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ABSTRACT

ON DYNAMICS OF ASYMPTOTICALLY MINIMAL POLYNOMIALS

MELİKE EFE

MATHEMATICS Ph.D. DISSERTATION, JULY 2023

Dissertation Supervisor: Assoc. Prof. Dr. Turgay Bayraktar

Keywords: Julia Set, Extremal Polynomials, Brolin Measure, Klimek topology

In this thesis, we study dynamical properities of asymptotically extremal
polynomials associated with a non-polar planar compact set E. In particular, we
prove that if the zeros of such polynomials are uniformly bounded then their Brolin
measures, wn’s, converge weakly to the equilibrium measure of E. For this, we
observe that {wn}n is sequentially pre-compact with respect to the weak∗-topology
and if ν is the weak∗ limit, then the support of this measure contained in the support
of the equilibrium measure of E.

Approximating compact sets by fractals is a fruitful technique and used for
different problems in complex analysis such as the universal dimension spectrum
for harmonic measures. Another aspect of research in this context is approximating
a given planar compact set by polynomial filled Julia sets (respectively Julia sets)
with respect to the Hausdorff topology. In the second part of this thesis, we consider
the problem of classifying all possible limit sets of a sequence of filled Julia sets of
asymptotically minimal polynomials. First, we observe that the sequence of filled
Julia sets (respectively Julia sets) of asymptotically minimal polynomials may not
converge in the Hausdorff topology. On the other hand, we prove that if E is regular
in the sense of Dirichlet problem and the zeros of such polynomials are sufficiently
close to E then the filled Julia sets converge to the polynomial convex hull of E in
the Klimek topology. Moreover, we prove that for any Hausdorff-limit set of filled
Julia sets, the polynomial convex hull of this limit set coincide with the polynomial
convex hull of E. Finally, we discuss possible generalizations of these results to
multi-dimensional setting.
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ÖZET

ASİMPTOTİK OLARAK MİNİMAL POLİNOMLARIN DİNAMİĞİ ÜZERİNE

MELİKE EFE

MATEMATİK DOKTORA TEZİ, TEMMUZ 2023

Tez Danışmanı: Doç. Dr. Turgay Bayraktar

Anahtar Kelimeler: Julia Kümesi, Ekstremal Polinomlar, Brolin Ölçüsü, Klimek
topoloji

Bu tezde, polar olmayan düzlemsel bir kompakt küme olan E ile ilişkili
asimptotik ekstremal polinomların dinamik özellikleri incelenmiştir. Özellikle, bu
polinom ailesinin sıfırlarını içeren küme düzgün sınırlıysa, Brolin ölçüleri wn’lerin,
E’nin denge ölçüsüne zayıf bir şekilde yakınsadığı kanıtlanmıştır. Bunun için, {wn}n

dizisinin zayıf-yıldız topolojiye göre dizisel prekompakt olduğunu ve eğer ν zayıf-
yıldız limit ise bu ölçünün dayanağının E’nin denge ölçüsünün dayanağı tarafından
içerildiği gösterilmiştir.

Kompakt kümelere fraktallarla yaklaşmak verimli bir tekniktir ve harmonik
ölçümler için evrensel boyut spektrumu gibi karmaşık analizdeki farklı problemler
için kullanılır. Bu bağlamda araştırmanın başka bir yönü, belirli bir düzlemsel
kompakt kümeye Hausdorff topolojisine göre doldurulmuş Julia kümeleri (sırasıyla
Julia kümeleri) tarafından yaklaşmaktır. Bu tezin ikinci bölümünde, asimptotik
olarak minimal polinomların doldurulmuş Julia kümeleri dizisinin, tüm olası limit
kümelerini sınıflandırma problemi ele alınmıştır. İlk olarak, asimptotik olarak min-
imal polinomların doldurulmuş Julia kümeleri dizisinin (sırasıyla Julia kümeleri)
Hausdorff topolojisinde yakınsamayabileceği gözlemlenmiştir. Öte yandan, eğer E,
Dirichlet problemi anlamında düzenliyse ve bu polinomların sıfırları E’ye yeterince
yakınsa, doldurulmuş Julia kümelerinin, Klimek topolojide E’nin polinom dışbükey
örtüsüne yakınsadığı kanıtlanmıştır. Ayrıca, doldurulmuş Julia kümelerinin
herhangi bir Hausdorff-limit kümesi için, bu kümenin polinom dışbükey örtüsü
ile E’nin polinom dışbükey örtüsünün eşit olduğu ispatlanmıştır. Son olarak, bu
sonuçların olası genelleştirmelerini çok boyutlu karmaşık uzay için tartışılmıştır.
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1. INTRODUCTION

In this thesis, we study the relation between the potential theoretic equilibrium
measure and the dynamically defined Brolin measures of asymptotically minimal
polynomials on a compact non-polar subset of C. We prove that if the zeros of such
polynomials are uniformly bounded then their Brolin measures converge weakly
to the equilibrium measure of a compact subset. In addition, we approximate
regular compact subsets of C by using filled Julia sets of asymptotically minimal
polynomials.

Let E ⊂ C be a compact set with positive logarithmic capacity cap(E). We denote
by Ω the unbounded component of Ĉ\ E so that Pc(E) := C\ Ω is the polynomial
convex hull of E. We also let ωE be the equilibrium measure of E that is the unique
maximizer of the logarithmic energy among all Borel probability measures supported
on E.

A Borel measure belongs to the class Reg if the nth root of the leading coefficient of
the nth orthonormal polynomial is asymptotic to logarithmic capacity of the support
of the measure as the degree n grows to infinity (see §2.1 for precise definition). For
example, the equilibrium measure of a regular compact set is of class Reg. In the
first part of this thesis, we focus on dynamical properties of asymptotically minimal
polynomials associated with planar compact sets and regular measures. In this
context, Christiansen et. al. studied the limit behavior of the filled Julia sets Kpn of
orthogonal polynomials with respect to the Hausdorff topology [Christiansen, Hen-
riksen, Pedersen & Petersen (2019)]. Later, in [Petersen & Uhre (2021)], Petersen
and Uhre showed that Brolin measures of orthogonal polynomials associated with
a Reg class measure converge in weak* topology to the equilibrium measure of the
set. More recently, this result was generalized to the case of normalized Chebyshev
polynomials in [Christiansen, Henriksen, Pedersen & Petersen (2021)]. By adapting
the techniques of [Christiansen et al. (2021); Petersen & Uhre (2021); Saff & Totik
(1997)] to our setting, we obtain another generalization for asymptotically minimal
polynomials:
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Theorem 1.0.1. Let E ⊂ C be a compact set with positive logarithmic capacity
and {pn}n be a sequence of asymptotically minimal polynomials on E. Assume that
the zeros of pn(z) are uniformly bounded for n ∈ N. Then, the Brolin measures
ωJpn

→ ωE in the weak* topology.

In the second part of this thesis, we consider the problem that is classifying all
possible geometric limit sets of a sequence of filled Julia sets of asymptotically
minimal polynomials. Julia sets of polynomials have been studied in many aspects.
One line of research is approximating compact sets by fractals which is a fruitful
technique in the study of important problems in complex analysis, such as the
universal dimension spectrum for harmonic measure (cf. [Binder, Makarov &
Smirnov (2003)], [Carleson & Jones (1992)]). Another aspect of research in this
context is approximating a given planar compact set by polynomial filled Julia sets
(respectively Julia sets) with respect to the Hausdorff topology (cf. [Bialas-Ciez,
Kosek & Stawiska (2018); Bishop & Pilgrim (2015); Lindsey (2015); Lindsey &
Younsi (2019)]). By using a similar method given in [Lindsey & Younsi (2019)],
[Bialas-Ciez et al. (2018)], we can approximate a polynomially convex compact
non-polar subset of C by using filled Julia sets of polynomials which are defined by
using asymptotically minimal polynomials with respect to the Hausdorff topology.
However, we observe that the sequence of filled Julia sets (respectively Julia sets)
of asymptotically minimal polynomials may not converge in the Hausdorff topology
(see Example 4.2.1). On the other hand, under the stronger assumption on zeros of
asymptotically minimal polynomials associated with a regular compact set we show
that the filled Julia sets of the extremal polynomials converge with respect to a
natural metric Γ, called the Klimek metric [Klimek (1995)], that is defined in terms
of Green’s functions of the corresponding regular polynomially convex compact sets
in C (see (2.46) for the definition). More precisely, we prove the following result:

Theorem 1.0.2. Let E be a regular compact set and {pn}n be a sequence of asymp-
totically minimal polynomials on E. Assume that for each ε > 0 there exists N ∈ N
such that for all n ≥ N the zeros of pn are contained in ε-dilation of Pc(E). Then
Γ(Kpn ,Pc(E)) → 0 as n → ∞.

In the next proposition, for any Hausdorff limit K∞ of the filled Julia sets {Kn}n,
we also prove:

Proposition 1.0.3. Let E be a regular compact set in C and {pn}n be an
asymptotically minimal sequence. Assume that for all ε > 0 there exists an N ∈ N
such that the zeros of pn’s are contained in Pc(E)ε for all n ≥ N . Let K∞ ⊂ C be
a compact set that is a limit point of {Kn}n with respect to Hausdorff metric then
Pc(K∞) = Pc(E).
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Lastly, we focus on the Hausdorff limit of the Julia sets of asymptotically
minimal polynomials. We denote the outer boundary of E by JE := ∂Ω.
We also denote the exceptional set (see [Ransford (1995)] for definition) for the
Green’s function gΩ by FE . This means that FE = {z ∈ E : gΩ(z) > 0}. We prove
that the limit of Julia sets of asymptotically minimal polynomials contain the regular
points of the outer boundary:

Theorem 1.0.4. Let E be a compact non-polar subset of C and {pn}n be a sequence
of asymptotically minimal polynomials whose zeros are contained in Pc(E). Then,

(1.1) J \F ⊆ liminf
n→∞ Jn.

In particular, if J is regular, then

(1.2) J ⊆ liminf
n→∞ Jn.

3



2. Preliminaries

In this chapter, we will give the basic concepts of potential theory and holomorphic
dynamics. Also, we will introduce asymptotically minimal polynomials and some
important properties of these polynomials. In addition to these, we will give the
definitions of Hausdorff and Klimek metrics and some relations between them.

2.1 Potential Theory

Throughout this section, we will follow [Ransford (1995)] for the basic concepts of
potential theory in the complex plane. In the first part of this thesis, we will work
on the equilibrium measure of compact sets. This measure is the unique one that
has maximal energy among all Borel probability measures supported on a non-polar
compact set. In order to define it, we need to define logarithmic potential of a
measure. Let E be a compact subset of C and µ be a finite Borel measure with
support E. The logarithmic potential of µ is a function Uµ : C → [−∞,∞) defined
by

(2.1) Uµ(z) =
∫

log |z −w|dµ(w) (z ∈ C).

Recall that a function f : Ω → [−∞,∞) is subharmonic on a domain Ω ∈ C if it is
upper semicontinuous and for all z ∈ Ω and for each ϵ > 0 such that the closed disk
Dϵ(z) := {w : |z −w| ≤ ϵ} ⊂ Ω, satisfies

(2.2) f(z) ≤ 1
2π

∫ π

−π
f(z + ϵeiθ)dθ.

It is known that the logarithmic potential of finite Borel measure is subharmonic:

Theorem 2.1.1 (Ransford (1995)). Uµ is subharmonic on C, and harmonic on
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C\ (supp µ). Moreover,

(2.3) limsup
z→∞

|z(Uµ(z)−µ(C) log |z|)| < ∞.

The logarithmic energy of µ is defined by

(2.4) I(µ) :=
∫ ∫

log |z −w|dµ(w)dµ(z) =
∫

Uµ(z)dµ(z).

It is possible that I(µ) = −∞. If E is singleton, then I(µ) = −∞ for all finite Borel
measure µ ̸= 0. A subset E of C is called polar if I(µ) = −∞ for every finite Borel
measure µ ̸= 0 for which supp(µ) is a compact subset of E. We say that a property
holds nearly everywhere on a subset E of C if it holds everywhere on E \F for some
Borel polar set F . Denote by M(E) the collection of all Borel probability measures
on E. If there exists ω ∈ M(E) such that

(2.5) I(ω) = sup
µ∈M(E)

I(µ),

then ω is called an equilibrium measure for E.

Remark 2.1.1. In this thesis, we define the equilibrium measure of E as a
maximizer of the logarithmic energy among all Borel probability measures on E.
In some books, it is defined as the minimizer of the logarithmic energy among all
Borel probability measures on E by taking −Uµ for the potential of µ instead of Uµ

(see [Tsuji (1959)], [Saff & Totik (1997)]).

Example 2.1.1. Let E be the closed disk Dϵ(a) or the circle
Sϵ(a) := {w : |a − w| = ϵ}. Then, we have dwE = dθ/2πr where dθ denotes
arc measure on Sϵ(a) and

(2.6) UwE =

log ϵ if |z −a| ≤ ϵ

log |z −a| if |z −a| > ϵ

If E is a compact subset of C, then an equilibrium measure for E always exists:

Theorem 2.1.2 (Ransford (1995)). Every compact set E has an equilibrium
measure. Moreover, if E is a non-polar compact set, then this equilibrium measure
is unique and supp(ωE) is subset of the boundary of the unbounded component of
Ĉ\E.

If E is non-polar compact set, then the equilibrium measure is denoted by wE . In
the next chapter, we will show the convergence of the equilibrium measures in the
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weak∗ topology. A sequence {µn}n≥1 in M(E) is weak∗-convergent to µ ∈ M(E),
and we write µn

w∗
−→ µ, if

(2.7)
∫

E
ϕdµn →

∫
E

ϕdµ

for each continuous function ϕ on E. We shall use the following theorem in the next
chapters:

Theorem 2.1.3 (Helly’s Selection Theorem). If {µn}n is a sequence of complex
valued measures on a compact set E with bounded total mass, then {µn}n has a
weak∗-convergent subsequence.

If the sequence {µn}n converges the measure µ in weak∗ topology, then limit of the
logarithmic energies of µn’s are bounded by the logarithmic energy of µ:

Lemma 2.1.4 (Ransford (1995)). If µn
w∗
−→ µ in M(E), then

limsup
n→∞

I(µn) ≤ I(µ).

Now, we will define a very important and useful concept of potential theory: Green’s
function. Let Ω be the unbounded component of Ĉ\E. The Green’s function gΩ for
Ω with a pole at ∞ is the non-negative subharmonic function with the properties

(i) gΩ is harmonic on Ω\{∞} and bounded outside each neighborhood of ∞;

(ii) gΩ(z) = log |z|+O(1) as z → ∞;

(iii) gΩ(z) → 0 as z → ξ, for nearly everywhere ξ ∈ ∂Ω.

One can see that the Green’s function gΩ satisfies

(2.8) gΩ(z) = UωE (z)− I(ωE) = UωE (z)− logcap(E)

where cap(E) = eI(ωE) is the logarithmic capacity of E. If ∂Ω is non-polar, then
there exists a unique Green’s function gΩ for Ω [Ransford (1995)].

Assume that cap(E) > 0. By (2.8), we see that the continuity points of gΩ and UwE

coincide. A point z on ∂Ω is called a regular (boundary) point of Ω if gΩ is continuous
at z; otherwise it is called irregular. We can observe that z ∈ ∂Ω is regular if and
only if gΩ(z) = 0 which is equivalent to

UwE = logcap(E).

In particular, the set of irregular points has zero capacity [Saff & Totik (1997)]. If
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every z ∈ ∂Ω is regular, then E is called a regular domain.

2.2 Asymptotically Minimal Polynomials

Asymptotically minimal polynomials are defined via regular measures. Given a
Borel measure µ with support Sµ := supp(µ) ⊂ C one can define the inner product

⟨f,g⟩ :=
∫
C

fgdµ

on the space of polynomials Pn. Then one can find uniquely defined orthonormal
polynomials

P µ
n (z) = γn(µ)zn + · · · , where γn(µ) > 0 and n ∈ N.

We say that µ is regular, denoted by µ ∈ Reg, if

(2.9) lim
n→∞γn(µ)1/n = 1

cap(Sµ) .

Let E ∈ C be a non-polar compact set and

pn(z) = zn + lower order terms.

Then we have that cap(E)n ≤ ∥pn∥E , see [Saff & Totik (1997), Theorem I.3.6]. So,
a sequence {pn}n of monic polynomials of degree n is called asymptotically minimal
if

limsup
n→∞

∥pn∥1/n
E ≤ cap(E).

Now, following [Dauvergne (2021)], we give the following definition:

Definition 2.2.1. We say that a sequence of polynomials pn(z) =∑n
j=0 an,jz

j with
an,n ̸= 0 is asymptotically minimal on a compact set E ⊂ C if there exists a regular
measure τ ∈ Reg with supp(τ) = E and a constant p ∈ (0,∞] such that

(2.10) lim
n→∞

1
n

log |an,n| = − logcap(E)

and

(2.11) lim
n→∞

1
n

log ∥ pn ∥Lp(τ)= 0.

7



Note that for the case p = ∞ we do not need the reference measure τ in the definition.
The following result is well known (see [Dauvergne (2021)] and references therein):

Proposition 2.2.1. Let E be a compact non-polar set and τ ∈ Reg be a finite
measure supported on E. A sequence pn(z) = an,nzn + · · · is asymptotically minimal
on E for p = ∞ if and only if it is asymptotically minimal with respect to τ and for
some (equivalently for all) p ∈ (0,∞).

Proof. It is known that every measure τ ∈ Reg on E satisfies Nikolskĭı type
inequality (cf. [Stahl & Totik (1992), Chapter 3]) for some (equivalently for all)
p ∈ (0,∞). Namely, there exist constants Mn > 0 such that

(2.12) limsup
n→∞

M1/n
n = 1

and for all polynomials pn whose degree is at most n we have

(2.13) ∥pn∥E ≤ Mn∥pn∥Lp(τ).

Recall that by minimality we always have

(2.14) cap(E)n ≤ ∥ pn

an,n
∥E .

Assume {pn}n is asymptotically minimal on E for some p ∈ (0,∞). Then, by (2.13)
we have

(2.15) cap(E) ≤ limsup
n→∞

∥pn∥1/n
E

|an,n|1/n
≤ lim

n→∞
(Mn∥pn∥Lp(τ))1/n

|an,n|1/n
= cap(E).

This gives us

(2.16) lim
n→∞

1
n

log∥pn∥E = 0

and hence {pn}n be asymptotically minimal on E for p = ∞.

In order to prove reverse direction observe that

(2.17) ∥pn∥Lp(τ) ≤ ∥pn∥E

√
τ(E).

If {pn}n is asymptotically minimal with p = ∞ then

(2.18) limsup
n→∞

∥pn∥1/n
Lp(τ)

|an,n|1/n
≤ cap(E).

8



Moreover, by (2.13) we always have

cap(E) ≤ liminf
n→∞

∥pn∥1/n
Lp(τ)

|an,n|1/n
.

Hence, {pn}n is asymptotically minimal on E with respect to τ and p ∈ (0,∞).

Remark 2.2.1. Our definition of asymptotic minimality is not standart (cf. [Saff &
Totik (1997)]). More precisely, if a sequence of polynomials pn(z) is asymptotically
minimal in the sense of Definition 2.2.1 then 1

n log(∥pn∥Lp(τ)/|an,n|) converges to the
minimal value logcap(E). However, solely this last condition is not sufficient for our
purposes (cf. Lemma 3.1.5). For example, let pn(z) = 2n2

zn. Then pn(z)/an,n = zn

is minimal on the unit circle but the filled Julia sets decrease to the point at the
origin. Thus, we require both the convergence of nth roots of the leading coefficients
and the corresponding norms.

Now, we review natural classes of polynomials that fit into the framework of Theorem
1.0.1.

Example 2.2.1 (Lp-minimal polynomials). Let E ⊂ C be a non-polar compact set
and τ ∈ Reg. For p ∈ (1,∞] there exist unique monic polynomials pn with minimal
Lp(τ)-norm satisfying

(2.19) lim
n→∞

1
n

log∥pn∥Lp(τ) = logcap(E).

Then the sequence { pn
∥pn∥Lp(τ)

}n is asymptotically minimal on E [Stahl & Totik
(1992)]. We remark that the case p = ∞ corresponds to normalized Chebyshev
polynomials.

Example 2.2.2 (Fekete Polynomials). Let E be a non-polar compact set. For
n ≥ 2, we denote n-tuple of points w1, . . . ,wn ∈ E such that the supremum
sup{∏j<k |zj − zk|

2
n(n−1) } is attained at these points. The points Fn := (w1, · · · ,wn)

are called Fekete points of order n. We remark that Fekete points are not unique in
general but do exist by compactness of E. The Fekete polynomial associated with Fn

is given by

(2.20) qn(z) =
n∏

j=1
(z −wj).

By [Ransford (1995)]

(2.21) lim
n→∞∥qn∥

1
n
E = cap(E).

9



Thus, the normalized sequence {pn = qn

∥qn∥E
}n is asymptotically minimal on E. Note

that by construction all the zeros of pn lie in E.

Example 2.2.3 (Faber Polynomials). Let E be a non-polar compact set such that the
unbounded component Ω of Ĉ\E is simply connected. Let ϕ : Ω → Ĉ\{z :∥ z ∥≤ 1}
be the (unique) conformal map such that ϕ(∞) = ∞ and ϕ′(∞) > 0. It is well known
that

(2.22) ϕ(z) = z

cap(E) +a0 + a1
z

+ · · · .

The Faber polynomial Fn of degree n is defined by the equation

(2.23) Fn(z) = ϕ(z)n +O(1
z

) z → ∞.

These polynomials satify equation (2.21) (see [Levenberg & Wielonsky (2020)]).
Thus, the normalized sequence {pn = Fn

∥Fn∥E
}n is asymptotically minimal on

E. Furthermore, if E is convex then all zeros of pn lie in the interior of E

(see [Kövari & Pommerenke (1967), Theorem 2]).

Example 2.2.4 (Polynomials with bounded coefficients). Let

pn(z) = zn +an
n−1zn−1 + · · ·+an

0

where |an
j | < M for some fixed M > 0. Then it is easy to see that {pn}n is

asymptotically minimal on the unit circle S1 := {z ∈ C : |z| = 1}. Moreover, Cauchy
bounds imply that if pn(z) = 0 then |z| ≤ 1 + max0≤j≤n−1 |an

j |. In particular, zeros
of pn are uniformly bounded and contained in the disc D(0,M +1).

In all of these examples, we consider the polynomials with bounded zeros. Howeover,
there exist asymptotically minimal polynomials with unbounded zeros as in the
following example:

Example 2.2.5. Let cn ∈ C be a sequence such that |cn| → ∞ and 1
n log |cn| → 0 as

n → ∞. Let also

(2.24) pn(z) = zn−1(z − cn) for n ≥ 1.

Then it is easy to see that {pn}n≥1 is asymptotically minimal on the unit circle S1

with respect to the equilibrium measure dθ
2π .

Let E be a compact subset of C and {pn}n be a sequence of asymptotically minimal
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polynomials on E. We denote the counting measures of zeros of pn by

(2.25) µn := 1
n

∑
pn(z)=0

δz

where δz denotes the unit mass at z. There exist some relations between weak∗ limit
of these measures and the equilibrium measure for E. Moreover, for some special
compact sets, these two limits coincide:

Theorem 2.2.2 (Saff & Totik (1997)). Let E be a compact non-polar subset of C ,
{qn}n be a sequence of monic polynomials such that

(2.26) lim
n→∞∥qn∥

1
n
E = cap(E)

and µn be the counting measure of zeros of qn. Then µn → wE as n → ∞ in the
weak∗-topology if and only if for every bounded component R of C \ supp(wE) and
every subsequences N of the natural numbers there is a z0 ∈ R and a subsequence
N1 ⊂ N such that

(2.27) lim
n→∞,n∈N1

|qn(z0)|
1
n = exp(UwE (z0)).

By using Theorem 2.2.2 and the definition of asymptotically minimal polynomials,
we observe the following:

Corollary 2.2.3. Let E be a compact subset of C and {pn}n be asymptotically
minimal on E and µn be the counting measure of zeros of pn. Then µn → wE

as n → ∞ in the weak∗-topology if and only if for every bounded component R of
C \ supp(wE) and every subsequences N of the natural numbers there is a z0 ∈ R

and a subsequence N1 ⊂ N such that

(2.28) lim
n→∞,n∈N1

|qn(z0)|
1
n = egΩ(z0).

Corollary 2.2.3 states that we need condition (ii) to have the equilibrium measure as
a limit point of counting measures of zeros of asymptotically minimal polynomials.
In general case, we have a relation between these two measures although we do not
have convergence. For this, we need to recall the balayage measure.

Let E be a bounded domain and µ be a measure with compact support in E. Then
we can find a unique measure µ̂ supported on ∂E such that ∥µ̂∥ = ∥µ∥, the potential

11



Uµ̂ is bounded on ∂E, and

(2.29) Uµ̂(z) = Uµ(z)

for quasi-every z ∈ ∂E [Saff & Totik (1997)]. This measure is called the balayage
measure associated with µ.

Theorem 2.2.4 (Saff & Totik (1997)). Let E be a compact non-polar subset of C,
Ω be the unbounded component of Ĉ\ supp(wE) and {qn}n be a sequence of monic
polynomials satisfying (2.26). If µ is a weak∗ limit of the counting measures {µn}n

of zeros of the qn’s, then

(i) The logarithmic potential of µ coincide with the logaritmic potential of wE in Ω.
Moreover, supp(µ) ⊂ Ĉ\Ω;

(ii) µ̂n → ŵE in the weak∗ sense; furthermore, µ̂ = ŵE.

This theorem yields us the following corollary:

Corollary 2.2.5. Let E be a compact non-polar subset of C, Ω be the unbounded
component of Ĉ\E and {pn}n be a sequence of asymptotically minimal polynomials
on E. If µ is a weak∗ limit of the counting measures {µn}n of zeros of the pn’s, then

(i) The logarithmic potential of µ coincide with the logarithmic potential of wE in
Ω. Moreover, supp(µ) ⊂ Ĉ\Ω;

(ii) µ̂n → ŵE in the weak∗ sense; furthermore, µ̂ = ŵE.

2.3 Polynomial Dynamics

In this section, we will give the basic definitions and some important theorems in
polynomial dynamics which we will use throughout this thesis. For details, we refer
the reader to the manuscripts [Ransford (1995), Carleson & Gamelin (1993)]. Let
p(z) =∑n

j=0 ajz
j be a polynomial of degree n ≥ 2. The attracting basin of ∞ for p

is the set of points with unbounded forward orbit under p that is

(2.30) Ωp := {z ∈ Ĉ : pk(z) → ∞ as k → ∞}
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where pk =
k many︷ ︸︸ ︷

p◦ · · · ◦p. Let us denote the escape radius for p by

Rp := 1+ |an|+ · · ·+ |a0|
|an|

.

It follows that

(2.31) Ωp =
⋃

k≥0
p−k(C\D(0,Rp)).

The set Ωp is a connected, open and completely invariant, i.e., p−1(Ωp) = Ωp. The
complement Kp := C\ Ωp is called the filled Julia set. The Julia set of p is defined
by Jp := ∂Ωp = ∂Kp. It is well-known that Kp and Jp are compact and completely
invariant. One can observe that

(2.32) Kp =
⋂

k≥0
p−k(D(0,Rp)).

Example 2.3.1. Let pn(z) = zn for n > 1. Then Ωpn = {z : ∥z∥ > 1} and
Jpn = {z : ∥z∥ = 1}. One can observe that p−1

n (Ωpn) = Ωpn and

(2.33) Ωpn =
⋃

k≥0
p−k

n (C\D(0,1)), Kpn =
⋂

k≥0
p−k

n (D(0,1)).

Example 2.3.2. Let p(z) = z2 − 2. By induction, we can observe that
pn(z + 1

z ) = z2n + 1
z2n . This gives us Ωp = Ĉ\ [−2,2] and Jp = [−2,2].

The Julia sets of polynomials are always non-polar:

Theorem 2.3.1 (Ransford (1995)). Let p(z) = ∑n
i=0 aiz

i be a polynomials with
n > 1, then

cap(Kp) = cap(Jp) = 1/|an|1/(n−1).

We denote the Dynamical Green’s function of p by gp(z) : C → [0,∞) where

(2.34) gp(z) = lim
k→∞

1
nk

log+ |pk(z)|

where log+ = max{log,0}. By a theorem of Brolin [Brolin (1965)] the function gp

coincides with the Green’s function of Ωp with the pole at infinity. Note that gp

vanishes precisely on Kp and has the invariant property

(2.35) gp(p(z)) = n ·gp(z).
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It follows from [Brolin (1965)] that the measure ωp = 1
2π

∆gp is p-invariant and
coincides with the equilibrium measure of Jp. The measure ω := ωp is balanced i.e.
for every set X ⊂ Ĉ on which p is injective we have ω(p(X)) = n · ω(X). Moreover,
Lyubich [Lyubich (1982)] proved that ω is the unique measure of maximal entropy
for p.

Let {pn =∑n
j=0 an,jz

j} be a sequence of polynomials and E be a compact non-polar
subset of C. Then, by Theorem 2.3.1, we have the following:

Lemma 2.3.2 (Petersen & Uhre (2021)). The following are equivalent;

(i)

(2.36) lim
n→∞(an,n)1/n = 1

cap(E)

(ii)

(2.37) cap(Kpn) n→∞−−−→ cap(E)

(iii)

(2.38) I(wpn) n→∞−−−→ I(wE)

Proof. We can observe that

(2.39) lim
n→∞(an,n)1/n = 1

cap(E) ⇔ lim
n→∞(an,n)1/(n−1) = 1

cap(E) .

On the other hand, by Theorem 2.3.1, we have that

(2.40) eI(wpn) = cap(Kpn) = 1/|an,n|1/(n−1).

Hence, the assertion follows by combining (2.39) and (2.40).
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2.4 Topology of Compact Sets

We denote the collection of all non-empty compact subsets of C by K . The classical
Hausdorff metric χ on K is defined by

χ(A,B) = max(h(A,B),h(B,A)) = inf{r > 0 : B ⊂ Dr(A),A ⊂ Dr(B)}

where
h(A,B) = sup

a∈A
inf
b∈B

∥ a− b ∥

and Dr(A) = {z ∈ C : d(z,A) < r}. The pair (K ,χ) forms a complete metric space.
Let {An} ⊂ K be a sequence of compact sets which are uniformly bounded. We
denote the sets

(2.41) liminf
n→∞ An := {z ∈ C : ∃{zn},An ∋ zn

n→∞−−−→ z},

and

(2.42) limsup
n→∞

An := {z ∈ C : ∃{nk},nk ↗ ∞ and ∃{znk
},Ank

∋ znk

k→∞−−−→ z}.

The sets liminf
n→∞ An, and limsupn→∞ An are in K :

Lemma 2.4.1 (Christiansen et al. (2019)). Let {An} ⊂ K be a uniformly bounded
sequence of compact sets. The complements of liminfn→∞ An and limsupn→∞ An

are open and

(2.43) z0 ∈ C\ liminf
n→∞ An ⇐⇒ ∃δ0 ∃{nk},nk ↗ ∞ s.t ∀k : d(z0,Ank

) > δ0

and

(2.44) z0 ∈ C\ limsup
n→∞

An ⇐⇒ ∃δ0 ∃N s.t ∀n ≥ N : d(z0,An) > δ0.

As a consequence, both liminfn→∞ An and limsupn→∞ An are compact.

It is easy to see that a uniformly bounded sequence {An}n ∈ K is pre-compact in
(K ,χ). Moreover, {An}n converges to A with respect to Hausdorff metric, denoted
by lim

k→∞
An = A, if and only if liminf

n→∞ An = limsup
n→∞

An = A.

Example 2.4.1. Let En := {z ∈ C : |z| ≤ 1+ 1
n

} and D1 = {z ∈ C : |z| ≤ 1}. We can
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observe that

(2.45) liminf
n→∞ En = limsup

n→∞
En = D1.

Next, we denote the collection of all polynomially convex compact regular subsets of
C by R. M. Klimek defined a natural metric by using Green’s functions in [Klimek
(1995)]: for regular compact subsets E,F of C, we let gΩE

,gΩF
be Green’s functions

with the pole at infinity for Ĉ \ Pc(E) and Ĉ \ Pc(F ) respectively. The Klimek
distance between E and F is defined by

(2.46) Γ(E,F ) := max(∥ gΩE
∥F ,∥ gΩF

∥E) =∥ gΩE
−gΩF

∥C .

The Klimek distance Γ induces a psuedo-metric on regular compact subsets of C
and a metric on R. In fact, the pair (R,Γ) forms a complete metric space [Klimek
(1995)].

We remark that the topologies induced by Hausdorff and Klimek metrics on R are
different. In particular, convergence in Klimek distance does not imply convergence
in Hausdorff distance (see Example 4.2.1). On the other hand, there is a relation
between these two metrics for some special cases. Klimek showed that if En,E are
regular, polynomially convex, connected subsets of the complex plane containing the
origin, and if {En}n converges to E in Hausdorff topology then {En}n converges to
E in Klimek distance [Klimek (1995), Proposition 1]. We can prove similar relation
for the filled Julia sets of asymptotically minimal polynomials.

Proposition 2.4.2. Let E be a regular compact subset of C and {pn}n be a
sequence of asymptotically minimal polynomials whose filled Julia sets Kn’s are uni-
formly bounded. If {Kn}n converges to Pc(E) in Hausdorff distance, then {Kn}n

converges to Pc(E) in Klimek distance.

Proof. Suppose that {Kn}n converges to Pc(E) in Hausdorff distance. Let ϵ > 0.

Since gΩ is continuous and Kn’s are uniformly bounded, then gΩ is uniformly
continuous on D(0,R) ⊇ (∪nKn) ∪ Pc(E) for R > 0. Then, there exists δ > 0 such
that

(2.47) |z −w| < δ ⇒ |gΩ(z)−gΩ(w)| < ϵ

for all z,w ∈ D(0,R).

On the other hand, since (Kn)n converges to Pc(E) in Hausdorff distance, there
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exists N1 ∈ N such that for all n ≥ N1,

(2.48) χ(Kn,Pc(E)) < δ.

Lastly, by Lemma 3.1.5 , there exists N2 ∈ N such that for all n ≥ N2 and for all
z ∈ C,

(2.49) gn(z) ≤ gΩ(z)+ ϵ.

Now, let N = max{N1,N2} and n ≥ N .

Let z ∈ Pc(E). By inequality (2.49), we have that

(2.50) gn(z) ≤ gΩ(z)+ ϵ.

Since z ∈ Pc(E), then gΩ(z) = 0. So we have that gn(z) ≤ ϵ. Since this holds for all
z ∈ Pc(E), then ∥ gn ∥Pc(E)< ϵ.

Let z ∈ Kn. By inequality (2.48), there exists w ∈ Pc(E) such that |z − w| < δ.
Then, by inequality (2.47),

(2.51) |gΩ(z)−gΩ(w)| < ϵ.

Since gΩ(w) = 0, then |gΩ(z)| < ϵ. Therefore ∥ gΩ ∥Kn< ϵ.

Hence Γ(Kn,Pc(E)) = max(∥ gn ∥Pc(E),∥ gΩ ∥Kn) < ϵ. This means that {Kn}n

converges to Pc(E) in Klimek distance.

Recall that for E ∈ K and δ > 0, the modulus of continuity is defined by

ωE(δ) = sup{gΩE
(z) : dist(z,E) ≤ δ}.

In particular, E ∈ K is regular if and only if limδ→0+ ωE(δ) = 0. In general
convergence in Hausdorff metric does not imply convergence in Klimek metric but
the following is known:

Proposition 2.4.3 (Siciak (1997)). A subfamily E ⊂ R is pre-compact with respect
to Klimek topology if and only if the following hold

(i) The family E is uniformly bounded that is there exists R > 0 such that E ⊂ B(0,R)
for all E ∈ E.
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(ii) The family E has equicontinuity property that is lim
δ→0+

[sup
E∈E

ωE(δ)] = 0.

In particular, if En ∈ R and χ(En,E) → 0 for some E ∈ R then Γ(En,E) → 0 if and
only if lim

δ→0+
[sup

n
ωEn(δ)] = 0.
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3. Weak Limits of Measures of Maximal Entropy for

Asymptotically Minimal Polynomials

In this chapter, we will give the proof of Theorem 1.0.1. The equidistribution of
the weak limits of measures of maximal entropies for orthonormal polynomials and
normalized Chebyshev polynomials has proved in [Petersen & Uhre (2021)] and
[Christiansen et al. (2021)], respectively.

Let µ be a Borel probability measure on C with compact non-polar support and
{pn}n be the unique sequence of orthonormal polynomials with respect to µ. In
[Petersen & Uhre (2021)], Petersen and Uhre showed that the sequence {wn}n≥2 of
measure of maximal entropies of pn’s is pre-compact for the weak∗-topology and for
any limit measure ν for a weakly convergent sub-sequence {wnk

}k, the support of ν

is contained in Pc(supp(ν)). Moreover, if µ ∈ Reg then

(3.1) wn
w∗
−→ wSupp(µ).

More recently, this result was generalized to the case of normalized Chebyshev
polynomials in [Christiansen et al. (2021)]. Let E ⊂ C be a non-polar compact
set and let {pn}n be the associated sequence of normalized Chebyshev polynomials.
Christiansen, Henriksen, H. Petersen and C. Petersen proved that the corresponding
sequence of filled Julia sets {Kn}n is pre-compact in K and for any limit point K∞

of a convergent subsequence {Knk
}k, we have that

(3.2) E ⊂ Pc(K∞) ⊂ Pc(limsup
n→∞

Kn) ⊂ Co(E).

where Co(E) is the convex hull of E which is the smallest convex set that contains
E. They also showed that the sequence {wn}n of the unique measure of maximal
entropies for pn’s converges weak∗ to the equilibrium measure on K:

(3.3) wn
w∗
−→ wE .
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3.1 Proof of Theorem 1.0.1

Throughout this section, E,Ω,Pc(E),ωE and pn are as given in the introduction.
We also let gΩ be the Green’s function for Ω with pole at ∞. We denote Kn := Kpn

the filled Julia set, Ωn := C\ Kn and Jn := Jpn denote the Julia set of pn. We also
denote the Brolin measures by ωn := ωJpn

. Firstly, we need the following lemma on
the behavior of |pn| 1

n . The proof is analogous to that of (Lindsey & Younsi, 2019,
Lemma 3.1 (i)).

Lemma 3.1.1. Let {pn}n be as in Theorem 1.0.1 with with bounded zeros and F ⊂C
be a polynomially convex compact set such that

∪∞
n=1{z ∈ C : pn(z) = 0}∪E ⊂ F.

Assume that the sequence of counting measure of zeros {µn}n≥1 is weak*-convergent
to a measure ν. Then |pn| 1

n → exp(gΩ) locally uniformly on Ĉ\F .

Proof. Let p̃n := pn

|an,n|
. First, we will show that |p̃n| 1

n → eUν locally uniformly on

Ĉ\F . Let z ∈ C\F . Then the function w → log |z −w| is continuous on F and

(3.4)
∫

F
log |z −w|dµn(w) −→

∫
F

log |z −w|dν(w) as n → ∞.

By Corollary 2.2.4 we have supp(ν) ⊆ Pc(E). Thus, we obtain

(3.5) lim
n→∞

1
n

log |p̃n(z)| = Uν(z),

point-wise for all z ∈ C \ F . Now, let D be a disk whose closure is contained in
C \ F . Since the sequence of analytic functions {p̃n

1
n }n is uniformly bounded on

D, by Montel’s Theorem every subsequence has a further subsequence converging
uniformly to some analytic function f satisfying |f | = eUν on D. This shows that

(3.6) lim
n→∞ |p̃n|

1
n = eUν

locally uniformly on C\F . Note that uniform convergence near ∞ follows from the
equation Uν(z) = log |z|+o(|z|−1) as z → ∞. Finally, using (2.10) and by Theorem
2.2.4, we observe that

(3.7) lim
n→∞ |pn|

1
n = (1/cap(E))eUν = exp(gΩ)
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locally uniformly on Ĉ\F .

We can prove Lemma 3.1.1 for more general families of asymptotically minimal
polynomials, for details see Section 3.2.

It is known that the filled Julia sets of the sequence of orthonormal polynomials
with respect to a fixed regular measure on a compact set are uniformly bounded
[Christiansen et al. (2019)] (see also [Christiansen et al. (2021)] for Chebyshev
polynomials). We prove the analogue of this result for asymptotically minimal
polynomials:

Lemma 3.1.2. Let {pn}n be as in Theorem 1.0.1 with

∪∞
n=1{z ∈ C : pn(z) = 0} ⊂ D(0,M).

Assume that the counting measure of zeros {µn}n≥1 of {pn}n is weak*-convergent
to a measure ν. Then there exists R > 0 and N ∈ N such that

(3.8) Kn ⊂ p−1
n (D(0,R)) ⊂ D(0,R)

for all n ≥ N .

Proof. By Lemma 3.1.1,

(3.9) lim
n→∞ |pn|

1
n = eUν cap(E)−1

locally uniformly on Ĉ\ (Pc(E)∪D(0,M)).

For each ε > log+
(
cap(E)

)
there exists R > M such that Pc(E) ⊂ D(0,R) and

Uν(z) > 2ε for all z ∈ ∂D(0,R). This implies that

(3.10) Uν(z)− logcap(E) ≥ ε

for all z ∈ ∂D(0,R). Then by (3.9) and compactness of ∂D(0,R), there exists N

such that

(3.11) |pn(z)|
1
n ≥ e

ε
2

for all n ≥ N and for all z ∈ ∂D(0,R). By increasing N if necessary, we can assume
that log(R) < N

ε

2 . This gives |pn(z)| > R for all z ∈ ∂D(0,R).
Since the zeros of pn are contained in D(0,R), the minimum modulus principle
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implies that

(3.12) pn(C\D(0,R)) ⊂ C\D(0,R)

for all n ≥ N . Thus, the equality Kn = ⋂
k≥0 p−k

n (D(0,R)) yields

(3.13) Kn ⊂ p−1
n (D(0,R)) ⊂ D(0,R)

for all n ≥ N .

We will need the following result in the sequel:

Lemma 3.1.3. Let {pn}n be as in Theorem 1.0.1. For any compact set
V ⊆ C\Pc(E) we have

(3.14) lim
n→∞

(
sup

w∈D(0,R)

( 1
n

∑
pn(z)=w

1V (z)
))

= 0

where 1V denotes the characteristic function of the set V .

In the proof of Lemma 3.1.3, we utilize the following result:

Lemma 3.1.4. ((Stahl & Totik, 1992, Lemma 1.3.2)) Let V,E ⊆ C be two compact
sets. If V ⊆ C\ Pc(E) then there exists b < 1 and N = N(E,V,b) ∈ N such that for
arbitrary N points x1, · · · ,xN ∈ V there exists N points y1, · · · ,yN ∈ C for which the
rational function

(3.15) rN (z) :=
N∏

j=1

(z −yj)
(z −xj)

has the sup norm ∥rN ∥E ≤ b.

Proof of Lemma 3.1.3. We prove the case p ∈ (0,∞) for a regular measure τ .
For w ∈ D(0,R), let xn,1, · · · ,xn,l(n) be the roots of pn − w in V . Then by Lemma
3.1.4 there exist b < 1, N = N(E,V,b) ∈ N and points yn,1, · · · ,yn,l(n) ∈ C such that

(3.16) ∥ (pn(z)−w)
N⌊ l(n)

N ⌋∏
j=1

z −yn,j

z −xn,j
∥Lp(τ)≤∥ pn −w ∥Lp(τ) b⌊ l(n)

N ⌋.

Now, let qn be the monic polynomial of degree n with minimal Lp(τ) norm. Then
by (3.16) we obtain

∥an,nqn∥Lp(τ) ≤ ∥pn −w∥Lp(τ)b
⌊ l(n)

N ⌋ ≤ (∥pn∥Lp(τ) +R∥τ∥
1
p )b⌊ l(n)

N ⌋

22



which in turn implies that

(3.17) 0 ≤ 1
n

⌊ l(n)
N

⌋ log 1
b

≤ 1
n

log
(

∥pn∥Lp(τ) +R∥τ∥
1
p

∥an,nqn∥Lp(τ)

)
.

The right hand side is independent of w and by asymptotic minimality of pn it tends
to zero. Hence, the assertion follows.
The proof for the case p = ∞ is almost identical and omitted.

The following lemma gives a relation between Green’s functions for Ωn and Ω with
pole at infinity.

Lemma 3.1.5. Let {pn}n be as in Theorem 1.0.1. Assume that the counting
measures {µn}n≥1 of {pn}n is weak*-convergent to a measure ν. Then

(3.18) limsup
n→∞

gn(z) ≤ gΩ(z)

locally uniformly on C where gn (resp. gΩ) is the Green’s function for Ωn (resp. Ω)
with pole at infinity.

Proof. By (2.10) and Theorem 2.3.1, we have lim
n→∞cap(Kn) = cap(E) > 0. Thus,

there exists C ∈ (0,1) such that cap(Kn) ≥ C for n sufficiently large. Moreover, by
Lemma 3.1.2 there exist R > 0 and N ∈ N such that Kn ⊂ p−1

n (D(0,R)) ⊂ D(0,R)
for all n ≥ N . Hence by (Christiansen et al., 2021, Proposition 3.5), there exists
N ∈ N and M > 0 such that

(3.19) ∥ gn(z)− 1
n

log+ |pn(z)| ∥∞≤ M

n

for all n ≥ N .

Now, let p ∈ (0,∞). Then by (Stahl & Totik, 1992, Theorem 3.2.1) and (Stahl &
Totik, 1992, Remark 3.2.2)

(3.20) limsup
n→∞

(
|pn(z)|

∥ pn ∥Lp(τ)

) 1
n

≤ egΩ(z)

locally uniformly for z ∈ C. This implies that

(3.21) limsup
n→∞

(|pn(z)|)
1
n ≤ egΩ(z)

locally uniformly on C.

For p = ∞, using (2.11) and Bernstein’s Lemma (see (Ransford, 1995, Theorem
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5.5.7)), we obtain

(3.22) limsup
n→∞

(|pn(z)|)
1
n ≤ egΩ(z)

uniformly on C. Hence, the assertion follows by combining (3.19), (3.21) and (3.22).

Proof of the Theorem 1.0.1. First, we will show that {ωn}n is sequentially
pre-compact with respect to the weak∗-topology. Indeed, for each subsequence
{ωnk

}k, since support of µnk
’s are uniformly bounded, by Helly’s Theorem there is a

further subsequence such that the empirical measure of zeros µnkl
weak* converges

to a probability measure ν. Then by Lemma 3.1.2, Knkl
’s are uniformly bounded

and hence the Brolin measures {ωnkl
}l≥1 has a weak* convergent subsequence.

Next, by Brolin’s Theorem [Brolin (1965)], for any measurable function f : C → C
and for all n ∈ N,

(3.23)
∫
C

f(z)dωn(z) = 1
n

∫
C

( ∑
pn(w)=z

f(w)
)

dωn.

Now, let σ be a weak* limit of a subsequence {ωnk
}k. We will show that

supp(σ) ⊂ J = ∂Pc(E). Passing to a further subsequence if necessary, we may and
we do assume that the normalized measure of zeros µnk

are weak* convergent to a
measure ν. Let F ⊂ C be a compact set with F ∩Pc(E) = ∅. Then, by Lemma 3.1.2
the filled Julia sets Kn are uniformly bounded and by Lemma 3.1.3 we have

(3.24) ωnk
(F ) =

∫
C

1F (z)dωnk
(z) =

∫
C

(
1
nk

∑
pnk (w)=z

1F (w)
)

dωnk
(z) k→∞−−−→ 0.

Hence, σ(F ) = 0. Since this is true for all compact set disjoint from Pc(E), we
deduce that supp(σ) ⊂ Pc(E).

On the other hand, by Lemma 3.1.5 we have that lim
n→∞gn = 0 uniformly on any

compact subset of the interior of Pc(E) since gΩ ≡ 0 in the interior of Pc(E).

Let L be a compact subset of the interior Int(Pc(E)) and U be a compact
neighborhood of L contained in Int(Pc(E)) and φ be a C2 function with support in
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supp(φ) ⊂ U satisfying 0 ≤ φ ≤ 1 and φ ≡ 1 on L. Then we have

σ(L) ≤
∫

φ(z)dσ(z)

= lim
k→∞

∫
φ(z)dωnk

(z)

= lim
k→∞

1
2π

∫
∆φ(z)gnk

(z)dA(z) = 0

where dA(z) is the standard Euclidean area element.

On the other hand, by [(Ransford, 1995, Lemma A.3.3) ]

σ(Int(Pc(E))) = sup{σ(L) : L ⊂ Int(Pc(E)) and L is compact}

Hence, we conclude that σ(Int(Pc(E)) = 0 and supp(σ) ⊂ ∂Pc(E).

Finally, we will show that ωn
weak∗
−−−−→ ωE as n → ∞. By (Ransford, 1995, Lemma

3.3.3), we have

(3.25) limsup
k→∞

I(ωnk
) ≤ I(σ).

On the other hand,

(3.26) limsup
n→∞

I(ωnk
) = I(ωE)

by asymptotic minimality 2.2.1 and (2.3.1) this in turn implies that I(ωE) ≤ I(σ).
Since ωE is the unique measure of maximal energy, we deduce that σ = ωE . Since
this is true for all weak*-convergent subsequences of {ωn}n≥1 we conclude that
ωn → ωE in the weak* topology.

3.2 Further Results on Asymptotically Minimal Polynomials

In the previous section, we showed that n-th roots of absolute value of asymptotically
minimal polynomials with bounded zeros converge uniformly to Green’s function on
Ĉ\F . We can prove this convergence for asymptotically minimal polynomials with
unbounded zeros:

Proposition 3.2.1. Let E be a compact non-polar subset of C and {pn}n be an
asymptotically minimal on E such that the sequence of counting measure of zeros
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{µn}n is weak∗-convergent to a measure ν. Assume that there exists k0 > 0 and a
compact set E0 such that all the zeros of each pn except at most k0 many of them
are in E0. Then |pn| 1

n → egΩ locally uniformly on Ĉ\ (Pc(E)∪E0).

To prove this proposition, we need the following lemma:

Lemma 3.2.2. Let E be a compact non-polar subset of C and {pn}n be
asymptotically minimal on E. Assume that there exists k0 > 0 and compact set
E0 such that all the zeros of each pn except at most k0 many of them are in E0 : if
pn(z) = 0, z /∈ E0, then z = zn,k for some k = 1,2, · · · , l(n) and l(n) ≤ k0. Write

p∗
n := pn(z)/

l(n)∏
j=1

(z − zn,j).

Then, min{|zn,j | : j = 1,2, · · · , l(n)} → ∞ and {p∗
n}n is asymptotically minimal on

E.

Proof. By the assumption on the zeros of pn’s, we observe that

(3.27) min{|zn,j | : j = 1,2, · · · , l(n)} → ∞.

This gives us

(3.28) lim
n→∞

1
n

log
∥∥∥ l(n)∏

j=1
(z − zn,j)

∥∥∥
Lp(τ)

≥ 0.

Now, we will show that {p∗
n}n is an asymptotically minimal sequence on E. Since

leading coefficients of pn’s and p∗
n’s are same, we have (2.10). So it is enough to

prove (2.11). We have that;

(3.29)

logcap(E) ≤ lim
n→∞

1
n

log
∥∥∥ p∗

n

an,n

∥∥∥
Lp(τ)

≤ lim
n→∞

1
n

log
∥∥∥ pn

an,n

∥∥∥
Lp(τ)

− lim
n→∞

1
n

log
∥∥∥ l(n)∏

j=1
(z − zn,j)

∥∥∥
Lp(τ)

≤ logcap(E).

This yields

(3.30) lim
n→∞

1
n

log∥p∗
n∥Lp(τ) = 0.

Hence, {p∗
n}n is asymptotically minimal on E.
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Proof of Proposition 3.2.1. Let zn,k’s are zeros of pn’s which are not contained in
E0 for some k = 1,2, · · · , l(n) and l(n) ≤ k0 and define

(3.31) p∗
n(z) := pn(z)/

l(n)∏
j=1

(z − zn,j).

Then {p∗
n}n is asymptotically minimal on E by Lemma 3.2.2. Note that zeros of

p∗
n’s are contained in E0 and the sequence of counting measures of zeros of p∗

n’s is
weak∗-convergent to ν. Then by Lemma 3.1.1 and Corollary 2.2.5, we have that

(3.32) lim
n→∞

1
n

log |p∗
n(z)| = gΩ.

locally uniformly on Ĉ\ (Pc(E)∪E0). By (3.21),

(3.33) limsup
n→∞

1
n

log |pn(z)| ≤ egΩ

locally uniformly on C. On the other hand, we can observe that,

(3.34)

gΩ(z) = lim
n→∞

1
n

log |p∗
n(z)|

= lim
n→∞

1
n

log |pn(z)|∏l(n)
j=1 |(z − zn,j)|

≤ lim
n→∞

1
n

log |pn(z)|− lim
n→∞

1
n

log
l(n)∏
j=1

|(z − zn,j)|

≤ lim
n→∞

1
n

log |pn(z)|

locally uniformly on Ĉ\ (Pc(E)∪E0). Hence, we have that

(3.35) lim
n→∞

1
n

log |pn(z)| = gΩ(z)

locally uniformly on Ĉ\ (Pc(E)∪E0).

In the first part of Theorem 1.0.1, we showed that the filled Julia sets of
asymptotically minimal polynomials are uniformly bounded. We used boundedness
of zeros of these polynomials in this part. So if we can prove this part for
asymptotically minimal polynomials with unbounded zeros, the rest of the proof
of Theorem 1.0.1 will be same. Lemma 3.1.1 is the main part of the proof of
lemma which states that the filled Julia sets of asymptotically minimal polynomials
are uniformly bounded. This motivates us to show uniform boundedness for the
polynomials in Proposition 3.2.1. However, we observed that, this may not be true,
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see Example 2.2.5. For all n ∈ N, we have cn ∈ Kn and hence {Kn}n≥1 is not
pre-compact in neither Hausdorff topology nor Klimek topology.
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4. Geometric Limit of Filled Julia Sets

4.1 The Julia Sets of Asymptotically Minimal Polynomials

Julia sets of complex polynomials have been studied in many aspects. In 2013,
one line of research was initiated by K. Lindsey [Lindsey (2015)]. She proved that
if E ⊂ C is a closed Jordan domain, then there exists a sequence of polynomials
such that E is totally approximable by the collection of the filled Julia sets of
these polynomials. Recall that a nonempty proper subset E of the plane is totally
approximable by a collection A of nonempty proper subsets of the plane is for any
ε, there exists F ∈ A such that

(4.1) χ(S,F ) < ε, χ(∂S,∂F ) < ε.

A compact subset E of the plane is uniformly perfect if there exists a real number
r > 0 such that for any z ∈ E and for any 0 < d < diam(E), there is a point w ∈ E

with rd ≤ |z −w| ≤ d. Let E ⊂ C be a uniformly perfect compact set with connected
complement with 0 ∈ int(E) and {qn}n be sequence of monic polynomials of degree n

having all zeros in ∂E such that counting measures converge weak∗ to the equilibrium
measure for E. In [Lindsey & Younsi (2019)], K. Lindsey and Younsi showed that
E is totally approximable by the filled Julia sets of the polynomials Pn,s where

(4.2) Pn,s(z) := z
e−ns/2

cap(E)n
qn(z).

For this, they proved that for any bounded neighborhood U of E, there exist s and
n such that

(4.3) E ⊂ int(K(Pn,s)) ⊂ U.
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Moreover, they gave a characterization of the sets which can be approximated
arbitrarily well by filled Julia sets of polynomials:

Theorem 4.1.1 (Lindsey & Younsi (2019)). A nonempty proper subset E of the
complex plane C is totally approximable by polynomial filled Julia sets if and only if
E is bounded and C\ int(E) is connected.

In addition to this, they showed that if E is a uniformly perfect compact set with
nonempty interior and connected complement, then there exists a real number
c = c(E) depending only on E such that

(4.4) sn(E) ≤ c
logn√

n
(n ≥ 1)

sn(E) := inf{s > 0 : ∃pn of degree n such that E ⊂ K(pn) ⊂ E ∪ Es} where
Es := {z ∈ Ω : gΩ(z,∞) ≤ s}. In 2018, L. Bialas-Ciez, M. Kosek and M. Stawiska
examined the rate of approximation by Julia sets and provided examples of
sequences of polynomials that guarantee a better rate of approximation than
the one in [Lindsey & Younsi (2019)]. In [Bialas-Ciez et al. (2018)], they
approximate regular compact sets by using Klimek distance. For this, they used
a similar method in [Lindsey & Younsi (2019)]. They started with Lagrange
polynomials and defined new polynomials by using them. More precisely, they used
the polynomials Pn(z) := ze−ns/3Qn(z) where Qn’s are Lagrange polynomials.

We can prove the following theorem. The proof is analogous to that ([Lindsey &
Younsi (2019)], Theorem 3.2)

Theorem 4.1.2. Let E be a compact nonpolar subset of C with connected
complement and 0 ∈ E. Then E is totally approximable by the filled Julia sets
of the polynomials

(4.5) Pn,s(z) := ze−ns/2pn(z)

where s > 0 and pn’s are asymptotically minimal polynomials whose zeros are
contained in E.

Proof. Let s > 0. For sufficiently large n, we have that

(i) (R/r)1/n∥pn∥1/n
E < es/2 for all z ∈ E,

(ii) | 1
n log |pn(z)|−gΩ(z)| ≤ s

4 for all z ∈ Ωs,

(iii) rens/4 > R
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where r,R > 0 are such that D(0, r) ⊂ E and Es ⊂ D(0,R).

By (i), for z ∈ E, we can observe that;

(4.6) |Pn,s(z)| = |ze−ns/2pn(z)| < Re−ns/2ens/2 r

R
= r.

This yields us Pn,s(E) ⊂ D(0, r) ⊂ E and hence E ⊂ int(KPn,s).

Now, let z ∈ Ωs. Then, by (ii)

(4.7) |Pn,s(z)| > |z|e−ns/2ens/4 = |z|ens/4.

On the other hand, by (iii), |Pn,s(z)| > |z|ens/4 > rens/4 > R. So Pn,s(z) ∈ Ωs if
z ∈ Ωs. Hence, we have KPn,s ⊂ Es. This means that E is totally approximable by
the filled Julia sets of Pn,s’s.

As a conclusion of this theorem, we can show that the polynomial Pn,s is hyperbolic.
Recall that the polynomial p is hyperbolic on the Julia set Jp if there exists a > 0 and
A > 1 such that |(pn)′| ≥ aAn on Jp for all n ≥ 1. Moreover, the rational function
p is hyperbolic on Jp if and only if every critical point belongs to Ĉ \ Jp and is
attracted to an attracting cycle. A Jordan curve is called a quasicircle if it is the
image of a circle under a quasiconformal homeomorphism of the sphere. It is known
that if Ĉ \ Jp of a rational function p has exactly two components and that p is
hyperbolic on Jp, then Jp is a quasicircle [Carleson & Gamelin (1993)]. The proof of
the following theorem is same with the proof of Theorem 7.1 in [Lindsey & Younsi
(2019)].

Theorem 4.1.3. Let E be a connected compact set with connected complement, and
assume that 0 is an interior point of E. Then for any s > 0 and n ∈ N such that
E ⊂ int(KPn,s), where Pn,s is as defined in Theorem 4.1.2, the Julia set JPn,s is a
Jordan curve. Moreover, the polynomial Pn,s is hyperbolic and JPn,s is a quasicircle.

Hyperbolic polynomials are important in complex analysis. We know exact formula
for the Hausdorff dimension of Julia set of hyperbolic polynomials. Let E be an
arbitrary subset of C. For α > 0, the α-dimensional Hausdorff measure of E is
defined by

(4.8) mα(E) = lim
δ→0

(inf{
∑

i

(diamUi)α : E ⊂ ∪iUi,diamUi < δ})

the infimum being taken over all countable coverings of E by subsets Ui of diameter
< δ. This limit always exists, though it may be infinite. In fact, there is always a
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number θ ∈ [0,2] such that

(4.9) mα(E) =

∞ if α < θ

0 if α > θ
.

This θ is called the Hausdorff dimension of E, denoted by dim(E).

Example 4.1.1. The Hausdorff dimension of a nonempty open subset of C is always
2 and the Hausdorff dimension of a countable subset of C is always 0.

The Hausdorff dimension of a set is hard to calculate. For the Hausdorff dimension
of Julia sets J of polynomials, we know that

(4.10) dim(J) ≥ logd

log(supJ |q′|) .

There is one case where we have an exact formula for dim(J), namely when q is
hyperbolic. In this case, the Hausdorff dimension of the Julia set is given by the
Bowen-Ruelle-Manning formula:

(4.11) dim(J) = sup
µ

( eµ(q)∫
J log |q′|dµ

)
,

where the supremum is taken over all Borel probability measures µ on J which are
q-invariant, and eµ(q) denotes the entropy of q with respect to µ.

4.2 Proof of Theorem 1.0.2

For s > 0 and a compact set E ⊂ C we denote by Es := {z ∈ C : dist(z,E) < s}.
Clearly, Es forms a neighborhood base of the set E in C. Furthermore, if the set
E is regular, we define Es := {z ∈ C : gΩ(z) ≤ s} and Ωs := {z ∈ C : gΩ(z) > s}. It
follows that {Es}s>0 also forms a neighborhood base of Pc(E) (see [Klimek (1995)]).
Now, we prove Theorem 1.0.2.

Proof of Theorem 1.0.2. First, we will show that {Kn}n is sequentially pre-compact
in (R,Γ). Indeed, passing to a subsequence {Knj }j we may assume that the counting
measures of zeros of pnj ’s are weak*-convergent. Then by Lemma 3.1.2 the collection
{Knj }j is uniformly bounded. Next, we show that {Knj }j has the equicontinuity
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property. Indeed, for s > 0 by assumption all zeros of pn are contained in E s
2

for
sufficiently large nj . Then it follows from Lemma 3.1.1 that

(4.12)
∣∣∣ 1
nj

log |pnj (z)|−gΩ(z)
∣∣∣< s

2 for z ∈ ∂Ωs.

for sufficiently large nj . This in turn implies that

(4.13) |pnj (z)| > e
snj

2 for z ∈ ∂Ωs.

Since all zeros of pnj are contained in C \ Ωs by applying the minimum modulus
principle on the domain Ωs we deduce that |pnj (z)| > e

snj
2 for all z ∈ Ωs and

sufficiently large nj . Next, by (3.19) there exists M > 0 such that

(4.14) |gnj (z)− 1
nj

log |pnj (z)|| ≤ M

nj
for z ∈ Ωs

which implies that |gnj (z)| > s
4 for z ∈ Ωs and sufficiently large nj . This in turn

yields

(4.15) Knj ⊂ C\Ωs = Es

for sufficiently large nj . Since (Es)s>0 form a neighborhood basis for Pc(E) in C
for each ϵ > 0 we can find 0 < s < ϵ such that Es ⊂ Pc(E)ϵ. On the other hand, by
Lemma 3.1.5, we have

(4.16) gnj (z) ≤ gΩ(z)+ s

for all z ∈ Pc(E)ϵ and sufficiently large j. Then from (4.15) and (4.16) we deduce
that

lim
ϵ→0+

[sup
nj

ωKnj
(ϵ)] = 0.

Thus, by Proposition 2.4.3 the family {Kn}n is sequentially pre-compact in (R,Γ).
Moreover, Γ(Knj ,Pc(E)) → 0. Indeed, for each s > 0 by (4.15)

(4.17) ∥gΩ∥Knj
≤ s

for sufficiently large nj . Moreover, since E is regular gΩ(z) = 0 on Pc(E) and by
(4.16) we conclude that ∥ gnj ∥Pc(E)≤ s. Hence, combining (4.17) and (4.16) we
deduce that

Γ(Knj ,Pc(E)) = max(∥ gnj ∥Pc(E),∥ gΩ ∥Knj
) ≤ s.

Since s > 0 arbitrary we conclude that Γ(Knj ,Pc(E)) → 0 as j → ∞.
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For the general case, since the zeros of {pn}n are bounded for each Klimek
convergent subsequence of {Kn}n it has a further subsequence {Knj } such that
the counting measures of zeros of corresponding pn’s are weak*-convergent. Then
by above argument Γ(Knj ,Pc(E)) → 0. Since this holds for all convergent
subsequences we conclude that {Kn}n converges to Pc(E) in the Klimek
distance.

As a corollary we obtain the following:

Corollary 4.2.1. The collection of all filled Julia sets of asymptotically minimal
polynomials associated with regular planar compact sets is a proper dense subset of
(R,Γ).

Proof. Note that the filled Julia set of a polynomial of degree d ≥ 2 has Hölder
property [Carleson & Gamelin (1993)]. Hence, the collection of filled Julia sets is a
proper subset of R. The density follows from Theorem 1.0.2.

The next example illustrates that for a sequence of asymptotically minimal
polynomials {pn}n associated with a regular compact set E ⊂ C as in Theorem
1.0.2, their filled Julia sets need not to converge in Hausdorff topology. It was
stated as an open problem in [Christiansen et al. (2021)] that for the sequence of
normalized Chebyshev polynomials and a limit K∞ set of {Kn}n in (K ,χ) whether
the difference E \ K∞ is a polar set. For asymptotically minimal polynomials this
difference could be quite large:

Example 4.2.1. For fixed c ∈ C, we let pn(z) = zn + c for n ∈ N. Then it is easy
to see that {pn}n∈N satisfy hypotheses of Theorem 1.0.2 on the unit circle E = S1.
Then, the filled Julia sets of pn’s converge to S1 in the Klimek distance. On the
other hand, by [(Boyd & Schulz, 2012, Theorem 1.2)] if |c| < 1 then the filled Julia
sets Kpn converges to the closed unit disc D; however if |c| > 1 then the filled Julia
sets converges to S1 with respect to Hausdorff topology. Finally, for almost every
c ∈ S1 the filled Julia sets do not converge to any compact set [Kaschner, Romero
& Simmons (2015)]. Moreover, again by [(Boyd & Schulz, 2012, Theorem 1.2)]
for any limit set K∞ of the filled Julia sets Kpn in the Hausdorff topology we have
Pc(K∞) = D.

Recall that in Chapter 3, we showed that if the counting measures of zeros of
{pn}n are weak*-convergent, then the filled Julia sets Kn’s are uniformly bounded.
This yields us {Kn}n is sequentially pre-compact in K with respect to Hausdorff
topology. Motivated by Example 4.2.1 we prove Proposition 1.0.3. First,
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adapting the argument in [(Christiansen et al., 2021, Proposition 4.3)] we can prove
the following:

Lemma 4.2.2. For any limit point K∞ of a convergent subsequence {Knk
}k with

respect to Hausdorff topology we have that

(4.18) E ⊂ Pc(K∞) ⊂ Pc(limsup
n→∞

Kn).

Proof. Passing to a subsequence if necessary we may assume that the counting
measures of zeros of {pn}n are weak*-convergent. The rest of the proof follows from
[(Christiansen et al., 2021, Proposition 4.3 )] and Lemma 3.1.5.

Now, we prove Proposition 1.0.3:

Proof of Proposition 1.0.3. Note that Es is polynomially convex for all s > 0 [Siciak
(1981)]. Passing to a subsequence if necessary we may assume that the counting
measures of zeros of {pn}n is weak*-convergent. Then, by Lemma 4.2.2 and the
proof of Theorem 1.0.2, for s > 0 small we have

(4.19) E ⊂ Pc(K∞) ⊂ Pc(limsup
n→∞

Kn) ⊂ Es.

Letting s → 0 we deduce that

Pc(K∞) = Pc(E).

Finally, we focus on the Hausdorff limit of the Julia sets of asymptotically minimal
polynomials. Let E be a compact non-polar subset of C and Ω be the unbounded
component of C \ E. We denote the outer boundary of E by JE := ∂Ω. We also
denote the exceptional set (see [Ransford (1995)] for definition) for the Green’s
function gΩ by FE . This means that FE = {z ∈ E : gΩ(z) > 0}. We adopt the
argument in [(Christiansen et al., 2019, Theorem 1.3(ii))] to our setting to prove
that the limit of Julia sets of asymptotically minimal polynomials contain the regular
points of the outer boundary:

Sketch of proof of Theorem 1.0.4. Since we mainly follow the argument in the proof
of [(Christiansen et al., 2019, Theorem 1.3(ii))] we only give the main differences that
require clarification. Assume that there exists z0 ∈ J \ F such that z0 /∈ liminf

n→∞ Jn.
Then gΩ(z0) = 0 and there exists δ > 0 and (nk)k with nk ↗ ∞ such that for all k,
D(z0, δ)∩Jnk

= ∅. By passing to a further subsequence if necessary we may assume
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that the counting measures of zeros of pnk
’s are weak*-convergent. By using Lemma

3.1.1 and inequality (3.19), we can observe that for every compact set V ⊆ Ω and
every ε > 0, we have

(4.20) lim
n→∞cap({z ∈ V : gΩnk

(z) < gΩ(z)− ε}) = 0.

Then following the argument in the proof of [(Christiansen et al., 2019, Theorem
1.3(ii))] one can show that there exist ε > 0 and k ∈ N such that for all k ≥ N ,
there exists zk ∈ D(z0, δ) with gnk

(zk) ≥ ϵ and D(z0, δ) ⊂ Ωnk
. Then by Harnack’s

inequality, we obtain

(4.21) gnk
(z0) ≥ gnk

(zk)
1− 1

2
1+ 1

2
≥ ϵ

3 > 0.

On the other hand, by Lemma 3.1.5, we have that

(4.22) limsup
k→∞

gnk
(z0) ≤ gΩ(z0) = 0

which is a contradiction. Hence, we deduce that

(4.23) J \F ⊆ liminf
n→∞ Jn.
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5. Fractal Approximation in Cn

In this chapter, we will give the basic concepts of pluripotential theory and
some theorems which show us a way to approximate compact regular subset
of Ck. In Chapter 3, we proved that the measures of maximal entropies of
asymptotically minimal polynomials with bounded zeros converge weakly to the
equilibrium measure of E and in Chapter 4, we approximated regular compact
sets by using the filled Julia sets of asymptotically minimal polynomials. In one
variable case, these polynomials have various useful properties. We know that for any
subsequential limit of zero measures of these polynomials is supported in
polynomially convex hull Pc(E). Moreover, the balayage of this limit is equal to
the balayage of the equilibrium measure of E, (see Section 2). In addition to these,
logarithm of n−th roots of these polynomials converges locally uniformly to the
Green’s function of E in the outside of Pc(E) and the bounded set containing all
zeros of these poynomials.

For higher dimensions, we want to define similar polynomial mappings F : Ck → Ck,
which give us the approximation to regular polynomially convex compact subsets of
Ck. For this, we expect that zero measures of these polynomial mappings to have
similar properties like in one variable case. Moreover, we are interested in finding
a relation between the equilibrium measure of this compact sets and measure of
maximal entropies of these polynomial mappings.

Now, we will give the basic definitions of pluripotential theory. Let E ⊂ Ck be
a polynomially convex regular compact subset. We define the pluricomplex Green
function of the set E by:

VE(z) = sup{u(z) : u ∈ L,u ≤ 0 on E} z ∈ Ck,

where L := {u ∈ PSH(Ck) : u(z) − log∥z∥ ≤ O(1) as ∥z∥ → ∞}. We denote by gE

the upper regularization V ∗
E of VE . Since E is regular, VE is continuous. Hence,
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gE = VE . If E is a non-pluripolar subset of Ck, then gE ∈ L+, where

L+ := {u ∈ PSH(Ck) : u(z)− log∥z∥ = O(1) as ∥z∥ → ∞}.

In this case wE = (ddcgE)k is called the (complex) equilibrium measure for E where
d = ∂ + ∂, dc = (i/2π)(∂ − ∂) and (ddc)k is the complex Monge-Ampère operator.
Note that, for k = 1, it is equal the measure (1/2π)∆gE for E. See [Bedford &
Taylor (1987)] or [Klimek (1991)] for more information about complex equilibrium
measure for the case k > 1.

Let F = (p1, . . . ,pk) : Ck → Ck be a polynomial mapping such that
degp1 = . . . = degpk = n and

p̃1
−1(0)∩·· ·∩ p̃k

−1(0) = {0}

where p̃1, . . . , p̃k are homogeneous parts of p1, . . . ,pk, respectively. Such a mapping
F is called regular polynomial mapping. Let

KF = {z ∈ Ck : F l(z) ↛ ∞ as l → ∞}

be the filled Julia set of F . The escape rate function of F is defined by

(5.1) gF (z) = lim
m→∞

1
nm

log+ ∥F m(z)∥.

The function gF is continuous and coincide with the pluricomplex Green function
of the filled Julia set KF . The complex equilibrium measure (ddcgKF

)k for KF is a
measure of maximal entropy for F [Fornaess & Sibony (1995)].

For a compact non-pluripolar set K, we denote for any positive real number R,
D(R) the bounded open sublevel set:

D(R) = {z ∈ Ck : gK(z) < R}.

In [Nivoche (2009)], S. Nivoche aproximated polynomially convex compact regular
subsets E of Ck by using special polynomials polyhedron defined by proper
polynomial mappings from Ck to Ck. She proved that for any ϵ > 0 sufficiently small,
there exist an integer dϵ ≥ 1 and a proper polynomial mapping Fϵ = (p1, . . . ,pk) of
degree dϵ such that ∥pj∥K ≤ 1 for 1 ≤ j ≤ k, and

(5.2) K ⊂ D(ϵ) ⊂ Pϵ ⊂ D(ϵ+ ϵ2);

where Pϵ is the special polynomial polyhedron which is the finite union of the
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connected components of the open set

{z ∈ Ck : sup
1≤l≤k

1
dϵ

log |pl(z)| < ϵ+β(ϵ)}

that meets the compact set D(ϵ) and 0 < β(ϵ) ≤ ϵ2/2. To find this polynomial
mapping, she used the following theorem:

Theorem 5.0.1 (Siciak (1982)). Let u be a continuous plurisubharmonic function
in L+.

(i) For any ϵ > 0 and for any compact set E in Ck, there exist two integers
d = d(ϵ) ≥ 1 and N = N(ϵ) ≥ 1 and there exist N polynomials p1, . . . ,pN of degree
less or equal to d such that

(5.3) u(z)− ϵ ≤ sup
1≤l≤N

1
d

log |pl(z)| ≤ u(z) in E.

(ii) If in addition limλ∈C,|λ|→inf,(u(λz) − log |λ|) exists for any z ∈ Ck \ {O}, then
the previous approximation is uniform in all Ck.

Note that, N may be bigger than k in this theorem. S. Nivoche constructed new
polynomial mapping by using part (i) of this theorem and showed that this new
polynomial mapping satisfies (5.2). By using (5.2), she proved that

(5.4) card(Zϵ ∩Pϵ)
dk

ϵ
→ 1

when ϵ tends to 0, dϵ tends to infinity where Zϵ is the set containing the zeros
of Fϵ. This gives us some informations about counting measures of zeros of Fϵ’s.
So, we aim to define a sequence of asymptotically minimal polynomial mappings
{Fn = (p1

n, . . . ,pk
n)}n in Ck such that (5.2) holds for ϵ = 1/n and dϵ = n. This may give

us similar properities for the counting measures of zeros of such polynomial mappings
like in one variable case. After that, we can consider the following questions:

Question 5.0.1. What is the relation between the (complex) equilibrium measure of
compact sets in Ck and measures of maximal entropies of asymptotically minimal
polynomial mappings associated with the same compact set?

Question 5.0.2. For a given polynomially convex regular compact set E ∈ Ck, is
it true that under suitable assumptions for an asymptotically minimal sequence of
polynomial mappings Fn :Ck →Ck, we have Kn → E as n → ∞ in Klimek topology?
Or more specifically can we find a sequence of polynomial mappings from Ck to Ck

which gives us similar convergence in Klimek topology?
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5.1 The Composite Julia Sets of Polynomial Mappings

In [Klimek (2001)], Klimek approximated to regular compact sets in Ck by using
composite Julia sets with respect to Klimek distance. Let F1, . . . ,Fm be
regular polynomial mappings of degree at least 2. We denote the collection of all
polynomially convex compact regular subsets of Ck by R. We know that F −1

j (E) ∈ R
for any E ∈ R and that

VF −1
j (E) = 1

degFj
(VE ◦Fj), j = 1, . . . ,m.

For more information, see [Klimek (1982)],[Klimek (1991)]. Consequently, the
mapping

E → (
m⋃

j=1
F −1

j (E))∧,

where ∧ denotes the polynomial hull, is a contraction of the complete space
(R,Γ) [Klimek (1995)]. The unique fixed point of this contraction is denoted by
K+[F1, . . . ,Fm] and is called the composite Julia set of the mappings F1, . . . ,Fm.

On the other hand, we can describe the set K+[F1, . . . ,Fm] in terms of orbits. Define

∑
k

= {σ = (σ1,σ2, . . .) : σj ∈ {1, . . . ,m}}.

If z ∈ Ck and σ ∈∑k, we define the σ−orbit of z as the sequence (Fσn ◦ · · ·◦Fσ1)(z),
where n ≥ 1. Let S+

σ [F1, . . . ,Fm] be the set of all points in Ck whose σ−orbits are
bounded and let

S+[F1, . . . ,Fm] =
⋃

σ∈
∑

k

S+
σ [F1, . . . ,Fm].

S+[F1, . . . ,Fm] is compact and the composite Julia set K+[F1, . . . ,Fm] is equal to
the polynomially convex hull of S+[F1, . . . ,Fm] (see [Kosek (1998)]).

In the case of a single regular mapping F , the set K+[F ] = S+[F ] is simply the
filled-in Julia set of F . Klimek proved the following theorem;

Theorem 5.1.1 (Klimek (2001)). The family of all composite Julia sets in Ck is a
proper dense subset of the metric space (R,Γ).

In this theorem, Klimek used composite Julia sets instead of filled Julia sets of
polynomial mappings in Ck. This gives us another aspect on approximating regular
polynomially convex subsets of Ck. Like in Klimek’s theorem, we can use composite
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Julia sets of asymptotically minimal polynomial mappings after finding suitable
definition.

41



BIBLIOGRAPHY

Bedford, E. & Taylor, B. A. (1987). Fine topology, Šilov boundary, and (ddc)n. J.
Funct. Anal., 72 (2), 225–251.

Bialas-Ciez, L., Kosek, M., & Stawiska, M. g. (2018). On Lagrange polynomials and
the rate of approximation of planar sets by polynomial Julia sets. J. Math.
Anal. Appl., 464 (1), 507–530.

Binder, I., Makarov, N., & Smirnov, S. (2003). Harmonic measure and polynomial
Julia sets. Duke Math. J., 117 (2), 343–365.

Bishop, C. J. & Pilgrim, K. M. (2015). Dynamical dessins are dense. Rev. Mat.
Iberoam., 31 (3), 1033–1040.

Boyd, S. H. & Schulz, M. J. (2012). Geometric limits of Mandelbrot and Julia sets
under degree growth. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (12),
1250301, 21.

Brolin, H. (1965). Invariant sets under iteration of rational functions. Ark. Mat., 6,
103–144 (1965).

Carleson, L. & Gamelin, T. W. (1993). Complex dynamics. Universitext: Tracts in
Mathematics. Springer-Verlag, New York.

Carleson, L. & Jones, P. W. (1992). On coefficient problems for univalent functions
and conformal dimension. Duke Math. J., 66 (2), 169–206.

Christiansen, J. S., Henriksen, C., Pedersen, H. L., & Petersen, C. L. (2019). Julia
sets of orthogonal polynomials. Potential Anal., 50 (3), 401–413.

Christiansen, J. S., Henriksen, C., Pedersen, H. L., & Petersen, C. L. (2021). Filled
Julia sets of Chebyshev polynomials. J. Geom. Anal., 31 (12), 12250–12263.

Dauvergne, D. (2021). A necessary and sufficient condition for convergence of the
zeros of random polynomials. Advances in Mathematics, 384, 107691.

Fornaess, J. E. & Sibony, N. (1995). Complex dynamics in higher dimension. II.
In Modern methods in complex analysis (Princeton, NJ, 1992), volume 137 of
Ann. of Math. Stud. (pp. 135–182). Princeton Univ. Press, Princeton, NJ.

Kaschner, S. R., Romero, R., & Simmons, D. (2015). Geometric Limits of Julia Sets
of Maps zn + exp(2πiθ) as n → ∞. International Journal of Bifurcation and
Chaos, 25 (8), 1530021–517.

Klimek, M. (1982). Extremal plurisubharmonic functions and l-regular sets in n.
Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical
Sciences, 82A(2), 217–230.

Klimek, M. (1991). Pluripotential Theory. LMS monographs. Clarendon Press.
Klimek, M. (1995). Metrics associated with extremal plurisubharmonic functions.

Proc. Amer. Math. Soc., 123 (9), 2763–2770.
Klimek, M. (2001). Iteration of analytic multifunctions. Nagoya Math. J., 162,

19–40.
Kosek, M. (1998). Hölder continuity property of composite Julia sets. Bull. Polish

Acad. Sci. Math., 46 (4), 391–399.
Kövari, T. & Pommerenke, C. (1967). On Faber polynomials and Faber expansions.

Math. Z., 99, 193–206.
Levenberg, N. & Wielonsky, F. (2020). Zeros of Faber polynomials for Joukowski

airfoils. Constr. Approx., 52 (1), 93–114.
42



Lindsey, K. A. (2015). Shapes of polynomial Julia sets. Ergodic Theory Dynam.
Systems, 35 (6), 1913–1924.

Lindsey, K. A. & Younsi, M. (2019). Fekete polynomials and shapes of Julia sets.
Trans. Amer. Math. Soc., 371 (12), 8489–8511.

Lyubich, M. Y. (1982). The maximum-entropy measure of a rational endomorphism
of the riemann sphere. Functional Analysis and Its Applications, 16 (4), 309–
311.

Nivoche, S. (2009). Polynomial convexity, special polynomial polyhedra and the
pluricomplex Green function for a compact set in Cn. J. Math. Pures Appl.
(9), 91 (4), 364–383.

Petersen, C. L. & Uhre, E. (2021). Weak limits of the measures of maximal entropy
for orthogonal polynomials. Potential Anal., 54 (2), 219–225.

Ransford, T. (1995). Potential theory in the complex plane, volume 28 of London
Mathematical Society Student Texts. Cambridge University Press, Cambridge.

Saff, E. B. & Totik, V. (1997). Logarithmic potentials with external fields, volume 316
of Grundlehren der mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences]. Springer-Verlag, Berlin. Appendix B by Thomas
Bloom.

Siciak, J. (1981). Extremal plurisubharmonic functions in cn. Annales Polonici
Mathematici, 39 (1), 175–211.

Siciak, J. (1982). Extremal plurisubharmonic functions and capacities in c[n].
Siciak, J. (1997). On metrics associated with extremal plurisubharmonic functions.

Bull. Polish Acad. Sci. Math., 45 (2), 151–161.
Stahl, H. & Totik, V. (1992). General orthogonal polynomials, volume 43 of En-

cyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge.

Tsuji, M. (1959). Potential theory in modern function theory. Maruzen Co. Ltd.,
Tokyo.

43


	INTRODUCTION
	Preliminaries
	Potential Theory
	Asymptotically Minimal Polynomials
	Polynomial Dynamics
	Topology of Compact Sets

	Weak Limits of Measures of Maximal Entropy for  Asymptotically Minimal Polynomials
	Proof of Theorem 1.0.1
	Further Results on Asymptotically Minimal Polynomials

	Geometric Limit of Filled Julia Sets
	The Julia Sets of Asymptotically Minimal Polynomials
	Proof of Theorem 1.0.2

	Fractal Approximation in Cn
	The Composite Julia Sets of Polynomial Mappings

	BIBLIOGRAPHY

