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Abstract

As one of the most preferred renewable energy sources in the contemporary world,

wind turbine technology has grown in importance.

Blades are among the most crucial parts of a modern horizontal-axis wind turbines.

They extract dynamic energy from the wind and convert it to rotational mechanical

energy for the turbine. Blades play a significant role in the safety, stability and

control of the wind power plant. Blade pitch angles are controlled online via

electrical or hydraulic actuators to safeguard the turbine from hazards of extreme

wind conditions. The same actuation mechanisms are also active during power

production for control purposes.

Turbines operate with prespecified generated power references. In order to keep

the production at this reference pitch angles are position-controlled with feedback

from the power output. Conventionally, linear control methodologies are applied.

Recently, soft computing techniques and especially fuzzy logic controllers are ap-

plied in this field with promising success. The fuzzy rule base, the employed inputs

and parameter values play important roles in the controller performance.

This dissertation presents the design of a novel fuzzy logic blade pitch angle con-

troller. Power regulation is carried out by this system which evaluates power error,

rate of change of power error and generator speed. This set of inputs, different

from the majority of the studies reported in the literature, creates flexibility in



the design of fuzzy rules which compute pitch angle references to be applied to

the blade actuators. Tuning the many parameters of the three-dimensional rule

base, however, proves to be an elaborate task. Evolutionary computing is applied

in this thesis for the tuning of these parameters.

The controller is tested with dynamic simulations of a 2 MW wind turbine model

under fluctuating wind profiles and over nominal wind speeds. The performance

of the novel controller is contrasted to a number of traditional pitch angle control

techniques. Also tested are these conventional techniques when they are tuned by

genetic algorithms. Simulation studies and data from the literature indicate supe-

rior performance of the proposed technique. An energy production improvement

of 1.1 % is achieved when compared with conventional pitch control technique.
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eniyilemesi

Özet

Günümüz dünyasında en çok tercih edilen yenilenebilir enerji kaynaklarından biri

olan rüzgar türbini teknolojisinin önemi giderek artmaktadır.

Kanatlar, modern bir yatay eksenli rüzgar türbinlerinin en önemli parçaları arasındadır.

Rüzgardan kinetik enerji toplayarak türbin için dönme mekanik enerjisine dönüştürürler.

Kanatlar, rüzgar türbinlerinin güvenliği, stabilitesi ve kontrolünde önemli bir rol

oynar. Kanat eğim açıları, türbini aşırı rüzgar koşullarının tehlikelerinden koru-

mak için elektrikli veya hidrolik mekanizmalar aracılığıyla çevrimiçi olarak kontrol

edilir. Aynı çalıştırma mekanizmaları, kontrol amacıyla güç üretimi sırasında da

aktiftir.

Türbinler, önceden belirlenmiş güç referanslarıyla çalışır. Üretimi bu referans

kanat açılarında tutmak için, güç çıkışından gelen geri besleme ile konum kon-

trollüdür. Geleneksel olarak, lineer kontrol metodolojileri uygulanır. Son zaman-

larda, yenilikçi hesaplama teknikleri ve özellikle bulanık mantık denetleyicileri bu

alanda umut verici bir başarı ile uygulanmaktadır. Bulanık kural tabanı, kul-

lanılan girdiler ve parametre değerleri, denetleyici performansında önemli roller

oynar.

Bu tez, yeni bir bulanık mantık kanat hatve açısı kontrol cihazının tasarımını

sunar. Güç regülasyonu, güç hatasını, güç hatası değişim oranını ve jeneratör



hızını değerlendiren bu sistem tarafından gerçekleştirilir. Literatürde bildirilen

çalışmaların çoğundan farklı olan bu girdi seti, kanat aktüatörlerine uygulanacak

hatve açısı referanslarını hesaplayan bulanık kuralların tasarımında esneklik yaratır.

Bununla birlikte, üç boyutlu kural tabanının birçok parametresini en iyilemek,

ayrıntılı ve yenilikçi bir önerme konusu olduğunu kanıtlamaktadır. Bu tezde, bu

parametrelerin ayarlanması için yenilikçi hesaplama uygulanmıştır.

Önerilen kontrolcü, 2 MW’lık bir rüzgar türbini için dalgalı rüzgar formları ve nom-

inal hız üzerindeki hız profilleri ile dinamik olarak benzetim çalışmaları yapılmıştır.

Yeni kontrolörün performansı, bir dizi geleneksel kanat açısı kontrol tekniğiyle

karşılaştırılmıştır. Genetik algoritmalar tarafından en iyleme çalışması sonrasında

bu geleneksel teknikler de test edilmiştir. Benzetim çalışmaları ve literatürden elde

edilen veriler, önerilen tekniğin üstün performansını göstermektedir. Geleneksel

tekniklere kıyasla % 1,1’lik bir enerji üretim arttırımı sağlanmıştır.
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Özet v

Acknowledgments vii

Contents viii

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Roadmap of this dissertation . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Related Work 7

2.1 General Background of Wind Turbines . . . . . . . . . . . . . . . . 7

2.2 Controllers of Wind Turbines . . . . . . . . . . . . . . . . . . . . . 12

viii



Contents ix

2.2.1 Pitch Angle Controllers . . . . . . . . . . . . . . . . . . . . . 18

2.2.1.1 P, PI, PID Controllers . . . . . . . . . . . . . . . . 19

2.2.1.2 Feed Forward Controller . . . . . . . . . . . . . . . 23

2.2.1.3 Neural Network Controlled Wind Turbines . . . . . 26

2.2.1.4 Sliding Mode Controlled Wind Turbines . . . . . . 28

2.2.1.5 Model Predictive Controller . . . . . . . . . . . . . 30

2.2.1.6 Fuzzy Logic Controlled Wind Turbines . . . . . . . 34

2.3 Genetic Tuning on Wind Turbines . . . . . . . . . . . . . . . . . . . 38

2.3.1 P,PI,PID with GA . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.2 Fuzzy blade controller with GA . . . . . . . . . . . . . . . . 43

2.3.3 Other GA applications of Wind Turbines . . . . . . . . . . . 44

3 System Modeling and Control Methods 48

3.1 Aeromechanic Modeling and airfoils . . . . . . . . . . . . . . . . . . 48

3.1.1 Airfoil Designs . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.2 Aeromechanical characteristics of airfoils . . . . . . . . . . . 49

3.2 Aerodynamic Modeling of a Rotating Wind Turbine Blade . . . . . 51

3.3 Modeling of a Wind Turbine . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Pitch Angle Controller . . . . . . . . . . . . . . . . . . . . . 55

3.4 DIFG Type Wind Turbine Configuration and Modelling . . . . . . . 56

4 P, PI and PID Control Implementation for Wind Turbine Blade

Angle Controllers 60

4.1 The Methodology of P, PI and PID Controller . . . . . . . . . . . . 62

4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



Contents x

5 Fuzzy Logic Controller Implementation for Wind Turbine Blade

Angle Controller 68

5.1 The Methodology of Fuzzy Logic Pitch Angle Controller Design . . 68

5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 P, PI and PID controllers with Genetic Algorithm 77

6.1 The Methodology of the P,PI and PID controllers with Genetic

Algorithm Optimization . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Fuzzy Logic Controller Design for a Pitch Angle Controller with

Genetic Algorithm Optimization Methodology 87

7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8 Conclusion and Future Work 97

A List of Publications 100

Bibliography 102



List of Figures

1.1 Upwind and downwind turbines . . . . . . . . . . . . . . . . . . . . 2

1.2 Configuration of HAWT [1] . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Section view of a wind turbine blade [1] . . . . . . . . . . . . . . . . 3

2.1 Two and three bladed wind turbines . . . . . . . . . . . . . . . . . 8

2.2 From turbine airfoil scale to meteorological effects . . . . . . . . . . 11

2.3 The dynamics of fluid mechanical flow in wind farms . . . . . . . . 11

2.4 Capacity of wind installed around the world . . . . . . . . . . . . . 12

2.5 Operating regions for a wind turbine . . . . . . . . . . . . . . . . . 14

2.6 Controlling power of a wind turbine . . . . . . . . . . . . . . . . . 16

2.7 Wind energy conversion systems . . . . . . . . . . . . . . . . . . . . 17

2.8 Wind energy conversion schematics . . . . . . . . . . . . . . . . . . 17

2.9 Gain scheduling based on PI-based pitch control . . . . . . . . . . . 21

2.10 WT control with only feed back . . . . . . . . . . . . . . . . . . . . 23

2.11 Combined feedback/feedforward control . . . . . . . . . . . . . . . . 24

2.12 Feedback preview control . . . . . . . . . . . . . . . . . . . . . . . . 26

2.13 ANN schmeme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.14 RLB neural network scheme . . . . . . . . . . . . . . . . . . . . . . 28

xi



List of Figures xii

2.15 Baseline IMB6.0 model for WT . . . . . . . . . . . . . . . . . . . . 33

2.16 MPC concept with shifted prediction . . . . . . . . . . . . . . . . . 34

2.17 A fuzzy controller for a reactive power . . . . . . . . . . . . . . . . 35

2.18 A basic FLC on WT schematic . . . . . . . . . . . . . . . . . . . . 37

2.19 A fuzzy PID controller with fractional order . . . . . . . . . . . . . 37

2.20 A structure of GA optimizing PID controller parameter . . . . . . . 41

2.21 A structure of GA optimizing PID controller parameter . . . . . . . 42

2.22 A structure of GA optimizing PID controller parameter . . . . . . . 45

3.1 Airfoil design parameters . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Lift and drag coefficients vs angle of attack . . . . . . . . . . . . . . 50

3.3 Wind flow directions of rotational wind turbine axis . . . . . . . . . 51

3.4 Aerodynamic forces along wind turbine rotation axis . . . . . . . . 52

3.5 Power coefficient diagram . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Block diagram of a pitch angle controller . . . . . . . . . . . . . . . 54

3.7 Pitch angle mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8 Wind Turbine Block Diagram . . . . . . . . . . . . . . . . . . . . . 57

3.9 Wind speed regions . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Wind speed For 100 second . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Power output for 100 second . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Generator speed results for 100 seconds . . . . . . . . . . . . . . . . 65

4.4 Pitch angle change for 100 second . . . . . . . . . . . . . . . . . . . 65

4.5 PI & PID controller comparison study for transient response . . . . 66

5.1 Fuzzy logic control block diagram . . . . . . . . . . . . . . . . . . . 71



List of Figures xiii

5.2 Fuzzy control membership functions for generator power error . . . 72

5.3 Fuzzy control membership functions for change in generator power

error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Fuzzy control membership functions for change in generator speed . 72

5.5 Fuzzy control membership functions for output pitch angle . . . . . 73

5.6 Wind profile for region 3 . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7 Power output of Fuzzy logic control with blue line . . . . . . . . . . 75

5.8 Power output of Fuzzy logic control with blue line . . . . . . . . . . 76

6.1 The flowchart of genetic algorithm technique . . . . . . . . . . . . . 80

6.2 The PID controller block diagram with optimization . . . . . . . . . 81

6.3 Wind speed profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.4 Results before GA optimization . . . . . . . . . . . . . . . . . . . . 83

6.5 Results after GA optimization . . . . . . . . . . . . . . . . . . . . . 84

6.6 Generator speed after GA optimization . . . . . . . . . . . . . . . . 84

6.7 Pitch angle output after GA optimization . . . . . . . . . . . . . . . 85

7.1 Fuzzy control membership functions for generator power error . . . 89

7.2 Fuzzy control membership functions for change in generator power

error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Fuzzy control membership functions for change in generator speed . 89

7.4 Wind speed profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.5 Power output with(blue line) and without (red line) using genetic

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.6 Change in power error with (blue line) and without (red line)using

genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



List of Figures xiv

7.7 Pitch angle with (blue line) and without (red line) using genetic

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.8 Rotor speed with (blue line) and without (red line) using genetic

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



List of Tables

2.1 Control summary of wind turbine . . . . . . . . . . . . . . . . . . . 16

3.1 Wind turbine system parameters . . . . . . . . . . . . . . . . . . . 59

4.1 PI-PID results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Steady state results . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Simulated system characteristics . . . . . . . . . . . . . . . . . . . . 73

5.2 Fuzzy Logic Control Table . . . . . . . . . . . . . . . . . . . . . . . 75

7.1 Fuzzy logic control parameters optimized by GA . . . . . . . . . . . 90

7.2 Comparison of energy production with the simulated controllers . . 95

xv



Chapter 1

Introduction

Wind farms play an evergrowing role in the world’s energy generation. In the past

fourty years, wind energy has become incredibly popular all around the world.

The utilization of wind energy has significantly expanded. The development of

wind turbine technologies is being supported by numerous research teams from

various fields.

Every year, thousands of wind turbines are built and put into service all over the

world. Their primary objective is to assist the local power grid by generating

electricity from renewable resources, which would raise the proportion of green

resources used. The construction of larger and more powerful wind turbines that

can gather significant amounts of wind energy results from the development of

technology, manufacturing techniques, and economies of scale, which results in

more competitive electricity production [2].

Wind turbines can be classified from a variety of view points based on the wind

flow, axis of rotation, generator type and mechanical structure. They can be clas-

sified as upwind or back wind from the wind flow perspective. Figure 1.1 illustrates

the classification of turbines based on wind flow. Turbines can be categorized as

horizontal or vertical with respect to the rotational axis orientation. They have

direct drive or gear boxed types.

1
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Figure 1.1: Upwind and downwind turbines

Rotational axis orientation can be considered as one of the most significant features

which define the turbine mechanism. Research about wind turbines is mainly

concentrated on horizontal axis wind turbines (HAWT). Moreover, the HAWTs

are generally divided into two groups based on the main shaft’s connection to

the generator. If the main rotor is directly connected to the generator without a

gearbox, the of configuration is referred to as ”direct-drive” [1].

The components of a horizontal-axis wind turbine are blades, nacelle, hub, low

speed shaft, gearbox, generator and electrical converters. Figure 1.2 shows the

configuration of modern horizontal axis wind turbines. The rotor of a HAWT

consists of generally three blades and a hub that transmits the rotational energy

to the generator through a main shaft and gear box. The speed of the turbine is

defined as the speed of the rotor. It depends on the absorption of wind’s kinetic

energy. The rotor blades of the turbine play a crucial role on speed regulation,

safety and reliability of the turbine. They are mounted on the hub in a way that

they can be rotated about a pitch axis. The rotation of blades is facilitated by

pitch bearings between the hub and the blades and hydraulic or electric actuators.

Each blade of the rotor can be controlled independently in order to set a certain

blade angle called pitch angle [2]. The positioning of a blade with respect to the
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inflow direction has an important effect on overall wind turbine dynamics. Blades

generate lift and drag forces which rotate the overall rotor and eventually generate

electricity.

Figure 1.2: Configuration of HAWT [1]

Figure 1.3: Section view of a wind turbine blade [1]

Figure 1.3 illustrates the general cross section view of a modern horizontal axis

wind turbine’s blade. By rotating the blade along the pitch axis, main speed of

the turbine is regulated. Acceleration, deceleration and keeping the turbine speed
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steady can be achieved via pitch angle control in a state-of-the-art horizontal-

axis wind turbine. Throughout the dissertation, design of pitch angle control

techniques will be the main objective.

1.1 Motivation and Objectives

The constraints and shortcomings of the existing designs of wind turbine con-

trollers serve as the motivating force behind the research activities reported in

this document. Within the life span of a wind turbine, rotors encounter many

dangers because of the faults of pitch angle controllers. Highly fluctuating wind

profiles and extreme speeds of wind can affect the turbine’s service life negatively.

A defect of the pitch angle control system may degrade the reliability and safety of

the turbine. By designing a suitable controller, the turbine operation can be opti-

mized in many disciplines such as safety and power maximization. The objective

of this study is to develop a pitch controller that achieves reliable power produc-

tion under high wind speeds and fluctuating wind profiles. This would improve

annual energy production of a wind turbine.

1.2 Contributions

A number of control methodologies are reported for blade angle control. PI, PID,

PID with gain scheduling, Fuzzy Logic, robust control and neural network tech-

niques are developed for a variety of wind applications. In today’s modern and

commercial wind turbines mainly PID controllers are employed for pitch angle

control.

This thesis provides the following contributions in wind turbine pitch angle con-

troller design:

• An innovative blade angle controller with fuzzy logic is designed. This design

features the careful selection of three fuzzy system inputs.
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• A detailed simulation environment is developed for a modern wind turbine

with a doubly fed induction generator (DFIG).

• Genetic algorithm based parameter optimization is applied for the designed

fuzzy controller.

• When tested under demanding wind conditions, the proposed fuzzy blade

controller optimized by genetic algoritms outperfoms conventional and fuzzy

system based blade controllers reported in the literature.

A 2 MW wind turbine in doubly fed induction generator (DFIG) configuration

is modeled in software environment with included thermal and electrical systems.

Simulations are run for several different wind cases. Compared to earlier models of

wind turbines, our simulation environment is more detailed with respect to wind

flow analysis, turbine modelling and control structures. Any kind of pitch angle

controller with different control theories can be implemented and simulated.

With genetic algorithm based optimization the fuzzy logic controller, performance

with more advanced results are obtained. Improved solutions in terms of settling

time and maximization of power can be considered as the virtues of GA optimiza-

tion.

1.3 Roadmap of this dissertation

The background information and associated works are presented in Chapter 2.

Three major sections contribute to this chapter. In the first part, general defini-

tions and summary of wind turbine history and technologies are covered. Second

section of the chapter consists of six sub sections. Controller technologies of exist-

ing wind turbines are briefed. Existing P, PI and PID and feed forward controllers

are described. Neural network based systems, sliding mode controllers, model pre-

dictive control and fuzzy logic controllers are discussed. Genetic tuning for wind

turbines is covered.
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Chapter 3 is on the mathematical modelling of horizontal axis wind turbines.

The computer aided engineering software employed for modeling in this thesis

is discussed in detail. Simulation characteristics and background disciplines are

summarized.

In Chapter 4, PI and PID techniques for a pitch angle control are described with

methodologies and theoretical background. This is followed by simulation results

with the these control methods. A comparison between PI and PID applications

and a general overview are presented.

Chapter 5 details the main topic of the dissertation. Fuzzy logic control design

process is presented. The methodology and background theory is discussed. Simu-

lation results with the 2MW wind turbine model under the novel fuzzy pitch angle

controller are shown.

Chapter 6 improves Chapter 4 by adding genetic algorithm based controller pa-

rameter tuning. An overview of the genetic algorithm optimization is presented

and the application results for the PI and PID controllers are given. A comparison

study with the results of Chapter 4 is presented.

Similarly, Chapter 7 is an extension of Chapter 5 with genetic optimization of

previously designed fuzzy logic pitch angle controller. In this chapter, applied

techniques, simulation results and a discussion are presented. Majority of the

contributions of the thesis are discussed in this chapter.

The final part of the dissertation is the conclusion chapter. This chapter presents

the overall conclusion of the thesis and future work is discussed.



Chapter 2

Background and Related Work

2.1 General Background of Wind Turbines

Modern commercial wind turbines work with aerodynamic principles. The kinetic

energy of the wind flow is converted to electric energy in many steps. As a result

of wind moving toward the turbine blades, a wind turbine operates according to

the principles of lift and drag forces. These forces cause the turbine to rotate, and

as a result, the rotor of the generator that is connected to the turbine, provides

electrical energy [3]. WTs are categorized as either horizontal axis wind turbines

(HAWT) or vertical axis wind turbines (VAWT) depending on the arrangement

and layout of the blades and their rotation plane (HAWT). HAWT is more ex-

pensive and sophisticated than VAWT, but because of how much more effective

it is, it is more widely used. A WT can be categorized as either direct-drive, in

which case the turbine’s rotor is directly coupled to the electrical generator, or

gearbox-based, in which case the power shaft is split into a low speed shaft on the

turbine side and a high speed shaft on the generator side by the gearbox. In terms

of number of blades there exits many configurations of wind turbines. The most

efficient and commonly used configuration of modern wind turbines are with three

blades however, there are still commercially available wind turbines with different

numbers of blades.

7
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Figure 2.1: Two and three bladed wind turbines

Climate change and environmental pollution will be mitigated by using renew-

able energy to meet the world’s energy needs in the future. Most of the world’s

energy demand (around 80%) is met by fossil fuels, causing environmental and

climate damage, despite the growth of energy demand at an average annual rate

of around 2%. In light of this, and the growing safety concerns regarding nuclear

energy, many countries have established ambitious targets for renewable energy

sources that emit low greenhouse gases and pollutants, including wind energy [4].

According to REN21 (2017), in order to meet those targets, there will need to

be a substantial increase in the amount of wind capacity installed worldwide over

the next few decades. To achieve that growth, wind farms must be designed and

installed in high-wind-energy regions and existing farms must be upgraded [4].

In the coming years, the energy industry sector will continue to focus on saving

energy and making the best use of intermittent resources. More important than

constructing new plants is utilizing the existing energy resources and operating
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industrial units to the fullest. Efforts should be made to evaluate existing waste

heat-recovery systems and their characteristics as there is a compelling need for

waste heat recovery from operating units. Wind farms (WFs) produce relatively

low amounts of heat (approximately 90–150 °C), making them more suitable for use

in heating than in energy generation. It is generally possible to recover waste heat

and use it for space heating and process heating. The district heating (DH) sector

can offer significant advantages such as the ability to utilize surplus waste heat

from industrial processes and the use of renewable energy sources more efficiently.

While district heating might be an apparent application, the agricultural and live-

stock sector can also benefit significantly by such an application. Greenhouse

space heating, produce cooling (absorption cycle) and milk heating (pasteuriza-

tion process) are just a few of the possible technical uses of the excess heat from

WFs. The location of wind turbines (WTs) near rural and agricultural lands is

an apparent advantage in this case. Engineering analysis and representative case

studies will be performed to evaluate the overall benefits of such a system with

the use of excess heat from WTs for additional heating [5]. Several researchers

are working on waste heat recovery (WHR) applications and the number of re-

searchers is increasing. According to Safaei et al. [6] compressed air energy storage

(CAES) can cover district heating needs by enabling heat recovery. In a 25-km

distance, a minimum gas price of $0.025/kWh renders heat recovery economically

advantageous, while at 50 km, it makes no economic sense. Various energy carriers

can serve industrial plants, residential areas, and the service sector by combining

the supply and demand streams of independent users [7]. Local renewable energy

sources with the ability to provide heating and cooling for a local area were ex-

amined by Perry et al. [8]. A combination of a solar/thermal (PV/T) system and

heat recovery units was investigated by Alfagi et al. [9]. They found that as the

temperature of air flow increased, so did the electricity produced by PV/T hybrid

modules. In such systems, electricity and heat production should be optimized

according to demand requirements.

It has been 20 years since Betz and Joukowsky [10] published seminal works

in the field of wind-turbine aerodynamics, and especially in the optimization of
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horizontal-axis wind turbine (HAWT) rotors. Glauert (1935) revolutionized the

field of physics when he formulated the blade-element momentum (BEM) theory.

A theory such as this, which has later been extended with many ”engineering

rules”, is the basis of all rotor design optimization codes currently used in the

industry (e.g., reviews by Sørensen 2011 [11], and 2016 [12]). Using advanced

aerodynamics, modern HAWTs have been able to achieve power coefficients of

around 0.5 (based on aerodynamic efficiency), which is close to the maximum the-

oretical Betz–Joukowsky limit of 0.593, given the inevitable aerodynamic losses.

Furthermore, if the incoming flow is known a priority, the performance of those

turbines can be reasonably predicted. It remains difficult to predict wind-turbine

and wind-farm performance under real conditions, which is one of the obstacles

to optimizing wind farms’ layout, operation, and control. Despite its turbulent

nature and non-stationary nature (due to the diurnal cycle and synoptic forcing

variability), the atmospheric boundary layer (ABL) interacts with wind turbines

in complex ways. It is modulated by ubiquitous thermal effects and is often het-

erogeneous (due to topography and land surface heterogeneity). Furthermore,

turbulent wake flows that form downwind from wind turbines result in substantial

power losses, both because of reduced wind speed in wake flows and because of

increased fatigue loads and associated maintenance costs [13] [14]. Thus, any im-

provement in the understanding and prediction of ABL flow interaction with wind

turbines and wind farms could contribute to increasing wind energy’s economic

feasibility. Wind farms are affected by a wide range of atmospheric flow scales, as

illustrated in Figure 2.2. At horizontal length scales wider than about 2000 km,

and in the range of 2–2000 km, macroscale and mesoscale weather phenomena

are responsible for the variability in free atmosphere flow. Using a combination of

large-scale atmospheric motions, the Coriolis force, aerodynamic forces on the land

or sea surface, canopy structures, buildings, topography, and wind turbines, as well

as atmospheric stability, the ABL inside and around wind farms is structured and

evolved. The continuous range of turbulence scales within the ABL, including the

integral scale (on the order of 1 km and 100 seconds) and the Kolmogorov scale

(on the order of 1 mm and 1 ms), plays an influential role in adjusting the ABL



Background and Related Work 11

around wind turbines and farms (including wakes generated by turbines) and, ul-

timately, improving their performance. ABL flows and their two-way interaction

with wind farms are particularly challenging because of the multi-scale nature of

atmospheric turbulence. Figure 2.3 illustrates the properties of the wake behind

the first turbine. For analytical wind farm models, the single turbine wake is one

of the building blocks.

Figure 2.2: From turbine airfoil scale to meteorological effects

Figure 2.3: The dynamics of fluid mechanical flow in wind farms
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2.2 Controllers of Wind Turbines

A growing need for alternative energy sources has prompted the rapid development

of wind energy systems [15]. Figure 2.4 shows that, according to data provided

by the global wind energy council (GWEC) [16], there will be about 651 GW

of installed wind capacity in the world by the end of 2019. As compared to

2018, this represents an increase of 10 % in global wind capacity. As a result of

the continuous demand for alternative energy sources, wind capacity is expected

to increase exponentially over the next few years. Over the years, the designs

of WTs have evolved from simple to complex. There is a need to incorporate

control systems to ensure that wind turbines operate efficiently and that wind

energy is effectively utilized. This is because of the complexity and dependence on

weather and environmental factors of wind energy systems [17]. A control system

is incorporated into wind turbines to make them more capable of coping with wind

variability while producing energy in a cost-effective and reliable manner.

Figure 2.4: Capacity of wind installed around the world

In addition to providing grid integration stability, WT control schemes also miti-

gate static and dynamic mechanical loads, maximize power production, and main-

tain a continuous power supply to the grid [18]. The WT generator torque and

blade pitch angle should be optimally controlled to achieve the aforementioned
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control objectives. The torque control of the generator allows the rotor speed of

the turbine to be varied by employing MPPT strategies. This allows us to make

use of as much wind power as possible. For the turbine to turn at optimum speed,

the generator torque must be the shock absorber. In addition, pitch angle con-

trol ensures smooth power production by controlling the wind’s input torque. As

power electronics have advanced, WT systems have also been improved in various

ways, particularly when considering the quality of the system. It is impossible

to overemphasize the role played by power electronics components of the WT in

stabilizing grid integration and enabling variable speed operation [19]. Several

research papers have extensively explored individual control methods associated

with wind systems, but few have attempted to review the various control strate-

gies in one research paper. A recent review of these control techniques focused

mostly on MPPT and pitch angle control of WTs [20] [21]. Rather than discussing

the pitch control of wind turbines themselves, the authors in [21] discussed the

pitch angle controller for WTs. WT operating regions were not discussed in [21]

although the authors mentioned it. Pitch angle controllers were not addressed in

[20], which focused on pitch control methods. Here, we review to fill the gap in

this field. During the control of WT systems, power and speed control are two

significant factors to consider. In most cases, WT extracts power in the form of

2.1:

Pw = 0.5ρACpV
3 (2.1)

where Pw indicates wind power, ρ represents air density, A is rotor area, the power

coefficient Cp depends on tip speed ratio (TSR) λ and pitch angle β. The wind

velocity is V, λ represents the relationship between V and linear velocity on the

tip blade 2.2 :

λ =
wR

V
(2.2)

w and R show the rotor speed and radius, respectively.
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There are different control methods for each control system depending on the

operational region and control objective. Any WT system operates in distinct

regions, as shown in Figure 2.5. For the analysis of each WT control technique, it

is essential to understand each of these operating regions.

Figure 2.5: Operating regions for a wind turbine

The wind turbine does not generate power in region 1. The WT rotor cannot

rotate in this region due to low wind speeds. When the wind speed exceeds the

cut-in wind speed of the WT, the WT enters into idle mode. WTs can generate

power in region 2 at a range of wind speeds, but not at nominal power. The

primary focus is on maximizing power production. Wind power content varies

with average wind speed as shown in equation 2.1. To ensure maximum power

production, the rotor speed is varied to keep λ at an optimal level as the wind

speed changes.

Maximal power can be achieved by operating the WT at an optimal tip speed ratio

λopt with the rotor blades pitched at an optimal angle βopt. Therefore, maximum
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power is generated by the generator torque controller τg which achieves λopt and

is expressed as a function of rotor speed 2.3:

τg = Kw2 (2.3)

Where w is rotor speed and K corresponds to aerodynamic constant of the WT,

as 2.4:

K = 0.5ρπR5 Cpopt

λopt3
(2.4)

Cpopt shows the coefficient of optimal power, and R indicates the blade radius [22]

[23] [24] .

WT transits into region 3 as it reaches the rated wind speed. Often, region 3 is

considered to be the full load region. The pitch angle controller controls the rotor

rotation at nominal speed while the generator outputs rated power in this region

where the wind speed is between the rated and cut-out speed. Region 3’s control

objective is to limit power production, in contrast with region 2’s maximal power

production goal. To ensure constant rated power from the wind, both torque and

rotor speed are limited on the WT generator. Under varying wind conditions,

proportional-integral-derivative (PID) control is used to regulate the WT speed

with pitch blade control.

Wind turbines employ several control strategies before the cut-out speed to deal

with high wind speeds that would otherwise threaten the turbines. Therefore, all

WTs are designed with a power control technique. Controlling stalls or pitching

can be done in this manner. Active stall control and passive stall control are two

types of stall controls for WTs. These control methods are described in Figure

2.6, and Table 2.1 summarizes its advantages and disadvantages.

As the wind speed increases, the power generated by the wind energy conversion

system (WECS) increases. The extracted power is highly affected by small varia-

tions in wind speed. The grid voltage must be constant in amplitude and frequency
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Figure 2.6: Controlling power of a wind turbine

Table 2.1: Control summary of wind turbine

Control Method Advantage Drawback
Passive Stall Low Complexity Suitable for small WT only
Active Stall WT Blade angle is During high wind speeds

optimized according the generator rotor speed
to wind speed is reduced

Pitch Control Power control system Pitch mechanism adds
that is efficient complexity and cost

in order to be compatible with this power. Therefore, control strategies must be

implemented to ensure maximum power and constant voltage in WECS [25]. The

typical grid connected WECS is shown in Figure 2.7. Directly or through a gear-

box, the wind turbine is connected to the generator. The wind turbine converts

kinetic energy into mechanical energy. In order to convert mechanical energy to

electrical energy, generators are used. The wind energy system is connected to

the grid through converters. Depending on the wind speed, the wind turbine can

produce its rated output.

Nonlinearity, rapid variations in wind speed, and uncertainty are challenges faced

by wind power plants. In order to solve them efficiently, an advanced controller is

needed. Integrating advanced controller into WECS in order to increase efficiency
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Figure 2.7: Wind energy conversion systems

in terms of power conversion and blade control design. Many researches have been

conducted in order to develop a control strategy for WECS that can be integrated

with grids. The controllers must be simple, reliable and cost-effective in order to

be able to withstand the fluctuation caused during its operation. A comparison

of WECS’s different control strategies is shown in Figure 2.8.

Figure 2.8: Wind energy conversion schematics
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2.2.1 Pitch Angle Controllers

The pitch control WT senses the output power several times every second using an

electronic controller. When the power level exceeds the prescribed safe level, an

electronic signal is generated to pitch the turbine blades out of the wind. When

the power level drops, the turbine blades are tucked into the wind or turned

backward to catch the wind. By pitching the WT blades, a minimum power loss

can be achieved, resulting in a capture of power equal to that produced by the

wind generator. WTs with pitch controlled turbine blades have an active control

system that reduces torque and rotational speed by changing the pitch angle of the

blades. High rotational speeds and aerodynamic torques can damage equipment

when using this type of control in high wind speeds. A WT’s pitch control and

stall control differ primarily at high wind speeds. For pitch-controlled turbines,

active pitch control is used to control the rotational speed of the blades at high

wind speeds, whereas stall-controlled turbines rely on the aerodynamic design of

the blades. When the wind speed exceeds the rated wind speed, pitch controlled

systems maintain a constant power output, but stall controlled systems cannot.

The rotation of the WT blades is used for both pitch control and active stall

control. WT blades operate differently because they turn. Active stall control of

the WT turns the turbine blades into the wind instead of away from the wind so

the lift force on the blades is reduced. Two types of pitch control are available for

WTs: collective pitch control (CPC) and individual pitch control (IPC) [26] [27].

Electric or hydraulic controllers can implement both control methods [28].

Power output is regulated mechanically by the pitch angle controller. Angular

speed is controlled by the wind turbine’s output torque, and mechanical output

power is controlled by the torque. Wind turbines with high rated generators are

designed to protect the wind generator from sudden gusts of wind [29]. Low wind

speeds increase the power of the machine by adjusting the pitch of the blades.

If the pitch angle controller is unable to limit the rotor speed below the optimal

speed, it acts as a brake system and protects the generator during higher wind

speeds [30]. Variations in wind speed are used to determine the pitch angle control
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and rotational velocity control. Wind turbines generate aerodynamic power by

adjusting their pitch angle. Due to blade pitching, there is a minimal loss of power,

so the power captured is the same as the power generated by the wind generator

[31]. In order to control the rotor’s speed, the pitch angle controller continuously

monitors the operation and adjusts the blade pitch. In order to enhance the

efficiency and stability of wind energy conversion systems, pitch angle controllers

are essential and useful controllers. The pitch system generally consists of a motor

and an electromechanical actuator. Electric pitch controllers and hydraulic pitch

controllers are the two types of pitch systems [28].

2.2.1.1 P, PI, PID Controllers

Wind turbine blades are controlled collectively by the same control method in

the majority of commercial wind turbines [14]. There are no differences in pitch

between WT blades regardless of the existence of independent servomechanisms.

A CPC uses traditional proportional-integral (PI) control laws and its main goal

is to limit wind power capture by adjusting pitch angles as the rotor speed is

regulated. It is the difference between the nominal rotor speed reference and its

actual value that determines the controlled variable in this case. As shown in 2.5,

βc = Kp(1 +
ki
s
)(wref − w) (2.5)

Where βc represents the collective demand on blade pitch angles, for the propor-

tional controller Kp is utilized, the integral gain is Ki, wref is to reference the

rotor speed and w is speed measured at the rotor axis. Region 3 is responsible for

implementing this control. The CPC has been the subject of several researches

[32] [33] [34]. As described in [35], Schlipf demonstrated that CPC was effective

for controlling WTs. CPC has traditionally been implemented using PI control

with gain scheduling, but the constant need for load reduction has motivated the

development of various modern approaches to CPC. To overcome modeling uncer-

tainties, adaptive and robust techniques have been introduced. Adaptive CPC is
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described in [36][37] to address disturbance rejection in WTs. As a result of tur-

bulent wind conditions, this adaptive technique was further explored. WT blades

are erroneously assumed to receive equivalent aerodynamic loads under the CPC

strategy. This causes unbalanced loads on the rotor disk, which can result in stress

on the WT and eventually failure [37].

In small wind energy conversion systems, conventional controllers are most com-

monly used. The PID/PI controller controls the rotor speed and generated power.

Smaller WT systems can benefit from these controllers. Typically, conventional

controllers determine pitch angle reference based on wind speed, generator power,

and rotor speed [38]. Research on conventional controllers can be found in [39]

[40] [41]. Although these controllers are simple, accurate wind speed measure-

ments cannot be obtained [42]. This controller has a slow response time compared

to other controllers. A rotor speed and generator power based pitch angle con-

troller is the most efficient and reliable conventional controller. Gain scheduling

can improve the control performance of a system with non-linear characteristics.

This method is often used to counteract the sensitivity of the aerodynamic torque

to pitch angle since it is based on how the output power changes with pitch angle.

In a conventional controller with gain scheduling, the relationship between the

controller gain and the system sensitivity is inversely proportional, which makes

it more reliable than one without it.

An ordinary pitch angle controller uses PI/PID controllers to control rotor speed

or power generation. For conventional controllers, pitch is determined by input

parameters such as rotor speed, generator power and wind speed. PI/PID con-

troller is fetched with the error signal and the wind turbine is supplied with the

generated pitch angle reference. Using conventional converters with gain schedul-

ing, non-linear systems can be controlled more effectively. Aerodynamic torque is

sensitive to pitch angle, which is to overcome with gain scheduling [43]. Variations

in output power with pitch angle determine the aerodynamic sensitivity of the

system. There is an inverse relationship between the sensitivity of the system and

the controller gain. Therefore, gain scheduling-based conventional controllers are
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more reliable than non-gain scheduling-based controllers. With gain scheduling,

PI-based pitch angle control is illustrated in Figure 2.9.

Figure 2.9: Gain scheduling based on PI-based pitch control

According to Muljadi et al. [31], the wind turbine’s power can be maintained at

an optimal level using pitch control and generator load control. Optimal power

is maintained by monitoring power versus rotor speed and maintaining rotor ac-

celeration. Pitch rate is controlled according to wind speed with the controller.

A smoothness factor depends on rotor speed variation and inertia. Based on the

operating characteristics, the effects of slow and fast pitch rates were examined

for different wind speed regions.

A PID-based pitch controller was developed and analyzed using root locus tech-

niques by Jauch et al. [44]. A short circuit fault near the wind turbine is used to

analyze and test the controller’s performance. By stabilizing the power system,

grid integration can be achieved. Power system oscillations can be dampened by

the pitch actuator. There is an investigation of the turbine’s grid frequency and

active stall and a suitable inference is drawn.

PI controllers with fuzzy logic control(FLC) were proposed by Zhang et al. [45].

The complexity of the system increases due to the PI based controller’s requirement

for system knowledge. Wind speed nonlinearity prevents the PI controller from

achieving the dynamic characteristics of wind turbines. A gain schedule is used to

overcome the disadvantages of conventional PI controllers. This work implements
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and compares FLC-based control strategies with PI-based systems and the results

show that FLC-based systems have a low fatigue load.

A PI controller was proposed by Junsong Wang et al. [40] to provide a time

delay to hydraulic-based pitch controllers. PI controller gain is determined us-

ing a graphical approach. The stabilizing region of wind generation system is

analysed and the strategy does not require linear programming. By using MAT-

LAB/Simulink, the controller is validated and the results show that it is efficient

at reducing computation time and complexity.

Hwas et al. [39] discuss the method of calculating the gain of PI-based pitch

controllers. To calculate the gain of the system at different wind speeds, the

authors specify both analytical and simulation methods. Quadratic control law is

implemented in below wind speed region for selection of operating point. Using

a 5 MW wind turbine, the system is validated using simulation based calculation

method that is simpler and faster than analytical method.

Qian et al. [41] proposed a prediction-correction pitch angle control strategy.

Using the wind speed data, the moving average method predicts pitch value, while

the PI controller associated with it analyses control error. Consequently, this

method can reduce the influence of wind speed fluctuations on pitch angle. The

cost and complexity of the system are high since the wind speed measuring sensor

is incorporated into the controller.

Zhang et al. [46] developed a PI-resonant pitch controller for the mitigation of un-

balanced loads. In this technique, individual pitch controllers (IPCs) are used. In

this controller, a PI controller with two resonant controllers is implemented. The

proposed method reduces the load on wind turbines. Pitch error is used to deter-

mine and minimize the unbalance of the system. Conventional pitch controllers

have the major disadvantage of failing to track the system’s non linearity.

An adaptive and fault-tolerant wind turbine control scheme is developed by Habibi

et al. [47] using a PID-based fault-tolerant controller with a nussbaum-type func-

tion. The proposed controller offers several advantages over available methods,
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including the capability to handle nonlinear dynamics of wind turbines, including

model uncertainty, the ability to ensure system stability through the use of an

adaptive self-tuning gain algorithm, and resilience to variations in wind speed.

Furthermore, an unknown direction of control can be accommodated and unex-

pected actuator faults can be accommodated.

To control the pitch of a wind turbine, Wang et al. evaluated the performance of a

fractional order PID (FOPID) controller with an anti-windup strategy. Pitch con-

trol is coupled with active tower damping control to prevent undesired oscillations

on the tower caused by pitching activity. FOPID-based control system results in

an improvement in the wind turbine’s control performance, according to simula-

tion results. Compared to other techniques, conventional controllers have a very

high response time. For conventional controllers, prior knowledge of the system is

required. They are therefore suitable for small-scale wind power systems.

2.2.1.2 Feed Forward Controller

Commercial wind turbine blade pitch control algorithms typically rely solely on

feedback, as shown in Figure 2.10.

Figure 2.10: WT control with only feed back

An error in generator speed is often used to control blade pitch by a proportional-

integral (PI) based collective blade pitch controller. There has been recent evi-

dence that more advanced feedback controllers can reduce structural fatigue loads

[48] [49]. In addition to the generator speed, these advanced controllers use strain



Background and Related Work 24

gauges and position encoders for individual pitch control. It is possible to mea-

sure wind speed remotely using LIDAR (Light Detection and Ranging). It is now

realistic to measure the wind speed upstream of a turbine using LIDARs that are

smaller, more cost-effective, and more reliable. By using disturbance feedforward

control, we can take advantage of additional information such as wind speed mea-

surements. Figure 2.11 shows how this feedforward control can be combined with

either standard or advanced feedback controls.

Figure 2.11: Combined feedback/feedforward control

This type of wind speed measurement is being actively researched for its use in

reducing fatigue loads on turbines. An approach to disturbance accommodating

control with inputs from a Lidar simulator has been studied by Harris et al. [50].

In combination with preview wind speed inputs, Laks et al. [51] studied feed-

forward/feedback MIMO control. Kühn and Schlipf [52] studied feed-forward con-

trol, which is composed of a static gain schedule coupled to a low pass filter. There

were two feed-forward designs studied by Dunne et al.[53]: collective-pitch model-

inverse feed-forward using a non-causal series expansion and individual pitch gain-

scheduled shaped compensator. A feed-forward controller uses LIDAR to measure

incoming wind speed as an input. By reducing structural loading, three of the

designs are more efficient than standard feedback control. Recently, Ren et al.

combined feedback controllers with feed-forward controllers. PID controller pa-

rameters are adjusted using fuzzy algorithms in the feedback loop. In addition,

variable universe theory is proposed for optimizing fuzzy algorithms to overcome

large variation in input wind speed. Using feed-forward loop, he proposes feedback

linearization to solve nonlinear problems. The sliding mode algorithm improves



Background and Related Work 25

the robustness of feedback linearization. The feed-forward loop can thus compen-

sate for the time-delay deficiency of wind turbines. Using the proposed controller,

the system can be controlled more accurately and robustly [54]. Gain-scheduled

feedforward controllers were designed by Bao et al. [55] to augment baseline

feedback controllers in wind turbine loads above rated operation, using pseudo-

LIDAR (light detection and ranging) wind speed measurement. By employing

gain scheduling strategy, the feedforward controller was first developed using a

linearised model at a wind speed above rated. It was then expanded to the full

operational envelope above rating. Simulation studies have demonstrated that the

proposed control strategy can reduce rotor and tower loads for large wind turbines.

A variable-speed wind turbine (VSWT) output feedback controller was proposed

by Jabari Asl and Yoon [56] to increase turbine efficiency. In designing the con-

troller, both the electrical and mechanical dynamics of the turbine are taken into

account. For the full dynamic, the rotor acceleration is a damping term, which

is not highly accurate compared to previous studies, this paper’s approach uses

an observer to estimate this information in order to increase the system’s relia-

bility. The dynamic model of the turbine is also robust against structured and

unstructured uncertainties. A numerical simulation is presented and compared

with an adaptive controller available on the market. The system performs better

than other methods in terms of its response and performance. Using disturbance

feedforward control, Laks et al.[57] investigated load mitigation through preview-

based control. A more realistic comparison is made between performance based

on highly idealized rotational wind measurements and that of more realistic sta-

tionary wind measurements. With reasonable pitch rates, excellent performance

gains can be obtained with idealized, ”best case” measurements. A more realistic

wind measurement, however, indicates that errors in determining the shear local

to each blade, without further optimization of the controller and/or better data

processing, can negate any advantages obtained by utilizing preview-driven feed-

forward. Figure 2.12 illustrates preview, a feed-forward control variation that uses

advance knowledge of imminent disturbances (or commands). Because LIDAR
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measures wind approaching the turbine rather than at it, this technique is feasi-

ble using LIDAR technology. Hence, measurements of wind perturbations can be

taken before they hit the turbine.

Figure 2.12: Feedback preview control

2.2.1.3 Neural Network Controlled Wind Turbines

With soft computing controllers, uncertainties in wind energy systems may be

overcome quickly, predictably and efficiently due to variations in environmental

conditions. They are based on artificial techniques. A metaheuristic algorithm,

fuzzy logic controller (FLC) and artificial neural network (ANN) are the most

commonly used techniques with these controllers. In a variety of control systems,

ANN is also a popular control technique [58]. A controller can be controlled by
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rotor speed, output torque, wind speed, pitch angle or a combination of these

variables. If the purpose of the WT control is to optimize power at winds above

the rated wind speed, ANN is suitable. An ANN can also be used to estimate

the nonlinear characteristics of the WT. To maximize power extraction during

wind speed variations, a neural network approach is proposed to control (WECS)

mechanical speed. A four-layer ANN controller with feed-forward architecture is

described in Figure 2.13 [59]. The input variables of the ANN are the desired speed

and the generated speed. ANN controllers produce torque as their output [59].

To achieve the required precision of the proposed approach, the number of hidden

layers and their neurons is determined empirically [60] [61]. Repeated learning

algorithms were used. To search for the optimal synaptic weights, the Levenberge

Marquardt algorithm was applied to train the ANN. Due to its fast convergence

properties and robustness, it is an excellent algorithm for optimizing quadratic

errors. Approximately %70 of the setpoints were used for training, and %30 for

testing [62].

Figure 2.13: ANN schmeme

Using artificial neural networks and evolutionary algorithms to control plants is a

method that does not require a dynamic model of the plant under control. Instead,

it only requires input and output data. Evolutionary algorithms are a subset of

evolutionary computation and are categorized as artificial intelligence. In artificial
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neural networks, the obtained knowledge is used to calculate the output responses

of complex systems using machine learning and knowledge representation. An

RBF neural network-based collective pitch control (CPC) controller was developed

by Poultangari et al. [63] for 5 MW wind turbines. An evolutionary algorithm

called particle swarm optimization (PSO) is used to provide an optimal data set

for training the RBF neural network in Figure 2.14. System complexity, non-

linearity, and uncertainty are not required for the proposed method. According to

the simulation results, the proposed controller performs satisfactorily.

Figure 2.14: RLB neural network scheme

2.2.1.4 Sliding Mode Controlled Wind Turbines

A well-performed perturbation compensation-based sliding mode control (SMC)

was proposed in [64] for optimal power extraction of Permanent-Magnet Syn-

chronous Generator (PMSG)-based WTs. The system non-linearities and not

modeled dynamics, uncertain parameters, and stochastic wind speed variations

were aggregated into a perturbation and estimated by developing a sliding mode

perturbation and state observer. Accordingly, the proposed control scheme ef-

fectively compensated the perturbations, avoided the being over-conservative of

SMC, and delivered a robust control performance. Due to its fast dynamic re-

sponse, good transient performance, stability, and robustness to matched parame-

ter variations and external disturbances, sliding mode control has been proven to

be an effective and suitable control strategy for various nonlinear control problems

[65] [66] [67] [68]. Nevertheless, despite the satisfactory tracking performance of
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conventional SMC techniques in practical applications, some of its shortcomings

remain, such as its vulnerability to measurement noise, the difficulty of attaining

asymptotically stability under mismatched perturbations, generating unnecessary

control signals to overcome parametric uncertainties, as well as the chattering

phenomenon associated with discontinuous switching control, which causes high-

frequency oscillations [69] [70]. It is impossible to estimate the effects of chattering

on real-world applications due to the lack of a component that can switch to an

infinite frequency [71]. Therefore, it is usually important to mitigate the conse-

quences of this phenomenon by reducing it [72]. Due to WT’s highly nonlinear

behavior and the fact that they operate in harsh environments, SMCs are known

to play an important role in power control and performance enhancement [73] [74].

Under high uncertainty conditions, sliding mode control is effective [75][76]. By

using discontinuous control signals, the sliding mode strategy drives the system

states toward pre designed surfaces in state space. Designing a SMC consists of

two steps: (i) designing a stable sliding surface to obtain the desired dynamics,

and (ii) designing a control law to ensure reaching the chosen sliding surface in

finite time and staying there. There are two modes of state dynamics in a system

controlled by an SMC: reaching mode and sliding mode. When states reach the

sliding surface, the controller forces them to slide and as they slide, the controller

transitions to the sliding mode. Nonlinear systems have recently been commanded

robustly using SMC methodology. In order to satisfy the sliding condition, a

discontinuous command signal is added across the sliding surface. Although this

type of command has an essential inconvenience, which is that the discontinuous

command action causes chattering. It has been proposed to modify the usual

command law in order to resolve this problem. In most cases, boundary layer

analysis is used. In order to command doubly fed induction generator (DFIG),

fuzzy logic regulators and SMC regulators are combined [77] and in order to control

the DFIG, a neuro-second order sliding mode controller (NSOSMC) is proposed

[78].

A grid-connected DFIG based WT with bounded uncertainties and disturbances

was proposed in [79] with an improved SMC controller with reduced chattering.
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An effective disturbance rejection component was developed to mitigate chatter-

ing effects. To deal with the chattering phenomenon, [80] proposed an exponential

reaching law. As reported, the proposed approaches effectively reduced the chat-

tering problem and minimized the machine losses. According to [81], DFIG-based

WTs with various uncertainties were investigated using the SMC approach for cal-

culating APC and RPC. As the authors reported, although some minor chattering

still exists in the developed SMC, the errors are acceptable due to the decreased

tracking error and the higher performance of the developed SMC in the transient

time response in terms of overshoot and settling time compared to the H∞ robust

control method.

An innovative sliding-mode control system for WT with nonlinear perturbation

observers was presented by Yang et al. [82], which DFIG to achieve an opti-

mal power extraction with improved fault ride-through (FRT). A sliding-mode

state and perturbation observer (SMSPO) estimates the online perturbation by

taking into account the strong non-linearities originated from the aerodynamics

of the wind turbine together with generator parameter uncertainties and wind

speed randomness. An efficient sliding-mode controller fully compensates the per-

turbation estimate to provide considerable robustness against various modelling

uncertainties and consistent control performance under stochastic wind speeds. A

further advantage is that the proposed approach is integrated and only requires

measurement of rotor speed and reactive power, eliminating the classical auxil-

iary dq-axis current regulation loops. In four case studies, a more optimal wind

power extraction and an enhanced FRT capability are demonstrated as compared

to conventional vector control (VC), feedback linearization control (FLC), and

sliding-mode control (SMC).

2.2.1.5 Model Predictive Controller

Model predictive control (MPC) has been explored for various objectives, including

maximizing wind energy capture, mitigating fatigue loads, and smoothing wind

power [83]. Standard MPCs optimize the economic costs of the plant operation
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before selecting optimal steady-state set-points. By optimizing a tracking cost

function, the MPC tracks such set-points whilst directly handling input and state

constraints. The separation of economic cost optimization and optimal tracking

controllers undermines the overall performance when the operating plant devi-

ates from its predefined set-point. A dynamic economic MPC approach has been

developed to improve the control system’s dynamic economic performance [84].

Economics MPC combines set-point tracking and information management into

a single economic cost optimization step, compared to standard MPC that takes

two steps [85]. Hence, the MPC is ”economic” because the control system directly

optimizes the economic cost function online. Recent applications of the economic

MPC include power systems [86], building climate control [87], and wind energy

[83]. There are, however, several issues that need to be addressed so that economic

MPC can be successfully implemented for wind turbine control in order to achieve

success.

In order to perform MPC calculations, a turbine model must be accurate which is a

methodology issue. Low-order nonlinear models or linearized models are typically

used. According to [87], the nonlinear MPC achieves better results when operating

away from the linearization points of the linear MPC. It is costly to solve with no

guarantee of a global optimal solution if a nonlinear MPC is implemented. The

dynamics and operating constraints of nonlinear wind turbines are convexified

to avoid this issue. Globally optimal solutions can be obtained by using convex

optimal control algorithms.

The optimal control problem within the economic MPC framework can be seen

as a convex optimal control problem with linear dynamics and convex constraints.

An integrated turbine and energy storage system effectively smooths the wind

power supplied to the grid. However, this method ignores the effect of control ac-

tions on turbine fatigue loading, which can lead to premature failures. Optimum

wind power supply as well as turbine fatigue can be mitigated with a more com-

prehensive control system. A standard MPC algorithm for wind turbines assumes

no model-plant mismatch. Standard MPC methodologies generally achieve the
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anticipated objectives with this assumption. This includes smoothing wind power

[88], reducing fatigue loads, and managing severe constraints on actuators [89].

An economic MPC framework with adaptive control based on light detection and

ranging (LIDAR) was developed by Shaltout et al. [90]. An analysis of wind

turbine fore-aft dynamics is presented, including both drivetrain and tower dy-

namics. The convex optimization approach is used to propose an economic MPC

controller based on this model. For wind speed previewing ahead of the wind tur-

bine, a LIDAR system is used. In order to overcome model-plant mismatches, the

authors introduced an adaptive algorithm. The developed controller maximizes

wind energy capture and mitigates fatigue loads acting on the wind turbine tower

while rejecting the effect of model-plant mismatches. Based on results in [91],

the proposed framework is compared to the performance of a baseline controller

(BLC) incorporating a variable-speed generator torque control and gain-scheduled

proportional-integral blade pitch control. Zhang et al. [92] studied the merging

effect of wind turbines on the system frequency of multi area power system. The

first control area includes an aggregated wind turbine model of 60 wind turbine

units beside the thermal power plant. According to the distributed Reliable load

frequency structure, the dynamics model of the four-area interconnected power

system is established.

The MPC was tested by Jassmann et al. [93] in co-simulation with Simpack, a

framework that simulates multibody systems (MBS) for detailed load analysis.

The analysis was performed using the IME6.0 MBS WT model described in this

paper. As shown in figure 2.15, based on NREL’s 5MW WT rotor, it includes a

detailed representation of the drive train. As well as a supporting flexible main

frame, this model encompasses a flexible main shaft, its main bearings, and a

planetary gearbox. Simpack has been modified to implement the NREL Aerodyn

v13 code for simulating wind loads. Using this modeling approach, wind loads and

drive train dynamics can be investigated nonlinearly. As a result, it is possible

to assess and investigate the effect of the MPC on specific loads not covered by

standard simulation tools.
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Figure 2.15: Baseline IMB6.0 model for WT

Soliman et al [94] propose a multiple model predictive controller to cope with

non-linearities in WT and continuous variation in operating point across the en-

tire operating range. MPC is based on the following basic concepts. The first

step in controlling a system is to identify its dynamic model and the physical con-

straints on the variables of the system. Predictions of future outputs are made at

each sampling time within a predefined prediction horizon. Solving a constrained

optimization problem involving the constraints of the system and a performance

index that reflects the performance of the system results in the set of future control

signals. At subsequent control intervals with shifted prediction horizons, the sys-

tem calculates the optimal sequence using the first input. Figure 2.16 illustrates

this idea [94].
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Figure 2.16: MPC concept with shifted prediction

2.2.1.6 Fuzzy Logic Controlled Wind Turbines

The field of engineering has many applications for fuzzy logic. With fuzzy logic

algorithm, Civelek et al.[95] studied PID parameters for blade pitch angle con-

trollers of wind turbines. There were three different control methods used to

control the pitch angle of wind turbines. A conventional PI, a fuzzy PI, and a

fuzzy PID are all examples of these control methods. In high wind speed regions,

these control methods prevented possible harm to the system and maintained the

nominal output power. Simulating controllers with Matlab/Simulink software was

used to control the blade pitch angle of wind turbines at different wind speeds

and hold output power constant at set points. Performances of control systems

have been measured and compared by evaluating the steady state power of output

power received from simulation results and steady state errors. From these sim-

ulation comparisons, it is evident that fuzzy PID controllers perform better than

PI controllers.
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The control of wind turbines involves a number of factors that need to be men-

tioned. An implementation of fuzzy logic pitch control for a wind turbine mounted

on a semi-submersible platform is shown in the paper by Rubio et al. [96]. The

model is used for the WT OC4 wind turbine, which represents a 5 MW power

plant. Fuzzy controllers have as inputs instantaneous wind speed values filtered

and normalized according to nominal speed, as well as pitch references.

As a result of a typical wind patterns, the authors of [97] developed a hierarchical

fuzzy logic pitch controller. In this case, it is compared to a PID pitch-control

system. An alternative approach to turbine selection utilizes fuzzy logic in [98].

With the proposed methodology, several scenarios are analyzed along with a tur-

bine selection model. According to [99], the estimated wind speed is used to design

a robust observer-based fuzzy controller. Wind turbines with variable pitch and

variable speed are modeled by a Takagi-Sugeno fuzzy model with nonlinear con-

sequential parts. A study published by Arturo Soriano et al.[100] investigates the

characteristics and applications of wind turbine models in the market and lab.

It focuses on nonlinear, fuzzy, and predictive methods of wind turbine control.

Figure 2.17 illustrates fuzzy control for a wind turbine.

Figure 2.17: A fuzzy controller for a reactive power

In a wind turbine application, Adzic et al. [101] describe fuzzy logic control of

induction generator speed. With fuzzy controllers, wind power can be delivered

to the grid at its maximum potential. The cost of a fully-controlled wind turbine,

which includes an induction generator and a back-to-back converter, is underes-

timated. With this configuration, the electrical torque, the speed, and reactive
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power compensation are all fully controlled. Simulations in MATLAB/Simulink

have been conducted to validate the fuzzy logic control algorithm.

A great variety of applications of fuzzy logic theory have been found in control

engineering, power systems, telecommunications, consumer electronics, informa-

tion processing, pattern recognition, signal processing, machine intelligence, and

so on. There are a number of heuristic control rules and fuzzy sets that make up

the fuzzy control algorithm. Fuzzy rules are primarily based on IF-THEN rules

[102]. An operator’s control action or knowledge is often used to obtain fuzzy

control ”IF-THEN” rules. A fuzzy rule approach is used to improve tracking of

the system, which adjusts the PID parameter when the wind turbine generator

is running [103]. PID controller performance can only be improved by adjusting

PID parameters. The servo motor is controlled by the fuzzy controller to improve

the resolution. MATLAB toolbox is used for developing fuzzy rules and for de-

signing and developing fuzzy controllers. In proportion to the number of rules,

the wind turbine head’s rotation angle becomes more precise. It is therefore al-

ways facing the maximum wind direction. A yaw controller is illustrated in Figure

2.18. A fuzzy logic controller was used to track maximum wind speed directions

by Bharani and Jayasankar [104]. In order to measure maximum wind speed and

direction, anemometers and wind vanes are used. An error is calculated based on

the present wind direction and the current wind turbine head direction. A fuzzy

controller uses the error signal to correct the error and turn the wind turbine head

towards the maximum wind direction. Generators produce maximum power this

way.

In wind turbines with variable speeds, pitch angle control is well supervised by

a PID controller due to its easy structure, gain-scheduling, and implementation.

Nevertheless, control system literature presents a fractional order PID (FOPID)

controller as an improvement on a conventional PID controller. By providing

fractional power of an integrator and differentiator, the FOPID can meet the

specifications of a complex system with five tuning gains and a sufficient range

of flexibility. FOPID controllers have been described in a number of research
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Figure 2.18: A basic FLC on WT schematic

articles [105] [106]. A 2 MW direct-drive WECS with a fractional order fuzzy-

proportional-integral-derivative controller was developed by Pathak and Gaur [107]

for maintaining output power at rated values under dynamic wind conditions. A

comparison of the proposed controller’s rise time, fall time, settling time, overshoot

and total harmonic distortions is conducted with other intelligent controllers and

conventional controllers to evaluate its performance. A teaching-learning based

optimization (TLBO) algorithm is also used to fine tune the proposed controller.

Figure 2.19 depicts the effectiveness of the TLBO, its performance is compared to

that of the genetic algorithm.

Figure 2.19: A fuzzy PID controller with fractional order
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2.3 Genetic Tuning on Wind Turbines

Genetic algorithms are based on natural selection and genetic mechanisms. Each

solution represents a solution to the problem, called chromosome, which is actually

a string of symbols. The proposed search starts with the initial solutions of a group

of random populations. During the subsequent iteration called heredity, these

chromosomes continue to evolve. The fitness of each chromosome is assessed in

each generation and the offspring is formed by crossover or variation. To maintain

a constant population size, some offspring are chosen and others are weeded out

based on their size. Choosing high-fit chromosomes is easy. After a number of

generations, the algorithm will converge on the most suitable chromosome that

probably is the optimal or second-best solution [108].

Using genetic algorithms (GAs) to solve aerodynamic optimization problems for

horizontal axis wind turbines has been successful [109]. Using the blade element

momentum theory (BEM) to calculate the power performance of the blade, Liu et

al. [110] linearized the chord and twist angle radial profiles for a fixed-pitch, fixed-

speed horizontal axis wind turbine. AEP was used as the optimization criterion

with constraints on the maximum power output of the wind turbine for a specific

wind speed. Based on both BEM and GA, Ceyhan [111] developed an aerodynamic

design and optimization tool for horizontal axis wind turbines. Power output was

optimized for given wind speeds using blades. Airfoil sectional profiles, chord, and

twist angles were all taken into account in the design.

Based on genetic algorithms and blade element momentum theory, Polat and

Tuncer [112] developed an aerodynamic shape optimization methodology for hori-

zontal axis wind turbine rotor blades. The researchers looked at how to maximize

power production at specific wind speeds, rotor speeds, and rotor diameters. Sev-

eral variables were taken into account when designing the blade, such as the length

of the sectional chord, the twist, and the profile of the blade at the root, middle

and tip regions. Based on an objective function to satisfy the maximum annual

energy output on specific winds, Liu et al. [113] examined an optimization model

based on the extended compact genetic algorithm (ECGA) for rotor blades of
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1.3 MW stall-regulated wind turbines. A genetic algorithm was used by Mendez

and Greiner [114] to illustrate the optimal wind blade shape. According to the

IEC classification, this work focused on optimizing wind turbine applications in

particular wind conditions.

Most of the research has examined and reported on the optimization of twist and

chord rates. Tahani et al. [115] considered the placement of different types of

airfoils along the blade in their research. An aerodynamic analysis of the Ves-

tas 660 kW wind turbine blade is conducted. The methodology is implemented

within an integrated GA method and modified BEM developed by computer code

for this complex wind turbine blade. Optimum chord and twist rates and the

optimal placement of airfoils along the blade length are the key factors in opti-

mizing power generation. To increase the annual energy production (AEP) of an

NREL 5MW wind turbine and a wind turbine designed for site-specific wind con-

ditions, Yashin et al. [116] optimized the aerodynamic parameters (airfoil chord

lengths and twist angles smoothed using Bezier curves) of these wind turbines.

NREL’s FAST Modularization Framework is used to optimize this process using

a GA developed in MATLAB. AEP was improved by 5.9 % of the baseline design

AEP after optimizing the NREL 5MW wind turbine design, compared with 1.2

% for a site-based design based on Schmitz equations. Based on these results, it

can be observed that optimizing wind turbine blade aerodynamic parameters for

site-specific wind conditions leads to a reduction in the rate of AEP and hence a

reduction in the cost of generating energy.

2.3.1 P,PI,PID with GA

To achieve optimal output from a wind power generation system, the control pa-

rameters must be continually changed due to the system’s instability. Using the

optimization of the PID controller, the optimal index is determined by deciding

the group of Kp, Ki, and Kd, with the common error performance indexes being

integral of square error (ISE), integral of absolute error (IAE), integrated time

and absolute error (ITAE), and integral of time square error (ISTE). Among these
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performance evaluation indices [117], the ITAE provides the best engineering prac-

ticality and selectivity.

Li et al. proposed an online PID parameter optimization control for wind power

generation based on a genetic algorithm. To begin with, the anti-saturation PID

control strategy considers the instability and complexity of wind power sources.

They introduce a genetic algorithm for optimizing the PID parameters online.

Simulating wind power using MATLAB simulation system is used in the simulation

study. This control strategy solves the integral saturation problem, suppresses

harmonics in the output waveform, and improves the power factor of the system

in addition to solving the integral saturation problem. A study of ITAE error

performance is conducted in this paper. ITAE is used in this paper because of its

practicality and selectivity [118]. A definition of ITAE is as follows:

ITAE =

∫ ∞

0

t|e(t)|dt (2.6)

It is necessary to select an appropriate algorithm to optimize the PID controller

parameters to manipulate a wind power system optimally. Currently, many op-

timization algorithms exist, including GA, particle swarm optimization (PSO),

fuzzy self-adaptation (FS), expert algorithms (EA), and iterative learning (IL).

To optimize the parameters, genetic algorithms encode them into chromosomes

instead of focusing on the parameters themselves. Therefore, it is not constrained

by function. Furthermore, the GA is characterized by implicit parallel search,

which minimizes the possibility of falling into a local minimum. In addition, GA

is particularly suitable for solving large-scale nonlinear optimization problems. In

Figure 2.20 a GA was applied to the optimal design of an anti-saturation PID

controller.

An algorithm-based controller based on genetics has two parts, namely, a PID

controller that controls a wind power system in a close cycle using dynamically

optimized Kp, Ki, and Kd parameters, and a GA that adjusts the parameters of
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Figure 2.20: A structure of GA optimizing PID controller parameter

a PID controller according to the system’s state [119] [120]. Implementing the

GA-based optimization of PID parameters is accomplished in four steps.

1. A certain scale initial group is generated based on an even-crossing design

method, which controls three parameters with a Z-N method [121].

2. The fitness of each unit in a group is calculated using the reciprocal of 2.6

3. Crossing selection and mutation generate distinct populations.

4. Fitness is calculated for new populations using the method described in step

2. An optimal parameter will be found if a new population achieves the

terminal condition. Otherwise, go back to step 3.

Figure 2.21 shows the structure of genetic optimization cycle for a PID controller

parameters.

By using a PID controller and particle swarm optimization, Zahra et al. [122]

presented a new control strategy for wind turbines by regulating pitch angle to

capture the maximum power. The problem is to identify the parameters of the

PID controller by applying the particle swarm optimization or PSO technique.

To control the power characteristics of the turbine, a mathematical model is de-

veloped, which is compared to a proposed strategy and genetic algorithm PID

controller. The simulation results show that the proposed approach results in less
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Figure 2.21: A structure of GA optimizing PID controller parameter

pitch action and better power regulation. This strategy is easy to implement and

robust. Using an IGA algorithm to optimize the PID parameters of the blade pitch

controller was proposed by Civelek et al. [95]. The mutation rate and the crossover

point number were rearranged according to the algorithm progress first. The new

IGA approach has also been tested and validated by using MATLAB/Simulink

software. A comparison of the other genetic algorithms (GAs) has then proven its

superiority. Thus, the new IGA approach has been more successful in adjusting
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the blade pitch of a WT at higher wind speeds than other GA approaches.

2.3.2 Fuzzy blade controller with GA

Due to the nonlinear nature of wind turbines, the blade pitch angle controller must

also be able to handle these situations. The fuzzy controller is an appropriate can-

didate for wind turbine blade control because it is capable of accommodating such

non-linearities. As part of Civelek’s study [123], a fuzzy controller is optimized

with a genetic algorithm that improves the control of wind turbine blades. Ad-

vanced Intelligent Genetic Algorithm’s or AIGA’s performance has been improved

with new features. The concept of acceptable error (AEC) is one of these. Ac-

cording to the amount of this acceptable error, binary and decimal conversions

are performed. It may not be possible to accurately convert a decimal to a bi-

nary value, especially for the digits following the decimal. Small errors may occur

during back conversion from the binary back into decimal in IGA due to these

inaccuracies. As a result of the AEC implemented in AIGA, this is no longer an

issue. The number of crossover points in AIGA is also determined by the length

of the chromosome. Implementation of this algorithm improved its performance.

As a result of optimization, the output power is even higher.

To enhance the ride-through capability of grid-connected wind turbines (WTs)

with doubly fed induction generators (DFIGs), Vrionis et al. [124] proposed a

computational intelligence-based control strategy. In order to support the grid

voltage, grid codes around the world require that its supply reactive power to the

grid during and after the fault. When grid faults occur, conventional crowbar-

based systems are intended to protect the rotor-side converter. However, they

do not meet this requirement, because the DFIG behaves like a squirrel cage

machine when it is connected to the crowbar, absorbing reactive power. A control

system that eliminates or reduces the need for the crowbar was developed to solve

this problem. This paper proposes a coordinated control strategy for the DFIG

converters to achieve the above-mentioned requirement without the use of any

auxiliary hardware during a grid fault. Genetic algorithms are used to tune a
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fuzzy controller that coordinates the two controllers. DFIG with a 1.5-MW power

output supplying relatively weak electrical infrastructure is simulated to verify the

proposed control strategy.

A new methodology for controlling the frequency and power of a system was pre-

sented by Elsayed Lotfy et al [125]. A decentralized fuzzy logic-based control

scheme for a wind–diesel system with high penetration is studied. Figure 2.22

depicts the double configured controller for fuzzy logic. First, one is used in con-

ventional generator governors to dampen frequency oscillations, while the other is

used to control wind turbine pitch angle systems to smooth power fluctuations and

enhance power system efficiency. Fuzzy logic controllers are tuned and optimized

using GAs in order to achieve optimal performance. Three wind farms are included

in the IEEE nine-bus three-generator test system to validate the effectiveness of

the proposed controllers. During normal and faulty operations, the robustness of

the power system is assessed.

The pitch angle of wind turbines was the target of Zheng et al. control study

[126]. Parameter tuning has a strong correlation with fuzzy pitch angle controller

performance. A good parameter tuning can even determine whether the output

converges. An analysis of how parameters are tuned affects the controller’s output.

Using a GA to optimize the variable pitch system and a sub-fuzzy controller to

tune the parameters of the main fuzzy controller, this study aimed at improving

controller performance. Based on simulation results, the double fuzzy controller

designed was able to handle input signals of different pitch angles. Mechanical

losses associated with blade starts were reduced. As shown in Figure 2.22, the

dual fuzzy controller has an overall structure.

2.3.3 Other GA applications of Wind Turbines

Using a genetic algorithm approach, S.A.Grady et al. [127] obtain optimal place-

ment of wind turbines while reducing the number of turbines and the acreage
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Figure 2.22: A structure of GA optimizing PID controller parameter

of land occupied by each wind farm. Specifically, three types of wind are con-

sidered: (a) unidirectional uniform wind; (b) uniform wind that rotates and (c)

non-uniform wind that rotates. The 600 individuals in case (a) are initially dis-

tributed among 20 subpopulations and evolve over 3000 generations. An initial

population of 600 individuals divides into 20 subpopulations and evolves over 3000

generations in case (b). 2500 generations are required to evolve 600 individuals

over 20 subpopulations in case (c). Results also include fitness, total power output,

power output efficiency, and the number of turbines per configuration in addition

to optimal configurations. A possible explanation is provided for the discrepancy

between the results of an earlier study and the results of this study.

G.Mosetti et al. [128] optimized the wind turbine distribution at a given site so

that the maximum amount of energy is extracted with the lowest installation costs.

Using a wake superposition simulation model and genetic search codes, the wind

farm simulation model is optimized. Using some simple applications, the paper

demonstrates the feasibility of the method. The optimization method is applied

to the number and position of turbines for three wind cases: single direction,

the constant intensity with variable direction, and variable intensity with variable

direction, using a square site subdivided into 100 square cells as a test case.

Among intelligent optimization algorithms in electrical system design, the genetic
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algorithm (GA) is the most widely used. Researchers at the National Renewable

Energy Laboratory (NREL) presented a study on the design and optimization

of airfoils for a 20 kW wind turbine using a multi-objective GA and HARP-opt

Code [129]. To improve the electromagnetic performance of the flux-switching

permanent magnet motor [130], sensitivity analysis and design optimization are

performed using the non-dominated sorting GA-II. Based on the GA method,

an optimal design is developed for a PMSG used in a wind power conversion

chain to maximize energy input and minimize PM volume [131]. Optimizing the

distribution network’s total cost by using the GA method minimizes power losses

and maximizes voltage profile [132]. According to the annual wind speed, an

optimization method of generator structure and control for SWT power plants is

described using GA [133]. In order to optimize the design of PMSGs inserted in

small wind turbines, a multi-objective GA is coupled to the fast finite element

analysis (FEA) to calculate electromagnetic torques and field distributions [134].

The GA optimization method is used to control the auxiliary damping on the rotor

side converter of a doubly-fed induction generator found in wind farms [135].

According to Zorgani Agrebi et al. [136], PMSGs can be designed using a DIO ap-

proach. This study has two purposes. As a first step, effective analytical models of

PMSG are created and compared to design specifications to come up with a feasible

generator structure. Models are developed for PMSGs with radial flux and surface

magnets. Even though structural modeling represents only %5 of the total design

activity, it fixes %75 of the lifetime costs. In order to develop the optimization

model, further information about generators is provided, including parameters and

performance. In contrast, a GA code with eight mixed variables and six constraints

is formulated. The design by optimization of the generator is mono-objective due

to the multi-physical nature of the system (thermal-mechanical-electrical-and mag-

netic disciplines). Its active components (iron, copper, and especially PMs) are

designed to minimize their mass. By reducing the cost of the materials, con-

struction costs are reduced. Using simulation results to validate the approach

used, the theoretical problem is supported by simulation results. There are three

main analysis methods for PMSG electromagnetic design analysis, according to
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the literature: analytical, magnetic circuit, and finite element. As a result of these

analyses, the material and multi-physics aspects of the thermal structural system

are fixed. FEA produces accurate results despite taking a long time to run [82].



Chapter 3

System Modeling and Control

Methods

3.1 Aeromechanic Modeling and airfoils

3.1.1 Airfoil Designs

Among the concepts of aero-mechanical challenges of modern wind turbines, air-

foil design can be considered one of the most significant ones. Airfoils are two-

dimensional, narrow structures that are intended to be used in fluid flows such

that, through their interaction with the flow, they can produce forces. The typi-

cal characteristics of subsonic airfoils are a rounded leading edge and a somewhat

sharp trailing edge. Since the geometry of airfoils is essential to how well they

operate, a universal communication nomenclature has been established that en-

ables accurate shape reproduction of airfoil shapes based on several fundamental

dimension features[2].

The main properties of airfoils as shown in Figure 3.1 can be mentioned as listed :

• Upper Surface: Can be considered as ”suction side” is the low pressure region

of the airfoil.

48
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Figure 3.1: Airfoil design parameters

• Bottom Surface: Also known as ”pressure side” is the high pressure region

of the airfoil.

• Chord Line: Can be described as a line that connects the leading edge to

trailing edge.

• Mean Line: Can be defined as a line that extends from leading edge to trailing

edge of the airfoil and its equal distance between suction and pressure sides.

• Leading edge radius: It is a virtual circle that defines the curving properties

of airfoil .

• Trailing edge distance: Thickness of trailing edge of airfoil.

All of the aforementioned airfoil design parameters are expressed in terms of rela-

tive length, more specifically as a percentage of chord line length percentage ”c”.

This makes it possible to describe general airfoil forms without using dimensions,

which simplifies the handling of information exchange about multiple distinct air-

foil shapes [2].

3.1.2 Aeromechanical characteristics of airfoils

As mentioned previously, the concept of airfoils can be stated as most crucial

concept for any aero mechanical devices. Air crafts, helicopters and wind turbines
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work with similar aerodynamic principles in which all engineering products use

the similar airfoils. Mostly NACA standards are being used for aero mechanical

devices.

The literature on fundamental fluid mechanics provides a very good foundation for

and explanation of the lift and drag concepts of infinite span airfoil sections [137].

Most often, non-dimensional coefficients are used to characterize and explain the

airfoil performance, which can be computed or measured for a variety of airfoils

with variable absolute dimensions and tested using various techniques.By estab-

lishing airfoil performance curves, it is possible to choose the best airfoils for each

type of wind turbine blade design [137]. The lift, drag, moment coefficient, and

glide ratio over angle of attack curves are the most practical performance curves

for HAWT applications [2](Cl/AoA,Cd/AoA,Cm/AoA,Cl/Cm/AoA).

Figure 3.2: Lift and drag coefficients vs angle of attack
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3.2 Aerodynamic Modeling of a Rotating Wind

Turbine Blade

Horizontal axis wind turbine blade aerodynamics are largely the same as the tradi-

tional finite wing aerodynamics encountered on fixed wing aircraft. Rotor aerody-

namics and aeroelasticity is a very difficult topic, yet there are certain differences

that cause various impacts and complexities. In this section of the text, a short

introduction of HAWT aerodynamics is made [2].

Figure 3.3: Wind flow directions of rotational wind turbine axis

Both a lift force (normal to the inflow direction) and a drag force (parallel to

the inflow direction) are produced by a finite wing revolving around an axis in

Figure 3.3 and Figure 3.4. The lift and drag components each contribute to the

thrust and torque of the rotor, depending on the local angle of attack. Naturally,

only the torque is used by wind turbines to produce power; the thrust is absorbed

as a load by the wind turbine frame. Each airfoil segment on a HAWT blade’s

angle of inflow consists of a real wind velocity component and a peripheral wind

velocity component brought on by the rotation of the rotor and the separation
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of the airfoil segment from the rotation axis. This implies that the attack angle

changes continuously along the blade [2]. As a result, the structural twist in the

blades is intended to account for this fluctuation in the AoA.

Figure 3.4: Aerodynamic forces along wind turbine rotation axis
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3.3 Modeling of a Wind Turbine

Modeling of a wind turbine is a critical part of wind turbine engineering as it

affects many disciplines. There are several simulator options employed in research

and development. There are two major types of wind turbine models in the liter-

ature: A doubly-fed induction generator (DFIG) type with gearbox and a direct

drive type without a gearbox. In this study the controller algorithm is designed

and optimized for a 2MW wind turbine with DFIG type generator. The system

is modeled for controller design and observation of the effects of many different

engineering aspects. The mathematical model is generated in the Matlab Simulink

environment. The model can simulate thermal and electrical grid aspects, power

output and controller effects.

The mathematical model of a wind turbine can be defined by the torque equation

of its rotor 3.1 expresses the main dynamics of a turbine rotor [138].

Tτ =
1

2
ρπR3Cp(λ, β)

λ
V 2
w (3.1)

here ρ denotes the air density [kg/m3], R stands for the radius of the motor(m),

vm is the wind speed [m/s], β is the pitch angle, and λ is the tip speed ratio [138].

Power coefficient (Cp) is one of the most crucial parameters for wind turbines. The

function converts the parameters pitch angle and the tip speed ratio to a constant

between 0 and 0.6. The constant that function yields affects the generated aero

mechanical power of a turbine. The power coefficient is calculated as,

Cp(λ, β) = C1(C2
1

κ
− C3β − C4)e

−c5
λ + C6λ (3.2)

where

1

κ
=

1

λ+ 0.008β
− 0.035

1 + β3
(3.3)



System Modeling and Control Methods 54

and C1=0.5,C2 = 116,C3 = 0.4,C4 = 5,C5 = 21,C6 = 0.0068 [138]

Figure 3.5: Power coefficient diagram

Figure 3.1 denotes the curve for the power coefficients for a modern horizontal

axis wind turbine. They are the functions of pitch angle and tip speed ratio [139].

Figure 3.6: Block diagram of a pitch angle controller

Figure 3.2 illustrates the block diagram of a conventional wind turbine. As can

be seen from the figure, pitch angle reference is supplied for a nonlinear turbine

plant where the output is generally the rotational speed of the generator [139].
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3.3.1 Pitch Angle Controller

In medium-sized to large wind turbines, the pitch angle controller is typically

used to restrict the power output of the turbine. The blades’ rotation around

the longitudinal axes can be modified by the actuator. For the pitch actuator

in turbines with high power ranges, hydraulic or electromechanical devices are

frequently utilized. A nonlinear servo called the pitch actuator often rotates all or

a portion of the blades. The pitch servo is described as an integrator or a first-

order delay system in the closed loop with a time constant τc. The pitch servo’s

dynamic behavior is represented by the expression 3.1.

The actuators are mainly controlled with servo electrical motors and gear boxes

without backlashes. Generally cycloid gearboxes are used in order to obtain precise

pitch angle positioning in which the output of the controller is generally position

control.

dB

dt
=

−1

τc
β +

1

τc
βref (3.4)

which is subject to ;

βmin ≤ β ≤ βmax (3.5)

(
dB

dt
)min <

dB

dt
< (

dB

dt
)max (3.6)

where βmin and βmax are the minimum and maximum pitch angles. Generally, in

modern horizontal wind turbines the interval can be stated as -5 and 90 degrees.
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Figure 3.7: Pitch angle mechanism

3.4 DIFG TypeWind Turbine Configuration and

Modelling

Aerodynamic, mechanical, electromechanical, and electrical subsystems are all

parts of a wind turbine. For each of the aforementioned subsystems, a separate

control system is built. The most important ones, nevertheless, can be regarded

as the torque and pitch controllers.

As shown in Figure 3.8, wind turbines comprise a variety of subsystems from many

technical disciplines and most of them require distinct controllers. Torque con-

trollers are often used to adjust the power of DFIG type generators, whereas pitch

controllers are utilized to control the rotor speed. The classification of operating re-

gions is significant for wind turbine technologies since wind regime graphs provide

many critical descriptions for the turbine, including operating speed, maximum
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Figure 3.8: Wind Turbine Block Diagram

power, and maximum attainable aeromechanical power. The operating zones of

the 2MW wind turbine employed in this investigation are shown in Figure 3.9. In

this figure, the wind profile is separated into three regions based on wind speed.

Regions 1, 2, and 3 are referred to as cut-in, rated and cut-off, respectively. Wind

turbines typically begin to generate power when the wind speed reaches a certain

threshold. The pitch mechanism runs in Maximum Power Point Tracking (MPPT)

state with 0 degrees of the pitch until the rated wind speed is reached. As the

wind speed increases, the pitch mechanism maximizes the power generation from

the accessible aeromechanical power. Region 2 is a partial load zone where the

pitch system may begin to become active to achieve more reliable power output

performance. The pitch mechanism activates when the wind speed exceeds the

rated speed. However, rotational speed and power are limited as the wind speed

escalates. Region 3 is an active pitch location where the power is managed by

active pitching over the specified wind speed. The automation system uses the

pitch angle to halt wind turbines when the wind speed exceeds or approaches the
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Figure 3.9: Wind speed regions

cut-off speed for mechanical safety reasons [140]. Modeling aerodynamic, mechani-

cal, electromechanical effects, and grid side converters in a simulation environment

is significant in the performance comparison of controllers. A 2MW DFIG type

variable speed and variable pitch wind turbine in Matlab/Simulink environment

is used with a wind regime above its rated speed through-out the study. This par-

ticular wind regime aims to observe the effect of pitching under abrupt changes in

wind speed and the power regulation characteristics. Table 5.1 shows the param-

eters for the wind turbine simulated throughout the controller design study.
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Table 3.1: Wind turbine system parameters

Simulated System Characteristics
Nominal Output Power 2MW Nominal Rotor Speed 15.8 rpm

Working Mode Grid Connected Gear Box Rate 1:94.7
Cut-in speed 3m/s Generator Pole Pair 2

Nominal wind speed 12m/s Generator Type DFIG
Cut-out speed 25m/s Generator Synchronous Speed 1500 rpm
Rotor Diameter 82.6m Generator Voltage 690 V
Rotor Swept Area 5359m2



Chapter 4

P, PI and PID Control

Implementation for Wind Turbine

Blade Angle Controllers

In this dissertation study, it has been mentioned before that a modern horizontal

axis wind turbine consists of many different subsystems. It is evident that a

wind turbine can be considered a mechatronics problem due to its fact about

multidisciplinary systems. Among the other structural, electrical, mechanical and

electromechanical systems of wind turbines, control systems play the most vital

effect for the complex power production system. A survey of literature on advanced

control strategies for wind turbines indicates the following as the main design

challenges:

• Wind disturbances affect the performance of the closed loop system.

• Unmodeled dynamics impact the stability and performance of the closed-

loop system.

• The main source of the non-linearity in wind turbines such as the function

is unknown, and changes during the course of operation of a wind turbine
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• Wind turbine dynamics indicate wind dependent behavior, which means that

the parameters of a wind turbine model are different at different wind speed

operating points.

• Faults may occur in the components of the wind energy conversion system

(WECS).

The P, PI and PID methods used in the research study to tackle some of these

problems are briefly mentioned in the remaining sections of this chapter. A detailed

comparison work among the controller methodologies applied to the wind turbine

power plant will be shown.

It is simple to demonstrate the resistance of a proportional integral derivative

(PID) controller to steady-state perturbations. PID has thus been frequently uti-

lized to manage WTs on the presumption of piecewise constant wind disturbances.

WT PID-based control is covered in depth in [141]. The parameters of a wind tur-

bine model would change from one wind speed operating point to the next, though,

as the linearized WT model depends on the wind speed parameter even in the ab-

sence of any unmodeled dynamics. As a result, a PID control would not be able

to guarantee the linear wind energy conversion system’s overall stability [3]. This

issue has been resolved by using gain-scheduled PID control to regulate the WT

[142, 143].

The fundamental concept is to create various PID controllers at various wind speed

linearization points and then identify a scheduling function based on interpolation

of the controllers in order to effectively modify the loop gain. Pitch angle and wind

speed can be thought of as the scheduling parameters in this method. Although

this controller performs better than the standard approach, the design, like the

PID method, would be subject to unmodeled dynamics [3].
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4.1 The Methodology of P, PI and PID Con-

troller

One of the most important subsystems of a wind turbine can be pitch control since

it affects the mechanical strength, aeromechanical power, rotation dynamics and

consecutively electrical power regulation. Pitch controllers are actively used in the

full load-operating region in order to prevent any kind of mechanical damage from

excessive loading at high wind speeds. Moreover, in order to regulate the power

with the aid of speed regulation, different pitch controlling techniques are used in

modern commercial wind turbines. Throughout this study, PI and PID controllers

are implemented and simulated for 2MW DFIG wind turbine as mentioned above.

The pitch controller uses the rotor angular speed as an input and error is regulated

with the PID controller. In this study, the normalized error is calculated and

applied to the controller as per unit (p.u).

In conventional control methods, PID controllers have feedback structures. After

an error is passed through proportional, integral and derivative actions, the error

is applied again to the system input in accordance with and the system output

is controlled as desired [95]. Clarification of the continuous equation of the PID

controller is as in 4.1. Where u(t) is the controlled output, Kp is the proportional

gain, Ki is the integral gain, Kd is the derivative gain and e(t) is also the error

signal between the system output and the system input value [95]. The discrete

version of the PID controller can be stated as follows in 4.2.

ut = KP e(t) +KI

∫ t

0

e(t)dt+KD
d(e(t))

dt
(4.1)

∆u(k) = Kp[e(k)− e(k − 1)] +KiTse(k) +
Kd

Ts

[e(k)− 2e(k − 1) + e(k − 2)] (4.2)
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4.2 Simulation Results

As has been mentioned in the previous chapter of this research study, 2MW wind

turbine power plant is being used to simulate different conditions. In the sim-

ulations of PI and PID controllers, real wind data for 2MW wind turbine has

been used. The power plant model has been modified for many iterations and an

optimization study is also applied.

Figure 4.1: Wind speed For 100 second

Figure 4.1 shows the wind speed data applied throughout the controller design.

The data is real wind data collected from the field. The wind speed curve is

specially selected to observe the over nominal speed regions. The PI and PID

controllers were implemented for the plant under the wind data shown at Figure

4.1. Transient and steady-state dynamics with the arguments of overshoot, rise

time, settling time, steady-state error and power productions are compared.

As shown in Figure 4.2 a PI controller is simulated. The transient region of the

result is the important part in order to compare the performances. The arguments
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Figure 4.2: Power output for 100 second

of overshoot, rise time, settling time, steady-state error, and power productions

are used to compare transient and steady-state dynamics. Wind speed has abrupt

increases to observe the response of the controllers. Under the depicted wind

profile several simulations were conducted to compare the performances of both

PI and PID controllers for transient and steady-state situations.

As Figures 4.2 and 4.3 show, the main aim of the controller is to maximize the

power output by keeping the generator rotational speed steady at 220 rad/sec.

As previously mentioned, pitch controllers aims to regulate the rotational speed

of the turbine and consecutively regulate the power while full-load wind regions.

As wind speed fluctuates and abruptly changes overrated speed, the pitch angle

of the blades also changes drastically. Figure 4.4 shows the simulation results of a

PID controller configuration.

The pitch angle result changes show the effectiveness of the controller. As the

pitch angle changes, power stabilization is achieved. The maximization of power

production is aimed and will be declared in other chapters of this study.
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Figure 4.3: Generator speed results for 100 seconds

Figure 4.4: Pitch angle change for 100 second
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4.3 Discussion

In this study, both PI and PID configurations of pitch controllers were compared

initially with transient responses. Successively, steady-state responses for both

controllers are also shown. Both controllers perform successfully as they have

stable outputs in terms of reaching maximum power output and generator speed

stability. However, their transient dynamics alter in terms of overshoot and settling

time. In this manner, PI controller performance can be more efficient.

Figure 4.5: PI & PID controller comparison study for transient response

As denoted in figure 4.5, both controllers perform successful operations for 100

second simulation for steady-state characteristics. However, transient response

performances vary. PI and PID controllers denote different transients as over-

shooting is more stable for PI controller. In addition, rise time, overshoot and

settling time for PI and PID controllers are tabulated in Table 4.1 that is shown

below.

Unlike the previous transient response, the PID controller yields better results

than the PI controller under steady state in terms of both steady-state error and



P,PI and PID Control Implementation For Wind Turbine Blade Angle
Controllers 67

Table 4.1: PI-PID results

Controllers PI PID
Overshoot (∆h) 2% 4.5%
Rise Time (tr) 10s 11s
Settling Time (ts) 20s 25.8s

total power production. Necessary results for comparison are tabulated in Table

4.2.

Table 4.2: Steady state results

Controllers PI PID
Steady State Error (ess) 0.002 0.001
Total Power Production 2.4% (More than PI)

As a consequence of this attempt at controller design, controller performances were

observed for two different concepts of pitch angle controllers. PI and PID controller

types were observed and compared. The simulation studies were conducted to seek

the performance of the controller under difficult wind situations. For example, a

highly fluctuating wind manner at the third region was conducted. Gust wind

environment was also applied to challenge the controller designs. As a future study

proposal, PI and PID studies with gain scheduling techniques can be considered.



Chapter 5

Fuzzy Logic Controller

Implementation for Wind Turbine

Blade Angle Controller

This section presents a controller design approach for wind turbine controllers

with a fuzzy logic control technique. There exists a couple of different attempts

for pitch angle controller with fuzzy logic techniques. Our proposed methodology

has novelties in terms of the number of inputs.

5.1 The Methodology of Fuzzy Logic Pitch An-

gle Controller Design

The advantage of a fuzzy controller is its remarkable inference capability based on

fuzzy information. Changes to the control rules and suitable membership func-

tions, reasoning processes, and choices can enhance the features of the controlled

system. Fuzzy control has been frequently utilized in variable pitch control to re-

duce the negative impacts of nonlinear components and the challenge of changing
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system parameters. The design of the control scheme is crucial, including the se-

lection of input and output variables and membership function parameters. Figure

5.1 shows the fuzzy control system block diagram.

Power error, change in power error, and generator speed are chosen as controller

inputs. The primary purpose of the controller is to keep the generator speed

steady. Power error and change in power error are selected as inputs since the aim

is to maximize the power output. Therefore, it is essential to keep power error

steady at zero. Power error and change in power error are defined as

ep[k] = Pref [k]− Pgen[k] (5.1)

δep[k] = e[k]− e[k − 1] (5.2)

Here ep[k] is power error, Pref [k] is generator power reference, k is time step,

Pgen[k] is generator power and δep[k] is the change in power error. A third input

variable is also used, namely, the deviation of the generator speed from its nominal

value dwg = wgnominal
− wg. Any modification on the pitch angle β will affect the

generator speed. The generator speed, on the other hand, determines the turbine

power. The inclusion of our third variable provides the controller with the freedom

of tuning its action with the instantaneous generator speed. When the power error

requires an increase in generator speed, and when this speed is already excessive, a

moderate action on pitch angle variation can be taken. If instantaneous generator

speed is not considered in the control output decision, however, a large pitch angle

would be commanded. Triangle membership functions with overlaps are utilized to

build the fuzzy sets of inputs, as shown in Figures 5.2, 5.3 and 5.4. The member-

ship functions of power error and change in power error can be seen in Figures 5.2

and 5.3. The membership functions of generator speed are presented in Figure 5.4.

Negative Big (NB), Negative Medium Big (NMB), Negative Medium (NM), Nega-

tive Small (NS), Zero (ZE), Positive Small (PS), Positive Medium (PM), Positive
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Medium Big (PMB), and Positive Big (PB) are the linguistic variables. Member-

ship function variables are unknown and calculated with the GA. The membership

functions of the output are presented in Figure 5.5. Fuzzy outputs are negative

big (NB), negative medium big (NMB), negative medium (NM), negative small

(NS), zero (ZE), positive small (PS), positive medium (PM), positive medium big

(PMB) and positive big (PB). The centers of output membership functions are at

-0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3 and 0.4 respectively. FLC rules are chosen as

in Table 5.2. For instance, if the generator power error value is NB at the FLC

membership function, the change in generator power error is NS and the change

in generator speed is PB, the FLC output is PS which means β[k] is equal to 0.1

(Table 5.2).

Fuzzy logic rules are of the following structure:

Ri: If ewg(k) is Ai and ep(k) is Bi and δep(k) is Ci then δβ(k) is Di

where Ai, Bi, Ci are fuzzy sets of input variables and Di is a fuzzy singleton

corresponding to a rule strength. The fuzzy system computes the necessary change

δβ(k) in the pitch angle in the next computational step. The final value of this

angle is obtained by cumulatively adding the fuzzy system outputs each cycle. The

FLC rule base is presented as in Table 5.2. It reflects 75 rules (R1, . . . . . . R75)

in the structure described above. For instance, if generator power error value

is NB, change in generator power error is NS and deviation of generator speed

from its nominal value is PB, the FLC output is PS which means β[k] should be

increased by 0.1 deg. For each rule a truth value Ti is computed with the product

inference technique.

Ti = µep(ep(k))µδep(δep(k))µdwg(dwg(k)) (5.3)

The necessary change in the pitch angle β is computed by the center average

defuzzification rule:



FLC Implementation for Wind Turbine Blade Angle Controller 71

δβ =

∑75
i=1 TiDi∑75
i=1 Ti

(5.4)

The output of the fuzzy logic controller is multiplied by a tuning coefficient to

obtain the pitch angle :

βref [k] = Kpβ[k] (5.5)

Here, βref is the pitch angle reference, Kp is a proportional constant, and β is

FLC output. The main feature of the rule base in Table 5.2 is to increase β when

the power is below the reference value, and to lower it when there is excess power.

This action is, however, moderated by two factors: change of power and deviation

of generator speed. If power is to be increased and the change of power is positive,

β is increased less when compared with the case with zero or negative change

of power. Also, if the generator speed is in excess of the nominal value, power

increase is targeted with a very small increase in β. The overall rule base acts as

a dual goal control mechanism, aiming to keep power in generator speed at their

reference and nominal values, respectively.

Figure 5.1: Fuzzy logic control block diagram

5.2 Simulation Results

The controller is simulated with significantly fluctuating wind data obtained from

a wind field for 100 seconds. As shown in Figure 5.6, region three wind speed 5m/s

over the nominal speed is simulated and controller response is observed. Another
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Figure 5.2: Fuzzy control membership functions for generator power error

Figure 5.3: Fuzzy control membership functions for change in generator power
error

Figure 5.4: Fuzzy control membership functions for change in generator speed
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Figure 5.5: Fuzzy control membership functions for output pitch angle

Table 5.1: Simulated system characteristics

Nominal Output Power 2MW Nominal Rotor Speed 15.8 rpm
Working Mode Grid Connected Gear Box Rate 1:94.7
Cut-in speed 3m/s Generator Pole Pair 2

Nominal wind speed 12m/s Generator Type DFIG
Cut-out speed 25m/s Generator Synchronous Speed 1500 rpm
Rotor Diameter 82.6m Generator Voltage 690 V
Rotor Swept Area 5359m2

purpose of the controller is to achieve the desired power output in the shortest

time and the most prolonged duration.

The controller performance is measured with criteria such as settling time, over-

shoot, rise time and steady-state error. As presented in Figure 5.7, the system

reaches steady state around 10th second with the maximum power output. The

magnitude of the power fluctuations without genetic tuning is 0.015 MW. With

genetic tuning, this magnitude drops to 0.005 MW. Similar previous studies were

not conducted in region three with wind speeds over 50 percent above the nominal

wind speed [138] [123]. This, however, is the case in the presented work. In this

research, the controller performs under highly fluctuating wind speeds, whereas

previous similar studies [138] [123] had more steady profiles.
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In Figure 5.8, the maximum power is achieved after the transient phase is com-

pleted and the change in power error is decreased by approximately 50 percent

with the genetic algorithm. In study [138] which employs fuzzy logic control with-

out genetic algorithm optimization, there are significant errors in power and power

error rate of change.

Figure 5.6: Wind profile for region 3

5.3 Discussion

The fuzzy logic controller is applied with novelties. In this chapter, the process of

design is explained for the pitch angle controller. Three different inputs are applied

for the controller and 75 different rule basis were implemented. The fuzzy logic

controller design is carried out on a 2MW wind turbine model with DFIG layout.

Inputs include generator speed, power error, and power error rate. Control settings

for fuzzy logic are modified by a genetic algorithm. The genetic algorithm study
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Figure 5.7: Power output of Fuzzy logic control with blue line

Table 5.2: Fuzzy Logic Control Table

ep NB NS ZE
dwg PS PM PB PS PM PB PS PM PB

∆ep

NB NB NS PS NB NS PS NB NS PM
NS NB NS PS NB NS PS NB ZE PMB
ZE NB NS PS NB ZE PM NMB ZE PMB
PS NB NS PM NMB ZE PM NMB ZE PB
PB NMB ZE PM NMB ZE PM NM PS PB

ep PS PB
dwg PS PM PB PS PM PB

∆ep

NB NB PM PMB NMB PMB PB
NS NMB PM PMB NMB PMB PB
ZE NMB PM PB NM PMB PB
PS NM PMB PB NM PMB PB
PB NM PMB PBPB NM PMB PB

will be explained in future chapters. Multiple simulations conducted in MAT-

LAB/SIMULINK show optimized FLC performance. Controller performance is
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Figure 5.8: Power output of Fuzzy logic control with blue line

one of the most important topics in order to maximize annual energy production.



Chapter 6

P, PI and PID controllers with

Genetic Algorithm

6.1 The Methodology of the P,PI and PID con-

trollers with Genetic Algorithm Optimiza-

tion

In this chapter, the optimization part of the PI and PID controller attempts will

be discussed. Among the many optimization methodologies, the genetic algorithm

was selected. As described previously in chapter 4, PI and PID controllers were

developed for the defined power plant of 2MW wind turbine. A typical type of

feedback is the proportional, integral and derivative (PID) controller [144]. Be-

cause of its straightforward structure, which is simple to comprehend and put into

practice, it has been widely employed in process industries [144]. The PID con-

troller needs to be tuned for it to function effectively. The majority of researchers

are examining the genetic algorithm, a contemporary optimization tool, to find

the ideal PID settings [145]. Genetic algorithm theory is based on Darwin’s the-

ory of evolution, which claims that the rule ”the stronger species survives” has

an impact on an organism’s chances of surviving [145]. Darwin also claimed that
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the processes of reproduction, cross-pollination, and mutation can ensure an or-

ganism’s survival. Darwin’s theory of evolution is then applied to a computing

algorithm to naturally solve the problem of the objective function. Chromosomes

are solutions produced by genetic algorithms, while populations are collections of

chromosomes. A chromosome is made up of genes and depending on the issue at

hand, its value may take the form of a number, a binary code, a set of symbols,

or even a character. The fitness function will be applied to these chromosomes to

evaluate how well the GA-generated solution fits the challenge [145]. Through a

process known as crossover, certain chromosomes in a population will mate, giving

rise to new chromosomes called children, whose genes are a combination of their

parents. A few chromosomes will also mutate in their gene during the course of

a generation. The value of the crossover rate and mutation rate determines how

many chromosomes will experience crossover and mutation. According to the Dar-

winian evolution rule, the chromosome in the population that will survive for the

following generation will be chosen; the chromosome with the higher fitness value

will have a higher likelihood of being chosen once more in the following genera-

tion. The chromosome value will eventually converge to a specific value which is

the best way to solve the issue after several generations [145]. The steps of the

algorithm can be listed below:

• Step1: Determine the number of chromosomes, generation, mutation rate,

and crossover rate value

• Step2: The population’s chromosome-chromosome number should be gen-

erated, and the initialization value for each gene’s chromosome should be

chosen at random.

• Step3: Until the desired number of generations is reached, carry out steps

4–7.

• Step4: By computing an objective function, chromosomal fitness is evalu-

ated.

• Step5: Chromosomes selection
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• Step6: Crossover

• Step7: Mutation

• Step8: Solution

To find the best control settings for PID controllers, a variety of strategies have

been developed over the last few years. Numerous innovative methods for tun-

ing PID controllers have been created by the academic control community. They

have been weak to try to use the new techniques founded on evolutionary ideas.

One such direct search optimization method that is based on the principles of

natural genetics is a GA. The GA for autotuning has the benefit that it can oper-

ate to minimize naturally specified cost functions without requiring sophisticated

mathematical procedures because it does not require gradient information [146].

Figure 6.1 shows the flowchart of the genetic algorithm methodology. Optimization

is one of the most important concepts in a post-design study to get an advanced

controller for the plant. For the genetic algorithm optimization, it is very critical

to determine the parameters of the initial population, crossover rate and other

parameters in order to have the convergence of the optimization.

As has been shown in figure 6.2, with error calculation, the optimization study is

carried out for minimizing the error. The objective function for the PID controller

gain tuning can be stated as minimizing the error with special constants as illus-

trated in figure 6.2. Integral square error (ISE), integral absolute error (IAE), and

integrated time absolute error (ITAE), respectively, are often used error criteria to

achieve optimized PID tuning values. The equations for ISE, IAE and ITAE are

shown respectively below. The objective function to minimize the steady-state

error (ess) is depicted at 6.4. In the research study, the ITAE methodology is

implemented in the simulations.

ISE =

∫ ∞

0

[e(t)2] dt (6.1)
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Figure 6.1: The flowchart of genetic algorithm technique
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Figure 6.2: The PID controller block diagram with optimization

IAE =

∫ ∞

0

|e(t)| dt (6.2)

ITAE =

∫ ∞

0

t |e(t)| dt (6.3)

J(Kp, Ki, Kd) = w1(ISE) + w2(IAE) + w3(ITAE) (6.4)

In this dissertation study, the PID controller was designed for the described plant

for a 2MW wind turbine. The coefficients of Kp, Ki and Kd were optimized within

the lower and upper boundaries. In this research, the coefficients are optimized

with the ITAE technique to minimize the steady-state error (ess). For lower and

upper boundaries of the coefficients are selected as [10,10,10] and [1000,1000,1000]

respectively. After the genetic algorithm optimization study minimization of

steady-state error for the controller is achieved in order to maximize the power

production of the turbine. The optimum solution for coefficients is reached as

[384,256,24] for Kp, Ki and Kd respectively.
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6.2 Simulation Results

As mentioned previously at the beginning of this chapter, the simulation runs for

the genetic optimization were conducted in order to find the optimum solution of

the PID controller for the above-rated mean wind speed performance. The wind

speed input is applied to observe the performance results of the region 3 wind

speeds. At the beginning of this part of the chapter, the initial coefficients of the

PID controller which is introduced as a lower boundary will be shown.

After the initial coefficients results, the optimum solution will be introduced. Fig-

ure 6.3 below shows the wind profile applied for the optimization study.

Figure 6.3: Wind speed profile

As shown in the figure 6.3, a highly fluctuating manner of wind profile is applied

throughout the optimization process for the PID controller coefficients. This wind

profile has a mean value of 17m/s that is specially applied to examine the effects

of the controller under high-speed zone. Figure 6.4 below shows the results of the

PID controller with the lower boundary coefficients.
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Figure 6.4: Results before GA optimization

As shown in figure 6.4, the generator speed of the wind turbine with initial coeffi-

cients has a very high overshoot value and longer steady state settling time. This

affects power production negatively. Moreover, pitch angle response has also a

chattering effect due to the lack of a controller effect. Unless the turbine controls

the blades well with proper pitch angle output with correct timing, the perfor-

mance of power does not reach optimum values.

As has been illustrated in figure 6.5, generator power reaches the reference value

with lower overshoot and with fewer fluctuations. Because of the smooth effect of

the pitch angle output, the generator speed converges to the reference value faster.

This leads to the maximization of annual energy production.
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Figure 6.5: Results after GA optimization

Figure 6.6: Generator speed after GA optimization

Figure 6.6 indicates that the generator speed value reaches to reference value

which is 220 rad/s with a very smooth path. There exists almost no overshoot nor

undershoot and steady state is reached much faster. As mentioned previously, due
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Figure 6.7: Pitch angle output after GA optimization

to the optimum coefficients of the PID controller, power production maximization

is achieved. Due to the help of steady-state error minimization, the overshoot

value is lowered to reach steady-state conditions faster.

6.3 Discussion

In this chapter of the study, the genetic algorithm process was intended to be de-

scribed. PID controller is one of the main industrial and commercial applications

for wind turbines’ pitch angle controllers. Therefore, observing the PID perfor-

mance for our proposed plant has always been important. The PID controller

algorithm was designed and implemented for the 2MW wind turbine power plant.

Integral time absolute error methodology is used to optimize the error of the con-

troller. The method was applied to the Simulink model of the wind turbine. The

coefficients for the PID controller of Kp, Ki and Kd are optimized to minimize the

steady-state error.

The lower boundary for the coefficients are set to [10 10 10] respectively. The upper

boundaries for the coefficients are selected as [1000 1000 1000]. The optimization

study was conducted with 2500 iterations. Unlike chapter 4, simulations were

conducted for 20 seconds, whereas in chapter 4 the simulations were in 100 seconds.

After the simulation runs of 2500 iterations [384,256,24] were reached for Kp,

Ki and Kd respectively. The PID controller performs better in terms of power

maximization. As the steady-state error minimizes, power production gets bigger
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and bigger. When the converged PID coefficients are applied the production of

power increases %2.5 than the PID controller proposed in chapter 4.



Chapter 7

Fuzzy Logic Controller Design for

a Pitch Angle Controller with

Genetic Algorithm Optimization

Methodology

In this chapter of the dissertation study, the extension of the performance in

chapter 5 will be presented. The proposed fuzzy logic controller for the 2MW

wind turbine plant was described in detail in chapter 5. As mentioned previously,

genetic algorithm optimization methodology has been applied in several disciplines

of wind turbine technology. Aerodynamic design, blade shape optimization and

pitch angle controller design can be given as examples of the implementation of

genetic algorithm optimization for wind turbines. In the following parts of this

chapter, the methodology for genetic algorithm about the implementation on fuzzy

logic controller, simulation results and discussion part will be discussed.
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7.1 Methodology

In the genetic algorithm for fuzzy logic blade angle controller, a population-based

algorithm is used. Every member of the population has a fitness value, which

reflects the relative importance of the objective function. The greater the fitness

value of a member, the more likely it will become a next-generation parent. Various

methods, such as a roulette wheel, tournament and ranking, are utilized to choose

the proper individuals from the formed population. The tournament approach is

used as a selection method in this study. Compared to other selection methods

for genetic algorithms, tournament selection provides a number of advantages.

Coding is doable and it operates on parallel architectures [147].

The crossover technique creates new population members from two existing ones.

The number of population members who will be crossed is determined by the

crossover rate. This ratio fluctuates based on the work at hand and the design

process. In this investigation, the crossover ratio is set at 80%.

The fitness function represents how close each member of the population is to the

solution. The function tolerance value is selected as 1e-6 as convergence criteria for

the objective function, and the fitness function is selected as integral time absolute

error (ITAE), defined as follows.

ITAE =
k∑

l=0

|e(l)| (7.1)

Here, e[t] is power error and t is time. The genetic algorithm optimization is

utilized to compute optimum membership function values for fuzzy logic control.

The optimized variables can be seen in figures 7.1,7.2 and 7.3 below respectively.

These variables are E1,E2,E3,E4 and E5 for membership functions of power error,

C1,C2,C3,C4 and C5 for membership functions of change in power error, S1,S2,S3

for membership functions of generator speed and scaling factor Kp.
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Figure 7.1: Fuzzy control membership functions for generator power error

Figure 7.2: Fuzzy control membership functions for change in generator power
error

Figure 7.3: Fuzzy control membership functions for change in generator speed
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Table 7.1 presents optimization results for these parameters and allowed inter-

vals. These intervals are found with a trial-and-error method in order to find

approximate regions in which the controller performs adequately.

Table 7.1: Fuzzy logic control parameters optimized by GA

Variable Interval Value Variable Interval Value
E1 [-4.2,-1.3] -3.076 C3 [0,0] 0
E2 [-3.6,-1.15] -2.746 C4 [0.00003,0.00033] 0.00003
E3 [-3,-1] -2.416 C5 [0.00006,0.00066] 0.00006
E4 [-2.85,-0.4] -2.085 S1 [-0.111,0] -0.013
E5 [-2.7,0.2] -1.755 S2 [-0.088,0.022] 0.002
C1 [-0.000066,-0.0006] -0.00006 S3 [-0.066,0.044] 0.018
C2 [-0.000033,-0.0003] -0.00003 Kp [19,21] 19.997

The controller for the pitch angle system with fuzzy logic advances in terms of

performance results than the commercial PID controllers. When the fuzzy logic is

optimized with genetic algorithm methodology, maximized results are reached in

terms of power production.

7.2 Simulation Results

The controller is simulated with significantly fluctuating wind data obtained from

a wind field for 100 seconds. However, optimization studies were conducted for

20 seconds. Since the simulation converges to steady state after 10 seconds, sim-

ulations for 20 seconds were enough for the performance of optimization. The

controller reaction is detected when the wind speed in region three is simulated

to be 5 m/s over the nominal speed, as illustrated in Figure 7.4. The controller’s

ability to produce the necessary power output in the least amount of time and for

the longest period is another goal.

Criteria such as settling time, overshoot, rising time, and steady-state error are

used to gauge the performance of the controller. As seen in Figure 7.5, the system

enters its steady state with the highest power output around the 10th second.
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Figure 7.4: Wind speed profile

Without genetic adjustment, the power oscillations have a magnitude of 0.015

MW. This magnitude is reduced through the genetic adjustment to 0.005 MW.

With wind speeds above 50% higher than the nominal wind speed, similar earlier

experiments were not carried out in area three [123], [138]. But this is the case

with the work that is being presented. In contrast to earlier studies [123], [138]

that had more stable profiles, the controller in this research operates in conditions

with considerable wind speed variability.

In Figure 7.6, the maximum power is reached when the transient phase is finished

and the evolutionary algorithm has reduced the change in power error by around

50%. There are large faults in power and the power error rate of change in study

[138], which uses fuzzy logic control without genetic algorithm optimization.

Because the controller’s response time is prolonged, it begins to act once the

generator’s rotational speed hits 220 rpm, at which point the pitch angle begins

to change from zero. Following the initial step reaction of the pitch angle, the

controller smoothly changes the pitch angle to control the generator’s 220 rpm
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Figure 7.5: Power output with(blue line) and without (red line) using genetic
algorithm

rotational speed. The pitch angles of the blades alter in response to significant

changes in wind speed. The output pitch angle regime of the controller with and

without genetic tuning is shown in Figure 7.7.

The generator’s reaction to the described wind regime is shown in Figure 7.8. Ro-

tor speed fluctuations in the FLC with the GA optimization are about 0.3 rad/s,

while those in the FLC without the optimization are about 0.6 rad/s. This indi-

cates that the fluctuation problem is effectively solved by the genetic algorithm. A

controller with a better settling time performance in comparison to other research

is also produced by using GA optimization to the proposed fuzzy logic controller

[138]. The annual energy production will rise as the settling time decreases.
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Figure 7.6: Change in power error with (blue line) and without (red line)using
genetic algorithm

7.3 Discussion

In this section, simulation results are presented with and without the tuning of

the fuzzy control parameters by a conventional (without optimization parame-

ters update between population iterations) GA system. Our motivation in using

a straightforward (conventional) GA parameter tuning approach in this study is

as follows. A number of metaheuristic optimization techniques could be applied

as alternatives to the conventional GA approach employed in this dissertation.

Examples of these approaches are MPA (Marine Predator Algorithm), PSO (Par-

ticle Swarm Optimization), GSA (Gravitational Search Algorithm), CS (Cuckoo

Search), FA (Firefly Algorithm), CMA-ES (Covariance Matrix Adaptation Evo-

lution Strategy), BO (Bonobo Optimization), BA (Bat Algorithm), BSO (Brain

Storming Optimization), and TLBO (Teaching Learning Based Optimization).

These approaches, as standard or with modifications, are capable of introducing
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Figure 7.7: Pitch angle with (blue line) and without (red line) using genetic
algorithm

online (between optimization iterations) optimization parameter updates. These

updates can achieve superior convergence properties, for example, by increasing

the reached fitness or by reducing the number of necessary iterations, and hence

the computation time. BO algorithm can be employed to regulate the yaw angle in

the context of horizontal axis wind turbines. Other techniques, based on machine

learning could also be applied. Gain adjustment can be studied in the framework

of reinforcement learning, too. The alternative optimization technique and GA

with online optimization parameter updates do have the potential of outperform-

ing the conventional GA (GA without parameter updates). However, there are a

number of fuzzy control systems reported in the wind turbine control literature,

many of which are tuned by conventional GA systems. Our work aims at creating

another example in this category to be compared with such work. It is yet to be

mentioned that the genetic tuning of a three-dimensional fuzzy control rule base

contrasts the literature by adding one more complication level to the tuning task
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Figure 7.8: Rotor speed with (blue line) and without (red line) using genetic
algorithm

at hand. Reported in the wind energy field previously are two-dimensional fuzzy

control rule bases adjusted via GA. It may also be argued that the straightforward

implementation of the classical GA can be considered as a merit when compared

with more complicated optimization systems.

Table 7.2 compares energy production of five controllers tested in this thesis.

Table 7.2: Comparison of energy production with the simulated controllers

Controller Type Power Production
PI Energy 202.00 MWs
PID Energy 203.50 MWs
PID GA Optimized Energy 203.90 MWs
FLC Energy 204.25 MWs
FLC GA Optimized Energy 204.40 MWs

As can be seen in table 7.2, the GA-tuned fuzzy logic controller proposed improves

the production by 1.1 % over the conventional PI technique. It also displays
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improvements over PID and genetically tuned PID controllers. GA tuning on the

FLC system provides an automatic gain adjustment system and improves energy

production.

In this study, FLC algorithms and genetic tuning are used to execute controller

design on a 2MW wind turbine model with a DFIG architecture. Three inputs

are used to create a new control system that employs fuzzy logic. Inputs include

generator speed, power error and power error rate. Control settings for fuzzy

logic are modified by a genetic algorithm. Multiple simulations conducted in

MATLAB/SIMULINK show optimized fuzzy logic control performance. For the

annual energy production to be maximized, controller performance is essential.

An ideal set of fuzzy logic control parameters is produced by genetic algorithm

adjustment. With a quicker settling time and less power fluctuation, optimized

FLC outperformed hand-tuned and existing conventional FLC approaches.



Chapter 8

Conclusion and Future Work

This dissertation describes a novel fuzzy pitch angle controller design with param-

eter optimization via evolutionary computing. The controller is tested in dynamic

simulations with the model of a 2MW DFIG type wind turbine. The double fed

structure is one of the mostly applied mechanism in the wind technology. The

considered power rating, being quite commonly employed, is also representative

for the wind industry.

Controller performance is an essential factor in annual energy production. The

main target set for the control in this work is performance in the third region

of wind speed and under abrupt wind speed changes. A variety of conventional

controller structures are implemented, tested and compared. As an alternative

to conventional techniques, fuzzy logic based approach is concentrated on, due

to its flexibility. A novel fuzzy control system which uses generator power error,

power error rate of change and generator speed as inputs is developed. These

three inputs have the potential of improving controller performance when utilized

with a three-dimensional fuzzy rule base and appropriate fuzzy inference rules.

The three-dimensional rule base, however, has more parameters to be tuned when

compared with two-dimensional fuzzy rule bases reported in the literature. This

is where evolutionary optimization techniques can be resorted to. Genetic tuning

of parameters is applied in order to optimize performance this fuzzy controller.

Integral power error is employed as the fitness function. Genetic tuning is also
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applied on PI and PID controllers to contrast their performance to that of the

genetic-algorithm-tuned novel fuzzy controller.

The fuzzy logic controller with genetic parameter adjustment outperforms the PI

and PID based pitch angle controller designs which are also tuned via genetic

algorithms. Whereas the PID controller performs marginally better than the PI

technique in terms of power production, the fuzzy logic controller surpasses both

of these conventional techniques by a significant improvement.

The genetic-algorithm-optimized fuzzy controller exhibits virtues in terms of quicker

settling time and less power fluctuations, and performs better than the the stan-

dard fuzzy logic controller. Under the fuzzy logic controller with genetic algorithm

optimization the rotor speed exhibits fluctuations around 0.3 rad/s, whereas the

fluctuations with the fuzzy logic controller without optimization are in the or-

der of 0.6 rad/s. The genetic algorithm parameter adjustment reduces the rotor

speed fluctuations significantly. Decreasing rotation speed fluctuations improves

reliability of the wind turbine. Shorter settling time is achieved when compared

with the existing previous studies in the literature, including other fuzzy controller

designs. The generated power is higher when compared with these investigations

as well. The proposed technique has advantages in enhancing the annual energy

production of a wind turbine.

Last but not the least are frequency stability benefits of the proposed controller

to be mentioned. Since the controller uses the generator rotation speed as one of

its inputs and takes rule-based actions for its regulation, this speed is kept very

close to its rated value under challenging wind conditions. This results in a stable

frequency of the generator output voltage connected to the power grid.

As a future study, gust wind speed profiles can be targeted in addition to the

controller performance in the third region. Larger scale wind turbines can be

studied. Controller designs for direct drive turbine mechanisms also make an

interesting future research direction. This thesis presents a parameter tuning

approach which is facilitated with offline dynamics simulations. The use of online
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tuning via machine learning techniques for the same purpose is also an appealing

research problem.
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