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ABSTRACT   

Modern deep learning-based cell segmentation algorithms with high computational power have enabled automated and 

high-throughput segmentation of bacteria. Previous studies, relying on either manual or automated cell segmentation 

approaches, have proved that a clonal bacteria population cultured in a regular growth medium in a homogenous 

microenvironment exhibits heterogeneity. When antibiotic treatment has been applied, heterogeneity of the bacteria 

population may increase depending on the working mechanisms of an administrated antibiotic. Therefore, important 

features of rare cells, such as asymmetric division of antibiotic persister cells or cells with metastable phenotypes, might 

be masked by heterogeneity of a population, particularly when a limited number of the cells was analyzed. Therefore, 

automated image segmentation and analysis approaches have significantly impact on accurate, rapid, and reliable feature 

identification, particularly for extracting quantitative high-resolution data at high throughput. Here, we implemented U-

Net algorithm for segmentation of Escherichia coli cells in the absence and presence of ciprofloxacin. The accuracy values 

were 0.9912 and 0.9869 for the control and ciprofloxacin-treated cell populations, respectively. Next, we developed an 

algorithm using Phyton and the OpenCV library to extract the cell number, cellular area, and solidity features of the cells. 
We believe that our preliminary data might contribute to development of automated, reliable, accurate, and bacteria or 

antibiotic specific image segmentation tools.   
Keywords: Segmentation, Escherichia coli, U-Net convolutional networks, Ciprofloxacin, Single-cell analysis, 

quantification 

 

1. INTRODUCTION  

Segmentation of bacteria in crowded and dynamic environments is a complex problem and requires multidisciplinary 

approach to identify relevant features. For solution, several deep learning-based segmentation algorithms have been 

developed for automated segmentation of bacteria1-6. Although human eye may still be superior for characterizing diverse 

and arbitrary shaped cell types from imaging data, manually segmenting cells is extremely time-consuming, error-prone, 

and low throughput1-3. Particularly, when the cells form biofilms or become elongated or branched morphology when they 

have been exposed to stress conditions such as antibiotics4-6. Recent years several image analysis tools, mostly open-source 

platforms, for bacteria have been developed to extract cellular features such as cell size, perimeter, elongation rate, growth 

rate, poles, organelles, trajectories, movement of flagella, while tracking these features over time and relating them to one 

another in meaningful ways3,7.  

Among these powerful and open-source deep learning software, DeepBacs is developed for multi-task bacterial image 

analysis2. DeepBacs uses different deep learning approaches for segmenting bright field and fluorescence time-lapse 

imaging data of different bacterial species. It classifies growth stages and antibiotic-induced phenotypic alterations. 

MicrobeJ focused on intensity and morphology measurements of single cells on large image sets. It allows tracking of cells 

and sub cellular features over time with subpixel resolution3. Cutler and co-workers presented the Omnipose platform, 

which provides bacteria segmentation in the mixed bacterial cultures, antibiotic-treated conditions, and when the cells have 

extreme morphological phenotypes4. Besides the identification and classification of cellular features or rare cells, tracking 

bacterial lineages in complex and dynamic environments. Along this line, Bakshi and co-workers used a microfluidic 

mother machine device for tracking more than 105 parallel cell lineages cultured in the batch conditions5. Also, DeLTA, 



 

 
 

 

 

 

another CNN-based tool is also developed to track E. coli cells in a microfluidic mother machine to perform cell tracking 

and lineage reconstruction. As DeepBacs, MiSiC is developed as a general deep learning-based 2D segmentation method 

for high-throughput cell segmentation of complex bacterial communities independent of the microscopy setting and 

imaging modality6. They used a bacterial predator-prey interaction model to analyze bacterial interactions with low 

computational power. These studies significantly contributed to the field of bacteriology and still requires improved to 

become fully automated, rapid, easy-to-use, and precise.  

Contrary to previous studies, we focus on U-Net based segmentation and quantification of E. coli cells in the absence and 

presence of ciprofloxacin to quantify responses of E. coli cells for relatively long time at single cell level for high-

throughput analysis10. We cultured E. coli cells on a coverslip with Luria Broth medium in the absence and presence of 

ciprofloxacin (1.6 µg/ml). Ciprofloxacin is a fluoroquinolone antibiotic that inhibits cell division via inhibiting type II 

topoisomerase and topoisomerase IV those enroll in DNA separation11,12. Upon ciprofloxacin exposure, E. coli cells cannot 

divide and become elongated11-13. We acquired the phase-contrast images and implemented the U-Net, a convolutional 

network that enables high accuracy without requiring large datasets, to segment E. coli cells. We used 54 images for both 

regularly cultured (4761 cells) and ciprofloxacin-treated E. coli cells (6005 cells). Next, we developed an algorithm using 

Phyton and the OpenCV library to extract the cell number, cellular area, and solidity features of the cells from the 

segmented data. We believe that our preliminary data might contribute to extraction of quantitative high-resolution 

information at high throughput for investigating antibiotic responses of bacterial cells. Although, this implementation 

might seem trivial for the naked eye analysis, high throughput automatic data extraction is a significant computational 

challenge to detect bacterial cells with different morphologies in the crowded environments.  

  

2. MATERIALS AND METHODS  

2.1 Cell Culture and Antibiotic Exposure 

We used ATCC 10536 derived E. coli K-12 cells from the glycerol stocks. We inoculated it into 2 ml Miller’s Luria-

Bertani Broth (LB) and incubated at 37°C by shaking at 200 rpm for ∼16 h. We used a turbidity at 600 nm absorbance. 

We dissolved 10 mg of ciprofloxacin (MP Biomedicals™, USA) in 10 ml dimethyl sulfoxide (DMSO) to obtain 10 mg/ml 

stock solution and stored it at -20 °C. We used the concentrations of 0.16 µg/ml.  

Next, we prepared agar pads (1 cm x 1 cm 0.1 cm) using agarose (1.5%) into LB medium. For agar pad containing 

ciprofloxacin, we add the antibiotic at the final concentration of 0. 16 µg/ml before it solidifies. For the experiments, we 

grew the cells into early exponential phase (OD600nm = 0.05). Next, we 10-fold concentrated the cells by centrifugation 

and added 3 μl of the concentrated cell suspension on the agar pad in the absence (control) and presence of ciprofloxacin. 

Upon loading the cells, we covered the agar pad with a coverslip and incubated the cells on the microscope stage at room 

temperature for 20 minutes. 

 

2.2 Imaging and Manual Cell Segmentation 

Imaging was performed by a Zeiss AxioCam light microscope equipped with a 100x oil immersion objective and a Mrc5 

camera. We acquired the phase contrast images every 5 minutes for 5 hours.  

Cells were manually segmented using ImageJ both for control data and training data sets. We converted the microscopy 

images to tiff format and cropped to size of 573x537 pixels for the segmentation process. We manually segmented the 

control group and ciprofloxacin-treated E. coli cells using OpenCV library. The masking process includes the conversion 

of pixels that corresponds cells into white color and the rest of the image into black color. Both groups contain 54 images. 

Manually segmented images are grouped as training with 50 images and test with 4 images. 

 

2.3 Data Preprocessing and Augmentation 

The cropped microscopy images and manually segmented masks reshaped (512,512,3). Then, to augment the dataset, we 

used the ImageDataGenerator() function from the TensorFlow Keras library, applying a range of augmentation methods 

including rotation (range 0.2), width shift (range 0.05), height shift (range 0.005), shearing (range 0.05), zoom (range 

0.05), and horizontal and vertical flip. To ensure that the augmented images were of high quality, we used the nearest fill 

mode during the augmentation process. 



 

 
 

 

 

 

2.4 U-Net Model and Training  

We implemented and trained a U-NET model for automated segmentation using some modifications10,14. Specifically, 

we changed the image format from PNG to TIFF and increased the default input image target size from (256, 256) to 

(512, 512). The updated U-Net model was trained for 10 epochs, with 2000 steps per epoch for both the ciprofloxacin-

treated and control groups separately. The training was performed on a computer with an Intel(R) Core (TM) i9-10900 

CPU @ 2.80GHz, 128 GB of RAM, and an NVIDIA RTX A6000 48GB GPU. Each of the training processes took 

approximately 40 minutes.  

 

2.5 Feature Extraction  

When we completed the trainings and tests of the models, we first performed the segmentation and feature extraction using 

54 images of the control group. Next, we implemented it to the ciprofloxacin-treated data using 54 images of antibiotic-

treated cell population. To extract the features of each cell from the resulting masks, we developed a custom algorithm 

using the OpenCV library. In this algorithm, we first applied binary thresholding to the masks using the cv::threshold() 

function.  The threshold and the max value parameters of the function were set to 150 and 255, respectively. Consequently, 

the pixel values smaller than 150 were mapped to 0 (black) and those greater and equal to 150 to 25 were mapped to 255 

(white). Afterwards, we used the cv::findContours() function with simple chain approximation to detect the contours of 

the cells. We extracted the area and perimeter features from each contour using the cv::contourArea() and cv::arcLength() 

functions, respectively. Additionally, we calculated the solidity of each cell, which can be calculated as the ratio of the 

total area to the convex hull area10. The convex hull area of a group of points is defined as the area of the smallest convex 

polygon enclosing all these points. In our case, the convex hull area of a cell was the area of the smallest convex polygon 

that completely encloses the cell. We determined these polygons using the cv::convexHull() function and calculated their 

area similarly to calculation of the cellular area. After extracting the features of each cell for each image, we computed 

their average, minimum, maximum, and standard deviation values. 

3. RESULTS 

We implemented U-Net algorithm for segmentation of E. coli cells in the absence and presence of ciprofloxacin. First, we 

cultured E. coli cells in the test tubes, and we prepared the agar pads, as explained above. Next, we sandwiched the cells 

between an agar pad and a cover slip, then acquired phase-contrast images of the cells, Figure 1.  

 

Figure 1. Experiment plan. The scale bar is 5 µm. 

 

When we trained the U-Net model for the E. coli cells in the control group, we obtained 1.62 % loss and 99.28% accuracy 

values. These values were 2.88 % loss and 98.69 % accuracy for the E. coli cells in the ciprofloxacin-treated group. 

 

 



 

 
 

 

 

 

 

Figure 2. U-Net implementation for E. coli cells for the control group a) original image, b) segmented cells, for the 

ciprofloxacin-exposed group c) original image, d) segmented image. The scale bar is 5 µm. 

 

Table 1 summarizes the number of the E. coli cells that were counted by our custom algorithm using OpenCV 

from masks automatically generated by U-Net and by Fiji using manually segmented masks.  

 

Table 1.  Comparison of cell numbers in the control and antibiotic-treated cell cultures using U-Net predicted masks and 

custom algorithm and using manually segmented masks and Fiji.   

 Control cells Ciprofloxacin-treated cells 

# of cells by Fiji 4531 6154 

# of cells by OpenCv 4761 6005 

Loss 0.0162 0.0288 

Accuracy 0.9928 0.9869 

 

We calculated the average area, perimeter, and solidity features by our algorithm for the control group and ciprofloxacin-

treated E. coli cells. Figure 3 illustrates the distribution of these features for each frame and the statistical differences 

between the control and antibiotic-treated groups. We observed that ciprofloxacin hinders the cell division process, leading 

to the elongation of cells and an increase in cellular area and perimeter measurements. We obtained consistent results 

between manually and automated cell segmentation results, Table 1.  

Next, using the U-NET data we compared the changes in the cellular area and perimeters of the cells in the absence (black 

circles) and in the presence of ciprofloxacin (blue squares), Figure 3a-3f. Since these cells were elongated in the presence 

of ciprofloxacin, there was a significant difference for the area and perimeter measurements (p<0.0001). Besides, 

heterogeneity of the cells was increased when they were treated with ciprofloxacin, Figure 3b, 3d. The average cellular 

area and perimeter were 151.6 pixel2, 65.63 pixel for the control group cells, respectively. In terms of solidity, we did not 

observe a clear pattern. Initially, the solidity values of the ciprofloxacin-treated culture were slightly higher than the control 

group. However, the solidity value of the control group became slightly higher in the last 11 frames, Figure 3e. Although 

there was not statistically significant difference between these groups (p: 0.7830), there were two subpopulations in terms 

of solidity both in the control and antibiotic-treated groups, Figure 3f.  

 



 

 
 

 

 

 

 

Figure 3. Distribution of cellular properties and statistical comparison of control group and antibiotic-treated group pf cells. a) 

Distribution of cellular area, b) Area comparison, c) Distribution of perimeters of the cells, d) Perimeter comparison, e) Distribution of 

solidity, f) comparison of solidity. ns: not statistically significant, **** > 0.0001. 

 

 

 
Figure 4. Comparison of U-Net and Fiji cell counting  

Our simple linear regression test showed that U-Net-based obtained data fits well with the manually counted cell data for 

the antibiotic-free culture (R2 = 0. 9989), Figure 4a. On the other hand, we could not obtain a similar performance for the 



 

 
 

 

 

 

antibiotic treated cell population, (R2 = 0. 3153), Figure 4b. To solve this problem, hyperparameter tuning can be applied 

to the U-Net model to improve the generated masks. Also, Fiji program or the cv::findContours() function from OpenCV 

library might have problems to find contours of elongated cells or clustered cells.  

 

4. CONCLUSION 

 
In this paper, we presented the employment of U-Net – based cell segmentation algorithm for E. coli cells in both regular 

growth and ciprofloxacin treatment conditions. Our results provided 0.9912 and 0.9869 accuracy values for the control 

and ciprofloxacin-treated cell populations, respectively. Our further work will focus on increasing the number of analyzed 

images. Next, we will perform this analysis for different types of antibiotics which causes cell death based on different 

killing mechanisms. Our main goal is to generate a framework that can identify and segment different types of bacteria, in 

the absence and presence of various antibiotics. Finally, clinically important properties of the cells can be accurately 

obtained and rapidly reported to medical person.    
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