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ABSTRACT

DIVISIBILITY OF RATIONAL POINTS ON ELLIPTIC CURVES AND
ARITHMETIC PROGRESSIONS IN POLYNOMIAL DYNAMICAL SYSTEMS

TUGBA YESIN ELSHEIKH
MATHEMATICS Ph.D DISSERTATION, JUNE 2023

Dissertation Supervisor: Assoc. Prof. Dr. Mohammad Sadek

Keywords: elliptic curves, quartic models, divisibility-by-2, Diophantine

quintuples, dynamical systems, polynomial orbits, arithmetic progressions

Let K be a number field and F be an elliptic curve described by the Weierstrass
equation over K. As a result of 2-descent Theorem on elliptic curves, a criterion for
the divisibility-by-2 of a rational point on E is obtained previously. This divisibility
criterion has been used to study rational D(q)-m-tuples. In this thesis, we investigate
smooth genus one curves C' described by a quartic polynomial equation over the
rational field Q together with P € C(Q). We give an analogous divisibility-by-2
criterion for rational points in C'(Q). We also show how this criterion might be used
to study extensions of rational D(q)-quadruples to quintuples.

The existence of consecutive squares in arithmetic progression is a classical prob-
lem. Fermat claimed that there does not exist an arithmetic progression of four
rational squares; and Euler proved this claim. In this thesis, we give a dynam-
ical analogue of Fermat’s Squares Theorem. More precisely, given a polynomial
f(z) and a rational point a, we ask how many consecutive squares can be there
in the orbit {a, f(a), f?(a),..., f"(a),...}? In fact, we give explicit constructions of
quadratic polynomials with orbits containing three consecutive squares. Finally, we
investigate the question of covering the latter orbit using finitely many arithmetic
progressions. We establish a connection between the answer to the latter question
and the existence of primitive divisors in the orbit.
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OZET

ELIPTIK EGRILER UZERINDEKI RASYONEL NOKTALARIN
BOLUNEBILIRLIGI VE POLINOMSAL DINAMIK SISTEMLERDE
ARITMETIK DIZILER

TUGBA YESIN ELSHEIKH
PROGRAM ADI DOKTORA TEZI, HAZIRAN 2023

Tez Danigmani: Dog. Dr. Mohammad Sadek

Anahtar Kelimeler: eliptik egriler, dordiincii dereceden modeller, 2 ile béliinebilme,

Diophantine beglileri, dinamik sistemler, polinom yoériingeleri, aritmetik diziler

K bir say1 cismi ve E Weierstrass denklemi ile K iizerinde tamimlanan bir elip-
tik egri olsun. Eliptik egrilerdeki 2-indirgeme teoreminin bir sonucu olarak, E tiz-
erindeki rasyonel bir noktanin 2’ye boliinebilirligi i¢in bir kriter daha onceki calig-
malarda verilmigtir. Bu boltunebilirlik kriteri, rasyonel D(q) —m/lilerini incelemek
i¢in kullanilmigtir. Bu tez calismasinda, diizgiin, cinsi 1 olan, QQ rasyonel cismi iiz-
erinde dérdincii dereceden bir polinom denklemiyle tanimlanan ve P € C(Q) 6zel-
ligini saglayan C' egrileri aragtirilmigtir. C'(Q)’daki rasyonel noktalar igin benzer bir
2’ye bolunebilirlik kriteri verilmistir. Ayrica, bu kriterin rasyonel D(q)-dortlillerin
beglilere genisletilmelerini incelemek i¢in nasil kullanilabilecegi de gosterilmistir.

Aritmetik dizide ardigik karelerin varligi klasik bir problemdir. Fermat, dért rasyonel
karenin bir aritmetik dizi olusturmadigini iddia etmis; ve bu iddia Euler tarafindan
ispatlanmigtir. Bu tezde, Fermat'nin Kareler Teoremi’'nin dinamik bir benzeri ver-
ilmigtir. Daha kesin olarak, bir f(x) polinomu ve a rasyonel sayisi verildiginde,
{a, f(a), f*(a),...,f"(a),...} yoringesinde ka¢ ardigik kare olabilecegi sorusu ele
alinmigtir. Ashinda, ardigik ti¢ kare iceren yoriingelere sahip ikinci dereceden poli-
nomlarin kesin yapilar: verilmistir. Son olarak, sonlu sayida aritmetik dizi kullanarak
yukarida verilen yoriingeyi ortiip ortmedigi aragtirilmigtir. Yukaridaki sorunun cev-
abi ile yortingedeki ilkel bolenlerin varligi arasinda bir baglant1 kurulmustur.
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1. INTRODUCTION

Let E be an elliptic curve over a number field K. The Mordell-Weil Theorem asserts
that the abelian group of rational points E(K) is finitely generated. In particular,
there are finitely many points Py,..., P, in F(K) such that any P € F(K) can be
written as a linear combination miP; + ---+ m, P, for some integers mq,---,m,,.
During the course of the proof of the latter theorem, one proves the weak Mordell-
Weil Theorem which states that the abelian group E(K)/2E(K) is finite.

In order to show that E(K)/2E(K) is finite, one needs to pass from a point P €
E(K) to a point ) € E such that 2Q) = P. This process is called the 2-descent on
elliptic curves. The following theorem is known as the 2-descent Theorem and gives
a necessary and sufficient condition such that @) € E(K), see [49, Chapter IV], [43,
Chapter 6], [64, Chapter VIII], or [2] for a criterion of the divisibility of rational
points by powers of 2.

Theorem 1.1 (2-descent Theorem) Let E be an elliptic curve over a field K of

characteristic not equal to 2 or 3. Suppose E is given by
E:y*=(z—a)(z—p)(z—")

with distinct elements o, 3,y € K. For (x2,y2) € E(K), there ezists (x1,y1) € E(K)
with 2(x1,y1) = (x2,y2), in other words, (x2,y2) is divisible by 2 in E(K) if and only

if xo—a, 9 — [B,x9 —y are squares in K.
The following quartic equation

y? = (a1x + by )(agx + bo) (a3x + bs) (asz + by), a;,b; € K,

where b; /a; are distinct in K, describes a genus one curve C'. Fixing a rational point
P € C(K) to serve as the identity element of the group law, one may look for a
similar criterion for the divisibility-by-2 on the elliptic curve (C, P). In Chapter 3,
we obtain a similar condition that depends on P, more precisely, a point @) € C'(Q)

is twice a rational point if and only if the values of certain degree-2 polynomials
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evaluated at the z-coordinate of () are all squares in Q. More precisely, we prove

the following theorem.

Theorem 1.2 Let C' be a smooth genus 1 curve over Q defined by an equation of
the form

y? = (a1 +by)(agx + bo) (azx + bs) (agx + by), where a; € Q*,b; € Q.

Let (z9,y0) € C(Q) be such that xg # —b;/a;, 1 =1,2,3,4. We set¢p:C — E:=J(C)
to be a Q-birational isomorphism with ¢((xo,y0)) = Op. For Q € C(Q), one has
where fi(x) = a;x+b;.

Consequently, we show how to characterize such quartic models of elliptic curves

that possess rational 4-torsion points.

A rational D(q)-m-tuple is an m-tuple aq,--- ,ap, of distinct non-zero rational num-
bers such that a;a; + ¢ is a square for all 1 <7< j <m. If ¢ =1, then the latter
m-tuple is called a rational Diophantine m-tuple. The divisibility-by-2 on elliptic
curves described by Weierstrass equations has been used to study rational D(q)-m-
tuples. In [17], 2-divisibility on elliptic curves described by Weierstrass equations
was used to extend rational Diophantine triples to quadruples. It was also used to
show that there are infinitely many rational Diophantine sextuples, see [27]. In [11],
it was proved that assuming the Parity Conjecture for the twists of several explicitly
given elliptic curves, the density of rational numbers ¢ for which there exist infinitely
many rational D(q)-quintuples is at least 295026,/296010 ~ 99.5%.

Rational Diophantine m-tuples have turned out to provide a useful tool to construct
elliptic curves with prescribed torsion subgroups and high rank. In [30], rational
Diophantine triples have been used to construct elliptic curves over Q(u) with rank
2 and either torsion subgroup Z/8Z or Z/27 x Z/6Z. In [24], for each of the groups
Z]27 X 7] KZ for k = 2,4,6,8, the authors proved the existence of infinitely many
rational Diophantine quadruples with the property that the induced elliptic curve
has this torsion group. In [16], the so-called regular Diophantine quadruples and
quintuples were characterized by elliptic curves. In addition, these characterizations
were used to find examples of elliptic curves over Q with torsion group Z /27 x Z /27
and with Mordell-Weil rank equal to 8.

Researchers have been investigating D(g)-tuples whose elements enjoy certain prop-
erties. For example, in [29] the authors prove the existence of infinitely many essen-

tially different D(q)-quintuples, where ¢ is an integer, whose elements are squares.
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Further, integers that possess the D(q)-property for at least two integers qi, ¢o
have been studied. In fact, the authors of [23] proved the existence of infintely
many essentially different sets consisting of perfect squares which are simultane-
ously D(q1)-quadruples and D(g2)-quadruples for distinct nonzero perfect squares
q1 and ¢s.

For every rational number ¢, the authors of [12] found all rational m such that there
exists a rational D(q)-quadruple {a1,as,as,a4} with product ajazazay = m. Using
a certain rational map defined on a specific elliptic curve, the authors show that all
such quadruples are identified if a certain rational map defined on the elliptic curve
attains rational square values. For this reason, using the divisibility by-2 criterion
on elliptic curves described by quartic equations in our work resembles the approach

used in the aforementioned paper.

The notion of a strong rational m-tuple was introduced in [22]. Such a tuple is a
rational Diophantine m-tuple, {a1,...,a;}, with the additional property that a? + 1
is a rational square for every ¢ = 1,...,m. The authors proved that there exist
infinitely many strong rational Diophantine triples. A strong rational D(q)-m-tuple
is a set of non-zero rationals {ai,...,an} such that a;a; +¢ is a square for all
i,j =1,...,m, including the case i = j. The case ¢ = —1 was studied in [28] and it
was shown that there exist infinitely many strong rational D(—1)-triples. In [59], it
was proved that there exist infinitely many square-free integers ¢ with the property

that there exist infinitely many strong rational D(q)-triples.

A natural question to pose is how large a set of rational numbers enjoying the D(q)-
property, for some ¢ € Q, can be. For a historical overview of rational D(q)-m-tuples,
we refer the reader to [19], [20, Sections 14.6 and 16.7] as well as the webpage of
Andrej Dujella'’.

Jones initiated the study of polynomial D(q)-m-tuples where ¢ itself is a polynomial,
see [46, 45]. If we define

P, =sup{|S|: S is a polynomial D(q)-tuple},

then P, <22 for all ¢ € Z, see [15, Theorem 1]. More properties of P, can be found

in [21]. In this thesis, we focus on the case where ¢ is a linear polynomial. Setting
L =sup{|S|: S is a polynomial D(az+ b)-tuple for some a # 0 and b},

one can easily observe that L >4 by viewing the D(16z+9)-quadruple T'= {x, 16z +

1 https://web.math.pmf.unizg.hr/~duje/dtuples.html
3



8,25x 4 14,362 + 20}, see [13]. For upper bounds on L, the reader can consult the
papers [26, 25].

We examine the case of polynomial D(q)-m-tuples consisting of linear polynomials
where ¢ itself is a linear polynomial. If the set S consists only of linear polynomials,
then sup{|S|} is 4, see [26]. Hence, the above D(16x + 9)-quadruple 7" can not
be extended to a polynomial D(16x + 9)-quintuple using a linear polynomial. In
Chapter 4, we use the 2-divisibility criterion on elliptic curves described by quartic
models to study the extension of polynomial D(g)-quadruples to rational quintuples
at infinitely many values of these polynomials. In fact, we show that although T
cannot be extended to a polynomial D(16x+ 9)-quintuple, there are infinitely many
values for x parametrized by an elliptic curve of positive rank such that T can be
extended to a quintuple using a rational function. We also present other polynomial
D(ax +b)-quadruples with the same property. In particular, we prove the following

result.

Theorem 1.3 ([60]) The polynomial D(16t + 9)-quadruple {t,16t + 8,225t +
14,36t +20} can be extended to a rational D(16t+9)-quintuple for infinitely many

teQ.

We remark that the theory of elliptic curves was used to show that there are
only finitely many ways of extending a rational D(q)-quadruple to a rational D(q)-
quintuple, see [42]. Our method provides an explicit description of how to extend
certain rational D(q)-quadruples to rational D(g)-quintuples. In [14], an explicit
expression for the element extending a rational D(q)-quadruple to a rational D(q)-
quintuple was provided if ¢ is a rational square. This means that if = is chosen such
that 16z +9 is a rational square ¢2, then our result together with [14] provides a
method of constructing almost rational D(g?)-sextuples, i.e., a tuple ay,---,ag of
distinct nonzero rational numbers such that a;a; +q2 isa square forall 1 <i<j <6
except for (i,7) = (5,6).

In the second part of this thesis, we investigate the existence of consecutive squares
in the set of iterations of a rational point under a given polynomial. The existence
of three consecutive squares in arithmetic progression is a phenomenon that can be
seen in Q. The rationals 1, 52, and 72 provide such an example. In fact, one can

parameterize all such rationals by observing that they satisfy the following equation

N .

This means that three rational numbers in arithmetic progression give rise to a

rational point (z1 : 29 : x3) on the conic C : 2% — 223+ 2% = 0. Since the point

4



(1:1:1) € C(Q), it follows that C'(Q) has infinitely many points. Moreover, one
may parametrize these points as follows (1 : 29 : 13) = (—p? +2ps + 52, p> + 52, p* +
2ps — s2) for some p, s € Q.

Fermat claimed that there does not exist an arithmetic progression of four squares
over Q. Euler, among others, proved this statement. One sees that the existence
of such squares is equivalent to the existence of nontrivial rational points on the

intersection of the following two quadric surfaces in IP’%

x%—2$%+x§ = 0

w%—Qw%—l—xi = 0.

The latter intersection describes an elliptic curve E for which E(Q) ={(1:+1:+1:
+1)}. The points in E(Q) do not give rise to any non-constant rational squares in

arithmetic progression.

In [70], it was proved that a uniform upper bound exists on the number of squares
in the arithmetic progression over a given number field that depends only on the
degree of the field. Moreover, the author proved that this bound is 5 for quadratic
fields. In [38], the authors provide several criteria to identify the quadratic number

fields over which there is a non-constant arithmetic progression of five squares.

One may ask the aforementioned questions in a different setting, namely within the
frame of arithmetic dynamical systems. A dynamical system is a self-map f:5 — S
on a set S that allows iteration. The m-th iteration of f is defined recursively by
fUz) =z and f™(z) = f(f™ 1(x)) when m > 1. The orbit of a point P € S under
f is given by

Orbp(P)={f"(P):i=0,1,2...}.

In case the map f is fixed, we write Orb(P). If Orb(P) is infinite, P is called a
wandering point; otherwise, P is called a preperiodic point. A preperiodic point
P € S is said to be periodic if there exists an integer n > 0 such that f"(P) = P,
where n is called the period of P. If n is the smallest such integer, we say that P

has the exact period n. The orbit of a periodic point is called a periodic orbit.

The question of the existence of K-rational squares in arithmetic progression of
length m, m > 2, over a number field K can be reformulated using dynamical systems
as follows. Can we find a linear polynomial ¢(z) =z +¢, c € K*, and zg € K such
that Orby(xg) contains m consecutive K-squares? In particular, is there an xg € Q
such that xg,£(20),?(xg),...,0™ 1 (xg) are all in K2?

In this thesis, we are dealing with a higher degree dynamical analogue of Fermat’s

bt



Squares Theorem. Namely, given a degree two polynomial f(z) =2+ Ar+ B €
K[z] and a point 29 € K, how many consecutive squares can be there in the orbit
{xo, f(z0), f2(x0),..., ™ (x0),...} of zg? It can be seen that for any irreducible
quadratic map f(z) € K|z], the number of orbits under f that contain at least three
consecutive K-rational squares should be finite. This holds because each such square
will give rise to a K-rational point on the hyperelliptic curve Cy, : y? = f™(2?) for
m=0,1,2,.... When m > 2, the curve C,, is of the genus > 2. By Faltings’ theorem,
see [33], one then knows that the number of rational points on Cy,, m > 2, must be
finite.

In Chapter 5, we give three different constructions of 1-parameter polynomial maps
of degree 2 over (Q and rational points that possess three different consecutive squares
in their orbit under the iteration of these polynomials. For example, we show that

the following result holds.

Theorem 1.4 For each € Q, there are infinitely many rational numbers oy, and
c such that f.(a?) = % and f.(8%) = ~* where f.(x) = x> +c. In particular, one may
choose
B*(3-4p")?
(1+ 857 +457)2

o B(—1+24(B%+384 +48%+28%))
T (1+85% +467)2 !
B2 —498% +4003% + 286438 + 7264310 + 8864312 + 64005 4 281656 + 256318 — 256320

(T 852 + 4571 |

In addition, unlike linear polynomial dynamical systems generated by polynomials
of the form =+ ¢, ¢ € Q%, there exists at least one polynomial of the form z2 + ¢,
c € QX and a point zg € Q such that x, f(x0), f2(x0) and f3(xg) are all rational

squares.

Finally, assuming a standard conjecture of Poonen on the exact period of periodic
points of polynomial maps of degree 2 over Q, we introduce necessary and sufficient
conditions under which polynomial maps of the form 2?2+ ax +b € Q[z] possess

periodic orbits containing only rational squares.

In the last part of this thesis, we investigate the intersection of arithmetic progres-
sions with polynomial orbits. More precisely, we examine the intersection of orbits
of polynomials of arbitrary degrees with orbits of linear polynomials. In [36, 37], the
authors proved that two complex polynomials f and g of degree at least 2 having
orbits that intersect in infinitely many points must have a common iteration. More-

over, in [36], it was shown that if f and g are non-monic linear polynomials such

6



that Orbs(s) N Orbgy(t) is infinite, then f and g must have a common iterate. In
this thesis, we work on the intersection of polynomial orbits with linear polynomial

orbits and we give the following proposition in Chapter 6.

Proposition 1.1 Let f(z) € K[z| be of degree at least 2 such that f(x) is not a
power of a linear polynomial. Let g(x) = ax+b € K[z] be such that Orby(s) ﬁOrb;t (1)
is infinite for some fized s,t € K. Then a is a root of unity in Ok .

In addition, we give the definition of relative density of A, where A is a subset of Z,
in the orbit of s under f, ds4(A), and we present some relations between primitive
prime divisors of a sequence A and 67 4(A). Finally, we use arithmetic progression

sequences to cover polynomial orbits and we prove the following theorem.

Theorem 1.5 Let f(x) be a polynomial in Z[x] and t € Z. Let gi(x), 1 <i <k, be
a finite family of monic linear polynomials in Z[x]. The following statements are

equivalent.
) 050 (Ur O ) = 1.
i) ¢y (Orb;i(t)) =1 for some i, 1 <i<k.
iii) Orbs(t) C Orbgii (t) for some i, 1 <i<k.

where Orbgi(a) :={9¢"(a),n € Z} the union of both the forward and backward orbits

of a point a under the iterations of g.

We say that a family A ={A;, -+, Ax} of arithmetic progressions covers a set S CZ
it SC AjU---UAy, and if A covers Z then it is called a covering system. For

example, every integer n satisfies at least one of the congruences
n=0 mod2, n=0 mod3, n=1 mod4, n=1 mod6, n=11 mod12.

In particular, the above system of congruences is a covering system. Erdos intro-
duced covering systems in 1950, see [32]. In this thesis, we will shed some light on

covers of orbits of polynomials with integer coefficients.

Given a polynomial f € Z[z], and a wandering point ¢ € Z, we will show that if A is
a cover of Orby(t) such that every congruence in A = {Ay,---, A} contains ¢, then
A must consists of exactly one congruence, i.e., k= 1. This directly implies that
if > 2 and t is represented by each congruence Ay, then A cannot cover Orb(t).
This motivates investigating the relative density o f’t(Ule A;). In particular, a real
number that is realized in the form of the latter relative density will be called
(f,t,k)-accessible. We will give an explicit description of rational numbers that are
(f,t,k)-accessible. In addition, fixing k > 2, we show that (f,¢, k)-accessible numbers

7



are bounded from above in the interval (0,1). In chapter 6, we give the following

theorem.

Theorem 1.6 Let f(z) € Z[z] and t € Z be a wandering point for f. Let m,n € Z

and p;’s are prime in order. If k is an positive integer such that

k
1
5k:1—1‘[<1—> <%,

i=1 Pi

then m/n is not (f,t,k)-accessible. In particular, there does not exist k linear poly-

nomials gi(x),...,gr(x) such that

St (ij orbgii(t)> - %

1=1



2. Preliminaries

In this chapter, we present the definitions, basic facts, and significant results needed
for our work. We give a summary of the arithmetic of algebraic curves, and divisors,
that will be needed for our study of elliptic curves. We also introduce the notion of
the Weiertrass models and the group law of elliptic curves and some classification

of rational torsion points on elliptic curves over number fields.
We set the following notation, which will be used throughout this thesis.
K is a perfect field with an algebraic closure K.

For this chapter, all definitions can be found in [20] and [64] with the change of some

notation. We also let m and n denote positive integers.

2.1 Curves

Definition 2.1 The affine n-space is the set of n-tuples
A" =A"K)={P=(z1,...,2,) : 7, € K}.
Similarly, the set of K-rational points of A" is the set
A"(K)={P=(z1,...,zp) € A" : z; € K}.

Definition 2.2 Let I be an ideal of the polynomial ring in n variables K[X] =

K[X1,...,Xy]. An (affine) algebraic set is any set of the form

Vi={PeA": f(P)=0 forall f€I}.



If V is an algebraic set, the ideal of V' is given by
I(V)={f € K[X]: f(P)=0 for all P€V}.

An algebraic set is defined over K if its ideal I(V') can be generated by polynomials
in K[X]. If V is defined over K, then the set of K- rational points of V' is the set

V(K)=VNA"(K)

Definition 2.3 Projective n-space (over K ), denoted by P or P"(K), is the set of
all (n+1)-tuples
(20, ...,2,) € A"

such that at least one x; is nonzero, modulo the equivalence relation
(@0,---,@n) ~ (Y0,---,Yn)

if there exists a X € K* such that x; = \y; for all i. An equivalence class
{(A\zg,...,  xp) : A€ K*),

is denoted by [xo, ... x|, and the individual xg, ..., z, are called homogeneous coor-

dinates for the corresponding points in P" is the set
P*"(K) ={[zo,...,xn] €P": all x; € K}.

Remark 2.1 Note that if P = [xg,...,z,] € P"(K), it does not follow that each
x; € K. However, choosing some i with x; # 0, it does follow that x;/x; € K for

every j.

Example 2.1 Let Fy1 be a finite field with 11 elements. Let the algebraic set
Vi (a® 4 y?e)t = a2

be defined over P*(Fy1). Then one can observed that

V(PQ(FH)):{(O:O:1),(1:0:1),(1:3:1),(1:8:1),(3:4:1),(3:7:1),(4:1:1),(4:5:1),

(4:6:1),(4:10:1),(9:3:1),(9:8:1),(0:1:0)}.
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Definition 2.4 A polynomial f € K[X,...,Xy] is homogeneous of degree d if
F(AXo,..., Xn) = X f(Xo,...,Xn) forallxe K.

An ideal I C f([X] is homogeneous if it is generated by homogeneous polynomials.

Let f be a homogeneous polynomial and let P € P™ . It makes sense to ask whether
f(P) =0, since the answer is independent of the choice of homogeneous coordinates

for P. To each homogeneous ideal I we associate a subset of P by the rule
Vi={PeP": f(P)=0 for all homogeneous f € I}.

Definition 2.5 A (projective) algebraic set is any set of the form Vi for a homoge-
neous ideal 1. If V is projective algebraic set, the (homogeneous) ideal of V', denoted
by I(V), is the ideal of K[X] generated by

{f € K[X]: f is homogeneous and f(P)=0 forall P€V}.
Example 2.2 Let V be the algebraic set in P? given by the single equation
X?4+y?=22

Then for any field K with char(K) # 2, the set V(K) is isomorphic to PY(K), for
example by the map

PYK) — V(K), [s,t]— [s*—12 2st, s> +17].
Example 2.3 The algebraic set
V. X"+Y"=1

is defined over Q. Fermat’s last theorem proven by Andrew Wiles in [67], states that
for alln >3,

{(1,0),(0,1)} if n is odd,

V@ :{ {(£1,0),(0,£1)} if n is even.

Definition 2.6 A projective algebraic set is called a (projective) variety if its ho-

mogeneous ideal 1(V') is a prime ideal in K[X].

Definition 2.7 An algebraic curve in the affine plane A% is defined as the set of

11



solutions to a polynomial equation in two variables

f(x,y) =0.

Let F' be a non-constant homogeneous polynomial. We define a projective curve C

in the projective plane P? to be the set of solutions to a polynomial equation
C:F(X,)Y,Z)=0.

We also call C' an algebraic curve, or sometimes just a curve if it is clear that we

are working in P?. The degree of the curve C is the degree of the polynomial F.

Definition 2.8 Let P be a point of a curve C: f(x,y) =0. P is called a singular

point of the curve if
of
ox

If at least one of the partial derivatives does not vanish, then P is called a non-

(P)= 5 P)=0

singular point. Moreover, C' is called a non-singular curve (or a smooth curve) if

every point of C' is non-singular.

Let C' be a curve defined over K and P be a smooth point on C'. It is known that in
this case the local ring of C' at P, K[C]p is a discrete valuation ring with valuation
given by

Ordp(f) :=sup{d € Z|f € ME}

where Mp is the maximal ideal of K[C]p.
Now we can define the order of f € K(C) at P.

Definition 2.9 Let C be a curve and P € C a smooth point. Let f € K(C). The
order of f at P is Ordp(f). If Ordp(f) >0, then f has a zero at P, and if Ordp(f) <
0, then f has a pole at P. If Ordp(f) >0, then f is reqular (or defined) at P and

we can evaluate f(P). Otherwise, f has pole at P and we write f(P) = co.

Example 2.4 Consider the two curves
Cr:Y?2=X?+X and Oy:Y?=X?4+ X2

Let P =(0,0). Then Cy is smooth at P whereas Cy is not. The maximal ideal Mp
of K[C1]p has the property that MP/M]% is generated by Y. For example,

Ordp(Y) =1, Ordp(X)=2, Ordp(2Y%—-X)=2.
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2.1.1 Divisors

In this thesis, we will deal with smooth curves unless otherwise stated.

Definition 2.10 The divisor group of a curve C' is the free abelian group generated
by the points of C. It is denoted by Div(C'). Hence a divisor D € Div(C) is a formal

sum

D = Z TLp(P),

PeC
where np € Z and np =0 for all but finitely many P € C.
The degree of D is defined by

degD = Z np.
pPeC

The divisors of degree O form a subgroup of Div(C'), which we denote by
Div’(C) = {D € Div(C) : degD = 0}.

Definition 2.11 A divisor D € Div(C) is principal if it is of the form D = div(f)
for some f e K(O)*. Two divisors are linearly equivalent, written Dy ~ Da, if
Dy — Dy is principal. The divisor class group (or Picard group) of C, denoted by
Pic(C), is the quotient of Div(C) by its subgroup of principal divisors.

Proposition 2.5 Let C' be a smooth curve and let f € K(C)*.
(a) div(f) =0 if and only if f € K*.

(b) deg(div(f)) = 0.

Definition 2.12 We define the degree-0 part of the divisor class group of C' as the
quotient of DiVO(C) by the subgroup of principal divisors. We denote this group by
Pic’(C).

Example 2.6 We can observe that every divisor of degree 0 is principal on P!
Suppose that D =Y np(P) has degree 0. Let P = [ap,p] be a point on PL. We see
that D is the divisor of the function

H (ﬁpX—Osz)nP.
Pep!

Note that > np =0 ensures that this function is in K(]P’l). It follows that the degree
map deg : Pic(P') — Z is an isomorphism. The converse is also true. i.e., if C is a

smooth curve and Pic(C) = Z, then C is isomorphic to P!,
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2.2 Elliptic Curves

Let K be a field. An elliptic curve over K is a non-singular cubic projective curve

over K with at least one point over K. It has an (affine) equation of the form

(2.1) F(z,y) = ax’ +bxy + coy® + dy’ + ex® + fey + gy® + ha +iy+j =0

where the coefficients a,b,...,7 € K, and the non-singularity means that for each
point on the curve, considered in the projective plane P?(K) over the algebraic

closure of K, at least one partial derivative of F' is non-zero.

2.2.1 Weierstrass Equations

The Weierstrass equation for an elliptic curve is written by using non-homogeneous

coordinates x and y,
(2.2) E:y?+aizy+asy = 2° + asx® + auz + ag.

If ai,...,a6 € K, then E is said to be defined over K.

One can show that the equation (2.1) can be written in the form of a Weierstrass

equation after applying certain birational transformation.

A point at infinity appears naturally if we represent an elliptic curve in a projective
plane. A projective plane P?(K) is obtained by introducing on the set K3 —{(0,0,0)}
the equivalence relation (X,Y,Z7) ~ (kX kY kZ), k € K,k # 0. By substituting

xr= %,y = % in the affine equation (2.2), we obtain the projective equation

Y2Z +ai XY Z+asYZ? = X3+ ayX?Z +as X Z° + ag Z°.

If Z #0, then the equivalence class of (X,Y, Z) has the representative (z,y,1), so we
can identify that class by (z,y). However, there is also an equivalence class which
contains points with Z = 0. It has the representative (0:1:0) and we identify that
class with the point at infinity O.

Also, if char(K) # 2, then we can simplify the equation by completing the square.
14



Thus the substitution )
Y= 5(y— a1,z a3)

gives an equation of the form
E :y? =423 + box® + 2byz + bg
where
by = a% +4ay, by =2a4+araz, bg= CL?)) +4ag.

We also define quantities
_ 2 2 2
bg = ajag +4azae — ajasays + azaz — ay,

cq = b3 — 24by,
ce = —b% + 36boby — 2160,

A = —b3bg — 8b3 — 27b% + Iabybs,
One easily verifies that they satisfy the relations

4bg = babg — b7 and 1728A = ¢} — 2.

Moreover, if the characteristic of the field K is different from 2 and 3, then this

equation can be transformed into the form
(2.3) y? =23 +ax+b

which we call the short Weierstrass equation. The condition of non-singularity now
means that the cubic polynomial f(z) = 23+ az +b does not have multiple roots (in
the algebraic closure K ), which is equivalent to the condition that the discriminant
A = —16(4a>+27b%) is non-zero.

One of the most important properties of elliptic curves is that on the set E(K), of
its K-rational points, we can, in a natural way, introduce an operation with which
it will become an Abelian group. In order to explain that, let us take that K =R.
Then the elliptic curve E(R) (without the point at infinity) can be represented as
a subset of the plane. The polynomial f(z) can either have one (if A <0) or three
(if A > 0) real roots. Depending on that, the graph of the corresponding elliptic

curve has one or two components, as is shown in the following figures.
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Example 2.7 Assume that char(K)# 2. Let eq,e3,e3 € K be distinct, and consider
the curve
C:y?=(z—e1)(z—er)(z—e3).

One can check that C is smooth and that it has a single point at infinity, which we
denote Py,. Fori=1,2,3, let P;=(e;,0) € C. Then

div(z —e;) =2(P;) —2(Pso) and div(y) = (P1)+ (P2)+ (P3) = 3(Pxo).

2.2.2 The Group Law

Let E be an elliptic curve given by a Weierstrass equation. Thus E C P? consists
of the points P = (z,y) satisfying the Weierstrass equation, together with the point
O =[0,1,0] at infinity. Let L C P? be a line. Then, since the equation has degree
three, the line L intersects E at exactly three points, say P,Q,R. Of course, if L
is tangent to E, then P,Q, R need to be distinct. The fact that LN E, taken with
multiplicities, consists of exactly three points is special case of Bezout’s theorem [40,
1.7.8].

2.2.2.1 Composition Law

Let P,Q € E, let L be the line through P and @ (if P =@, let L be the tangent
line to E at P), and let R be the third point of intersection of L with E. Let L' be
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the line through R and O. Then L’ intersects E at R,O, and a third point. We
denote that third point by P& Q.

Various instances of the composition law are illustrated in the following figure. We

now justify the use of the symbol .

Addition of distinct points Adding a point to itself

Proposition 2.8 The composition law has the following properties:

(a) If a line L intersects E at the (not necessarily distinct) points P,Q, R, then
(P®Q)®R=0.
(b) PO =P forall P€E.

(c) PEQ=Q®P forall P,Q € E.

(d) Let P € E. There is a point of E, denoted by ©P, satisfying

P®(6P)=0

(e) Let P,Q,R € E. Then

(PEQ)®R=P®(Q®R)

In other words, the composition law makes E into an abelian group with iden-
tity element O. Further:

(f) Suppose that E is defined over K. Then

E(K)={(z,y) € K*: y* + a1zy +azy = 2° + aga”® + asx + ag} U {O}

17



s a subgroup of E.

Notation. From now on, we drop the special symbols & and © and simply write
+ and — respectively. For m € Z and P € E, we let

[m|[P= P+---+P, [m|P=—-P—---—P, [0]P=0.
N———— \
m terms if m>0 |m| terms if m<0

2.2.2.2 Group Law Algorithm

Let E be an elliptic curve by a Weierstrass equation
E: 92 +a1ry+azy = z? +CL2:B2 + a4 + ag.

(a) P() = (.I(),y()). Then
—Py = (x0, —yo — a120 — a3).

Next, let

P+ P, = P3; with Pi:(:vi,yi)GE for 1=1,2,3.

(b) If 21 = 22 and y1 +y2 +ajx2+a3 =0, then P} + P, = O. Otherwise, define A

and v by the following formulas:

A v
Y2—v1 Nzr2—YaT1
x] 7£ Z2 . To—x1 T2—X]
T1 = 2o 37 42a9z1+as—a1y1 | —aitasri+2a6—azy
2y1tayri+az 2y1tayri+az

Then y = Az + v is the line through P, and P, or tangent to F if P = P».

(c) With notation as in (b), P3 = P; + P has coordinates
T3 = )\2+CL1)\—CL2—I1—QZ2,
ys =—(A+a1)rs—v—as.

(d) As special cases of (¢), we have for P| # +P;,

Y2 — Y1 Y2 — Y1
) +ay(=—=)
xro— I xr9 —T1

18
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and the duplication formula for P = (x,y) € E,

B x* —byx? — 2bgx — by
 da3 4 boa? 4 2bgx + b

z([2)P)

where ba,by,bg,bg are the polynomial in the a;’s given above.

Example 2.9 Let E/Q be the elliptic curve
E: y2 =3+ T +4.

A brief inspection reveals some points with integer coordinates,

49 471

Pl = (07_2)7 P2 = (E’ﬁj)

To compute Py + P», we find the line through Py and Ps. This is the line

599 863 599 863
Yy=—r———, S0 \=—— and v=———:.
196 196 196 196
Neat 15072 2021734
= 2 — — = - = — — = —
T3 =N —x1— X9 5101 and 3 T3 — Vv 117649 "

Finally, we find that

15072 2021734)

P+ Py = (x3,y3) = (_ 2401 117649

2.2.3 Torsion Group

The most celebrated theorem on elliptic curves over number fields is the Mordell-

Weil theorem.

Theorem 2.1 (The Mordell-Weil Theorem) A group E(K) is a finitely gener-

ated Abelian group.

In 1922, this theorem was proved by the British mathematician Louis Joel Mordell
(1888-1972), while in 1928, the French mathematician André Weil (1906-1998)

generalized it to Abelian varieties over number fields.

The Mordell-Weil theorem states that there is a finite set of rational points
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{P1,...,P;} on E from which all other rational points on E can be obtained by
using the secant-tangent construction. Since each finitely generated abelian group
is isomorphic to the product of cyclic groups, [31, Chapter 5.2, Theorem 3|, we

obtain the following consequence of the Mordell-Weil theorem.

Definition 2.13 Let E be an elliptic curve over K. The subgroup E(K)ior of E(K)
which consists of all points of finite order is called the torsion group of E, and the

non-negative integer r is called the rank of E and it is denoted by rank(E) (or more
precisely by rank(E(K))).

Corollary 2.1 Given an elliptic curve E over K. Then
E(K)Z2 E(K)tor X2Z"

where 1 is the rank of E(K).

Definition 2.14 The subgroup E(Q)ior of E(Q) which consists of all points of finite
order is called the torsion group of E, and the non-negative integer r is called the
rank of E and it is denoted by rank(FE) (or more precisely by rank(E(Q))).

The corollary states that there are r rational points Pi,..., P, of infinite order on

curve F such that each rational point P on E can be represented in the form
P:T+m1P1—|—---+mTPT,

where T' is a point of finite order and my,...,m, are integers. Here miP; denotes

the sum P; +---+ Py of m; summands, which is often also denoted by [m1]P;.

The following theorem is Mazur’s classification of rational torsion points on elliptic
curves defined over Q, see [53] or [64, VIIL.7, Theorem 7.5].

Theorem 2.2 (Mazur, [53]) Let E/Q be an elliptic curve. Then the torsion sub-
group Eior(Q) of E(Q) is isomorphic to one of the following fifteen groups:

Z/kZ fork=1,2,3,4,5,6,7,8,9,10,12

L]27 X LJKZ for k =2,4,6,8.
Further, each of these groups occurs as Eyor(Q) for some elliptic curve E/Q.

The following theorem gives a complete classification of possible torsion points of

elliptic curves over quadratic fields established in [47, 48, 55] after a series of papers.
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Theorem 2.3 Let K be a quadratic field and E an elliptic curve over K. Then the
torsion subgroup E(K )i of E(K) is isomorphic to one of the following 26 groups:

Z/mZ for1<m <18, m# 17,

Z)27 X ZL)2mZ for 1 <m <6,
Z)3Z X Z)3mZ for m=1,2
7]AZ X L] AZ.
The following theorem completes the classification of torsion over cubic number
fields, see [9)].
Theorem 2.4 Let K/Q be a cubic extension and E/K be an elliptic curve. Then
E(K) is isomorphic to one of the following 26 groups:

Z/N\Z with Ny =1,...,16,18,20,21,

7.)27 % 7.J2N27, with Ny =1,...,1.

There exist finitely many Q-isomorphism classes for each torsion subgroup except
for Z.J217. In this case, we base change of the elliptic curve 162b1 to Q(Co)™ is the

unique elliptic curve over a cubic field with 7. /217-torsion.

The following theorem, which is about a complete classification for torsion points of

elliptic curves defined over Galois quartic fields, is given in [5].

Theorem 2.5 Let E/Q be an elliptic curve, and let K be a quartic Galois extension
of Q. Then E(K)ior is isomorphic to one of the following groups:

Z/N\Z for Ny =1,...,16, Ny # 11,14,

7.)27. % 7.J2N>Z, for No=1,...6,8,
7./3Z x Z.)3NsZ for N3 =1,2,
ZJAZ x ZJANLZ for Ny=1,2,

Z/57 % Z/5Z,
Z./6Z x Z./61.

FEach of these groups, except for Z/157Z, appears as the torsion structure over some

quartic Galois field for infinitely many (non-isomorphic) elliptic curves defined over

Q.
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2.3 Dynamical Systems

We start with the definition of a dynamical system. Also, the following definitions

can be found in [63] with the change of some notations.

Definition 2.15 A dynamical system is a set S together with a self-map f:S — S

that allows iterations. The n''-iterate of f is
fr=fofo--of.
S
n times
By convention, f9 is the identity map, i.e., fO(x) = .

Definition 2.16 For a given point xg € S, the (forward) orbit of xo under the map
f s the set

Orbg(xg) = Orb(zg) = {f"(z0):n>0}.

Definition 2.17 The point xg € S is called a periodic point under f, if there exists
an integer n > 0 such that f"(xg) = xo. The orbit of xq is called a periodic orbit.

An integer n such that f"(xo) =g is called a period of xo. The smallest such integer

n is called the exact period of xg. We also say that the point xo has period type (0,n).

Definition 2.18 The point xog € S is called a preperiodic point under f, if there ex-
ists an integer m >0 such that f™(xo) is periodic, i.e., xg is preperiodic if Orb(zo)
is finite. The orbit of xg is called a preperiodic orbit. If m # 0, then the point xq is

called a strictly preperiodic point.

The least such integer m is the tail length of the orbit, whereas the exact period of
f™(x0) is the eventual period. If the orbit of zo has a tail length m and an eventual

period n, then we say that s has a period type (m,n).

Definition 2.19 The sets of periodic and preperiodic points of f in S are denoted
by

Per(f,S) = {xzo€ S: f"(xo) =0 for somen > 1}
PrePer(f,S) = {wg€S: "™ (xg) = f"(x0) for somen>1,m >0}
= {xo € S:Orbs(xg) is finite}.

We write Per(f) and PrePer(f) when the set S is fived.
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The following Proposition, which is the classification of quadratic polynomial maps

with periodic points of periods 1, 2, or 3, can be found in [56, Theorem 1].

Theorem 2.6 Let f(x) = 2>+ c with c € Q. Then

1) f(zx) has a rational point of period 1, i.e., a rational fixed point, if and only if
c=1/4—p? for some p€ Q. In this case, there are exactly two, 1/2+p and

1/2—p, unless p =0, in which case they coincide.

2) f(x) has a rational point of period 2 if and only if c = —3/4 —0? for some
c€Q, 0#0. In this case, there are exactly two, —1/240 and —1/2—0c (and

these form a 2-cycle).
3) f(z) has a rational point of period 3 if and only if

7042 44t 4873 4972 4 47+ 1
c=—
472(7+1)2

for some T € Q, 7 # —1,0. In this case, there are exactly three,

PB42r2 4741 mor—1 427243741
1 = s "L‘in7 r3 = —
27(T7+1) 27(T+1) 27(T+1)

and these are cyclically permuted by f(x).
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3. Divisibility by 2 on quartic models of elliptic curves

Chapter 3 and Chapter 4 contain the studies in our published article, [60].

Let C' be a smooth genus one curve described by a quartic polynomial equation over
the rational field Q with P € C(Q). In this chapter, we give an explicit criterion for
the divisibility-by-2 of a rational point on the elliptic curve (C, P). This provides an
analogue to the classical criterion of the divisibility-by-2 on elliptic curves described
by the Weierstrass equations. Finally, we show how to characterize elliptic curves

described by quartic polynomial equations that possess rational 4-torsion points.

3.1 Models of elliptic curves

In this section, we introduce the genus one curve models that we are going to use
throughout this thesis.

3.1.1 Quartic models

We recall that a Weierstrass equation is an equation of the form
2 _ .3 2
Y +a1xy+asy =x° +ax” +aqx + ag

where the coefficients aq,---,ag are lying in a field K. One may associate to such

equation the invariants ¢4, cg and A which are polynomials in ay,--- ,ag with integer

coefficients satisfying 1728A = ¢} — 2, [64, Chapter III]. If A # 0, then the Weier-

strass equation describes a smooth projective genus one curve with a K-rational
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point at infinity on the curve, i.e., an elliptic curve. Two such equations describe

the same curve if they are related via a transformation of the form
2 3 2
T u T+, y—=uytu-sr+t

for some u € K*, r,s,t € K. Therefore, if char K # 2,3, a Weierstrass equation can
be written as y? = 3 + Az + B for some A,B € K.

Definition 3.1 A quartic model is an equation of the form y*+ P(x)y = Q(x) where
P and Q) are polynomials of degree 2 and 4, respectively, with coefficients in K.

If Q(z) + P(x)? /4 = az" 4+ ba3 + ca® + dx + e, then we attach to the quartic model the

invariants ¢y = 24T and cg = 2°J where
I = 12ae—3bd+c2,
J = T2ace—27ad? —27b%e + 9bed — 2¢°.

Moreover, the discriminant A = (c3 —c2)/1728 is 16 times the usual discriminant

of a quartic polynomial. We find that c4,cq and A are primitive integer coefficient

polynomials in the coefficients of P and Q, again satisfying ci —cz = 1728A.
The following Theorem in [8], has properties of ¢4, cg, A.

Theorem 3.1 Let C be a genus 1 curve defined by a quartic model. The following

statements hold.
(i) The polynomials c4,c6,\ are invariants of the curve C.

(i) A quartic model defines a smooth curve C of genus one (over K ) if and only

if A0

(1ii) If char(K) # 2,3 then c4 and cg generate the ring of invariants. Moreover if
A #£0 then the Jacobian of the curve C has Weierstrass equation

y2 = 13— 2Tcqw — Hdc.
If the set of K-rational points C'(K) of C' is non-empty, then the quartic model

describes an elliptic curve. Two such models describe the same curve if they are

related via a transformation of the form
x> (a11x+a21)/(a12x + ag), yr—>uy—|—m2+sx—|—t

where (a;;) € GLo(K), p€ K*, r;s,t € K. It follows that if char K # 2,3, then a
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quartic model can be written in the form y? = P(x) where P(z) is a polynomial of

degree 4 with coefficients in K.

3.1.2 Group law on quartic models

Let K be a field. The set of K-rational points on an elliptic curve E defined over K
is an abelian group. If the curve is given by a Weierstrass equation, then the group
law is described using the chord and tangent process. Given a smooth genus one
curve C that possesses a K-rational point and defined by a quartic model, one uses

the isomorphism between the curve C and its Jacobian to define the group law on

C.

We consider a quartic model y? = f(x) where f(z) € K[z], deg f(x) =4, and the
discriminant of the model is nonzero, or equivalently, f(z) has no multiple roots.

This quartic model describes a smooth genus one curve over K. The Jacobian of C'
will be denoted by E.

The following proposition can be found in [7, Proposition 4.1].

Proposition 3.1 Let C' be a curve over K defined as above. Then C has a K-

rational point if and only if the leading coefficient of f(x) is square.

PROOF: If the leading coefficient of f(z) is square, say a2, then (1:a:0) a K-
rational point on C. Conversely, if C' has a K-rational point, we may apply a
projective transformation to send its z-coordinate to infinity, thereby replacing f(z)

by an equivalent quartic whose leading coefficient is a square. 0

From now on, we assume that C(K) # (). By Proposition 3.1, this allows us to
assume that the leading coefficient (or the constant term) of f(z) is a square in
K. In this case, if the leading coefficient of f(z) is a square a?, a € K, we set 0o
and oco_ to be the two rational points at infinity, namely, (z:y:2)=(1:a:0) and

(1:—a:0), respectively.

We fix a point P € C(K). Let ¢p be a K-birational isomorphism between C' and E
¢op:C — E such that ¢p(P) =0g.

The map ¢p may be used to define an abelian group structure on C as follows

Q1+pQ2=¢p (6p(Q1) +6p(Q2))
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with P the identity on (C,+p).

In particular, we say that S € nC(K), n>2,if S=Q+p---+pQ for some Q €
—_—

n—times

C(K). This identifies nC(K) with nE(K).

3.2 2-Divisibility on quartic models

Let K be a perfect field of characteristic different from 2. In this section, we consider
quartic models y? = f(x) where f(x) is a polynomial of degree 4 with coefficients in
K and no multiple roots. We assume moreover that f(x) splits completely in K. In

other words, a quartic model will be of the form

y? = f(x) := (a12 +b1)(agx +b2) (azz + bg)(asw +by),

a; € K*,b; € K, (a;x+b;)/(ajz+0bj) € K for i # j and it describes a smooth genus
one curve C' over K. The existence of the points Q; := (—b;/a;,0) € C(K), 1 <
i <4, imlies that C'(K) # 0. We notice that coy,00_ € C(K(y/a1aza3as)). We set
fi(x) :==a;jx+b; and ¢; = —b;/a;, 1 <i<4.

We will always assume the existence of a rational point (xg,yg) € C(K) different
from the points @Q;, 1 <i <4. In particular, |C(K)| > 4. We fix throughout a
K-birational isomorphism ¢ : C' — E := Jac(C) such that ¢(xg,y0) = Op.

Now, we define the following rational maps g;; € K(E), 1 <1i,j <4, as follows

91§ (P) = fi(wo) f(zo) fila(¢™ (P)) fi(a(6™ (P)))
where z(¢~(P)) is the z-coordinate of $~1(P) € C(K). It is clear that g;;(Op) =
filo)? fi(wo)? € (K*)%.

The following two propositions give properties of the maps g;; that we are going
to use during the course of the proof of the main theorem of this section. These
properties have been proved for other rational maps on different models of elliptic
curves, see for example [43, Chapter 6], [49, Chapter IV], and [12].

Proposition 3.2 Let [2]: E — E be the multiplication by-2-morphism on E. There
exist hyj € K(E) such that g;jo[2] = hzzj foralli,j.
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PROOF: One can see that div(g;;) = 2¢(Qs) +2¢(Q;) —2¢(0c04) — 2¢ (00— ).

We set [2]": Div(E) — Div(E) to be the map (Q) — X pepy-10(Q)- Let hij € K(E)
be such that

div(hij) = [2]%(¢(Q:) +$(Q;) — ¢(004) — p(00-))
= > (Mi+D)+ > (Mj+T)— > (Ni+T)— > (No+T)
TeE[2] TeE2) TeE[2 TeE[2]

where 2M; = ¢(Qi), 2M; = ¢(Q;), 2N1 = ¢(0oy), 2N = ¢(co—). Then we can

observe that
div(g;jo[2]) = 2div(izi]-) = div(ﬁ?j).

There exists r € K such that rﬁ?j = g;j 0 [2], see for example [35, Theorem 7.8.3].
We define h;j = le]\/F

It is clear that h;; € K(E) for all 4,j. This follows by choosing ¢ € Gal(K/K) and
observing that ¢ permutes the zeros of izij, and the poles of fzij, respectively. More

precisely,

Op = (6(Qi))” — ¢(Qi) = (2M;)7 —2M; = 2(M] — M;),

hence M7 = M;+T where T € E[2]. Same holds if one replaces M; with N;. It is
left to show that r € (K*)2. This holds by evaluating both sides of the equality
riz%j = gij0[2] at Op. The statement holds as g;;(Og) € (K*)2. O

Proposition 3.3 For any P,Q € E(K), one has

9i;(P+Q) = gi;(P)gi;(Q) mod K2

PROOF: When i = j, the statement is straightforward, so we may pick ¢ # j and set
g := gi;j. According to Proposition 3.2, we see that go[2] = h? for some h € K(E).

Let P =2P, Q = 2Q. First we will prove

. (P +Q)y _ ()Y (4Q)r

h(P+Q) hP) Q)
for every o € Gal(K/K). Fix T € E[2], we have h?(S+T) =go[2](S+T) =go
2](S) = h%(S) for any S € E, so h(hs(g)T) = +1. Considering the morphism E — P!
induced by the rational map S +— h(S+T)/h(S), one then may assume that it must
be a constant map. Since 2P = P € E(K), 2Q =Q € E(K), we get P — P ¢
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E)2,Q°—Q € E[2], (P+Q)°—(P+Q)¢€ E[2] for every ¢ € Gal(K/K). Now we
have

(M(P))” _h(P°) _WP+(P"—P)) WS+ (P7—P))

nP) WP hP)  hS) for any 5 € B
Similarly,
uﬁ%f:hw+gg—@»’ md@fﬁé£ozms+@+gg—ﬁwéwfaawSEE
Therefore,
(h(P+Q)" _ hS+(P+Q) = (P+Q)) MS+(P+Q)7 = (P+Q) h(S+P’—P)
h(P+Q) h(S) h(S+(P)? — P) h(S)

This gives

W(PLQ)  (h(P))7(h(@))
for every o € Gal(K/K). Now we have

MP+Q)  (h(P+Q))° :<h(P+Q)>”

€K, ie, h(P+Q)=h*P)h*Q) mod K2
Thus,

g(P+Q)=go[2(P+Q)=h*(P+Q) = h*(P)h*(Q) = g(P)g(Q) mod K.
O

Theorem 3.2 Let C' be a smooth genus 1 curve over Q defined by an equation of
the form

y? = (a1 +by) (agz + bo) (azz + b3) (asz + by), where a; € Q*,b; € Q.

Let (x0,y0) € C(Q) be such that xg # —b;/a;, i=1,2,3,4. Weset ¢:C — E:=J(C)
to be a Q-birational isomorphism with ¢((zo,yo)) = Op. For Q € C(Q), one has

Q € 2C(Q) if and only if fi(zo) fj(zo) fi(z(Q)) f;(z(Q)) € Q* for all i,j € {1,2,3,4}
where fi(x) = a;x+b;.

29



PRrROOF:The statement that () € 2C(Q) implies that f;(xo) fj(xo) fi(2(Q)) fj(z(Q)) €

Q? is a direct consequence of Proposition 3.2.

So we assume that @ € C(Q) is such that fi(zo) fj(z0) fi(z(Q))f;(z(Q)) € Q2. Let
P € E(Q) be such that ¢~1(P) = Q. It suffices to show that if g;;(P) =1 mod Q?
for all 4,7, then P € 2E(Q).

Set [2]7'P={R;:1<i<4} CE. Let fix Re€ [2]7!P. We also set Ro; = ¢ 1(R;) €
C,i=1,2,3,4. We recall that R; = R+T; for some T; € E[2]. A simple calculation
of the Jacobian F shows that F(Q)[2] = Z/2Z x 7Z./27, hence all 2-torsion points of
E are rational. It follows that [Q(z(R;),y(R;)) : Q] is fixed for all i =1,2,3,4.

Recall that ¢;; € K(E), 1 <1,j <4, is defined as follows

9ij(P) = filo) f(xo) fila(o™ (P)) fi(x(67 1 (P)))

where 2(¢~1(P)) is the z-coordinate of ¢~ (P) € C(K). By Proposition 3.3, we
have
gij(P> = gij<2Rm) = gij(Rm)Q mod Qz, m = 1,2,374.

However, one knows that g;j(P) € Q? by assumption. It follows that g;;(Ry,) € Q.

Since gzg( ) fz(x())f] (x())fz< (RC,m))fj(I<RC,m>)u it follows that [Q(I(RC,m» :
Q] < 2. Writing z(Rc ) = A+ BvD for some A,B,D € Q, one sees that

g12(R)

Fi(zo) falzo) (a1(A+ BVD)+b1)(az(A+ BVD) +by) € Q*.

Therefore, either B =0 or a1bs +2a1a3A+asby =0. If B#0, then A = —arby—aghy

2a1a9

L : : 913(Rm) _ —aibz—asgby
In a similar fashion, since T ol s (o) € Q, one has A = ~Saras One con-

cludes that (% = 2—3, which contradicts the fact that the points (—b;/a;,0) € C

must be distinct. It follows that B =0, i.e., z(Rc.m) € Q. Since y(Rom)? =
bil (x(RC,m))fZ(w(RC’,m))fS(x(RC,m))fZL(I(RC,m))a the latter implies that y(RC’,m) S
Q or y(Rem) = K+/D for some K € Q and D € Q*/Q*2. In particular, Q(Rom) =
Q(v/D). Since ¢ is a Q-birational isomorphism, it follows that Q(R,,) = Q(v/D).

Moreover, from the observation above, all R, are Q-rational, or all are defined over

Q(VD)\Q.

One knows that since P € E(Q), it follows that
P=P?=(2R)? =2R°

for all o € Gal(Q/Q). In addition, since ¢~1(S7) = (¢~1(9))? for all o € Gal(Q/Q)
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and S € E. Therefore, we may assume without loss of generality that
Roa1= (ul,u2\/5), Reoo = (uq, —UQ\/E), Ro 3= (Ul,vg\/ﬁ) Roa= (v1, —UQ\/B),

where u1,v1,u2,v2 € Q.

We observe that g;;(R1)gij(R2) € Q% we also see that g;;(R1)gi;(R2) = gi;(P+T1)
for some Ty € E[2] for i,j € {1,2,3,4}. In view of Proposition 3.3, we obtain that
9ij(Ty) € Q? for 4,5 € {1,2,3,4}. Repeating the argument above for R3 and Ry, we
get that g;;(12) for some 15 € E[2], To # T7. Noticing that To 77 € E[2], it follows
that ¢;;(T) € Q? for all 4,5 =1,2,3,4, and all T € E[2].

Using the fact that g;;(T) € Q? for all T € E[2], we may replace the point P in the
argument above with a point 7' € E[2]. In particular, as seen above, this leads to
the following: Given T; € E[2], i =1,2,3,4, there exists Tij € E such that 2le =T,
§=1,2,3,4, where T} T2 T3 T# are all in E(Q) or all in E(Q(v/d;))\ E(Q) for some
square free integer d; # 0. Now since 2(Tij +T!) € E[2], then this implies that all
Tij € E(K), for all 1 <1,j <4, where K is either Q(v/D) or Q(v/D,v/D') where D
and D’ are square free integers. The fact that Tz-j cannot be all in £(Q) is due to
Theroem 2.2.

Now we rule out the possibility that Tij are lying in E(K) where K is either Q(v/D)
or Q(v/D,VD’), hence R¢; should have all lived in C(Q) for i =1,2,3,4. If K =
Q(v/D), then this means that the torsion part of F(K) contains complete 2-torsion
where for each 2-torsion point 7; there are 4 distinct torsion point Tij such that
4Tij = T;. In particular, if an elliptic curve is defined over E(Q(v/D)) with a non-
cyclic torsion group containing Z /27 x Z./27., then by the Theorem 2.3 it should be

one of the following groups
2)27 X Z.]2mZ,1 < m < 6, or Z/AZ X 1] AZ
where it can be seen easily that it is impossible for the 2-torsion points to satisfy

the aforementioned property.

Now we rule out the possibility that K = Q(\/E, V' D'). If an elliptic curve is defined
over F(K) with a non-cyclic torsion group containing Z /27 x Z /27, then it should

be one of the following groups, see Theorem 2.5,
L)27 X Z.)2mZ,1 < m <8, Z)AL X ZL)AnZ,n = 1,2, or Z/6Z x 7./6Z.

Again one may check that for neither of these groups all two torsion points are
divisible by 4. Hence when g;;(P) € Q?, for all i,j = 1,2,3,4, then Rc; € C(Q), in
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particular Q = ¢~ 1(P) € 2C(Q). O
Remark 3.1 In Theorem 3.2, if (xo,y0) is chosen to be oo, then g;; becomes
9i(P) = aia; fi(x(¢~ (P)) fi(x (6™ (P))).

In this case we assume ajasazas € (K*)? to make sure that the points oot are in

C(Q).

3.3 Examples

Let C' be defined over a perfect field K by the following quartic model
v? = aut 4+ bud + cu® + du+¢?

where a,b,c,d € K and g € K*. The birational isomorphism ¢ : C — E := J(C) is
defined by

z=(2¢(v+q)+du)/u® and y= (4¢*(v+q)+2¢(du+ cu?) — d*u*/2q) Ju?
where F is described by
y2 +a1ry+azy = a3+ a2x2 + a4 + ag,
and
a1 =d/q, as=c—d*/4¢®, az=2qb, a4=—4¢%a, ag=asay,
see [6, Chapter 1, Proposition 1.2.1]. The inverse map is given by
u=(2q(x+c)—d*/2q)/y, v=—q+u(ur—d)/2q.

In view of Theorem 3.2, the point (zg,0) is (0,¢q) as ¢(0,q) = Og.

Example 3.4 Let C : v? = (u+1)2u+1)(8u+1)(9u+1). We consider the map
¢1:C — E defined above, where

E: y?4+20xy+500y = 2 + 2522 — 5762 — 14400.
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We start with the point T = (3,140) € C(Q). Then
61(T) = (38,42), and 2¢1(T) = (—2375/144, —29155/1728) € E(Q).

Now Q = ¢7(2¢1(T)) = (—120/119,9889/14161) € 2C(Q). Setting f1(u) = u+1,
fo(u) =2u+1, f3(u) =8u+1 and fi(u) =9u+1, we see that

£ (—120) -1 £ (—120) ~—121 ; (—120) 841 £ (—120) 981
119 ) 1190 2119 )~ 1190 B\U119 ) 1190 4119 ) T 119
Since f;(0) =1 fori=1,2,3,4, it follows that

9ij(201(T)) = fi (—120/119) f; (—=120/119) € Q*  for all i,j = 1,2,3,4.

Example 3.5 Let C' : v? = (u+2)(u+5)(u+6)(u+15). Then the transformation

@1 gives the elliptic curve
E: y?+28zy+ 1680y = 23 + 5122 — 3600z — 183600.

Considering the point T = (—5/9,1820/81) € C(Q), we obtain

722192509 —26636791574008
342225 200201625

o1(T) = (8688,—943812), and 2¢1(T) = ( ) € E(Q).

Now the point ¢7(2¢1(T)) = (— 1908028830601, 43?3%2?3?852%3?1’70) lies in 2C(Q). We see that

7 (_ 982800 ) 1033922 f (_ 982800 ) 4059005
"\ 1008361/ ~ 1008361 “*\ 1008361/ 1008361

; (_ 982800 ) 5067366 ; <_ 982800 ) 14142615
3071008361,/ 1008361 “*\ 1008361/ 1008361

where fi(u) =u+2, fa(u) =u+5, f3(u) =u+6 and fi(u) =u+15. Since f1(0) =
2, f2(0) =5, f3(0) =6, fa(0) =15, we see that

982800 982800

2 .
902800\ 902000 i i
To0z361) 77 Toomaer) €@ for el

9ij(2¢1(T)) = f:(0) f3(0) fi(—

In the following example, we consider a birational map between a quartic model
and its jacobian elliptic curve different from the map introduced in the previous two
examples. The elliptic curve

E:w?=v>+Av+B,
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where A, B € K, is the Jacobian of the elliptic curve defined by the following quartic

model
C:y? =2 —6ax® —8bx +c

where ¢ = —4A —3a? and B = b?> — a® — Aa. We notice that the point P = (a,b) €
E(K) and that oot and co_ map to O and P respectively, see [1, §2]. We define

a birational isomorphism ¢ : C'— E as follows

w+b <w+b>2
T = , yYy=2v4+a-— )
v—a v—a

whereas the inverse map of ¢9 is given by

1 1
U:§(2+y—a% ?U=§Qﬁ+xy—&m—2m.

Example 3.6 Let C:y? = (v +2)(x+4)(x+8)(x+9). Applying the transformation

T T— %, y — 1y, we get the quartic curve

., 4 131, 33 12285

C:yo=a"——2a"——0+—-.
e T R T
Setting a = %, b= %, A= —%, B = %, the Jacobian elliptic curve is defined
by
211 754
E:w?=0v3— "y —
w v D v+ 57

The point QQ = (—5,6) is in C(Q) and 2Q = (—%,%). We get

f<_217>__169 f<_217>__121 f<_217>__25 f<_217)__1
Wooa )7 "oa 2\Ta )T o B\Toa )T T MA\Toa )T T

where fi(x) =x+2, fa(r) =x+4, f3(x) =x+8 and fi(x) =x+9. According to
Remark 3.1, a; =1 for all i =1,2,3,4. It follows that

9i5(261(Q)) = fi(—217/24) f;(—217/24) € Q*  for all i, j.

3.4 4-torsion points on quartic models
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In [2], it is given a simple proof of the well-known divisibility by 2 conditions for
rational points on elliptic curves with rational 2-torsion and the explicit division by
2™ formulas. The following example from the same article gives the necessary and

sufficient condition of divisibility by 4.

Example 3.7 Let K be a field of characteristic different from 2. Let
E: = (z—o)(z—a)(r—a3)

be an elliptic curve over K, where aq,a9,as are distinct elements of K. Let P =
(z0,y0) and R be a point of E such that 4R = P, and let ) = 2R = (z1,y1). Some

formulas given in [2] give
x1 =0+ (rre+rors +7r3r1), y1 = —(r1+r2)(ra+rs)(rs+r1),

where the square roots

Ty = VT — Oy, i:172737

are chosen in such a way that ryrors = —ygo. Further, let

rZ(l) = \/(ri+rj)(r¢—|—rk)
be square roots that are chosen in such a way that
rgl)rél)rél) =—y1 = (r1+7r2)(ro+7r3)(rs+r1).
In light of equations (4) and (7) in [2],
z(R) =11 +r§1)r§1) +Tél)7”§1) —H’él)rgl),
y(R) =~ (i i g ) )+ D),
which implies that

x(R) =xo+ (riro+rors+r3ry) + ril)rél) + rél)rél) + Tél)rgl)

W) = = )0 )40,

In what follows we give a necessary and sufficient condition for an elliptic curve

defined by a quartic model over Q to possess a 4-torsion point.
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Theorem 3.3 Let C' be a smooth genus one curve defined over Q by
v? = (kyu+1)(kgu+1)(kzu+ 1) (kau+1), &k € Q*.

Fiz the map ¢1: C — E = J(C) defined as in §3.3. Then C' has a 4-torsion point
defined over Q if and only if one of the following holds:

i) (k1 —k3)(k2 —kq) and (k1 — k2) (ks — k4) are both squares in Q; or
i1) (ko —ks)(k1 —kq) and (k1 — ko) (ks — k3) are both squares in Q; or
1) (ks —ko)(k1—kq) and (k1 — k3) (ks — k2) are both squares in Q.
PROOF: The curve J(C) is defined by the Weierstrass equation
E = y2 +a1xy+azy = 2%+ aga® + agx + ag
where a1 = ki + kg + k3 + ks, ag = kika + k1ks + koks + k1 kg + koky + kakg — (k1 +

ko + ks + ]{54)2, az = 2(]{?1]{52]63 + koksks + k‘l(k‘g + k‘g)k‘4), ay = —4ki1koksky, ag = asay.
Using MAGMA, the 2-torsion points on E are

Pl - OE7
1 1 1 1 1 1 1 1
Py = (—kiks —koks, §k%k4 — gkikoks — Skikoky — S kiksks + §k1ki + §k§k3 + §k2k§ - §k2k3k4),
1 1 1 1 1 1 1 1
Po— (— B 1o, 1 1 ., 1 Lo, 1 1,9
3 (—k1ks — koky, 2k1k3 2k‘1k2k3 2k‘1k32]€4+ 2k’1]€3 2k1]€3]€4+ 2k2k4 2k2k‘3k‘4+ 2]?2]64)7
ek — Liog 1,40 1 _1 _1 _1 Lo 1, o
Py = ( k1ko — ksky, zklkg-i- 2/€1k2 2k1k2k3 2k1k2k4 2]€1k3k4 2k2k3k4—|— 2k3/€4+ 2k3/€4).
Then
@1 (Po) = ((ky—ka—ks+ka)/(koks — kika), —(((ky — ko) (k1 — k3) (ko — ka) (ks — ka)) / (k2ks — k1k4)?)),
@7 (Ps) = ((—ky+ka—ks+ka)/(krks — kaka), ((ky — ko) (kg — k3) (k1 — ka) (k3 — ka)) / (k1 ks — koka)?),
o1 (Pr) = ((—k1—ka+ks+ka)/(kika — kska), (k1 — ks)(—ka +k3) (k1 — ka) (k2 — ka)) / (k1 ko — kska)?).

In view of Theorem 3.2, the point ¢7'(P2) = (ug2,v9) € 2C(Q) if and only if
(kjuz + 1) (kjuz +1) € Q?, where 4,j € {1,2,3,4}. Now direct substitution yields
that the latter conditions are equivalent to (k; — ks3) (k2 — k4) and (k1 — ko) (ks — k4)
are squares in Q. The other two conditions follow by considering the points ¢1_1(P3)
and ¢ 1(Py). O

As an application of Theorem 3.3, we construct the following example of a 2-
parameter family of elliptic curves over Q described by a quartic equation for which

none of the nonsingular fibers has a nontrivial rational torsion point of order 4.
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Example 3.8 Let Cs; be a smooth genus 1 curve over Q(s,t) defined by

5 <t2+32+t5
v=\—7""

—ts
1] (—— 1) (¢t 1 1).
e Ut ><t+8u—|— >(u+ )(su+1)

. 2 2 p—
Setting ky =1 ti;ts, ko= H—tj,

of rational numbers s,t such that Cs; has a torsion point of order 4. Condition (iii)
of Theorem 3.3 is the fact that the two expressions t(2s+t) and s(2t+s) are squares

one may use Theorem 3.3 to investigate the existence

in Q. The latter is equivalent to the existence of a rational point on the following

intersection of two quadric surfaces in P3:
2 _ 2 _
u® =1t(2s+1), v =s(2t+3s).

In fact, the latter intersection is an elliptic curve that can be described by the Weier-
strass equation y* = x> — 422 + 162 and whose Mordell-Weil group is isomorphic to
ZJAZ corresponding to the points (s:t:u:v)=(0:1:£1:0),(1:0:0:£1).

Conditions (i) and (ii) of Theorem 3.3 are equivalent to the existence of a rational

point on the intersection of the quadric surfaces

w? = —s(s+2t), v? = s>+t and
u? = —t(t+2s), 2= —t? 4§
respectively. Both intersections are isomorphic to the elliptic curve described by

y? = 23 — 22 4+ whose Mordell-Weil group is isomorphic to Z/4Z. corresponding to
the points (s:t:u:v)=(0:1:0:4£1),(1:—1:+1:0).

It follows that the curve Cs; does not have a torsion point of order 4 over Q for any
choice of the rational pair s,t with s,t #0,s # +t.
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4. Diophantine m-tuples

In this chapter, we present some facts about Diophantine m-tuples. We then em-
ploy the criterion for the divisibility-by-2 of a rational point on the elliptic curve
(C,P) to investigate the question of extending a rational D(g)-quadruple to a
quintuple. We give concrete examples to which we can give an affirmative an-
swer. One of these results implies that although the rational D(16t+ 9)-quadruple
{t, 16t + 8,225t + 14,36t + 20} can not be extended to a polynomial D(16t+9)-
quintuple using a linear polynomial, there are infinitely many rational values of
t for which the aforementioned rational D(16t+ 9)-quadruple can be extended to
a rational D(16t 4+ 9)-quintuple. Moreover, these infinitely many values of t are
parametrized by the rational points on a certain elliptic curve of positive Mordell-
Weil rank.

4.1 What is Diophantine m-tuple?

The Greek mathematician Diophantus of Alexandria first studied the problem of
finding four numbers such that the product of any two of them increased by unity

is a perfect square. He found a set of four positive rationals with this property:

{1 33 17 105}

16’16’ 47 16
1 33 17 1 17 9 1 105 19
Gl =R et i= ()
16 16 16 16 4 8 16 16 16
33 17 25 33 105 61 17 105 43
1 =(5)? = ()2, 1= (D)
16 4jL (8)’ 16 16 (16)’ 4 16+ (8)

However, the first set of four positive integers with the above property, {1,3,8,120},

was found by Fermat. Indeed,
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1-3+1=2% 1.841=3% 1.-120+1=112,
3-841=5% 3-120+1=19% 8-120+1=31%

Definition 4.1 A set of m positive integers {ai,az2,...,am} is called a Diophantine

m-tuple if a;.a; +1 is a perfect square for all 1 <i<j<m.

Definition 4.2 A set of m non-zero rationals {ay,as,...,an} is called a Rational

Diophantine m-tuple if a;.aj +1 is a perfect square for all 1 <1< j <m.

4.1.1 Diophantine triple and quadruple

Any Diophantine pair {a,b} can be extended to a Diophantine triple, e.g. by adding
a+b+2r to the set, where a.b+1 =r2. For instance, {2,12} can be extended to
Diophantine triple {2,12,24}. Also, any Diophantine triple {a,b,c} can be extended
to a Diophantine quadruple. Namely, let a.b+1 =12, bc+1=25> ca+1=1
where r,s,t are positive integers. Then for di = a+ b+ ¢+ 2abc £ 2rst, the set
{a,b,c,d+} is a Diophantine quadruple. For instance, {4,12,30} can be extended
to Diophantine quadruple {4,12,30,5852} with 5852 = d.. Quadruples of this form

are called regular.

It is natural to ask how large these sets, i.e. (rational) Diophantine m-tuples, can
be. This question is completely solved in the integer case. On the other hand, it
seems that in the rational case, we do not have even a widely accepted conjecture.
In particular, no absolute upper bound for the size of rational Diophantine m-tuples

is known.

4.1.2 How large are these sets ?

We can handle this question in two cases, integer and rational.

In the integer case, it is easy to prove that there exist infinitely many integer Dio-
phantine quadruples. There are parametric families for Diophantine quadruples

involving polynomials and Fibonacci numbers, such as

{k,k+2,4k + 4,16k + 48> + 44k + 12},
39



{Fks Fiov2, Fieya,4Fop 1 Fopq 2 Fopy 3. for k> 1}

The nonexistence of a Diophantine quintuple was the folklore conjecture (i.e. an
unpublished result with no clear originator, but which is well-circulated and believed

to be true among the specialists).

It was proved in 2004 by Dujella that a Diophantine sextuple does not exist
and that there are only finitely many Diophantine quintuples, [18]. Since then,
the bound for the number of possible Diophantine quintuples has been improved
by several authors. He, Toghé and Ziegler announced in 2016 and published in
2019 a proof of a couple of decades old conjecture that there are no Diophantine

quintuples, [41].

For the rational case, Euler showed that Fermat’s set {1,3,8,120} can be extended
to a rational Diophantine quintuple by adding 777480/8288641 to the set. Also, he
showed that there exist infinitely many rational Diophantine quintuples. In 2019,
Stoll proved that the extension of Fermat’s set to a rational quintuple with the same

property is unique, [66]. In 1999 Gibbs found the first rational Diophantine sextuple

{11 35 155 512 1235 180873}
19271927 277 277 48 ' 16

while in 2016 Dujella, Kazalicki, Mikie and Szikszai proved that there exist infinitely
many rational Diophantine sextuplets, [27]. No example of a rational Diophantine

septuple is known.

4.1.3 Diophantine D(q) m-tuples

We can replace the number 1 in the condition "a;a; +1 is a square" with a fixed

number ¢ in Definition 4.1.

Definition 4.3 Let q be an integer (rational number). A set of m positive integers
(rationals) {a1,a2,...,am} is said to have the property D(q) if a;a;+q is a perfect
square for all 1 <i < j<m. Such a set is called a (rational) Diophantine m-tuple
with the property D(q) (or (rational) D(q) m-tuple).

Several authors considered the problem of the existence of Diophantine quadruples
with the property D(q). This problem is almost completely solved. In 1985, Brown,
Gupta & Singh and Mohanty & Ramasamy proved independently the following
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result, which gives the first part of the answer.

Theorem 4.1 Ifn is an integer of the form n = 4k+ 2, then there does not exist a

Diophantine quadruple with the property D(n).

PROOF: The proof of Theorem 4.2 is very simple. Indeed, assume that {a1,as,as,a4}
has the property D(n). Since the square of an integer is congruent to 0 or 1

(mod 4), we have that a;a; =2 or 3 (mod 4). It implies that none of the a; is
divisible by 4. Therefore, we may assume that a; =as (mod 4). But now we have

that ajag =0 or 1 (mod 4), a contradiction. O

In 1993, Dujella gave the second part of the answer.

Theorem 4.2 If an integer n does not have the form 4k +2 and n ¢ S =
{—4,-3,-1,3,5,8,12,20}, then there exist at least one Diophantine quadruple with
the property D(n).

Conjecture 4.1 For n € S there does not exist a Diophantine quadruple with the

property D(n).

If n is a perfect square, say n = k2, then by multiplying elements of a D(1)-quadruple
by k we obtain a D(k?)-quadruple, and thus we conclude that there exist infinitely
many D(kz)—quadruples. The following conjecture was proposed in 2008 by Dujella.

Conjecture 4.2 If a nonzero integer n is not a perfect square, then there exist

only finitely many D(n)-quadruples.

One may ask what is the least positive integer ni, and what is the greatest neg-
ative integer mo, for which there exists a Diophantine quintuple with the prop-
erty D(n;), i =1,2. It is known that n; < 256 and ng > —255, since the sets
{1,33,105,320,18240} and {5,21,64,285,6720} have the property D(256), and the
set {8,32,77,203,528} has the property D(—255).

Let n be a nonzero integer. We may ask how large a set with the property D(n)
can be. Let define

M,, = sup{|S| : S has the property D(n)},

where |S| denotes the number of elements in the set S. By the results of Integer

Case, we know that M; =4 if S contains only integers, otherwise M; > 6.

Dujella proved that M, is finite for all n. More precisely, it holds:
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Theorem 4.3
M, <31 for |n| <400,

M,, < 15.476log|n| for |n|> 400.

4.2 Application: Diophantine D(g)-quintuples

There are only finitely many ways of extending a rational D(q)-quadruple to a ratio-
nal D(q)-quintuple, see [42]. The following theorem,[14], gives an explicit expression
for the element extending a rational D(q)-quadruple to a rational D(q)-quintuple

was provided if ¢ is a rational square.

Theorem 4.4 Let q,x1,72,73,74 be rational numbers such that x;x; +¢* = y%, Yij €
Q forall1 <i<j<4. Assume that r1v01314 # q*. Then a rational number x5 = %,

where

A= g ( + 2y12Y13Y14Y23Y24Y34 + qr1220304 (21 + 2 + 23+ 14) +

+ 2q3(1:11:21:3 +x1X004 + 210374 + 9[:21:31:4) + q5(x1 + 29+ x3+ 51:4)) ,

B = (x1x2x3x4—q4)2.

has the property that x;xs+ q2 is a square of a rational number fori=1,2,3,4.

The definition 4.3 can be extended over the ring of polynomials with rational coef-

ficients as follows.

Definition 4.4 Let q € Q[z]| be a nonzero polynomial. Let {aj,aa, -+ ,am} be a set
of m nonzero polynomials with rational coefficients. We assume that there does not
exist a polynomial p € Q[x] such that ay/p,--- ,am/p and q/p* are rational numbers.
The set {a1,a2,--,am} is called a polynomial D(q)-m-tuple if a;a;+q = b%j, for all
1 <i<j<m, where bj; € Q[x].

The assumption that there is no polynomial p such that a;/p,--- ,an/p and q/p? are
rational numbers implies that if ¢ is constant then not all elements aq,--- ,a,, of a
polynomial D(g)-m-tuple are allowed to be constant. When ¢ is a linear polynomial,

the latter condition is trivially always satisfied.

In what follows we will be interested in polynomial D(q)-m-tuples whose elements
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are linear polynomials, and ¢ is also a linear polynomial. We define

L; =sup{|S|: S is a polynomial D(ax + b)-tuple consisting of linear polynomials for some a # 0 and b}.

It was shown that L; =4, see [26, Theorem 1]|. Therefore, the set {z,16x+ 8,25z +
14,362 + 20} which is a polynomial D(16z + 9)-quadruple cannot be extended to a
polynomial D(16x+9)-quintuple using a linear polynomial. In this section, we show
that for infinitely many rational values of x, the latter rational D(16x+9)-quadruple
can be extended to a rational D(16x+ 9)-quintuple. The main tool is the following

straightforward corollary of Theorem 3.2.

Corollary 4.1 Let C' be a smooth genus 1 curve over Q defined by an equation of
the form

y2 = (a1x+b1)(agx 4+ b2)(asz + bs)(asz + by), where a; € Q*,b; € Q.

We set ¢ : C — E := J(C) to be a Q-birational isomorphism with ¢((zo,y0)) =
Opg for some (xg,y0) € C(Q), xo # —bi/a;, i =1,2,3,4. Assume, moreover, that
fi(xo) f(zo) € Q?, for alli,j =1,2,3,4, where f;(z) = a;x+b;. Let Q € C(Q).

Then Q € 2C(Q) if and only if there exists dg € Q such that
a;x(Q) +b; =6¢- 22 for some z € Q

for alli e {1,2,3,4}.

Corollary 4.1 implies the following result on extending a rational D(q)-quadruple to

a D(q)-quintuple.
Corollary 4.2 Let g be a nonzero rational number. Let S = {ay,a2,a3,a4} be a
D(q)-quadruple. Consider the smooth genus one curve

Cs: y2 = (a1z+q)(agx+q)(asx + q)(asx + q).

We fix the birational isomorphism ¢y : Cs — J(Cg) defined as in §3.3. Then S can
be extended to a rational D(q)-quintuple if and only if there is a point Q € 2Cg(Q)
with dg € Q2.

In the following theorems, we extend some of the known polynomial D(q)-quadruples
consisting of linear polynomials to D(q)-quintuples for infinitely many rational values

of x.

Theorem 4.5 The polynomial D(16t+ 9)-quadruple {t,16t + 8,225t 4+ 14,36t + 20}
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can be extended to a rational D(16t+9)-quintuple for infinitely many t € Q.

PROOF: Let ky =t, ko =16t 48, k3 = 25t + 14, ky = 36t + 20, ¢ = 16t +9. Consider

the smooth genus one curve C defined by
(4.1) v? = (kyu+q) (kau -+ q) (k3u +q) (kgu+q)

over Q(t). By using the birational isomorphism ¢, : C'— E, defined in §3.3, we have

the elliptic curve
E:y? +aizy+asy = 25 + asx® + asx + ag
with the coefficients

ap = 6(7+13t)(9+16t),

ag = (9+16t)%(111 + 8t(55+ 54t)),

a3 = 8(7T+13t)(9+16t)%(80 + (318 4 313t)),

ag = —128t(1+2t)(5+9t)(9+16t)* (14 +25¢),

ag = —128t(1+2t)(5+9t)(9+16t)5(14 +25¢) (111 + 8t(55 + 54t))

where (x9,90) = (0,¢?) is such that ¢1(zo,y0) = Og.

We take the point P = (0, —¢?) € C(Q(t)). Then

S =1 (P) = (—(9+16t)2(11148t(55+54t)), 2(142t)(7+13t)(9+16t)3(13+22t)).

Using MAGMA, [3], @ =25 = (x1,y1) is given by

u(t) _ v(t)
(4(1+202(7+1302(13+226)2)" /17 T 8(1+20)3(7+13)3(13+ 22¢)3”

xr1 =

where

u(t) = 4965468561 + 87791232672t + 6982481644322 + 3289862320448t% + 10168707377552t*
+21544947073664t° + 31689009677248t° + 31949101618688t" + 21130944883712t8
+8278920101888t? + 1459071221760¢°
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and

v(t) = 583640570599605 + 15590162461394376¢ 4 19431730950968228412 4 1499150348482554 720t
4 8006205664274122032t* + 31351499116349966848t° + 929960369946521 588485
+212772100714643848192t" + 378589655179368704000t° + 523873616797731045376t°
+ 559149737857198260224t° 4 452068024823691083776 ! 4 267996289719257268224¢'2
+109976712992448839680t '3 4- 27934728650533896192t'* + 3310873413836341248¢°

Then ¢7(Q) = (u1,v1), where

A +26)(T+13t)(13+22¢)
1369 + 32¢(232 + (419 + 252t))”

ulp =

(854302t +268¢%) (111 + 398 + 356%) (71 + 8t(31 + 271)) (97 + 8¢(43 + 381))
e (1369 + 32t(232 + £(419 + 2521)))2 '

Therefore, we obtain

- (111 + 398t + 356t2)?

u =

V0= 1360 4 32¢(232 1+ (419 + 2521))

- (97 4 8t(43 + 38t))?

u =

2= 1360 + 326(232 + £(419 + 252¢))

- (85 + 302t +268t2)?

u =

ST 1369 1 326(232 + H(419 + 2521))
71+ 8t(31+27t))?

RN (S8R 1CIER-1)

1369 + 32t(232+ (419 + 252t))”

_ 1 : : 2
One has g = 1369320232 (AT T 2590 - In view of Corollary 4.2, if dg € Q*, then

kiui +q € Q? for all i = 1,2,3,4.

The elliptic curve r? = 1369 4 32¢(232 + (419 +252t)) has Mordell-Weil rank 2 over
Q, [3]. It follows that there are infinitely many ¢ € Q such that §¢g € Q?, and hence
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the set

4(1+2 1 1 29
{’%16t+8,225t+14,36t+20,_ (142t)(7+13t)(13 4-22¢) }

1369+ 32¢(232 + £(419 + 252t))
is a rational D(16t+ 9)-quintuple.

O

By choosing ¢ to be the t-coordinate of a rational point on the elliptic curve 2 =
1369+ 32t(232 4 (4194 252t)), the set

4(1+2 1 1 29
{’%16t+8,225t+14,36t+20,_ (142t)(7+13t)(13 4-22t) }

1369 + 32(232 + (419 + 2521))

is a rational D(q)-quintuple produced by extending the polynomial D(q)-quadruple
in Theorem 4.5 when evaluated at ¢. In the following table, we give examples of

such D(q)-quintuples.

t q D(q)-quintuple
— 672 — 31 1 28 193 60431
t = 3064 9=3 203> 1923 — 255908
/— _ 3264 — 53 17 32 163 38 _ 50224
— T 8064 q= 42°21° 42 0 70 240429
+ — —3600 — 13 " 25 6 159 55 _ 17889
= 8084 4=7 56° 7' 56 14> 103544
§— —4192 — 43 {131 720 253 9 " 60085
— 8084 9= 53 252° 632 2527 77 183708
;4572 1 127 15 39 _ 23 _ 73455
— T 8064 9= "1 2240 14> 224> 567 123704
;— 4615 — 79 | 5 4615 583 _ 2479 _ 135 _ 3414104551
= T 8064 9= " 504 8064> 504’ 8064° 224> 6009297336

Theorem 4.6 The following polynomial D(q)-quadruples can be extended to a ra-
tional D(q)-quintuple for infinitely many t € Q.

(i) {4t,144t + 8,25t + 1,49t + 3}, where q = 16t + 1, can be extended using

:ffgg?gf%f;;gggﬁgﬂg%, where t is the t-coordinate of a rational point on the

elliptic curve E :1? = —1+32t(134+(529+5148t)).

(i7) {t,9t + 26,4t + 12,16t + 40}, where q = 16t +49, can be extended using

4%;;;&2:{2%(121;; f;gfg’ggiff ), where t is the t-coordinate of a rational point on

the elliptic curve E :r? = (96721 + 16t(6521 4 2342t + 280t2)) (16t +49).

), {t,i — 1,% + 5,4t + 8}, where q = 4t + 9, can be extended using

(2321(4?;&)2(_?;?1)53;550, where t is the t-coordinate of a rational points on the

elliptic curve E : 1?2 = (81 +2t(62+t(31+5t)))(9 +4t).

PROOF: The proof is similar to the proof of Theorem 4.5. U

46



Remark 4.1 The Mordell-Weil rank rg of E(Q) in Theorem 4.6 is rg =3 in (i)

and (ii), whereas rg =2 in (iii).

Example 4.3 Lett= —% in the D(16t+49)-quadruple given in Theorem 4.6. We

then obtain the following D(331)-quintuple

{ 180 318 284 248 2562308340}
1217 1211217 121 2164017361 )

On the other hand, since % is a square, Theorem 4.4 implies that the ra-

tional D(331)-quadruple {180/121,—318/121,284/121,—248/121} can be extended
to a D(%)-quintuple using either the rational number x5 = % or r5 =
—%. In particular, we obtain two almost D(%)-seztuple, i.e., a:ixj+q2 18

a rational square for all 1 <i < j <6 except when (i,j) = (5,6).
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5. A Dynamical Analogue of a question of Fermat

In this chapter, we investigate the existence of consecutive squares in the orbit of
a rational point under the iteration of a given quadratic polynomial with ratio-
nal coefficients. We display three different constructions of 1-parameter quadratic
polynomials with orbits containing three consecutive squares. In addition, we show
that there exists at least one polynomial of the form z2+ ¢ with a rational point
whose orbit under this map contains four consecutive squares. This can be viewed
as a dynamical analogue of a question of Fermat on rational squares in arithmetic
progression. Finally, assuming a standard conjecture on exact periods of periodic
points of quadratic polynomials over the rational field, we give necessary and suf-
ficient conditions under which the orbit of a periodic point contains only rational

squares.

5.1 Consecutive Three Squares

Let K be a number field. Let f € K[z] and x9 € K. We say that Orb(zg) contains

m-consecutive squares if there is y € Orby(xg) such that

Y f W), ™ ()

are all K-rational squares. We note that in the latter case Orb(y) itself contains m-
consecutive squares. Therefore, for the sake of simplicity, when we say that Orb ¢ (zo)

contains m-consecutive squares we mean

fﬂ(),f(x()),- i 7fm_1(x0)

are all K-rational squares.
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We start with the following observation.

Proposition 5.1 Fix a,b,c in a number field K. There are only finitely many
x0 € K such that Orbs(xg), where f(x) = ax®+bx+c, contains 3 consecutive squares

unless one of the following cases occurs.
1.1 a=0
1.2 b*—4dac=0
1.3b=0 andc:%l

1.4 b=4and c=0

1.5 1+2b€ Q"2 and c = b2_2b_24§2v 1426

Moreover, if f(x) is an irreducible quadratic polynomial, then none of the cases

above occurs, hence the finiteness of such xq’s holds unconditionally.

Proor: This follows immediately by observing that the existence of three consec-

utive squares can be expressed equivalently by

axé+ba:%+c:y2, ayt +by? +c = 22

This implies the existence of a rational point on the genus-3 curve

C': 2% = a(axd +bxd +¢)? + blaxg +bxd +¢) +,

By Faltings” Theorem, for fixed K-rational values a,b,c such that the curve is
smooth, the latter curve possesses only finitely many K-rational points. It remains
to check the discriminant of the curve. Using Mathematica, the discriminant is given
by

A =256ac(1+b+ac)(b? — dac) (—4b® + b* + 16ac + 16abe — 8ab®c + 16a2*)?.

This gives the following cases for the curve not to be smooth:
2.1 a=0, and for that case f(x) is not a quadratic polynomial.

2
2.2 b> —4ac = 0, in which case f(z) = (bJﬁZm) . So, either a is a square which

gives that for any zg € Q*? the orbit will contain infinitely many consecutive

squares; or @ is not a square, in which case for any zo € Q, f(zp) is not a

square.
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2.3 ¢ =0 which gives rise to the curve

2

Cy: 7%= <Z> = (axd +b)(ax] + abxd +b).
Zo

This is again a genus 2 curve and so Faltings’ Theorem can still be applied,

unless the discriminant of that curve given by —64a'®(—4+b)2b% is zero. This

gives that either a = 0 covered in (i); b= 0 implying that b? —4ac = 0 which is

covered in (ii); or b =4 covered in (iv).
24 14b+ac=0or b=—1—ac gives rise to the curve

2
Cy: 7%= <Z) = (az3 —ac—1)(a’z§ — (a*c+a)zd + ac—1).
Zo
The discriminant of the latter genus 2 curve is given by 64a'(—14ac)’(1+
ac)(5 — 2ac+ a?c?)?. If the curve is not smooth, then either ac = 1 which
means b = —2 and so b? —4ac = 0; ac is a root of the irreducible polynomial

22— 2245, ie, ac € Q; or ac = —1 which gives rise to (iii).

2.5 Finally, the vanishing of the factor —4b% +b* 4+ 16ac+ 16abc — 8ab?c+ 16a%c? in
A yields that ac is a root of the quadratic polynomial 1622 +16(1+b—b%)x +
bt — 4b3 giving rise to the case (v).

This concludes the proof. One can check easily that the aforementioned cases implies

that f(z) is reducible. O

Remark 5.1 Two polynomials fi and fo are called K-linearly equivalent if there
is a map {(z) = ax +b € K[z] such that f = o fool™'. It is a simple exercise to
see that any polynomial map of degree 2 in Klx| is K-linearly equivalent to map of
the form 2% +c, c € K. In what follows we focus on consecutive squares in orbits of

points under maps of the form f.(z) = 2% +c, c € Q*.

Theorem 5.1 For each 5 € Q, there are infinitely many rational numbers o7y, and
c such that f.(a?) = % and f.(6%) =~2.

In particular, one may choose

B*(3—4p%)?
(14852 +4p4)2
B(—1+24(B?+3p* +48°5+25%))
T (1+85% +451)2 ’
. B2 — 4954 + 40036 4 286438 + 7264810 + 8864512 4 640084 + 2816516 4 256318 — 256520

(L+85 457"
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PROOF: Let o € Q be such that f.(a) = 8% and f.(f.(a)) =~? for some v,8 € Q,c €

Q. This can be written as

o +c=p2
Boe=92
Eliminating ¢, one has
(5.1) o’ +97=pt+ 52

For a fixed 3, equation (1) defines a conic Cg over Q(/3) possessing a rational point Pg
defined by (a,v) = (82,8) € C5(Q(B)). Parameterizing the rational points («,7) €
Cs(Q(/3)), using the point Pz, yields that

B(=1428m+m?)
14+m?2

- o 2
a:B( 2ni+fn—;m /8)’ y=m(a—p*)+8=—

, where m € Q.

Now, forcing « to be a rational square, say k%, we obtain the following quartic curve
defined over Q(/3)

Hg: k? = B(Bm* —2m3z — 2m2? — p24)

with the rational point (m:z:k)=(1:0:0), hence Hg is an elliptic curve over

Q(B). The curve Hg is Q-birationally equivalent to the elliptic curve
Ep:y® =23+ (4 +46%)x.

We set Pg = (1:0:03) and ¢ : Hg — Eg to be the birational isomorphism. One
sees that ¢(Pg) = (1:28%+1:1) is of infinite order in E5(Q(3)) using MAGMA |[3].
Proving the first part of the theorem.

Now one has ¢! (2¢(P5)) is given by
1 4 1 31)(18161432 3)(5 31>>
-0 == =B |—=8"—= - - — —6:1
(( 2P 8>/<B T0) (7a R AR A ) [\ ) )
where the corresponding m-coordinate on Hg must be (—%64 — %) / (53 + %6) Con-

sequently, one has the values given in the theorem. 0]

Corollary 5.1 There are infinitely many ¢ € Q such that for some xg € Q, the orbit

Orby, (x0), where fo(x) =a®+c, has three distinct consecutive squares.
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Example 5.2 Setting 3 =2, it can be seen that for the quadratic map f(x) = 22+
132583668/88529281 and o = 122/97, one has

fe(0®) =22 and f.(4) = (39358/9409)2.

Theorem 5.2 Let a € Q. There exist infinitely many 6,7v,b € Q such that for the
map f(z) =x%+ax+0b, one has f(6%) =a? and f(a®) =~>. In particular, one can

choose

Gl 69a* — 196a° + 314a8 +2226a" + 76224° + 153084 + 252854 + 30279a"!
B (I+a(2+a(9+4a(1+a))))*

+31599a12 +24864a' 4+ 16624a1* + 64964 + 160a1% — 3072017 — 2560418 — 1280a!? — 25642Y
(1+a(2+a(9+4a(1+a))))4

and

a(l+a)(—=3+a+4a®) a(—14+a?(5+4a(l+a))(6+a(8+3a(5+4a(l —f-a)))))'

T (+a2+a0+4a(l+a))) | (1+a2+a(9+4a(1+a))))?
It follows that there exist infinitely many polynomials f(x) = x> +ax+b € Q[z] such

that Orbs(x) contains three distinct consecutive squares for some x € Q.

PROOF: Let a € Q and assume f(a) =a?+aa+b= % and f(f(a))=p*+aB?+b=
7?2 for some 3,7 € Q. By eliminating b, we have

0624_0/0(_52:64_'_&62_72.

One observes that setting = a, the equation above describes a conic C, : a? +
72 +aa = a* 4 a® +a® over Q(a) possessing a rational point P, defined by («a,7) =
(a?,a) € Cy(Q(a)). We parameterize the rational points () € C,(Q(a)) using the

point P, as follows

9 a(—14+m+2am+m?)
= — =— c Q.
, y=m(a—a*)+a L+ m2 , meqQ

a(—1—a—2m+am?)
1+m?

o=

Now, forcing « to be a rational square, say k2, we obtain the following quartic curve
defined over Q(a)

Ha:k2:a2m4—2am3—am2—2am—a2—a

with a rational point (m:k:z) = (1:a:0). Therefore, H, is an elliptic curve
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over Q(a) and it is Q-birationally equivalent to the elliptic curve E, defined by the

Weierstrass equation

5 2 4a®+2a+2 3 20+2 5 dat+4aP+a®+2a+1
Eg:y'——ay———F——y=a"+—5—a"+ 7 x
a a a a
One sees that the image of the point @, = (1:a:0) in E, under the birational
isomorphism ¢ : H, — E, is ((0: 4“%;# : 1)) which is of infinite order, MAGMA

[3]. Now the m-coordinate of the rational point ¢~ (2¢)(Q,)) in H, is given by

1, 14 1, 1 1><3 1, 1)
<2a 3¢ TRV T 0 g) e g

With the latter m-coordinate, we get the values for b, § and + as in the statement
of the theorem. O

Example 5.3 Setting a = %, it can be seen that for the quadratic map f(x) = z? +
%x+ 1969~ e has

oy (i) ={ () ()" Ga) )

The following theorem also describes an explicit construction of three consecutive

squares in the orbit of polynomials of the form 2%+ az — a.

Theorem 5.3 Let a € Q and a = —(_laoj_)zz_(a_;;;az). For the polynomial f(x) =

z? +ax —a, one has
a2—5a \° [ 30°—130*+130® — 1502 +12a \°
Orbs(a) =S a,| 54— | , .
a?—a—4 (at—2a3 —T7a?+8a+16)(a—1)

In particular, for any rational number xg € Q, there exists an a € Q such that the

polynomial f(x) = 1+ ax —a satisfies f(x3) and f?(x3) are rational squares.
PROOF: Let a € Q besuch that f(a)=a?+aa—a=p%and f(f(a))=p*+aB?—a=

7?2 for some /3,7 € Q. One obtains

52_a2:72_64
a—1 B2—1"

a =
This gives a certain level of confidence.

aft+ (—1—a?)p*+a? = (v — 1)72
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which defines the following quartic curve over Q(«)
Co:ala—1)p +(a=1)(-1-a?)B* + (a—1)a* = §*

where 0 = (a — 1), with a rational point T, = (1: a—1:1).

There is a birational isomorphism v : C, — E,, where E, is an elliptic curve described
by the following Weierstrass equation over Q(«)

20 — 60 — 202 — 2a 202 — 802 — 2 ab —8a® + 14a* + 403 + 52
Eo: v 4 (20 +2)zy+ y=ax3+ 2+

a—1 a—1 o?—2a+1

Then Ry :=(Ty) = (0: (—2a* + 603 +2a% +2a)/(a—1) : 1) is a point of infinite
order in E,(Q(«)). Moreover,

w—l(QRa):< a? —5a 3a5—13a4+13a3—15a2—|—12a:1>

2—a—4° ot —203 —7a2+8a+16

Now the [-coordinate of the latter rational point gives rise to the a-value and the

corresponding orbit in the statement of the theorem. U

Example 5.4 Let a = i. We can observe that for the polynomial f(z) = R

429 429
T7056 % 1 Tro56. We have

1\? /19\% /757 \?
Orbf“*)—{(g) (&) (o) }
5.2 Consecutive four squares

Let K be a number field. Let f(r) =2?+c € K|r] and 79 € K. If one wants to force
23, fo(23), f2(23) and f2(23) to be all K-rationals, then this can be written as

(5.2) Ty +c =17 vt o= 22 A e=w

Equivalently, the existence of four consecutive squares in the orbit of a rational point

under f, is equivalent to the existence of a rational point (zg,y,z,w) on the surface
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S defined by
(5.3) 24t =y ot w? 4yt =224 24

Proposition 5.5 Let ¢ € Q be such that Orby, (xg) contains four consecutive

squares, i.e, f'(xg), i =0,1,2,3, are all rational squares. Then xg # 0.

PROOF: It can be seen that by eliminating y and z in (5.2), one obtains that

w? = fAa5) = g+ +0)* +c
= o0 Fdexd? +2c(1+3c)zf + 42 (1 + o) ad + c(1 4+ c+ 22 + 3).

If 2o = 0, then this means that w? = ¢(1+c+ 2%+ ¢3) which describes an elliptic
curve E over Q, whose Mordell-Weil group F(Q) = Z/37Z corresponding to the point
(0,0) and the two points at infinity. None of these points gives rise to non-trivial

four consecutive squares. O

Theorem 5.4 There erists a polynomial f(r) = 2%+ c € Q[x] such that there are
four distinct consecutive squares in Orbf(x%) for some xg € Q if and only if there

exist rational solutions p,q,r € Q to the polynomial equation M (p,q,r) = :L’é where

M (p,q,r) = —2048p"q— 1536p5q2 — 768p°¢> + 128p* ¢* +192p>¢° +-96p2¢° + 16pq” + ¢ +4096p°gr +
1280p°¢%r — 960p3g*r — 448p%¢°r — 160pg®r — 24¢7r — 512p%r2 — 1280p°qr2 + 1792p*¢%r? +
1664p3¢3r? + 1152p2¢*r? + 368pq°r? + 76572 + 768p°r3 — 2048p*qr3 — 1920p° ¢%13 — 1280p%¢>r> —
384pg*r3 — 72¢%13 + 384ptrt 4+ 1728p3 grt 4 480p2 ¢ rt + 240pg>rt — 10g*r* — 704p3r® — 64p2qrd —
32pq?rd +24¢3r° + 64p2rS — 112pqrS +44¢%r5 + 64pr™ — 56qr” +17r8.

PrOOF: In (5.3), we set 73 = X, y?> =Y and 22 = Z. Then we have the following

equations
(5.4) Y+Y2=2Z+X2
(5.5) Z4+722=uw+Y?2

One may homogenize equation (5.5) and complete the square so that the equation

may be written as

T
VE=w? Y242 Where,u:§,7:Z+,u.
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Therefore, one may obtain the following parameterization.
v = s2+t2+u2, w=2su, Y = s2 12 —u2, W= 2tu.

Since Z =~ —p and T = 2u, we have 22 = —2tu+ 5% +t?> +u? and T = 4tu. Also

Y =y? = 52+ 2 — u? yielding the following parametrization for t,s,u,y:

s:4p2+2qp—2pr—q2+r2 ) t:4qp—|—q2—2q7"+7“2,

u:4p2—|—2qp—2pr—|—q2—r2 , y:4p'r‘+2qr—q2—'r2.

It follows that (5.4) in homogeneous form, YT+ Y?2 = ZT 4 X2 may be written as

o=y T+y' =T2" = M(p,q,7)

where M (p,q,r) is given as in the statement of the theorem. O

Theorem 5.5 There exists at least one polynomial of the form f(z) = x> +c € Q[x]
and xg € Q such that Orby(xo) has four distinct consecutive squares. Namely, ¢ =

5103/4096 and

Orbf((3/8)%) = {(3/8)%,(9/8)%, (27/16)?,(783/256)%,...}.

PROOF: Fixing y in equations (5.3) and setting X = 22, one obtains
W +yHT? =22+ X2
The latter equation gives rise to the following parametrization

z:—yp2+2y2ps+y32, X:y2+p2—|—2yps—y2$2, T:p2+32.

Let X7 = % and z1 = 7. Then we have the following.

2(2ps +p?z — 5%2)
X1= 2 2
p“+s

=0

Y
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2 4 a_ PP 4524 2psy) P (—p? 4 5P 4 2y 2 (0 572 — (0% )
Ata—y = (P2 + 52) T

Searching for rational solutions to the system above using MAGMA | [3], yields the
polynomial f(x) together with the mentioned orbit. O

Remark 5.2 In Theorem 5.5, we were able to find a rational point on the variety S
defined in (5.3). This variety contains the subvariety (up to sign) v =y = z = w with
infinitely many rational points that give rise to no nontrivial four distinct consecutive
squares. We suspect that there are likely only finitely many other nontrivial rational

points, and perhaps the rational point we found might be the only one.

As for polynomials f(x) with d = deg f > 2, the existence of a rational square a?

such that f (oz2) is rational itself, implies the existence of a rational point on a
curve of genus [2d—1]/2 > 1, on which there are only finitely many rational points.
Therefore, finding a rational point whose orbit under f contains three consecutive

squares is quite improbable.

5.3 Finite orbits consisting of squares

As mentioned in Remark 5.1, any quadratic polynomial map f(z) = Az?+ Bax+C €
K|[z] is linearly conjugate over K to a map of the form x? + ¢ for some c € K. If K is
chosen to be the rational field QQ, a complete classification of quadratic polynomial
maps with periodic points of periods 1,2, or 3 was given in [69]. We recall that the

orbit of a periodic point is called a periodic orbit.
The following conjecture can be found in [56].

Conjecture 5.6 If N >4, then there is no quadratic polynomial f(x) € Q[z] with

a rational point of exact period N .

The conjecture has been proved for N =4, [54], for N =5, [34], and conditionally on
Birch-Swinnerton-Dyer Conjecture for N = 6, [65]. Although proving the uniform

boundedness of the number of preperiodic points of polynomial maps of a fixed
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degree is currently far from our reach, some uniform bounds were given for certain

polynomial maps in [44, 59].

Assuming Conjecture 5.6 holds, one notices that if f(z) =22+ ¢ € Q[x] is such that
zo € Q is a periodic point of f(z), then for g to be a rational square of period 1 one
has either 1/2+p or 1/2— p is a rational square with ¢ =1/4— p?. Similarly, one sees
easily that x¢ cannot be a point of period 2 whose orbit contains only rational squares
since otherwise both —1/2+ ¢ and —1/2 — o are rational squares for some o € Q.
Finally, for zg to be a periodic point of period 3 for which Orby(z) contains only
rational squares, one must have in Theorem 2.6 that xz; = r%, To = r%, T3 = 7‘% where
r; € Q,1=1,2,3. The latter is a singular curve of genus 17 with only two singularities
(1,71,72,73) = (—1,0,0,0),(0,0,0,0). Again, by Faltings’ Theorem, [33], there are
only finitely many rational points on the latter curve. Therefore, one investigates
the possibility of having infinitely many polynomials of the form z? 4 ax +b, a # 0,
with rational periodic points whose orbits are of length at least 2 and contain only

rational squares.

One notices that if z is a rational periodic point of the map x?+ ax + b, then

T+ a/2 is a periodic point of the map 22 + ¢ where ¢ = b—a?/4+4a/2.

Theorem 5.6 The polynomial map f(x) = x> +ax +b € Q[x] has a periodic orbit
of length 2 whose elements are rational squares if and only if a = —1 —m? — k?
and b=m?+ k> +m?k? for some m,k € Q. In this case, one has f(m?) =k? and
f(k?) =m?.

PROOF: That the polynomial f(z) =22+ ax+b with a = —1—m? — k% and b =
m?+k*>+m?2k?, m,k € Q, has such a periodic orbit is a direct calculation.

Now, if f(k?)=m? and f(m?) = k? for some m,k € Q, then one knows that g(m?+
a/2) =k*+a/2 and g(k*+a/2) =m? +a/2 where g(z) = 2% +b—a?/4+a/2. This
yields that

1
+g:—§+a, for some o € Q,
see Theorem 2.6. It follows that a = —1—m?2 — k2 and b = m? + k? + m2k2. O

One sees that Orby(4) = {4,1} where f(z) =22 — 22+ 2 and Orb,(9) = {9,4}
where g(z) = 2% — 14z +49.

Theorem 5.7 Let m,n,r € Q be distinct. There exists a polynomial map f(x) =
2% +az+b € Q[z] such that f(m?) =n?, f(n?) =72, and f(r?) =m? if and only if

mt1=n? 4+ +m?(=n?+nt =21+ +rt =0t (=1 +r2) + 022 (=143 =0.
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In this case, the polynomial f(x) is determined by

—mS +m2nt —nb +mr? 4 n2rt — 6 mSn2 —mint +nbr2 —mirt —ntrt 4+ m2r

a= s b:

6

(m2—n2)(m2—r2)(n2 —r?) (—m2+n?)(n? —r2)(—m?+r?)

PROOF: One needs to solve the following system of linear equations in d,a,b

dm*+am?+b=n2, dn*4+an’+b=1r% dr*+ar’+b=m?
to get the expressions for @ and b as in the statement, whereas d = (m4 —m?n®+
n* —m?2r2 —n2r? 1) /((m? —n?)(m? —r?)(n? —r?)). The statement now holds once

we force the polynomial f(x) to be monic by setting d = 1. O

One remarks that each of the triples m,n, k satisfying the identity in Theorem 5.7

gives rise to a rational solution to the system of equations

PB4+272437+1
27(1+1)

B42ri 4741 9 m_r—1
, n“4a/2=———,
21(t+1) 21(t+1)

m2—|—a/2: r2+a/2:_

for some rational value of 7 € Q\ {—1,0}.

As examples, one sees that the following polynomial maps have periodic orbits of
length 3 that contain only rational squares.

Si(z) = w? =2 o+ 55, Orby((7/4)%) ={(7/4)%,(5/4)%,(1/4)%}, 7=-1/2,

fo(z) = 2% =30 4+ 9950 Orby,((23/12)?) ={(23/12)%,(19/12)2,(5/12)}, =2,
fs(x)= 2?—Ll a4+ Orbg,((25/12)%)  ={(25/12)%(17/12)(11/12)%}, 7=1/2,
fa(x)= 2?1830 o BUSOL - Orby, ((55/24)2) = {(55/24)%,(49/24)%,(23/24)*}, 1=3,
fo(z) = o2 — 4833 54 2UB00T2 © Orby, ((115/66)2) = {(115/66)%,(47/33)%,(124/33)*}, 7= —12.
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6. Arithmetic progressions in polynomial orbits

6.1 Intersection of polynomial orbits with linear polynomial orbits

Throughout this work, K is a number field with algebraic closure K and the ring of
integers Of.

We recall that the n-th iteration of a polynomial f(z) is defined to be f"(x) =
f(f"Yz)),n>1, and fO(z) =z. Given a € K, the orbit of a under f is the set
Orbg(a) = {f™(a),n > 0}. We can also denote by Orb?[(a) = {f"(a),n € Z} the
union of both the forward and backward orbits of a point a under the iterates of
f- This is mostly useful when referring to a linear map f where the backward orbit
is always infinite. A point a € K is called preperiodic under f of type (m,n) if
[ (a) = f™(a) for some m >0,n > 1. A point a € K is called periodic under f if
a is preperiodic of type (0,n). Moreover, if n is the smallest such integer, then a is
said to be a periodic point of exact period n. If a € K is not preperiodic under f,

then a is called a wandering point for f.

We define an equivalence relation on polynomials in K|z] of a given degree d > 2
as follows. Two polynomial maps f1 and f2 in K(x) of degree d > 2 are conjugate
if there is ¢ € PGLy(K) such that fo = f:=¢o fio¢L. If ¢ € PGLy(K), then f;
and fo are said to be K-conjugate. We remark that if a is a periodic point of exact
period n for f, then ¢(a) is a point of exact period n for f ¢. One can argue similarly
for preperiodic points of f and f?. Moreover, if f,¢, and a are defined over K such
that f"(a) = a, then g := f® and b:= ¢(a) are defined over K with g"(b) = b.

If two complex polynomials f and g of degree at least 2 have orbits with infinite
intersection, then f and g must have a common iterate, [36, 37]. The assumption
that both polynomials must be nonlinear is essential as may be emphasised by the
example Orbgy2,9(1) C Orbx42(0).

60



It is obvious that if ¢ = ax+ 5 € K[z], a # 0, then

Orbo(d(x)) = {(2),0(f(2)),- -+, o(f" (2)),--- }

for any polynomial map f € K[z] and any = € K. In addition, If f(z) = ax+0,
a#0, then f%(z) =azr+ab—B(a—1).

In what follows we consider the case when g(z) = ax+b € Q[z] whereas f(x) is an

arbitrary polynomial. We remark that

Orby(2) = {z,ax+b,a*xv+bla+1),a’z+b(a® +a+1),--- ,a"z+b(a"—1)/(a—1),--- }.

We notice that for a power of a linear map f(z) = (fz)™, m > 2, and g(x) = Pz,
one has that Orb;(0) N Orb,(1) is infinite. In what follows, we consider the latter

intersection when f(z) is not a power of a linear polynomial.

Proposition 6.1 Let f(z) € K[x] be of degree at least 2 such that f(z) is not a
power of a linear polynomial. Let g(x) = ax+b € K[z] be such that Orby(s) ﬂOrb;t(t)
is infinite for some fized s,t € K. Then a is a root of unity in Ok .

PrOOF: Using a conjugation via ¢(x) =z +b/(a—1), one may assume without loss

of generality that g(z) = ax and t # 0. We write

e
f(z) :adxd—{—---—l-ao:adH(;E—ci)”,n >1,aq#0, ¢c; # c;j for i # j.
i=1

We also set
S={p €O is prime :14(s) <0 or vp(t) <0 or vy(a;) <0 for some 0 < i < d},

where 1} is the associated discrete valuation to the prime p.

Now, we assume on the contrary that a is not a root of unity. The hypothesis
implies that f™(s) = a™t for infinitely many pairs of integers (m,n). We also notice
that for two such pairs (mp,n1) and (mg,n2), both mj # ma and n; # ng, since
otherwise, f™ (s) = f™2(s) or g™ (t) = ¢g"2(t) respectively. The latter implies that s
is a preperiodic point for f, hence Orby(s) is finite, or ¢ is the fixed point 0 of g(x).

Let ¢ be an odd rational prime such that ¢ > r; for all i. The latter argument shows
that there is ¢ mod ¢ such that there are infinitely many pairs (m;,qi 4+ ¢) where
fmi(s) = a9t This yields infinitely many S-integer points (z,y) = (f™~(s),a’)
on the curve a‘ty? = f(z).
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Building on earlier work of Siegel, [61, 62], Lang and LeVeque proved that if the
number of S-integer points on a curve C': y? = f(z), ¢ > 2, f(z) € K|z], is infinite,
then the genus of the curve C' must be zero, [51, 68]. The reader may also consult
[4] for further references and literature. LeVeque also gave necessary and sufficient
conditions for the genus of C' to be zero, [52]. More precisely, setting ¢; = ¢/ ged(q,7;),
and assuming without loss of generality that q; > g2 > -+ > ¢¢, the curve C has
infinitely many S-integer points if and only if (q1,¢2,¢3, - ,¢) = (2,2,1,---,1) or
(s,1,1,---,1), s > 1.

In view of the latter fact, since the tuple (2,2,1,---,1) is not realized due to the fact
that ¢ is odd, either f(z) has a root of multiplicity divisible by ¢, corresponding to
the case e > 2 and g2 = 1, contradicting the assumption that ¢ > r; for all i; ore=1
implying that f(z) has a unique root, contradicting our assumption that f(z) is not

a power of a linear polynomial. O

Remark 6.1 The remark following Proposition 5.3 of [36] shows that if f and g
are non-monic linear polynomials such that Orbs(s)NOrby(t) is infinite, then f and

g must have a common iterate.

Proposition 6.1 justifies the fact that we will only consider intersections of orbits of
polynomials f of arbitrary degrees with orbits of monic linear polynomials. In fact,
we will mainly focus on the latter intersection when f has integer coefficients. This

may be justified by the following example.

Example 6.2 Let f(z) =x%+a/b, d>2, |b| > 1, ged(a,b) =1. One may easily see
that f™(0) = a,/b% for some sequence a, € Z, n > 1. In addition, Orb,,/,(0) =
{nr/s:n>1}. Therefore, Orby(0) NOrb, ., /(0) contains only finitely many points

for any choice of r/s.

1
Lemma 6.1 Let g(x) =2+ § with a,b € Z. Then Orbgy(t) = EOrbx+a(bt) for any
teQ.

B bt+na

Proor: This follows immediately by observing ¢"(¢) 2

forany n>1. O

In view of Lemma 6.1, it is sufficient to focus on orbits of linear polynomials of the
form g(z) = x+a with a € Z.

Lemma 6.2 Let gi(z) =x+m;,m; € Z, i =1,2 and ged(mi,mg) =1. Set g(z) =
x+mima. Then Orby(t) = Orbg, (t) NOrby, (t) for any t € Q.

PROOF: Let k be a rational number such that k& € Orb,(t). Then we have k =

t+rmims for some r € Z. Hence k € Orbyg, (£)NOrbg, (t). Now assume k € Orbg, (£)N

Orbg,(t). Then k =t+ symy =t+ somo for some s1,s2 € Z. Since ged(my, ma) =1,
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m1|s2 and mg|s1. Thus, there exists s € Z such that k =t+smimeg, i.e., k € Orbgy(t).
U

Proposition 6.3 Let f(x) be a polynomial in Z[z] and g(x) = x+p where p is a
rational prime. Assume that n is the minimum positive integer such that f™(t) €
Orbgi(t) for some t € Z. Then f*(t) € Orb;t(t) if and only if nlk.

PROOF: Since f™(t) € Orb;IE (t), one sees that f™(t) =t+ mp for some integer m. It
follows that t is a periodic point of f(z) € [F,[z] with exact period n where f is the

reduction of f modulo p.

Assuming that f*(t) € Orbgi(t) for some integer k, one has f¥(t) =t+rp=t mod p

for some integer r. Since n is the exact period of ¢, n must divide k.

Assuming that k = nc for some integer ¢ and knowing that f"(¢) =¢ modp, it
follows that

fk(t) =f"Mt)=f"o---of"(t) =t mod p.
c—times

Thus, f¥(t) € Orby (t). O

In fact, one has the following result for intersections with orbits of monic linear

polynomials.

Proposition 6.4 Let f(x) be a polynomial in Z[x] and g(x) = x+a where a is an
integer. Let t be an integer such that n is the minimum positive integer for which

™ (t) € Orb;lIE (t). Then f*(t) € Orbgi(t) if and only if nlk.

PROOF: We assume that a = pi'p5?...p% where p1,---,pe are distinct primes. As

f"(t) = t+am for some m € Z, one obtains f™(t) =t mod p;* for all 4.

If n|k, then f*(t) =t mod p;’. Since the primes p; are distinct, one has fEt)y =t

mod a.

Now one assumes that f¥(t) Orbgi(t). This gives f¥(t) =t mod a, hence f¥(t) =t
mod pj* for all i =1,---,e. We set n; to be the exact period of ¢ for the image
f(x) of f(z) in € Z/(pM7Z)[z]. Letting [ be the least common multiple of all n;,
i=1,...,e, one observes that [|k as each n;|k. In addition, one sees that fi(t) =t

mod a. This must yield that [ =n, hence n|k.
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6.2 Primitive divisors and intersections with linear orbits

We recall the following definition.

Definition 6.1 For an integer sequence an, m > 1, a positive integer (rational
prime) u > 2 is said to be a primitive divisor (primitive prime divisor) of a,, if

ulam and wtag for all 1 <s<m.

For example, letting {a, : n > 1} be a sequence in which
a1=1, ax=2, a3=3, a4=06,

one sees that 2 is a primitive (prime) divisor for ag, 3 is a primitive (prime) divisor
for ag. However, a4 does not have any primitive prime divisors, but 6 is a primitive

divisor of aq4.

Given a polynomial f(x) € Z[x] and t € Z, we will investigate the set of primitive
divisors of the sequence tg =0 and t, = f™(t) —t, n > 1.

Lemma 6.3 Lett€Z and f(x) € Z[x]. Define the sequence to=0 and t, = f™(t)—t,
n > 1. There exists a monic linear polynomial g(x) =z +a € Z[x], a ¢ {0,+1}, such
that Orb(t) ﬂOrb;t(t) # {t} if and only if a is a primitive divisor of t,, for some
m > 1. In this case, Orby(t) ﬂOrb;t(t) is infinite.

ProOF: If g(v) = 2+ a € Z[x] is such that Orb(t) N Orbgi(t) # {t}, then this is
equivalent to the fact that there are integers m,n > 1 such that f™(t) =t + na.
Assuming that m is the smallest such positive integer, one sees that a is a primitive

divisor of f™(t) —t. The infinitude of the intersection follows from Proposition 6.4.
U

Proposition 6.5 Let f(x) € Z[z] and t € Z. If a is a primitive divisor of f™(t)—t
for some m > 1, then Orbm(t) C Orbgi(t) where g(z) = x+a. Moreover,

Orb ¢m (t) ﬁOlrb;IE (t) ={t+nja:i>0}

where t+n;r1a = fM(t+n;a).

PROOF: Since a|f™(t) —t, then f™(t) =t+an=g"(t) € Orb;t(t). Since a is primi-
tive for f™(t) —t, then m is the minumum positive integer for which f(¢) € Orb;IE (1).
So, by Proposition 6.4, f™*(t) € Orb;t(t) implying that Orbm(t) C Orbzc(t). O
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Corollary 6.1 Let f(x) € Z[z] and t € Z. Let h(z) :== (f)¢71(x) € Zlx], where
o(x) =ax+t. If a is a primitive divisor of f(t)—t, then the primitive prime divisors
of fi(t) —t are the primitive prime divisors of h*(0) for all i > 1.

PROOF: Since a | (f(t) —t), one easily sees that the map h(z) = (f(t+ax)—t)/a €
Zlx]. O

Example 6.6 Consider the linear map g(x) =z +k for some k € Q*. Let a € Q*
be such that ak € Z, and p be a rational number. There exists nonzero rational

numbers b,c such that the quadratic map f(x) = az®+bx + c satisfies
Orb¢(p) C Orby(p).
where b=1—ak —2ap and c =k + akp+ ap?. More precisely,
Orby(p) = {p,p+k,p+2k,p+nok,p+nik,--- ,p+nik,---}

where ng = 3+2ak, and n; = h'(ng), i = 1,2,---, where h(z) = akx®+ (1 —ak)x+1.

For example, let f(z) =222 — 37z +163, g(x) =x+7 and p=6. Then one can have
Orby(p) = {6,13,20,223,91370,...,} C Orby(p) = {6,13,20,26,...,223,91370, ..., }.

Corollary 6.2 Let f(x) € Z[x]. For all but finitely many integers t, there exists an
integer a ¢ {0,%1}, such that Orby(t) C Orbgi(t) where g(x) = x +a.

PROOF: One sees that there are only finitely many ¢ such that f(t) —t € {0,£1}.
For any other integer ¢, f(¢) —t¢ has a primitive divisor a. Now the result follows by
Proposition 6.5. [l

6.3 Relative density of orbits intersections

Given a polynomial f in Z|[x], an integer s, and a set A C Z, we define the relative
density of A in the orbit of s under f to be the limit

. {x € ANOrby(s) 12 < X}
A= 1
Os.5(4) X 5o [{z € Orbs(s) :x < X}| ~

provided that this limit exists.
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Given a polynomial g € Z[z] and an integer ¢, we will concern ourselves with
d7.s(Orbg(t)).

Lemma 6.4 Let f,g € Z[x] and s,t € Z. The following statements hold.
i) 05 5(Z) =1.

ii) 07,4(Orby(t)) =0 if deg f,degg > 1 where f and g have no common iterate; or
deg f =degg =1 where f and g have no common iterate and both f and g are

non-monic.

i) 65 5(Orby(t)) =0 if deg f =1, degg > 1 and g(x) is not a power of a linear

polynomial.
PRrROOF: For i), it is clear as f € Z[x] and t € Z.

For ii), if deg f,degg > 1 where f and g have no common iterate, Theorem 1 in [37]
gives that Orb¢(s) N Orby(t) is finite. Hence, 07 4(Orby(t)) = 0. If deg f = degg =1
where f and g have no common iterate and both f and ¢ are non-monic, then the

result follows from the Remark 6.1.

For iii), let f(z) = ax +b for some a,b € Z and a is not a unit. Then by Proposition
6.1, Orbjjf(s) NOrby(t) is finite. Hence, é¢ 4(Orby(t)) = 0. Now assume f(x)=x+b
where b € Z. This gives Orb}[(s) ={s+bk:ke€Z}. Let mj >0 be the least integer
such that g™ (t) € Orbs(s), i.e., g™ (t) = s+ bry for some r; € Z. Let mg be the
least integer such that mo > mj and ¢"2(t) € Orb;[(s), ie., ¢ (t) = s+ bry for
some r9 € Z. One can construct a sequence mp < mg < --- < m; < ... such that

g™ (t) = s+ br; for some r; € Z. We observe that
g" M (g™ (1) = g™ (t) = g™ () + b(r; —r1) for all 4.

So, this implies ¢""*(t) is periodic mod b for g(z) with exact period ma —m;. By

periodicity, we have
g () = g™ T (g™ (1) = 9" (g™ (1),
Let g"m27™ (z) = Z;-lzo a;z!. Then
(D) = 6 g™ (0) = 670 +blr— ),
and
d .
gl () = g™ (g™ () = D aj(g™ (8) +b(ri— 1)) = g™ () +b(rip1 —11).
=0
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This implies that ;41 = h(r;) where h(x) is a polynomial of degree d. This means
that r; = h'™7(r;) is a polynomial of degree d*~7 in r;. Thus,
{f™(s) € Orby(t) : =M <m < M}| i

]\4hi>noo 2M - zll{go 7’7 =0

This implies that

=0.

d7.5(Orbg(t)) = ]\}gnoo Hfm(s) € Orbg](\z;) :0<m< MY

O

Corollary 6.3 Let f(x) be a polynomial in Z[x] and g(x) = x+ a where a € Z is
such that a #0,£1. Let t € Z. The following statements are equivalent:

(i) t is a periodic point of f(x) mod a with exact period n > 1.
(7i) a is primitive divisor of f™(t) —t.
(iii) 674(Orby (1)) = L.
(iv) | Orby(t)N Orby ()| = co.

ProoF: This is Proposition 6.4 and Lemma 6.3. U

Remark 6.2 In Corollary 6.3, if a=p{*---p2e, then n is the least common multiple

of all n;, i=1,--- e, where n; is the exact period of t for the image f(x) of f(x) in
€ Z/(p;"Z)[x], see the proof of Proposition 6.4.

6.4 Covering polynomial orbits using arithmetic progressions

In view of Corollary 6.3, the infinitude of the intersection of a linear orbit with the
orbit of an integer ¢t under a polynomial f of arbitrary degree is equivalent to the

existence of a primitive divisor for an element in the sequence { f(¢) —t};.

In fact, for the polynomial f(z) = 2¢+c € Z[z], it was proved in [10] that the
sequence f*(0) has a primitive prime divisor for all i except finitely many. For
2?4 ¢ € Q[z], it was shown in [50] that the sequence f?(0) has a primitive prime

divisor for all i except possibly for 23 values. Moreover, it was shown in [58] that
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for two classes of polynomials f(z) € Z[x] and and any integer ¢, the sequence f"(t),

n > 1, has only finitely many terms with no primitive prime divisor.

If ¢ is a point whose orbit is infinite under f(z) € Z[z], then for all but finitely many
integers n, f™(t) has a primitive prime divisor under the abc-conjecture, see [39].
Moreover, if ¢ is a critical point of f(z), then for all but finitely many integers n,

f™(t) —t has a primitive prime divisor, see [57].

Definition 6.2 Let f(x) € Z[x] and t be an integer. A finite system
A:{as—l—nSZ}gzl, as,ns €L, ng>0, 1<s<k,
is said to be a cover of Orby(t) if
Orb(t) C UR_ as +nsZ.

If {as +nsZ}I§:1 is not a cover of Orby(t), then A is a cover of Orby(t) for which
Qy, +nyZ 18 egjgntial. A minimal cover of Orby(t) is a cover in which all the arith-
metic sequences are essential. If Orbg(t)Nas+nsZNay +ngZ =0 for all s # 5,
then A is called a disjoint cover of Orby(t). A t-cover of A is a cover of Orbg(t) for
which t € ﬂl;:las + ng.

For a positive integer n, one sees that {r+nZ}"} is a disjoint cover of Orb #(t) for

any f(z) € Z[z] and any integer ¢.

Given f(z) € Z[z] and t € Z, we will mainly focus on disjoint covers and covers
of Orby(t) of the form A = {t+nsZ}*_,, where the latter covers are t-covers of

Orby(t). In other words, we consider covers of Orby(t) using linear orbits of the
form {Orbyy, (as)}*_;, where Orb(t) N Orbyty, (ar) N Orbyyy, (as) =0 if 7 # s; or
covers of the form {Orby . (1)}~

Theorem 6.1 Let f(x) be a polynomial in Z[x] and t € Z. Let g;(x), 1 <i <k, be
a finite family of monic linear polynomials in Z[x]. The following statements are

equivalent.
i) 074 (U, O (1)) = 1.
i) Sy (Orbgii(t)) =1 for somei, 1 <i<k.
iii) Orby(t) C Orb?]:i (t) for some i, 1 <i<k.

PROOF: The implication iii) yields i) is clear. We assume that (Ui Orb?;i (t)) =1.
We assume without loss of generality that |Orbs(¢)N Orbi(t)| = oo for all 7. By
Corollary 6.3, & f,t(Orbgii () = n% for some positive integer n;. Moreover, if g;(z) =
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x + a;, then a; is a primitive divisor of f™i(t) —¢. We assume that n; > 1 for all
i. Proposition 6.4 implies that f"(t) € Orbgii (t) if and only if ni|m. Let n = [I;n;.
Now it is clear that n;{ (hn+1) for any integer h. In particular, fA"+1(t) ¢ Orb;ti (t)
for any 4, 1 <4 < k. This implies that (Ui Orb;ti (t)) <1- %; which contradicts
our assumption, hence n; = 1 for some i. Assuming ii), Corollary 6.4 ii) implies

that a; is a primitive divisor of f(t)—¢. In view of Proposition 6.5, one sees that
Orby(t) C Orby (t). O

Corollary 6.4 Let f(x) be a polynomial in Z[x) andt € Z. If A= {t+nsZ}%_| isa
minimal t-cover of Orby(t), then k= 1. In particular, if A= {t+nsZ}*_, k>1, is

5:17

a system of arithmetic progressions such that d¢ (t+nsZ) <1, for all s =1,---Fk,
then o4 (Ule(t—i-nsZ)) < 1.

Definition 6.3 Let f(x) € Z[x] andt € Z. Let be a real number such that 0 <9 <1.
If there is a system of arithmetic progressions of the form A = {t+nsZ}’§:1 such
that 074 (Ulgzlt—i—nSZ) =0, then § is said to be (f,t,k)-accessible.

For f(z) € Z[z] and t € Z, we set
PD(f,t) ={a:ais a primitive divisor of f"(t)—t for some n > 1}.

The set PD(f,t) contains the set of primitive prime divisors of f™(t) —t. If ¢t is a
wandering point for f, then it is clear that PD(f,t) is infinite since otherwise ¢ will

be a preperiodic point under f. We also set
S(f,t)={n>1: f"(t) —t has a primitive divisor}.

Again, if t is a wandering point for f, then S(f,t) is infinite.

Definition 6.4 Let S C Z. A nonnegative rational number § < 1 is said to be an

(S, k)-inclusion-exclusion fraction if there are n; € S, i =1,---  k, with
5—Xk: ! > ! + > ! oo (=R !
R U lem(ngy,miy) Vg iy ia <k lem(ny , My, Mig) lem(ng,---

Theorem 6.2 Let f(z) € Z[z] and t € Z be a wandering point for f. Let k> 1 be

an integer. An (S(f,t),k)-inclusion-exclusion fraction is (f,t,k)-accessible.

PROOF: Let 6 be an (S(f,t),k)-inclusion-exclusion fraction. Let n; € S(f,t) for
1 <i <k beasin Definition 6.4. Let a; be a primitive prime divisor of f"i(t) —t which
exist by the definition of S(f,t). Let g; = x+a;. By Corollary 6.3, 5f’t(0rb;5 ()= n%
By setting A = {t+a;Z}, we can see that
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k k
5f7t(U t+aZ) = 6r.(|JOrbi(t))

i=1 i=1
[{w € UL, (Orb (1) NOrby(t)) - < X}
|z € Orbs(t) : 2 < X}
{o € MYy (OrbE ()N Orby(t)) 1w < X}

e
B

I

_1)y*1 li
(1) > X hee |z € Orby(t) : 2 < X}

1<i1 <ia < <4<k

<
Il
—

A ™) eI OrbY () :m < MY
(=17 2 P e

|
&Mw

j=1 1<i1<in < <4<k
k 1
]221( ) Z lem(ngy,...,n;;)

1<y <ig<-+<i;<k

The third equality is by inclusion and exclusion. The last equality is by Corollary
6.3 and Proposition 6.4, since f(t) € Orbgiir (t) if and only if n;, |m which implies
that f™(t) € ﬂf;:l Orb;cir (t) if and only if lem(n;,, ..., n;;)|m. Thus, the result holds.

L]
Corollary 6.5 Let f(x) € Z[z| and t € Z be a wandering point for f. If n € S(f,t),
then 1/n is (f,t,1)-accessible.

Proo¥F: This follows from Corollary 6.3. U

Proposition 6.7 Let f(z) € Z[z] and t € Z be a wandering point for f.
i) If ny,n—1€ S(f,t), then 2/n is (f,t,2)-accessible.

it) Let n be an odd integer such that n,n—1,n—2¢€ S(f,t), then 3/n is (f,t,3)-

accessible.

iti) Let m,n € Z such that (m—1)|(n—1) and n,(n—1)/(m—1) € S(f,t), then

m/n is (f,t,2)-accessible.

ProoF: For i), if n,n—1¢€ S(f,t) then 1/n and 1/(n—1) are (f,t,1)-accessible
from Corollary 6.5. Since ged(n,n—1) =1, one can have that

11 12
n n—1 nn-1) n

is (f,t,2)-accessible by using Theorem 6.2.

For ii), Corollary 6.5 and assumption give that 1/n,1/(n—1) and 1/(n —2) are
(f.,t,1)-accessible. Since n is odd integer, we have ged(n,n—1) = ged(n,n —2) =
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ged(n—1,n—2) = 1. Then by using Theorem 6.5, one can have that

[N S S S S 1 ) 1 3
n n—1 n—-2 nhn-1 nn-2 m-1Dn-2) nn-1)n-2) n

is (f,t,3)-accessible.
For iii), one may apply the same way to prove that m/n is (f,t,2)-accessible.

O
Remark 6.3 From the Theorem 6.4, we can get the density % with one linear
polynomial g(x). Also, Proposition 6.7 gives us we can get % and % (in this case, n
is odd) with 2 and 3 linear polynomials, respectively. However, this is not correct

in general, i.e., to get density %, we can not say we must have i linear polynomials.

The following example proves this.

Example 6.8 Assume that f(z) be a polynomial in Z[x] and t € Z, then there does

not exist linear polynomials gi(x),...,g4(x) in Z[x] such that

4
+ + + +
d7,¢(Orby, (1) UOrby, (t)UOrb, (t) UOrby, (1)) = 5

One can observe that if ni,na,n3,ny be chosen as least four positive prime integers
such that 5f7t(Orb;ti (1) = n%_, then

4
+ + + +
d7,t(Orby, (t) UOrby, () UOrb,. (t) UOrby, (1)) < v

This means, to get the density %, we need at least 5 linear polynomials.

Theorem 6.3 Let f(z) € Z[z] and t € Z be a wandering point for f. Let m,n € Z

and p;’s are prime in order. If k is an positive integer such that

k
(514;:1—1_[(1—1.) <m,

i=1 Di n

then m/n is not (f,t,k)-accessible. In particular, there does not exist k linear poly-

nomials g1(x),...,gx(x) such that

k
m
Ot (U Orb;i@)) =—
i=1 n

Corollary 6.6 For k=2, 1-TI7; (1-L)=1-(1-3) (1-3) =3. So, for 2 >
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%, ™ is not (f,t,2)—accessible for any f and t.

Remark 6.4 Let k>0 be an integer. Then there exist an interval (a,1) where a € Q
and 0 < a <1 such that ¢ is not (f,t,k)—accessible for any f, t and c € (a,1).

Theorem 6.4 Let the set of all rational primes by P, f(x) be a polynomial in Z[x]
and t € Z such that P C S(f,t). Then for all € > 0, there exists a finite family of

linear polynomials g;(x) such that
5f,t (Orbf(t) N <U OI‘b;:i (t))) >1—e
i

PROOF: Let n; be the exact period of ¢ under f(z) (mod m;) for some positive
integer m;. (Here, m; is primitive divisor (not nec. prime) of {f™i(t) —¢}). If nls

are coprime, then one can observe the following equality,

where the RHS is the required density. Now, n; can be chosen as primes p; in order.

Then we have

S (Orbf(t)ﬂ (Lijorbji(t)» —1- ﬁ (1—1_> —1- T ! )

=1

Moreover, we know that

1 1 1
lim [1— % T =|1- % 1 =]l-———=1-0=1
koo (Ilm (=5 )7t limp— o0 lim g+ (T Ti—y (1 — g))_l lim, 1+ C(s)

where ( is the Riemann-Zeta function, which has a simple pole at 1.

By the definition of the limit, for all €, there is an integer N such that

1
. (1_ (szil(l_pll))_1> S €

which concludes the result. O

Corollary 6.7 Let (x,1) be an open interval. Then there exist f,t,k and zg € (z,1)
such that xg is (f,t,k)— accessible.
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