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ABSTRACT

SUPERTWIN: DIGITAL TWINS FOR HIGH-PERFORMANCE COMPUTING
CLUSTERS

FATİH TAŞYARAN

Computer Science MSc. THESIS, DECEMBER 2022

Thesis Supervisor: Assoc. Prof. Kamer KAYA

Keywords: High Performance Computing, Digital Twin, Performance Analysis,
Visualization

Computational systems are extremely complex and the composition of their hard-
ware and software components greatly vary from machine to machine. This non-
standardized environment can cause up to 100% difference between the best and
worst completion times with the same input data. On top of that, the shape of the
input data and executed kernels add even more variance to the situation. However,
computational systems are not completely hostile environments. These systems are
also equipped with diverse observability capabilities. A typical Linux system can
report thousands of real-time execution and performance-related metrics from both
its hardware and software components.

Digital Twins are knowledge management systems that have vast application areas
in the industry, however, digital twins of computational systems remain a gap in
the literature. SuperTwin is a knowledge representation generator and manager of
the tools and performance data that interact with it. It creates a digital twin of a
computational system via detailed probing, configures and listens to performance
metric samplers, creates real-time visualizations, links the acquired information, and
enables semantic queries for advanced analysis.

In this work, design and implementation choices for SuperTwin are thoroughly pre-
sented. The effect of profiling on remote systems is analyzed and the accuracy of
the readings is investigated.
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ÖZET

SUPERTWIN: YÜKSEK PERFORMANSLI HESAPLAMA KÜMELERİ İÇİN
DİJİTAL İKİZ

FATİH TAŞYARAN

BİLGİSAYAR MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, ARALIK 2022

Tez Danışmanı: Doç. Dr. Kamer KAYA

Anahtar Kelimeler: Yüksek Performanslı Hesaplama, Dijital İkiz, Performans
Analizi, Görselleştirme

Hesaplama sistemleri çok kompleks ve çeşitli donanım ve yazılım bileşenlerinin bir
araya gelmesiyle oluşur. Bu standart olmayan ortam, aynı girdi verisiyle en iyi ve en
kötü tamamlama süreleri arasında %100’e kadar farka neden olabilir. Bunun yanı
sıra, girdi verisi şekli ve çalıştırılan algoritmalar da bu eşitsizlikteki varyansı daha
da artırır. Ancak, bu zorlukların yanısıra, söz konusu sistemler aynı zamanda çeşitli
gözlemlenme yeteneklerine de sahiptir. Tipik bir Linux sistemi, hem donanımından
hem de yazılım bileşenlerinden binlerce gerçek zamanlı çalışma ve performansla ilgili
metrik raporlayabilir.

Dijital İkizler, endüstriyel uygulamalarda geniş uygulama alanları bulmasına rağ-
men, literatürde süper bilgisayar bağlamında araştırılmamış bir konsept olarak dur-
maktadır. SuperTwin, çeşitli hesaplama ortamı ve performans verisi araçlarını
otomatikleştirerek kullanan, bu araçların ve performans verilerinin bilgi temsil oluş-
turucusu ve yöneticisidir. SuperTwin, detaylı bir taramayla bir hesaplama sistem-
inin dijital ikizini oluşturup, performans metrik örnekleyicilerini yapılandırma ve
dinleme, edinilen farklı tiplerdeki bilgiyi bağlantılı hale getirme kabiliyeti ile gerçek
zamanlı görselleştirme ileri analiz için anlamlı sorgulara izin verir.

Bu çalışmada, SuperTwin tasarım ve gerçeklemesi ayrıntılı olarak sunulmuş, per-
formans ölçümü etkisinin hesaplama sistemlerine etkisi araştırılmış ve performans
incelemelerinin tutarlılığı incelenmiştir.
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1. Introduction

Today’s computing systems consist of overwhelmingly many components whose com-
position varies in every machine. However, the complexity of these systems is not
limited only to this variation. There are many other factors contributing cumula-
tively to this complexity. The architectures of processor units and capabilities of
memory units change with every generation, communication capabilities of these two
components are also constantly changing as standards are added each year. More-
over, since servers used for high-performance computation serve multiple users, there
may arise problems such as resource contention, network congestion, disk congestion,
memory congestion, etc. The type of applications that run on these machines and
the type of their inputs also add to this complexity since they may cause significant
changes in performance and efficiency. All this variation is caused naturally due to
constantly developing technology and evolving algorithms creating the need for fine
modelings of these cyber-physical systems using tools such as monitoring, profiling,
and forecasting of events that affect application performance in order to optimize it.

Although there are many performance metric sources in computers, such as kernel
stats and performance monitoring units (PMUs) which count the number of oc-
currences of events that took place in different sub-components of the CPUs and
the memory subsystem, the implementation of these counters also changes from
architecture to architecture. Input shape also changes with respect to the type of
application and does not always fit into the system. For example, sparse data, in
nature, is not very efficient to run on Von Neumann architectures since memory
accesses are done in batches and data points to be used consecutively do not al-
ways appear in fetched batches of memory, therefore, causing many redundant data
transfers. Although during the development and optimization of frameworks, pro-
filing tools that leverage kernel replays and source code instrumentation are widely
used and become handy, it is not always possible to run the code with them since
they come with significant overhead. Moreover, they are not meant to work with
product releases, in which programs may prune to performance variations caused
by several conditions, such as orphan processes, firmware bugs, memory leaks, CPU
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throttling, reduced frequency, shared resource contention, and network congestion.
These factors can cause up to 100% difference between the best and worst comple-
tion times with the same input data (Aksar, 2021). Thus, a need for innovative
monitoring tools that can monitor every single component of an HPC system, from
kernel statistics to physical hardware performance counters to component features,
arises. A digital twin could also be used to create a structural representation of the
aforementioned sources of complexity and efficiently model this complex problem.

A Digital Twin is a structured collection of information emitted from a real-world
system. Digital twins capture structural and sensory data from their physical coun-
terparts and allow for in-depth historical analysis, real-time monitoring, simulation,
and prediction of the entity it models. Albeit there are several digital twin ontologies
in the literature for modeling industrial machines (Steinmetz, 2018), cities (Deng,
2021) (Shahat, 2021), smart buildings (LuViVi, 2019) and even earth (Huang, 2022),
up to our knowledge, there is little to no work on ontologies to describe computers
as cyber-physical systems. A closely related effort on the problem is DTDL. DTDL
is developed by Microsoft for IoT frameworks, therefore, provides a more suitable
basis for describing computers. In this work, we altered DTDL (Digital Twin Def-
inition Language) to represent computers mainly used for computation purposes
and their telemetry sources, as well as their computations, and built a digital twin
management system around it. SuperTwin aims to mediate analyzing of the afore-
mentioned complex process via automatically discovering component information,
automatically configuring monitoring agents, and providing on-the-fly analysis and
monitors for systems and computations run on them while keeping its memory foot-
print and computational overhead as low as possible.

There are two main domains for performance metrics in common computational sys-
tems, hardware-induced, and software-induced metrics. They are generally handled
separately in current works, however, they may have implications for each other. For
example, a hardware performance counter reads L1 cache bandwidth nonetheless, it
is unaware of anything that goes wrong in the system, such as resource contention,
or thermal throttle. Our SuperTwin is a digital copy of the "whole system", there-
fore it contains both software and hardware-related information and past job history.
Another important property of the proposed method is; designed digital twins being
interactional with each other. Since the metamodel interface defines the shape of
the underlying data and how it should be processed, a metamodel class from one
digital twin could be co-processed with another twin’s class (or this class’s content.)

The presentations in this thesis are mostly about design, preliminary results, tests,
and verifications of SuperTwin and performance metric readings.
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2. Background

2.1 Digital Twins

Digital Twins are used to provide a digital projection of physical systems via describ-
ing data-emitting sources and relationships between physical systems components.
Collections of methodologies that are used to describe these pieces of information
are called ontologies. Some of the well-known ontologies are; SOSA (Sensor, Ob-
servation, Sample, Actuator)(Janowicz, 2019), which is used to describe industrial
pipelines, and FOAF (Friend of a Friend), which is used to describe relations among
people. Moreover, there are several vocabularies used to describe digital twins,
such as RDF (Resource Description Framework) and OWL (Web Ontology Lan-
guage). Ontologies using these vocabularies allow static information to be located
and queried using web interfaces via SPARQL endpoints. These frameworks are
widely used to represent web-based interactions. Digital twins of HPC systems or
computers, in general, have to differ from other physical entity twins due to several
reasons; There are (usually) much more sensors for each subdomain of the physical
system, each sensor can report up to thousands of metrics, and metrics from the
same sensor can be variable even for the same system, and when counting processes
as a component of the system, even components change rapidly.

2.1.1 JSON-LD

Linked data is used to generate a network of discrete and distinct data in order to
enable semantic queries and complex analysis over different domains of data sources
and interoperability. Linked data is widely adopted in web technologies and also used
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in different branches of science for knowledge management, such as biology (Xin,
2018) and physics (Chen, 2016).

RDF is a standard for data exchange graph data on the web. In the context of
RDF data, an edge is referred to as a triple and consists of a source node (called a
subject), an edge name (called a predicate), and a target node (called an object).
An RDF graph is defined as a set of RDF triples that follow this structure. On top
of this structure, RDFs have identifiers, called IRIs to unambiguously identify and
properties to describe the nodes. JSON-LD is a notation used to express RDF data
using JSON syntax. This means a JSON-LD document is both a JSON document
and an RDF document.

JSON-LD has "ld attributes", on par with RDF, which separates JSON-LD from
ordinary JSON. Most relevant of these attribures are; @context, @id and type.
With these attributes, we know what a JSON-LD dictionary describes, what kind
of datatypes it includes, and how to parse and process them. This is an important
aspect since, in turn, it allows create bigger and interconnected systems from build-
ing blocks. Albeit very useful in creating knowledge graphs, these ontologies are
designed and used to keep static metadata. To add new data points, new triples
need to be injected into the graph, which makes these types of ontologies impractical
with the use of time-series data without modification (Friedemann, 2019).

2.1.2 DTDL

DTDL is a derivation of RDF, which is made up of six metamodel classes that de-
scribe the context of digital twin components. These classes are; Interfaces,
Telemetry, Properties, Commands, Relationships and Data Types. In
DTDL, every Interface is a digital twin on its own, with its contents describing
its Properties, Telemetry, and Relationships. When combined, these enable
to capture of the hierarchical structure of a computer and model of every single
component (e.g., CPU, GPU, memory subsystem, etc.) as a separate digital twin
entity. The idea that every interface is considered a digital twin on its own is heavily
exploited in SuperTwin.
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Property Description

@type Interface
@id Unique identifier within digital twin for interface
contents a set of Interface, Telemetry, Properties, Commands, Relationships, Components
displayName Name to be displayed when instantiated
@type Telemetry
@id Unique identifier within digital twin for this telemetry instance
name Programming name, to be referred in queries
schema Data type
@type Property
@id Unique identifier within digital twin for this property instance
name Programming name, to be referred in queries
schema Data type
@type Relationship
@id Unique identifier within digital twin for this relationship
name Programming name, to be referred in queries
properties Data type, a set of properties

Table 2.1 A subset of the DTDL classes and their properties. These particular
classes are altered and used in SuperTwin.

2.2 Observability of Computing Systems

2.2.1 Linux Observability

An operating system is a software program that manages a computer’s hardware
and software resources and coordinates their interactions. It acts as an intermedi-
ary between the computer’s hardware and the programs that run on it, ensuring
that everything runs smoothly and efficiently. The operating system is responsi-
ble for managing the hardware and software resources of the computer, including
the processor, memory, storage devices, and input/output devices, alongside task
management. Therefore, metrics emitted from the operating system are required to
ensure that applications run optimally without anomalies. Similarly to hardware,
Linux operating system also consists of several components. These components are
equipped with thousands of tracepoints, and logs which could be used to generate
statistics for each component. A brief breakdown of these components and some of
the numerous tools to observe their states are given in 2.1
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Figure 2.1 Components of the Linux operating system and some of the tools widely
used to monitor telemetry arose from these components. (Gregg, 2021)

2.2.2 Hardware Performance Counters

PMUs are programmable interfaces on CPUs that contain built-in special-purpose
registers called hardware performance counters that are physical entities on the
hardware. Hardware performance counters could be configured to count or sample
certain events that took place during the execution of the programs. Linux natively
supports PMU inference with perf interface, which has been included in the ker-
nel since version 2.6.31. Although there are PMU implementations in almost any
processor, their capabilities, events, and event codes change with every new architec-
ture. Therefore they are implemented as MSRs. Even though most of the MSRs on
x86 architectures report substantially intersecting sets of events and a small amount
of architecture-specific events, they are no generic configurations that will work on
different architectures. Apart from MSRs, they are also RAPL PMUs that report
components’ energy consumption such as CPUs, sockets, and DRAMs. libpfm4 is
a widely available library that can detect PMUs and their events on virtually every
architecture, including ARM. Most tools that provide an interface over hardware
performance counters rely on libpfm4 to resolve programming parameters and avail-
able events. Some of the important software and hardware metrics that correlate
highly with execution performance is given in Table 2.2
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Source Source Description Metric Metric Description
kernel.all.intr Context switch metric from /proc/stat
kernel.all.pressure.cpu.some.total Total time processes stalled for CPU resources
kernel.all.pressure.memory.some.total Total time processes stalled for memory resources
kernel.all.pressure.memory.full.total Total time when all tasks stall on memory resources
kernel.all.pressure.io.some.total Total time processes stalled for IO resources
kernel.percpu.interrupts.PMI Performance monitoring interrupts for each core
kernel.percpu.interrupts.TRM Thermal event interrupts for each core

/proc Kernel statistics

kernel.percpu.interrupts.line* Number of interrupts caused by each IO device
mem.util.used Used system memory
mem.util.free Free system memory
mem.util.directMap4k Amount of memory that is directly mapped in 4kB pages
mem.util.directMap2M Amount of memory that is directly mapped in 2MB pages
mem.util.directMap1G Amount of memory that is directly mapped in 1GB pages
swap.pagesin Pages read from swap devices due to demand for physical memory

System memory statistics

swap.pagesout Pages written to swap devices due to demand for physical memory
mem.numa.util.free Per-node free memory
mem.numa.util.used Per-node used memory
mem.numa.alloc.hit Per-node count of times a task wanted alloc on local node and succeeded
mem.numa.alloc.miss Per-node count of times a task wanted alloc on local node but got another node
mem.numa.alloc.local_node Per-node count of times a process ran on this node and got memory on this node

/proc/meminfo

NUMA statistics

mem.numa.alloc.other_node Per-node count of times a process ran on this node and got memory on another node
mem.vmstat.kswapd_low_wmark_hit_quickly Count of times low watermark reached quickly/proc/vmstat Virtual memory statistics mem.vmstat.kswapd_high_wmark_hit_quickly Count of times high watermark reached quickly
network.interface.in.bytes Network recv read bytes per network interface/proc/net/dev Network interface statistics network.interface.out.bytes Network send bytes per network interface
disk.dev.read Per-disk read operations
disk.dev.write Per-disk write operations
disk.dev.read_merge Per-disk count of merged read requests/proc/diskstats Disk statistics

disk.dev.write_merge Per-disk count of merged write requests
proc.psinfo.ngid NUMA group identifier
proc.psinfo.threads Number of threads
proc.psinfo.nvctxsw Number of non-voluntary context switches
proc.psinfo.processor Last CPU the process was running on
proc.psinfo.cmaj_flt Count of page faults other than reclaims of all exited children
proc.psinfo.maj_flt Count of page faults other than reclaims
proc.io.wchar write(), writev() and sendfile() send bytes

/proc/<pid>/* Per process statistics

proc.io.rchar read(), readv() and sendfile() receive bytes
Hardware Counter Metric Metric Description
CPU_CLK_UNHALTED.THREAD Cycles Counts the number of core cycles while the logical processor is not in halt state
MEM_INST_RETIRED.ALL_LOADS Loads Counts the number of retired loads
MEM_INST_RETIRED.ALL_STORES Stores Counts the number of retired stores
L1D.REPLACEMENT L1 Data Misses Counts the data line replacements that occur on L1D cache

LLC_REFERENCE -
L2-RQSTS.CODE_RD_MISS L2 Data Misses

Number of data requests that miss L2D cache. Corresponds to the difference
between every core request that references a cache line in LLC and the L2
code misses

CAS_COUNT.RD+CAS_COUNT.WR LLC Misses Sum between all DRAM reads and all DRAM writes
CYCLE_ACTIVITY.STALLS_L1D_MISS L1 Data Stalls Stalls that occur due to outstanding loads that miss L1D cache
CYCLE_ACTIVITY.STALLS_L2_MISS L2 Stalls Stalls that occur due to outstanding loads that miss L2 cache
CYCLE_ACTIVITY.STALLS_L3_MISS L3 Stalls Stalls that occur due to outstanding loads that miss L3 cache
CYCLE_ACTIVITY.STALLS_MEM_ANY Memory Stalls Stalls that occur due to outstanding loads in the memory subsystem
CYCLE_ACTIVITY.CYCLES_L1D_MISS Cycles with misses on L1 Data Cycles while there are outstanding loads that miss L1D cache
CYCLE_ACTIVITY.CYCLES_L2_MISS Cycles with misses on L2 Cycles while there are outstanding loads that miss L2cache
CYCLE_ACTIVITY.CYCLES_L3_MISS Cycles with misses on L3 Cycles while there are outstanding loads that miss L3 cache
CYCLE_ACTIVITY.CYCLES_MEM_ANY Cycles with outstanding loads Cycles while there are outstanding loads in the memory subsystem
FP_ARITH_INST_RETIRED.SCALAR_DOUBLE FP Scalar Double Double-precision scalar FP instructions
FP_ARITH_INST_RETIRED.SCALAR_SINGLE FP Scalar Single Single-precision scalar FP instructions
FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE FP 128-bit SIMD Double Double-precision 128-bit packed FP instructions
FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE FP 128-bit SIMD Single Single-precision 128-bit packed FP instructions
FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE FP 256-bit SIMD Double Double-precision 256-bit packed FP instructions
FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE FP 256-bit SIMD Single Single-precision 256-bit packed FP instructions
FP_ARITH_INST_RETIRED.512B_PACKED_DOUBLE FP 512-bit SIMD Double Double-precision 512-bit packed FP instructions
FP_ARITH_INST_RETIRED.512B_PACKED_SINGLE FP 512-bit SIMD Single Single-precision 512-bit packed FP instructions

Table 2.2 Kernel performance metrics from /proc and hardware counter metrics that
used model sparse computation performance.

2.2.3 Benchmarks & Performance Models

Benchmarks are used to systematically measure the capabilities of a computer sys-
tem. Since SuperTwin provides an in-depth analysis of computer systems and their
applications, benchmarks are crucial information to have in order to have a baseline
and insight. Although computer programs could be huge in variety and number of
operations they perform to do a calculation, they generally consist of repeating sub-
routines which could be classified with respect to the ratio and type of their memory
and floating point operations. A class of benchmarks called micro-benchmarks are
especially useful for measuring the performance of these sub-routines. Since these
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Algorithm 1 STREAM Triad

#pragma parallel for
for (i =0; i<N; i++) {

a[i] = b[i] + c[i] * SCALAR;
}

sub-routines are encountered very frequently in scientific computations, they become
very useful in measuring system capabilities. Micro-benchmarks are generally writ-
ten with assembly to refine control over the executed stream of instructions as much
as possible. A good example of micro-benchmarks is infamous STREAM triad which
is most relevant to highly complex HPC workloads(Intel, 2022; McCalpin, 2007).

These benchmarks are also could be also to build performance models since they
have a constant amount of memory and floating point operations. For example, in
Algorithm 1, for each iteration of the loop, there are 2 floating point operations,
and 8 × 3 = 24 bytes are transferred if double precision is used. These values are
further augmented into a metric called Arithmetic Intensity (AI) which is the ratio
of executed floating point operations to transferred. AI for Algorithm 1 is for ex-
ample 2/24 = 0.083. Together with the peak number of floating point operations,
a system could achieve and maximum memory bandwidth, AI value could be used
to determine if a kernel’s performance is bounded by memory operations or floating
point operations. This method is called the Roofline Model (Williams, 2009). For a
simple DRAM memory model, Roofline could be calculated as

GFLOP/s = min

 Peak GFLOP/s
Al ∗ Peak GB/s

peak floating point could be theoretical and calculated with
Peak theoretical performance = no processors × cores per processor ×
clock speed × (2 × no FMA units) × (max vector size/64), or could be em-
pirical for a more accurate measurement. Peak bandwidth is usually measured
with STREAM benchmark or other similar platform-optimized micro-benchmarks.
On top of the naive roofline model, it is proposed that when the source of peak
memory bandwidth is changed from DRAM to other members of the memory
hierarchy, different roofs for maximum attainable performance could be found.
Hence individual rooflines for L1, L2, and L3 caches could be found (Marques et al.,
2017). An example roofline model using this method is given in Figure 2.2

All of the required values for building a roofline model are collected automatically
by SuperTwin and elaborated in Section 4.2. Moreover, SuperTwin configures and
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Figure 2.2 Cache Aware Roofline allows performance analysis to be performed w.r.
to different memory levels. The ridge point for each roofline separates memory-
bounded regions from floating point performance-bounded regions. Spaces between
rooflines show in which memory level the application saturates the memory hierar-
chy. To move to the right, floating point operations per memory operations should
be optimized. To move up, efficient use of the cache is required. To be able to
surpass the dashed line, on top of the very efficient use of cache memory, the use of
fused multiply-add operations is required (Marques et al., 2017).

executes the STREAM benchmark whose main paradigm has been given in Algo-
rithm 1 to provide a baseline for peak memory bandwidth and HPCG benchmark
which contains micro-benchmarks SpMV, DDOT, MG, and WAXPBY automati-
cally on the target systems. More detail for this process are also provided in Section
4.2.

2.3 Performance Co-Pilot

Performance Co-Pilot, initially released in 1995 by SGI and currently being de-
veloped by Red Hat, is a system performance analysis toolkit. PCP contains two
types of components; PCP collectors and PCP monitors. PCP collectors have two
components; Performance Metrics Domain Agent (PMDA) and Performance Metric
Collector Daemon (PMCD). PCP collectors are responsible for collecting and ex-
tracting performance data from various sources. These sources could be remote PM-
CDs, PMUs, application performance logs, or operating system components which
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are given in Figure 2.1. PMDAs are lightweight agents that connect to performance
sources and read their values, then report these values to PMCD. There are cur-
rently 75 PMDAs available, and apart from existing PMDAs, new PMDAs could
be developed to connect any wanted performance metrics source using the PMAPI
library. To be able to report metrics from a host machine, there must be a PMCD
that listens and control all PMDAs and answer requests of monitoring applications.
They are configured to discover available metrics from the system and build a Perfor-
mance Metric Name Space (PMNS), which includes every metric that the system is
configured and available to report. Note that PMNS does not include every perfor-
mance that the system can report. PMNS grows or shrinks as PMDAs are installed
or their configurations are changed. For every metric name in PMNS, there is also
an associated instance domain. The instance domain contains identical components
which report the exact same value. For example, in a host with 8 threads, a per-
thread metric hinv.cpu.clock has 8 instances on its domain from cpu0 to cpu7.
Or a per-process metric proc.psinfo.rss will have an instance for every process
there exist at the moment. Upon sampling this pmda, all values will be reported by
default, however, instance domains could be filtered and only instances of interest
could be sampled. Moreover, PMDAs work in a pull-only manner. They do not
report metrics on their own and sample and report performance metrics only when
asked to. Therefore they remain silent with negligible overhead when they are not in
use. Monitoring tools display, manipulate and store performance metrics extracted
from PMCDs.

Figure 2.3 Architecture of distributed metric sampling with Performance Co-Pilot.
Each PMDA is responsible for a specific domain of performance metrics. And on
each host, a PMCD control these PMDAs and/or report their readings to remote
machines (Red-Hat, 2021).
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Another important component of PCP is PMIE. Upon the discovery of performance
metrics, PMIE decides the semantics of the metric to be reported. There are three
semantics supported with PCP. The first is counter. A counter is a performance
metric source that monotonically increases (or decreases). When PMIE detects a
counter value, it automatically configures the sampling PMDA to report the change
in the value instead of the actual reading. This is the case with the pmdaperfevent
which is used heavily in the SuperTwin. Another semantic is instantaneous value,
which is more likely to be a singular value that represents a state, and the value
at the time of reading is reported directly. The last semantic is a discrete value,
which is similar to a counter, however, a discrete metrics value is decided to be
independent of previous values, therefore did not change into a rate. PMIE could
also define automated reasonings and alarms based on metrics values. Performance
Co-Pilot also has monitor interfaces that can order local or remote PMCDs to report
values from PMDAs. These monitor interfaces could directly insert reported metrics
into the database. As in the case with pcp2influxdb. The reason (for especially
PMUs) metric collection framework chosen as PCP is to easily generate timelines of
executions in contrast to frameworks such as PAPI, perf, likwid-perfctr which report
a summation of values at the end of the execution.

2.4 Grafana

Grafana is an open-source visualization tool that provides dynamic dashboards,
ad-hoc queries, and alerting functions on time-series data. Since it’s initial release at
2014, it quickly become the industry standard and reached 10M+ global users. Due
to its massive user-base, Grafana supports every popular database and provides a
wide variety of visualization methods. Grafana dashboards are serialized JSON files
that could be templated, uploaded, and altered via web API. Since the dashboards
are actually only JSON files, they are very easy to manipulate and generate for
numerous metrics, and also easy to interact with SuperTwin Description (STD).

An example Grafana dashboard JSON is given in Listing 1. When uploaded and seri-
alized via web API, this JSON turns into an interactive dashboard with a single panel
that visualizes metric perfevent_hwcounters_FP_ARITH_SCALAR_SINGLE_value
for the last 5 minutes. New metrics for comparison on the same could be added
to targets list, or new panels with different metrics could be added to panels list.
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Listing 1 A simplified JSON representation for a Grafana dashboard.
{
"id": 1
" panels ":

[{"id": 1,
" targets ":

[{" datasource ":
{"type": " influxdb ",

"uid": "UUkm1881"},
" measurement ": " perfevent_hwcounters_

FP_ARITH_SCALAR_SINGLE_value ",
" params ": "_cpu0"}]}]

"time":
{"from": "now -5m",

"to": "now"}
}
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3. Related Work

In order to systematically collect and store information from performance metric
sources, several monitoring tools have been developed and widely used in the lit-
erature. However, these tools do not create a knowledge representation and au-
tomated analysis framework. These systems facilitate intelligent job placement,
run-time workload partitioning/adaptation, and HPC hardware procurement plan-
ning (Brandt, 2013). Some of these tools are; LDMS (Agelastos, 2014), Gan-
glia (Ganglia, 2022), Nagios (Nagios, 2022), HPC-Toolkit (Adhianto, 2010) and
PerfAugur (Roy, 2015). Among them, Ganglia is proven to be scalable up to 2000
nodes but is used for general system monitoring, requires a considerable number of
installation dependencies, targets larger collection intervals (10s of seconds to 10s
of minutes), and uses an aging tool for storage. Nagios also targets larger collection
intervals (10s of seconds to 10s of minutes) and is mainly used for failure alerts.
PerfAugur is used to trace the cause of a system anomaly by finding common at-
tributes that predicate an anomaly (Agelastos, 2014). HPCToolkit is a suite of tools
that can provide accurate measurements of program performance on a wide vari-
ety of systems, from single host computers to large clusters. However, it involves
a binary analysis and re-compilation of the target code. LDMS and Performance
Co-Pilot are metric collection, transport, and storage systems that can be config-
ured to sample every performance metric counter on hardware and kernel, including
RAPL, PAPI, and perf interfaces. Moreover, they support frequent and variable
sampling rates on these performance metrics with negligible overhead and without
the requirement of recompile or source code instrumentation. This enables real-time
monitoring of HPC systems in the cluster level, node level, and process level in order
to provide multiple-aspect insight into application performance. LDMS is part of
OVIS, a suite of HPC monitoring, analysis, and feedback tools that is jointly devel-
oped by Sandia National Laboratories and Open Grid Computing. LDMS leverages
sampler and aggregator daemons called ldmsd, which can run on either sampler or
aggregator modes. A sampler ldmsd daemon is created by running and configur-
ing sampling plugins that sample PMUs. Each sampling plugin combines a specific
set of data into a single metric set. An aggregator ldmsd daemon is created by
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running and ldsmd and configuring aggregator plugins. Each aggregator collects
metric sets from samplers and/or other aggregators. Higher-level aggregators can
listen to many lower-level aggregators, and aggregate and stream data into storage.
LDMS can store sampled performance data on CSV files, D-SOS and InfluxDB.
Increasing with the number of sampled metrics, LDMS causes very little overhead
on the system performance. It causes ≈ 0.01% CPU utilization, < 2MB memory,
< 4MB filesystem and 4KB network overhead for ≈ 200 metrics @1 second inter-
vals. (Agelastos, 2014) Although it has been repeatedly used in the literature and
works well under certain circumstances, LDMS is mostly used by a strictly related
group, lacks documentation, and is still under development. Therefore it’s hard to
deploy, develop and maintain.

E2EWatch (Aksar, 2021) perform system-wide monitoring over a very large sys-
tem using Linux metrics and focus on anomaly types classification and anomaly
detection. ClusterCockpit(Eitzinger, Gruber, Afzal, Zeiser & Wellein, 2019), is a
recent and similar tool that reports performance metrics from a distributed sys-
tem to InfluxDB and uses a pull-only approach. Provide monitoring dashboards
and job history queries, also use both Linux and hardware performance counter
metrics, however supporting only a number of pre-selected metrics, such as system
load, floating point operations, and memory bandwidth and does not implement a
knowledge representation or semantic query feature. To our knowledge, there is no
monitoring framework that supports both Linux and hardware performance counter
metrics, is fully configurable, and facilitates digital twins for analysis.
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4. SuperTwin

As mentioned before, a great variety of factors affect application performance for
computing systems. SuperTwin is designed to ease the detection of their existence
and impact on computation and provide insights about their causes. To provide
a detailed performance analysis, build performance models and hints for further
optimization. In order to achieve these, SuperTwin needs to wield several qualities.

• First, it needs to be generic. Since the main problem was the great variation
in the composition of components of computation systems, SuperTwin needs
to be able to represent as many of them as possible, if not all, to be useful.
In order to achieve this, always the most widely used and available tool or
approach is chosen over its equivalents.

• SuperTwin needs to be unified in shape, representation, and methodology,
even for different architectures and problems.

• SuperTwin needs to be recursive by nature in order to be able to represent
flexible hierarchies and ownership of the underlying system.

• SuperTwin needs to be dynamic and highly configurable since the needs
and focuses of SuperTwin’s users may greatly vary. For example, a user who
optimizes a big problem in input size may need to examine the whole memory
system in detail while another user with a problem with a much smaller input
size can focus on L1 cache efficiency and floating point operation performance.

• SuperTwin needs to be modular as it performs numerous distinct operations
with different types of tools and different types of data. SuperTwin is designed
modular in a couple of different ways. First, it consists of numerous functional
modules and their configurator modules in order to adapt its systems to
the target system and purpose as much as possible. Second, the SuperTwin
description (STD) is not a static document. It is designed to be configurable,
extendible, and capture more about the system it represents as time passes.
In a manner, it folds on itself to create a more complex structure.
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Figure 4.1 Structure of SuperTwin modules. Amber lines highlight the monitoring
pipeline that is always on. Green nodes present functional modules, and blue nodes
present configuration modules. Every other functional module on this figure is
inherently invoked by the SuperTwin daemon.
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Since the number of performance metrics a digital twin can report, in theory, is in
the order of thousands, it is impractical to sample all of them at all times due to
the overhead of the sampling process. Therefore, we defined a distinction between
the types of collected metrics. The first type of the collected metrics is “Moni-
tor” metrics, which are system use and system state-related software metrics such
as the number of processes, CPU, and memory loads. These metrics are always
sampled from the system with a relatively low frequency. The other type of metric
is the “Observation” metric. Observation metrics are sampled from PMUs during
the execution of computation kernels with high frequency. Some examples of the
observation metrics are, floating point operations and cache bandwidths. However,
sampling different metrics at different times with varying frequencies creates a need
for metadata associated with them alongside the host system’s metadata. While
time-series databases like InfluxDB are fast and efficient for processing time-series
data, they can’t keep much metadata for knowledge management. On the contrary,
inserting and querying time-series data into a document database such as MongoDB
is impractical (Friedemann, 2019; Milenković, 2019). Therefore, the Digital Super-
Twin requires two types of databases and a link between them. To this end, in our
proposed design, while InfluxDB holds monitor and observation metrics as time-
series data, MongoDB, which is a document store, holds STD as JSON-LD, which
is extended with observation metadata with each computation. And to associate
them with telemetry data, a pointer to InfluxDB is stored, which is the query pa-
rameter to recall sampled metrics. This structure allows accessing per-observation
data, w.r.t. the job type and component type, via queries on metadata.

Modifiable twin document is one of the key design aspects of SuperTwin since abili-
ties such as querying remote system information, previously observed events, offline
analysis, comparison of multiple systems and/or different settings for observations,
baseline comparison via recalling of benchmarks and performance models are made
available by mutable twin description.

Yet another required quality for SuperTwin is that it needs to be as lightweight as
possible to affect monitored systems and observed applications as little as possible.
To achieve this, SuperTwin is broken into two parts a host and a target. While the
host part of the SuperTwin executes commands on the target system, handles data
collectors and data generation, configures samplers, generates dashboards, and runs
the analysis. The target system only runs samplers and nothing else, leaving heavier
work, such as database injection, analysis, and dashboard generation/presentation
to the host system. Also, as mentioned earlier, PCP samplers work in a pull-only
manner. Therefore, they report values only when they are asked. A detailed analysis
of the sampler overhead is provided in Section 6.
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As a medium of transportation between host and remote systems, three methods
are used by SuperTwin. First is ssh; every command launched by SuperTwin is
executed on the remote host via ssh. When there is a file transfer -for example, as
in probing- scp is used. Operations using these types of communications are also
facilitated and made scriptable since SuperTwin includes credentials. Other types of
communication take place between host collectors and remote samplers via sockets.
While scaling to distributed settings, ssh connection will be changed with slurm
scripts or other scheduler interfaces.

SuperTwin is implemented in Python as a library. Although SuperTwin could always
be kept up, to improve modularity and simplify working with several target hosts,
a snapshot of the runtime object is written to the database alongside with STD.
When a SuperTwin function wanted to be used, the SuperTwin object could be
re-constructed via reading run-time variables from the database. Construction and
re-construction of SuperTwin object could be seen in Algorithms 2 and 3.

4.1 Before Deploying SuperTwin

As the previous sections explain, SuperTwin interacts/configures/manages several
other tools. For SuperTwin to function, these tools need to be installed on the
host and remote systems beforehand SuperTwin is started. On the remote system,
Performance Co-Pilot needs to be installed for metric shipment. For the generation
of twin description, output from cpuid, lshw, likwid-tools (Röhl, Eitzinger,
Hager & Wellein, 2017) and libpfm4 need to be installed.

On a host system, MongoDB and InfluxDB for data management pcp2influxdb for
metric shipment and Grafana for dashboard generation need to be installed.

4.2 Probing Framework

Detailed probing is required to capture the underlying system’s structural infor-
mation. SuperTwin probes the target system in order to describe its components
with their specifications and inter-/intra-relations with performance metrics they
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Field Probed Info Field Probed Info Field Probed Info
arch L1D associativity PMU name
os L1D cache group topology name
kernel L1D cache line size description
motherboard L1D no sets flags
uuid L1D size Umask-*

System

numa domains L2 associativity

PMU Event

modif-*
model L2 cache group topology businfo
is_rotational L2 cache line size firmware
size L2 no sets ipv4Disk

metrics L2 size link
model L3 associativity model
# of cores L3 cache group topology serial
# of thrads per core L3 cache line size speed
hyperthreading L3 no sets vendor
tlb

Cache

L3 size

Network

is_virtual
flags name clock
nomimal clock rate # of events model
min clock rate # of counters size
max clock rate max encoding slot

CPU

topology

PMU

type

Memory

vendor

Table 4.1 Probed info from the system, categorized for each component.

can report. This approach aims to present each physical hardware component that
is monitorable, produces performance metrics, or individually affects the overall sys-
tem performance. This probing must capture these relationships in a lightweight,
easily adaptable, and generic way. To this end, we relied on widely available Linux
tools to gather data. The system, network, and memory information are collected
via lshw utility. The CPU, memory/cache topology metadata are collected by
parsing likwid-topology and cpuid tools. When available, disk info is probed
from /sys/block/*/device and SMART utility. PMU information is collected with
libpfm4 library, which can recognize model-specific registers and their events of vir-
tually every x86 and ARM processor available on the market. Upon probing PMU
information via libpfm4, every hardware performance metric (core, uncore, offcore)
which perfevent can report are obtained. Information collected during probing
phase is available in the Table 4.1

As repeatedly stated, SuperTwin bears comprehensive analysis and configuration
abilities while keeping the overhead and interference to the target host as limited as
possible. To this end, probing is ordered to the target system from the host system.
When SuperTwin runs on a host system, the probing framework (the probing code
itself is copied and executed on the remote) is copied to the target system via scp.
Modules for the probing are scripted to perform probing operations in place without
any further interference. The probing system is designed so that only triggering the
main function results in a probing file containing every information of concern.

SuperTwin, when invoked, only asks for an alias and IP of the target system and uses
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Figure 4.2 Login screen for SuperTwin web app

Figure 4.3 Metric selection and parameter entry screen for launching observations
from web app
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this information to create databases and data sources for the target system, which
then will be used to store and recall collected information. Later, the probing module
is copied to the remote system, information-collecting tools are launched from the
main sapling module, and their results are parsed. Probing is further separated into
three phases; the first phase is collecting system feature and topology information.
System information collection starts with most general information like OS, kernel
versions, motherboard serial number, and architecture. System probing also detects
specifications and topology (and hierarchy) of non-processor hardware on the system.
For example, network, storage, and memory devices, their specifications, and spatial
order -such as individual memory banks- are also detected at phase since they can
report individual performance metrics. For example, this particular information
yields insignificant importance for the current status of the SuperTwin framework
but could be used to detect a faulty memory bank in a cluster environment with
hundreds of nodes without extensive investigation. Similarly, it can help to detect
if any partition in the cluster differs in kernel version from the rest of the cluster
in such a way that, an installation of a software module is incompatible or behave
differently on this particular partition. This probing phase takes approximately ≈30
seconds for a single node.

Some specifications in this phase, such as the motherboard serial number, form the
“sign” of the system and make sure the particular system is unique. The same
system has multiple digital twins, or completely identical systems have separate
digital twins. To make the separation, digital twins have their own unique id (which
maps to a collection id in the document store), and machines have their motherboard
serial numbers.

Collected probing information is written to a JSON file on the remote system and
copied back to the host system to generate a twin description.

4.3 SuperTwin Description

As mentioned earlier, Digital Twin Description comprises several classes and rela-
tions between them, representing properties and hierarchy in a system. In Super-
Twin, STD both; captures a semantic description of the target system and enables
a linked time-series structure similar to the framework proposed in (Friedemann,
2019) but with far richer metadata and contemporary metadata instantiations of

21



Algorithm 2 ConstructTwin(IP,user,password)
1: name, prob_file = remote_probe(IP,user,password)
2: mongodb_addr, influxdb_addr, grafana_addr = read_environment()
3: influx_name, mongodb_name, grafana_name = create_datasources()
4: mongodb_id = insert_twin_description(generate_twin_description(probe_file))

▷ From this moment, SuperTwin description and object is available to interact
5: SuperTwin.add_cache_aware_roofline_benchmark()
6: SuperTwin.monitor_metrics = read_from_environment()
7: SuperTwin.observation_metrics = read_from_environment()
8: SuperTwin.monitor_pid = start_sampling()
9: SuperTwin.generate_monitoring_dashboard()

10: SuperTwin.configure_observation_events(observation_metrics)
11: SuperTwin.observation(add_stream_benchmark())
12: SuperTwin.observation(add_hpcg_benchmark())
13: SuperTwin.generate_roofline_dashboard()
14: SuperTwin.register_state(SuperTwin.run_time_variables)

Algorithm 3 ReConstructTwin(IP )|ReConstructTwin(Name)
1: db_id = db_lookup(IP) ▷ Or Name
2: SuperTwin = reconstruct(db[db_id][twin_description],
3: db[db_id][run_time_variables])

events. For example, individual components, observations, and processes also have
their digital twin descriptions with linked time-series data. This enables a fine-grain
analysis of the behavior of applications to run on different systems with different
software and hardware. For example, an L1 cache, a network interface, or a pro-
cess could be isolated from the system, analyzed separately, or compared with its
equivalent on a different system.

DTDL, as explained in Section 2.1.2, have a recursive structure that allows com-
ponents (interfaces in the context of twin description) to be other components’
subcomponents which is crucial for describing a cyber-physical system. On top of
that, DTDL models Telemetry, Properties and Relationship have exact corre-
spondence between what they describe in DTDL and STD. However, since DTDL is
designed with IOT systems in mind, its descriptions are more physical than cyber-
physical and are meant to be static. To this end, DTDL is modified, and new classes
and properties are added to describe high-performance computing systems and cre-
ate linked time-series data. The update made on DTDL to acquire STD ontology
can be seen in the following table.

After acquiring system information via probing, using this information, STD is
generated. During the generation of STD, every single physical component that
performs computations, communications, or I/O operations is presented with an
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Property Description

@type Interface
@id Unique identifier within digital twin for interface

contents a set of Interface, Process Interface, ObservationInterface, SWTelemetry,
HWTelemetry, Benchmark, Properties, Relationships

displayName Name to be displayed when instantiated
dashboard dashboard url, optional
@type SWTelemetry
@id Unique identifier within digital twin for this telemetry instance
name index in telemetries
instrance instance name of reported component to be a parameter in queries
samplerName name of the metric to be referred to during sampler configuration
DBName name of the metric to be used in the generation of queries
@type HWTelemetry
@id Unique identifier within digital twin for this telemetry instance
name index in telemetries
instrance instance name of the reported component to be a parameter in queries
samplerName name of the metric to be referred to during sampler configuration
DBName name of the metric to be used in the generation of queries

PMUName name of the metric as reported by libpfm4. To be used as parameter
in perf event configuration

@type BenchmarkInterface
@id Unique identifier within digital twin for interface
contents BenchmarkResult
displayName Name of the benchmark to be displayed when instantiated
@type BenchmarkResult
@id Unique identifier within digital twin for this telemetry instance
field name of field for subkernels, optional
no_threads number of threads used
involved_threads involved thread indexes to be used in queries
modifier modifications in pinning strategy or compilation
result result of benchmark
unit unit of benchmark result
sampled_sw_metrics sampled software metrics during execution, to be used in queries, optional
sampled_hw_metrics sampled hardware metrics during execution, to be used in queries, optional
dashboard dashboard url of observed metrics, optional
@type ObservationInterface
@id Unique identifier within digital twin for interface
displayName Name to be displayed when instantiated
time duration of observation
command executed command
tag tag of affiliated data in the database
no_threads number of threads used
involved_threads involved thread indexes to be used in queries
sampled_sw_metrics sampled software metrics during execution, to be used in queries
sampled_hw_metrics sampled hardware metrics during execution, to be used in queries
modifier any modification made to the environment, optional
dashboard dashboard url of observed metrics, optional

Table 4.2 New metamodel classes added to DTDL to build STD. There is also a
model named ProcessInterface, which is in shape identical to Interface; how-
ever, its content fields are re-assigned every time the corresponding process’s pid is
changed.
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Listing 2 Digital Twin is generated via both contextual and structural information
probed from the system.
def add_my_metrics ( component ):

for metric in available_metrics :
if( component .type == metric .type):

add_telemetry (component , metric )

def add_component (component , subcomponent ):
add_to_twin ( subcomponent )
add_my_metrics ( subcomponent )
add_ownership (component , subcomponent )

def add_subcomponents (component , subcomponents ):
for socket in system :

add_component (system , socket )
for core in socket :

add_component (socket , core)
for thread in core:

add_component (socket , thread )
for cache in cache_groups [ thread ]:

add_component (thread , cache)

def add_agents (component , subcomponent ):
for agent in pcp:

resolve_process_state (agent)
add_component (system , agent)

def create_twin ( system_probing ):
system = create_system ()
add_subcomponents (system , cpus)
add_component (system , memory )
add_component (system , disks)
add_component (system , networks )
add_component (system , gpus)
add_component (system , proc)
add_agents (system , pcp)

Interface. Every hierarchical relationship between these components is encoded
into the contents of these interfaces with a Relationship entry. Available met-
rics from these components are also filtered and encoded via SWTelemetry and
HWTelemetry. Therefore, both precisely pinned executions and advanced semantic
queries were made available. These interfaces later use values to configure samplers
and locate their values in the database. For example, using generated STD and
run configuration module, an execution that will run on 4 threads on each socket
that does not share an L1 cache could be launched; similarly, after the execution
of a run, performance metrics from threads that share same L2 cache with a given
thread could be queried.

Another unique contribution of SuperTwin is that processes also can be modeled
as digital twins and monitored via per-process kernel metrics. JSON-LD objects
are serialized, which means string values from the JSON object are instantiated
with given parameters into a run-time object. In SuperTwin, there are two degrees
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of serialization. All models other than ProcessInterface are serialized and got
their values assigned at the generation time; however, ProcessInterface is re-
instantiated every time they are invoked and change due to the dynamic nature of
processes.

4.4 Sampling Framework

Performance Co-Pilot has metric samplers responsible for a metric domain. As ex-
plained in Section 2.3. PMDAs are installed beforehand the sampling takes place,
but they do not report values on their own. To sample metrics, a monitor framework
needs to send requests to the target system PMCD. SuperTwin use pcp2influxdb as
a monitor framework. Monitor framework, however, has a configuration that speci-
fies metrics to be collected, instance domains of these metrics, frequency of the sam-
pling, database address, and bucket to write metrics. Software metrics could be sam-
pled by querying their parameters from SuperTwin and running pcp2influxdb with
a generated configuration file. However, perfevent PMDA must be re-configured
every time requested metrics are changed to set PMUs report requested metrics.
After probing the target system and acquiring MSRs and available events, parame-
ters required to re-configure a remote PMU could be queried from STD. SuperTwin
also employs a perf reconfiguration module that queries this data from STD and
reconfigures remote PMU automatically if a change in hardware telemetry in re-
quested metrics is detected. After the reconfiguration, hardware telemetry could be
sampled and recorded for corresponding observation. This process could be seen in
Figure 4.4.

4.4.1 Monitoring

Software and hardware telemetry differ in their meaning and effect to the execu-
tion performance. Hardware metrics are direct measurements of performance events
directly related to performance and could give definite reasoning for performance
levels. For example, an exceptionally high L1 miss rate is thought to be primarily
responsible for low performance and could not be resolved without source code opti-
mization. On the other hand, software metrics do not give a cause directly related to
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the application but provide a picture of the system state during execution and could
reveal system-related anomalies such as resource contention, thermal throttle, mem-
ory leak, or poor affinity. Therefore, in SuperTwin, software and hardware telemetry
are separated, and software telemetry is always sampled with low frequency. This is
called the monitoring part of profiling in the SuperTwin context. Monitoring data
could be used to model the remote system and predict possible faults mitigate before
they happen. A configuration for monitoring is generated just after the generation
of STD and monitoring starts. Software telemetry metrics, used for monitoring are
given in Appendix A.

Figure 4.4 To probe hardware metrics with perfevent PMDA. PMUs are re-
configured beforehand the observation takes place.

4.4.2 Observation

When kernels will be executed with direct measurements of performance events,
SuperTwin uses shell scripts as function wrappers. Whenever there is a need to set
a directory, affinity, environment variables, or execute a binary, Observation module,
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using Run Configuration module as helper generates a shell script with instructions
to execute, copies it to remote, and execute it. An example request and resulting
script could be seen in Listings 1 and 2

Listing 1 Bash script generated to execute kernel at desired path alongside with
affinity.
#!bin/bash

cd /home/ sparcity /eu
likwid -pin S0 :0 -3 ,22 -25 @S1 :0 -3 ,22 -25 ./ mkl_spmv mixtank_old .mtx

Listing 2 Psuedocode for executing observation at remote host with sampling using
SuperTwin.
def observation_sampling ( SuperTwin ):

config_lines = get_lines ( SuperTwin .db_addr ,
SuperTwin .db_name ,
SuperTwin . hw_events )

config_file = generate_configuration ( config_lines )
return config_file

def start_sampling ( config_file ):
execute_local ( pcp2influxdb -c config_file )
return process

def observation (SuperTwin , path , command , input , threads ):

config_file = observation_sampling ( SuperTwin )
affinity = generate_binding (threads , "numa compact ")
bash_file = generate_bash_file (path , command , input , affinity )

copy_to_remote ( bash_file )
sampler = start_sampling
execute_remote ("bash /tmp/ st_files / gen_bash .sh")
sampler .kill ()

SuperTwin allows profiling of any command executed on the system; new frameworks
are easily integrable into the framework via compiled executables.

4.4.3 Generation of Dashboards

SuperTwin can generate several types of dashboards on the fly after STD is gener-
ated. SuperTwin’s dashboard module exploits the fact that Grafana dashboards are
serialized JSON files and easily generate Grafana queries parameters stored in STD
interfaces. Generated dashboards are later uploaded to the local Grafana server and
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Grafana Panel Perf configuration

Twin Description

Figure 4.5 A summarized version of SuperTwin dashboard generation pipeline. STD
is generated with all components having their metrics, and their metrics represen-
tation in different frameworks as content. Structured queries then capture these
values, create configuration files and run tools.
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Figure 4.6 Generated Monitor dashboard for host Dolap. In the socket panels,
threads sharing the same L1 cache are plotted consecutively, leveraging STD. At
the time of the screenshot, a computation that is just launched in NUMA socket 0
but anomalously allocates memory from NUMA socket 1.

their addresses are encoded in the corresponding interface entry in STD. A brief
example of JSON generation using STD could be seen in Listing 1.

Since the metadata and benchmark results are stored in the digital twin description,
and the generation of performance models, dashboard panels, and dashboards are
functions of SuperTwin, generated performance models and charts could be recalled
at any time after the digital twin is created. This allows any new observation to be
ready for comparison with executed micro-benchmarks.

4.5 Benchmarks

Widely used benchmarks STREAM and HPCG are also copied to the target sys-
tem with their architecture optimized and most recent versions, their make files
configured with respect to available maximum vector extension capabilities in the
target system and compiled in place in order to ensure system performance is ideally
measured. Benchmarks are counted as a part of probing but at the same time inter-
preted just as any other observations. Therefore monitoring metrics and observation
metrics are also sampled during the execution of benchmarks and made available
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Figure 4.7 Performance model dashboard generated by SuperTwin showing CARM
model generated for threads that are multiples of two plus cores per socket, threads
per socket, and total threads, along with STREAM and HPCG multicore scaling and
architecture information. This information is also readily available and comparable
to any other observation made by SuperTwin.

Figure 4.8 Comparison dashboard generated with SuperTwin. After the execution
of several distinct events at distinct times (these events could also be executed at
different hosts), metric timestamps are overlapped and presented to reveal common
program phases in different settings. Augmented statistics are also provided along-
side time-series data.
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for future comparisons. Benchmarks are encoded in STD with dedicated Benchmark
and Benchmark Result models to facilitate semantic queries. Benchmark entries
for STD could be seen in Table4.2. A minimal example for an executed benchmark
could be seen in Algorithm 1, whose result is given in Listing 3.

Listing 3 A minimal subset from SuperTwin digital twin description, recording
results for STREAM benchmark.
{

{dtmi:dt:dolap: system :S1;1:
{@type: " Interface ",

@id: "dtmi:dt:dolap: system :S1;1"
@contents :

[{@id: "dtmi:dt:dolap: benchmark :B1;1"
@type: " benchmark ",
@name: " STREAM ",
@contents :

[{@id: "dtmi:dt:dolap: benchmark_res :B1;1",
@type: " benchmark result ",
@field : "triad"
@threads : 1,
@modifier : "likwid -pin -c 0",
@result : 12816.9,
@unit: "MB/s"},

{@id: "dtmi:dt:dolap: benchmark_res :B2;1",
@type: " benchmark result ",
@field : "triad"
@threads : 2,
@modifier : "likwid -pin -c 0-1",
@result : 25071.5,
@unit: "MB/s"}]

}]
}

}
}
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5. Experimental Results

SuperTwin aims to present and monitor every software and hardware component,
with statistics of the past executions on a target system. It creates linked data, per-
forms semantic queries, and generates live and historical dashboards and analyses.
However, measurements need to be performed for all of the former to be meaning-
ful, accurate, and lightweight. Measuring the performance of a system creates extra
work to perform the measurement, affecting the correctness of measurements or,
worse, decreasing the performance of the measuring system and/or execution. Due
to this, a measurement on a target system should be as lightweight as possible and
made sure not to affect the measured events.

SuperTwin performs performance measurements on target systems via Performance
Co-Pilot. To prove Performance Co-Pilot’s suitability to SuperTwin use cases, an in-
depth analysis of Performance Co-Pilot’s performance, correctness, and effect on the
target system, using SuperTwin configurations, is performed. To provide a complete
picture of SuperTwin scenarios, a comprehensive analysis including system resource
usage, remote report efficiency, the maximum resolution of monitor/performance
events, correctness, and overhead of the Observation events are studied.

Dolap Deren

OS Ubuntu 20.04.3 LTS x86_64 OS Ubuntu 22.04.1 LTS x86_64
Kernel 5.4.0-135-generic Kernel 5.15.0-47-generic
CPU Intel Xeon Gold 6152 @3.7GHz x2 (44c/88t) CPU Intel i7-9700F @4.7GHz (8c/8t)
MSR skx MSR skl
Mem. 1TB DDR4 @ 2666MHz Mem. 64GB DDR4 @ 2133MHz
Env. pcp 5.3.7-1 Env. pcp 5.3.6-1

Poseidon Luna

OS Ubuntu 20.04.4 LTS x86_64 OS Ubuntu 18.04.6 LTS x86_64
Kernel 5.15.0-56-generic Kernel 5.4.0-135-generic
CPU Intel i9-11900K @5.1GHz (8c/16t) CPU Intel Xeon E5-1650 v2 @3.9GHz (6c/12t)
MSR icl MSR ivb_ep
Mem. 16GB DDR4 @2666MHz Mem. 16GB DDR3 @1866MHz
Env. pcp 6.0.1-1 Env. pcp 4.0.1-1

Table 5.1 System speciations of hosts used in experiments.
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To provide a wider depiction, increase the confidence interval for the results, and
assure the previously mentioned genericness of SuperTwin, a test set including rea-
sonably different systems, all different in capabilities with different MSRs, is used.
Dolap is a recent and remarkably powerful high end server with 2 CPUs, 88 threads
and 1TB of RAM. Poseidon is a performant and recent server, Deren is an upper-
middle tier desktop for general use which have the desktop version of Dolap MSR.
Luna is a 10-year-old and fairly weak machine included in a test set to analyze consis-
tency in extreme cases. The specifications of the host machines used are summarized
in Table 5.1.

5.1 Resource Use of Sampling

Since PCP employs several agents who collectively perform metric shipment oper-
ations, resource usage on the remote system may become overwhelming with the
increasing number of sampled metrics and resolutions. To this end, CPU and mem-
ory usage of individual PCP agents that are used by SuperTwin are measured for
the different number of sampled metrics and sampling frequencies. Measurements
are performed for 10 minutes while the target systems are empty, and results are
averaged. Results for sampling 50 metrics with varying frequencies are given in Fig-
ures 5.1, 5.2, 5.3, and 5.4 for Dolap, Deren, Poseidon and Luna, respectively. The
network is monitored as a whole for each system. I/O use of PCP agents was found
to be negligible (<1 KB). Therefore, they are not included in the results. During the
measurements, the host system had 100 Mbit cabled connection with each system.
The host system’s disk performance was measured at 182 KB/s, and 1.2 MB/s for
512B and 8K block-sized writes, respectively.

For recall, from PCP agents, pmcd manages other agents and reports their readings
to remote requesters. perfevent samples PMU readings via Linux perf inter-
face, pmdalinux reports software sourced system state metrics such as CPU load,
pmdaproc reports per process metrics, such as io and memory usage for each process
on the system. Measurements for CPU usage are made using proc.psinfo.utime
and proc.psinfo.stime metrics, for memory proc.psinfo.rss metric. For each
host, the measurement with the most metrics is reported, and the rest of the test
set is given in Appendix A. Metrics used for measurements are given in Appendix
B. The first observation that could be made instantly is, apart from the number of
reported metrics or frequency of sampling, all agents are found to use a constant
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amount of memory. Higher memory usage of pmdaproc is due to the size of a much
bigger instance domain. Other higher usages of system resources in Dolap, albeit
having much more powerful component composition, is also due to much bigger in-
stance domains in Dolap. For example, a pmdaperfevent metric has 8 instances in
Deren while the same metric has 88 instances on Dolap. Similarly, a much higher
number of running processes and system components results in higher system re-
source uses for Dolap. Apart from pmdaproc, all agents are found to be thrifty in
system usage resources. These measurements were made without filtering on in-
stance domains; instance domains could be filtered to reduce thousands of instances
to a couple of instances of interest. Also, the monitoring framework of SuperTwin
uses 0 per-process metrics and uses ≈20 pmdalinux metrics and ≈2 pmdaperfevent
metrics at 1 second intervals.

An interesting observation is that even though Dolap has more processes (therefore
instances in pmdaproc instance domain) than other baseline systems, pmdaproc uses
slightly lower memory w.r.t. Poseidon and Deren and the memory consumption is
similar to that of Luna. This could be due to both servers bearing Xeon CPUs, but
it requires further investigation.

5.2 Throughput and Integrity of Reported Metrics

PCP agents and network usage are scaled almost linearly for increased sampling
frequency. They use resources consistently, as almost no deviation was observed
during measurements, as seen in the error bars. This proper scaling also exists with
metrics. Every system in the experiment set, except for Luna, scales proportionally
when the number of collected data points is increased. On Luna, the reason for poor
scalability is most probably due to a constant overhead for running the framework,
since there is not much reporting loss, which will be explained later. However,
one case in the test set hints that the PCP framework does not scale perfectly. In
Figure 5.1, there is almost no difference in 4 and 8 reports per second, and the
network traffic varies during measurement contrary to the rest of the entire test set.
This behavior is also observed in other Dolap measurements with the exception of
10 metrics.
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Figure 5.1 System resource usage of metric shipment with kernel and PMU metrics
on Dolap. Metric agents pmdaperfevent, pmdalinux, and pmdaproc report 24, 20,
6 metrics and 2112, 285, 13572 data points, respectively.

Figure 5.2 System resource usage of metric shipment with both kernel and PMU
metrics on Deren. Metric agents pmdaperfevent, pmdalinux and pmdaproc report
24, 20, 6 metrics and 192, 40, 2325 data points respectively.
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Figure 5.3 System resource usage of metric shipment with both kernel and PMU
metrics on Poseidon. Metric agents pmdaperfevent, pmdalinux, and pmdaproc
report 24, 20, 6 metrics and 384, 60, and 2805 data points, respectively.

Figure 5.4 System resource usage of metric shipment with both kernel and PMU
metrics on Luna. Metric agents pmdaperfevent, pmdalinux, and pmdaproc report
24, 20, 6 metrics and 288, 52, 2205 data points, respectively.

The underutilization of the network, together with the underutilization of the CPU,
suggests that the framework is stalled and neither samples nor reports the perfor-
mance metrics with the desired frequency. This is possible since communication is
over the network, and there is no mechanism to buffer and resend missing metrics
once more. Due to high frequency, at the time of resending, missing metrics are
outdated by hundreds or thousands of new reports.

To further investigate this situation, we performed high-frequency readings and
measured the actually reported data points and the ratio of loss with procpmda
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and perfeventpmda. On top of the missing values, we observed batched zero val-
ues in our database with very high frequencies of samplings. Since procpmda re-
ports for all processes, and there will be many correct zero values, we measured the
wrong zero values with pmdaperfevent. With perfevent, we sampled metrics that
are highly unlikely to report zero; UNHALTED_CORE_CYCLES, INSTRUCTION_RETIRED,
UOPS_DISPATCHED etc. Then, we count the number of zeros in the database after
the measurement is completed.

Tabe 5.2 reports throughput of procpmda. On Dolap, there are ≈1100 processes
running while the server is empty; therefore, pmdaproc has ≈1100 instances per
metric. On Deren, there are ≈400 processes running while the server is empty.
On Dolap, a loss jump was observed after 8 reports per second when the number
of individual data points exceeds 30K per second, and another considerable jump
is observed with 16 reports per second. After this point, despite slight increases
with increasing demand, losses also increased and reported individual data points
remained between 30K and 40K data points per second. On Deren, losses exhibited
a similar jump after 30K data points with 16 reports per second. Although 48K data
points per second are achieved, with increasing frequency, losses are also increased,
and maximum throughput remains around ≈40K data points. It is concluded that
losses are affected by both the frequency and number of instances, and reports that
include fewer data points are slightly less prone to losses. The maximum throughput
of procpmda is around 30K-40K data points per second, despite being subject to
small changes w.r.t. host and number of instances.

The throughput achieved with pmdaperfevent can be seen in Table 5.3. Instead of
sampling and reporting of operating system files, pmdaperfevent samples PMUs,
another bottleneck for maximum throughput. Therefore, we expect a lower value
than pmdaproc. Similar to pmdaproc, with 16 reports per second, a massive jump
in losses is observed with both systems, with the contribution of false zeros. Fur-
thermore, the loss amount is correlated with the size of the instance domain. While
being much more significant in Dolap, an increase in batch zeros and losses with
correspondence with pmdaproc are observed. This further strengthens the previous
conclusion that larger numbers of instances both in reports and high frequency are
effective in losses.
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Figure 5.5 Accuracy (y-axis) in terms of relative error of 4 different events counted
and compared against values reported by likwid-bench kernels triad, stream, sum,
peakflops, ddot, daxpy on 4 different systems. Calculated individual errors are
further averaged into a single value. The x-axis shows the sampled values per
second.
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Host Frequency # of metrics Expected Inserted % Loss Throughput

4 8.56E+04 8.45E+04 1.3 8447.8
5 1.07E+05 1.06E+05 1.0 10592.62
6 1.29E+05 1.28E+05 0.8 12802.3
4 1.72E+05 1.68E+05 2.4 16793.7
5 2.13E+05 2.09E+05 2.3 20860.34
6 2.57E+05 2.50E+05 2.5 25040.7
4 3.49E+05 3.05E+05 12.5 30536.0
5 4.22E+05 3.61E+05 14.5 36084.88
6 5.16E+05 3.79E+05 26.5 37909.5
4 6.92E+05 3.19E+05 53.9 31917.6
5 8.45E+05 3.38E+05 60.0 33787.516
6 1.03E+06 3.85E+05 62.8 38466.1
4 1.37E+06 3.14E+05 77.2 31368.6
5 1.69E+06 3.63E+05 78.5 36321.732
6 2.07E+06 3.90E+05 81.2 38962.9
4 2.72E+06 3.01E+05 88.9 30109.7
5 3.38E+06 3.62E+05 89.3 36213.2

Dolap

64
6 4.11E+06 3.78E+05 90.8 37783.2

Host Frequency # of metrics Expected Inserted % Loss Throughput

4 3.16E+04 3.14E+04 0.4 3144.2
5 3.99E+04 3.97E+04 0.4 3974.02
6 4.76E+04 4.76E+04 0.0 4761.6
4 6.32E+04 6.21E+04 1.7 6209.4
5 7.98E+04 7.91E+04 0.9 7914.54
6 9.54E+04 9.27E+04 2.8 9274.9
4 1.26E+05 1.24E+05 2.3 12352.2
5 1.60E+05 1.57E+05 2.0 15672.28
6 1.91E+05 1.88E+05 1.5 18829.7
4 2.54E+05 2.49E+05 2.0 24871.5
5 3.18E+05 3.11E+05 2.1 31147.716
6 3.82E+05 3.14E+05 18.0 31364.0
4 5.08E+05 4.18E+05 17.6 41844.4
5 6.35E+05 4.81E+05 24.3 48116.432
6 7.64E+05 4.56E+05 40.4 45579.0
4 1.02E+06 3.95E+05 61.1 39483.4
5 1.26E+06 4.07E+05 67.7 40738.7

Deren

64
6 1.53E+06 3.84E+05 74.9 38367.2

Table 5.2 Number of data points expected and observed at the host database w.r.t.
the number of metrics and sampling frequency. Throughput is inserted datapoints
per second.
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Host Freq. metrics Expected Inserted Zeros % Loss % L+Zeros Throughput A. Throughput

4 7.04E+03 6.62E+03 0.00E+00 6.0 6.0 661.8 661.8
5 8.80E+03 8.71E+03 0.00E+00 1.0 1.0 871.2 871.22
6 1.06E+04 1.06E+04 0.00E+00 0.0 0.0 1056.0 1056.0

4 1.41E+04 1.31E+04 2.22E+02 7.0 8.6 1309.4 1287.2
5 1.76E+04 1.76E+04 0.00E+00 0.0 0.0 1760.0 1760.04
6 2.11E+04 2.05E+04 0.00E+00 3.0 3.0 2048.6 2048.6

4 2.82E+04 2.60E+04 5.84E+02 7.8 9.8 2597.8 2539.4
5 3.52E+04 3.42E+04 7.72E+01 2.8 3.0 3423.2 3415.58
6 4.22E+04 4.22E+04 0.00E+00 0.0 0.0 4224.0 4224.0

4 5.63E+04 4.49E+04 1.34E+04 20.3 44.0 4491.5 3151.5
5 7.04E+04 6.88E+04 1.73E+04 2.3 26.8 6881.6 5155.016
6 8.45E+04 8.25E+04 2.00E+04 2.4 26.0 8247.4 6248.5

4 1.13E+05 6.97E+04 3.04E+04 38.1 65.1 6969.6 3927.9
5 1.41E+05 1.14E+05 5.32E+04 19.4 57.2 11352.0 6030.332
6 1.69E+05 1.20E+05 5.02E+04 28.8 58.5 12027.8 7012.1

4 2.25E+05 3.57E+04 1.61E+04 84.2 91.3 3569.3 1962.6
5 2.82E+05 1.14E+05 5.32E+04 59.6 78.5 11387.2 6063.7

Dolap

64
6 3.38E+05 1.31E+05 5.91E+04 61.3 78.8 13073.3 7163.6

Host Freq. metrics Expected Inserted Zeros % Loss % L+Zeros Throughput A. Throughput

4 6.40E+02 6.40E+02 0.00E+00 0.0 0.0 64.0 64.0
5 8.00E+02 8.00E+02 0.00E+00 0.0 0.0 80.0 80.02
6 9.60E+02 9.60E+02 0.00E+00 0.0 0.0 96.0 96.0

4 1.28E+03 1.24E+03 0.00E+00 3.0 3.0 124.2 124.2
5 1.60E+03 1.53E+03 0.00E+00 4.5 4.5 152.8 152.84
6 1.92E+03 1.83E+03 0.00E+00 4.5 4.5 183.4 183.4

4 2.56E+03 2.49E+03 0.00E+00 2.8 2.8 249.0 249.0
5 3.20E+03 3.10E+03 1.60E+00 3.0 3.1 310.4 310.28
6 3.84E+03 3.72E+03 0.00E+00 3.0 3.0 372.5 372.5

4 5.12E+03 5.00E+03 4.61E+02 2.3 11.3 500.5 454.4
5 6.40E+03 6.40E+03 5.27E+02 0.0 8.2 640.0 587.316
6 7.68E+03 7.48E+03 5.89E+02 2.6 10.3 747.8 689.0

4 1.02E+04 9.67E+03 3.69E+03 5.6 41.6 967.0 597.8
5 1.28E+04 1.25E+04 4.67E+03 2.6 39.1 1246.4 779.932
6 1.54E+04 1.49E+04 5.50E+03 2.9 38.7 1490.9 940.8

4 2.05E+04 1.99E+04 1.05E+04 2.8 54.3 1991.0 936.2
5 2.56E+04 2.19E+04 1.09E+04 14.4 57.2 2190.4 1095.6

Deren

64
6 3.07E+04 2.70E+04 1.36E+04 12.2 56.4 2696.6 1338.1

Table 5.3 Number of data points expected and observed at the host database w.r.t.
the number of metrics and sampling frequency. Throughput is inserted data points
per second. L%+Zeros is the ratio of false zeros subtracted from inserted values
to the expected value. A.throughput is the number of correct data points inserted
to the database per second.

40



5.3 Accuracy of Hardware Performance Counter Sampling

To measure the accuracy of hardware performance counting, we employed
likwid-bench micro-benchmark, which executes the generated assembly code
with adjustable size and time and reports performance events that have cor-
respondence with hardware performance counters. From the reported values
of likwid-bench, Cycles is calculated with UNHALTED_REFERENCE_CYCLES,
the number of FLOPs is calculated with FP_ARITH:SCALAR_DOUBLE
on Dolap, Deren and Poseidon and FP_COMP_OPS_EXE:X87 on Luna
(Weaver, Terpstra & Moore, 2013). Data volume is calculated as
MEM_UOPS_RETIRED:ALL_LOADS+MEM_UOPS_RETIRED:ALL_STORES on Dolap, Deren
and Luna, and MEM_INST_RETIRED:ALL_LOADS+MEM_INST_RETIRED:ALL_STORES
on Poseidon. The number of total instructions is calculated as
INSTRUCTION_RETIRED on all hosts. UOPs is calculated with UOPS_RETIRED_SLOTS
on all hosts except on Poseidon calculated with UOPS_RETIRED_SLOTS. Finally,
AI is then calculated total FLOPs/total bytes for corresponding metrics. Micro-
benchmark kernels triad, sum, stream, peakflops, ddot and daxpy executed on
all hosts with varying frequencies and additional metrics other than previously
mentioned in order to provide a deep analysis of accuracy. To focus on L1 bandwith
on memory operations, kernels are executed with 100KB size, which completely fits
in cache on all hosts.

To present the setting with the highest accuracy, averaged relative errors for all
kernels are examined and presented in Figure 5.5. It’s found that Luna performs
slightly worse than other hosts in terms of accuracy for all metrics, except for
UNHALTED_REFERENCE_CYCLES. This is due to the fact that benchmarks are per-
formed without fixing core frequency, and Deren, which is a much newer architec-
ture, had much more fluctuations. However, results are presented this way due to
still having a low error with varying core frequency, which is much more realistic for
any other daily scenario. Moreover, Luna is found to be unable to report correct
floating point operations. Luna’s floating point operation reports seem to be unaf-
fected by the executed kernels and always have ≈ 100% error. Nevertheless, since
Luna is older than the other baseline, this error level is acceptable and a deeper
analysis is not performed.

It’s found that on every host frequency rating, 1/8 achieved the best accuracy.
This is on par with findings from throughput, and higher errors coming with higher
frequencies are thought to be a result of losses in reported data points. However,
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Dolap fp cycle inst uops bw ai ai real

triad 1.01E-03 1.18E-02 8.65E-04 1.33E-03 1.35E-03 0.0625 0.0625
sum 1.16E-03 1.10E-02 1.50E-03 1.70E-03 1.80E-03 0.1249 0.1250
stream 2.32E-03 1.17E-02 1.15E-03 1.43E-03 2.26E-03 0.0833 0.0833
peakflops 1.61E-03 1.17E-02 4.27E-04 4.30E-05 4.87E-03 1.9935 2.0000
ddot 1.06E-04 1.08E-02 4.09E-04 2.66E-04 6.29E-04 0.1249 0.1250
daxpy 2.07E-03 1.16E-02 8.89E-04 1.74E-03 1.68E-03 0.0834 0.0833
Deren fp cycle inst uops bw ai ai real

triad 5.80E-05 2.57E-02 2.65E-03 2.27E-03 1.80E-03 0.0624 0.0625
sum 5.63E-04 2.45E-02 4.05E-03 4.45E-03 3.90E-03 0.1246 0.1250
stream 1.76E-03 2.61E-02 3.59E-04 8.56E-04 5.79E-04 0.0831 0.0833
peakflops 8.28E-04 2.44E-02 6.15E-04 1.25E-03 4.45E-03 1.9896 2.0000
ddot 1.15E-03 2.57E-02 3.03E-03 2.85E-03 2.46E-03 0.1248 0.1250
daxpy 5.54E-04 2.48E-02 8.27E-04 2.70E-03 1.50E-03 0.0832 0.0833
Poseidon fp cycle inst uops bw ai ai real

triad 1.18E-03 2.00E-03 1.08E-03 3.99E-01 1.19E-03 0.0624 0.0625
sum 9.91E-04 1.81E-03 1.20E-03 4.43E-01 1.18E-03 0.1247 0.1250
stream 1.89E-04 1.48E-03 1.55E-03 3.06E-01 2.31E-03 0.0831 0.0833
peakflops 4.41E-04 1.69E-03 1.52E-04 9.53E-04 2.48E-03 1.9942 2.0000
ddot 9.85E-04 2.10E-03 4.73E-04 2.21E-01 1.31E-03 0.1247 0.1250
daxpy 9.40E-04 2.21E-03 1.74E-04 3.07E-01 1.97E-04 0.0832 0.0833
Luna fp cycle inst uops bw ai ai real

triad 1.00E+00 2.30E-02 1.53E-02 1.67E-02 1.93E-02 0.0000 0.0625
sum 1.00E+00 1.99E-02 1.56E-02 1.47E-02 1.53E-02 0.0000 0.1250
stream 1.00E+00 3.02E-02 2.80E-02 2.59E-02 2.78E-02 0.0000 0.0833
peakflops 1.00E+00 1.73E-02 1.46E-02 1.43E-02 9.14E-03 0.0000 2.0000
ddot 1.00E+00 2.34E-02 2.88E-02 2.86E-02 2.94E-02 0.0000 0.1250
daxpy 1.00E+00 2.25E-02 1.79E-02 1.69E-02 1.80E-02 0.0000 0.0833

Table 5.4 Best case scenario observed in Figure 5.5 Likwid-bench kernels are sam-
pled with 8 metrics with frequency 8/s, executed 10 times, and average values are
reported.
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to show best and worst case scenarios and to show the impact of losses in high-
frequency reporting, cases yielding the best and worst accuracies broke down to
kernels are presented in Table 5.4 and 5.5 respectively. It’s found that, as mentioned
in (Weaver et al., 2013), architectures differ in accuracy for different events. While
Poseidon chronically has the highest error with UOPs event in Table 5.4, it exhibits
the lowest error in the floating point event. Among other hosts, Dolap and Deren
are found to perform consistently with high accuracy, while Luna is found to have
acceptable errors on all events other than the floating point. It’s also found that the
accuracy of measurements could be affected by the type of kernel, as in the case of
peakflops UOPs. Poseidon achieves a thousand times less error than other kernels.
Beside, Dolap and Luna also achieve the lowest error for UOPs. That may imply
that PMUs are more accurate when counting the same type of events for a given
metric. Another important finding is that, even with the worst-case accuracy, the
calculated AI values are accurate enough to build roofline models. Still, the losses
in sampling increased all errors of all hosts 4 to 10 times.

5.4 Overhead of Measurements

To measure the overhead of the PMU profiling, likwid-bench kernels are executed
for 10 times. The runtimes without profiling and with a different number of metrics
are reported for different sampling frequencies in Figure 5.6. The only system that
consistently experiences overhead from PMU sampling is found to be Luna. This is
understandable since Luna is an old architecture and has poor performance. Apart
from Luna, negative overheads are observed which means the overhead added by
sampling is smaller than the natural variance observed between different runs of the
same kernel. A similar negative overhead is also reported in (Nowak & Bitzes,
2014), even in a much bigger distributed setting. However, a meaningful skew
towards positive overhead is observed with increasing frequency. That hints that,
in previously presented integrity results, PCP did not just skip samplings for high
frequencies. It tries to sample events; however, it could not catch up with high
frequency. Still, the overhead is still very low, and negative overheads are present
with runs where the frequency is 16/sec.
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Dolap fp cycle inst uops bw ai ai real

triad 2.05E-02 7.55E-02 3.81E-02 1.29E-01 2.62E-02 0.0628 0.625
sum 2.01E-02 7.98E-02 4.35E-02 1.31E-01 3.26E-02 0.1266 0.125
stream 2.28E-02 7.81E-02 4.93E-02 1.31E-01 3.68E-02 0.0845 0.833
peakflops 1.93E-02 7.98E-02 4.29E-02 1.33E-01 2.39E-02 2.0094 2.000
ddot 2.21E-02 7.20E-02 4.19E-02 1.34E-01 3.03E-02 0.1260 0.125
daxpy 2.01E-02 7.90E-02 4.31E-02 1.33E-01 2.97E-02 0.0841 0.833
Deren fp cycle inst uops bw ai ai real

triad 5.55E-03 5.57E-02 4.08E-02 2.48E-03 2.09E-03 0.0620 0.625
sum 5.54E-03 5.51E-02 4.04E-02 2.75E-03 1.53E-03 0.1241 0.125
stream 3.94E-03 5.74E-02 4.26E-02 6.32E-03 5.58E-03 0.0825 0.833
peakflops 5.60E-03 5.40E-02 3.84E-02 6.97E-04 4.76E-03 1.9795 2.000
ddot 8.13E-03 5.33E-02 3.79E-02 9.21E-04 1.85E-03 0.1242 0.125
daxpy 4.91E-03 5.89E-02 4.19E-02 6.85E-04 2.86E-03 0.0826 0.833
Poseidon fp cycle inst uops bw ai ai real

triad 8.23E-03 8.74E-02 3.95E-02 4.02E-01 3.34E-03 0.0618 0.625
sum 7.28E-03 8.17E-02 3.40E-02 4.47E-01 5.48E-03 0.1247 0.125
stream 5.08E-03 8.52E-02 4.02E-02 3.10E-01 3.10E-05 0.0829 0.833
peakflops 5.98E-03 9.07E-02 4.37E-02 5.91E-03 1.63E-02 1.9570 2.000
ddot 6.45E-03 8.13E-02 3.57E-02 2.25E-01 1.44E-03 0.124 0.125
daxpy 7.02E-03 7.97E-02 3.58E-02 3.11E-01 8.42E-03 0.0834 0.833
Luna fp cycle inst uops bw ai ai real

triad 1.00E+00 1.35E-01 9.51E-02 5.57E-02 3.00E-02 0.0000 0.625
sum 1.00E+00 1.36E-01 8.68E-02 3.43E-02 3.11E-02 0.0000 0.125
stream 1.00E+00 1.24E-01 7.87E-02 2.71E-02 3.03E-02 0.0000 0.833
peakflops 1.00E+00 1.30E-01 8.35E-02 3.93E-02 3.10E-02 0.0000 2.000
ddot 1.00E+00 1.16E-01 2.97E-02 1.40E-02 8.58E-02 0.0000 0.125
daxpy 1.00E+00 1.56E-01 9.14E-02 3.84E-02 2.19E-02 0.0000 0.833

Table 5.5 Worst case scenario observed in Figure 5.5. Likwid-bench kernels are
sampled with 24 metrics with frequency 16/s, executed 10 times and average values
are reported.
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Figure 5.6 Overhead of PMU sampling on 4systems using PCP via SuperTwin.
Values represent likwid-bench kernels triad, stream, sum, peakflops, ddot, daxpy
executed 10 times each and averaged together with 1,8 and 24 metrics sampled.
Comparison is againist baseline which no sampling take place.
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6. Conclusions

In this work, we present the design, implementation, and tests of a high-performance
computing environment digital twin called SuperTwin. During the implementation
of SuperTwin, digital twin and linked time-series data approaches prove worthy of
attention since, with the added augmentation and semantical query abilities, they
allow for automatically generated interlinked dashboards for every individual com-
ponent for a target system whose data structure is promising to be scaled to much
larger systems seamlessly. SuperTwin also stays promising for straightforward inte-
gration of external tools since integrating several benchmarks such as cache-aware
roofline model, STREAM, and HPCG into SuperTwin during this development pro-
cess proves this capability. Moreover, the reason for these promising integration is
alongside the capabilities they added to the SuperTwin, the capabilities SuperTwin
added to them. For example, while cache-aware roofline adds SuperTwin’s ability to
generate performance models, SuperTwin adds cache-aware roofline model ability of
an automated generation of performance models for different threading settings and
with respect to NUMA domains, alongside with capability to mark executed kernels
on generated rooflines on-the-fly. Moreover, the ability to automatically and quickly
make a high volume of observations with minimal configuration and compare them,
although yet to be realized, will prove worthy of architecture research and algorithm
research.

On the more practical side, data structures are designed and implemented for Su-
perTwin, several templates of live dashboards are crafted, and data links between
different modules responsible for different functionalities of SuperTwin are initiated.
To this end, the plausibility of SuperTwin, and other possible digital twins that may
follow similar approaches is proved. Moreover, measurements made by SuperTwin
via PCP are analyzed in-depth, limitations and bottlenecks are determined, and
measurements are found accurate. The generality and usefulness of the SuperTwin
are verified.
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7. Future Work

Although implemented and analyzed for single-node systems, SuperTwin is actually
designed to work on high-performance clusters, especially for kernels that work with
sparse data. To this end, SuperTwin is a project that still has much to go: Global
databases, which collect observations made on different hosts systematically, auto-
mated anomaly detection, benchmark validation, and statistical studies on widely
used kernels such as SpMV are the first things to complete in SuperTwin in near
time. As mentioned, SuperTwin, in the future, will be scaled to cluster size sys-
tems and will become a more powerful tool with its aspects designed for clusters
gaining more importance and usage, such as recursive and interlinked dashboards,
component networks, and comparison modules.
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APPENDIX A

Figure A.1 System resource usage of metric shipment with both kernel and PMU
metrics on Dolap. Metric agents pmdaperfevent, pmdalinux and pmdaproc reports
4, 3, 3 metrics and 264, 180, 6876 data points respectively.
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Figure A.2 System resource usage of metric shipment with both kernel and PMU
metrics on Dolap. Metric agents pmdaperfevent, pmdalinux and pmdaproc reports
8, 6, 6 metrics and 528, 185, 12449 data points respectively.

Figure A.3 System resource usage of metric shipment with both kernel and PMU
metrics on Dolap. Metric agents pmdaperfevent, pmdalinux and pmdaproc reports
12, 12, 6 metrics and 1056, 189, 12997 data points respectively.
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Figure A.4 System resource usage of metric shipment with both kernel and PMU
metrics on Dolap. Metric agents pmdaperfevent, pmdalinux and pmdaproc reports
18, 16, 6 metrics and 1584, 281, 13539 data points respectively.

Figure A.5 System resource usage of metric shipment with both kernel and PMU
metrics on Poseidon. Metric agents pmdaperfevent, pmdalinux and pmdaproc re-
ports 3, 3, 4 metrics and 48, 35, 1528 data points respectively.
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Figure A.6 System resource usage of metric shipment with both kernel and PMU
metrics on Poseidon. Metric agents pmdaperfevent, pmdalinux and pmdaproc re-
ports 6, 8, 6 metrics and 96, 40, 2600 data points respectively.

Figure A.7 System resource usage of metric shipment with both kernel and PMU
metrics on Poseidon. Metric agents pmdaperfevent, pmdalinux and pmdaproc re-
ports 12, 12, 6 metrics and 192, 44, 2670 data points respectively.
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Figure A.8 System resource usage of metric shipment with both kernel and PMU
metrics on Poseidon. Metric agents pmdaperfevent, pmdalinux and pmdaproc re-
ports 18, 16, 6 metrics and 288, 56, 2756 data points respectively.

Figure A.9 System resource usage of metric shipment with both kernel and PMU
metrics on Luna. Metric agents pmdaperfevent, pmdalinux and pmdaproc reports
3, 3, 4 metrics and 36, 31, 1152 data points respectively.
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Figure A.10 System resource usage of metric shipment with both kernel and PMU
metrics on Luna. Metric agents pmdaperfevent, pmdalinux and pmdaproc reports
6, 8, 6 metrics and 72, 36, 1990 datapoints respectively.

Figure A.11 System resource usage of metric shipment with both kernel and PMU
metrics on Luna. Metric agents pmdaperfevent, pmdalinux and pmdaproc reports
12, 12, 6 metrics and 144, 40, 2065 data points respectively.
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Figure A.12 System resource usage of metric shipment with both kernel and PMU
metrics on Luna. Metric agents pmdaperfevent, pmdalinux and pmdaproc reports
18, 16, 6 metrics and 216, 48, 2130 data points respectively.

Figure A.13 System resource usage of metric shipment with both kernel and PMU
metrics on Deren. Metric agents pmdaperfevent, pmdalinux and pmdaproc reports
3, 3, 4 metrics and 24, 19, 1227 data points respectively.
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Figure A.14 System resource usage of metric shipment with both kernel and PMU
metrics on Deren. Metric agents pmdaperfevent, pmdalinux and pmdaproc reports
6, 8, 6 metrics and 48, 24, 2123 data points respectively.

Figure A.15 System resource usage of metric shipment with both kernel and PMU
metrics on Deren. Metric agents pmdaperfevent, pmdalinux and pmdaproc reports
12, 12, 6 metrics and 96, 28, 2208 data points respectively.
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Figure A.16 System resource usage of metric shipment with both kernel and PMU
metrics on Deren. Metric agents pmdaperfevent, pmdalinux and pmdaproc reports
18, 16, 6 metrics and 144, 36, 2277 data points respectively.

58



APPENDIX B

Metrics used for resource usage experiments. Lists are cumulative.

10 Metrics
#perfevent
UNHALTED_CORE_CYCLES
UNHALTED_REFERENCE_CYCLES
INSTRUCTION_RETIRED

#proc
proc.psinfo.rss
proc.psinfo.utime
proc.psinfo.stime
network.all.out.bytes

#linux kernel.percpu.cpu.idle
hinv.cpu.clock
disk.dev.read

20 Metrics
#perfevent
LLC_REFERENCES LLC_MISSES
MISPREDICTED_BRANCH_RETIRED

#proc
proc.psinfo.nvctxsw
proc.psinfo.vctxsw

#linux mem.util.used
mem.util.free
mem.util.bufmem
mem.util.cache
mem.util.other

30 Metrics
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#perfevent
BACLEARS_ANY
L1D_REPLACEMENT
L2_LINES_IN_ALL
L2_TRANS_L2_WB
MEM_LOAD_RETIRED_L1_HIT
MEM_LOAD_RETIRED_L1_MISS

#linux mem.util.active
mem.util.inactive
mem.util.swapTotal
mem.util.swapFree

40 Metrics
#perfevent
UOPS_DISPATCHED_PORT:PORT_0
UOPS_DISPATCHED_PORT:PORT_1
UOPS_DISPATCHED_PORT:PORT_5
FP_ARITH:SCALAR_DOUBLE
FP_ARITH:SCALAR_SINGLE
FP_ARITH:128B_PACKED_SINGLE

#linux
network.interface.in.bytes
network.interface.in.packets
network.interface.in.errors
network.interface.in.drops

50 Metrics
#perfevent
FP_ARITH_128B_PACKED_SINGLE
FP_ARITH_128B_PACKED_DOUBLE
FP_ARITH_256B_PACKED_SINGLE
FP_ARITH_256B_PACKED_DOUBLE
MEM_INST_RETIRED_ALL_LOADS.
MEM_INST_RETIRED_ALL_STORES
UOPS_ISSUED_ANY
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#linux
network.interface.in.drops
mem.vmstat.kswapd_low_wmark_hit_quickly
mem.vmstat.kswapd_high_wmark_hit_quickly
mem.vmstat.nr_active_file
mem.vmstat.nr_dirty_background_threshold
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APPENDIX C

Metrics used for accuracy, overhead and throughput experiments. First
x metrics are used in experiment with x metrics

FP_ARITH_SCALAR_DOUBLE
MEM_UOPS_RETIRED_ALL_LOADS
MEM_UOPS_RETIRED_ALL_STORES
INSTRUCTION_RETIRED
UNHALTED_REFERENCE_CYCLES
UOPS_RETIRED_ANY
LLC_REFERENCES
LLC_MISSES
UNHALTED_CORE_CYCLES
MISPREDICTED_BRANCH_RETIRED
BACLEARS_ANY
L1D_REPLACEMENT
L2_LINES_IN_ALL
L2_TRANS_L2_WB
MEM_LOAD_RETIRED_L1_HIT
MEM_LOAD_RETIRED_L1_MISS
UOPS_DISPATCHED_PORT_PORT_0
UOPS_DISPATCHED_PORT_PORT_1
UOPS_DISPATCHED_PORT_PORT_5
FP_ARITH_SCALAR_SINGLE
FP_ARITH_128B_PACKED_SINGLE
FP_ARITH_128B_PACKED_DOUBLE
FP_ARITH_256B_PACKED_SINGLE
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