methods, has shown immense promise in
various tasks such as natural language understanding, speech recognition, and image
and video understanding in the last few years. With these significant advances, there
has also been a surge in interest in building machine learning models for processing,
analyzing, and understanding large-scale biomedical and biometric data. Yet, the
majority of these methods rely heavily on large volumes of labeled data for training,
which is often challenging and expensive to acquire.

The primary focus of this dissertation is on the effective management and use of
weakly-labeled and uncurated data in the context of biomedical and biometric data.
It presents a series of methodological contributions aimed at dealing with weakly-
labeled or uncurated data, ranging from the detecting COVID-19 from CT images
to face attribute recognition.
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Chapter 2 presents a system that offers insights into the challenges and potential of
weakly labeled data for detecting COVID-19 infection from CT images. It further
introduces a novel dataset of volume-wise labeled CT images for COVID-19 presence.
A new 3D model using the whole CT volume at once is developed using weakly
labelled data, to work in complement with the existing 2D approach. The model is
evaluated extensively over three public datasets, paving the way for further research
in this area.

Chapter 3 introduces the novel variational contrastive learning approach, used in
context of a semi-supervised framework. The approach, called VCL-PL, is designed
to leverage web-collected face images to improve the performance of a face attribute
classifier. The efficacy of this method is evaluated across multiple experimental
setups, demonstrating its capability to deliver significant improvements in accuracy,
especially in low data regimes and in general noisy data.

In Chapter 4, we present a robust self-supervised learning model called VCL, that
extends the proposed variational contrastive learning approach with beta-divergence
in the self-supervised domain. The performance of this model with unlabelled and
noisy datasets is rigorously evaluated, affirming its effectiveness and robustness.

In conclusion, this dissertation makes a contribution to the field of machine learning,
especially with regard to handling and learning from weakly-labeled biomedical and
uncurated biometric data. The methods and techniques developed in this work have
broad applications and implications, potentially paving the way for future research
in this rapidly evolving field.
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CHAPTER 2

COMPARISON AND ENSEMBLE OF 2D AND 3D APPROACHES
FOR COVID-19 DETECTION IN CT IMAGES

Chapter 2 presents a comprehensive exploration of the challenges and opportuni-
ties inherent to weakly labeled data, particularly its application in the detection of
COVID-19 through volume-wise labeled CT images.

Detecting COVID-19 in computed tomography (CT) or radiography images has been
proposed as a supplement to the RT-PCR test. In this chapter, we present a deep
learning ensemble, called IST-CovNet, that combined novel 2D (slice-based) and 3D
(volume-based) approaches to this problem. The 3D approach is developed in the
context of this thesis.

The proposed ensemble obtains 90.80% accuracy and 0.95 AUC score overall on
the newly collected IST-C dataset in detecting COVID-19 among normal controls
and other types of lung pathologies; and 93.69% accuracy and 0.99 AUC score on
the publicly available MosMedData dataset that consists of COVID-19 scans and
normal controls only. The system also obtains state-of-art results (90.16% accuracy
and 0.94 AUC) on the COVID-CT-MD dataset which is only used for testing. The
system is deployed at Istanbul University Cerrahpaşa School of Medicine where it is
used to automatically screen CT scans of patients while waiting for RT-PCR tests
or radiologist evaluation.

This work is published in the Neurocomputing journal, (Ahmed, Yavuz, Şen, Gülşen,
Tutar, Korkmazer, Samancı, Şirolu, Hamid, Eryürekli & others (2022)).
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2.1 Introduction

Covid-19 is a highly contagious disease caused by the SARS-CoV-2 virus, which
spread rapidly around the world starting early 2020 (Zhu et al. Zhu, Zhang, Wang,
Li, Yang, Song, Zhao, Huang, Shi, Lu & others (2020)). The definitive diagnosis
of COVID-19 is based on real-time reverse transcriptase polymerase chain reac-
tion (RT-PCR) positivity for the presence of coronavirus Corman, Landt, Kaiser,
Molenkamp, Meijer, Chu, Bleicker, Brünink, Schneider, Schmidt & others (2020);
Rubin, Ryerson, Haramati, Sverzellati, Kanne, Raoof, Schluger, Volpi, Yim, Martin
& others (2020).

Due to the long duration to obtain the RT-PCR results and the prevalence of false
negative results Long, Tang, Shi, Li, Deng, Yuan, Hu, Xu, Zhang, Lv & others
(2020), the medical community has been in search of alternative or supplementary
methods, including screening chest X-ray or Computed Tomography (CT) scans of
patients for patterns of pneumonia caused by the COVID-19 infection. This work
originated at Istanbul University-Cerrahpaşa Hospital, to automatically analyze CT
scans while the patient is still in the tomography room, for successful containment
of infected cases.

The chest X-ray consists of a single 2-dimensional, frontal image of the thorax, while
a chest CT scan consists of a variable number of 2-dimensional axial slice images.
The number of slices in a CT volume vary (typically [200-500]) and the shape and
size of lung tissue within the slice vary significantly between slices. Hence, detection
of COVID-19 infection in a chest X-ray presents as a typical image classification
problem, while the CT scan provides a richer, but also more challenging input.

Detecting COVID-19 in computed tomography or X-ray images has been studied
widely since the beginning of the pandemic Chaddad, Hassan & Desrosiers (2021);
Hammoudi, Benhabiles, Melkemi, Dornaika, Arganda-Carreras, Collard & Scher-
pereel (2020); Li, Qin, Xu, Yin, Wang, Kong, Bai, Lu, Fang, Song & others (2020);
Liu, Gao, He, Liu & Yin (2020); Narin, Kaya & Pamuk (2020); Wang & Wong (2020);
Wang et al. (2020); Xu, Jiang, Ma, Du, Li, Lv, Yu, Ni, Chen, Su & others (2020);
Yu, Lu, Guo, Wang & Zhang (2021); Zhang, Zhang, Zhang & Wang (2021). Some
of these systems only address the 2-class problem: distinguishing between normal
and COVID-19 infected parenchyma (e.g Narin et al. (2020); Yu et al. (2021)), while
others aim to detect COVID-19 infection among all possible conditions (normal lung
parenchyma and other lung pathologies, including other types of pneumonia). The
latter, which is the problem addressed in this work, is a significantly more difficult
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(a) COVID-19

(b) Normal lung parenchyma

(c) Others (including Non-COVID-19 pneumonia, tumors and emphysema.)

Figure 2.1 IST-C dataset samples. The ground glass opacities can be observed in
the COVID-19 images, marked with the ellipses.

problem as non-COVID-19 pneumonia presents similar patterns to COVID-19.

We developed a deep learning ensemble (IST-CovNet) for detecting COVID-19 infec-
tions in high resolution chest CT scans, where we compare and combine slice-based
and volume-based approaches. The slice-based approach takes individual slices as in-
put and outputs the COVID-19 probability for that slice. To obtain the patient-level
decision from slice-level predictions, we have evaluated different classifier combina-
tion techniques, including simple averaging and Long-Short Term Memory (LSTM)
networks. This system is based on transfer learning using the Inception-ResNet-V2
Szegedy, Ioffe, Vanhoucke & Alemi (2017) network that is expended with a novel
attention mechanism Dang, Liu, Stehouwer, Liu & Jain (2020).

The volume-based approach is based on the DeCoVNet architecture of Wang et al.
Wang et al. (2020) with some modifications to the architecture. In both approaches,
we make use of the pretrained U-Net Ronneberger et al. (2015) architecture to focus
on the lung regions in the slice images. To combine 2D and 3D systems, we used
ensemble averaging, multi-variate regression and Support Vector Machines (SVMs).

A new dataset (IST-C) is collected at Istanbul University-Cerrahpaşa, Cerrahpaşa
Faculty of Medicine (IUC), consisting of 712 chest CT scans collected from 645 pa-
tients. It includes samples from COVID-19 infected patients, as well as normal lung
parenchyma and Non-COVID-19 pneumonia, tumors and emphysema patients. Fig-
ure 2.1 shows three samples from the IST-C dataset collected in this work, including
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a typical COVID-19 involvement pattern termed as ground glass opacity, along with
normal lung parenchyma and other conditions including non-COVID-19 pneumonia,
tumors and emphysema.

The contributions of this work are the following:

• We present a deep neural network ensemble (IST-CovNet) that combines 2D
(slice-based) and 3D (volume-based) approaches and achieves state-of-art ac-
curacies on the publicly available MosMedData Morozov et al. (2020) and IST-
C datasets collected in this work. The proposed system also obtains close to
state-of-art results on the COVID-CT-MD Afshar et al. (2020) dataset which
is not used for training, demonstrating the inter-operability of the proposed
system.

• Rather than adopting a single approach as done commonly in the COVID-19
AI literature, we compare 2D and 3D approaches, along with relevant pre-
processing, attention and combination alternatives on 3 different data sets,
and combine the best systems to obtain the final ensemble classifier. Our ap-
proaches include novel aspects that contribute to improved performance, such
as a new attention model and slice-level combination using LSTMs in the 2D
system and an extended novel architecture in the 3D approach.

• We have collected a medium-size dataset consisting of 712 high resolution
chest CT scans from 645 people, showing normal lung parenchyma, COVID-19
infections, as well as other pathologies (including non-COVID-19 pneumonia,
tumors and emphysema). The IST-C dataset is made public along with our
results as benchmark1.

• The system is deployed at one of the biggest hospitals in Turkey (Istanbul
University Cerrahpaşa School of Medicine), to screen for CT scans that show
COVID-19 infections for timely containment of infected patients.

2.2 Related Works

Automatic COVID-19 detection research in literature have targeted both chest X-
rays Hammoudi et al. (2020); Narin et al. (2020); Wang & Wong (2020) and CT

1https://github.com/verimsu/IST-C-dataset
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Dataset Description Res. CT
Scans

Slices C19 Nrml Others

CC-19 Kumar
et al. (2020)

CT scans collected
from 3 different
hospitals and 6
different scanners

High 89 34,006 68 21 0

MosMedData
Mozorov et al.
(2020)

CT scans with in-
dicated COVID-19
severity level (4 lev-
els)

High 1,110 46,411 856 254 0

BIMCV-
COVID19
Iglesia Vaya et
al. (2020)

COVID-19 and
Normal only High 2,068 314,056 1,141 927 0

COVID-CT-
MD Afshar et
al. (2020)

COVID-19, Normal
and Other High 305 45,471 170 77 61

HKBU-HPML-
COVID-19 He
Wang et al.
(2020)

COVID-19, Nor-
mal and Other
Collected from
different hospitals

High 6,878 406,449 2,513 1,927 2,435

IST-C (this
work)

COVID-19, Nor-
mal, Other CT
scans from one
hospital

High 712 200,647 336 245 131

Table 2.1 Some of the publicly available COVID-19 CT scan datasets. The first four
datasets contain scans of only COVID-19 infected patients and those with normal
lung parenchyma. IST-C dataset collected in this work includes non-COVID-19
pneumonia, tumors and emphysema as well.

scans Li et al. (2020); Liu et al. (2020); Wang et al. (2020); Xu et al. (2020) as
input and there have been many systems published in peer-reviewed venues or pre-
print sites since the beginning of the pandemic. There are also systems that aim
to leverage the potential of the two biomedical imaging modalities, taking as input
both a chest CT and a chest X-ray Chaddad et al. (2021); Chaudhary & Pachori
(2021); Zhang et al. (2021).

Comprehensive literature reviews can be found in surveys about artificial intelli-
gence (AI) based approaches to COVID-19 in Islam, Karray, Alhajj & Zeng (2020);
Ozsahin, Sekeroglu, Musa, Mustapha & Ozsahin (2020); Shi, Wang, Shi, Wu, Wang,
Tang, He, Shi & Shen (2020). Among these surveys, Ozsahin et al. Ozsahin et al.
(2020) structure their survey into 3 groups: systems aiming to differentiate between
i) COVID-19 versus normal lung parenchyma, ii) COVID-19 versus non-COVID-19
(sometimes called COVID-19 negative) consisting of both normal lung parenchyma
and other types of pneumonia, and iii) COVID-19 versus other types of pneumonia.
Systems included in this survey report the accuracy and/or the Area Under the
Curve (AUC) score related to the Receiver Operating Characteristic (ROC) curve.
State-of-art results are above 90% accuracy and 0.95 AUC for the first problem (i)
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Total Avg
# Patients # CT volumes # slices # slices/person

COVID-19 300 336 92,905 276 ± 83
”Normal” 245 245 67,712 277 ± 67
”Other” 131 131 40,030 306 ± 98
Overall 645 712 200,647 282 ± 82

Table 2.2 Overview of the IST-C dataset: COVID-19 infections are all people di-
agnosed with the infection; ”Normal” is everyone with no infection whatsoever;
”Other” is all other types, including pneumonia, tumors and emphysema.

and approximately 88% accuracy and 0.90 AUC for the second problem (ii).

AI based COVID-19 detection approaches are two-fold: 2D or slice-based approach,
taking a single slice image as input and obtain a score for individual slices Narin
et al. (2020), while 3D or volume-based approach, taking the whole volume (sequence
of slices) as the input and produce a single score for the patient Hammoudi et al.
(2020); Li et al. (2020); Wang et al. (2020); Xu et al. (2020). Note that while a
patient may have more than one CT scan, we treat each CT scan as if it belongs
to a unique patient and use the terms CT-level and patient-level interchangeably in
this work.

In slice-based models, output scores of slices are often combined by averaging, to
obtain the patient-level scores and decisions. Among volume-based approaches,
most systems use adaptive-pooling operation for combining slice level features Li
et al. (2020); Wang et al. (2020), while others use a more implicit combination using
Recurrent Neural Networks (RNN) Hammoudi et al. (2020). An advantage of 2D
models is the direct interpretability while the 3D models is potentially more powerful
as they leverage end-to-end optimization rather than a 2-stage process of obtaining
patient-level scores after slice-level scores.

In the remainder of this section, we focus on a subset of the literature due to space
limitations, reporting systems that analyze CT scans (not X-rays), address the prob-
lem of separating COVID-19 samples from all non-COVID-19 samples (not just
normal lung parenchyma), and appear on peer-reviewed venues. While we include
performance results reported in the referenced works, it should be kept in mind that
most of the results cannot be directly compared, as the test datasets or experimental
settings vary between systems.

Li et. al Li et al. (2020) developed a model called COVNet, that is based on the
Resnet Szegedy et al. (2017) backbone. The varying number of CT slices are input
into parallel branches that use shared weights and the deep features extracted from
each are combined by a max-pooling operation. They report 0.96 AUC score on the
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Figure 2.2 Segmentation network U-NetRonneberger et al. (2015): input is a slice
image and the output is the corresponding lung mask.

3-class classification problem of distinguishing between normal lung parenchyma,
COVID-19 and other lung pathologies.

Wang et. al. Wang et al. (2020) use the pretrained U-Net Ronneberger et al. (2015)
architecture to segment lung regions and obtain the lung mask volume. Then,
the proposed DeCovNet takes the whole CT volume along with the corresponding
lung mask volume as input, and outputs a patient-level probability for COVID-
19. The variable number of slices is handled using adaptive maxpool operation.
Authors report %0.91 accuracy and a 0.959 AUC score on the 2-class problem of
separating COVID-19 positive cases from all others (non-COVID-19, including other
pneumonia).

Hammoudi et al. Hammoudi et al. (2020) split a chest X-ray into patches and
after obtaining patch-level predictions using deep convolutional networks, they use
bidirectional recurrent networks to combine them to predict patient health status.

Liu et. al Liu et al. (2020) fine-tune well-known deep neural networks for the primary
task of detecting COVID-19 and the auxiliary task of identifying the different types
of COVID-19 patterns (e.g. ground glass opacities, crazy paving appearance, air
bronchograms) observed in the slice-image. They report that using the auxiliary
task helps with the detection performance, which reaches 89.0% accuracy.

Harmon et al. Harmon, Sanford, Xu, Turkbey, Roth, Xu, Yang, Myronenko, Ander-
son, Amalou & others (2020) test the performance of a baseline deep neural network
approach in a multi-center study. The approach consists of lung segmentation using
AH-Net Liu, Xu, Zhou, Pauly, Grbic, Mertelmeier, Wicklein, Jerebko, Cai & Co-
maniciu (2018) and the classification of segmented 3D lung regions by pretrained
DenseNet121 Huang, Liu, Van Der Maaten & Weinberger (2017). On a 1,337-patient

9



test set they report an accuracy of 0.908 and AUC score of 0.949.

Among systems that report on the MosMedData dataset, Jin et al. Jin, Chen,
Cao, Xu, Tan, Zhang, Deng, Zheng, Zhou, Shi & others (2020) propose a deep
learning slice-based approach employing ResNet-152 He, Zhang, Ren & Sun (2016)
architecture. The developed model achieved comparable performance to experienced
radiologists with an AUC score of 0.93.

He at al. He, Wang, Chu, Shi, Tang, Liu, Yan, Zhang & Ding (2021) proposed a
differentiable neural architecture search framework for 3D chest CT-scans classifi-
cation with the Gumbel-Softmax technique Jang, Gu & Poole (2016) to improve
the searching efficiency. The experimental results show that their automatically
searched model outperforms three of the state-of-the-art 3D models achieving an
accuracy of 82.29% on MosMedData dataset.

In a critical study, Maguolo and Nanni Maguolo & Nanni (2021) show that some
automatic COVID-19 detection systems achieve high accuracies even when the lung
region is masked in chest X-rays, indicating that the underlying neural networks are
learning patterns in the data that are not correlated to the presence of COVID-19.
They also discuss how to construct a fair testing protocol. Our single-channel 3D
system that achieves the best results in all datasets inputs CT scans that are masked
with the lung mask (hence, we can assert that there is no information leakage outside
of the lung region). Similarly, our 2D system attends to the lung areas, due to the
PCA-based attention module.

In another recent and well-publicized survey, Roberts et al Roberts, Driggs, Thorpe,
Gilbey, Yeung, Ursprung, Aviles-Rivero, Etmann, McCague, Beer & others (2021)
analyze all COVID-19 AI papers published in the first 9-months period of 2020, in
terms of their potential potential biases, according to the criteria indicated in Wolff,
Moons, Riley, Whiting, Westwood, Collins, Reitsma, Kleijnen & Mallett (2019).
After filtering the 2,212 papers found in an initial search according to relevance
and quality, the remaining 62 papers were analyzed in depth. Authors conclude
that none of the models identified are of potential clinical use due to methodological
flaws and/or underlying biases. While this work points out to some important biases
in machine learning systems for Covid-19 detection, it is worth pointing out with
this categorization, any system evaluated on a public dataset is directly categorized
as having a high risk of participant bias (since the participants cannot be verified)
and all deep learning approaches are categorized as having high risk of "predictor
bias" (since deep features are deemed as abstract and unknown imaging features).
In our work, we evaluate the proposed system on two large public datasets (one not
used in training at all) and one private dataset collected in the scope of this work, to
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address participation and outcome biases. We also report cross-validation results for
our final system, to eliminate analysis bias. The results obtained on the unseen data
Afshar et al. (2020) are state-of-art (in AUC) and also close to the results obtained
on the other two datasets, attesting to the generality of the system.

2.3 IST-C Dataset

While there are many works on automatic detection of COVID-19 infection on X-
ray or CT images, there were only a handful publicly accessible COVID-19 CT scan
datasets at the time of the preparation of this manuscript, shown in Table 2.1. Three
of these datasets, CC-19 Kumar, Khan, Zhang, Wang, Abuidris, Amin & Kumar
(2020), MosMedData dataset Morozov et al. (2020) and BIMCV-COVID19 de la
Iglesia Vayá, Saborit, Montell, Pertusa, Bustos, Cazorla, Galant, Barber, Orozco-
Beltrán, García-García, Caparrós, González & Salinas (2020) only contain COVID-
19 and normal lung parenchyma. On the other hand, in MosMedData, the COVID-
19 samples are also labelled with the severity of the infection in 4 levels (CT-1 to
CT-4). In addition to using two large public datasets Afshar et al. (2020); Morozov
et al. (2020) in evaluating the system developed in this study, we have also collected
a new open-source dataset called IST-C, retrospectively from patients admitted to
the Radiology department of Cerrahpaşa Faculty of Medicine from March 2020 to
August 2020. The collected dataset consists of 336 chest CT scans that are positive
for COVID-19, along with 245 scans showing normal lung parenchyma and 131 scans
from Non-COVID-19 pneumonia, tumors and emphysema patients. The COVID-19
scans are selected by expert radiologists from among the patients to whom CT is
performed with clinical suspicion of COVID-19 in the emergency department. These
two last groups will be called simply as ”Normal” and ”Other” from here on. The
detailed statistics of the dataset are shown in Table 2.2.

The collected CT scans in DICOM format consists of 16-bit gray scale images of
size 512 × 512. Each scan is accompanied with a set of personal attributes, such as
patient ID, age, gender, location, date, etc. (not used in this work). The average
age of the patients is 52 ± 17 years, in which 405 of the patients are male and 274
patients are female.

The annotation of this dataset is at CT scan level: the CT of a patient as a whole
is labelled as COVID-19, ”Normal”, or ”Other” by expert radiologists at Istanbul
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University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine.

Sample images extracted from COVID-19, ”Normal” and ”Other” classes are
shown in Figure 2.1. The anonymized dataset is now shared publicly at
http://github.com/suverim.

2.4 Preprocessing

Pixel values of images in the CT dataset are in Hounsfield Unit (HU) which is a
radiodensity measurement scale that maps distilled water to 0 and air to −1000.
The HU values range between −1024 and 4096, with higher values being obtained
from bones and metal implants in the body and lung regions typically ranging in
[−1024,0]. Similar to literature, we process chest CT scans such that values higher
than umax = 600 are mapped to umax and the range [−1024,umax] is normalized to
the [0,1] linearly.

Slice images that are originally (512×512) are resized to match the input size of the
respective deep networks, namely 299×299 for slice-based system and 256×256 for
the volume-based system. For the 3D approach, we have also reduced the slice count
by half, so that the whole CT volume consisting of up to around 500 slice images
fits in the GPU memory. We compared two alternatives for this: interpolation of
two subsequent slices and skipping every other slide. We and found that the latter
results in higher accuracy, even though interpolation is commonly used in many
biomedical applications. This reduction is done for only the IST-C dataset where
the number of slices per CT scan is high (Table II).

2.5 Lung Segmentation

Lung shapes vary greatly within a chest CT scan, as can be seen in Figure 1. With
the aim of focusing on the lung areas, we make use of the pretrained U-Net network
to segment lung regions from non-lung areas. Focusing to lung areas is possible by
masking the input with the lung mask as done in the 3D system or guiding the
attention of the network to the lung areas. This step is found to be quite important
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in reducing overfitting Gupta, Kaul, Sharma & others (2020), as well as information
leakage found in some previous COVID-19 detection systems Maguolo & Nanni
(2021).

The U-Net architecture was first proposed by Ronneberger et al Ronneberger et al.
(2015) for biomedical image segmentation in general and trained specifically for
lungs by Hofmanninger et al. Johannes, Jeanny, Sebastian, Helmut & Georg (2020).
Since then has been used in detecting lung regions extensively in the diagnosis of lung
health Li et al. (2020); Wang et al. (2020); Xu et al. (2020). The U-Net network,
shown in Figure 2.2, is named after the U-shape formed by the encoder branch
consisting of convolutional layers and the decoder branch consisting of deconvolution
operations. The network also has skip connections in each layer, carrying the output
of earlier layers to later layers.

Lung segmentation is applied to individual slices in the CT volume. The output
for each slice is the corresponding binary segmentation mask, separating lung areas
(including air pockets, tumors and effusions in lung regions) from background or
other organs, as shown in Figure 2.3. The segmentation extracts left and right lungs
separately, although this information is not used in our model.

Lung segmentation with U-Net is very successful, as reported in Johannes et al.
(2020) and also observed in our case. Nonetheless, in order not to miss infected
regions, we dilated the masks with a 10-pixel structuring disk. Sample slices from
the IST-C dataset and corresponding lung masks obtained by U-Net and the dilated
masks are shown in Figure 2.3.

Original 
Images

Segmented 
Images

Dilated
Images

Figure 2.3 Sample slice images along with their segmentation masks as obtained by
U-Net and dilated masks.
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Figure 2.4 The base network and the inserted attention-based layer. Attention layer
takes the feature maps F as an input and estimate the attention map Φ(F), which
is then used to attend to the original features after a sigmoid activation.

2.6 Slice-based Approach

In the 2D approach, CT slices are analyzed independently, before combining them
to obtain patient-level predictions. This part of the algorithm is developed by my
colleague Dr. Sara Atito Ali during the pandemic research.

2.6.1 Base Model

To construct the base network architecture, we employed Inception-ResNet-V2 ar-
chitecture Szegedy et al. (2017), one of the top-ranked architectures of the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) 2014 Russakovsky, Deng, Su,
Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg & Fei-Fei (2015).
The network architecture was used successfully in various image classification and
object detection tasks Ahmed, Yanikoglu, Zor, Awais & Kittler (2020); Lee, Na &
Kim (2019).

Inception-ResNet-V2 network is an advanced convolutional neural network that
combines the inception module with ResNet He et al. (2016) to increase the ef-
ficiency of the network. The network is 164 layers deep with only 55.9 million
parameters. It consists of three main reduction modules with 10, 20, and 10 incep-
tion blocks for each module, respectively. The size of the output feature maps of
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the three reduction modules are 35×35, 17×17, and 8×8, respectively.

Training a large deep learning network from scratch is time consuming and requires
a tremendous amount of training data. Therefore, our approach is based on fine-
tuning a pre-trained Inception-ResNet-V2 model, that is originally trained on the
ImageNet dataset with 1.2 million hand-labeled images of 1,000 different object
classes.

2.6.2 Attention Mechanism

To investigate the predictions of the trained base model, we applied Class Activation
Mapping (CAM) Zhou, Khosla, Lapedriza, Oliva & Torralba (2016) on some of the
images from the validation set. Observing that the attention of the network is not
always directed to the area of interest (lung tissues) in misclassified images, we
decided to use attention maps and thereby guide the network to the regions that
are important to the problem at hand. Attention mechanism has been successfully
applied in many computer vision tasks, including fine-grained image recognition
Zheng, Fu, Mei & Luo (2017) and face attributes classification Aly & Yanikoglu
(2018).

We add an attention map block inserted to the backbone of our base network, as
shown in Figure 2.4. The input to the attention layer is a convolutional feature
map F ∈ RH×W ×C , where H, W , and C are the height, width, and the number of
channels, respectively. The output of the attention module is the masked feature
map F′ = F⊙σ(Φ(F)), obtained via element-wise multiplication of the feature maps
F and sigmoid (σ) attenuated attention layer output, Φ(F) ∈ RH×W .

Unlike the standard approach of learning the attention layer fully within the network,
the approach used in this work is suggested to be an explainable and modular
approach Dang et al. (2020). It makes the assumption that an attention map can
be represented using the linear combination of a set of basis vectors, as:

Φ(F) = M̄+B×α

where M̄ ∈ RH×W is the average segmentation map; H and W are the height and
width of the images; B ∈ RH×W ×n is the matrix of the n basis vectors; and α ∈ Rn×1

are the coefficients.

The average lung map M̄ and the 12 basis vectors B are obtained by applying Prin-
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cipal Component Analysis (PCA) to lung masks obtained by U-Net segmentation
network. The 12 basis vectors that retain approximately 75% of the variance are
shown in Figure 2.5 and U-Net is explained in Section 2.5.

To obtain the attention map coefficients α an additional convolutional block is in-
serted to the network getting the input from the feature maps F, as shown in Figure
2.4. The convolutional block consists of a separable convolutional layer which is
a depth-wise convolution performed independently over each channel of an input,
followed by a pointwise convolution, batch normalization, and ReLU activation func-
tion. The output of the convolutional block (or attention coefficient block) are the
weights α which form the coefficients in the linear basis vector representation.

Figure 2.5 (a) Mean mask M̄ and (b) The first 12 eigenvectors.
"

2.6.3 Implementation Details

The Inception-ResNet-V2 network used as the base model in the slice-based ap-
proach is chosen due to its relatively small size and good performance. The network
has an RGB image input size of 299 × 299. The output layer of the model is re-
placed with a fully connected layer with 2 hidden units to represent the given classes:
COVID-19 vs Non-COVID-19 (including “Normal“ and “Other“ samples). All the
layers in the classification network are finetuned and optimized using categorical
cross-entropy loss function.

For the attention based model, we added the attention layer after the first reduction
block as shown in Figure 2.4. As for the attention loss function, we trained the
network in unsupervised manner. Even in the absence of the attention map supervi-
sion, we found that the attention module is able to learn the discriminative regions
automatically.

The implementation is done using the Inception-ResNet-V2 model provided in the
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Figure 2.6 Architecture of the classification network which is based on DeCoVNet
Wang et al. (2020).

Matlab deep learning toolbox. Several commonly used data augmentation tech-
niques are applied during training, such as rotation [−5 to 5], x and y translation
[−5, 5], and x and y scaling [0.9, 1.1].

For all 2D systems, we set the batch size equal to 64 and the initial learning rate
as 1e-5 with a total of 50 epochs with Adam optimizer. The training process takes
around 100 minutes per epoch for the IST-C dataset and 40 minutes per epoch for
the MosMedData dataset using an 8GB Nvidia GeForce RTX 2080 GPU.

2.6.4 Combining Slice-level Predictions

The straightforward approach to obtain patient-level decision is to combine the
predictions of the slice based model using simple averaging of slice-level predictions.
This is evaluated as the base model, to obtain the patient-level score.

However, simple averaging does not take into account the information about the
characteristics of COVID-19 infection, such as the fact that the patterns are often
seen in the lower parts of the lungs. To learn this type of information about the
slice sequence and to also handle the variable length of the slice sequence, we also
used Recurrent Neural Networks (RNNs) as an alternative Rumelhart, Hinton &
Williams (1986).

We used Long Short-Term Memory (LSTM) network Hochreiter & Schmidhuber
(1997) that is the most powerful type of recurrent network. The input to the network
consists of deep features corresponding to each slice in the CT volume. The features
are extracted from the last pooling layer of the slice-based CNN model with the
attention module, discussed in Section 2.6). The LSTM learns to combine the slice-
level features to obtain patient-level predictions.
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The LSTM architecture consists of 3 layers: i) a bidirectional LSTM layer with
1024 hidden units and a dropout layer to reduce overfitting; ii) another bidirectional
LSTM layer with 512 hidden units; and iii) a fully connected layer with an output
size corresponding to the number of classes (2 or 3 in our case). It is important
to note that the number of slices in the CT volumes varies substantially which can
introduce lots of padding into the training process of the LSTMs and consequently
negatively impact the classification accuracy. To overcome this issue, we normalized
each CT sequence into 282 slices (i.e. the mean slice count across the IST-C dataset),
by either dropping or replicating slices depending on the length of the volume. After
normalization, each slice of the CT volume is passed to the trained CNN model for
feature extraction. Then, the LSTM model is trained using the sequence of the
feature vectors corresponding to the slices.

2.7 Volume-base Approach

The 3D volume-based approach takes as input the whole CT volume and outputs
patient-level decision (COVID-19 positive and negative probabilities), based on a
single step processing of the input. It uses the lung segmentation volume obtained
by U-Net (described in 2.5), followed by a classification network based on DeCoVNet
Wang et al. (2020).

The segmentation network (U-Net) takes as input a single slice of the chest CT
and outputs a binary mask indicating the lung region. The classification network
subsequently takes the CT volume and the corresponding binary mask volume and
outputs the patient-level scores.

2.7.1 Classification network

The classification network used in our work is based on DeCoVNet that has been
proposed by Wang et al. Wang et al. (2020). We have made some modifications to
this network, without significantly changing its architecture. The network consists
of three consecutive blocks, (1) Stem (2) ResBlocks (3) Classifier, as shown in Figure
2.6 and detailed in Table 2.3.
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The stem block consists of a convolutional layer with a receptive field size 5x7x7
(depth, height, width), as used in well-known networks AlexNet Krizhevsky,
Sutskever & Hinton (2012) and Resnet He et al. (2016). The convolutional layer
is followed by a batchnorm layer and a pooling layer. We evaluated using both a
single channel input, consisting of the slice image with the lung mask applied, as
well as the 2-channel input, consisting of the input slice and its lung mask, as in
the original network. As we expected, the 2-channel approach led to less efficient
training and did not bring accuracy gains.

The second stage of the networks consists of two 3D residual blocks (ResBlocks),
with maxpool operation in between to reduce the volume depth by half 64xT/2x64x64.
In each block, there are 2 kernels: 3x1x1, 1x3x3 (depth,height,width) with a stride
of 1 in each dimension and padding of 1 wherever needed. The output volume is of
size 128xT/2x32x32. This block is adopted without any modification.

The third block, called the Progressive classifier, starts with an adaptive maxpool
operation that handles the variable number of slices and outputs 128x16 feature maps
of size 32×32. It is followed by 3 convolution layers and pooling operations, followed
by a fully connected output layer with softmax activation. The main modification
in this block is to enrich the feature representation. The original DeCoVNet had
a global max pooling layer with 32 × 1 × 1 × 1 nodes, in the penultimate layer.
We extended the Progressive classifier block by adding a new layer of concatenated
features obtained using global max pool operation after each of the 3D convolutional
layers. More specifically, from a convolutional layer with FxDxHxW output volume,
the global max pooling operation outputs a vector of size F . The resulting 192-
dimensional (96+48+48) feature vector is fully connected to the output layer (2
nodes with softmax activation), as shown in Figure 2.6. We thus increased the
penultimate layer size from 32 to 192. This feature representation was inspired by
the work in Ahmed & Yanikoglu (2019), where authors proposed to approximate
a deep learning ensemble by replicating the output layer with connections from
earlier layers and extending the loss function to include all the loss terms Ahmed &
Yanikoglu (2019).

The modified classification network architecture is given in Table 2.3.
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Operation Output Penult.
Stem Conv3d@5x7x7 16xTx64x64
ResBlocks ResBlock@3x1x1&1x3x3 64xTx64x64

MaxPool3d 64xT/2x64x64
ResBlock@3x1x1&1x3x3 128xT/2x64x64

Progressive AdaptiveMaxPool3d 128×16×32×32
Classifier Conv3d@3×3×3 96×16×32×32

GlobalPool3d 96x1x1x1
———— 2nd Block ————
MaxPool3d 96×4×16×16
Conv3d@3×3×3 48×4×16×16
Dropout3d (p=0.5) 48×4×16×16
GlobalPool3d 48×1×1×1
———— 3rd Block ————
MaxPool3d 48×4×16×16
Conv3d@3×3×3+ReLU 48×4×16×16
GlobalPool3d 48x1x1x1
FullyConnected 2

Table 2.3 The 3D-classification network architecture. The residual blocks have two
kernels.

2.7.2 Implementation Details

In training the system, the settings are the same and as follows: the loss function is
the categorical cross-entropy; the optimizer is the Adam optimizer used with 1e-5
learning rate. Since the graphical card NVidia 2080 can only process a single batch
at a time, the batch size is one due to memory constraints. We also used data
augmentation exactly same with DeCoVNet: scaling (1−1.2), rotation (10 degrees)
and translation (0−10 pixels).

All 3D systems were run for a fixed number of 200 epochs, observing validation set
accuracy at each epoch. The optimal weights were chosen as those giving the highest
validation set results. The training process takes around 8 minutes for an epoch
of the IST-C dataset and 4 minutes for an epoch of MosMedData dataset, using an
8GB Nvidia GeForce RTX 2080 GPU.
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2.8 Combining Multiple Systems

After training the 2D and 3D systems, we combine output of the systems (patient-
level predictions) to obtain the final prediction. In contrast, please note that Section
2.6.4 discusses the combination of slice-level predictions to obtain patient-level pre-
dictions for the 2D approach.

The 2D (slice-based) approach is realized with or without the attention mechanism
and using different combination mechanisms to obtain the patient-level decision.
Similarly, the 3D (volume-based) approach is realized with 1-channel input where
the input is masked with the lung mask, or with 2-channel input as in the original
DeCovNet Wang et al. (2020).

The combination methods that were evaluated were averaging, multivariate linear
regression and Support Vector Machines (SVM). However, we only report ensem-
ble averaging results because multi-variate regression essentially assigned the same
weights to the two combined systems and the SVM did not bring noticeable im-
provements to justify the more complex combination method.

2.9 Experimental Evaluation

We have trained and evaluated the proposed 2D and 3D approaches along with
considered submodules, with the IST-C collected in this work (Section 2.3) and the
MosMedData dataset Morozov et al. (2020). These results are given in Tables 2.4
and 2.5, respectively. Furthermore, we report results of the above trained models
on the COVID-CT-MD dataset Afshar et al. (2020), to evaluate inter-operability
performance. These results are given in Table 2.6.

We have done extensive evaluation comparing different preprocessing, segmentation,
architecture and ensemble methods. However for the sake of clarity, we report only
the most important experiments, using accuracy and AUC scores, in line with the
literature. The accuracy values are given together with 95% confidence intervals
that are computed using the Wilson score interval method Wilson (1927) for the
number of test samples in each dataset.
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We split the IST-C database into training/validation/testing data. For "COVID-
19" class, 100 volumes are used for testing and the rest are used of the training and
the validation. For "Normal" and "Others" classes, 100 and 50 volumes are used
for testing, respectively. In total, we assigned 250 volumes for testing and 462 for
training and validation. The MosMed dataset was split randomly as train-test, with
a 80-20% split, resulting in a 222 test samples. The full COVID-CT-MD dataset
was used only for testing.

2.9.1 2D vs 3D

We first compared the effectiveness of 2D and 3D approaches in identifying COVID-
19 positive samples in IST-C and MosMedData datasets. Specifically, we evaluated
the 2D approach with or without using the attention module and using simple
averaging or the LSTM architecture for combining slide-level features/predictions.
For the 3D approach, we compared using a single channel as input (the masked CT
scan), two-channel (CT scan and segmentation masks separately). Only the best
configurations were evaluated for MosMedData due to long training times needed.

For MosMedData, the systems were trained only on the training portion of MosMed-
Data to separate COVID-19 positive samples from the Normal class and tested on
the MosMedData test portion, with results given in Table 2.5. For IST-C dataset,
the systems were pretrained with all of the 1,110-sample MosMedData and finetuned
on the IST-C training set.

The state-of-art results from the literature are also included whenever available Jin
et al. (2020), He et al. (2021). We have also implemented DeCovNet Wang et al.
(2020), that our 3D approach is based on, using the code supplied by the authors2,
following the same training procedure used for our 3D model.

Considering the results given in Tables 2.4 and 2.5, we see that the best 2D and
3D approach have the same accuracy on the IST-C datasets (87.20%), while the
3D system is slightly better for the MosMedData dataset (93.24% vs 91.89%) and
slightly better in AUC score in both datasets. However it should be noted that
training was faster for the 3D dataset per epoch thanks to the Python environment
(vs. Matlab) and the smaller network afforded longer training times (200 vs 50).

The 2D system on the other hand can be said to be more explainable, since it is

2https://github.com/sydney0zq/covid-19-detection
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Model Accuracy (%) AUC
2D - Base Network + Averaging 80.80 ± 4.88 0.87
2D - Base + Attention + Averaging 85.60 ± 4.35 0.90
2D - Base + Attention + LSTM 87.20 ± 4.14 0.89
3D - DeCoVNet Wang et al. (2020) 78.00 ± 5.14 0.78
3D - single channel - interpolation 82.80 ± 4.68 0.86
3D - single channel - skipping 87.20 ± 4.14 0.90
3D - two channels - skipping 81.45 ± 4.82 0.86
Ensemble - Averaging (IST-CovNet) 90.80 ± 3.58 0.95

Table 2.4 Performance results for the IST-C test set with n = 250 samples from
3 classes. The 2D systems are trained with only IST-C and the 3D systems were
trained with MosMedData and IST-C training subsets. DeCoVNet results are ob-
tained with author supplied code. Bold figures indicate the best accuracy in slice-
based or volume-based approaches.

Model Accuracy (%) AUC
Jin et al. (2D) - 0.93
He et al. (3D) 82.29 -
3D - DeCoVNet Wang et al. (2020) 82.43 0.82
2D - Base + Attention + Averaging 90.09 ± 3.93 0.96
2D - Base + Attention + LSTM 91.89 ± 3.59 0.95
3D - single channel - skipping 93.24 ± 3.30 0.96
Ensemble - Averaging (IST-CovNet) 93.69 ± 3.20 0.99

Table 2.5 Performance results for the MosMedData Morozov et al. (2020) test set
with n = 222 samples from only 2 classes (COVID-19 and Normal). Our approaches
are trained using only MosMedData training subset. DeCoVNet results are obtained
with author supplied code. Bold figures indicate the best results in the literature
and among our two different approaches.

possible to view slice-level decisions to identify where COVID-19 infection patterns
are detected by the system; this information can be displayed to the attending
physicians in the deployed system.
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Model Accuracy (%) AUC
COVID-FACT Heidarian et al. (2020) 91.83 -
CT-CAPS Heidarian et al. (2020) 89.80 0.930
Deep-CT-Net Dialameh et al. (2020) 86.00 0.886
2D - Base + Attention + Averaging 75.41 ± 4.84 0.838
2D - Base + Attention + LSTM 79.34 ± 4.55 0.819
3D - single channel 87.87 ± 3.67 0.931
Ensemble Averaging (IST-CovNet) 90.16 ± 3.35 0.942

Table 2.6 Inter-operability results using the COVID-CT-MD Afshar et al. (2020)
dataset with n = 305 samples from 3 classes. Our ensemble system was trained
using only MosMedData and IST-C datasets to measure the inter-operability of the
developed system. Bold figures indicate the best results in the literature and among
our approaches.

2.9.2 Comparison to the Results in Literature

Our best results obtained on the IST-C dataset is 90.80% accuracy and 0.95 AUC
score with ensemble averaging of the best 2D and and best 3D system (Table 2.4).

The results obtained on the MosMedData dataset with only COVID-19 and Normal
classes are better as expected (93.69% accuracy and 0.99 AUC), given the relatively
simpler problem with two classes (Table 2.5). In comparison to the best results in
the literature, our ensemble accuracy (93.69%) is 10% points higher compared to the
state-of-art and the AUC score (0.99) is also very high, exceeding the state-of-art.

2.9.3 Evaluating Novel Sub-Modules

Considering the results in Tables 2.4 and 2.5, we see that the attention layer in the
2D approach increases the accuracy significantly (85.60% vs 80.80% in IST-C), in
line with other problems where attention brings performance increase in literature.

The use of LSTM to obtain the patient-level predictions from slice-level fea-
tures brings another 1-1.2% points improvements in accuracy, for both IST-C and
MosmedData, compared to averaging the slice-level predictions. The CT sequence
size normalization in LSTM training is an important aspect for this improvement.
On the other hand, the LSTM achieves lower AUC scores compared to averaging;
we expect that this is due to LSTM outputs being close to 0 or 1.

For the 3D approach, we observed that the 2-channel input also used in DeCoV-
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Net achieves significantly lower accuracy (81.45% vs 87.20%), probably due to the
difficulty in training the first layer weights and the success in obtaining good seg-
mentation masks.

The model trained with the author supplied DeCoVNet Wang et al. (2020) also
achieved lower results compared to our extended version (78.00% vs 81.45% for the
two-channel system which is basically the same as DeCovNet except for the added
skip connections), showing the benefits of extending the network to deal with the
rich information present in the CT scan.

Additionally, we found that the interpolation done to halve the large CT volume
in the case of the IST-C dataset, leads to significantly lower performance (%87.20
vs %82.80) compared to skipping every other slice, presumably due to the loss of
the fine details in the images. This is something to be aware of when dealing with
this or similar problems, as interpolation is commonly used in many biomedical
applications.

2.9.4 Inter-Operability

To study the inter-operability of systems with respect to different datasets col-
lected from different patient populations and tomography equipment and settings,
we tested the accuracy of the systems trained using the MosMedData and IST-C
datasets, on the COVID-CT-MD dataset Afshar et al. (2020). As the COVID-CT-
MD dataset was not used in training at all, we used the whole dataset for testing.
Hence our results are obtained on the whole dataset, while others are obtained on
the testing portion of the dataset. COVID-CT-MD dataset comprises 305 CT scans
from 3 classes, as indicated in Table 2.2.

The results shown in Table 2.6 accuracy and AUC results (90.16% and 0.9418) are
in line with results reported in literature, even though our systems were not trained
or finetuned at all for this dataset. In particular, the AUC of the ensemble is
highest and accuracy value is slightly behind the best reported results in literature
for this dataset Heidarian, Afshar, Enshaei, Naderkhani, Oikonomou, Atashzar,
Fard, Samimi, Plataniotis, Mohammadi & Rafiee (2020).

Furthermore, while the results are not directly comparable, our results on COVID-
CT-MD dataset show only a slight decrease compared to the IST-C dataset results
(90.80% accuracy and 0.95 AUC vs 90.16% accuracy and 0.942 AUC), indicating
the generality of the proposed system.
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Actual \Predicted Covid-19 Non-Covid-19
Covid-19 91 9
Normal 9 91
Other 5 45

Table 2.7 Confusion matrix for the IST-C dataset.

2.9.5 Error Analysis

The confusion matrix of the ensemble that obtained 90.8% accuracy on the IST-C
dataset (2.4) is given in Table 2.7. The system predicted 9 false negatives (9/100
COVID-19 samples) and 14 false positives (9/100 Normal and 5/50 Other samples)
in total. Hence the error rates were almost the same in each group.

An analysis of the errors by expert physicians revealed that the majority (6/9) of the
false negatives were due to minimal lung involvement or respiratory motion artifacts.
Respiratory motion artifacts were also observed alone or with atelectasis in 4/9 false
positives with normal parenchyma.

2.9.6 Prediction Scores Distribution

The system is designed to alert the attending physicians in case of sufficiently high
COVID-19 probability. Hence, we also considered the COVID-19 prediction distri-
bution of the ensemble, shown in Figure 2.7. An adjustable threshold (e.g. 0.3-0.4)
can be set to alert the attending physician, at the risk of some increased False
positives.

At 0.3 threshold, we obtain 95.0% sensitivity (true positive rate) and 80.0% speci-
ficity (1-false positive rate) on the IST-C test data set. ROC figures corresponding
to IST-C and MosMedData datasets are given in Figure 2.8.

2.9.7 Lung Segmentation Results

Regarding lung segmentation accuracy, Hofmanninger et al. Johannes et al. (2020)
report 97-98% Dice similarity scores measuring how much the mask generated by
U-Net and ground-truth overlaps, on different test datasets involving multiple lung
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Figure 2.7 COVID-19 predicted probability distribution for the IST-C dataset, using
the ensemble.

pathologies. While their tested datasets also included ground glass opacities ob-
served in COVID-19 cases, we evaluated the segmentation network’s performance
specifically for the COVID-19 detection problem by visually checking the segmen-
tation results of 5 slices from sampled at regular intervals from 1,156 CT scans (all
covid patients from IST-C and MosMedData datasets), for a total of 5,783 slice
images. We found around 11 serious segmentation errors, corresponding to roughly
%0.19, which is in line with Johannes et al. (2020). Samples of these images are given
in 2.9, where lung areas that are considered as background and are highlighted by
ellipses. Noting that the errors occur only in some of the slices within one CT scan,
we conclude that U-Net provides a successful segmentation, suitable for COVID-19
detection.
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Figure 2.8 ROC curves of the trained models on (a) IST-C dataset and (b) MosMed-
Data dataset.
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Figure 2.9 Samples of segmentation errors (a) slice image (b) corresponding lung
masks. Problematic areas are indicated with red arrows and are often missed lung
tissue due to infection or tumors.

2.9.8 Discussion

While our 3D approach is based on DeCoVNet Wang et al. (2020), we were able
to outperform its results on both datasets, thanks to the changes made to the
model. In particular, using only one input channel leads to more efficient training,
especially since the U-Net lung segmentation is very accurate and enriching the
network architecture also contributed to higher accuracy.

Similarly, even though the 2D system is based on fine-tuning a pretrained deep net-
work, the use of the novel attention mechanism and LSTMs to combine slice-level
features bring significant improvements over the base network and the standard ap-
proach of averaging slice predictions. We are aware of only one other work that also
combines a deep network with LSTMs, related to COVID-19 predictions: Hammoudi
et al. Hammoudi et al. (2020) use bidirectional LSTMs to predict patient health
status by combining the predictions made by a deep network for image-patches of
an X-ray.

Considering the results in Table IV, we see that our contributions improve accuracies
by 6.4 and 9.20 percentage points, in 2D and 3D models respectively (%87.20 vs
%80.80 and %87.20 vs %78.00). Furthermore, we gain another 3.6 percentage points
when we combine the 2D and 3D systems (%90.80 vs %87.20). Hence, while the main
contributions of our work are in the network architectures, the ensemble approach
also brings significant improvements.

2.10 Conclusion and Future Works

In addition to presenting a state-of-art system, we provide an evaluation of different
2D and 3D approaches on two datasets and discuss the effects of relevant preprocess-
ing, segmentation and classifier combination steps on performance. A third large

28



and public dataset is used to show inter-operability results.

The collected dataset (IST-C) is made public to contribute to the literature as a
challenging new dataset that consists of high resolution chest CT scans from a variety
of conditions.

This work was motivated to help combat the pandemic and the developed system
(IST-CovNet) is deployed and in use at Istanbul University Cerrahpaşa School of
Medicine, to flag suspected COVID-19 cases when the patient is still at the tomog-
raphy room.

For future works, the research could include the integration of 3D classifiers, taking
advantage of the wealth of data from radiology departments for pre-training. These
3D classifiers may yield more precise results due to the three-dimensional nature
of the lung structures. To maximize the use of unlabeled data, innovative self-
supervised learning methods could be employed.
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CHAPTER 3

VCL-PL: SEMI-SUPERVISED LEARNING FROM NOISY WEB
DATA WITH VARIATIONAL CONTRASTIVE LEARNING

One of the main contributions of this thesis is the introduction of a novel variational
supervised contrastive learning approach. In this chapter, the proposed approach
is used in leveraging noisy web-collected data in the face attribute classification
problem, within the semi-supervised learning framework. In Chapter 4, the same
general approach is extended and applied in a self-supervised manner.

Web data suffers from image set noise, due to unrelated images that may be retrieved
in response to the query. We propose a semi-supervised pseudo-labeling approach
where the embedding space distribution is learned via variational contrastive learn-
ing.

For addressing the multi-label face attribute classification problem, we use 40 Gaus-
sian sampling heads for the 40 attributes in the CelebA dataset and apply supervised
contrastive learning over a limited amount of labelled data. Soft pseudo-labeling is
then used to label the unlabelled data at attribute level, followed by two-stage do-
main adaptation.

We show that the proposed method using noisy web data brings improvements in
accuracy over supervised multi-label face attribute classification in all experimental
settings (over 2% points for very low-data settings). We suggest that learning the
embedding distribution and the subsequent soft pseudo-labeling according to the
nearest neighbors help in overcoming the noise in the unlabeled data.

This work is published in the International Conference in Pattern Recognition
(Yavuz & Yanikoglu (2022)).
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3.1 Introduction

Unsupervised and semi-supervised learning paradigms are expected to have a great
potential for progress in machine learning, as it is possible to collect images, audio or
video from nearly limitless data sources on Internet. For example, a web search can
be used to collect images to be used in training a visual concept. Unfortunately, the
weakly labelled data found on the web in response to the query, often contains large
amounts of irrelevant or noisy images. In the domain of face images, a particular
Internet search may return images that are unrelated or that only loosely correspond
to the query (e.g. images of makeup for “rosy cheek”). In this paper, we propose a
semi-supervised learning approach and evaluate its performance on classifying the
40 face attributes depicted in the CelebA dataset, using the internet as the source
of the unlabelled data.

Several different approaches are suggested in the literature to leverage unlabelled
data. Among these, we can distinguish two broad categories. In the first cate-
gory, we see unsupervised or self-supervised methods that are used to learn good
feature representations. Among these approaches, one group of algorithms includ-
ing including SimCLR Chen et al. (2020), Context EncodersPathak, Krahenbuhl,
Donahue, Darrell & Efros (2016), Self-Augment Reed, Metzger, Srinivas, Darrell
& Keutzer (2021), Deeppermnet Santa Cruz, Fernando, Cherian & Gould (2017),
Clusterfit Yan, Misra, Gupta, Ghadiyaram & Mahajan (2020), use a pretext task to
learn features using self-supervision Bojanowski & Joulin (2017); Caron, Bojanowski,
Mairal & Joulin (2019); Chen, Liu & Jia (2021); Chen, Kornblith, Swersky, Norouzi
& Hinton (2020); Chen, Zhai, Ritter, Lucic & Houlsby (2019); Doersch, Gupta &
Efros (2015); Feng, Xu & Tao (2019); Jenni & Favaro (2018); Kim, Cho, Yoo &
Kweon (2018); Kolesnikov, Zhai & Beyer (2019); Larsson, Maire & Shakhnarovich
(2016,1); Lee, Hwang & Shin (2020); Lee, Huang, Singh & Yang (2017); Minderer,
Bachem, Houlsby & Tschannen (2020); Misra & Maaten (2020); Mundhenk, Ho &
Chen (2018); Noroozi, Pirsiavash & Favaro (2017); Wu, Xiong, Yu & Lin (2018);
Yang, Parikh & Batra (2016); Zhai, Oliver, Kolesnikov & Beyer (2019); Zhang,
Isola & Efros (2016). Another group of algorithms, including such as Deep Cluster
Caron, Bojanowski, Joulin & Douze (2018), ClusterGANMukherjee, Asnani, Lin
& Kannan (2019), SCAN Van Gansbeke, Vandenhende, Georgoulis, Proesmans &
Van Gool (2020), aim to learn good feature representations that lead to good clusters
Bo, Wang, Shi, Zhu, Lu & Cui (2020); Dang, Deng, Yang, Wei & Huang (2021);
Figueroa & Rivera (2017); Guo, Zhu, Liu & Yin (2018); Song, Liu, Huang, Wang
& Tan (2013); Van Gansbeke et al. (2020); Yang et al. (2016); Yang, Cheung, Li &
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Fang (2019).

In the second category, there are semi-supervised approaches, such as MixMatch
Berthelot, Carlini, Goodfellow, Papernot, Oliver & Raffel (2019), FixMatchSohn,
Berthelot, Carlini, Zhang, Zhang, Raffel, Cubuk, Kurakin & Li (2020) and Flex-
MatchZhang, Wang, Hou, Wu, Wang, Okumura & Shinozaki (2020), and others
Berthelot et al. (2019); Nassar, Herath, Abbasnejad, Buntine & Haffari (2021);
Pham, Xie, Dai & Le (2021); Rizve, Duarte, Rawat & Shah (2020); Xu, Shang,
Ye, Qian, Li, Sun, Li & Jin (2021) that use pseudo-labeling or self-labeling, where
unlabelled data is assigned pseudo-labels. Generative or teacher-student or ensemble
models can also be listed among the semi-supervised approaches Dai, Yang, Yang,
Cohen & Salakhutdinov (2017); Feng, Kong, Chen, Zhang, Zhu & Chen (2021); Ke,
Wang, Yan, Ren & Lau (2019); Li, Xu, Liu, Zhu & Zhang (2021); Miyato, Maeda,
Koyama & Ishii (2018); Rasmus, Berglund, Honkala, Valpola & Raiko (2015); Sali-
mans, Goodfellow, Zaremba, Cheung, Radford & Chen (2016); Sellars, Avilés-Rivero
& Schönlieb (2021); Tarvainen & Valpola (2017); Wang, Li & Gool (2019); Wang,
Kihara, Luo & Qi (2021).

Among the first category, SimCLR Chen et al. (2020) and SimCLRv2 Chen et al.
(2020) are the current state-of-the-art self-supervised methods, based on the con-
trastive learning approach where learning aims to reduce the distance between the
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embedded representations of the two augmentations by the same image. The ef-
fectiveness of these algorithms have been demonstrated on non-noisy benchmark
datasets such as Imagenet Deng, Dong, Socher, Li, Li & Fei-Fei (2009), CIFAR10
and CIFAR100 Krizhevsky (2009); however their applicability to multi-label data
and noisy web images are yet unaddressed issues. Another successful algorithm is
SCAN Van Gansbeke et al. (2020), which aims to form semantic clusters, by us-
ing a multi-step learning scheme that starts with the pretext task of SimCLR and
continues with novel clustering loss functions.

Our aim in this paper is to increase the accuracy of the existing multi-label face
recognition systems by using the visual data collected from the Internet. To this
end, we propose a semi-supervised algorithm called VCL-PL, consisting of (i) a rep-
resentation learning step using supervised variational contrastive learning, inspired
by variational auto-encoders Kingma & Welling (2013); (ii) a pseudo-labeling step
based on the nearest neighbor mining used in Van Gansbeke et al. (2020); and a
domain adaptation step where the general deep features learned using ImageNet is
adapted to the target domain in two-steps. The algorithm is illustrated in Figure
3.1.

The feature learning component of the proposed method resembles SimCLR Chen
et al. (2020), but differs from it by the variational approach that aims to learn
the underlying distribution of the latent space. Furthermore, unlike SimCLR, we
apply contrastive learning to a fraction of the labelled data and construct a sep-
arate embedding space for each attribute in order to address the multi-attribute
classification, which would not have been possible with unlabelled data.

The pseudo-labeling component is inspired by the SCAN Van Gansbeke et al. (2020)
and SPICE Niu, Shan & Wang (2021) algorithms that use neighborhood mining in
the embedding space, but we use a distance weighting and obtain soft pseudo-labels.

For repeatable experiments, we use the YFCC100M dataset as the data collected
from the Internet and the YFCC-CelebA subset obtained by filtering YFCC100M
with keywords related to the 40 facial attributes present in CelebA Yavuz et al.
(2021). Note that YFCC100M is an uncurated dataset with only weak labels and is
used without labels in this work.

We demonstrate the effectiveness of the proposed algorithm by using varying
amounts of labelled data from the CelebA dataset (%1,%10, or %100) and the
YFCC-CelebA dataset as the unlabeled dataset. Our main contributions are learn-
ing the embedding space distribution using a variational approach and extending
the contrastive learning framework to multi-label problems by using 40 Gaussian
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heads and a limited amount of labelled data.

Our system also benefits from a weighted nearest neighbor pseudo-labelling, as well
as a two-step domain adaptation.

The paper is structured as follows. In Subsection 3.2.1 and 3.2.2, we discuss the
backbone network and the Gaussian sampling heads and the supervised metric learn-
ing with the variational approach. In Section 3.2.3 and 3.2.4, the pseudo-labeling
algorithm and the two-stage domain adaptation are presented, respectively. Last
two sections are the Experimental Evaluation and the Conclusion sections.

3.2 Methodology

The proposed algorithm has three consecutive stages and is illustrated in Figure 3.1.

• Supervised Contrastive Metric learning (Section 3.2.1 and 3.2.2). We use the
available labelled data (%1 or %10 or %100 of CelebA) and apply contrastive
metric learning in a supervised fashion, to learn each of the 40 embedding
spaces.

• Nearest neighborhood based weighted pseudo-labeling of the noisy web data
(Section 3.2.3).

• Domain adaptation of the backbone network in two stages. We fine-tune the
Imagenet pretrained Alexnet network using the pseudo-labeled YFCC-CelebA
and then apply a second domain adaptation with the avaliable labelled CelebA
subset (Section 3.2.4).

The supervised metric learning and weighted pseudo-labeling is accomplished in the
multi-label domain of face attributes (each image has 40 face attribute labels) with
Gaussian embeddings.

3.2.1 Feature Extraction and Gaussian Sampling

In this step of the proposed method, we use the labelled set to learn useful embed-
ding distributions, separately for each binary attribute label. The backbone feature
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extractor is a standard convolutional network, which is followed by sampling heads,
as shown in Figure 3.2.

An input x undergoes a stochastic transformation t and is then passed through a
feature extractor network that extracts the embedding representation fθ.

The feature extractor is followed by Gaussian sample heads (gW ) that outputs the
parameters of the distribution of the learned embedding space. The process is
explained in Eq. 1:

(3.1) (µ, logσ2) = gW (fθ(t(x)))

We then sample from this distribution using the parametrization trick as used in
variational autoencoders Kingma & Welling (2013):

(3.2) z = µ+σ2 ⊙ξ
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where ξ ∼ N (0, ,I) and ⊙ denotes element-wise multiplication. The parametrization
trick enables the use of backpropagation despite the sampling process.

The network that learns the embeddings consists of two blocks, shown in Figure 3.2.
The backbone is the feature extractor network and its the output vector is shared
between 40 Gaussian heads. In our implementation the backbone network is Alexnet
architecture Krizhevsky (2014) with the dropped FC and softmax layers. The ac-
tivation vectors obtained from the last layer of Alexnet are 4096 dimensional (for
224x224 pixels input) and shared by 40 Gaussian sampling heads which corresponds
to 40 attributes of CelebA.

Each embedding space is modelled by a 128-dimensional multi-variate Gaussian
distribution with diagonal covariance matrix and sampled with a Gaussian sampling
head that has a non-linear layer followed by a linear layer to get the deterministic
values of mean and variance. The output of mean and variance embeddings are
the inputs for Gaussian reparametrization. This view corresponds to one branch of
contrastive network shown in Figure 3.3.

3.2.2 The Supervised Variational Contrastive Learning

A simple contrastive learning algorithm, based on reducing the distance between
augmentations of the same image, is run in each 40 embedding spaces independently,
with an objective function consisting of three terms, explained below. The algorithm
for the variational contrastive learning is given in Alg. 1 and illustrated in Fig. 3.3.

Large Margin Cosine Loss. The first loss terms is the Large Margin Cosine Loss
(LMCL) Wang, Wang, Zhou, Ji, Gong, Zhou, Li & Liu (2018) whose effectiveness
has been demonstrated in comparison to softmax Chong & Zak (2004), center loss
Wen, Zhang, Li & Qiao (2016), large margin softmax loss Liu, Wen, Yu & Yang
(2016), and angular loss Wang, Zhou, Wen, Liu & Lin (2017) in face recognition
domain. Given an input xi with binary label yi, LMCL is derived starting from
the cross-entropy loss, requiring the weights and input to have unit norm and using
the large margin formulation. Specifically, given input xi and the corresponding
ground-truth, yi:

(3.3) Lxent = 1
N

N∑
i=1

− logpyi =
N∑

i=1
− log efi,yi∑K

j=1 efi,j

where N is the number of training samples, pyi is the posterior probability of the
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correct class and fi,j is the output of the jth class for the i-th input sample. Denoting
the weight vector of the j-th output node as Wj , we have:

(3.4) fi,j = W T
j xi = ||Wj ||||xi||cosθij

Then, using normalized weight and input vectors, the cosine loss is derived first.
Finally, LMCL is obtained with the large margin formulation:

(3.5) LLMC = 1
N

N∑
i=1

− log e{s(cosθij−m)}

e{s(cosθiyi
−m)} +∑

j ̸=yi
e{s(cosθij)}

where θij is the angle between Wj and xi; s is a constant and m is the margin
parameter.

Distribution Similarity Loss. The second loss term encourages the augmenta-
tions of the same image (xi, xj) being drawn from similar distributions q and p re-
spectively, by penalizing the divergence between the two using the Kullback-Leibler
divergence Odaibo (2019).

(3.6) LS = − 1
N

N∑
i=1

DKL(q1(zi|xi)||q2(z̃i|x̃i))

= − 1
N

N∑
i=1

log
(

σq1,i

σq2,i

)
−

σ2
q1,i +(µq1,i −µq2,i)2

2σ2
q2,i

+ 1
2

Distribution Normalizing Loss. This loss encourages the learned distributions
to have zero mean and unit variance, as per Odaibo (2019).

LD = − 1
N

N∑
i=1

DKL(qθ(zi|xi)||N (0,1))(3.7)

= − 1
N

N∑
i=1

1
2
[
1+ log(σ2

qi
)−σ2

qi
−µ2

qi

]
(3.8)

(3.9)

Total Loss.The embedding representations are learned for each binary face at-
tribute, using a portion of the labelled dataset. The optimization is done based on
the total loss:

Ltotal = 1
40

40∑
att=1

{LLMC +LS +LD}att(3.10)
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.

3.2.3 Weighted Pseudo-labeling

We use the k-nearest neighbor (k-NN) algorithm to pseudo-label the elements of the
unlabeled YFCC-CelebA dataset, by the labels of their closest neighbor(s) in the
CelebA subset.

For an unlabelled image u, we find the k nearest neighbors in the labelled dataset and
obtain the confidence-weighted pseudo-label, according to the labels and distance of
each neighbor:

(3.11) pseudoLabel(u) =
k∑

i=1

{labeli ∗ e−di}
k

where di is the distance from u to nearest neighbor i with label labeli ∈ {−1,+1}.

The pseudo-labels are normalized into the [−1,1] range after the pseudo-labelling
process. Note that an image can be confident in some labels and less confident in
some others. We give the algorithm for k = 1 in Alg. 2, as it gave the best results.
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Algorithm 1 Contrastive learning design for supervised metric learning, as in Chen
et al. (2020).
input: batch size N , networks f and g, and augmentation function distribution T
for each sampled minibatch {xk}N

k=1 do
for each image k ∈ {1, ...,N} do

Draw two augmentation functions t ∼ T , t′ ∼ T
x̃2k−1 = t(xk) # first augmentation
h2k−1 = f(x̃2k−1) # its representation

for c ∈ {1, ...,40} do
z2k−1,c = g(h2k−1,c) # first sample

end
x̃2k = t′(xk) # second augmentation
h2k = f(x̃2k) # its representation

for c ∈ {1, ...,40} do
z2k,c = g(h2k,c) # second sample

end
end
Compute loss for each different head using Eq. 3.10
Update the networks f and g to minimize Ltotal

end
return: Base and sampler networks f(·) and g(·).

3.2.4 Two-Step Domain Adaptation

The domain adaptation is done in two steps. The Imagenet pretrained network is
fine-tuned with the pseudo-labelled YFCC-CelebA set first; and then to the labelled
CelebA set.

We have found doing the adaptation in two steps brings roughly 1% point in accu-
racy, compared to a single step adaptation (either directly to CelebA or with both
data sets combined.

3.3 Experimental Evaluation

We evaluate the proposed approach on the problem of classifying the 40 facial at-
tributes in the CelebA dataset and compare its performance to : i) standart super-
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vised learning where we fine-tune the ImageNet pretrainet network with the available
labelled dataset; ii) DeepCluster Caron et al. (2018); iii) SimCLR Chen et al. (2020);
iv) SCAN Van Gansbeke et al. (2020) v) CL-PL (which is the proposed system, only
lacking the variational component) vi) VCL-PL (proposed system).

The experiments are run with a portion (%100, %10 or %1) of the CelebA dataset
being used as the labelled dataset and YFCC-CelebA dataset as the unlabelled
dataset. We used AlexNet Krizhevsky (2014) in all of the experiments, for simplicity.

Datasets As labelled data, we use the CelebA dataset which is resized and cropped
into 128 by 128 pixels, along with its ground truth labels. As unlabelled data, we use
a subset of the Yahoo Flickr Creative Commons 100 Million Dataset (YFCC100M),
which is the largest public multimedia collection that have approximately 99.2 mil-
lion are photos and 0.8 million are videos. The subset YFCC-CelebA Yavuz et al.
(2021) consists of approximately 1 million photos that are found when searching
in English for the 40 face features that exist in the CelebA set (“attractive“, “eye-
glasses“ etc). In addition to the face attribute words, the word "face" was added in
these searches (e.g. "chubby face").

CelebA has 40 face attributes, but it is also possible to express the opposite concept
when the attribute is an adjective, which was determined using ConceptNet Speer,
Chin & Havasi (2017)). The opposite concept was then obtained from Wiktionary
Zesch, Müller & Gurevych (2008) and used in enriching the query (e.g. "wide eyes"
along with "narrow eyes"). The search and downloads during this process were done
automatically. When multiple queries returned the same photo, repetitions were
eliminated.

A total of 392K non-repetitive images were obtained using 58 query words obtained
by the above process and after eliminating low resolution images. As a last operation,
the images were aligned and scaled similar to CelebA. For this, the photos are padded
from the edges so as to center the faces and then scaled to obtain 128×128 images.

Image Transformation For the augmentations needed in the contrastive metric
learning task, we use Resize, Crop, Horizontal Flip, Grayscale, Color Jitter aug-
mentations and sample a random transformation as a combination of these aug-
mentations within the allowed parameter range. The stochastic data augmentation
consists of resizing (scale between [0.2, 1.0]), cropping (128 random crops), grayscale
transformation (with probability 0.2), and color jitter (with probability 0.8, bright-
ness in [0.6,1.4], contrast in [0.6,1.4], saturation in [0.6,1.4] and hue in [0.9,1.1]).

Training Details. We use AlexNet for the feature extractor (backbone) part of
the network, where the embedded representation is 2304 dimensional (for 128x128
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Algorithm 2 Weighted Pseudo-labeling
Data: DLabeled, DUnlabeled

1 Initialization: {W,θ} pretrained {W ∗, θ∗} Obtain the representation for each xl in
DLabeled
foreach sample xu ∈ DUnlabeled do

2 Sample augmentation function t ∼ T
x̃ = t(xu) # an augmentation
h = f(x̃) # representation
# Gaussian projections in 40-dimensional embedding space
for c ∈ {1, ...,40} do

3 zc = gc(h)
(distance, label) = mine 1-NN(zc) in DLabeled
pseudoLabel = label · e−distance

4 end
5 Normalize the labels into the range [−1,1].
6 end
7 return: YFCC-CelebA with soft pseudo-labels.

pixel input) and the output z of a sample head is 128-dimensional. For training, the
network weights are updated using SGD, with a learning rate of 1e-3, momentum
coefficient of 0.9 and weight decay of 1e-5. We run pre-training experiments with
400 epochs with Cosine Annihilation Scheduler and fine-tuning experiments with 100
epochs with early validation stopping. The batch size is 128 for pre-training and 64
for fine-tuning. The code is available at https://github.com/verimsu/VCL-PL.

3.4 Results

Table 3.1 gives the comparison between the proposed VCL-PL algorithm to other
well-known approaches, as well as the standart supervised training and the CL-PL
approach (proposed system, only without the variational component). Here, su-
pervised learning refers to fine-tuning the ImageNet pretrained AlexNet with the
available labelled dataset. DeepCluster Caron et al. (2018), SimCLR Chen et al.
(2020), and SCAN Van Gansbeke et al. (2020) are well-known, state-of-art unsu-
pervised algorithms that are implemented with the code provided in their official
repositories.

We see that VCL-PL outperforms state-of-the-art self-supervised learning schemes
and standard supervised learning, for all settings (100% , 10% , 1% of CelebA),
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showing the effectiveness of the proposed method.

The improvements over the best approach from the literature (SimCLR) are 0.49,
0.93, 0.61% points, respectively for 100%, 10% and 1% settings. Note that the scale
of these improvements is on par with those observed between other state-of-art
methods.

It is also worth noting that VCL-PL and CL-PL are the only two systems that
can outperform supervised training in 100% CelebA settings. Furthermore, VCL-
PL consistently outperforms CL-PL, showing the benefit of using the variational
approach. The accuracies of four of the methods are plotted in Figure 3.4 for clarity.

In Table 3.2, we observe the k-NN from the pseudo-labeling stage is best for k = 1.
In fact, the SCAN algorithm Van Gansbeke et al. (2020) also uses 1-NN approach
in its nearest neighbor pseudo-labelling. We further observe that that the algorithm
benefits from soft labelling (Eq. 9) as compared to using hard labels.

Table 3.1 Average Accuracy for different algorithms and settings. Bold results in-
dicates the best results while underlined results show the best results from the
literature

Method Imagenet YFCC CelebA Accuracy
Supervised yes no 100% 90.24%
DeepCluster Caron et al. (2018) no yes 100% 89.40%
SimCLR Chen et al. (2020) yes yes 100% 89.98%
SCAN Van Gansbeke et al. (2020) yes yes 100% 89.11%
CL-PL yes yes 100% 90.32%
VCL-PL yes yes 100% 90.47%
Supervised yes no 10% 88.65%
DeepCluster Caron et al. (2018) no yes 10% 87.53%
SimCLR Chen et al. (2020) yes yes 10% 88.75%
SCAN Van Gansbeke et al. (2020) yes yes 10% 88.35%
CL-PL yes yes 10% 89.43%
VCL-PL yes yes 10% 89.68%
Supervised yes no 1% 85.90%
DeepCluster Caron et al. (2018) no yes 1% 84.12%
SimCLR Chen et al. (2020) yes yes 1% 87.51%
SCAN Van Gansbeke et al. (2020) yes yes 1% 85.85%
CL-PL yes yes 1% 87.69%
VCL-PL yes yes 1% 88.12%

Table 3.2 Average Accuracy for Different k values and using hard labels, at low-data
regime

CelebA 1% 1-NN 3-NN 5-NN Hard labels
Accuracy 88.12% 88.07% 88.03% 87.43%
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Figure 3.4 Accuracy values for varying fractions of available labelled data.

Table 3.3 Detailed comparison of supervised training and our proposed systems,
VCL-PL and CL-PL.

Attributes Supervised CL-PL VCL-PL Attributes Supervised CL-PL VCL-PL
5 o’Clock Shadow 89.60% 90.56% 91.06% Male 90.40% 93.54% 93.96%
Arched Eyebrows 76.06% 77.87% 78.58% Mouth Slightly Open 69.12% 81.15% 82.62%
Attractive 75.59% 77.49% 77.87% Mustache 96.04% 96.06% 96.07%
Bags Under Eyes 79.13% 81.01% 81.20% Narrow Eyes 84.92% 84.93% 85.16%
Bald 97.91% 97.83% 97.92% No Beard 87.36% 90.09% 91.26%
Bangs 91.69% 94.04% 94.37% Oval Face 70.09% 71.38% 72.12%
Big Lips 67.38% 68.46% 68.93% Pale Skin 95.67% 95.78% 95.79%
Big Nose 79.52% 80.43% 80.83% Pointy Nose 70.07% 71.53% 72.33%
Black Hair 81.90% 84.89% 85.84% Receding Hairline 91.35% 91.56% 91.65%
Blond Hair 93.70% 94.33% 94.53% Rosy Cheeks 92.74% 92.89% 93.19%
Blurry 95.11% 94.99% 94.94% Sideburns 95.13% 95.93% 96.30%
Brown Hair 83.69% 84.95% 85.12% Smiling 76.64% 85.95% 87.46%
Bushy Eyebrows 86.32% 87.27% 87.74% Straight Hair 77.39% 79.56% 79.98%
Chubby 94.13% 94.09% 94.47% Wavy Hair 77.49% 79.69% 80.27%
Double Chin 95.38% 95.28% 95.38% Wearing Earrings 81.26% 83.82% 84.58%
Eyeglasses 95.95% 97.18% 97.31% Wearing Hat 97.43% 97.93% 97.79%
Goatee 94.88% 95.26% 95.64% Wearing Lipstick 87.30% 90.45% 90.64%
Gray Hair 96.80% 97.19% 96.99% Wearing Necklace 85.42% 85.95% 86.30%
Heavy Makeup 84.08% 87.04% 87.66% Wearing Necktie 95.05% 94.78% 95.20%
High Cheekbones 75.69% 81.74% 82.63% Young 80.63% 82.58% 83.30%

Average 85.90% 87.69% 88.12%

We also evaluated other well-known algorithms, namely Semi-supervised Label Prop-
agation Iscen, Tolias, Avrithis & Chum (2019) and MixMatch Berthelot et al. (2019).
These methods were observed to underperform compared to supervised learning with
the available labelled data. We presume that the main reason for the degradation
is that our problem deals with the data noise in the unlabelled set.
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3.5 Conclusion and Future Works

We study the problem of improving the performance of existing supervised systems
by the use of weakly labelled data collected from the internet. The specific problem
addressed in this work is face attribute classification, where we obtained perfor-
mance improvements over the supervised learning framework (over 2% points for
very low-data setting), and two existing baselines (DeepCluster and SimCLR), with
the proposed method.

The main contributions are to use a variational approach to learn the underlying dis-
tribution of the embedding space and extending the contrastive learning framework
to multi-label problems.

As a future work, the expansion of our method to address a broader range of multi-
label classification problems is an intriguing prospect. The efficacy of the 40 Gaus-
sian sampling heads approach employed for the CelebA dataset needs to be validated
against more complex datasets to determine the generalizability of the method.
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CHAPTER 4

VARIATIONAL SELF-SUPERVISED CONTRASTIVE LEARNING
USING BETA DIVERGENCE

Chapter 4 presents the development of a robust self-supervised learning model
named VCL, which harnesses the combined power of variational contrastive learning
and beta-divergence. The chapter offers insights on the self-supervised variational
methodologies.

Learning a discriminative semantic space using unlabelled and noisy data remains
unaddressed in a multi-label setting. We present a contrastive self-supervised learn-
ing model which is robust to data noise, grounded in the domain of variational meth-
ods. The model (VCL) utilizes variational contrastive learning with beta-divergence
to learn robustly from unlabelled datasets, including uncurated and noisy datasets.
We demonstrate the effectiveness of the proposed model through rigorous experi-
ments with multi-label datasets in the face attributes and verification domain. Ex-
periments include linear evaluation and fine-tuning scenarios to show that the model
learns effective embedding representations. In all tested scenarios, VCL surpasses
the performance of state-of-the-art self-supervised methods, achieving a noteworthy
increase in accuracy.

45



4.1 Introduction

Supervised deep learning approaches require large amounts of labelled data. While
transfer learning with pretrained models is commonly used for addressing the la-
belled data shortage, the recent research focus has been on unsupervised and espe-
cially self-supervised methods trained with unlabelled or weakly labelled data that
may be collected from the web Cole, Yang, Wilber, Mac Aodha & Belongie (2022);
Goyal, Caron, Lefaudeux, Xu, Wang, Pai, Singh, Liptchinsky, Misra, Joulin & oth-
ers (2021); Tian, Henaff & van den Oord (2021); Zhong, Tang, Chen, Peng & Wang
(2022). While it is easy to have access to uncurated data sets collected from the
web, these data sets often lack useful labels Li, Wang, Li, Agustsson & Van Gool
(2017); Yavuz et al. (2021), making it necessary to develop robust self-supervised
learning algorithms to enhance the performance of a visual classifier.

Self-supervised learning utilizes supervisory signals that are generated internally
from the data, eliminating the need for external labels. A significant part of self-
supervised learning research involves using pretext tasks to learn embedding repre-
sentations that are helpful in downstream tasks. Pretext tasks may involve patch
context prediction Mundhenk et al. (2018); solving jigsaw puzzles from the same
Noroozi, Vinjimoor, Favaro & Pirsiavash (2018); colorizing images Larsson et al.
(2017); Zhang et al. (2016); predicting noise Bojanowski & Joulin (2017); counting
Noroozi et al. (2017); inpainting patches Pathak et al. (2016); spotting artifacts
Jenni & Favaro (2018); generating images Ren & Lee (2018); predictive coding
Van den Oord, Li & Vinyals (2018); or instance discrimination Wu et al. (2018).
With any of the above approaches, self-supervised methods seek embedding vectors
learned that semantic orientations or clusters.

State-of-the-art self-supervised algorithm literature includes SimCLR Chen et al.
(2020), BYOL Grill, Strub, Altché, Tallec, Richemond, Buchatskaya, Doersch,
Avila Pires, Guo, Gheshlaghi Azar & others (2020), NNCLR Dwibedi, Aytar, Tomp-
son, Sermanet & Zisserman (2021), VICReg Bardes, Ponce & LeCun (2021), and
Barlow Twins Zbontar, Jing, Misra, LeCun & Deny (2021), MoCo Chen, Xie & He
(2021) and TiCo Zhu, Moraes, Karakulak, Sobol, Canziani & LeCun (2022) which
have been recently proposed for highly curated sets such as Imagenet. A signifi-
cant number of them uses contrastive learning paradigm endeavors to minimize the
distance between embeddings of similar (positive) samples generated from various
random transformations or augmentations of the input image, while simultaneously
increasing the distance between non-similar (negative) samples. Augmentation ap-
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plied in contrastive learning can be cropping Bachman, Hjelm & Buchwalter (2019);
He, Fan, Wu, Xie & Girshick (2020); Pathak et al. (2016); Srinivas, Laskin & Abbeel
(2020); Wu et al. (2018); Ye, Zhang, Yuen & Chang (2019) among others. The vari-
ational contrastive representation learning has only recently been studied in semi-
supervised fashion Yavuz & Yanikoglu (2022).

When it comes to dealing with noisy data, there is a limited amount of existing
research available in academic literature. Some approaches use standard clustering
algorithm that can deal with outlier noise in semantic space or learning from noisy
label algorithms after self-supervised pre-training Tian et al. (2021); Zheltonozh-
skii, Baskin, Mendelson, Bronstein & Litany (2022), while others enforce neighbor
consistency Iscen, Valmadre, Arnab & Schmid (2022). In addition to addressing
noisy data, there is a upcoming body of research on continual learning that in-
herently tackles the issue of noise Karim, Khalid, Esmaeili & Rahnavard (2022).
Furthermore, the literature also explores the use of multi-stage algorithms for man-
aging noisy data effectively Smart & Carneiro (2023). The major weakness of such
methodologies relies upon the fact that there might not be a proper label for noisy
samples from web-collected sets. Moreover, these efforts mostly depend on initial
self-supervised pre-training which we focus.

The aim of this research is to enhance the pre-training efficiency of classifiers by
employing robust self-supervised techniques. This research aims to broaden the
pool of training data by harnessing an almost infinite source: internet media. The
challenge here is to achieve improved results despite the data noise.

We propose a robust self-supervised variational contrastive learning framework. The
variational approach is first suggested for auto-encoders Kingma & Welling (2013)
and recently used in Yavuz & Yanikoglu (2022). It is easy to motivate and interpret
the variational method within a contrastive design: any two transforms of an image
are sampled from the same distribution. Using this variational method, the beta
divergence formulation is realized for Gaussian samples to overcome the data noise
obstacle.

The proposed approach of VCL is validated across a range of diverse settings, in-
cluding face attribute learning with the medium-sized CelebA and YFCC-CelebA
datasets and face verification with the LFW dataset. Overall, the proposed approach
exhibited promising results across a variety of settings and scenarios.
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4.2 Methodology

4.2.1 The Contrastive Learning Framework

We propose a novel self-supervised contrastive learning schema that utilizes a Gaus-
sian sampling head to learn the distribution of the images in the embedding space,
as illustrated in Figure 4.1.

During training, two augmentations of the input image are first obtained (see Sub-
section 4.2.2). The backbone network then extracts fixed-length embedding vectors
for the two augmentations, followed by the Gaussian sampling head (see Subsec-
tion 4.2.3). The network aims to reduce the distance between the two samples that
are obtained from the same input with different augmentations. This task involves
applying random rotation augmentations in four directions on the input image and
using the orientation pseudo-labels as target distribution.
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Figure 4.1 Diagram of our proposed model. While the variational objectives en-
courage two augmentations of the same image to be drawn from the same univarite
distribution, the metric objective enhance the robustness to data noise. Light color
boxes indicate the same operation or the shared weights.
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4.2.2 Augmentations

Figure 4.2 Four different augmentations for contrastive design.

Data augmentation is a widely used technique to prevent overfitting in supervised
deep learning systems. As illustrated in Figure 4.1, a given an input x, the stochas-
tic function t(·) is used to obtain two random augmentations of the input image,
x̃i and x̃j . These two correlated images constitute a positive pair, while the other
examples in the mini-batch constitute the negative pairs. We follow the augmenta-
tion strategies suggested in the original article Chen et al. (2020). Specifically, we
use Resize Crop, Horizontal Flip, Grayscale, Color Jitter augmentations (see Figure
4.2).

4.2.3 Feature Extraction and Gaussian Sampling

The proposed method for representation learning uses a backbone model f(·) that
extracts the fixed-length embedding vectors for the two augmentations of the input
image, indicated as hi = f(xi), where hi ∈ Rd. The Gaussian sampling head (gz)
which is a shallow multi-layer perceptron, then predicts the mean and log-variance
of the distributions of the two representations, allowing for the sampling of new
representations from the learned distribution. Specifically:

(4.1) (µ, logσ2) = gz(fθ(t(x)))

A sample z is then drawn from this distribution, after the so called reparameteriza-
tion trick, as in Kingma & Welling (2013):

(4.2) z = µ+σ2 ⊙ξ

where ξ ∼ N (0, I) and ⊙ is the element-wise multiplication. The reparameterization
allows backpropagation to be used, in spite of the sampling process. The samples

49



obtained from the two augmentations contribute to the loss term given in Eqs. 4.3,
4.4.

Learning the distribution parameters has been previously shown to learn a smooth
representation space that enable sampling, in variational auto-encoders Kingma &
Welling (2013).

4.2.4 Objective Function

The training process uses a mini-batch of N randomly selected images from the
dataset. From each image in the mini-batch, two random augmentations are ob-
tained, resulting in a mini-batch of size 2N data points in total. For a positive
pair (two augmentations of an image), the rest of the 2(N − 1) samples within the
mini-batch constitute the negative examples. Thus, within a mini-batch of size N ,
there are N positive and 2(N −1) negative pairs.

The training objective is to minimize the loss function shown in Eq. 4.6, contain-
ing three terms: i) beta-NT-Xent loss term derived from the beta divergence; ii)
Distribution Similarity Loss; and iii) Distribution Normalizing Loss, as explained
below.

beta-NT-Xent loss is used as the loss function that considers the similarity
between an image embedding sample zi ∼ pθ(Zi|Xi) and another sample zj ∼
pθ(Zj |Xj), compared to the similarity between zi and the negatives samples zj ̸=k.
The loss for a positive embedding pairs zi, zj is defined as the ratio between the
similarity of positive and negative samples in the mini-batch:

(4.3) lβi,j = − log exp(βdist(zi, zj)/τ)∑2N
k=11k ̸=i exp(βdist(zi, zk)/τ)

where τ is the temperature parameter, N is the batch size, and 1k ̸=i is the indicator
function evaluating to 1 if and only if k ̸= i and βdist is a similarity metric between
two sample embeddings zi and zj , such that:

βdist(zj , zi) = −β +1
β

(
1

(2πσ2)β/2 exp
(

− β

2σ2 d(zj , zi)
)

−1
)

where σ is the standard deviation of the hypothesized Gaussian distribution which
is set to 0.5 as suggested by Akrami, Joshi, Li, Aydöre & Leahy (2022), β is a hyper-
parameter which is set to X, and d function is based on Euclidean distance between
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two vectors zj , zi in semantic space.

Distribution Similarity Loss. The second loss term encourages that two aug-
mentations (xi, xj) of the input should be drawn from similar distributions, q1

and q2. The loss term penalizes the Jensen–Shannon divergence between the two
distributions Odaibo (2019):

Using Gaussian distributions, the Jensen-Shannon divergence reduces to:

ldist
i,j = −1

2

[
(log(σi)− log(σj))

]
+ 1

4

[
(µi −µm)2 +(µj −µm)2

σ2
m

]
(4.4)

where log(σi/j) and µi/j are the outputs of the variational encoder. The µm and σm

are the means of the two means and two standard deviations, respectively.

Distribution Normalizing Loss. The third loss term encourages the learned
distributions to be standard Gaussian Odaibo (2019), to eliminate degenerate solu-
tions:

lnorm
i = DKL(qθ(zi|xi)||N (0,1)) = −1

2
[
1+ log(σ2

i )−σ2
i −µ2

i

]
(4.5)

where log(σ) and µ are the outputs of the variational encoder and directly computed
to minimize.

Overall Objective Function. The optimization is processed based on the total
loss, which is comprised of the four loss terms defined in Equations 3-5:

Ltotal = 1
N

N∑
i=1

{
lnorm
i +

2N∑
j=1

1i ̸=j(lβi,j + ldist
i,j )

}
(4.6)

where N is the number of images in the mini-batch and {2k −1,2k} notation follows
Chen et al. (2020). The reader can refer to Algorithm 3 for a detailed explanation.

We considered three extensions of the Kullback-Leibler divergence that differ in
sensitivity and robustness, namely alpha, beta, and gamma divergences. We chose
beta divergence which is often preferred for practical algorithms such as robust
PCA and clustering Mollah, Sultana, Minami & Eguchi (2010), robust ICA Mollah,
Minami & Eguchi (2006), robust NMF Kompass (2007) and robust VAE Akrami
et al. (2022), due to its balanced traits.
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Algorithm 3 Pseudo-code for Variational Contrastive Learning with Beta Diver-
gence.
Result: Optimized parameters of the base encoder f(·)

8 Input: Batch size N , temperature parameter τ , beta parameter β, augmentation
function T (·), encoder f(·), Gaussian projection head g(·)

9 for each minibatch of N examples {xi}N
i=1 do

10 // Generate augmented views of each example
11 Compute x

′
i = T (xi) and x

′′
i = T (xi)

12 // Compute representations of the augmented views
13 Compute h

′
i = f(x′

i) and h
′′
i = f(x′′

i )

14 // Learn the distribution parameters and sample from the learned
distribution

15 Sample z
′
i = g(h′

i) from N(µ′
i,σ

′
i)

Sample z
′′
i = g(h′′

i ) from N(µ′′
i ,σ

′′
i )

16 // Compute the beta NT-Xent and variational objectives
17 Compute Li = lnorm

i +∑2N
j=1 1i̸=j(lβi,j + ldist

i,j )

18 // Back-propagation and parameter update
19 Update the parameters of f(·) and g(·) by minimizing L

20 end

4.2.5 Implementation Details

We use the VGG16bn backbone which is often used as a benchmark in the face
recognition community Ahmed & Yanikoglu (2021), with an embedding dimension
of 4096. For training, we use the AdamW optimizer with 1e-3 learning rate and
weight decay of 0.01 and Cosine Annihilation Scheduler. The batch size for all
methods is 128. We train the networks with CelebA for 800 epochs (1M iterations)
and YFCC-CelebA for 500 epochs (1.5M iterations).

For augmentations, we use the following ranges: resizing (scale between [0.2, 1.0]),
cropping (128 random crops), grayscale transformation (with probability 0.2), and
color jitter (with probability 0.8, brightness in [0.6,1.4], contrast in [0.6,1.4], satu-
ration in [0.6,1.4] and hue in [0.9,1.1]). We optimized the hyper-parameter beta for
different values using grid search and found out the optimal temperature as 0.07

52



and beta as 0.005 for CelebA and YFCC-CelebA datasets. 1

4.3 Experimental Evaluation

We evaluate the proposed self-supervised algorithm in two protocols that are widely
accepted in the self-supervised learning literature. In both protocols, the self-
supervised backbone network is extended by adding a single, fully connected layer
that is trained for the corresponding classification task using the learned represen-
tations.

(i) In the linear evaluation protocol used in the literature, we add a single layer
as classification head and train only that layer with the labeled dataset, while
the rest of the network is kept unchanged. The aim of this evaluation is to
compare the quality of the learned representations to those obtained by fully
supervised training.

(ii) In the low-shot evaluation protocol, we perform the self-supervised training
without using labels and only use a small subset of the training data for
fine-tuning all layers of this network. Here, the aim is to demonstrate the
representation learning effectiveness of the proposed algorithm for low-data
regimes, simulated by using only a small percentage of the data labels. In
other words, the inquiry pertains to whether the enhancement of classifier
efficiency is attainable through the utilization of web-sourced datasets.

(iii) In tasks of relative face attributes and face verification, we utilize a paired-
image dataset, signifying more pronounced attribute expression and same-
person classification respectively. For relative attribute learning, we follow the
RankNet Souri, Noury & Adeli (2017) method where the embeddings of two
images obtained by the same backbone are subtracted and the final ranking is
learned with a logistic regression model. For face verification, we compare the
Euclidean distance between embeddings of two images and accept or reject
the verification by comparing this distance to a predetermined threshold.

In all settings, we compare our algorithms with state-of-the-art including SimCLR
Chen et al. (2020), BYOL Grill et al. (2020), NNCLR Dwibedi et al. (2021), MoCo

1We made the code available at https://github.com/verimsu/VCL

53

https://github.com/verimsu/VCL


Chen et al. (2021), VICReg Bardes et al. (2021), TiCo Zhu et al. (2022), and Barlow
Twins Zbontar et al. (2021).

Information about the datasets used in the evaluations is summarized in Table 4.1.
CelebA and LFW are well-known public datasets used for face attribute recognition
and ranking, where each photograph is labelled in terms of 40 attributes. LFW is
similar, but contains images collected from the internet. LFW-10 is a 10-attribute
subset of LFW where image pairs are ordered with respect to the given attributes.
Finally, YFCC-CelebA is a subset of the web-collected YFCC, where images match-
ing attributes in CelebA or their opposites (if they exist) were selected Yavuz et al.
(2021). This dataset is thus weakly labelled and noisy, as shown in Fig. 4.3.

Table 4.1 Summary of the datasets used in the study.

Datasets Setting Classes Train Validation Test

Medium-Sized
CelebA Multi-labelled 40 162,770 19,867 19,962
YFCC-CelebA Multi/Weakly labelled 59 392,220 - -

Small-Scale
LFW Pairs 2 - - 6,000
LFW-10 Pairs 3 500 - 500

4.3.1 Evaluation with Multi-Label CelebA Dataset

The effectiveness of the proposed method for a multi-label problem has been assessed
using the CelebA dataset Liu, Luo, Wang & Tang (2015), which is widely recognized
in the field of face attribute recognition. While facial attributes have been previously
studied using supervised deep learning systems Aly & Yanikoglu (2018); Rozsa,
Günther, Rudd & Boult (2016); Sharif Razavian, Azizpour, Sullivan & Carlsson
(2014); Song, Tan & Chen (2014); Zhong, Sullivan & Li (2016); Zhu, Luo, Wang &
Tang (2014), face attribute recognition has not been well studied in the context of
self-supervised learning Sharma, Tapaswi, Sarfraz & Stiefelhagen (2019); Shu, Gu,
Yang & Lo (2022); Wiles, Koepke & Zisserman (2018).

In this experiment, we applied self-supervised training on the training portion of the
CelebA dataset without using the labels. Then the evaluation of the learned repre-
sentations is carried out in accordance with protocol (i). In other words, we have
added a linear layer that takes the learned representations as input and is trained
with the whole labeled dataset, while the rest of the network is kept unchanged.

54



The results are presented in Table 4.2. We first evaluate transfer learning with a
VGG16bn network that is trained with the ImageNet dataset and is used as feature
extractor prior to the dense layer. While this approach is preferred especially with
smaller labelled datasets, it also obtains the lowest accuracy with 86.31%. Self-
supervised methods from the literature achive 86.51% to 87.98% accuracies, with
best results obtained by SimCLR Kinakh, Taran & Voloshynovskiy (2021) and TiCo
Zhu et al. (2022) methods.

The proposed self-supervised method outperforms transfer learning by almost 3%
points (86.31 vs 89.23%) and other self-supervised methods by over 1% point (87.98
vs 89.23). For this dataset, VCL and VCL with beta-divergence achieve almost the
same performance. On the other hand, using the beta divergence results in clearly
better performance when self-supervised learning is done with the noisy YFCC-
CelebA dataset, as described in Section 4.3.2

Table 4.2 Comparison of model accuracies using the entire labeled CelebA dataset
for linear evaluation. Bold indicates the best results; underline indicates the second
best.

Multi-label Supervised Self-supervised Mean Acc. on
Logistic Reg. Evaluation Pre-training Training CelebA

w. Imagenet w. CelebA Test Set

Transfer Learning
w. VGG16bn yes no 86.31%

Self-supervised methods
Barlow Twins Zbontar et al. (2021) no yes 87.69%
BYOL Grill et al. (2020) no yes 86.78%
MoCo Chen et al. (2021) no yes 87.92%
NNCLR Dwibedi et al. (2021) no yes 86.51%
SimCLR Chen et al. (2020) no yes 87.98%
TiCo Zhu et al. (2022) no yes 87.98%
VICReg Bardes et al. (2021) no yes 87.44%

This work - VCL no yes 89.20%
This work - VCL (beta div.) no yes 89.23%

4.3.2 Evaluation with Web-Collected YFCC-CelebA Dataset

In a bid to further examine the robustness of our model in the face of data noise, we
carried out a second experiment. For this, we implemented self-supervised training
using the web-collected YFCC-CelebA dataset, described in Yavuz et al. (2021)
and previously used in Yavuz & Yanikoglu (2022) within a semi-supervised learning
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paradigm. This dataset contains many non-face images and wrong labels, as shown
in Figure 4.3. This experiment was evaluated following protocol (ii). In other words,
networks that are pretrained using the YFCC-CelebA dataset are fine-tuned within
a low-data regime using 10% or 1% of the labeled CelebA dataset.

Table 4.3 compares the results of various well-known alternatives from the literature
and the proposed model. Transfer learning with a model trained only with super-
vised learning with the ImageNet dataset (no self-supervised pre-training) achieved
the lowest accuracies, as was the case in the previous experiment. Self-supervised
and semi-supervised methods from the literature achieved similar results for the 10%
labelled data case, while semi-supervised methods achieved better results for the
very low-data regime. The proposed VCL model outperformed all other methods,
achieving 91.01% and 88.12% accuracies when trained with 10% or 1% labeled data
respectively, which corresponds to more than 1% point increase over alternatives.

Even though the two evaluation goals are different, we see that pre-training with
the web-collected data and fine-tuning with 10% of labelled CelebA results in higher
accuracy (91.01% in Table 4.3), compared to pre-training with CelebA and using
100% of labelled CelebA (89.23% in Table 4.2). Finally, when comparing VCL and
VCL with beta divergence, we see that the latter is indeed more effective for this
noisy dataset.

Table 4.3 Comparison of model accuracies using the unlabeled YFCC-CelebA
dataset for pre-training. The models are then fine-tuned using 10% and 1% of
the labeled CelebA dataset. Bold indicates the best results; underline indicates the
second best.

Supervised Self-sup. Mean Acc. on Mean Acc. on
Multi-label Model Pre-trained Training w. CelebA Test Set CelebA Test Set
Fine-tuning Evaluation w. Imagenet YFCC-CelebA - CelebA (10%) - CelebA (1%)

Transfer Learning yes no 89.05% 86.34%

Self-supervised methods
Barlow Twins no yes 89.18% 86.64%
BYOL no yes 89.40% 86.98%
MoCo no yes 89.83% 86.66%
NNCLR no yes 89.95% 86.94%
SimCLR no yes 89.89% 86.87%
TiCo no yes 89.24% 86.85%
VICReg no yes 89.97% 86.99%

Semi-supervised
CL-PL (w. Alexnet) yes yes 89.43% 87.69%
VCL-PL (w. Alexnet) yes yes 89.68% 88.12%

This work - VCL no yes 90.15% 87.49%
This work - VCL (beta
div.)

no yes 91.01% 88.12%
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Figure 4.3 Random samples from the YFCC-CelebA dataset Yavuz et al. (2021).

4.3.3 Evaluation of Relative Face Attribute Learning

The evaluation of Relative Face Attributes is often carried out utilizing the LFW-10
dataset, a subset of the Labeled Faces in the Wild (LFW) dataset Huang, Mattar,
Berg & Learned-Miller (2008). For evaluation, we compare the results of two super-
vised baselines and results from various algorithms are pre-trained with CelebA or
YFCC-CelebA datasets, after which the whole network is fine-tuned with the train-
ing portion of the LFW-10 dataset. The relative attributes task is accomplished
using a single-layer logistic regression model on the subtracted embeddings vectors.

Considering the results given in Table 4.4, the best results are obtained by the pro-
posed algorithm with 88.15% accuracy when the self-supervised pre-training is done
using the CelebA dataset, above the results obtained by well-known self-supervised
methods.

When pretrained with the large but noisy YFCC-CelebA dataset, the performance
of VCL drops slightly to 87.35%, second best after DRSVM Ahmed & Yanikoglu
(2021). It should be noted that RankNet and DRSVM are supervised deep learning
methods that are explicitly designed to tackle the relative attribute ranking problem.
In contrast, our study pertains to a general-purpose self-supervised method.

When considering the results of VCL and VCL with beta divergence, we see that
the beta-divergence is especially useful when the pre-training dataset is noisy.
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Table 4.4 Relative attribute classification performances for models pre-trained with
unlabeled CelebA and YFCC-CelebA datasets. Bold and underlined indicate the
best and second best results, respectively.

Supervised Self-sup. Mean Acc. Self-sup. Mean Acc.
Multi-label Pre-trained Training on LFW-10 Training on LFW-10
Relative Face Attributes w. Imagenet w. CelebA w. YFCC

Supervised
RankNet yes no 82.18% no 82.18%
DRSVM yes no 88.12% no 88.12%

Self-supervised
Barlow Twins no yes 87.18% yes 85.58%
BYOL no yes 86.23% yes 85.02%
MoCo no yes 87.39% yes 85.23%
NNCLR no yes 87.12% yes 83.82%
SimCLR no yes 87.77% yes 85.29%
TiCo no yes 87.27% yes 85.15%
VICReg no yes 87.93% yes 85.47%

This work - VCL no yes 87.96% yes 86.70%
This work - VCL (beta
div.)

no yes 88.15% yes 87.35%

4.3.4 Evaluation of Face Verification

For this evaluation, we employed Labeled Faces in the Wild (LFW) dataset that
contains 6,000 pairs of face images Huang et al. (2008). Although the issue of the
face verification algorithm has traditionally been addressed within the supervised
learning domain Ding & Tao (2015); Parkhi, Vedaldi & Zisserman (2015); Schroff,
Kalenichenko & Philbin (2015), the emphasis on evaluating the resultant embed-
ding space has increasingly become salient in the context of self-supervised face
verification tasks Liu et al. (2016).

This study, per protocol (iii), aimed to evaluate the quality of the self-supervised
models’ embedding space through the measurement of pre-training algorithms for
the face verification task. The verification task is accomplished by determining a
threshold for the Euclidean distance between the embeddings of the image pairs,
over the LFW training set; the same threshold is used for the test set.

Considering the results in Table 4.5, the first observation is that the performance of
these algorithms fluctuates significantly when trained with CelebA versus YFCC-
CelebA datasets. On the other hand, our proposed algorithm achieves very similar
results with both pre-training datasets (74.30 and 74.34%), as well as surpassing the
results of all other methods with a noteable margin.
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Table 4.5 Face verification comparison of different self-supervised models pre-trained
with unlabeled CelebA and YFCC-CelebA datasets. Bold indicates the best results;
underline indicates the second best.

Mean Acc. on LFW Mean Acc. on LFW
- Self-sup. Training - Self-sup. Training

Face Verification w. CelebA w. YFCC-CelebA

Self-supervised methods
Barlow Twins Zbontar et al. (2021) 72.80% 68.30%
BYOL Grill et al. (2020) 66.80% 52.70%
MoCo Chen et al. (2021) 68.20% 69.50%
NNCLR Dwibedi et al. (2021) 67.00% 65.30%
SimCLR Chen et al. (2020) 66.90% 67.20%
TiCo Zhu et al. (2022) 70.20% 66.70%
VICReg Bardes et al. (2021) 72.90% 67.70%

This work - VCL 73.50% 73.70%
This work - VCL (beta div.) 74.30% 74.34%

4.4 Conclusion and Future Works

We proposed an algorithm in the family of contrastive learning framework, using
beta-NT-Xent loss term derived from the beta divergence for robustness against
outliers in the noisy set. The approach differs from simple contrastive design in its
variational approach and use of beta divergence in the self-supervised objective.

Our findings demonstrate that variational methods employing beta-divergence offer
a robust alternative for tackling noisy datasets, multi-label settings and low-data
regime. The results outperform existing self-supervised models especially for the
case where the self-supervised learning is accomplished with a noisy dataset.

We also compared the effect of different objective components on accuracy, as well
as temperature and beta value (not included for clarity). The combination of all
components yielded the highest accuracies.

Future work will focus on evaluating and refining the proposed VCL model on larger-
scale datasets like Imagenet and WebVision, and with different architectures such
as ResNet-50 and Vision Transformers.
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4.5 Appendix

4.5.1 Different Divergences

The Kullback-Leibler (KL) divergence, a measure of the difference between two
probability distributions, can be generalized by using a family of functions known
as generalized logarithm functions or α-logarithm,

(4.7) logα(x) = 1
1−α

(x1−α −1)

(for x > 0) which is a power function of x with power 1−α. The natural logarithm
function is included in this family as a special case, where α → 1.Cichocki & Amari
(2010)

By utilizing the concept of generalized logarithm functions, a family of divergences
can be derived, which are known as the Alpha, Beta, and Gamma divergences.
These divergences are extensions of the Kullback-Leibler (KL) divergence and can
be used to measure the dissimilarity between two probability distributions in a more
flexible way. Each of these divergences is defined using a different function and pa-
rameterization, allowing for different trade-offs between sensitivity and robustness.
Especially Beta- and Gama- divergences are robust in respect to outliers for some
values of tuning parameters, but Gama- divergence is a "super" robust estimation
of some parameters in presence of outlier. Thus, beta divergence is more common
choice for practical algorithms in literature, for example, robust PCA and clustering
Mollah et al. (2010), robust ICA Mollah et al. (2006), and robust NMF Kompass
(2007) and robust VAE Akrami et al. (2022).

4.5.2 Beta-divergence Formulation

We consider a parametric model pθ(X) with parameter θ and minimize the KL
divergence between the two distributions (i.e. empirical distribution and probability
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distribution)Akrami et al. (2022):

(4.8) DKL(p(X)||pθ(X)) =
∫

p(X) log p(X)
pθ(X)dx

where p(X) = 1
N

∑N
i=0 δ(X,xi) is the empirical distribution and its approximation to

be converged. This is equivalent to minimizing maximum likelihood estimation:

arg min
θ

1
N

N∑
i=1

lnpθ(X)

Unfortunately, this formulation is sensitive to outliers because all data points con-
tributes to the error with equal ratio. The density power divergence, or beta- diver-
gence, is a robust alternative to above formulation, proposed in Basu, Harris, Hjort
& Jones (1998):

Dβ(g||f) = −β +1
β

∫
g(x)(f(x)β −1)dx+

∫
f(x)1+βdx

To motivate the use of the beta-divergence in 4.8, please note that minimizing the
beta-divergence with empirical distribution yields:

0 = 1
N

N∑
i=1

pθ(X)β ∂

∂θ
lnpθ(X)−Epθ(X)pθ(X)β ∂

∂θ
lnpθ(X)

where the second term assures the unbiasedness of the estimator and the first term
is likelihood weighted according to the power of the probability density for each data
point. Thus, the weights of the outliers will be much less then the major inliers, and
the system will be more robust to noise.

Instead of using the empirical distribution, we can reduce the difference between
two distributions from the same network:

Dβ(pθ(Zj |Xj)||pθ(Zi|Xi)) =

−β +1
β

∫
pθ(Zj |Xj)(pθ(Zi|Xi)β −1)dX +

∫
pθ(Zi|Xi)β+1dX

where ptheta(Z|X) are posterior distributions. This formulation is essential to the
formulation of a robust self-supervised objective function in Eqn. 4.4.
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4.5.3 Derivation of Variational Objective Functions

The KL divergence between the two Gaussian distributions can be reduced to(i.e.
empirical distribution and probability distribution)Yavuz & Yanikoglu (2022):

(4.9) −DKL(qθ(z|xi)||p(z)) = log
(

σq

σp

)
−

σ2
q +(µq −µp)2

2σ2
p

+ 1
2

From this formulation we will derive two variational objective terms in the paper.

• Distribution Normalizing Loss 4.5.3.1

• Distribution Similarity Loss by using Jensen-Shannon Divergence 4.5.3.2

4.5.3.1 Normalizing Objective

We take the σp = 1 and µp = 0 for Eq. 4.9:

DKL(qθ(z|xi)||p(z)) = − log(σq)+
σ2

q +µ2
q

2 − 1
2

= −1
2 log(σ2

q )+
σ2

q +µ2
q

2 − 1
2

= −1
2
[
1+ log(σ2

q )−σ2
q −µ2

q

]
(4.10)

4.5.3.2 Distribution Similarity Objective using Jensen-Shannon Diver-

gence

La,k = JSD(q1||q2) = 1
2
(
DKL(q1||m)+DKL(q2||m)

)
where m = 1

2 (q1 + q2)
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where the the sum of KL-divergences can be reduced to variational network output:

DKL(q1||m)+DKL(q2||m) = − log
(

σq1

σm

)
+

σ2
q1 +(µq1 −µm)2

2σ2
m

− 1
2

− log
(

σq2

σm

)
+

σ2
q2 +(µq2 −µm)2

2σ2
m

− 1
2

= −(log(σq1)− log(σm))− (log(σq2)− log(σm))

+
σ2

q1 +σ2
q2

2σ2
m

+ (µq1 −µm)2

2σ2
m

+ (µq2 −µm)2

2σ2
m

−1

= −(log(σq1)− log(σm))− (log(σq2)− log(σm))

+(µq1 −µm)2 +(µq2 −µm)2

2σ2
m

4.5.4 Ablation Studies for Objective Functions and Hyper-parameters

Table 4.6 Ablation Studies: First table showing the accuracy obtained with and
without the objective components. Second table is the hyper-parameter response of
the system.

Objectives beta-NT-Xent Dist. Sim. Dist. Norm. CelebA YFCC-CelebA
Accuracy yes no no 86.19% 86.11

yes yes no 88.42% 87.92
yes no yes 88.54% 88.01

CelebA YFCC-CelebA CelebA YFCC-CelebA
temp. (T) Acc. Acc. %1 beta (T=0.07) Acc. Acc. %1
0.07 89.20 87.49 0.001 88.96 88.47
0.1 88.87 87.26 0.005 89.23 88.01
0.2 88.69 86.79 0.010 89.17 87.77
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Figure 4.4 (a) CelebA Linear Evaluation (b) YFCC-CelebA Low Shot Ranking.
Comparative performance of self-supervised pre-training models in multilabel tasks
using the CelebA and YFCC-CelebA datasets. The bar charts differentiate algo-
rithms using color: orange represents VCL algorithms, turquoise represents state-
of-the-art models, and blue bars denote supervised baselines.

Figure 4.5 (a) Face Verification (b) Relative Attributes Classification. Performance
results on the LFW dataset tasks, represented as bar plots: face verification and
relative attributes classification. Colored bars distinguish the algorithms - orange
for VCL algorithms, turquoise for state-of-the-art models, and blue for supervised
baselines.
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CHAPTER 5

CONCLUSION

In conclusion, this dissertation presents methodologies in deep learning that effec-
tively utilize weakly-labeled biomedical data and uncurated/unlabeled biometric
data. The research introduced two classifiers that employ 2D and 3D techniques
under weak supervision, demonstrating their effectiveness with volume-wise labeled
CT lung images.

The main contribution of the thesis is a novel representation learning method, which
extends the contrastive learning framework through the integration of the variational
approach.

Furthermore, a novel semi-supervised pseudo-labeling technique, VCL-PL, was de-
veloped to mitigate the inherent noise in web-collected face attribute classifications.
This technique demonstrated an improvement in accuracy across various experimen-
tal setups, validating its effectiveness in handling noisy data.

The dissertation also introduced a robust self-supervised learning model, VCL, that
integrates variational contrastive learning with beta-divergence. This model out-
performed state-of-the-art models when applied to unlabeled, uncurated, and noisy
datasets, showcasing its robustness and adaptability.

These methodological advancements and the introduction of new datasets contribute
to the field of deep learning, particularly in the processing of weakly-labeled biomed-
ical data and the management of noisy biometric data. The research findings have
the potential to drive further advancements in the field, paving the way for more
accurate and efficient data processing techniques.

65



5.1 Future Works

This methodology can be evaluated on large-scale datasets such as Imagenet and We-
bVision using architectures like Resnet-50 and Vision Transformers. These datasets
and architectures will allow us to compare our model with state-of-the-art self-
supervised methodologies.

Additionally, we aim to explore additional regularization techniques or memory units
to stabilize the embedding space for non-contrastive frameworks. This could po-
tentially enhance the performance of our models, particularly in scenarios where
contrastive methods may not be the most suitable approach.

By pursuing these avenues, we hope to continue advancing the field of deep learn-
ing and further improve the processing of weakly-labeled biomedical data and the
handling of noisy biometric data.
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