
DIVISIBILITY OF RATIONAL POINTS ON ELLIPTIC CURVES
AND ARITHMETIC PROGRESSIONS IN POLYNOMIAL

DYNAMICAL SYSTEMS

by
TUĞBA YESİN ELSHEIKH

Submitted to the Graduate School of Social Sciences
in partial fulfilment of

the requirements for the degree of Doctor of Philosophy

Sabancı University
June 2023



DIVISIBILITY OF RATIONAL POINTS ON ELLIPTIC CURVES
AND ARITHMETIC PROGRESSIONS IN POLYNOMIAL

DYNAMICAL SYSTEMS

Approved by:

Assoc. Prof. Dr. Mohammad Sadek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Dissertation Supervisor)

Asst. Prof. Dr. Nurdagül Anbar Meidl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Assoc. Prof. Dr. Kağan Kurşungöz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prof. Dr. Andrej Dujella . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prof. Dr. Gökhan Soydan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date of Approval: June 20, 2023



DISSERTATION AUTHOR 2023 ©

All Rights Reserved



ABSTRACT

DIVISIBILITY OF RATIONAL POINTS ON ELLIPTIC CURVES AND
ARITHMETIC PROGRESSIONS IN POLYNOMIAL DYNAMICAL SYSTEMS

TUĞBA YESİN ELSHEIKH

MATHEMATİCS Ph.D DISSERTATION, JUNE 2023

Dissertation Supervisor: Assoc. Prof. Dr. Mohammad Sadek

Keywords: elliptic curves, quartic models, divisibility-by-2, Diophantine
quintuples, dynamical systems, polynomial orbits, arithmetic progressions

Let K be a number field and E be an elliptic curve described by the Weierstrass
equation over K. As a result of 2-descent Theorem on elliptic curves, a criterion for
the divisibility-by-2 of a rational point on E is obtained previously. This divisibility
criterion has been used to study rationalD(q)-m-tuples. In this thesis, we investigate
smooth genus one curves C described by a quartic polynomial equation over the
rational field Q together with P ∈ C(Q). We give an analogous divisibility-by-2
criterion for rational points in C(Q). We also show how this criterion might be used
to study extensions of rational D(q)-quadruples to quintuples.

The existence of consecutive squares in arithmetic progression is a classical prob-
lem. Fermat claimed that there does not exist an arithmetic progression of four
rational squares; and Euler proved this claim. In this thesis, we give a dynam-
ical analogue of Fermat’s Squares Theorem. More precisely, given a polynomial
f(x) and a rational point a, we ask how many consecutive squares can be there
in the orbit {a,f(a),f2(a), . . . ,fn(a), . . .}? In fact, we give explicit constructions of
quadratic polynomials with orbits containing three consecutive squares. Finally, we
investigate the question of covering the latter orbit using finitely many arithmetic
progressions. We establish a connection between the answer to the latter question
and the existence of primitive divisors in the orbit.
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ÖZET

ELİPTİK EĞRİLER ÜZERİNDEKİ RASYONEL NOKTALARIN
BÖLÜNEBİLİRLİĞİ VE POLİNOMSAL DİNAMİK SİSTEMLERDE

ARİTMETİK DİZİLER

TUĞBA YESİN ELSHEIKH

PROGRAM ADI DOKTORA TEZİ, HAZİRAN 2023

Tez Danışmanı: Doç. Dr. Mohammad Sadek

Anahtar Kelimeler: eliptik eğriler, dördüncü dereceden modeller, 2 ile bölünebilme,
Diophantine beşlileri, dinamik sistemler, polinom yörüngeleri, aritmetik diziler

K bir sayı cismi ve E Weierstrass denklemi ile K üzerinde tanımlanan bir elip-
tik eğri olsun. Eliptik eğrilerdeki 2-indirgeme teoreminin bir sonucu olarak, E üz-
erindeki rasyonel bir noktanın 2’ye bölünebilirliği için bir kriter daha önceki çalış-
malarda verilmiştir. Bu bölünebilirlik kriteri, rasyonel D(q) −m’lilerini incelemek
için kullanılmıştır. Bu tez çalışmasında, düzgün, cinsi 1 olan, Q rasyonel cismi üz-
erinde dördüncü dereceden bir polinom denklemiyle tanımlanan ve P ∈ C(Q) özel-
liğini sağlayan C eğrileri araştırılmıştır. C(Q)’daki rasyonel noktalar için benzer bir
2’ye bölünebilirlik kriteri verilmiştir. Ayrıca, bu kriterin rasyonel D(q)-dörtlülerin
beşlilere genişletilmelerini incelemek için nasıl kullanılabileceği de gösterilmiştir.

Aritmetik dizide ardışık karelerin varlığı klasik bir problemdir. Fermat, dört rasyonel
karenin bir aritmetik dizi oluşturmadığını iddia etmiş; ve bu iddia Euler tarafından
ispatlanmıştır. Bu tezde, Fermat’nın Kareler Teoremi’nin dinamik bir benzeri ver-
ilmiştir. Daha kesin olarak, bir f(x) polinomu ve a rasyonel sayısı verildiğinde,
{a,f(a),f2(a), . . . ,fn(a), . . .} yörüngesinde kaç ardışık kare olabileceği sorusu ele
alınmıştır. Aslında, ardışık üç kare içeren yörüngelere sahip ikinci dereceden poli-
nomların kesin yapıları verilmiştir. Son olarak, sonlu sayıda aritmetik dizi kullanarak
yukarıda verilen yörüngeyi örtüp örtmediği araştırılmıştır. Yukarıdaki sorunun cev-
abı ile yörüngedeki ilkel bölenlerin varlığı arasında bir bağlantı kurulmuştur.
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1. INTRODUCTION

Let E be an elliptic curve over a number field K. The Mordell-Weil Theorem asserts
that the abelian group of rational points E(K) is finitely generated. In particular,
there are finitely many points P1, ...,Pn in E(K) such that any P ∈ E(K) can be
written as a linear combination m1P1 + · · · +mnPn for some integers m1, · · · ,mn.
During the course of the proof of the latter theorem, one proves the weak Mordell-
Weil Theorem which states that the abelian group E(K)/2E(K) is finite.

In order to show that E(K)/2E(K) is finite, one needs to pass from a point P ∈
E(K) to a point Q ∈ E such that 2Q = P . This process is called the 2-descent on
elliptic curves. The following theorem is known as the 2-descent Theorem and gives
a necessary and sufficient condition such that Q ∈ E(K), see [49, Chapter IV], [43,
Chapter 6], [64, Chapter VIII], or [2] for a criterion of the divisibility of rational
points by powers of 2.

Theorem 1.1 (2-descent Theorem) Let E be an elliptic curve over a field K of
characteristic not equal to 2 or 3. Suppose E is given by

E : y2 = (x−α)(x−β)(x−γ)

with distinct elements α,β,γ ∈K. For (x2,y2) ∈E(K), there exists (x1,y1) ∈E(K)
with 2(x1,y1) = (x2,y2), in other words, (x2,y2) is divisible by 2 in E(K) if and only
if x2 −α,x2 −β,x2 −γ are squares in K.

The following quartic equation

y2 = (a1x+ b1)(a2x+ b2)(a3x+ b3)(a4x+ b4), ai, bi ∈K,

where bi/ai are distinct in K, describes a genus one curve C. Fixing a rational point
P ∈ C(K) to serve as the identity element of the group law, one may look for a
similar criterion for the divisibility-by-2 on the elliptic curve (C,P ). In Chapter 3,
we obtain a similar condition that depends on P , more precisely, a point Q ∈ C(Q)
is twice a rational point if and only if the values of certain degree-2 polynomials
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evaluated at the x-coordinate of Q are all squares in Q. More precisely, we prove
the following theorem.

Theorem 1.2 Let C be a smooth genus 1 curve over Q defined by an equation of
the form

y2 = (a1x+ b1)(a2x+ b2)(a3x+ b3)(a4x+ b4), where ai ∈ Q×, bi ∈ Q.

Let (x0,y0) ∈C(Q) be such that x0 ̸= −bi/ai, i= 1,2,3,4. We set ϕ :C −→E := J(C)
to be a Q-birational isomorphism with ϕ((x0,y0)) = OE. For Q ∈ C(Q), one has
Q ∈ 2C(Q) if and only if fi(x0)fj(x0)fi(x(Q))fj(x(Q)) ∈ Q2 for all i, j ∈ {1,2,3,4}
where fi(x) = aix+ bi.

Consequently, we show how to characterize such quartic models of elliptic curves
that possess rational 4-torsion points.

A rational D(q)-m-tuple is an m-tuple a1, · · · ,am of distinct non-zero rational num-
bers such that aiaj + q is a square for all 1 ≤ i < j ≤ m. If q = 1, then the latter
m-tuple is called a rational Diophantine m-tuple. The divisibility-by-2 on elliptic
curves described by Weierstrass equations has been used to study rational D(q)-m-
tuples. In [17], 2-divisibility on elliptic curves described by Weierstrass equations
was used to extend rational Diophantine triples to quadruples. It was also used to
show that there are infinitely many rational Diophantine sextuples, see [27]. In [11],
it was proved that assuming the Parity Conjecture for the twists of several explicitly
given elliptic curves, the density of rational numbers q for which there exist infinitely
many rational D(q)-quintuples is at least 295026/296010 ≈ 99.5%.

Rational Diophantine m-tuples have turned out to provide a useful tool to construct
elliptic curves with prescribed torsion subgroups and high rank. In [30], rational
Diophantine triples have been used to construct elliptic curves over Q(u) with rank
2 and either torsion subgroup Z/8Z or Z/2Z×Z/6Z. In [24], for each of the groups
Z/2Z×Z/kZ for k = 2,4,6,8, the authors proved the existence of infinitely many
rational Diophantine quadruples with the property that the induced elliptic curve
has this torsion group. In [16], the so-called regular Diophantine quadruples and
quintuples were characterized by elliptic curves. In addition, these characterizations
were used to find examples of elliptic curves over Q with torsion group Z/2Z×Z/2Z
and with Mordell-Weil rank equal to 8.

Researchers have been investigating D(q)-tuples whose elements enjoy certain prop-
erties. For example, in [29] the authors prove the existence of infinitely many essen-
tially different D(q)-quintuples, where q is an integer, whose elements are squares.

2



Further, integers that possess the D(q)-property for at least two integers q1, q2

have been studied. In fact, the authors of [23] proved the existence of infintely
many essentially different sets consisting of perfect squares which are simultane-
ously D(q1)-quadruples and D(q2)-quadruples for distinct nonzero perfect squares
q1 and q2.

For every rational number q, the authors of [12] found all rational m such that there
exists a rational D(q)-quadruple {a1,a2,a3,a4} with product a1a2a3a4 = m. Using
a certain rational map defined on a specific elliptic curve, the authors show that all
such quadruples are identified if a certain rational map defined on the elliptic curve
attains rational square values. For this reason, using the divisibility by-2 criterion
on elliptic curves described by quartic equations in our work resembles the approach
used in the aforementioned paper.

The notion of a strong rational m-tuple was introduced in [22]. Such a tuple is a
rational Diophantine m-tuple, {a1, . . . ,am}, with the additional property that a2

i +1
is a rational square for every i = 1, . . . ,m. The authors proved that there exist
infinitely many strong rational Diophantine triples. A strong rational D(q)-m-tuple
is a set of non-zero rationals {a1, . . . ,am} such that aiaj + q is a square for all
i, j = 1, . . . ,m, including the case i = j. The case q = −1 was studied in [28] and it
was shown that there exist infinitely many strong rational D(−1)-triples. In [59], it
was proved that there exist infinitely many square-free integers q with the property
that there exist infinitely many strong rational D(q)-triples.

A natural question to pose is how large a set of rational numbers enjoying the D(q)-
property, for some q ∈Q, can be. For a historical overview of rational D(q)-m-tuples,
we refer the reader to [19], [20, Sections 14.6 and 16.7] as well as the webpage of
Andrej Dujella11.

Jones initiated the study of polynomial D(q)-m-tuples where q itself is a polynomial,
see [46, 45]. If we define

Pq = sup{|S| : S is a polynomial D(q)-tuple},

then Pq ≤ 22 for all q ∈ Z, see [15, Theorem 1]. More properties of Pq can be found
in [21]. In this thesis, we focus on the case where q is a linear polynomial. Setting

L= sup{|S| : S is a polynomial D(ax+ b)-tuple for some a ̸= 0 and b},

one can easily observe that L≥ 4 by viewing the D(16x+9)-quadruple T = {x,16x+

11https://web.math.pmf.unizg.hr/∼duje/dtuples.html
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8,25x+ 14,36x+ 20}, see [13]. For upper bounds on L, the reader can consult the
papers [26, 25].

We examine the case of polynomial D(q)-m-tuples consisting of linear polynomials
where q itself is a linear polynomial. If the set S consists only of linear polynomials,
then sup{|S|} is 4, see [26]. Hence, the above D(16x+ 9)-quadruple T can not
be extended to a polynomial D(16x+ 9)-quintuple using a linear polynomial. In
Chapter 4, we use the 2-divisibility criterion on elliptic curves described by quartic
models to study the extension of polynomial D(q)-quadruples to rational quintuples
at infinitely many values of these polynomials. In fact, we show that although T

cannot be extended to a polynomial D(16x+9)-quintuple, there are infinitely many
values for x parametrized by an elliptic curve of positive rank such that T can be
extended to a quintuple using a rational function. We also present other polynomial
D(ax+ b)-quadruples with the same property. In particular, we prove the following
result.

Theorem 1.3 ([60]) The polynomial D(16t + 9)-quadruple {t,16t + 8,225t +
14,36t+ 20} can be extended to a rational D(16t+ 9)-quintuple for infinitely many
t ∈ Q.

We remark that the theory of elliptic curves was used to show that there are
only finitely many ways of extending a rational D(q)-quadruple to a rational D(q)-
quintuple, see [42]. Our method provides an explicit description of how to extend
certain rational D(q)-quadruples to rational D(q)-quintuples. In [14], an explicit
expression for the element extending a rational D(q)-quadruple to a rational D(q)-
quintuple was provided if q is a rational square. This means that if x is chosen such
that 16x+ 9 is a rational square q2, then our result together with [14] provides a
method of constructing almost rational D(q2)-sextuples, i.e., a tuple a1, · · · ,a6 of
distinct nonzero rational numbers such that aiaj +q2 is a square for all 1 ≤ i < j ≤ 6
except for (i, j) = (5,6).

In the second part of this thesis, we investigate the existence of consecutive squares
in the set of iterations of a rational point under a given polynomial. The existence
of three consecutive squares in arithmetic progression is a phenomenon that can be
seen in Q. The rationals 1, 52, and 72 provide such an example. In fact, one can
parameterize all such rationals by observing that they satisfy the following equation

x2
2 −x2

1 = x2
3 −x2

2.

This means that three rational numbers in arithmetic progression give rise to a
rational point (x1 : x2 : x3) on the conic C : x2

1 − 2x2
2 + x2

3 = 0. Since the point

4



(1 : 1 : 1) ∈ C(Q), it follows that C(Q) has infinitely many points. Moreover, one
may parametrize these points as follows (x1 : x2 : x3) = (−p2 +2ps+s2,p2 +s2,p2 +
2ps− s2) for some p,s ∈ Q.

Fermat claimed that there does not exist an arithmetic progression of four squares
over Q. Euler, among others, proved this statement. One sees that the existence
of such squares is equivalent to the existence of nontrivial rational points on the
intersection of the following two quadric surfaces in P3

Q

x2
1 −2x2

2 +x2
3 = 0

x2
2 −2x2

3 +x2
4 = 0.

The latter intersection describes an elliptic curve E for which E(Q) = {(1 : ±1 : ±1 :
±1)}. The points in E(Q) do not give rise to any non-constant rational squares in
arithmetic progression.

In [70], it was proved that a uniform upper bound exists on the number of squares
in the arithmetic progression over a given number field that depends only on the
degree of the field. Moreover, the author proved that this bound is 5 for quadratic
fields. In [38], the authors provide several criteria to identify the quadratic number
fields over which there is a non-constant arithmetic progression of five squares.

One may ask the aforementioned questions in a different setting, namely within the
frame of arithmetic dynamical systems. A dynamical system is a self-map f :S −→S

on a set S that allows iteration. The m-th iteration of f is defined recursively by
f0(x) = x and fm(x) = f(fm−1(x)) when m≥ 1. The orbit of a point P ∈ S under
f is given by

Orbf (P ) = {f i(P ) : i= 0,1,2 . . .}.

In case the map f is fixed, we write Orb(P ). If Orb(P ) is infinite, P is called a
wandering point; otherwise, P is called a preperiodic point. A preperiodic point
P ∈ S is said to be periodic if there exists an integer n > 0 such that fn(P ) = P ,
where n is called the period of P . If n is the smallest such integer, we say that P
has the exact period n. The orbit of a periodic point is called a periodic orbit.

The question of the existence of K-rational squares in arithmetic progression of
lengthm, m≥ 2, over a number fieldK can be reformulated using dynamical systems
as follows. Can we find a linear polynomial ℓ(x) = x+ c, c ∈ K×, and x0 ∈ K such
that Orbℓ(x0) contains m consecutive K-squares? In particular, is there an x0 ∈ Q
such that x0, ℓ(x0), ℓ2(x0), . . . , ℓm−1(x0) are all in K2?

In this thesis, we are dealing with a higher degree dynamical analogue of Fermat’s
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Squares Theorem. Namely, given a degree two polynomial f(x) = x2 +Ax+B ∈
K[x] and a point x0 ∈ K, how many consecutive squares can be there in the orbit
{x0,f(x0),f2(x0), . . . ,fn(x0), . . .} of x0? It can be seen that for any irreducible
quadratic map f(x) ∈K[x], the number of orbits under f that contain at least three
consecutive K-rational squares should be finite. This holds because each such square
will give rise to a K-rational point on the hyperelliptic curve Cm : y2 = fm(x2) for
m= 0,1,2, . . .. When m≥ 2, the curve Cm is of the genus > 2. By Faltings’ theorem,
see [33], one then knows that the number of rational points on Cm, m≥ 2, must be
finite.

In Chapter 5, we give three different constructions of 1-parameter polynomial maps
of degree 2 over Q and rational points that possess three different consecutive squares
in their orbit under the iteration of these polynomials. For example, we show that
the following result holds.

Theorem 1.4 For each β ∈ Q, there are infinitely many rational numbers α,γ, and
c such that fc(α2) = β2 and fc(β2) = γ2 where fc(x) = x2 +c. In particular, one may
choose

α = β2(3−4β4)2

(1+8β2 +4β4)2 ,

γ = β(−1+24(β2 +3β4 +4β6 +2β8))
(1+8β2 +4β4)2 ,

c = β2 −49β4 +400β6 +2864β8 +7264β10 +8864β12 +6400β14 +2816β16 +256β18 −256β20

(1+8β2 +4β4)4 .

In addition, unlike linear polynomial dynamical systems generated by polynomials
of the form x+ c, c ∈ Q×, there exists at least one polynomial of the form x2 + c,
c ∈ Q×, and a point x0 ∈ Q such that x0,f(x0),f2(x0) and f3(x0) are all rational
squares.

Finally, assuming a standard conjecture of Poonen on the exact period of periodic
points of polynomial maps of degree 2 over Q, we introduce necessary and sufficient
conditions under which polynomial maps of the form x2 + ax+ b ∈ Q[x] possess
periodic orbits containing only rational squares.

In the last part of this thesis, we investigate the intersection of arithmetic progres-
sions with polynomial orbits. More precisely, we examine the intersection of orbits
of polynomials of arbitrary degrees with orbits of linear polynomials. In [36, 37], the
authors proved that two complex polynomials f and g of degree at least 2 having
orbits that intersect in infinitely many points must have a common iteration. More-
over, in [36], it was shown that if f and g are non-monic linear polynomials such
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that Orbf (s) ∩ Orbg(t) is infinite, then f and g must have a common iterate. In
this thesis, we work on the intersection of polynomial orbits with linear polynomial
orbits and we give the following proposition in Chapter 6.

Proposition 1.1 Let f(x) ∈ K[x] be of degree at least 2 such that f(x) is not a
power of a linear polynomial. Let g(x) = ax+b∈K[x] be such that Orbf (s)∩Orb±

g (t)
is infinite for some fixed s, t ∈K. Then a is a root of unity in OK .

In addition, we give the definition of relative density of A, where A is a subset of Z,
in the orbit of s under f , δf,s(A), and we present some relations between primitive
prime divisors of a sequence A and δf,s(A). Finally, we use arithmetic progression
sequences to cover polynomial orbits and we prove the following theorem.

Theorem 1.5 Let f(x) be a polynomial in Z[x] and t ∈ Z. Let gi(x), 1 ≤ i≤ k, be
a finite family of monic linear polynomials in Z[x]. The following statements are
equivalent.

i) δf,t

(⋃k
i=1 Orb±

gi
(t)
)

= 1.

ii) δf,t

(
Orb±

gi
(t)
)

= 1 for some i, 1 ≤ i≤ k.

iii) Orbf (t) ⊂ Orb±
gi

(t) for some i, 1 ≤ i≤ k.

where Orb±
g (a) := {gn(a),n ∈ Z} the union of both the forward and backward orbits

of a point a under the iterations of g.

We say that a family A= {A1, · · · ,Ak} of arithmetic progressions covers a set S ⊆ Z
if S ⊂ A1 ∪ ·· · ∪Ak, and if A covers Z then it is called a covering system. For
example, every integer n satisfies at least one of the congruences

n≡ 0 mod 2, n≡ 0 mod 3, n≡ 1 mod 4, n≡ 1 mod 6, n≡ 11 mod 12.

In particular, the above system of congruences is a covering system. Erdős intro-
duced covering systems in 1950, see [32]. In this thesis, we will shed some light on
covers of orbits of polynomials with integer coefficients.

Given a polynomial f ∈ Z[x], and a wandering point t ∈ Z, we will show that if A is
a cover of Orbf (t) such that every congruence in A= {A1, · · · ,Ak} contains t, then
A must consists of exactly one congruence, i.e., k = 1. This directly implies that
if k ≥ 2 and t is represented by each congruence Ak, then A cannot cover Orbf (t).
This motivates investigating the relative density δf,t(

⋃k
i=1Ai). In particular, a real

number that is realized in the form of the latter relative density will be called
(f, t,k)-accessible. We will give an explicit description of rational numbers that are
(f, t,k)-accessible. In addition, fixing k≥ 2, we show that (f, t,k)-accessible numbers
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are bounded from above in the interval (0,1). In chapter 6, we give the following
theorem.

Theorem 1.6 Let f(x) ∈ Z[x] and t ∈ Z be a wandering point for f . Let m,n ∈ Z
and pi’s are prime in order. If k is an positive integer such that

δk = 1−
k∏

i=1

(
1− 1

pi

)
<
m

n
,

then m/n is not (f, t,k)-accessible. In particular, there does not exist k linear poly-
nomials g1(x), . . . ,gk(x) such that

δf,t

 k⋃
i=1

Orb±
gi

(t)
= m

n
.
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2. Preliminaries

In this chapter, we present the definitions, basic facts, and significant results needed
for our work. We give a summary of the arithmetic of algebraic curves, and divisors,
that will be needed for our study of elliptic curves. We also introduce the notion of
the Weiertrass models and the group law of elliptic curves and some classification
of rational torsion points on elliptic curves over number fields.

We set the following notation, which will be used throughout this thesis.

K is a perfect field with an algebraic closure K̄.

For this chapter, all definitions can be found in [20] and [64] with the change of some
notation. We also let m and n denote positive integers.

2.1 Curves

Definition 2.1 The affine n-space is the set of n-tuples

An = An(K̄) = {P = (x1, . . . ,xn) : xi ∈ K̄}.

Similarly, the set of K-rational points of An is the set

An(K) = {P = (x1, . . . ,xn) ∈ An : xi ∈K}.

Definition 2.2 Let I be an ideal of the polynomial ring in n variables K̄[X] =
K̄[X1, . . . ,Xn]. An (affine) algebraic set is any set of the form

VI = {P ∈ An : f(P ) = 0 for all f ∈ I}.
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If V is an algebraic set, the ideal of V is given by

I(V ) = {f ∈ K̄[X] : f(P ) = 0 for all P ∈ V }.

An algebraic set is defined over K if its ideal I(V ) can be generated by polynomials
in K[X]. If V is defined over K, then the set of K- rational points of V is the set

V (K) = V ∩An(K)

Definition 2.3 Projective n-space (over K), denoted by Pn or Pn(K̄), is the set of
all (n+1)-tuples

(x0, . . . ,xn) ∈ An+1

such that at least one xi is nonzero, modulo the equivalence relation

(x0, . . . ,xn) ∼ (y0, . . . ,yn)

if there exists a λ ∈ K̄∗ such that xi = λyi for all i. An equivalence class

{(λx0, . . . ,λxn) : λ ∈ K̄∗},

is denoted by [x0, . . . ,xn], and the individual x0, . . . ,xn are called homogeneous coor-
dinates for the corresponding points in Pn is the set

Pn(K) = {[x0, . . . ,xn] ∈ Pn : all xi ∈K}.

Remark 2.1 Note that if P = [x0, . . . ,xn] ∈ Pn(K), it does not follow that each
xi ∈ K. However, choosing some i with xi ̸= 0, it does follow that xj/xi ∈ K for
every j.

Example 2.1 Let F11 be a finite field with 11 elements. Let the algebraic set

V : (x3 +y2z)2 = x5z

be defined over P2(F11). Then one can observed that

V (P2(F11)) = {(0 : 0 : 1),(1 : 0 : 1),(1 : 3 : 1),(1 : 8 : 1),(3 : 4 : 1),(3 : 7 : 1),(4 : 1 : 1),(4 : 5 : 1),

(4 : 6 : 1),(4 : 10 : 1),(9 : 3 : 1),(9 : 8 : 1),(0 : 1 : 0)}.
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Definition 2.4 A polynomial f ∈ K̄[X0, . . . ,Xn] is homogeneous of degree d if

f(λX0, . . . ,λXn) = λdf(X0, . . . ,Xn) for all λ ∈ K̄.

An ideal I ⊂ K̄[X] is homogeneous if it is generated by homogeneous polynomials.

Let f be a homogeneous polynomial and let P ∈ Pn . It makes sense to ask whether
f(P ) = 0, since the answer is independent of the choice of homogeneous coordinates
for P . To each homogeneous ideal I we associate a subset of Pn by the rule

VI = {P ∈ Pn : f(P ) = 0 for all homogeneous f ∈ I}.

Definition 2.5 A (projective) algebraic set is any set of the form VI for a homoge-
neous ideal I. If V is projective algebraic set, the (homogeneous) ideal of V , denoted
by I(V ), is the ideal of K̄[X] generated by

{f ∈ K̄[X] : f is homogeneous and f(P ) = 0 for all P ∈ V }.

Example 2.2 Let V be the algebraic set in P2 given by the single equation

X2 +Y 2 = Z2.

Then for any field K with char(K) ̸= 2, the set V (K) is isomorphic to P1(K), for
example by the map

P1(K) −→ V (K), [s, t] → [s2 − t2,2st,s2 + t2].

Example 2.3 The algebraic set

V :Xn +Y n = 1

is defined over Q. Fermat’s last theorem proven by Andrew Wiles in [67], states that
for all n≥ 3,

V (Q) =

 {(1,0),(0,1)} if n is odd,
{(±1,0),(0,±1)} if n is even.

Definition 2.6 A projective algebraic set is called a (projective) variety if its ho-
mogeneous ideal I(V ) is a prime ideal in K̄[X].

Definition 2.7 An algebraic curve in the affine plane A2 is defined as the set of
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solutions to a polynomial equation in two variables

f(x,y) = 0.

Let F be a non-constant homogeneous polynomial. We define a projective curve C
in the projective plane P2 to be the set of solutions to a polynomial equation

C : F (X,Y,Z) = 0.

We also call C an algebraic curve, or sometimes just a curve if it is clear that we
are working in P2. The degree of the curve C is the degree of the polynomial F .

Definition 2.8 Let P be a point of a curve C : f(x,y) = 0. P is called a singular
point of the curve if

∂f

∂x
(P ) = ∂f

∂y
(P ) = 0.

If at least one of the partial derivatives does not vanish, then P is called a non-
singular point. Moreover, C is called a non-singular curve (or a smooth curve) if
every point of C is non-singular.

Let C be a curve defined over K and P be a smooth point on C. It is known that in
this case the local ring of C at P , K[C]P is a discrete valuation ring with valuation
given by

OrdP (f) := sup{d ∈ Z|f ∈Md
P }

where MP is the maximal ideal of K[C]P .

Now we can define the order of f ∈K(C) at P .

Definition 2.9 Let C be a curve and P ∈ C a smooth point. Let f ∈ K̄(C). The
order of f at P is OrdP (f). If OrdP (f)> 0, then f has a zero at P , and if OrdP (f)<
0, then f has a pole at P . If OrdP (f) ≥ 0, then f is regular (or defined) at P and
we can evaluate f(P ). Otherwise, f has pole at P and we write f(P ) = ∞.

Example 2.4 Consider the two curves

C1 : Y 2 =X3 +X and C2 : Y 2 =X3 +X2.

Let P = (0,0). Then C1 is smooth at P whereas C2 is not. The maximal ideal MP

of K̄[C1]P has the property that MP /M
2
P is generated by Y . For example,

OrdP (Y ) = 1, OrdP (X) = 2, OrdP (2Y 2 −X) = 2.
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2.1.1 Divisors

In this thesis, we will deal with smooth curves unless otherwise stated.

Definition 2.10 The divisor group of a curve C is the free abelian group generated
by the points of C. It is denoted by Div(C). Hence a divisor D ∈ Div(C) is a formal
sum

D =
∑

P ∈C

nP (P ),

where nP ∈ Z and nP = 0 for all but finitely many P ∈ C.
The degree of D is defined by

degD =
∑

P ∈C

nP .

The divisors of degree 0 form a subgroup of Div(C), which we denote by

Div0(C) = {D ∈ Div(C) : degD = 0}.

Definition 2.11 A divisor D ∈ Div(C) is principal if it is of the form D = div(f)
for some f ∈ K̄(C)∗. Two divisors are linearly equivalent, written D1 ∼ D2, if
D1 −D2 is principal. The divisor class group (or Picard group) of C, denoted by
Pic(C), is the quotient of Div(C) by its subgroup of principal divisors.

Proposition 2.5 Let C be a smooth curve and let f ∈ K̄(C)∗.

(a) div(f) = 0 if and only if f ∈ K̄∗.

(b) deg(div(f)) = 0.

Definition 2.12 We define the degree-0 part of the divisor class group of C as the
quotient of Div0(C) by the subgroup of principal divisors. We denote this group by
Pic0(C).

Example 2.6 We can observe that every divisor of degree 0 is principal on P1.
Suppose that D =∑

nP (P ) has degree 0. Let P = [αP ,βP ] be a point on P1. We see
that D is the divisor of the function

∏
P ∈P1

(βPX−αPY )nP .

Note that ∑nP = 0 ensures that this function is in K(P1). It follows that the degree
map deg : Pic(P1) → Z is an isomorphism. The converse is also true. i.e., if C is a
smooth curve and Pic(C) ∼= Z, then C is isomorphic to P1.
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2.2 Elliptic Curves

Let K be a field. An elliptic curve over K is a non-singular cubic projective curve
over K with at least one point over K. It has an (affine) equation of the form

(2.1) F (x,y) = ax3 + bx2y+ cxy2 +dy3 + ex2 +fxy+gy2 +hx+ iy+ j = 0

where the coefficients a,b, . . . , j ∈ K, and the non-singularity means that for each
point on the curve, considered in the projective plane P2(K̄) over the algebraic
closure of K, at least one partial derivative of F is non-zero.

2.2.1 Weierstrass Equations

The Weierstrass equation for an elliptic curve is written by using non-homogeneous
coordinates x and y,

(2.2) E : y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6.

If a1, . . . ,a6 ∈K, then E is said to be defined over K.

One can show that the equation (2.1) can be written in the form of a Weierstrass
equation after applying certain birational transformation.

A point at infinity appears naturally if we represent an elliptic curve in a projective
plane. A projective plane P2(K) is obtained by introducing on the set K3 −{(0,0,0)}
the equivalence relation (X,Y,Z) ∼ (kX,kY,kZ), k ∈ K,k ̸= 0. By substituting
x= X

Z ,y = Y
Z in the affine equation (2.2), we obtain the projective equation

Y 2Z+a1XY Z+a3Y Z
2 =X3 +a2X

2Z+a4XZ
2 +a6Z

3.

If Z ̸= 0, then the equivalence class of (X,Y,Z) has the representative (x,y,1), so we
can identify that class by (x,y). However, there is also an equivalence class which
contains points with Z = 0. It has the representative (0 : 1 : 0) and we identify that
class with the point at infinity O.

Also, if char(K̄) ̸= 2, then we can simplify the equation by completing the square.
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Thus the substitution
y → 1

2(y−a1,x−a3)

gives an equation of the form

E : y2 = 4x3 + b2x
2 +2b4x+ b6

where
b2 = a2

1 +4a4, b4 = 2a4 +a1a3, b6 = a2
3 +4a6.

We also define quantities

b8 = a2
1a6 +4a2a6 −a1a3a4 +a2a

2
3 −a2

4,

c4 = b22 −24b4,

c6 = −b32 +36b2b4 −216b6,

∆ = −b22b8 −8b34 −27b26 +9b2b4b6,

One easily verifies that they satisfy the relations

4b8 = b2b6 − b24 and 1728∆ = c34 − c26.

Moreover, if the characteristic of the field K is different from 2 and 3, then this
equation can be transformed into the form

(2.3) y2 = x3 +ax+ b

which we call the short Weierstrass equation. The condition of non-singularity now
means that the cubic polynomial f(x) = x3 +ax+b does not have multiple roots (in
the algebraic closure K̄), which is equivalent to the condition that the discriminant
∆ = −16(4a3 +27b2) is non-zero.

One of the most important properties of elliptic curves is that on the set E(K), of
its K-rational points, we can, in a natural way, introduce an operation with which
it will become an Abelian group. In order to explain that, let us take that K = R.
Then the elliptic curve E(R) (without the point at infinity) can be represented as
a subset of the plane. The polynomial f(x) can either have one (if ∆< 0) or three
(if ∆ > 0) real roots. Depending on that, the graph of the corresponding elliptic
curve has one or two components, as is shown in the following figures.
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Example 2.7 Assume that char(K) ̸= 2. Let e1, e2, e3 ∈ K̄ be distinct, and consider
the curve

C : y2 = (x− e1)(x− e2)(x− e3).

One can check that C is smooth and that it has a single point at infinity, which we
denote P∞. For i= 1,2,3, let Pi = (ei,0) ∈ C. Then

div(x− ei) = 2(Pi)−2(P∞) and div(y) = (P1)+(P2)+(P3)−3(P∞).

2.2.2 The Group Law

Let E be an elliptic curve given by a Weierstrass equation. Thus E ⊂ P2 consists
of the points P = (x,y) satisfying the Weierstrass equation, together with the point
O = [0,1,0] at infinity. Let L ⊂ P2 be a line. Then, since the equation has degree
three, the line L intersects E at exactly three points, say P,Q,R. Of course, if L
is tangent to E, then P,Q,R need to be distinct. The fact that L∩E, taken with
multiplicities, consists of exactly three points is special case of Bezout’s theorem [40,
I.7.8].

2.2.2.1 Composition Law

Let P,Q ∈ E, let L be the line through P and Q (if P = Q, let L be the tangent
line to E at P ), and let R be the third point of intersection of L with E. Let L′ be
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the line through R and O. Then L′ intersects E at R,O, and a third point. We
denote that third point by P ⊕Q.

Various instances of the composition law are illustrated in the following figure. We
now justify the use of the symbol ⊕.

Proposition 2.8 The composition law has the following properties:

(a) If a line L intersects E at the (not necessarily distinct) points P,Q,R, then

(P ⊕Q)⊕R = O.

(b) P ⊕O = P for all P ∈ E.

(c) P ⊕Q=Q⊕P for all P,Q ∈ E.

(d) Let P ∈ E. There is a point of E, denoted by ⊖P , satisfying

P ⊕ (⊖P ) = O

(e) Let P,Q,R ∈ E. Then

(P ⊕Q)⊕R = P ⊕ (Q⊕R)

.

In other words, the composition law makes E into an abelian group with iden-
tity element O. Further:

(f) Suppose that E is defined over K. Then

E(K) = {(x,y) ∈K2 : y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6}∪{O}
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is a subgroup of E.

Notation. From now on, we drop the special symbols ⊕ and ⊖ and simply write
+ and − respectively. For m ∈ Z and P ∈ E, we let

[m]P = P + · · ·+P︸ ︷︷ ︸
m terms if m>0

, [m]P = −P −·· ·−P︸ ︷︷ ︸
|m| terms if m<0

, [0]P = O.

2.2.2.2 Group Law Algorithm

Let E be an elliptic curve by a Weierstrass equation

E : y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6.

(a) P0 = (x0,y0). Then
−P0 = (x0,−y0 −a1x0 −a3).

Next, let

P1 +P2 = P3 with Pi = (xi,yi) ∈ E for i= 1,2,3.

(b) If x1 = x2 and y1 + y2 +a1x2 +a3 = 0, then P1 +P2 = O. Otherwise, define λ
and ν by the following formulas:

λ ν

x1 ̸= x2
y2−y1
x2−x1

y1x2−y2x1
x2−x1

x1 = x2
3x2

1+2a2x1+a4−a1y1
2y1+a1x1+a3

−x3
1+a4x1+2a6−a3y1
2y1+a1x1+a3

Then y = λx+ν is the line through P1 and P2, or tangent to E if P1 = P2.

(c) With notation as in (b), P3 = P1 +P2 has coordinates

x3 = λ2 +a1λ−a2 −x1 −x2,

y3 = −(λ+a1)x3 −ν−a3.

(d) As special cases of (c), we have for P1 ̸= ±P2,

x(P1 +P2) = ( y2 −y1
x2 −x1

)2 +a1( y2 −y1
x2 −x1

)−a2 −x1 −x2,
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and the duplication formula for P = (x,y) ∈ E,

x([2]P ) = x4 − b4x2 −2b6x− b8
4x3 + b2x2 +2b4x+ b6

,

where b2, b4, b6, b8 are the polynomial in the ai’s given above.

Example 2.9 Let E/Q be the elliptic curve

E : y2 = x3 +7x+4.

A brief inspection reveals some points with integer coordinates,

P1 = (0,−2), P2 = (49
16 ,

471
64 ).

To compute P1 +P2, we find the line through P1 and P2. This is the line

y = 599
196x− 863

196 , so λ= 599
196 and ν = −863

196 .

Next
x3 = λ2 −x1 −x2 = −15072

2401 and y3 = −λx3 −ν = −2021734
117649 .

Finally, we find that

P1 +P2 = (x3,y3) =
(

−15072
2401 ,−

2021734
117649

)
.

2.2.3 Torsion Group

The most celebrated theorem on elliptic curves over number fields is the Mordell-
Weil theorem.

Theorem 2.1 (The Mordell-Weil Theorem) A group E(K) is a finitely gener-
ated Abelian group.

In 1922, this theorem was proved by the British mathematician Louis Joel Mordell
(1888-1972), while in 1928, the French mathematician André Weil (1906-1998)
generalized it to Abelian varieties over number fields.

The Mordell-Weil theorem states that there is a finite set of rational points
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{P1, . . . ,Pk} on E from which all other rational points on E can be obtained by
using the secant-tangent construction. Since each finitely generated abelian group
is isomorphic to the product of cyclic groups, [31, Chapter 5.2, Theorem 3], we
obtain the following consequence of the Mordell-Weil theorem.

Definition 2.13 Let E be an elliptic curve over K. The subgroup E(K)tor of E(K)
which consists of all points of finite order is called the torsion group of E, and the
non-negative integer r is called the rank of E and it is denoted by rank(E) (or more
precisely by rank(E(K))).

Corollary 2.1 Given an elliptic curve E over K. Then

E(K) ∼= E(K)tor ×Zr

where r is the rank of E(K).

Definition 2.14 The subgroup E(Q)tor of E(Q) which consists of all points of finite
order is called the torsion group of E, and the non-negative integer r is called the
rank of E and it is denoted by rank(E) (or more precisely by rank(E(Q))).

The corollary states that there are r rational points P1, . . . ,Pr of infinite order on
curve E such that each rational point P on E can be represented in the form

P = T +m1P1 + · · ·+mrPr,

where T is a point of finite order and m1, . . . ,mr are integers. Here m1P1 denotes
the sum P1 + · · ·+P1 of m1 summands, which is often also denoted by [m1]P1.

The following theorem is Mazur’s classification of rational torsion points on elliptic
curves defined over Q, see [53] or [64, VIII.7, Theorem 7.5].

Theorem 2.2 (Mazur, [53]) Let E/Q be an elliptic curve. Then the torsion sub-
group Etor(Q) of E(Q) is isomorphic to one of the following fifteen groups:

Z/kZ for k = 1,2,3,4,5,6,7,8,9,10,12

Z/2Z×Z/kZ for k = 2,4,6,8.

Further, each of these groups occurs as Etor(Q) for some elliptic curve E/Q.

The following theorem gives a complete classification of possible torsion points of
elliptic curves over quadratic fields established in [47, 48, 55] after a series of papers.
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Theorem 2.3 Let K be a quadratic field and E an elliptic curve over K. Then the
torsion subgroup E(K)tor of E(K) is isomorphic to one of the following 26 groups:

Z/mZ for 1 ≤m≤ 18, m ̸= 17,

Z/2Z×Z/2mZ for 1 ≤m≤ 6,

Z/3Z×Z/3mZ for m= 1,2

Z/4Z×Z/4Z.

The following theorem completes the classification of torsion over cubic number
fields, see [9].

Theorem 2.4 Let K/Q be a cubic extension and E/K be an elliptic curve. Then
E(K) is isomorphic to one of the following 26 groups:

Z/N1Z with N1 = 1, . . . ,16,18,20,21,

Z/2Z×Z/2N2Z with N2 = 1, . . . ,7.

There exist finitely many Q̄-isomorphism classes for each torsion subgroup except
for Z/21Z. In this case, we base change of the elliptic curve 162b1 to Q(ζ9)+ is the
unique elliptic curve over a cubic field with Z/21Z-torsion.

The following theorem, which is about a complete classification for torsion points of
elliptic curves defined over Galois quartic fields, is given in [5].

Theorem 2.5 Let E/Q be an elliptic curve, and let K be a quartic Galois extension
of Q. Then E(K)tor is isomorphic to one of the following groups:

Z/N1Z for N1 = 1, . . . ,16, N1 ̸= 11,14,

Z/2Z×Z/2N2Z for N2 = 1, . . .6,8,

Z/3Z×Z/3N3Z for N3 = 1,2,

Z/4Z×Z/4N4Z for N4 = 1,2,

Z/5Z×Z/5Z,

Z/6Z×Z/6Z.

Each of these groups, except for Z/15Z, appears as the torsion structure over some
quartic Galois field for infinitely many (non-isomorphic) elliptic curves defined over
Q.

21



2.3 Dynamical Systems

We start with the definition of a dynamical system. Also, the following definitions
can be found in [63] with the change of some notations.

Definition 2.15 A dynamical system is a set S together with a self-map f : S → S

that allows iterations. The nth-iterate of f is

fn = f ◦f ◦ · · · ◦f︸ ︷︷ ︸
n times

.

By convention, f0 is the identity map, i.e., f0(x) = x.

Definition 2.16 For a given point x0 ∈ S, the (forward) orbit of x0 under the map
f is the set

Orbf (x0) = Orb(x0) = {fn(x0) : n≥ 0}.

Definition 2.17 The point x0 ∈ S is called a periodic point under f , if there exists
an integer n > 0 such that fn(x0) = x0. The orbit of x0 is called a periodic orbit.

An integer n such that fn(x0) = x0 is called a period of x0. The smallest such integer
n is called the exact period of x0. We also say that the point x0 has period type (0,n).

Definition 2.18 The point x0 ∈ S is called a preperiodic point under f , if there ex-
ists an integer m≥ 0 such that fm(x0) is periodic, i.e., x0 is preperiodic if Orbf (x0)
is finite. The orbit of x0 is called a preperiodic orbit. If m ̸= 0, then the point x0 is
called a strictly preperiodic point.

The least such integer m is the tail length of the orbit, whereas the exact period of
fm(x0) is the eventual period. If the orbit of x0 has a tail length m and an eventual
period n, then we say that s has a period type (m,n).

Definition 2.19 The sets of periodic and preperiodic points of f in S are denoted
by

Per(f,S) = {x0 ∈ S : fn(x0) = x0 for some n≥ 1}

PrePer(f,S) = {x0 ∈ S : fn+m(x0) = fm(x0) for some n≥ 1,m > 0}

= {x0 ∈ S : Orbf (x0) is finite}.

We write Per(f) and PrePer(f) when the set S is fixed.
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The following Proposition, which is the classification of quadratic polynomial maps
with periodic points of periods 1, 2, or 3, can be found in [56, Theorem 1].

Theorem 2.6 Let f(x) = x2 + c with c ∈ Q. Then

1) f(x) has a rational point of period 1, i.e., a rational fixed point, if and only if
c = 1/4 −ρ2 for some ρ ∈ Q. In this case, there are exactly two, 1/2 +ρ and
1/2−ρ, unless ρ= 0, in which case they coincide.

2) f(x) has a rational point of period 2 if and only if c = −3/4 − σ2 for some
σ ∈ Q, σ ̸= 0. In this case, there are exactly two, −1/2+σ and −1/2−σ (and
these form a 2-cycle).

3) f(x) has a rational point of period 3 if and only if

c= −τ6 +2τ5 +4τ4 +8τ3 +9τ2 +4τ +1
4τ2(τ +1)2

for some τ ∈ Q, τ ̸= −1,0. In this case, there are exactly three,

x1 = τ3 +2τ2 + τ +1
2τ(τ +1) , x2 = τ3 − τ −1

2τ(τ +1) , x3 = −τ3 +2τ2 +3τ +1
2τ(τ +1)

and these are cyclically permuted by f(x).
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3. Divisibility by 2 on quartic models of elliptic curves

Chapter 3 and Chapter 4 contain the studies in our published article, [60].

Let C be a smooth genus one curve described by a quartic polynomial equation over
the rational field Q with P ∈C(Q). In this chapter, we give an explicit criterion for
the divisibility-by-2 of a rational point on the elliptic curve (C,P ). This provides an
analogue to the classical criterion of the divisibility-by-2 on elliptic curves described
by the Weierstrass equations. Finally, we show how to characterize elliptic curves
described by quartic polynomial equations that possess rational 4-torsion points.

3.1 Models of elliptic curves

In this section, we introduce the genus one curve models that we are going to use
throughout this thesis.

3.1.1 Quartic models

We recall that a Weierstrass equation is an equation of the form

y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6

where the coefficients a1, · · · ,a6 are lying in a field K. One may associate to such
equation the invariants c4, c6 and ∆ which are polynomials in a1, · · · ,a6 with integer
coefficients satisfying 1728∆ = c34 − c26, [64, Chapter III]. If ∆ ̸= 0, then the Weier-
strass equation describes a smooth projective genus one curve with a K-rational
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point at infinity on the curve, i.e., an elliptic curve. Two such equations describe
the same curve if they are related via a transformation of the form

x 7→ u2x+ r, y 7→ u3y+u2sx+ t

for some u ∈K×, r,s, t ∈K. Therefore, if charK ̸= 2,3, a Weierstrass equation can
be written as y2 = x3 +Ax+B for some A,B ∈K.

Definition 3.1 A quartic model is an equation of the form y2 +P (x)y=Q(x) where
P and Q are polynomials of degree 2 and 4, respectively, with coefficients in K.

If Q(x)+P (x)2/4 = ax4 +bx3 +cx2 +dx+e, then we attach to the quartic model the
invariants c4 = 24I and c6 = 25J where

I = 12ae−3bd+ c2,

J = 72ace−27ad2 −27b2e+9bcd−2c3.

Moreover, the discriminant ∆ = (c34 − c26)/1728 is 16 times the usual discriminant
of a quartic polynomial. We find that c4, c6 and ∆ are primitive integer coefficient
polynomials in the coefficients of P and Q, again satisfying c34 − c26 = 1728∆.

The following Theorem in [8], has properties of c4, c6,∆.

Theorem 3.1 Let C be a genus 1 curve defined by a quartic model. The following
statements hold.

(i) The polynomials c4, c6,∆ are invariants of the curve C.

(ii) A quartic model defines a smooth curve C of genus one (over K̄) if and only
if ∆ ̸= 0.

(iii) If char(K) ̸= 2,3 then c4 and c6 generate the ring of invariants. Moreover if
∆ ̸= 0 then the Jacobian of the curve C has Weierstrass equation

y2 = x3 −27c4x−54c6.

If the set of K-rational points C(K) of C is non-empty, then the quartic model
describes an elliptic curve. Two such models describe the same curve if they are
related via a transformation of the form

x 7→ (a11x+a21)/(a12x+a22), y 7→ µy+ rx2 + sx+ t

where (aij) ∈ GL2(K), µ ∈ K×, r,s, t ∈ K. It follows that if charK ̸= 2,3, then a
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quartic model can be written in the form y2 = P (x) where P (x) is a polynomial of
degree 4 with coefficients in K.

3.1.2 Group law on quartic models

Let K be a field. The set of K-rational points on an elliptic curve E defined over K
is an abelian group. If the curve is given by a Weierstrass equation, then the group
law is described using the chord and tangent process. Given a smooth genus one
curve C that possesses a K-rational point and defined by a quartic model, one uses
the isomorphism between the curve C and its Jacobian to define the group law on
C.

We consider a quartic model y2 = f(x) where f(x) ∈ K[x], degf(x) = 4, and the
discriminant of the model is nonzero, or equivalently, f(x) has no multiple roots.
This quartic model describes a smooth genus one curve over K. The Jacobian of C
will be denoted by E.

The following proposition can be found in [7, Proposition 4.1].

Proposition 3.1 Let C be a curve over K defined as above. Then C has a K-
rational point if and only if the leading coefficient of f(x) is square.

Proof: If the leading coefficient of f(x) is square, say a2, then (1 : a : 0) a K-
rational point on C. Conversely, if C has a K-rational point, we may apply a
projective transformation to send its x-coordinate to infinity, thereby replacing f(x)
by an equivalent quartic whose leading coefficient is a square. □

From now on, we assume that C(K) ̸= ∅. By Proposition 3.1, this allows us to
assume that the leading coefficient (or the constant term) of f(x) is a square in
K. In this case, if the leading coefficient of f(x) is a square a2, a ∈ K, we set ∞+

and ∞− to be the two rational points at infinity, namely, (x : y : z) = (1 : a : 0) and
(1 : −a : 0), respectively.

We fix a point P ∈ C(K). Let ϕP be a K-birational isomorphism between C and E

ϕP : C −→ E such that ϕP (P ) =OE .

The map ϕP may be used to define an abelian group structure on C as follows

Q1 +P Q2 = ϕ−1
P (ϕP (Q1)+ϕP (Q2))
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with P the identity on (C,+P ).

In particular, we say that S ∈ nC(K), n ≥ 2, if S = Q+P · · ·+P Q︸ ︷︷ ︸
n−times

for some Q ∈

C(K). This identifies nC(K) with nE(K).

3.2 2-Divisibility on quartic models

Let K be a perfect field of characteristic different from 2. In this section, we consider
quartic models y2 = f(x) where f(x) is a polynomial of degree 4 with coefficients in
K and no multiple roots. We assume moreover that f(x) splits completely in K. In
other words, a quartic model will be of the form

y2 = f(x) := (a1x+ b1)(a2x+ b2)(a3x+ b3)(a4x+ b4),

ai ∈K×, bi ∈K, (aix+ bi)/(ajx+ bj) ̸∈K for i ̸= j and it describes a smooth genus
one curve C over K. The existence of the points Qi := (−bi/ai,0) ∈ C(K), 1 ≤
i ≤ 4, imlies that C(K) ̸= ∅. We notice that ∞+,∞− ∈ C(K(√a1a2a3a4)). We set
fi(x) := aix+ bi and ci = −bi/ai, 1 ≤ i≤ 4.

We will always assume the existence of a rational point (x0,y0) ∈ C(K) different
from the points Qi, 1 ≤ i ≤ 4. In particular, |C(K)| > 4. We fix throughout a
K-birational isomorphism ϕ : C → E := Jac(C) such that ϕ(x0,y0) =OE .

Now, we define the following rational maps gij ∈K(E), 1 ≤ i, j ≤ 4, as follows

gij(P ) = fi(x0)fj(x0)fi(x(ϕ−1(P )))fj(x(ϕ−1(P )))

where x(ϕ−1(P )) is the x-coordinate of ϕ−1(P ) ∈ C(K). It is clear that gij(OE) =
fi(x0)2fj(x0)2 ∈ (K×)2.

The following two propositions give properties of the maps gij that we are going
to use during the course of the proof of the main theorem of this section. These
properties have been proved for other rational maps on different models of elliptic
curves, see for example [43, Chapter 6], [49, Chapter IV], and [12].

Proposition 3.2 Let [2] :E →E be the multiplication by-2-morphism on E. There
exist hij ∈K(E) such that gij ◦ [2] = h2

ij for all i, j.
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Proof: One can see that div(gij) = 2ϕ(Qi)+2ϕ(Qj)−2ϕ(∞+)−2ϕ(∞−).

We set [2]∗ : Div(E) → Div(E) to be the map (Q) 7→∑
P ∈[2]−1Q(Q). Let h̃ij ∈K(E)

be such that

div(h̃ij) = [2]∗(ϕ(Qi)+ϕ(Qj)−ϕ(∞+)−ϕ(∞−))

=
∑

T ∈E[2]
(Mi +T )+

∑
T ∈E[2]

(Mj +T )−
∑

T ∈E[2]
(N1 +T )−

∑
T ∈E[2]

(N2 +T )

where 2Mi = ϕ(Qi), 2Mj = ϕ(Qj), 2N1 = ϕ(∞+), 2N2 = ϕ(∞−). Then we can
observe that

div(gij ◦ [2]) = 2div(h̃ij) = div(h̃2
ij).

There exists r ∈ K such that rh̃2
ij = gij ◦ [2], see for example [35, Theorem 7.8.3].

We define hij = h̃ij
√
r.

It is clear that h̃ij ∈K(E) for all i, j. This follows by choosing σ ∈ Gal(K/K) and
observing that σ permutes the zeros of h̃ij , and the poles of h̃ij , respectively. More
precisely,

OE = (ϕ(Qi))σ −ϕ(Qi) = (2Mi)σ −2Mi = 2(Mσ
i −Mi),

hence Mσ
i = Mi +T where T ∈ E[2]. Same holds if one replaces Mi with Ni. It is

left to show that r ∈ (K×)2. This holds by evaluating both sides of the equality
rh̃2

ij = gij ◦ [2] at OE . The statement holds as gij(OE) ∈ (K×)2. □

Proposition 3.3 For any P,Q ∈ E(K), one has

gij(P +Q) ≡ gij(P )gij(Q) modK2.

Proof: When i= j, the statement is straightforward, so we may pick i ̸= j and set
g := gij . According to Proposition 3.2, we see that g ◦ [2] = h2 for some h ∈K(E).

Let P = 2P̃ , Q= 2Q̃. First we will prove

(3.1) (h(P̃ + Q̃))σ

h(P̃ + Q̃)
= (h(P̃ ))σ

h(P̃ )
(h(Q̃))σ

h(Q̃)

for every σ ∈ Gal(K̄/K). Fix T ∈ E[2], we have h2(S + T ) = g ◦ [2](S + T ) = g ◦
[2](S) = h2(S) for any S ∈ E, so h(S+T )

h(S) = ±1. Considering the morphism E → P1

induced by the rational map S 7→ h(S+T )/h(S), one then may assume that it must
be a constant map. Since 2P̃ = P ∈ E(K), 2Q̃ = Q ∈ E(K), we get P̃ σ − P̃ ∈
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E[2], Q̃σ − Q̃ ∈ E[2], (P̃ + Q̃)σ − (P̃ + Q̃) ∈ E[2] for every σ ∈ Gal(K̄/K). Now we
have

(h(P̃ ))σ

h(P̃ )
= h(P̃ σ)

h(P̃ )
= h(P̃ +(P̃ σ − P̃ ))

h(P̃ )
= h(S+(P̃ σ − P̃ ))

h(S) for any S ∈ E

Similarly,

(h(Q̃))σ

h(Q̃)
= h(S+(Q̃σ − Q̃))

h(S) , and (h(P̃ + Q̃))σ

h(P̃ + Q̃)
= h(S+(P̃ + Q̃)σ − (P̃ + Q̃))

h(S) for any S ∈E.

Therefore,

(h(P̃ + Q̃))σ

h(P̃ + Q̃)
= h(S+(P̃ + Q̃)σ − (P̃ + Q̃))

h(S) = h(S+(P̃ + Q̃)σ − (P̃ + Q̃))
h(S+(P̃ )σ − P̃ )

h(S+ P̃ σ − P̃ )
h(S)

= (h(Q̃))σ

h(Q̃)
(h(P̃ ))σ

h(P̃ )

This gives
h(P̃ + Q̃)
h(P̃ )h(Q̃)

= (h(P̃ + Q̃))σ

(h(P̃ ))σ(h(Q̃))σ
=
(
h(P̃ + Q̃)
h(P̃ )h(Q̃)

)σ

for every σ ∈ Gal(K̄/K). Now we have

h(P̃ + Q̃)
h(P̃ )h(Q̃)

∈K, i.e., h2(P̃ + Q̃) ≡ h2(P̃ )h2(Q̃) modK2.

Thus,

g(P +Q) = g ◦ [2](P̃ + Q̃) = h2(P̃ + Q̃) ≡ h2(P̃ )h2(Q̃) = g(P )g(Q) modK2.

□

Theorem 3.2 Let C be a smooth genus 1 curve over Q defined by an equation of
the form

y2 = (a1x+ b1)(a2x+ b2)(a3x+ b3)(a4x+ b4), where ai ∈ Q×, bi ∈ Q.

Let (x0,y0) ∈C(Q) be such that x0 ̸= −bi/ai, i= 1,2,3,4. We set ϕ :C −→E := J(C)
to be a Q-birational isomorphism with ϕ((x0,y0)) =OE. For Q ∈ C(Q), one has

Q ∈ 2C(Q) if and only if fi(x0)fj(x0)fi(x(Q))fj(x(Q)) ∈ Q2 for all i, j ∈ {1,2,3,4}
where fi(x) = aix+ bi.
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Proof:The statement that Q∈ 2C(Q) implies that fi(x0)fj(x0)fi(x(Q))fj(x(Q)) ∈
Q2 is a direct consequence of Proposition 3.2.

So we assume that Q ∈ C(Q) is such that fi(x0)fj(x0)fi(x(Q))fj(x(Q)) ∈ Q2. Let
P ∈ E(Q) be such that ϕ−1(P ) =Q. It suffices to show that if gij(P ) ≡ 1 mod Q2

for all i, j, then P ∈ 2E(Q).

Set [2]−1P = {Ri : 1 ≤ i≤ 4} ⊂E. Let fix R ∈ [2]−1P . We also set RC,i = ϕ−1(Ri) ∈
C, i= 1,2,3,4. We recall that Ri =R+Ti for some Ti ∈ E[2]. A simple calculation
of the Jacobian E shows that E(Q)[2] ∼= Z/2Z×Z/2Z, hence all 2-torsion points of
E are rational. It follows that [Q(x(Ri),y(Ri)) : Q] is fixed for all i= 1,2,3,4.

Recall that gij ∈K(E), 1 ≤ i, j ≤ 4, is defined as follows

gij(P ) = fi(x0)fj(x0)fi(x(ϕ−1(P )))fj(x(ϕ−1(P )))

where x(ϕ−1(P )) is the x-coordinate of ϕ−1(P ) ∈ C(K). By Proposition 3.3, we
have

gij(P ) = gij(2Rm) ≡ gij(Rm)2 mod Q2, m= 1,2,3,4.

However, one knows that gij(P ) ∈ Q2 by assumption. It follows that gij(Rm) ∈ Q.
Since gij(Rm) = fi(x0)fj(x0)fi(x(RC,m))fj(x(RC,m)), it follows that [Q(x(RC,m)) :
Q] ≤ 2. Writing x(RC,m) = A+B

√
D for some A,B,D ∈ Q, one sees that

g12(Rm)
f1(x0)f2(x0) = (a1(A+B

√
D)+ b1)(a2(A+B

√
D)+ b2) ∈ Q∗.

Therefore, either B = 0 or a1b2 +2a1a2A+a2b1 = 0. If B ̸= 0, then A= −a1b2−a2b1
2a1a2

.
In a similar fashion, since g13(Rm)

f1(x0)f3(x0) ∈ Q, one has A = −a1b3−a3b1
2a1a3

. One con-
cludes that b2

a2
= b3

a3
, which contradicts the fact that the points (−bi/ai,0) ∈ C

must be distinct. It follows that B = 0, i.e., x(RC,m) ∈ Q. Since y(RC,m)2 =
f1(x(RC,m))f2(x(RC,m))f3(x(RC,m))f4(x(RC,m)), the latter implies that y(RC,m) ∈
Q or y(RC,m) =K

√
D for some K ∈ Q and D ∈ Q∗/Q∗2. In particular, Q(RC,m) =

Q(
√
D). Since ϕ is a Q-birational isomorphism, it follows that Q(Rm) = Q(

√
D).

Moreover, from the observation above, all Rm are Q-rational, or all are defined over
Q(

√
D)\Q.

One knows that since P ∈ E(Q), it follows that

P = P σ = (2R)σ = 2Rσ

for all σ ∈ Gal(Q/Q). In addition, since ϕ−1(Sσ) = (ϕ−1(S))σ for all σ ∈ Gal(Q/Q)
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and S ∈ E. Therefore, we may assume without loss of generality that

RC,1 = (u1,u2
√
D), RC,2 = (u1,−u2

√
D), RC,3 = (v1,v2

√
D) RC,4 = (v1,−v2

√
D),

where u1,v1,u2,v2 ∈ Q.

We observe that gij(R1)gij(R2) ∈ Q2, we also see that gij(R1)gij(R2) ≡ gij(P +T1)
for some T1 ∈ E[2] for i, j ∈ {1,2,3,4}. In view of Proposition 3.3, we obtain that
gij(T1) ∈ Q2 for i, j ∈ {1,2,3,4}. Repeating the argument above for R3 and R4, we
get that gij(T2) for some T2 ∈E[2], T2 ̸= T1. Noticing that T2 ±T1 ∈E[2], it follows
that gij(T ) ∈ Q2 for all i, j = 1,2,3,4, and all T ∈ E[2].

Using the fact that gij(T ) ∈ Q2 for all T ∈ E[2], we may replace the point P in the
argument above with a point T ∈ E[2]. In particular, as seen above, this leads to
the following: Given Ti ∈ E[2], i= 1,2,3,4, there exists T j

i ∈ E such that 2T j
i = Ti,

j = 1,2,3,4, where T 1
i ,T

2
i ,T

3
i ,T

4
i are all in E(Q) or all in E(Q(

√
di))\E(Q) for some

square free integer di ̸= 0. Now since 2(T j
i ±T t

s) ∈ E[2], then this implies that all
T j

i ∈ E(K), for all 1 ≤ i, j ≤ 4, where K is either Q(
√
D) or Q(

√
D,

√
D′) where D

and D′ are square free integers. The fact that T j
i cannot be all in E(Q) is due to

Theroem 2.2.

Now we rule out the possibility that T j
i are lying in E(K) where K is either Q(

√
D)

or Q(
√
D,

√
D′), hence RC,i should have all lived in C(Q) for i = 1,2,3,4. If K =

Q(
√
D), then this means that the torsion part of E(K) contains complete 2-torsion

where for each 2-torsion point Ti there are 4 distinct torsion point T j
i such that

4T j
i = Ti. In particular, if an elliptic curve is defined over E(Q(

√
D)) with a non-

cyclic torsion group containing Z/2Z×Z/2Z, then by the Theorem 2.3 it should be
one of the following groups

Z/2Z×Z/2mZ,1 ≤m≤ 6, or Z/4Z×Z/4Z

where it can be seen easily that it is impossible for the 2-torsion points to satisfy
the aforementioned property.

Now we rule out the possibility that K =Q(
√
D,

√
D′). If an elliptic curve is defined

over E(K) with a non-cyclic torsion group containing Z/2Z×Z/2Z, then it should
be one of the following groups, see Theorem 2.5,

Z/2Z×Z/2mZ,1 ≤m≤ 8, Z/4Z×Z/4nZ,n= 1,2, or Z/6Z×Z/6Z.

Again one may check that for neither of these groups all two torsion points are
divisible by 4. Hence when gij(P ) ∈ Q2, for all i, j = 1,2,3,4, then RC,i ∈ C(Q), in
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particular Q= ϕ−1(P ) ∈ 2C(Q). □

Remark 3.1 In Theorem 3.2, if (x0,y0) is chosen to be ∞+, then gij becomes

gij(P ) = aiajfi(x(ϕ−1(P )))fj(x(ϕ−1(P ))).

In this case we assume a1a2a3a4 ∈ (K×)2 to make sure that the points ∞± are in
C(Q).

3.3 Examples

Let C be defined over a perfect field K by the following quartic model

v2 = au4 + bu3 + cu2 +du+ q2

where a,b,c,d ∈ K and q ∈ K∗. The birational isomorphism ϕ1 : C → E := J(C) is
defined by

x= (2q(v+ q)+du)/u2 and y = (4q2(v+ q)+2q(du+ cu2)−d2u2/2q)/u3

where E is described by

y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6,

and

a1 = d/q, a2 = c−d2/4q2, a3 = 2qb, a4 = −4q2a, a6 = a2a4,

see [6, Chapter 1, Proposition 1.2.1]. The inverse map is given by

u= (2q(x+ c)−d2/2q)/y, v = −q+u(ux−d)/2q.

In view of Theorem 3.2, the point (x0,y0) is (0, q) as ϕ(0, q) =OE .

Example 3.4 Let C : v2 = (u+ 1)(2u+ 1)(8u+ 1)(9u+ 1). We consider the map
ϕ1 : C → E defined above, where

E : y2 +20xy+500y = x3 +25x2 −576x−14400.
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We start with the point T = (3,140) ∈ C(Q). Then

ϕ1(T ) = (38,42), and 2ϕ1(T ) = (−2375/144,−29155/1728) ∈ E(Q).

Now Q = ϕ−1
1 (2ϕ1(T )) = (−120/119,9889/14161) ∈ 2C(Q). Setting f1(u) = u+ 1,

f2(u) = 2u+1, f3(u) = 8u+1 and f4(u) = 9u+1, we see that

f1

(−120
119

)
= −1

119 , f2

(−120
119

)
= −121

119 , f3

(−120
119

)
= −841

119 , f4

(−120
119

)
= −981

119 .

Since fi(0) = 1 for i= 1,2,3,4, it follows that

gij(2ϕ1(T )) = fi (−120/119)fj (−120/119) ∈ Q2 for all i, j = 1,2,3,4.

Example 3.5 Let C : v2 = (u+2)(u+5)(u+6)(u+15). Then the transformation
ϕ1 gives the elliptic curve

E : y2 +28xy+1680y = x3 +51x2 −3600x−183600.

Considering the point T = (−5/9,1820/81) ∈ C(Q), we obtain

ϕ1(T ) = (8688,−943812), and 2ϕ1(T ) = (722192509
342225 ,

−26636791574008
200201625 ) ∈ E(Q).

Now the point ϕ−1
1 (2ϕ1(T )) = (− 982800

1008361 ,
43031054907914370

1016791906321 ) lies in 2C(Q). We see that

f1

(
− 982800

1008361

)
= 1033922

1008361 , f2

(
− 982800

1008361

)
= 4059005

1008361 ,

f3

(
− 982800

1008361

)
= 5067366

1008361 , f4

(
− 982800

1008361

)
= 14142615

1008361

where f1(u) = u+ 2, f2(u) = u+ 5, f3(u) = u+ 6 and f4(u) = u+ 15. Since f1(0) =
2, f2(0) = 5, f3(0) = 6, f4(0) = 15, we see that

gij(2ϕ1(T )) = fi(0)fj(0)fi(−
982800
1008361)fj(−

982800
1008361) ∈ Q2 for all i, j.

In the following example, we consider a birational map between a quartic model
and its jacobian elliptic curve different from the map introduced in the previous two
examples. The elliptic curve

E : w2 = v3 +Av+B,
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where A,B ∈K, is the Jacobian of the elliptic curve defined by the following quartic
model

C : y2 = x4 −6ax2 −8bx+ c

where c = −4A− 3a2 and B = b2 − a3 −Aa. We notice that the point P = (a,b) ∈
E(K) and that ∞+ and ∞− map to OE and P respectively, see [1, §2]. We define
a birational isomorphism ϕ2 : C → E as follows

x= w+ b

v−a
, y = 2v+a−

(
w+ b

v−a

)2
,

whereas the inverse map of ϕ2 is given by

v = 1
2(x2 +y−a), w = 1

2(x3 +xy−3ax−2b).

Example 3.6 Let C : y2 = (x+2)(x+4)(x+8)(x+9). Applying the transformation
x 7→ x− 23

4 , y 7→ y, we get the quartic curve

C̃ : y2 = x4 − 131
8 x2 − 33

8 x+ 12285
256 .

Setting a= 131
48 , b= 33

64 , A= −211
12 , B = 754

27 , the Jacobian elliptic curve is defined
by

E : w2 = v3 − 211
12 v+ 754

27

The point Q= (−5,6) is in C(Q) and 2Q= (−217
24 ,

715
576). We get

f1

(
−217

24

)
= −169

24 , f2

(
−217

24

)
= −121

24 , f3

(
−217

24

)
= −25

24 , f4

(
−217

24

)
= − 1

24

where f1(x) = x+ 2, f2(x) = x+ 4, f3(x) = x+ 8 and f4(x) = x+ 9. According to
Remark 3.1, ai = 1 for all i= 1,2,3,4. It follows that

gij(2ϕ1(Q)) = fi(−217/24)fj(−217/24) ∈ Q2 for all i, j.

3.4 4-torsion points on quartic models
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In [2], it is given a simple proof of the well-known divisibility by 2 conditions for
rational points on elliptic curves with rational 2-torsion and the explicit division by
2n formulas. The following example from the same article gives the necessary and
sufficient condition of divisibility by 4.

Example 3.7 Let K be a field of characteristic different from 2. Let

E : y2 = (x−α1)(x−α2)(x−α3)

be an elliptic curve over K, where α1,α2,α3 are distinct elements of K. Let P =
(x0,y0) and R be a point of E such that 4R = P , and let Q = 2R = (x1,y1). Some
formulas given in [2] give

x1 = x0 +(r1r2 + r2r3 + r3r1), y1 = −(r1 + r2)(r2 + r3)(r3 + r1),

where the square roots
ri =

√
x0 −αi, i= 1,2,3,

are chosen in such a way that r1r2r3 = −y0. Further, let

r
(1)
i =

√
(ri + rj)(ri + rk)

be square roots that are chosen in such a way that

r
(1)
1 r

(1)
2 r

(1)
3 = −y1 = (r1 + r2)(r2 + r3)(r3 + r1).

In light of equations (4) and (7) in [2],

x(R) = x1 + r
(1)
1 r

(1)
2 + r

(1)
2 r

(1)
3 + r

(1)
3 r

(1)
1 ,

y(R) = −(r(1)
1 + r

(1)
2 )(r(1)

2 + r
(1)
3 )(r(1)

3 + r
(1)
1 ),

which implies that

x(R) = x0 +(r1r2 + r2r3 + r3r1)+ r
(1)
1 r

(1)
2 + r

(1)
2 r

(1)
3 + r

(1)
3 r

(1)
1

,
y(R) = −(r(1)

1 + r
(1)
2 )(r(1)

2 + r
(1)
3 )(r(1)

3 + r
(1)
1 ).

In what follows we give a necessary and sufficient condition for an elliptic curve
defined by a quartic model over Q to possess a 4-torsion point.
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Theorem 3.3 Let C be a smooth genus one curve defined over Q by

v2 = (k1u+1)(k2u+1)(k3u+1)(k4u+1), ki ∈ Q×.

Fix the map ϕ1 : C → E := J(C) defined as in §3.3. Then C has a 4-torsion point
defined over Q if and only if one of the following holds:

i) (k1 −k3)(k2 −k4) and (k1 −k2)(k3 −k4) are both squares in Q; or

ii) (k2 −k3)(k1 −k4) and (k1 −k2)(k4 −k3) are both squares in Q; or

iii) (k3 −k2)(k1 −k4) and (k1 −k3)(k4 −k2) are both squares in Q.

Proof: The curve J(C) is defined by the Weierstrass equation

E := y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6

where a1 = k1 + k2 + k3 + k4, a2 = k1k2 + k1k3 + k2k3 + k1k4 + k2k4 + k3k4 − 1
4(k1 +

k2 +k3 +k4)2, a3 = 2(k1k2k3 +k2k3k4 +k1(k2 +k3)k4), a4 = −4k1k2k3k4, a6 = a2a4.
Using MAGMA, the 2-torsion points on E are

P1 = OE ,

P2 = (−k1k4 −k2k3,
1
2k2

1k4 − 1
2k1k2k3 − 1

2k1k2k4 − 1
2k1k3k4 + 1

2k1k2
4 + 1

2k2
2k3 + 1

2k2k2
3 − 1

2k2k3k4),

P3 = (−k1k3 −k2k4,
1
2k2

1k3 − 1
2k1k2k3 − 1

2k1k2k4 + 1
2k1k2

3 − 1
2k1k3k4 + 1

2k2
2k4 − 1

2k2k3k4 + 1
2k2k2

4),

P4 = (−k1k2 −k3k4,
1
2k2

1k2 + 1
2k1k2

2 − 1
2k1k2k3 − 1

2k1k2k4 − 1
2k1k3k4 − 1

2k2k3k4 + 1
2k2

3k4 + 1
2k3k2

4).

Then

ϕ−1
1 (P2) = ((k1 −k2 −k3 +k4)/(k2k3 −k1k4),−(((k1 −k2)(k1 −k3)(k2 −k4)(k3 −k4))/(k2k3 −k1k4)2)),

ϕ−1
1 (P3) = ((−k1 +k2 −k3 +k4)/(k1k3 −k2k4),((k1 −k2)(k2 −k3)(k1 −k4)(k3 −k4))/(k1k3 −k2k4)2),

ϕ−1
1 (P4) = ((−k1 −k2 +k3 +k4)/(k1k2 −k3k4),((k1 −k3)(−k2 +k3)(k1 −k4)(k2 −k4))/(k1k2 −k3k4)2).

In view of Theorem 3.2, the point ϕ−1
1 (P2) = (u2,v2) ∈ 2C(Q) if and only if

(kiu2 + 1)(kju2 + 1) ∈ Q2, where i, j ∈ {1,2,3,4}. Now direct substitution yields
that the latter conditions are equivalent to (k1 −k3)(k2 −k4) and (k1 −k2)(k3 −k4)
are squares in Q. The other two conditions follow by considering the points ϕ−1

1 (P3)
and ϕ−1

1 (P4). □

As an application of Theorem 3.3, we construct the following example of a 2-
parameter family of elliptic curves over Q described by a quartic equation for which
none of the nonsingular fibers has a nontrivial rational torsion point of order 4.
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Example 3.8 Let Cs,t be a smooth genus 1 curve over Q(s, t) defined by

v2 =
(
t2 + s2 + ts

t+ s
u+1

)(−ts
t+ s

u+1
)

(tu+1)(su+1).

Setting k1 = t2+s2+ts
t+s , k2 = −ts

t+s , one may use Theorem 3.3 to investigate the existence
of rational numbers s, t such that Cs,t has a torsion point of order 4. Condition (iii)
of Theorem 3.3 is the fact that the two expressions t(2s+ t) and s(2t+s) are squares
in Q. The latter is equivalent to the existence of a rational point on the following
intersection of two quadric surfaces in P3:

u2 = t(2s+1), v2 = s(2t+ s).

In fact, the latter intersection is an elliptic curve that can be described by the Weier-
strass equation y2 = x3 − 4x2 + 16x and whose Mordell-Weil group is isomorphic to
Z/4Z corresponding to the points (s : t : u : v) = (0 : 1 : ±1 : 0),(1 : 0 : 0 : ±1).

Conditions (i) and (ii) of Theorem 3.3 are equivalent to the existence of a rational
point on the intersection of the quadric surfaces

u2 = −s(s+2t), v2 = −s2 + t2, and

u2 = −t(t+2s), v2 = −t2 + s2,

respectively. Both intersections are isomorphic to the elliptic curve described by
y2 = x3 −x2 +x whose Mordell-Weil group is isomorphic to Z/4Z corresponding to
the points (s : t : u : v) = (0 : 1 : 0 : ±1),(1 : −1 : ±1 : 0).

It follows that the curve Cs,t does not have a torsion point of order 4 over Q for any
choice of the rational pair s, t with s, t ̸= 0, s ̸= ±t.
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4. Diophantine m-tuples

In this chapter, we present some facts about Diophantine m-tuples. We then em-
ploy the criterion for the divisibility-by-2 of a rational point on the elliptic curve
(C,P ) to investigate the question of extending a rational D(q)-quadruple to a
quintuple. We give concrete examples to which we can give an affirmative an-
swer. One of these results implies that although the rational D(16t+ 9)-quadruple
{t,16t+ 8,225t+ 14,36t+ 20} can not be extended to a polynomial D(16t+ 9)-
quintuple using a linear polynomial, there are infinitely many rational values of
t for which the aforementioned rational D(16t+ 9)-quadruple can be extended to
a rational D(16t+ 9)-quintuple. Moreover, these infinitely many values of t are
parametrized by the rational points on a certain elliptic curve of positive Mordell-
Weil rank.

4.1 What is Diophantine m-tuple?

The Greek mathematician Diophantus of Alexandria first studied the problem of
finding four numbers such that the product of any two of them increased by unity
is a perfect square. He found a set of four positive rationals with this property:

{ 1
16 ,

33
16 ,

17
4 ,

105
16

}

1
16 · 33

16 +1 = (17
16)2,

1
16 · 17

4 +1 = (9
8)2,

1
16 · 105

16 +1 = (19
16)2,

33
16 · 17

4 +1 = (25
8 )2,

33
16 · 105

16 +1 = (61
16)2,

17
4 · 105

16 +1 = (43
8 )2.

However, the first set of four positive integers with the above property, {1,3,8,120},
was found by Fermat. Indeed,
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1 ·3+1 = 22, 1 ·8+1 = 32, 1 ·120+1 = 112,

3 ·8+1 = 52, 3 ·120+1 = 192, 8 ·120+1 = 312.

Definition 4.1 A set of m positive integers {a1,a2, ...,am} is called a Diophantine
m-tuple if ai.aj +1 is a perfect square for all 1 ≤ i < j ≤m.

Definition 4.2 A set of m non-zero rationals {a1,a2, ...,am} is called a Rational
Diophantine m-tuple if ai.aj +1 is a perfect square for all 1 ≤ i < j ≤m.

4.1.1 Diophantine triple and quadruple

Any Diophantine pair {a,b} can be extended to a Diophantine triple, e.g. by adding
a+ b+ 2r to the set, where a.b+ 1 = r2. For instance, {2,12} can be extended to
Diophantine triple {2,12,24}. Also, any Diophantine triple {a,b,c} can be extended
to a Diophantine quadruple. Namely, let a.b+ 1 = r2, b.c+ 1 = s2, c.a+ 1 = t2,
where r,s, t are positive integers. Then for d± = a+ b+ c+ 2abc± 2rst, the set
{a,b,c,d±} is a Diophantine quadruple. For instance, {4,12,30} can be extended
to Diophantine quadruple {4,12,30,5852} with 5852 = d+. Quadruples of this form
are called regular.

It is natural to ask how large these sets, i.e. (rational) Diophantine m-tuples, can
be. This question is completely solved in the integer case. On the other hand, it
seems that in the rational case, we do not have even a widely accepted conjecture.
In particular, no absolute upper bound for the size of rational Diophantine m-tuples
is known.

4.1.2 How large are these sets ?

We can handle this question in two cases, integer and rational.

In the integer case, it is easy to prove that there exist infinitely many integer Dio-
phantine quadruples. There are parametric families for Diophantine quadruples
involving polynomials and Fibonacci numbers, such as

{k,k+2,4k+4,16k3 +48k2 +44k+12},
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{Fk,Fk+2,Fk+4,4F2k+1F2k+2F2k+3. for k ≥ 1}.

The nonexistence of a Diophantine quintuple was the folklore conjecture (i.e. an
unpublished result with no clear originator, but which is well-circulated and believed
to be true among the specialists).

It was proved in 2004 by Dujella that a Diophantine sextuple does not exist
and that there are only finitely many Diophantine quintuples, [18]. Since then,
the bound for the number of possible Diophantine quintuples has been improved
by several authors. He, Togbé and Ziegler announced in 2016 and published in
2019 a proof of a couple of decades old conjecture that there are no Diophantine
quintuples, [41].

For the rational case, Euler showed that Fermat’s set {1,3,8,120} can be extended
to a rational Diophantine quintuple by adding 777480/8288641 to the set. Also, he
showed that there exist infinitely many rational Diophantine quintuples. In 2019,
Stoll proved that the extension of Fermat’s set to a rational quintuple with the same
property is unique, [66]. In 1999 Gibbs found the first rational Diophantine sextuple

{ 11
192 ,

35
192 ,

155
27 ,

512
27 ,

1235
48 ,

180873
16

}

while in 2016 Dujella, Kazalicki, Mikie and Szikszai proved that there exist infinitely
many rational Diophantine sextuplets, [27]. No example of a rational Diophantine
septuple is known.

4.1.3 Diophantine D(q) m-tuples

We can replace the number 1 in the condition "aiaj + 1 is a square" with a fixed
number q in Definition 4.1.

Definition 4.3 Let q be an integer (rational number). A set of m positive integers
(rationals) {a1,a2, ...,am} is said to have the property D(q) if aiaj + q is a perfect
square for all 1 ≤ i < j ≤ m. Such a set is called a (rational) Diophantine m-tuple
with the property D(q) (or (rational) D(q) m-tuple).

Several authors considered the problem of the existence of Diophantine quadruples
with the property D(q). This problem is almost completely solved. In 1985, Brown,
Gupta & Singh and Mohanty & Ramasamy proved independently the following
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result, which gives the first part of the answer.

Theorem 4.1 If n is an integer of the form n= 4k+2, then there does not exist a
Diophantine quadruple with the property D(n).

Proof: The proof of Theorem 4.2 is very simple. Indeed, assume that {a1,a2,a3,a4}
has the property D(n). Since the square of an integer is congruent to 0 or 1
(mod 4), we have that aiaj ≡ 2 or 3 (mod 4). It implies that none of the ai is
divisible by 4. Therefore, we may assume that a1 ≡ a2 (mod 4). But now we have
that a1a2 ≡ 0 or 1 (mod 4), a contradiction. □

In 1993, Dujella gave the second part of the answer.

Theorem 4.2 If an integer n does not have the form 4k + 2 and n /∈ S =
{−4,−3,−1,3,5,8,12,20}, then there exist at least one Diophantine quadruple with
the property D(n).

Conjecture 4.1 For n ∈ S there does not exist a Diophantine quadruple with the
property D(n).

If n is a perfect square, say n= k2, then by multiplying elements of a D(1)-quadruple
by k we obtain a D(k2)-quadruple, and thus we conclude that there exist infinitely
many D(k2)-quadruples. The following conjecture was proposed in 2008 by Dujella.

Conjecture 4.2 If a nonzero integer n is not a perfect square, then there exist
only finitely many D(n)-quadruples.

One may ask what is the least positive integer n1, and what is the greatest neg-
ative integer n2, for which there exists a Diophantine quintuple with the prop-
erty D(ni), i = 1,2. It is known that n1 ≤ 256 and n2 ≥ −255, since the sets
{1,33,105,320,18240} and {5,21,64,285,6720} have the property D(256), and the
set {8,32,77,203,528} has the property D(−255).

Let n be a nonzero integer. We may ask how large a set with the property D(n)
can be. Let define

Mn = sup{|S| : S has the property D(n)},

where |S| denotes the number of elements in the set S. By the results of Integer
Case, we know that M1 = 4 if S contains only integers, otherwise M1 ≥ 6.

Dujella proved that Mn is finite for all n. More precisely, it holds:
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Theorem 4.3
Mn ≤ 31 for |n| ≤ 400,

Mn < 15.476log |n| for |n|> 400.

4.2 Application: Diophantine D(q)-quintuples

There are only finitely many ways of extending a rational D(q)-quadruple to a ratio-
nal D(q)-quintuple, see [42]. The following theorem,[14], gives an explicit expression
for the element extending a rational D(q)-quadruple to a rational D(q)-quintuple
was provided if q is a rational square.

Theorem 4.4 Let q,x1,x2,x3,x4 be rational numbers such that xixj +q2 = y2
ij, yij ∈

Q for all 1 ≤ i < j ≤ 4. Assume that x1x2x3x4 ̸= q4. Then a rational number x5 = A
B ,

where

A = q3
(

±2y12y13y14y23y24y34 + qx1x2x3x4(x1 +x2 +x3 +x4)+

+2q3(x1x2x3 +x1x2x4 +x1x3x4 +x2x3x4)+ q5(x1 +x2 +x3 +x4)
)
,

B = (x1x2x3x4 − q4)2.

has the property that xix5 + q2 is a square of a rational number for i= 1,2,3,4.

The definition 4.3 can be extended over the ring of polynomials with rational coef-
ficients as follows.

Definition 4.4 Let q ∈ Q[x] be a nonzero polynomial. Let {a1,a2, · · · ,am} be a set
of m nonzero polynomials with rational coefficients. We assume that there does not
exist a polynomial p ∈ Q[x] such that a1/p, · · · ,am/p and q/p2 are rational numbers.
The set {a1,a2, · · · ,am} is called a polynomial D(q)-m-tuple if aiaj +q = b2ij, for all
1 ≤ i < j ≤m, where bij ∈ Q[x].

The assumption that there is no polynomial p such that a1/p, · · · ,am/p and q/p2 are
rational numbers implies that if q is constant then not all elements a1, · · · ,am of a
polynomial D(q)-m-tuple are allowed to be constant. When q is a linear polynomial,
the latter condition is trivially always satisfied.

In what follows we will be interested in polynomial D(q)-m-tuples whose elements
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are linear polynomials, and q is also a linear polynomial. We define

L1 = sup{|S| : S is a polynomial D(ax+ b)-tuple consisting of linear polynomials for some a ̸= 0 and b}.

It was shown that L1 = 4, see [26, Theorem 1]. Therefore, the set {x,16x+8,25x+
14,36x+ 20} which is a polynomial D(16x+ 9)-quadruple cannot be extended to a
polynomial D(16x+9)-quintuple using a linear polynomial. In this section, we show
that for infinitely many rational values of x, the latter rational D(16x+9)-quadruple
can be extended to a rational D(16x+9)-quintuple. The main tool is the following
straightforward corollary of Theorem 3.2.

Corollary 4.1 Let C be a smooth genus 1 curve over Q defined by an equation of
the form

y2 = (a1x+ b1)(a2x+ b2)(a3x+ b3)(a4x+ b4), where ai ∈ Q×, bi ∈ Q.

We set ϕ : C −→ E := J(C) to be a Q-birational isomorphism with ϕ((x0,y0)) =
OE for some (x0,y0) ∈ C(Q), x0 ̸= −bi/ai, i = 1,2,3,4. Assume, moreover, that
fi(x0)fj(x0) ∈ Q2, for all i, j = 1,2,3,4, where fi(x) = aix+ bi. Let Q ∈ C(Q).

Then Q ∈ 2C(Q) if and only if there exists δQ ∈ Q such that

aix(Q)+ bi = δQ · z2
i for some zi ∈ Q

for all i ∈ {1,2,3,4}.

Corollary 4.1 implies the following result on extending a rational D(q)-quadruple to
a D(q)-quintuple.

Corollary 4.2 Let q be a nonzero rational number. Let S = {a1,a2,a3,a4} be a
D(q)-quadruple. Consider the smooth genus one curve

CS : y2 = (a1x+ q)(a2x+ q)(a3x+ q)(a4x+ q).

We fix the birational isomorphism ϕ1 :CS −→ J(CS) defined as in §3.3. Then S can
be extended to a rational D(q)-quintuple if and only if there is a point Q ∈ 2CS(Q)
with δQ ∈ Q2.

In the following theorems, we extend some of the known polynomial D(q)-quadruples
consisting of linear polynomials toD(q)-quintuples for infinitely many rational values
of x.

Theorem 4.5 The polynomial D(16t+ 9)-quadruple {t,16t+ 8,225t+ 14,36t+ 20}
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can be extended to a rational D(16t+9)-quintuple for infinitely many t ∈ Q.

Proof: Let k1 = t, k2 = 16t+8, k3 = 25t+14, k4 = 36t+20, q = 16t+9. Consider
the smooth genus one curve C defined by

(4.1) v2 = (k1u+ q)(k2u+ q)(k3u+ q)(k4u+ q)

over Q(t). By using the birational isomorphism ϕ1 :C →E, defined in §3.3, we have
the elliptic curve

E : y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6

with the coefficients

a1 = 6(7+13t)(9+16t),

a2 = (9+16t)2(111+8t(55+54t)),

a3 = 8(7+13t)(9+16t)3(80+ t(318+313t)),

a4 = −128t(1+2t)(5+9t)(9+16t)4(14+25t),

a6 = −128t(1+2t)(5+9t)(9+16t)6(14+25t)(111+8t(55+54t))

where (x0,y0) = (0, q2) is such that ϕ1(x0,y0) =OE .

We take the point P = (0,−q2) ∈ C(Q(t)). Then

S := ϕ1(P ) = (−(9+16t)2(111+8t(55+54t)), 2(1+2t)(7+13t)(9+16t)3(13+22t)).

Using MAGMA, [3], Q= 2S = (x1,y1) is given by

x1 = u(t)
(4(1+2t)2(7+13t)2(13+22t)2) , y1 = − v(t)

8(1+2t)3(7+13t)3(13+22t)3 .

where

u(t) = 4965468561+87791232672t+698248164432t2 +3289862320448t3 +10168707377552t4

+21544947073664t5 +31689009677248t6 +31949101618688t7 +21130944883712t8

+8278920101888t9 +1459071221760t10
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and

v(t) = 583640570599605+15590162461394376t+194317309509682284t2 +1499150348482554720t3

+8006205664274122032t4 +31351499116349966848t5 +92996036994652158848t6

+212772100714643848192t7 +378589655179368704000t8 +523873616797731045376t9

+559149737857198260224t10 +452068024823691083776t11 +267996289719257268224t12

+109976712992448839680t13 +27934728650533896192t14 +3310873413836341248t15

Then ϕ−1
1 (Q) = (u1,v1), where

u1 = − 4(1+2t)(7+13t)(13+22t)
1369+32t(232+ t(419+252t)) ,

v1 = (85+302t+268t2)(111+398t+356t2)(71+8t(31+27t))(97+8t(43+38t))
(1369+32t(232+ t(419+252t)))2 .

Therefore, we obtain

k1u1 + q = (111+398t+356t2)2

1369+32t(232+ t(419+252t)) ,

k2u1 + q = (97+8t(43+38t))2

1369+32t(232+ t(419+252t)) ,

k3u1 + q = (85+302t+268t2)2

1369+32t(232+ t(419+252t)) ,

k4u1 + q = (71+8t(31+27t))2

1369+32t(232+ t(419+252t)) .

One has δQ = 1
1369+32t(232+t(419+252t)) . In view of Corollary 4.2, if δQ ∈ Q2, then

kiu1 + q ∈ Q2 for all i= 1,2,3,4.

The elliptic curve r2 = 1369+32t(232+ t(419+252t)) has Mordell-Weil rank 2 over
Q, [3]. It follows that there are infinitely many t ∈ Q such that δQ ∈ Q2, and hence
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the set {
t,16t+8,225t+14,36t+20,− 4(1+2t)(7+13t)(13+22t)

1369+32t(232+ t(419+252t))

}

is a rational D(16t+9)-quintuple.

□

By choosing t to be the t-coordinate of a rational point on the elliptic curve r2 =
1369+32t(232+ t(419+252t)), the set

{
t,16t+8,225t+14,36t+20,− 4(1+2t)(7+13t)(13+22t)

1369+32t(232+ t(419+252t))

}

is a rational D(q)-quintuple produced by extending the polynomial D(q)-quadruple
in Theorem 4.5 when evaluated at t. In the following table, we give examples of
such D(q)-quintuples.

t q D(q)-quintuple
t= 672

8064 q = 31
3 {1

2 ,
28
3 ,

193
12 ,23,− 60431

225228}
t= −3264

8064 q = 53
21 {−17

42 ,
32
21 ,

163
42 ,

38
7 ,−

50224
240429}

t= −3600
8084 q = 13

7 {−25
56 ,

6
7 ,

159
56 ,

55
14 ,−

17889
103544}

t= −4192
8084 q = 43

63 {−131
252 ,−

20
63 ,

253
252 ,

9
7 ,

60085
183708}

t= −4572
8064 q = − 1

14 {−127
224 ,−

15
14 ,−

39
224 ,−

23
56 ,−

73455
123704}

t= −4615
8064 q = − 79

504 {−4615
8064 ,−

583
504 ,−

2479
8064 ,−

135
224 ,−

3414104551
6009297336}

Theorem 4.6 The following polynomial D(q)-quadruples can be extended to a ra-
tional D(q)-quintuple for infinitely many t ∈ Q.

(i) {4t,144t + 8,25t + 1,49t + 3}, where q = 16t + 1, can be extended using
−4(2+37t)(3+58t)(5+82t)
−1+32t(13+t(529+5148t)) , where t is the t-coordinate of a rational point on the
elliptic curve E : r2 = −1+32t(13+ t(529+5148t)).

(ii) {t,9t + 26,4t + 12,16t + 40}, where q = 16t + 49, can be extended using
4(1+2t)(13+5t)(27+10t)(49+16t)
96721+16t(6521+2342t+280t2) , where t is the t-coordinate of a rational point on

the elliptic curve E : r2 = (96721+16t(6521+2342t+280t2))(16t+49).

(iii) {t, t
4 − 1, 9t

4 + 5,4t + 8}, where q = 4t + 9, can be extended using
(2+t)(9+4t)(8+5t)(14+5t)

324+8t(62+t(31+5t)) , where t is the t-coordinate of a rational points on the
elliptic curve E : r2 = (81+2t(62+ t(31+5t)))(9+4t).

Proof: The proof is similar to the proof of Theorem 4.5. □
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Remark 4.1 The Mordell-Weil rank rE of E(Q) in Theorem 4.6 is rE = 3 in (i)
and (ii), whereas rE = 2 in (iii).

Example 4.3 Let t= −318
121 in the D(16t+49)-quadruple given in Theorem 4.6. We

then obtain the following D(841
121)-quintuple

{180
121 ,−

318
121 ,

284
121 ,−

248
121 ,

2562308340
2164017361

}
.

On the other hand, since 841
121 is a square, Theorem 4.4 implies that the ra-

tional D(841
121)-quadruple {180/121,−318/121,284/121,−248/121} can be extended

to a D(841
121)-quintuple using either the rational number x5 = 1255545720

540051121 or x5 =
−143212695780

74048750161 . In particular, we obtain two almost D(841
121)-sextuple, i.e., xixj +q2 is

a rational square for all 1 ≤ i < j ≤ 6 except when (i, j) = (5,6).
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5. A Dynamical Analogue of a question of Fermat

In this chapter, we investigate the existence of consecutive squares in the orbit of
a rational point under the iteration of a given quadratic polynomial with ratio-
nal coefficients. We display three different constructions of 1-parameter quadratic
polynomials with orbits containing three consecutive squares. In addition, we show
that there exists at least one polynomial of the form x2 + c with a rational point
whose orbit under this map contains four consecutive squares. This can be viewed
as a dynamical analogue of a question of Fermat on rational squares in arithmetic
progression. Finally, assuming a standard conjecture on exact periods of periodic
points of quadratic polynomials over the rational field, we give necessary and suf-
ficient conditions under which the orbit of a periodic point contains only rational
squares.

5.1 Consecutive Three Squares

Let K be a number field. Let f ∈K[x] and x0 ∈K. We say that Orbf (x0) contains
m-consecutive squares if there is y ∈ Orbf (x0) such that

y,f(y), . . . ,fm−1(y)

are all K-rational squares. We note that in the latter case Orbf (y) itself contains m-
consecutive squares. Therefore, for the sake of simplicity, when we say that Orbf (x0)
contains m-consecutive squares we mean

x0,f(x0), . . . ,fm−1(x0)

are all K-rational squares.
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We start with the following observation.

Proposition 5.1 Fix a,b,c in a number field K. There are only finitely many
x0 ∈K such that Orbf (x0), where f(x) = ax2 +bx+c, contains 3 consecutive squares
unless one of the following cases occurs.

1.1 a= 0

1.2 b2 −4ac= 0

1.3 b= 0 and c= −1
a

1.4 b= 4 and c= 0

1.5 1+2b ∈ Q×2 and c= b2−2b−2±2
√

1+2b
4a

Moreover, if f(x) is an irreducible quadratic polynomial, then none of the cases
above occurs, hence the finiteness of such x0’s holds unconditionally.

Proof: This follows immediately by observing that the existence of three consec-
utive squares can be expressed equivalently by

ax4
0 + bx2

0 + c= y2, ay4 + by2 + c= z2.

This implies the existence of a rational point on the genus-3 curve

C : z2 = a(ax4
0 + bx2

0 + c)2 + b(ax4
0 + bx2

0 + c)+ c,

By Faltings’ Theorem, for fixed K-rational values a,b,c such that the curve is
smooth, the latter curve possesses only finitely many K-rational points. It remains
to check the discriminant of the curve. Using Mathematica, the discriminant is given
by

∆ = 256a15c(1+ b+ac)(b2 −4ac)4(−4b3 + b4 +16ac+16abc−8ab2c+16a2c2)2.

This gives the following cases for the curve not to be smooth:

2.1 a= 0, and for that case f(x) is not a quadratic polynomial.

2.2 b2 − 4ac = 0, in which case f(x) = (b+2ax)2

4a . So, either a is a square which
gives that for any x0 ∈ Q×2 the orbit will contain infinitely many consecutive
squares; or a is not a square, in which case for any x0 ∈ Q, f(x0) is not a
square.
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2.3 c= 0 which gives rise to the curve

C1 : Z2
1 :=

(
z

x0

)2
= (ax2

0 + b)(a2x4
0 +abx2

0 + b).

This is again a genus 2 curve and so Faltings’ Theorem can still be applied,
unless the discriminant of that curve given by −64a15(−4+b)2b8 is zero. This
gives that either a= 0 covered in (i); b= 0 implying that b2 −4ac= 0 which is
covered in (ii); or b= 4 covered in (iv).

2.4 1+ b+ac= 0 or b= −1−ac gives rise to the curve

C2 : Z2
1 :=

(
z

x0

)2
= (ax2

0 −ac−1)(a2x4
0 − (a2c+a)x2

0 +ac−1).

The discriminant of the latter genus 2 curve is given by 64a15(−1 +ac)5(1 +
ac)(5 − 2ac+ a2c2)2. If the curve is not smooth, then either ac = 1 which
means b = −2 and so b2 − 4ac = 0; ac is a root of the irreducible polynomial
x2 −2x+5, i.e, ac ̸∈ Q; or ac= −1 which gives rise to (iii).

2.5 Finally, the vanishing of the factor −4b3 +b4 +16ac+16abc−8ab2c+16a2c2 in
∆ yields that ac is a root of the quadratic polynomial 16x2 +16(1+ b− b2)x+
b4 −4b3 giving rise to the case (v).

This concludes the proof. One can check easily that the aforementioned cases implies
that f(x) is reducible. □

Remark 5.1 Two polynomials f1 and f2 are called K-linearly equivalent if there
is a map ℓ(x) = ax+ b ∈ K[x] such that f1 = ℓ ◦ f2 ◦ ℓ−1. It is a simple exercise to
see that any polynomial map of degree 2 in K[x] is K-linearly equivalent to map of
the form x2 + c, c ∈K. In what follows we focus on consecutive squares in orbits of
points under maps of the form fc(x) = x2 + c, c ∈ Q×.

Theorem 5.1 For each β ∈ Q, there are infinitely many rational numbers α,γ, and
c such that fc(α2) = β2 and fc(β2) = γ2.

In particular, one may choose

α = β2(3−4β4)2

(1+8β2 +4β4)2 ,

γ = β(−1+24(β2 +3β4 +4β6 +2β8))
(1+8β2 +4β4)2 ,

c = β2 −49β4 +400β6 +2864β8 +7264β10 +8864β12 +6400β14 +2816β16 +256β18 −256β20

(1+8β2 +4β4)4 .
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Proof: Let α ∈ Q be such that fc(α) = β2 and fc(fc(α)) = γ2 for some γ,β ∈ Q, c∈
Q×. This can be written as

α2 + c= β2

β4 + c= γ2.

Eliminating c, one has

α2 +γ2 = β4 +β2.(5.1)

For a fixed β, equation (1) defines a conic Cβ over Q(β) possessing a rational point Pβ

defined by (α,γ) = (β2,β) ∈ Cβ(Q(β)). Parameterizing the rational points (α,γ) ∈
Cβ(Q(β)), using the point Pβ, yields that

α = β(−2m−β+m2β)
1+m2 , γ =m(α−β2)+β = −β(−1+2βm+m2)

1+m2 , where m ∈ Q.

Now, forcing α to be a rational square, say k2, we obtain the following quartic curve
defined over Q(β)

Hβ : k2 = β(βm4 −2m3z−2mz3 −βz4)

with the rational point (m : z : k) = (1 : 0 : β), hence Hβ is an elliptic curve over
Q(β). The curve Hβ is Q-birationally equivalent to the elliptic curve

Eβ : y2 = x3 +(4β4 +4β2)x.

We set Pβ = (1 : 0 : β) and ϕ : Hβ → Eβ to be the birational isomorphism. One
sees that ϕ(Pβ) = (1 : 2β2 +1 : 1) is of infinite order in Eβ(Q(β)) using MAGMA ,[3].
Proving the first part of the theorem.

Now one has ϕ−1
(
2ϕ(Pβ)

)
is given by

((
−1

2β
4 − 1

8

)
/
(
β3 + 1

2β
)

:
(

−1
4β

8 − 1
2β

6 + 1
8β

4 + 3
8β

2 + 3
64

)
/
(
β5 +β3 + 1

4β
)

: 1
)
,

where the corresponding m-coordinate on Hβ must be
(
−1

2β
4 − 1

8

)
/
(
β3 + 1

2β
)
. Con-

sequently, one has the values given in the theorem. □

Corollary 5.1 There are infinitely many c∈Q such that for some x0 ∈Q, the orbit
Orbfc(x0), where fc(x) = x2 + c, has three distinct consecutive squares.
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Example 5.2 Setting β = 2, it can be seen that for the quadratic map f(x) = x2 +
132583668/88529281 and α = 122/97, one has

fc(α2) = 22 and fc(4) = (39358/9409)2.

Theorem 5.2 Let a ∈ Q. There exist infinitely many δ,γ,b ∈ Q such that for the
map f(x) = x2 +ax+ b, one has f(δ2) = a2 and f(a2) = γ2. In particular, one can
choose

b= a2 −a3 −69a4 −196a5 +314a6 +2226a7 +7622a8 +15308a9 +25285a10 +30279a11

(1+a(2+a(9+4a(1+a))))4

+31599a12 +24864a13 +16624a14 +6496a15 +160a16 −3072a17 −2560a18 −1280a19 −256a20

(1+a(2+a(9+4a(1+a))))4

and

δ= a(1+a)(−3+a+4a3)
(1+a(2+a(9+4a(1+a)))) , γ= a(−1+a2(5+4a(1+a))(6+a(8+3a(5+4a(1+a)))))

(1+a(2+a(9+4a(1+a))))2 .

It follows that there exist infinitely many polynomials f(x) = x2 +ax+b ∈ Q[x] such
that Orbf (x) contains three distinct consecutive squares for some x ∈ Q.

Proof: Let α∈Q and assume f(α) =α2 +aα+b= β2 and f(f(α)) = β4 +aβ2 +b=
γ2 for some β,γ ∈ Q. By eliminating b, we have

α2 +aα−β2 = β4 +aβ2 −γ2.

One observes that setting β = a, the equation above describes a conic Ca : α2 +
γ2 +aα = a4 +a3 +a2 over Q(a) possessing a rational point Pa defined by (α,γ) =
(a2,a) ∈Ca(Q(a)). We parameterize the rational points (α,γ) ∈Ca(Q(a)) using the
point Pa as follows

α= a(−1−a−2m+am2)
1+m2 , γ=m(α−a2)+a= −a(−1+m+2am+m2)

1+m2 , m∈Q.

Now, forcing α to be a rational square, say k2, we obtain the following quartic curve
defined over Q(a)

Ha : k2 = a2m4 −2am3 −am2 −2am−a2 −a

with a rational point (m : k : z) = (1 : a : 0). Therefore, Ha is an elliptic curve
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over Q(a) and it is Q-birationally equivalent to the elliptic curve Ea defined by the
Weierstrass equation

Ea : y2 − 2
a
xy− 4a2 +2a+2

a3 y = x3 + 2a+2
a2 x2 + 4a4 +4a3 +a2 +2a+1

a4 x

One sees that the image of the point Qa = (1 : a : 0) in Ea under the birational
isomorphism ψ : Ha → Ea is ((0 : 4a2+2a+2

a3 : 1)) which is of infinite order, MAGMA
[3]. Now the m-coordinate of the rational point ψ−1(2ψ(Qa)) in Ha is given by

(
−1

2a
4 − 1

2a
3 − 1

8a
2 − 1

4a− 1
8

)
/
(
a3 + 1

2a
2 + 1

2a
)
.

With the latter m-coordinate, we get the values for b, δ and γ as in the statement
of the theorem. □

Example 5.3 Setting a= 1
2 , it can be seen that for the quadratic map f(x) = x2 +

1
2x+ 1969

10000 , one has

Orbf

(( 9
100

))
=
{( 3

10

)2
,
(1

2

)2
,
(31

50

)2
, . . .

}
.

The following theorem also describes an explicit construction of three consecutive
squares in the orbit of polynomials of the form x2 +ax−a.

Theorem 5.3 Let α ∈ Q and a = − (−1+α)α2(−9+α2)
(4+α−α2)2 . For the polynomial f(x) =

x2 +ax−a, one has

Orbf (α) =

α,
(

α2 −5α
α2 −α−4

)2
,

(
3α5 −13α4 +13α3 −15α2 +12α

(α4 −2α3 −7α2 +8α+16)(α−1)

)2 .
In particular, for any rational number x0 ∈ Q, there exists an a ∈ Q such that the
polynomial f(x) = x2 +ax−a satisfies f(x2

0) and f2(x2
0) are rational squares.

Proof: Let α∈Q be such that f(α) =α2 +aα−a= β2 and f(f(α)) = β4 +aβ2 −a=
γ2 for some β,γ ∈ Q. One obtains

a= β2 −α2

α−1 = γ2 −β4

β2 −1 .

This gives a certain level of confidence.

αβ4 +(−1−α2)β2 +α2 = (α−1)γ2
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which defines the following quartic curve over Q(α)

Cα : α(α−1)β4 +(α−1)(−1−α2)β2 +(α−1)α2 = θ2

where θ = (α−1)γ, with a rational point Tα = (1 : α−1 : 1).

There is a birational isomorphism ψ :Cα →Eα where Eα is an elliptic curve described
by the following Weierstrass equation over Q(α)

Eα : y2 +(2α+2)xy+ 2α4 −6α3 −2α2 −2α

α −1 y = x3 + 2α3 −8α2 −2α

α −1 x2 + α6 −8α5 +14α4 +4α3 +5α2

α2 −2α +1 x.

Then Rα := ψ(Tα) = (0 : (−2α4 + 6α3 + 2α2 + 2α)/(α− 1) : 1) is a point of infinite
order in Eα(Q(α)). Moreover,

ψ−1(2Rα) =
(

α2 −5α
α2 −α−4 : 3α5 −13α4 +13α3 −15α2 +12α

α4 −2α3 −7α2 +8α+16 : 1
)
.

Now the β-coordinate of the latter rational point gives rise to the a-value and the
corresponding orbit in the statement of the theorem. □

Example 5.4 Let α = 1
4 . We can observe that for the polynomial f(x) = x2 −

429
17956x+ 429

17956 , we have

Orbf (α) =
{(1

2

)2
,
(19

67

)2
,
( 757

4489

)2
, . . .

}
.

5.2 Consecutive four squares

Let K be a number field. Let f(x) = x2 +c∈K[x] and x0 ∈K. If one wants to force
x2

0,fc(x2
0),f2

c (x2
0) and f3

c (x2
0) to be all K-rationals, then this can be written as

x4
0 + c= y2, y4 + c= z2, z4 + c= w2.(5.2)

Equivalently, the existence of four consecutive squares in the orbit of a rational point
under fc is equivalent to the existence of a rational point (x0,y,z,w) on the surface

54



S defined by

z2 +x4 = y2 +y4, w2 +y4 = z2 + z4.(5.3)

Proposition 5.5 Let c ∈ Q be such that Orbfc(x0) contains four consecutive
squares, i.e, f i(x0), i= 0,1,2,3, are all rational squares. Then x0 ̸= 0.

Proof: It can be seen that by eliminating y and z in (5.2), one obtains that

w2 = f2
c (x2

0) = ((x4
0 + c)2 + c)2 + c

= x16
0 +4cx12

0 +2c(1+3c)x8
0 +4c2(1+ c)x4

0 + c(1+ c+2c2 + c3).

If x0 = 0, then this means that w2 = c(1 + c+ 2c2 + c3) which describes an elliptic
curve E over Q, whose Mordell-Weil group E(Q) ∼= Z/3Z corresponding to the point
(0,0) and the two points at infinity. None of these points gives rise to non-trivial
four consecutive squares. □

Theorem 5.4 There exists a polynomial f(x) = x2 + c ∈ Q[x] such that there are
four distinct consecutive squares in Orbf (x2

0) for some x0 ∈ Q if and only if there
exist rational solutions p,q,r ∈ Q to the polynomial equation M(p,q,r) = x4

0 where

M(p,q,r) = −2048p7q−1536p6q2 −768p5q3 +128p4q4 +192p3q5 +96p2q6 +16pq7 +q8 +4096p6qr+

1280p5q2r − 960p3q4r − 448p2q5r − 160pq6r − 24q7r − 512p6r2 − 1280p5qr2 + 1792p4q2r2 +

1664p3q3r2 + 1152p2q4r2 + 368pq5r2 + 76q6r2 + 768p5r3 − 2048p4qr3 − 1920p3q2r3 − 1280p2q3r3 −

384pq4r3 − 72q5r3 + 384p4r4 + 1728p3qr4 + 480p2q2r4 + 240pq3r4 − 10q4r4 − 704p3r5 − 64p2qr5 −

32pq2r5 +24q3r5 +64p2r6 −112pqr6 +44q2r6 +64pr7 −56qr7 +17r8.

Proof: In (5.3), we set x2
0 = X, y2 = Y and z2 = Z. Then we have the following

equations

Y +Y 2 = Z+X2,(5.4)

Z+Z2 = w2 +Y 2.(5.5)

One may homogenize equation (5.5) and complete the square so that the equation
may be written as

γ2 = w2 +Y 2 +µ2, where µ= T

2 , γ = Z+µ.
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Therefore, one may obtain the following parameterization.

γ = s2 + t2 +u2, w = 2su, Y = s2 + t2 −u2, µ= 2tu.

Since Z = γ−µ and T = 2µ, we have z2 = −2tu+ s2 + t2 +u2 and T = 4tu. Also
Y = y2 = s2 + t2 −u2 yielding the following parametrization for t,s,u,y:

s= 4p2 +2qp−2pr− q2 + r2 , t= 4qp+ q2 −2qr+ r2,

u= 4p2 +2qp−2pr+ q2 − r2 , y = 4pr+2qr− q2 − r2.

It follows that (5.4) in homogeneous form, Y T +Y 2 = ZT +X2, may be written as

x4
0 = y2T +y4 −Tz2 =M(p,q,r)

where M(p,q,r) is given as in the statement of the theorem. □

Theorem 5.5 There exists at least one polynomial of the form f(x) = x2 +c ∈ Q[x]
and x0 ∈ Q such that Orbf (x0) has four distinct consecutive squares. Namely, c =
5103/4096 and

Orbf ((3/8)2) = {(3/8)2,(9/8)2,(27/16)2,(783/256)2, . . .}.

Proof: Fixing y in equations (5.3) and setting X = x2
0, one obtains

(y2 +y4)T 2 = z2 +X2.

The latter equation gives rise to the following parametrization

z = −yp2 +2y2ps+ys2, X = y2 +p2 +2yps−y2s2, T = p2 + s2.

Let X1 = X
T and z1 = z

T . Then we have the following.

X1 = z(2ps+p2z− s2z)
p2 + s2 = □,
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z2
1 +z4

1 −y4 = y4(−p2 + s2 +2psy)4 +y2(−p2 + s2 +2psy)2(p2 + s2)2 −y4(p2 + s2)4

(p2 + s2)4 =□.

Searching for rational solutions to the system above using MAGMA , [3], yields the
polynomial f(x) together with the mentioned orbit. □

Remark 5.2 In Theorem 5.5, we were able to find a rational point on the variety S
defined in (5.3). This variety contains the subvariety (up to sign) x= y= z =w with
infinitely many rational points that give rise to no nontrivial four distinct consecutive
squares. We suspect that there are likely only finitely many other nontrivial rational
points, and perhaps the rational point we found might be the only one.

As for polynomials f(x) with d = degf > 2, the existence of a rational square α2

such that f
(
α2
)

is rational itself, implies the existence of a rational point on a
curve of genus ⌊2d−1⌋/2> 1, on which there are only finitely many rational points.
Therefore, finding a rational point whose orbit under f contains three consecutive
squares is quite improbable.

5.3 Finite orbits consisting of squares

As mentioned in Remark 5.1, any quadratic polynomial map f(x) =Ax2 +Bx+C ∈
K[x] is linearly conjugate over K to a map of the form x2 +c for some c∈K. If K is
chosen to be the rational field Q, a complete classification of quadratic polynomial
maps with periodic points of periods 1,2, or 3 was given in [69]. We recall that the
orbit of a periodic point is called a periodic orbit.

The following conjecture can be found in [56].

Conjecture 5.6 If N ≥ 4, then there is no quadratic polynomial f(x) ∈ Q[x] with
a rational point of exact period N .

The conjecture has been proved for N = 4, [54], for N = 5, [34], and conditionally on
Birch-Swinnerton-Dyer Conjecture for N = 6, [65]. Although proving the uniform
boundedness of the number of preperiodic points of polynomial maps of a fixed
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degree is currently far from our reach, some uniform bounds were given for certain
polynomial maps in [44, 59].

Assuming Conjecture 5.6 holds, one notices that if f(x) = x2 + c ∈ Q[x] is such that
x0 ∈ Q is a periodic point of f(x), then for x0 to be a rational square of period 1 one
has either 1/2+ρ or 1/2−ρ is a rational square with c= 1/4−ρ2. Similarly, one sees
easily that x0 cannot be a point of period 2 whose orbit contains only rational squares
since otherwise both −1/2 +σ and −1/2 −σ are rational squares for some σ ∈ Q.
Finally, for x0 to be a periodic point of period 3 for which Orbf (x0) contains only
rational squares, one must have in Theorem 2.6 that x1 = r2

1, x2 = r2
2, x3 = r2

3 where
ri ∈Q, i= 1,2,3. The latter is a singular curve of genus 17 with only two singularities
(τ,r1, r2, r3) = (−1,0,0,0),(0,0,0,0). Again, by Faltings’ Theorem, [33], there are
only finitely many rational points on the latter curve. Therefore, one investigates
the possibility of having infinitely many polynomials of the form x2 +ax+ b, a ̸= 0,
with rational periodic points whose orbits are of length at least 2 and contain only
rational squares.

One notices that if x0 is a rational periodic point of the map x2 + ax+ b, then
x0 +a/2 is a periodic point of the map x2 + c where c= b−a2/4+a/2.

Theorem 5.6 The polynomial map f(x) = x2 + ax+ b ∈ Q[x] has a periodic orbit
of length 2 whose elements are rational squares if and only if a = −1 −m2 − k2

and b = m2 + k2 +m2k2 for some m,k ∈ Q. In this case, one has f(m2) = k2 and
f(k2) =m2.

Proof: That the polynomial f(x) = x2 + ax+ b with a = −1 −m2 − k2 and b =
m2 +k2 +m2k2, m,k ∈ Q, has such a periodic orbit is a direct calculation.

Now, if f(k2) =m2 and f(m2) = k2 for some m,k ∈ Q, then one knows that g(m2 +
a/2) = k2 +a/2 and g(k2 +a/2) = m2 +a/2 where g(x) = x2 + b−a2/4 +a/2. This
yields that

k2 + a

2 = −1
2 −σ and m2 + a

2 = −1
2 +σ, for some σ ∈ Q,

see Theorem 2.6. It follows that a= −1−m2 −k2 and b=m2 +k2 +m2k2. □

One sees that Orbf (4) = {4, 1
4} where f(x) = x2 − 21

4 x+ 21
4 and Orbg(9) = {9,4}

where g(x) = x2 −14x+49.

Theorem 5.7 Let m,n,r ∈ Q be distinct. There exists a polynomial map f(x) =
x2 +ax+ b ∈ Q[x] such that f(m2) = n2, f(n2) = r2, and f(r2) =m2 if and only if

m4(1−n2 + r2)+m2(−n2 +n4 − r2(1+ r2))+ r4 −n4(−1+ r2)+n2r2(−1+ r2) = 0.
58



In this case, the polynomial f(x) is determined by

a= −m6 +m2n4 −n6 +m4r2 +n2r4 − r6

(m2 −n2)(m2 − r2)(n2 − r2) , b= m6n2 −m4n4 +n6r2 −m4r4 −n4r4 +m2r6

(−m2 +n2)(n2 − r2)(−m2 + r2) .

Proof: One needs to solve the following system of linear equations in d,a,b

dm4 +am2 + b= n2, dn4 +an2 + b= r2, dr4 +ar2 + b=m2

to get the expressions for a and b as in the statement, whereas d = (m4 −m2n2 +
n4 −m2r2 −n2r2 +r4)/((m2 −n2)(m2 −r2)(n2 −r2)). The statement now holds once
we force the polynomial f(x) to be monic by setting d= 1. □

One remarks that each of the triples m,n,k satisfying the identity in Theorem 5.7
gives rise to a rational solution to the system of equations

m2 +a/2 = τ3 +2τ2 + τ +1
2τ(τ +1) , n2 +a/2 = τ3 − τ −1

2τ(τ +1) , r2 +a/2 = −τ3 +2τ2 +3τ +1
2τ(τ +1)

for some rational value of τ ∈ Q\{−1,0}.

As examples, one sees that the following polynomial maps have periodic orbits of
length 3 that contain only rational squares.

f1(x) = x2 − 29
8 x+ 841

256 , Orbf1((7/4)2) = {(7/4)2,(5/4)2,(1/4)2}, τ = −1/2,

f2(x) = x2 − 301
72 x+ 90601

20736 , Orbf2((23/12)2) = {(23/12)2,(19/12)2,(5/12)2}, τ = 2,

f3(x) = x2 − 421
72 x+ 177241

20736 , Orbf3((25/12)2) = {(25/12)2,(17/12)2,(11/12)2}, τ = 1/2,

f4(x) = x2 − 1849
288 x+ 3418801

331776 , Orbf4((55/24)2) = {(55/24)2,(49/24)2,(23/24)2}, τ = 3,

f5(x) = x2 − 74333
4356 x+ 211660729

4743684 , Orbf5((115/66)2) = {(115/66)2,(47/33)2,(124/33)2}, τ = −12.
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6. Arithmetic progressions in polynomial orbits

6.1 Intersection of polynomial orbits with linear polynomial orbits

Throughout this work, K is a number field with algebraic closure K and the ring of
integers OK .

We recall that the n-th iteration of a polynomial f(x) is defined to be fn(x) =
f(fn−1(x)), n ≥ 1, and f0(x) = x. Given a ∈ K, the orbit of a under f is the set
Orbf (a) = {fn(a),n ≥ 0}. We can also denote by Orb±

f (a) := {fn(a),n ∈ Z} the
union of both the forward and backward orbits of a point a under the iterates of
f . This is mostly useful when referring to a linear map f where the backward orbit
is always infinite. A point a ∈ K is called preperiodic under f of type (m,n) if
fm+n(a) = fm(a) for some m≥ 0,n≥ 1. A point a ∈K is called periodic under f if
a is preperiodic of type (0,n). Moreover, if n is the smallest such integer, then a is
said to be a periodic point of exact period n. If a ∈ K is not preperiodic under f ,
then a is called a wandering point for f .

We define an equivalence relation on polynomials in K[x] of a given degree d ≥ 2
as follows. Two polynomial maps f1 and f2 in K(x) of degree d ≥ 2 are conjugate
if there is ϕ ∈ PGL2(K) such that f2 = fϕ

1 := ϕ◦f1 ◦ϕ−1. If ϕ ∈ PGL2(K), then f1

and f2 are said to be K-conjugate. We remark that if a is a periodic point of exact
period n for f , then ϕ(a) is a point of exact period n for fϕ. One can argue similarly
for preperiodic points of f and fϕ. Moreover, if f,ϕ, and a are defined over K such
that fn(a) = a, then g := fϕ and b := ϕ(a) are defined over K with gn(b) = b.

If two complex polynomials f and g of degree at least 2 have orbits with infinite
intersection, then f and g must have a common iterate, [36, 37]. The assumption
that both polynomials must be nonlinear is essential as may be emphasised by the
example Orb2X2+2(1) ⊂ OrbX+2(0).
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It is obvious that if ϕ= αx+β ∈K[x], α ̸= 0, then

Orbfϕ(ϕ(x)) = {ϕ(x),ϕ(f(x)), · · · ,ϕ(fn(x)), · · ·}

for any polynomial map f ∈ K[x] and any x ∈ K. In addition, If f(x) = ax+ b,
a ̸= 0, then fϕ(x) = ax+αb−β(a−1).

In what follows we consider the case when g(x) = ax+ b ∈ Q[x] whereas f(x) is an
arbitrary polynomial. We remark that

Orbg(x) = {x,ax+b,a2x+b(a+1),a3x+b(a2 +a+1), · · · ,anx+b(an −1)/(a−1), · · ·}.

We notice that for a power of a linear map f(x) = (βx)m, m ≥ 2, and g(x) = βx,
one has that Orbf (0) ∩ Orbg(1) is infinite. In what follows, we consider the latter
intersection when f(x) is not a power of a linear polynomial.

Proposition 6.1 Let f(x) ∈ K[x] be of degree at least 2 such that f(x) is not a
power of a linear polynomial. Let g(x) = ax+b∈K[x] be such that Orbf (s)∩Orb±

g (t)
is infinite for some fixed s, t ∈K. Then a is a root of unity in OK .

Proof: Using a conjugation via ϕ(x) = x+ b/(a−1), one may assume without loss
of generality that g(x) = ax and t ̸= 0. We write

f(x) = adx
d + · · ·+a0 = ad

e∏
i=1

(x− ci)ri , ri ≥ 1, ad ̸= 0, ci ̸= cj for i ̸= j.

We also set

S = {p ∈ OK is prime : νp(s)< 0 or νp(t)< 0 or νp(ai)< 0 for some 0 ≤ i≤ d},

where νp is the associated discrete valuation to the prime p.

Now, we assume on the contrary that a is not a root of unity. The hypothesis
implies that fm(s) = ant for infinitely many pairs of integers (m,n). We also notice
that for two such pairs (m1,n1) and (m2,n2), both m1 ̸= m2 and n1 ̸= n2, since
otherwise, fm1(s) = fm2(s) or gn1(t) = gn2(t) respectively. The latter implies that s
is a preperiodic point for f , hence Orbf (s) is finite, or t is the fixed point 0 of g(x).

Let q be an odd rational prime such that q > ri for all i. The latter argument shows
that there is ℓ mod q such that there are infinitely many pairs (mi, qi+ ℓ) where
fmi(s) = aqi+ℓt. This yields infinitely many S-integer points (x,y) = (fmi−1(s),ai)
on the curve aℓtyq = f(x).

61



Building on earlier work of Siegel, [61, 62], Lang and LeVeque proved that if the
number of S-integer points on a curve C : yq = f(x), q ≥ 2, f(x) ∈K[x], is infinite,
then the genus of the curve C must be zero, [51, 68]. The reader may also consult
[4] for further references and literature. LeVeque also gave necessary and sufficient
conditions for the genus of C to be zero, [52]. More precisely, setting qi = q/gcd(q,ri),
and assuming without loss of generality that q1 ≥ q2 ≥ ·· · ≥ qe, the curve C has
infinitely many S-integer points if and only if (q1, q2, q3, · · · , qe) = (2,2,1, · · · ,1) or
(s,1,1, · · · ,1), s≥ 1.

In view of the latter fact, since the tuple (2,2,1, · · · ,1) is not realized due to the fact
that q is odd, either f(x) has a root of multiplicity divisible by q, corresponding to
the case e≥ 2 and q2 = 1, contradicting the assumption that q > ri for all i; or e= 1
implying that f(x) has a unique root, contradicting our assumption that f(x) is not
a power of a linear polynomial. □

Remark 6.1 The remark following Proposition 5.3 of [36] shows that if f and g

are non-monic linear polynomials such that Orbf (s)∩Orbg(t) is infinite, then f and
g must have a common iterate.

Proposition 6.1 justifies the fact that we will only consider intersections of orbits of
polynomials f of arbitrary degrees with orbits of monic linear polynomials. In fact,
we will mainly focus on the latter intersection when f has integer coefficients. This
may be justified by the following example.

Example 6.2 Let f(x) = xd +a/b, d≥ 2, |b|> 1, gcd(a,b) = 1. One may easily see
that fn(0) = an/b

dn for some sequence an ∈ Z, n ≥ 1. In addition, Orbx+r/s(0) =
{nr/s : n≥ 1}. Therefore, Orbf (0)∩Orbx+r/s(0) contains only finitely many points
for any choice of r/s.

Lemma 6.1 Let g(x) = x+ a
b with a,b ∈ Z. Then Orbg(t) = 1

b
Orbx+a(bt) for any

t ∈ Q.

Proof: This follows immediately by observing gn(t) = bt+na

b
for any n≥ 1. □

In view of Lemma 6.1, it is sufficient to focus on orbits of linear polynomials of the
form g(x) = x+a with a ∈ Z.

Lemma 6.2 Let gi(x) = x+mi,mi ∈ Z, i = 1,2 and gcd(m1,m2) = 1. Set g(x) =
x+m1m2. Then Orbg(t) = Orbg1(t)∩Orbg2(t) for any t ∈ Q.

Proof: Let k be a rational number such that k ∈ Orbg(t). Then we have k =
t+rm1m2 for some r ∈Z. Hence k ∈ Orbg1(t)∩Orbg2(t). Now assume k ∈ Orbg1(t)∩
Orbg2(t). Then k = t+ s1m1 = t+ s2m2 for some s1, s2 ∈ Z. Since gcd(m1,m2) = 1,
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m1|s2 and m2|s1. Thus, there exists s∈Z such that k= t+sm1m2, i.e., k ∈ Orbg(t).
□

Proposition 6.3 Let f(x) be a polynomial in Z[x] and g(x) = x+ p where p is a
rational prime. Assume that n is the minimum positive integer such that fn(t) ∈
Orb±

g (t) for some t ∈ Z. Then fk(t) ∈ Orb±
g (t) if and only if n|k.

Proof: Since fn(t) ∈ Orb±
g (t), one sees that fn(t) = t+mp for some integer m. It

follows that t is a periodic point of f̃(x) ∈ Fp[x] with exact period n where f̃ is the
reduction of f modulo p.

Assuming that fk(t) ∈ Orb±
g (t) for some integer k, one has fk(t) = t+rp≡ t mod p

for some integer r. Since n is the exact period of t, n must divide k.

Assuming that k = nc for some integer c and knowing that fn(t) ≡ t mod p, it
follows that

fk(t) ≡ fnc(t) ≡ fn ◦ · · · ◦fn︸ ︷︷ ︸
c−times

(t) ≡ t mod p.

Thus, fk(t) ∈ Orb±
g (t). □

In fact, one has the following result for intersections with orbits of monic linear
polynomials.

Proposition 6.4 Let f(x) be a polynomial in Z[x] and g(x) = x+a where a is an
integer. Let t be an integer such that n is the minimum positive integer for which
fn(t) ∈ Orb±

g (t). Then fk(t) ∈ Orb±
g (t) if and only if n|k.

Proof: We assume that a= pα1
1 pα2

2 . . .pαe
e where p1, · · · ,pe are distinct primes. As

fn(t) = t+am for some m ∈ Z, one obtains fn(t) ≡ t mod pαi
i for all i.

If n|k, then fk(t) ≡ t mod pαi
i . Since the primes pi are distinct, one has fk(t) ≡ t

mod a.

Now one assumes that fk(t) ∈ Orb±
g (t). This gives fk(t) ≡ t mod a, hence fk(t) ≡ t

mod pαi
i for all i = 1, · · · , e. We set ni to be the exact period of t for the image

f̃(x) of f(x) in ∈ Z/(pαi
i Z)[x]. Letting l be the least common multiple of all ni,

i = 1, . . . , e, one observes that l|k as each ni|k. In addition, one sees that f l(t) ≡ t

mod a. This must yield that l = n, hence n|k.

□
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6.2 Primitive divisors and intersections with linear orbits

We recall the following definition.

Definition 6.1 For an integer sequence an, n ≥ 1, a positive integer (rational
prime) u ≥ 2 is said to be a primitive divisor (primitive prime divisor) of am, if
u|am and u ∤ as for all 1 ≤ s < m.

For example, letting {an : n≥ 1} be a sequence in which

a1 = 1, a2 = 2, a3 = 3, a4 = 6,

one sees that 2 is a primitive (prime) divisor for a2, 3 is a primitive (prime) divisor
for a3. However, a4 does not have any primitive prime divisors, but 6 is a primitive
divisor of a4.

Given a polynomial f(x) ∈ Z[x] and t ∈ Z, we will investigate the set of primitive
divisors of the sequence t0 = 0 and tn = fn(t)− t, n≥ 1.

Lemma 6.3 Let t∈Z and f(x) ∈Z[x]. Define the sequence t0 = 0 and tn = fn(t)−t,
n≥ 1. There exists a monic linear polynomial g(x) = x+a ∈ Z[x], a ̸∈ {0,±1}, such
that Orbf (t) ∩ Orb±

g (t) ̸= {t} if and only if a is a primitive divisor of tm for some
m≥ 1. In this case, Orbf (t)∩Orb±

g (t) is infinite.

Proof: If g(x) = x+ a ∈ Z[x] is such that Orbf (t) ∩ Orb±
g (t) ̸= {t}, then this is

equivalent to the fact that there are integers m,n ≥ 1 such that fm(t) = t+ na.
Assuming that m is the smallest such positive integer, one sees that a is a primitive
divisor of fm(t)− t. The infinitude of the intersection follows from Proposition 6.4.

□

Proposition 6.5 Let f(x) ∈ Z[x] and t ∈ Z. If a is a primitive divisor of fm(t)− t

for some m≥ 1, then Orbfm(t) ⊂ Orb±
g (t) where g(x) = x+a. Moreover,

Orbfm(t)∩Orb±
g (t) = {t+nia : i≥ 0}

where t+ni+1a= fm(t+nia).

Proof: Since a|fm(t)− t, then fm(t) = t+an= gn(t) ∈ Orb±
g (t). Since a is primi-

tive for fm(t)−t, thenm is the minumum positive integer for which fm(t) ∈ Orb±
g (t).

So, by Proposition 6.4, fmk(t) ∈ Orb±
g (t) implying that Orbfm(t) ⊂ Orb±

g (t). □
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Corollary 6.1 Let f(x) ∈ Z[x] and t ∈ Z. Let h(x) := (f)ϕ−1(x) ∈ Z[x], where
ϕ(x) = ax+t. If a is a primitive divisor of f(t)−t, then the primitive prime divisors
of f i(t)− t are the primitive prime divisors of hi(0) for all i≥ 1.

Proof: Since a | (f(t)− t), one easily sees that the map h(x) = (f(t+ax)− t)/a ∈
Z[x]. □

Example 6.6 Consider the linear map g(x) = x+k for some k ∈ Q×. Let a ∈ Q×

be such that ak ∈ Z, and p be a rational number. There exists nonzero rational
numbers b,c such that the quadratic map f(x) = ax2 + bx+ c satisfies

Orbf (p) ⊂ Orbg(p).

where b= 1−ak−2ap and c= k+akp+ap2. More precisely,

Orbf (p) = {p,p+k,p+2k,p+n0k,p+n1k, · · · ,p+nik, · · ·}

where n0 = 3+2ak, and ni = hi(n0), i= 1,2, · · · , where h(x) = akx2 +(1−ak)x+1.

For example, let f(x) = 2x2 −37x+163, g(x) = x+7 and p= 6. Then one can have

Orbf (p) = {6,13,20,223,91370, . . . ,} ⊂ Orbg(p) = {6,13,20,26, . . . ,223,91370, . . . ,}.

Corollary 6.2 Let f(x) ∈ Z[x]. For all but finitely many integers t, there exists an
integer a ̸∈ {0,±1}, such that Orbf (t) ⊂ Orb±

g (t) where g(x) = x+a.

Proof: One sees that there are only finitely many t such that f(t) − t ∈ {0,±1}.
For any other integer t, f(t)− t has a primitive divisor a. Now the result follows by
Proposition 6.5. □

6.3 Relative density of orbits intersections

Given a polynomial f in Z[x], an integer s, and a set A ⊆ Z, we define the relative
density of A in the orbit of s under f to be the limit

δf,s(A) := lim
X→∞

|{x ∈ A∩Orbf (s) : x≤X}|
|{x ∈ Orbf (s) : x≤X}|

,

provided that this limit exists.
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Given a polynomial g ∈ Z[x] and an integer t, we will concern ourselves with
δf,s(Orbg(t)).

Lemma 6.4 Let f,g ∈ Z[x] and s, t ∈ Z. The following statements hold.

i) δf,s(Z) = 1.

ii) δf,s(Orbg(t)) = 0 if degf,degg > 1 where f and g have no common iterate; or
degf = degg = 1 where f and g have no common iterate and both f and g are
non-monic.

iii) δf,s(Orbg(t)) = 0 if degf = 1, degg > 1 and g(x) is not a power of a linear
polynomial.

Proof: For i), it is clear as f ∈ Z[x] and t ∈ Z.

For ii), if degf,degg > 1 where f and g have no common iterate, Theorem 1 in [37]
gives that Orbf (s) ∩ Orbg(t) is finite. Hence, δf,s(Orbg(t)) = 0. If degf = degg = 1
where f and g have no common iterate and both f and g are non-monic, then the
result follows from the Remark 6.1.

For iii), let f(x) = ax+ b for some a,b ∈ Z and a is not a unit. Then by Proposition
6.1, Orb±

f (s)∩Orbg(t) is finite. Hence, δf,s(Orbg(t)) = 0. Now assume f(x) = x+ b

where b ∈ Z. This gives Orb±
f (s) = {s+ bk : k ∈ Z}. Let m1 ≥ 0 be the least integer

such that gm1(t) ∈ Orbf (s), i.e., gm1(t) = s+ br1 for some r1 ∈ Z. Let m2 be the
least integer such that m2 > m1 and gm2(t) ∈ Orb±

f (s), i.e., gm2(t) = s+ br2 for
some r2 ∈ Z. One can construct a sequence m1 < m2 < · · · < mi < .. . such that
gmi(t) = s+ bri for some ri ∈ Z. We observe that

gmi−m1(gm1(t)) = gmi(t) = gm1(t)+ b(ri − r1) for all i.

So, this implies gm1(t) is periodic mod b for g(x) with exact period m2 −m1. By
periodicity, we have

gmi(t) = gmi−m1(gm1(t)) = gi(m2−m1)(gm1(t)).

Let gm2−m1(x) =∑d
j=0ajx

j . Then

gmi(t) = gmi−m1(gm1(t)) = gm1(t)+ b(ri − r1),

and

gmi+1(t) = gm2−m1(gmi(t)) =
d∑

j=0
aj(gm1(t)+ b(ri − r1))j = gm1(t)+ b(ri+1 − r1).
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This implies that ri+1 = h(ri) where h(x) is a polynomial of degree d. This means
that ri = hi−j(rj) is a polynomial of degree di−j in rj . Thus,

lim
M→∞

|{fm(s) ∈ Orbg(t) : −M ≤m≤M}|
2M = lim

i→∞

i

ri
= 0

This implies that

δf,s(Orbg(t)) = lim
M→∞

|{fm(s) ∈ Orbg(t) : 0 ≤m≤M}|
M

= 0.

□

Corollary 6.3 Let f(x) be a polynomial in Z[x] and g(x) = x+ a where a ∈ Z is
such that a ̸= 0,±1. Let t ∈ Z. The following statements are equivalent:

(i) t is a periodic point of f(x) mod a with exact period n≥ 1.

(ii) a is primitive divisor of fn(t)− t.

(iii) δf,t(Orb±
g (t)) = 1

n .

(iv) |Orbf (t)∩Orb±
g (t)| = ∞.

Proof: This is Proposition 6.4 and Lemma 6.3. □

Remark 6.2 In Corollary 6.3, if a= pα1
1 · · ·pαe

e , then n is the least common multiple
of all ni, i= 1, · · · , e, where ni is the exact period of t for the image f̃(x) of f(x) in
∈ Z/(pαi

i Z)[x], see the proof of Proposition 6.4.

6.4 Covering polynomial orbits using arithmetic progressions

In view of Corollary 6.3, the infinitude of the intersection of a linear orbit with the
orbit of an integer t under a polynomial f of arbitrary degree is equivalent to the
existence of a primitive divisor for an element in the sequence {f i(t)− t}i.

In fact, for the polynomial f(x) = xd + c ∈ Z[x], it was proved in [10] that the
sequence f i(0) has a primitive prime divisor for all i except finitely many. For
xd + c ∈ Q[x], it was shown in [50] that the sequence f i(0) has a primitive prime
divisor for all i except possibly for 23 values. Moreover, it was shown in [58] that
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for two classes of polynomials f(x) ∈ Z[x] and and any integer t, the sequence fn(t),
n≥ 1, has only finitely many terms with no primitive prime divisor.

If t is a point whose orbit is infinite under f(x) ∈ Z[x], then for all but finitely many
integers n, fn(t) has a primitive prime divisor under the abc-conjecture, see [39].
Moreover, if t is a critical point of f(x), then for all but finitely many integers n,
fn(t)− t has a primitive prime divisor, see [57].

Definition 6.2 Let f(x) ∈ Z[x] and t be an integer. A finite system

A= {as +nsZ}k
s=1, as,ns ∈ Z, ns > 0, 1 ≤ s≤ k,

is said to be a cover of Orbf (t) if

Orbf (t) ⊂ ∪k
s=1as +nsZ.

If {as +nsZ}k
s=1
s̸=u

is not a cover of Orbf (t), then A is a cover of Orbf (t) for which
au +nuZ is essential. A minimal cover of Orbf (t) is a cover in which all the arith-
metic sequences are essential. If Orbf (t) ∩ as +nsZ∩ as′ +ns′Z = ∅ for all s ̸= s′,
then A is called a disjoint cover of Orbf (t). A t-cover of A is a cover of Orbf (t) for
which t ∈ ∩k

s=1as +nsZ.

For a positive integer n, one sees that {r+nZ}n−1
r=0 is a disjoint cover of Orbf (t) for

any f(x) ∈ Z[x] and any integer t.

Given f(x) ∈ Z[x] and t ∈ Z, we will mainly focus on disjoint covers and covers
of Orbf (t) of the form A = {t+ nsZ}k

s=1, where the latter covers are t-covers of
Orbf (t). In other words, we consider covers of Orbf (t) using linear orbits of the
form {Orbx+ns(as)}k

s=1, where Orbf (t)∩Orbx+nr(ar)∩Orbx+ns(as) = ∅ if r ̸= s; or
covers of the form {Orbx+ns(t)}k

s=1.

Theorem 6.1 Let f(x) be a polynomial in Z[x] and t ∈ Z. Let gi(x), 1 ≤ i≤ k, be
a finite family of monic linear polynomials in Z[x]. The following statements are
equivalent.

i) δf,t

(⋃k
i=1 Orb±

gi
(t)
)

= 1.

ii) δf,t

(
Orb±

gi
(t)
)

= 1 for some i, 1 ≤ i≤ k.

iii) Orbf (t) ⊂ Orb±
gi

(t) for some i, 1 ≤ i≤ k.

Proof: The implication iii) yields i) is clear. We assume that δf,t

(⋃
i Orb±

gi
(t)
)

= 1.
We assume without loss of generality that |Orbf (t) ∩ Orb±

gi
(t)| = ∞ for all i. By

Corollary 6.3, δf,t(Orb±
gi

(t)) = 1
ni

for some positive integer ni. Moreover, if gi(x) =
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x+ ai, then ai is a primitive divisor of fni(t) − t. We assume that ni > 1 for all
i. Proposition 6.4 implies that fm(t) ∈ Orb±

gi
(t) if and only if ni|m. Let n =∏

ini.
Now it is clear that ni ∤ (hn+1) for any integer h. In particular, fhn+1(t) /∈ Orb±

gi
(t)

for any i, 1 ≤ i ≤ k. This implies that δf,t

(⋃
i Orb±

gi
(t)
)

≤ 1 − 1
n ; which contradicts

our assumption, hence ni = 1 for some i. Assuming ii), Corollary 6.4 ii) implies
that ai is a primitive divisor of f(t) − t. In view of Proposition 6.5, one sees that
Orbf (t) ⊂ Orb±

gi
(t). □

Corollary 6.4 Let f(x) be a polynomial in Z[x] and t∈ Z. If A= {t+nsZ}k
s=1 is a

minimal t-cover of Orbf (t), then k = 1. In particular, if A= {t+nsZ}k
s=1, k ≥ 1, is

a system of arithmetic progressions such that δf,t (t+nsZ) < 1, for all s = 1, · · · ,k,
then δf,t

(⋃k
i=1(t+nsZ)

)
< 1.

Definition 6.3 Let f(x) ∈Z[x] and t∈Z. Let δ be a real number such that 0 ≤ δ≤ 1.
If there is a system of arithmetic progressions of the form A = {t+nsZ}k

s=1 such
that δf,t

(⋃k
s=1 t+nsZ

)
= δ, then δ is said to be (f, t,k)-accessible.

For f(x) ∈ Z[x] and t ∈ Z, we set

PD(f, t) = {a : a is a primitive divisor of fn(t)− t for some n≥ 1}.

The set PD(f, t) contains the set of primitive prime divisors of fn(t) − t. If t is a
wandering point for f , then it is clear that PD(f, t) is infinite since otherwise t will
be a preperiodic point under f . We also set

S(f, t) = {n≥ 1 : fn(t)− t has a primitive divisor}.

Again, if t is a wandering point for f , then S(f, t) is infinite.

Definition 6.4 Let S ⊆ Z. A nonnegative rational number δ < 1 is said to be an
(S,k)-inclusion-exclusion fraction if there are ni ∈ S, i= 1, · · · ,k, with

δ =
k∑

i=1

1
ni

−
∑

1≤i1<i2≤k

1
lcm(ni1 ,ni2) +

∑
1≤i1<i2<i3≤k

1
lcm(ni1 ,ni2 ,ni3) +· · ·+(−1)k+1 1

lcm(n1, · · · ,nk) .

Theorem 6.2 Let f(x) ∈ Z[x] and t ∈ Z be a wandering point for f . Let k ≥ 1 be
an integer. An (S(f, t),k)-inclusion-exclusion fraction is (f, t,k)-accessible.

Proof: Let δ be an (S(f, t),k)-inclusion-exclusion fraction. Let ni ∈ S(f, t) for
1 ≤ i≤ k be as in Definition 6.4. Let ai be a primitive prime divisor of fni(t)−t which
exist by the definition of S(f, t). Let gi = x+ai. By Corollary 6.3, δf,t(Orb±

gi
(t)) = 1

ni
.

By setting A= {t+aiZ}, we can see that
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δf,t(
k⋃

i=1
t+aiZ) = δf,t(

k⋃
i=1

Orb±
gi

(t))

= lim
X→∞

|{x ∈
⋃k

i=1

(
Orb±

gi
(t)∩Orbf (t)

)
: x ≤ X}|

|x ∈ Orbf (t) : x ≤ X}|

=
k∑

j=1
(−1)j+1 ∑

1≤i1<i2<···<ij≤k

lim
X→∞

|{x ∈
⋂j

r=1

(
Orb±

gir
(t)∩Orbf (t)

)
: x ≤ X}|

|x ∈ Orbf (t) : x ≤ X}|

=
k∑

j=1
(−1)j+1 ∑

1≤i1<i2<···<ij≤k

lim
M→∞

|{fm(t) ∈
⋂j

r=1 Orb±
gir

(t) : m ≤ M}|
M

=
k∑

j=1
(−1)j+1 ∑

1≤i1<i2<···<ij≤k

1
lcm(ni1 , . . . ,nij ) .

The third equality is by inclusion and exclusion. The last equality is by Corollary
6.3 and Proposition 6.4, since fm(t) ∈ Orb±

gir
(t) if and only if nir |m which implies

that fm(t) ∈⋂j
r=1 Orb±

gir
(t) if and only if lcm(ni1 , . . . ,nij )|m. Thus, the result holds.

□

Corollary 6.5 Let f(x) ∈ Z[x] and t ∈ Z be a wandering point for f . If n ∈ S(f, t),
then 1/n is (f, t,1)-accessible.

Proof: This follows from Corollary 6.3. □

Proposition 6.7 Let f(x) ∈ Z[x] and t ∈ Z be a wandering point for f .

i) If n, n−1 ∈ S(f, t), then 2/n is (f, t,2)-accessible.

ii) Let n be an odd integer such that n, n−1, n−2 ∈ S(f, t), then 3/n is (f, t,3)-
accessible.

iii) Let m,n ∈ Z such that (m− 1)|(n− 1) and n,(n− 1)/(m− 1) ∈ S(f, t), then
m/n is (f, t,2)-accessible.

Proof: For i), if n, n− 1 ∈ S(f, t) then 1/n and 1/(n− 1) are (f, t,1)-accessible
from Corollary 6.5. Since gcd(n,n−1) = 1, one can have that

1
n

+ 1
n−1 − 1

n(n−1) = 2
n

is (f, t,2)-accessible by using Theorem 6.2.

For ii), Corollary 6.5 and assumption give that 1/n,1/(n− 1) and 1/(n− 2) are
(f, t,1)-accessible. Since n is odd integer, we have gcd(n,n− 1) = gcd(n,n− 2) =
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gcd(n−1,n−2) = 1. Then by using Theorem 6.5, one can have that

1
n

+ 1
n−1 + 1

n−2 − 1
n(n−1) − 1

n(n−2) − 1
(n−1)(n−2) + 1

n(n−1)(n−2) = 3
n

is (f, t,3)-accessible.

For iii), one may apply the same way to prove that m/n is (f, t,2)-accessible.

□

Remark 6.3 From the Theorem 6.4, we can get the density 1
n with one linear

polynomial g(x). Also, Proposition 6.7 gives us we can get 2
n and 3

n (in this case, n
is odd) with 2 and 3 linear polynomials, respectively. However, this is not correct
in general, i.e., to get density i

n , we can not say we must have i linear polynomials.
The following example proves this.

Example 6.8 Assume that f(x) be a polynomial in Z[x] and t ∈ Z, then there does
not exist linear polynomials g1(x), . . . , g4(x) in Z[x] such that

δf,t(Orb±
g1(t)∪Orb±

g2(t)∪Orb±
g3(t)∪Orb±

g4(t)) = 4
5 .

One can observe that if n1,n2,n3,n4 be chosen as least four positive prime integers
such that δf,t(Orb±

gi
(t)) = 1

ni
, then

δf,t(Orb±
g1(t)∪Orb±

g2(t)∪Orb±
g3(t)∪Orb±

g4(t))< 4
5 .

This means, to get the density 4
5 , we need at least 5 linear polynomials.

Theorem 6.3 Let f(x) ∈ Z[x] and t ∈ Z be a wandering point for f . Let m,n ∈ Z
and pi’s are prime in order. If k is an positive integer such that

δk = 1−
k∏

i=1

(
1− 1

pi

)
<
m

n
,

then m/n is not (f, t,k)-accessible. In particular, there does not exist k linear poly-
nomials g1(x), . . . ,gk(x) such that

δf,t

 k⋃
i=1

Orb±
gi

(t)
= m

n
.

Corollary 6.6 For k = 2, 1−∏2
i=1

(
1− 1

pi

)
= 1−

(
1− 1

2

)(
1− 1

3

)
= 2

3 . So, for m
n >
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2
3 , m

n is not (f, t,2)−accessible for any f and t.

Remark 6.4 Let k > 0 be an integer. Then there exist an interval (a,1) where a∈Q
and 0< a < 1 such that c is not (f, t,k)−accessible for any f , t and c ∈ (a,1).

Theorem 6.4 Let the set of all rational primes by P, f(x) be a polynomial in Z[x]
and t ∈ Z such that P ⊂ S(f, t). Then for all ϵ > 0, there exists a finite family of
linear polynomials gi(x) such that

δf,t

(
Orbf (t)∩

(⋃
i

Orb±
gi

(t)
))

≥ 1− ϵ.

Proof: Let ni be the exact period of t under f(x) (mod mi) for some positive
integer mi. (Here, mi is primitive divisor (not nec. prime) of {fni(t) − t}). If n′

is

are coprime, then one can observe the following equality,

1−
∏
i

(
1− 1

ni

)
=
∑

i

1
ni

−
∑
i,j

1
ninj

+
∑
i,j,k

1
ninjnk

− . . .

where the RHS is the required density. Now, ni can be chosen as primes pi in order.
Then we have

δf,t

(
Orbf (t)∩

(⋃
i

Orb±
gi

(t)
))

= 1−
k∏

i=1

(
1− 1

pi

)
= 1− 1

(∏k
i=1(1− 1

pi
))−1

Moreover, we know that

lim
k−→∞

(
1− 1

(
∏k

i=1(1− 1
pi

))−1

)
=

1− 1
limk−→∞ lims−→1+(

∏k
i=1(1− 1

ps
i
))−1

= 1− 1
lims−→1+ ζ(s) = 1−0 = 1

where ζ is the Riemann-Zeta function, which has a simple pole at 1.

By the definition of the limit, for all ϵ, there is an integer N such that

1−

1− 1
(∏N

i=1(1− 1
pi

))−1

≤ ϵ

which concludes the result. □

Corollary 6.7 Let (x,1) be an open interval. Then there exist f, t,k and x0 ∈ (x,1)
such that x0 is (f, t,k)− accessible.
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