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ABSTRACT

MAPDC: MULTI-AGENT PICK AND DELIVERY WITH CAPACITIES
PROBLEM

CAGRI ULUC YILDIRIMOGLU
COMPUTER SCIENCE M.A. THESIS, JULY 2022

Thesis Supervisor: Prof. Esra Erdem

Keywords: multi-agent path finding, answer set programming, multi agent pick

and delivery with capacities, warehouse automation

Motivated by autonomous warehouse applications in the real world, we study a vari-
ant of Multi-Agent Path Finding (M APF) problem where robots also need to pick
and deliver some items on their way to their destination. We call this variant the
Multi-Agent Pick and Delivery with Capacities (MAPDC) problem. In addition to
the challenges of MAPF (i.e., finding collision-free plans for each robot from an ini-
tial location to a destination while minimizing the maximum makespan), MAPDC
asks also for the allocation of the pick and deliver tasks among robots while taking
into account their capacities (i.e., the maximum number of items one robot can
carry at a time). We mathematically model this problem as a graph problem, and
introduce novel methods using Answer Set Programming with different computa-
tion modes: single-shot, anytime, incremental, and hierarchical. We compare these
methods empirically with randomly generated instances over various sizes and types
of environments.
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OZET

KAPASITELI COK ETMENLI TOPLAMA VE DAGITMA PROBLEMI

CAGRI ULUC YILDIRIMOGLU
BILGISAYAR BILIMI YUKSEK LiSANS TEZi, TEMMUZ 2022

Tez Danigmani: Prof. Dr. Esra Erdem

Anahtar Kelimeler: ¢ok etmenli yoriinge bulma, ¢o6ziim kiimesi programlama,

kapasiteli cok etmenli toplama ve dagitma, otonom depolar

Gercek hayattaki otonom depo uygulamalarindan ilham alarak, ¢ok etmenli yortinge
bulma probleminin toplama ve dagitma operasyonlarini dahil eden bir versiyonu
olan kapasiteli ¢ok etmenli toplama ve dagitma problemine (MAPDC) yenilikgi bir
¢oziim Oneriyoruz. Cok etmenli yoriinge bulma probleminin zorluklarima (6rnegin,
etmenlerin birbirleriyle garpigmayacak sekilde en kisa yoriingeleri hesaplamasi) ek
olarak , MAPDC probleminin verilen toplama-dagitma isglerinin etmenlerin ka-
pasiteleri dahilinde en makul sekilde dagitilmas1 gibi, kendine has zorluklar1 bu-
lunmaktadir. Bu tezde MAPDC problemini matematiksel olarak bir ¢izge prob-
lemi olarak modelleyip, ¢oztim kiimesi programlama teknikleriyle ¢o6ziim yontemleri
sunuyoruz. Tekli-deneme, ¢oklu-deneme, herhangi-zaman, artimh veya hiyerargik
olan bu yontemleri rastgele yarattigimiz ornekler tizerinde deneysel olarak test edip
karsilagtiriyoruz.
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1. Introduction

Multi-agent path finding (M APF) is the problem of finding paths for agents starting
from their given initial locations on a graph to their goal destinations such that the
agents do not collide with each other. Although single-agent path finding is a poly-
nomial problem that can be solved by Dijsktra’s pathfinding algorithm, makespan
optimization variant of MAPF is NP-hard (Surynek, 2010). Makespan of a MAPF
solution is the maximum of path lengths of all agents, and the variant is concerned

with finding the minimum makespan that a solution exists.

In the last decade, there has been an increased interest in variants of MAPF for
different settings. MAPD (Liu et al., 2019), TAPF (Ma & Koenig, 2016), GTAPF
(Nguyen et al., 2019) are such variants that include tasks that must be completed
by agents, in order to simulate environments such as warehouses. The nature of
tasks in these problems usually involve moving through pick and delivery locations

for items, or additionally visiting some processing stations along the way.

There are good reasons to be interested in warehouse environments. The room
for automation, especially for parts of the material flow that require hauling items
from place to place, is considerable. Picking and shipping items account for 55%
of operating costs for warehouses. The global pandemic increased the demand for
c-commerce and this further emphasizes the importance of order-picking (Guthrie
et al., 2021). Traveling between points constitute the greatest expense for order-
picking operations, creating incentives to automate travelling between pick and de-

livery locations.

This interest in warehouse environments with robotic agents motivated us to create
a similar variant to the mentioned ones, which we call the Multi-agent Pick and
Delivery with Capacitics (MAPDC) problem. In this sctting, agents have their
initial and goal locations, but they also need to collectively complete given tasks.
Tasks in our case are pick-and-delivery tasks, where an item needs to be picked from
a node in the graph and delivered to another. In real world scenarios, agents could

be expected to be able to carry more than a single item, so we include capacities



into consideration in our formulations.

In this thesis, we study MAPDC and its variants, and introduce novel methods to

solve them. Our contributions can be summarized as follows.

o We mathematically model MAPDC as a graph problem and define it as a

computational problem.

o We introduce two novel exact methods to solve MAPDC using Answer Set
Programming (ASP) (Marek & Truszezynski, 1999; Lifschitz, 2019; Brewka
et al., 2016; Gebser et al., 2019; Lifschitz, 2002), based on two types of com-
putation: single-shot ASP and multi-shot ASP (based on incremental com-
putation). In each method, we formally represent MAPDC in an expressive
language of ASP, and compute solutions using the ASP solver clingo (Gebser
et al., 2019).

o To improve the computational performance, we introduce a novel algorithm
that computes a solution to MAPDC hierarchically using our multi-shot ASP

method and in connection with a suite of heuristics.

o We experimentally evaluate our ASP based methods over randomly gener-
ated instances, with respect to scalability and quality measures, considering

different computation modes: single-shot, anytime, multi-shot, hierarchical.

The rest of thesis is structured as follows. Section 2 provides preliminaries. We
define the MAPDC in Section 3 and present solutions to the problem in Sections
4 and 5. Then we explain our experimental setup in Section 6, report on results in
Section 7, make some discussions on the results and future work in Section 8, and

conclude this dissertation in Section 10.



2. Preliminaries

We define some preliminary concepts that are relevant to our problem and how we
solve it. First, we describe what Answer Set Programming is, which is the basis
for our methodology to solve the MAPDC problem. Then, we formally define the
MAPF problem, which we derive MAPDC from.

2.1 Answer Set Programming

Based on the stable model semantics (Gelfond & Lifschitz, 2000), Answer Set Pro-
gramming is a declarative programming method. ASP programs are a set of rules

of the form
A+ Ll,...7Ln

Where Ly to L, are literals, each of them is either an atom or a negated atom. A
is an atom or 1. L; to L, is called the body and A is called the head.

ASP rules correspond to logic statements body = head where we have A\ between
all the literals in the body. If the literals in the body are interpreted as T, the atom
in the head must also be interpreted as such. Answer sets to an ASP program are

stable models of the resulting logical system.

We can also have cardinality expressions in the place of atoms. Cardinality expres-
sions take the form I{A1,..., A, }u where Aj to Ay, are atoms, and [ and u are lower
and upper bounds respectively. Such an expression is interpreted as T if and only
if at least [ and at most u atoms in the expression are interpreted as T. If [ and u
are omitted, it is shorthand for [ =0 and v = 1. Cardinality expressions can also be

in the head of rules.

When the body of a rule is T, we call the rule a fact. We use facts to represent

our knowledge of the system we are trying to solve. For example, we can represent

3



instances of problems as facts.

If the head of a rule is |, then we call that rule a constraint. In such a rule if the body
is interpreted as T, the rule would imply 1. This would make the interpretation
unfit to be a stable model.

If we have a cardinality expression in the head of a rule, we will call this rule a

choice rule. For example, if we have a rule of the form

{p,q}

then we must have cither p or ¢ in our answer sct to respect the cardinality.

To solve problems using ASP, we can follow the paradigm of generate-and-test (Lif-
schitz, 2019). With this method, we generate possible solutions using choice rules

and then test these possible solutions via constraints.

In order to write ASP programs that are at least marginally complex, we need to

utilize schematic variables. Consider the following program

p(A) < q(A)

In this program, A is a schematic variable and ¢(1), ¢(2) are given facts. Since we
can have a variable, we do not need to write a copy of the last rule for each i where
q(i) might be T. The program still needs all possible rules that can be derived
from the last one. This process is called grounding and there are readily available

grounders such as gringo (Gebser et al., 2019).

The ASP solver clingo (Gebser et al., 2019) uses gringo to ground an input program,

and then solves the grounded problem.

2.2 MAPF: Multi Agent Path Finding

MAPF problem is a popular problem with many versions, as can be seen in survey
studies (Stern et al., 2019). When we look at the reason for interest, some studies
cite autonomous warehouse applications of MAPF (Tajelipirbazari et al., 2022; Liu
et al., 2019; Ma & Koenig, 2016).



In MAPF, we are given a graph and a set of agents with their initial and goal loca-
tions. The problem is to find a traversal for each agent such that the agents respect
some chosen constraints such as collision constraint and edge constraint, subject to
some decision or optimization criteria such as finding the minimum makespan that
a solution to the given instance exists. This makespan optimization is our main
concern for this study since it is both interesting and arguably suitable for ASP

applications.

MAPF

Input:
» A nonempty set A={ai,...,a,} of agents (n>0).
o A graph G = (V,E) (to describe an environment where the agents move
around).
o A function nit: AV (to describe the initial locations of agents).
« A function goal : A— V (to describe the goal locations of agents).
e Aset OCV (to denote the obstacles in the environment).
« A positive integer t (to specify the maximum makespan—plan length).
Output: For every agent a; € A, for some positive integer u<t,
o apath Pi=(w;1,...,w;in,) of length n; (n; <u)
— that the agent a; will follow to reach its goal location from its initial
location (i.e., w; 1=1init(a;) and w; ,,=goal(a;)),
— without colliding with any obstacles (i.e., w; ; € V'\ O), and
o a traversal f; of the path P; within time u, such that
— for every other agent a; € A with a path P; and its traversal f; within
u, fi(P;) and f;(P;) do not collide with each other.

Figure 2.1 A decision version of MAPF.



3. MAPDC: Multi Agent Pick and Delivery with Capacities

Since warehouse environments are among the M APF settings that see reasonable
interest, it is fitting to formulate a problem that can better accommodate to this
specific setting. In addition to the input graph, agents, their initial and goal loca-
tions, we are also given a set of tasks. These tasks are two-step hauling operations
where an item needs to be picked up from somewhere and to be delivered to another
location. Thus, each task has a pick and deliver node on the graph. Since we intro-
duced the notion of carrying items, we also introduce capacities for each agent. Our

formulations are for homogeneous agents, thus the agents have the same capacity.

We proceed with formally defining the MAPDC problem, determining its complex-

ity class, and provide an example of a MAPDC instance and its solution.

3.1 Problem Definition

We view the environment as a graph G = (V,E). A path P; that an agent i € A
traverses in this graph is characterized by a sequence (w; 1,w;2,...,w; ;) of vertices
such that {w; j,w; j41} € E for all j <n. A traversal traversal; of a path P; by an
agent i within some time u; (u; € Z™) is a function that maps each time step z < u;,

to a vertex in P; describing the location of agent ¢ at time x.

For two agents i,j € A, they collide with each other at time step x if they are at the
same location (i.e., traversal;(x) = traversalj(x)) or when they are swapping their

locations (i.e., traversal;(x) = traversal;(x —1) and traversal;(x —1) = traversal;(x)).

Each given task (id,p,d) is associated by a product id that needs to be picked up
at some location p € V and delivered at some other location d € V. We assume
pickup and delivery takes no time. Each agent has a limited capacity to carry at
most ¢ number of tasks. We describe the bag of an agent i € A by a function carry;

that maps every time step = < u; to a set of tasks (i.e., products) that the agent is

6



carrying at that time step.

As the tasks are completed during the traversal traversal; of P;, we need to pay
attention to that the tasks are picked up before they are delivered, and the number
of items carried by agent 7 is not more than its capacity c. We say that an agent
i completes a task (id,p,d) € T; within time u; if there exist a pickup time x and
a delivery time y (0<z < y<w;) such that traversal;(x)=p, traversal;(y)=d and

(id,p,d) € carry;(z) for every time step z between z and y only.

An agent ¢ finishes its traversal in u; <t time steps. After time step u;, the agent
stays at its goal location. We define traversal; for time steps greater than u; as a

constant function: traversal;(x) = goal(i),u; <x <t.

Let traversal; and traversal; be traversals of two different paths P; and P;, respec-
tively, in a graph GG within some time t. We say that the traversals traversal; and

traversalj do not collide with each other within time ¢ if,

o for every time step z,2’ <t, if traversal;(x)=traversalj(z’) then z#2' (ie.,
if the same vertex is visited by paths P; and P;, then it should be visited at

different times — no two agents can be at the same location at the same time);

o for every time a<t, if traversal;(x)=traversalj(z+1)  then
traversal;(x+1) #traversal;(x) (i.e., an edge cannot be visited by paths P;
and P; in reverse directions at the same time — no two agents can swap their

locations at the same time).

Based on these notations, MAPDC problem can be defined as a graph problem as
illustrated in Figure 3.1. Given the environment G whose some parts are occupied
by obstacles O, the initial and goal locations for each agent, a set T' of all tasks to
be handled by the agents, the goal is to allocate the tasks in 7" to all agents, and, for
each agent 7, to find a path P; and a collision-free traversal traversal; of P; ensuring

that agent ¢ completes the allocated set T; of tasks by a time step u; <t.

3.2 Complexity of MAPDC

We can use the fact that the makespan optimization variant of MAPF is NP-hard
to conclude that MAPDC is NP-hard. Since MAPF is NP-hard, and is a special
case of MAPDC where T = (), MAPDC is NP-hard.

Theorem 1. Makespan optimization variant of MAPDC is NP-Hard.
7



MAPDC

Input:
o A graph G = (V,E) (to describe the environment).
o Aset OCV (to denote the obstacles in the environment).
o A set A of agents.
A function nit : A~V (to describe the initial locations of agents).
« A function goal: AV (to describe the goal locations of agents).
o A set T of tasks (id,p,d) (with unique identifier id, and pick-up and de-
livery locations p,deV).
« A positive integer t (to specify the maximum makespan).
« A positive integer ¢ (to specify the capacity of each agent).
Output: For every agent i € A, for some positive integer u; <t,
« aset T; of tasks allocated to the agent ¢ where U;c4Tj=T and
— for every j € A, i # j implies T; NT; =0;
o apath Pj= (w;1,...,w;n,) of length n; (n; <u;) that the agent 7 can tra-
verse
— to reach its goal location w;,,=goal(i) from its initial location
wi71:z'm't(i),
— to complete the allocated tasks T; (i.e., for every (id,p,d)€T;, there
exists w; j,w; x€F; where j <k, w; j=p and w; y=d,
— without colliding with any obstacles (i.e., w; ;€V \ O); and
e a collision-free traversal traversal; of the path P; within time u; and how
the bag of the agent i changes during this traversal (i.e., carry;) such that
— every task in T; is completed by the agent ¢ with respect to its traver-
sal, and
— for every x <uw;, the agent 7 can carry as many tasks as its capacity:
|carry;(z)|<c.

Figure 3.1 MAPDC problem definition

Proof. One can reduce any MAPF instance to a MAPDC instance, by keeping all
inputs the same and choosing the set of tasks for MAPDC as T = (). Clearly, the
resulting MAPDC instance has a solution iff the original MAPF has a solution. [J

Furthermore, the decision version of the optimization variant of MAPF is NP-
Complete (Surynek, 2010). Likewise, the decision version of MAPDC is NP-

complete.

Theorem 2. MAPDC is NP-complete.

Proof. By Theorem 1 we know that MAPDC is NP-hard. We proceed to show that
MAPDC € NP. MAPDC has task assignments, paths, traversals of their paths
and a bag description. Given that the makespan of MAPDC is a polynomially
bounded, we can trace the traversals and bag descriptions of agents for all time steps
to check whether: i) they only move through edges, ii) they start from their initial

locations and end up at their goal locations, iii) they complete all their assigned



Figure 3.2 An example MAPDC instance and its solution

@

p‘l dZ

@

tasks, iv) they stay within their capacities. All this can be done in linear time on
the length of the traversals. Thus, we can confirm whether a given solution candidate
is a solution to the MAPDC in polynomial time and MAPDC € NP. O

3.3 An Example for MAPDC

Consider the instance in Figure 3.2. There arc two agents which are colored green
and magenta. ¢! and ¢? are the goal locations. We also have two tasks, with pick and
deliver locations p', d' and p?, d?. Black cells are obstacles and cannot be traversed

by any agent.

A solution to this instance is given in the same figure. Ideally, the tasks are assigned
in a way that minimizes the makespan of the solution. One could also trace the
traversals of agents and observe that they do not collide neither on a vertex nor on

an edge in the graph.

Here, the tasks assignment for agents are 77 = {1} and 75 = {2}. The paths of
agents, p1 and pg are given in the figure. There are many traversals that would
make this a solution for the given instance, the most obvious of these would be
traversals that are the same length as the given paths, i.e agents do not wait at any

point in their path.



4. Solving MAPDC using ASP

We are mainly concerned with solving the MAPDC problem using ASP. This
amounts to reducing MAPDC to finding an answer set to an ASP program. In
this section we provide two ways to solve the problem: onc single-shot and one

multi-shot method.

4.1 MAPDC-ASP: A single-shot ASP solution for MAPDC

MAPDC as defined in 3.1 can be solved by a single-shot ASP encoding. We call
this encoding Pg. We will present the problem instance as facts, generate possible
traversals for agents and subject them to MAPF constraints, generate possible task

assignments and add more constraints so that every agents performs its task.

Given a MAPDC instance I = (G = (V,E),0, A, init, goal, T,t,c), F' is the set of

facts representing this instance. It is the union of following facts:

agent(i). forie A
node(v). forveV
edge(v,k). (v,k) € E
obs(v). forve O
init(i,v). fori € A, init(i) =v
goal(i,v). for i€ A, goal(i) =v
task(i,p,d). for (i,p,d) €T
capacity(c).
time (0. .t).

The input graph G of the problem is described by predicates node/1 and edge/2;
the obstacles, agents, and tasks are described by the predicates obs/1, agent/1,
task/3, respectively; and the initial and goal locations of agents are described by

predicates init/2 and goal/2.
10



The traversal of a path, and the bag of an agent are described by predicates
traversal/3 and carry/3. Here, traversal(I,T,N) expresses that the agent I is
at the location N at time step T, whereas carry(I,T,ID) expresses that the agent I

carries the product specified by the task ID at time step T.
We now present the rules that form Pg.

Firstly, we recursively generate possible traversals for our agents with the first two
rules. The last rule is a constraint that ensures that an agent cannot be at two
different places at the same time-step. This is redundant since the rule that generates
the traversals alrcady guarantees that, but this redundancy helps with solving time

immensely.

traversal(A,0,S):- agent(A), init(A,S).
1{traversal(A, I, K); traversal(A, I, V): edge(K,V)}1:-
traversal(A, I - 1, K), time(I).
:- traversal(A,I,X), traversal(A,I,Y), agent(A), node(X), node(Y), Y < X.

Following rules enforce MAPF constraints. First one states that agents cannot be
traversing nodes that have obstacles on them. Second and third rules enforce vertex

and swapping constraints respectively.

:— traversal(A,T,V), obs(V).

:—- traversal(A,I,N), traversal(B,I,N), time(I), node(N),
agent (A), agent(B), A < B.

:— traversal(A,I,X), traversal(A,I + 1,Y), traversal(B,I,Y),
traversal(B,I + 1,X), agent(A), agent(B), edge(X,Y), A < B.

We then introduce the rules for the tasks, their completion and the capacity con-
straint. First two rules state that an agent can choose to start or finish its task
if it is in the correct location. Note that an agent can pass through a pick or de-
liver location of one of its tasks, since it may already be carrying at its maximum
capacity. Next three rules ensure that an agent starts its task before finishing the
task, and ensure that an agent can only start and finish a task once. Next two rules
first define the carry atoms that represent the bag of the agent, and ensure that the
capacity is not violated.

{taskStart(A,T,S)}1:- time(S), agent(A), task(T,P,D),
assignment(A,T), traversal(A,S,P).

{taskFinish(A,T,F)}1:- time(F), agent(A), task(T,P,D),
assignment(A,T), traversal(A,F,D).

:— taskStart(A,T,S), taskFinish(A,T,F), S >=F.

:— {taskStart(A,T,S):time(S)} !'= 1, agent(A), assignment(A,T).

:— {taskFinish(A,T,F):time(F)} != 1, agent(A), assignment(A,T).

11



carry(A,I,T):- taskStart(A,T,S), taskFinish(A,T,F), time(I),
I<=F, I> S.
:— time(I), agent(A), {carry(A,I,T): task(T,P,D)} > c.

With the following rules, we ensure that agents end up at their goal locations at the
last time step. We further define the time-steps that agents finish their traversals
with the predicates finish/2. This would be the first time step that agent arrives
at its goal location and does not move for the rest of the time steps. We then define
the maximum time step that an agent finishes its traversal, and proceed to minimize
it. This way we can give a maximum makespan t to the program and optimize for

the makespan.

:- agent(A), goal(A,G), not traversal(A, t, G).

finish(A,I):- agent(A), traversal(A,I-1,V), traversal(A,I,G),
goal(A,G), V !'= G, {traversal(A,K,V2): node(V2),
time(K), K>I, V2 != G } = 0.

lastFinish(I):- #max{K : finish(A,K)} = I.

#minimize{IQ1,I: lastFinish(I)}.

This encoding solves the MAPDC problem, but as will be apparent from the results
of our experiments, the size of instances that this encoding can solve is fairly limited.
Also, since we give a maximum makespan and ground the program for all the time
steps until the maximum makespan, we unnecessarily pay a significant price in terms
of grounding. We adress this problem with our next encoding, which is a multi-shot
encoding that allows us to ground for each time step separately until we come to a
time step that enables a solution to exist for the given instance. We not only save up
on grounding time this way, but also have a complete method to find the minimum

makespan for which a solution exists for a given instance.

4.2 MAPDC-M: A multi-shot ASP solution for MAPDC

We present a multi-shot formulation of MAPDC in ASP, which we call P;;.

Multi-shot solving with ASP requires us to use a control mechanism. Instead of
having a single program trying to solve it directly, we have sub-programs in multi-
shot solving. The order in which we ground these sub-programs, as well as when to

try to solve the grounded part, will be specified in this control mechanism.

Gebser et al. (2019) gives a template control mechanism for problems similar to
MAPDC where we can iteratively expand our horizon, the maximum makespan t.
12



We ground the sub-programs for increasing values of ¢, try to solve the grounded
portion, and continue increasing ¢, and grounding more sub-programs, if we cannot

find a solution.

For a MAPDC instance I, the set of facts corresponding to the instance F7! is
formed the same way as the single-shot solution, the only difference is that we do
not give t as part of the instance and ground new time(t) atoms as we increment

over t as will be shown.

The ASP program Pj; consists of three sub-programs: base, step, check. Note
that Listing 4.1, as taken and slightly modified from Gebser et al. (2019) should be
included at the beginning of the formulation. This is the control unit that determines
which sub-programs should be grounded with which parameters, and when the solver

should attempt to solve the program.

Listing 4.1 Control code for multi-shot solving

#script (python)
from clingo import Number, String, Function

def get(val, default):

return val if val != None else default

def main(prg):

imin = get(prg.get_const("imin"), Number (0))
imax = prg.get_const("imax"
istop = get(prg.get_const("istop"), String("SAT"))

max_makespan = 500
step, ret = 0, None

while ((step < max_makespan) and

(step == 0 or step < imin.number or (
(istop.string == "SAT" and not ret.satisfiable) or
(istop.string == "UNSAT" and not ret.unsatisfiable) or
(istop.string == "UNKNOWN" and //

not ret.unknown)))):
parts = []
parts.append (("check", [Number (step)l))
if step > O:
prg.release_external (Function("query", //
[Number (step-1)1))

parts.append (("step", [Number (step)l))
for i in range(step):
print("t:y", i, "tmax:,", step)
prg.ground ([("generation", //
[Number (i) , Number (step)1)])
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else:
parts.append (("base", []))
prg.ground (parts)
prg.assign_external (Function("query", //
[Number (step)]), True)
print("t: ", step)
ret, step = prg.solve(), step+l
#end.

The base program is grounded only once. It consists of the following rules ex-
pressing that the traversals start at the initial locations of agents, and each task is
assigned to one agent. Furthermore, when we are solving an instance I, we add the

corresponding facts F! to the base program.

traversal(I,0,S):- agent(I), init(I,S).
1{assignment(I,ID): agent(I)}1 :- task(ID,P,D).

The step(t) program is grounded incrementally for t=1,2,3,.... For each agent,
traversal/3 atoms representing the possible nodes an agent can at time step t are
generated recursively. The next rule ensures that the agent cannot be at two different
locations, which is again a redundant constraint that helps with performance as in
Ps.

1{traversal(I,t,X); traversal(I,t,Y): edge(X,Y)}1 :- traversal(I,t-1,X).
:- traversal(I,t,X), traversal(I,t,Y), agent(I), node(X), node(Y), Y<X.

Then the following constraints are used to enforce vertex and swapping constraints,
and that agents do not collide with obstacles. Recall that we call these constraints

the collision constraints or MAPF constraints.

:- traversal(I,t,X), traversal(J,t,X), node(X), agent(I), agent(J), I<J.

:— traversal(I,t-1,X), traversal(I,t,Y), traversal(J,t-1,Y),
traversal(J,t,X), agent(I), agent(J), edge(X,Y), I<J.

:- traversal(I,t,X), obs(X).

For the scheduling of the tasks, we use the predicates taskStart/3 and taskFinish/3.
An agent can start a task if the agent is at the picking location of the task. An
agent can finish a task if the agent is at the delivery location of the task, provided

that the task is already started at a previous time-step.

{taskStart(I,ID,t)}1 :- agent(I), task(ID,P,D), assignment(I,ID),
traversal(I,t,P).

{taskFinish(I,ID,t)}1 :- agent(I), task(ID,P,D), assignment(I,ID),
traversal(I,t,D), taskStart(I,ID,T), time(T), T<t.
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Following rules enforce the capacity constraint. Agents start carrying the products
at the scheduled start times and continue carrying them until the scheduled finish

times. Agents cannot carry more than their capacities.

carry(I,t,ID) :- taskStart(I,ID,t).
carry(I,t,ID) :- carry(I,t-1,ID), not taskFinish(I,ID,t).
:- agent(I), {carry(I,t,ID): task(ID,P,D)} > c.

The check(t) program is grounded for each value of ¢t until a solution is computed.
query/1 atoms are external atoms, meaning their truth values are set in the control
unit. They are set to true only for the last time step. This way, the rules that are
already grounded for the previous values of ¢ are ignored by the solver. With this
sub-program, we ensure that every task is finished , and that agents should end up

at their destinations by the last time step.

:- {taskFinish(I,ID,T):time(T)} != 1, agent(I), assignment(I,ID), query(t).
:- agent(I), goal(I,X), not traversal(I,t,X), query(t).
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5. HMAPDC: A Hierarchical ASP Method for MAPDC

Due to the hardness of MAPDC, solving time increases rapidly as the size of the
input graph grows. This is both due to the increased number of possible paths for
agents and a general increase in makespan. We are interested in ways to heuris-
tically improve solving time performance while accepting some sub-optimality on

makespan, and incompleteness.

5.1 Overall Idea

One way to achieve this is approaching the problem hierarchically. One can obtain
abstracted graphs which have smaller dimensions and solve the problem on these
abstracted graphs. The solutions then can be passed to the next hierarchical levels
and restrict the paths of agents accordingly. By restricting agents to certain regions,
we can decrease the search space of their paths. This way, we refine the paths of

agents with each successive level.

Since we are abstracting the graph, the solutions in higher levels will not be syn-
chronized with respect to time steps. Thus, we waive the collision constraints of
MAPEF for all the hierarchical levels except the lowest one, which takes as input
the original graph to the MAPDC problem and will yield the actual collision-free

solution we are ultimately looking for.

The solutions then can be passed to the next hierarchical levels and restrict the paths
of agents accordingly. By restricting agents to certain regions, we can decrease the
search space of their paths. This way, we refine the paths of agents with each

successive level.

Consider Figure 5.1 where we apply this method to the example given in Figure
3.2. We have two levels. The upper picture in the figure depicts the top abstract

level, where the original 8x8 is abstracted into a 4x4 grid with 2x2 regions implied
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by alternating colors. Instead of moving through nodes in the original graph, agents
will move through the regions such that they still complete their tasks, but in an
abstract manner. Instead of visiting the exact pick and delivery locations, they just
need to visit the regions these are in. Then they move to the region where their goal

locations fall into.

Then, in the lower picture, we have the lowest level where we need to find an exact
solution to the problem instance in Figure 3.2. We restrict the agents to the nodes
that fall into the regions agents move through in the upper level, depicted in the
upper picture of Figure 5.1. For agent 1, that includes blue and green nodes; for
agent 2, that includes blue and magenta nodes. Thus, for each agent, we save time
by only searching through possible paths in the restricted area instead of the whole
graph.
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Figure 5.1 Hierarchical representation of the example in Figure 3.2 and its solution

(a) At Level 0, the grid G in Figure 3.2 is viewed as a 4x4 grid Go. Each region is colored orange
or gray, and corresponds to a 4x4 subgrid of G. Agent 1 starts from the upper-left-most region and
needs to move to the bottom-right-most one. Agent 2 starts from the bottom-right-most region
and needs to move to the upper-left-most one. There are 2 tasks in the environment, their pick and
delivery locations are denoted on the upper-left corner of regions. For example, the pick location
of the first task (denoted p!) is somewhere in the upper-left-most region.

(b) A solution for Level 0, where 71 = {1} and 7% = {2}. In the solution, the paths of agents are
drawn in their respective colors. They complete their tasks by moving through the regions the
pick and delivery locations are in.

(¢) At Level 1, we work on the original grid G in Figure 3.2. Here, instead of considering all
possible solutions to the MAPDC instance, we look for solutions that restrict the paths of agents
to the nodes that fall into regions that they traverse in the solution given in Figure 5.1b for Level
0. Agent 2 can only move through nodes colored dark pink and blue, while agent 1 can only move
through nodes colored dark green and blue. The tasks are assigned from scratch, but this time the
assignments are the same as in Figure 5.1b
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5.2 Revising Definitions for Abstract Levels

The definitions we have made for MAPDC also mostly hold for the sub-problems
utilized in the HMAPDC algorithm. We proceed to define the inputs of
HMAPDC.

For a non-negative integer [, the [th hierarchical level, or Level [, for a
MAPDC instance I=(G=(V,E),O,A,init,goal, T\c,t) is characterized by a six-tuple
(Gy,inity, goaly, picky, delivery,my).

o G = (V},E)) is the abstract graph of the level. Intuitively, as illustrated in
Figures 5.11 and 5.12, the larger (and upper) the Level 1, coarser the abstract
graph. We can refer to the vertices in V; as regions or simply vertices of Level I.

Intuitively, these contain a subset of the vertices of G.

» init; and goal; are functions A — V; that specify the initial and goal locations

projected to level [.

o pick; and deliver; are functions T + V] that specify the pick and deliver loca-

tions of the tasks projected to level .

e and m; is a many to one function V; +— V;_1 which we call a [evel-mapping,
that describes this projection. We read m;(vy) = v2 as "vertex v at level 1 is
mapped to vertex vg at the next finer level [ —1". Here are the properties of a

level-mapping;:

— vertices that map to the same vertex in the upper level constitute a
connected graph: G, = (V¢, E;) is fully connected where V., C V), |{v €
Vicilmy(ve) = v,ve € Ve =1 and B, = {(v1,v2)|(v1,02) € Ej,v1,v2 € Ve},

— vertices on the same level [ has an edge between them iff there exists
an edge between vertices that maps to them on the previous level [+ 1:

(v1,v2) € Ep <= J(v3,v4) € B q,mpiq1(v3) = vy Amygq(vg) =02,

— 4nit; and goal; arc mapped from the corresponding functions init;; and

goaljy: for i € A, myyq(init;11(i)) = init; and myq(goal;11(7)) = goaly,

— pick; and deliver; are mapped the same as above: for r € T,

myy1(pick;q1(i)) = pick; and my 1 (deliver;1(i)) = deliver;

— for the last level | = numlevels — 1, all graph dependent entities in the
level are the same as in I: Guumievelis—1 = G, it umievels—1 = init,

gOalnumlevels—l = goal, and for task r = (id,p,d), piCknumlevels—l(T) =D,
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delivernumlevels—l(T) =d.

Level 0 characterization of I is the most abstract view of the given MAPDC
problem. As levels increase, we get a less abstract view of the given MAPDC
problem. For a hierarchy with a number of levels, numlevels > 0, the last level

[ =numlevels — 1 corresponds to the given MAPDC instance I.

For an agent ¢, we denote its traversal at Level [ by traversal;;. Note that this
traversal need not be collision-free for any Level [, [ < numlevels —1. Consider any
region in Figure 5.1a, all the regions have more than one node in them, meaning
more than one agent can be present in them at the same time step. Also, time
steps in abstract levels are not synchronized for different agents. Consider Figure
5.1b. Agent 1 moves to the region below in one time step, and Agent 2 moves to
the region to its left in one time step. But also consider Figure 5.1c, Agent 1 takes
3 time steps to move to a node that belongs to the region mentioned, while Agent
2 takes just one time step. Because of these reasons, collisions are not defined for

abstract levels.

The definition of completing a task for this hierarchical version of the problem does
not fundamentally differ from our previous definition, but we waive the assumption
that the pick and deliver location of a task will not be the same. This is because the
pick and deliver locations of a task can fall into the same region in an abstracted
graph. This also means a task can be both started and finished at the same time

step in an abstract level.

Let us denote the bag description of an agent i as carry;; at Level [. For Level [,
functions pick; : T — V; and deliver; : T +— V; describe the pick and deliver locations
of the tasks at level [. A task r is completed by an agent ¢ within time u;; at Level [
if there exist time steps x and y, 0<x <y <wy; such that traversal; ;(x) = pick;(r),
traversaly ;(y) = deliver;(r) and r € carry; ;(k) only for all time steps x <k <y.

5.3 Input and Output of HMAPDC

In this study, we consider grid graphs. We represent them as matrices: the cells in a
matrix are the vertices and only adjacent cells can have edges between them. This
is because we can algorithmically generate hierarchical levels easily for graphs with

such structure. We detail how we obtain the hierarchical levels later in this section.
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HMAPDC takes as input a MAPDC instance I =
(G,0,Ainit,goal, T,c,t) and a sequence L of numlevels, hierarchical lev-
els L:[(G07 imtongaloapiCkoa deliv@ro; mo),. XK (Gnumlevels—luinitnumlevels—ly

goalnumlevels—lv pic}fnumlevels—l: delivernumlevels—l ) mnumlevels—l)]a and finds a

solution to I.

Consider Figure 5.1 where we apply HMAPDC on the example from Figure 3.2.
The Figure 5.1a denotes Level 0. The graph is abstracted into a 4x4 grid. Each
vertex in this abstracted 4x4 grid graph is a region. If there is an edge in the original
graph that connects a node from a region r; to another node in region 73, then the
regions r1 and ry are connected by an edge in this abstract level. In Figure 5.1a, all

the regions have an edge to their neighbours.

There are three different kinds of sub-problems for solving MAPDC via the
HMAPDC algorithm. MAPDC-Top, MAPDC-Middle and MAPDC-
Bottom. MAPDC-Top is the highest level, which is [ =0. MAPDC-Bottom is
the lowest level with [ = numlevels—1. We have one instance each for MAPDC-Top
and MAPDC-Bottom for a given MAPDC instance, while there are numlevels —2
instances for MAPDC-Middle. We start solving from top to bottom.

For all levels other than the first one, where we solve MAPDC-Top, we need
to specify for each agent which vertices it can move through at that level. For
level I, we do this via the function valids; : A~ 2Y1, which takes as parameter an
agent and returns the set of vertices that agent can move through. We obtain this
function from the solution of the previously solved level. Specifically, for agent ¢ € A,

valids)(i) = {v € V| for some x <t,traversal;_y ;(x) = my(v)}.

We proceed to define these three sub-problems. Figures 5.2, 5.3, and 5.4 show the
definitions of MAPDC-Top, MAPDC-Middle, and MAPDC-Bottom respec-
tively.
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MAPDC-Top

Input:
o A graph G=(V,E)
o A set A of agents.
o A function init: A—V
o A function goal : AV
o A set T of tasks
o A function pick: T — Vj
o A function deliver : T +—V
o A positive integer t (to specify the maximum makespan).
» A positive integer ¢ (to specify the capacity of each agent).
Output: For every agent i € A, for some positive integer u; <t,
« aset T; of tasks allocated to the agent ¢ where U;jc4T;=T and
— for every j € A, i # j implies T; NT;=0;
e a path P;=(w;1,...,w;p,) of length n; (ng;<w;) that the agent i can
traverse
— to reach its goal location w;,,=goal(i) from its initial location
w; 1=1nit (i),
— to complete the allocated tasks Tj (i.e., for every reT;, there exists
w; j, w; k€ P; where j <k, w;; =pick(r) and w; y=deliver(r); and
e a traversal traversal; of the path P; within time u; and how the bag of the
agent ¢ changes during this traversal (i.e., carry;) such that
— every task in T; is completed by the agent ¢ with respect to its traver-
sal, and
— for every x <w;, the agent 7 can carry as many tasks as its capacity:
|carry;(z)|<c.

Figure 5.2 MAPDC-Top problem definition
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MAPDC-Middle

Input:
e A graph G=(V,E)
o A set A of agents.
o A function init: A—V
« A function goal: AV
o A function pick: TV
o A function deliver : T +—V
o A function valids : A+~ 2" (to specify which vertices an agent is allowed
to traverse)
o A positive integer ¢ (to specify the maximum makespan).
« A positive integer ¢ (to specify the capacity of each agent).
Output: For every agent i € A, for some positive integer u; <t,
« aset T; of tasks allocated to the agent ¢ where Ujc4T;=T and
— for every j € A, i # j implies T; NT;=0;
o apath Pj= (w;1,...,w;in,) of length n; (n; <wu;) that the agent 7 can tra-
verse
— to reach its goal location w;,,=goal(i) from its initial location
wi,lzz’m't(i),
— to complete the allocated tasks T;; and
o a traversal traversal; of the path P; within time u; and how the bag of the
agent ¢ changes during this traversal (i.e., carry;) such that
— every task in T; is completed by the agent ¢ with respect to its traver-
sal, and
— for every x <u;, the agent ¢ can carry as many tasks as its capacity:
|carry;(x)|<c.
— the agent only moves through its allowed vertices (i.e.,
traversal;(x) € valids(i), for every x =0,... u;)

Figure 5.3 MAPDC-Middle problem definition
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MAPDC-Bottom

Input:
e A graph G=(V,E)
o A set A of agents.
o A function init: A—V
o A function goal: AV
o A function pick: TV
o A function deliver : T +—V
« A function valids : A+ 2" (to specify which vertices an agent is allowed
to traverse)
« A positive integer ¢ (to specify the maximum makespan).
« A positive integer ¢ (to specify the capacity of each agent).
Output: For every agent i € A, for some positive integer u; <t,
« aset T; of tasks allocated to the agent ¢ where U;jc4Tj=T and
— for every j € A, i # j implies T; NT;=0;
o apath Pj= (w;1,...,w;n,) of length n; (n; <u;) that the agent 7 can tra-
verse
— to reach its goal location w;,,=goal(i) from its initial location
wi,lzz’m't(i),
— to complete the allocated tasks 7T;; and
« a collision free traversal traversal; of the path P; within time u; and how
the bag of the agent i changes during this traversal (i.e., carry;) such that
— every task in 7T; is completed by the agent ¢ with respect to its traver-
sal, and
— for every x <w;, the agent ¢ can carry as many tasks as its capacity:
|carry;(x)|<c.
— the agent only moves through its allowed vertices (ie. traversal;(x) €
valids(i), for every x = 0,...,u;)

Figure 5.4 MAPDC-Bottom problem definition
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7Dtop

#program base.
traversal(I,0,S):- agent(I), init(I,S).
1{assignment(I,ID): agent(I)}1 :- task(ID,P,D).

#program step(t).

1{traversal(I,t,X); traversal(I,t,Y): edge(X,Y)}1 :-
traversal(I,t-1,X).

:- traversal(I,t,X), traversal(I,t,Y), agent(I), node(X), node(Y), Y<X.

{taskStart(I,ID,t)}1 :- agent(I), task(ID,P,D), assignment(I,ID),
traversal(I,t,P).

{taskFinish(I,ID,t)}1 :- agent(I), task(ID,P,D), assignment(I,ID),
traversal(I,t,D), taskStart(I,ID,T), time(T), T<t.

carry(I,t,ID) :- taskStart(I,ID,t).
carry(I,t,ID) :- carry(I,t-1,ID), not taskFinish(I,ID,t).
:- agent(I), {carry(I,t,ID): task(ID,P,D)} > c.

#program check(t).
:- {taskFinish(I,ID,T):time(T)} != 1, agent(I), assignment(I,ID), query(t).
:- agent(I), goal(I,X), not traversal(I,t,X), query(t).
Figure 5.5 ASP program for MAPDC-Top: P;p
7)7712'61l

#program base.
traversal(I,0,S):- agent(I), init(I,S).
1{assignment(I,ID): agent(I)}1 :- task(ID,P,D).

#program step(t).

1{traversal(A, t, K); traversal(A, t, V): edge(X,V), valid(A,V)}1:-
traversal(A, t - 1, K), agent(A).

:— traversal(A,t,K), not valid(A,K).

:- traversal(I,t,X), traversal(I,t,Y), agent(I), node(X), node(Y), Y<X.

{taskStart(I,ID,t)}1 :- agent(I), task(ID,P,D), assignment(I,ID),
traversal(I,t,P).

{taskFinish(I,ID,t)}1 :- agent(I), task(ID,P,D), assignment(I,ID),
traversal(I,t,D), taskStart(I,ID,T), time(T), T<t.

carry(I,t,ID) :- taskStart(I,ID,t).

carry(I,t,ID) :- carry(I,t-1,ID), not taskFinish(I,ID,t).

:— agent(I), {carry(I,t,ID): task(ID,P,D)} > c.

#program check(t).
:- {taskFinish(I,ID,T):time(T)} !'= 1, agent(I), assignment(I,ID), query(t).
:- agent(I), goal(I,X), not traversal(I,t,X), query(t).

Figure 5.6 ASP program for MAPDC-Middle: P,,;q
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7:)bot

#program base.
traversal(I,0,S):- agent(I), init(I,S).
1{assignment(I,ID): agent(I)}1 :- task(ID,P,D).

#program step(t).

1{traversal(A, t, K); traversal(A, t, V): edge(K,V), valid(A,V)}1:-
traversal(A, t - 1, K), agent(A).

:— traversal(A,t,K), not valid(A,K).

:- traversal(I,t,X), traversal(I,t,Y), agent(I), node(X), node(Y), Y<X.

{taskStart(I,ID,t)}1 :- agent(I), task(ID,P,D), assignment(I,ID),
traversal(I,t,P).

{taskFinish(I,ID,t)}!1 :- agent(I), task(ID,P,D), assignment(I,ID),
traversal(I,t,D), taskStart(I,ID,T), time(T), T<t.

carry(I,t,ID) :- taskStart(I,ID,t).

carry(I,t,ID) :- carry(I,t-1,ID), not taskFinish(I,ID,t).

:- agent(I), {carry(I,t,ID): task(ID,P,D)} > c.

:- traversal(I,t,X), traversal(J,t,X), node(X), agent(I), agent(J), I<J.
traversal(I,t-1,X), traversal(I,t,Y), traversal(J,t-1,Y),
traversal(J,t,X), agent(I), agent(J), edge(X,Y), I<J.
traversal(I,t,X), obs(X).

#program check(t).

:- {taskFinish(I,ID,T):time(T)} !'= 1, agent(I), assignment(I,ID), query(t).
:— agent(I), goal(I,X), not traversal(I,t,X), query(t).

Figure 5.7 ASP program for MAPDC-Bottom: Py,

5.4 ASP Programs for the Sub-problems

ASP programs for all the sub-problems are multi-shot solutions derived from Pj;.
MAPDC-Top waives the collision constraints, thus we omit the rules on collision

constraints from Pjs to obtain Piop. Pyop is given in Figure 5.5.

The sub-problem M APDC-Middle restricts agent movement to the regions im-
plied by previous solutions. Thus, we utilize atoms to indicate where an agent can
move to. valid(a,v) means that agent a can use vertex v. We obtain P,,;q from
Piop, since both waive the collision constraints. To do that, we modify the choice
rule that recursively generates the traversals of agents, and add a redundant con-
straint to the step(t) subprogram to make sure agents do not move into regions

that are not allowed. P,,;q is given in Figure 5.6

At the last level, MAPDC-Bottom, we need to find collision-free traversals, so to
obtain Py, we take Pps and do the same modifications described for P,,;q4 to the

generation part. Py, is given in Figure 5.7.
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5.5 Graph Partitioning

In this study, we consider grid graphs. We represent them as matrices: the cells in
a matrix are the vertices and only adjacent cells can have edges between them. An

example can be seen in Figure 5.8

We are working with grid graphs, so we have a method to partition grids. We give
the first level size as input to the partitioning algorithm and divide the grid into
regions accordingly. Then, with each level, we halve the dimensions of the regions
and obtain new regions. Whenever we create a level in such a manner, we also check
for unconnected components in each region. If there are any, we divide these regions

into their connected components.

It should be noted that other kinds of partitioning methods can be used. In real-
world applications such as warehouse automation, these partitions can be engineered

for efficiency.

In Figure 5.1, we have chosen the first level size as 4x4. We can only divide the

regions at Level 0 once, so we do not have any mid-levels.

Here, we provide the algorithms we use to create the hierarchical levels. Although
the algorithm is not sophisticated, it may still be hard to follow. There are some

functions used that are not explicitly stated, we will describe them here.

Firstly, we use the slicing operator [startindex : stopindex]. This is used to slice
a list/sequence, meaning list[0 : 10] is a list that has the first ten elements of [ist,
element at the 10th index is excluded. This slicing operator can be used for matrices
as well. M |[startrow : stoprow|[startcol : stopcol] returns a slice of matrix M with
respect to the parameters. M[0: 10][5: 10] would return the first ten rows of M and

these rows would be sliced between 5th and 10th index.

We use this operator on matrices with cells that have binary values. Whenever one
of the indices for the operator is out of bounds, we fill the out of bound values with
1. If we do the operation M0 : 10][0: 10] when M is 5x5, the operation still returns
a 10x10 matrix with 1 padded for the out of bound values.

We use regions as data structures that store values that are needed for the graph

partioning algorithm. A region r defined over a grid graph G has the following data:

o r.parent: Fach region has a single parent region, or has no parents. Regions
at level 0 do not have parents, while in the consecutive levels all regions have

a parent from the upper level.
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o r.ul: ul stands for upper-left. It is the upper-left-most coordinate of the region

and lets us keep track of where the region corresponds to in a grid graph.

o r.mm: mm stands for membership matriz. It is the rectangular slice of the
original graph starting from the coordinates r.ul. As in grid graphs, a value of
0 in this matrix means the node is in region r, while a value of 1 indicates the
node is not part of the region or is an obstacle. All mms in the same level are
the same size, but some of them may have some part of them filled with 1s.
For example, when there are unconnected parts in r, we create new regions
that correspond to the connected components. These new regions have the

same ul as r, but their membership matrices differ.

o r.id: This is the id of the region. In hierarchical levels, these are the node ids

for the abstracted graphs.

o r.wertices: This is the list of vertices in the region. These vertices are the ones

in Vg, the vertices on the original graph this region is defined on.

When we want to create a new region, we use the function
new Region(parent,ul,mm,id), and we use the function findVertices(G,r)
to find the vertices of region r in G. r.wertices is initialized as findVertices(G,r)

after the regions are determined.

Function connecteds(r) takes a region as input a region and returns components, as
in connected components. Here, components are a list of membership matrices the
same size as r.mm, and only the vertices that are in the same component have value
0 for each component. We believe finding connected components are fundamental
enough that we do not detail its implementation. In our implementation, we use the
scipy Python library (Virtanen et al., 2020) to find them. One example of dividing
a region to its connected components can be seen in Figure 5.9b. In Figure 5.9c¢,

the membership matrices returned for the newly created regions can be seen.

We create all the hierarchical levels we feed into the HMAPDC algorithm via func-
tion createLevels, which is described in Algorithm 1. It takes as input a MAPDC
instance I = (G = (V, E),0, A,init,goal, T,t,c) and a first level size (X,Y). X is the
number of rows and Y is the number of columns we desire in our top level. Algo-
rithm 1 first initializes the pick : T'+— V and deliver : T +— V functions of the given
tasks 7. Then, it utilizes the function createFirstLevel(described in Algorithm 2)
and calls the function adoptToLevel (described in Algorithm 4) to create the first
hierarchical level. Then it sets the mapping m; of the first level [ = 0 to empty set,
since the top level does not need a mapping. Then it appends the first level into level

list [s. It proceeds to create new hicrarchical levels until the regions have size 1x1.
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It does this in a while loop that utilizes the function createNew Level (described
in Algorithm 3) and the same adoptToLevel function. Still in the loop, it sets the
mapping m; of the current level it is working on such that every region in level [

maps to its parent region in the upper level [ —1.

The function adoptToLevel creates the hierarchical level components
wnity, goaly, pick; and deliver;. It does this by taking as input the regions of
level [, agents of the instance A, their initial and goal location functions init and
goal, the set of tasks T" and their pick and deliver functions, and finding out which

region they fall into in the level.

Algorithm 1: createLevels: An algorithm to create all hierarchical levels for

HMAPDC
Input: MAPDC instance (G,0,A init,goal, T\t,c) , a first level size (X,Y)

Output: a sequence of hierarchical levels

pick(r) < p for r € T}

deliver(r) < d for r € T}

Is + [J;

regionctr < 0;

/* Call CreateFirstLevel to create the grid Go for the first level, and the
regions in it, then call adoptToLevel to get the other components that
characterize Level O. x/

G, regions, regionctr <— CreateFirstLevel(G,(X,Y));

initg, goaly, picky, delivery <— adoptToLevel(regions,A,init,goal, T pick,deliver);

mo « 0;

Is.append((Gl, initg, goaly, picky, delivery,mg));

/* Create new levels with CreateNewLevel and adoptToLevel using the same
process above, until the membership matrices of the regions become size
1x1. */

while rows(regions[0].mm) != 1 and cols(regions[0].mm != 1) do

G, regions, regionctr <— CreateNewLevel(G regions,regionctr);

wnity, goaly, picky, deliver; <

adoptToLevel(regions,A,init,goal, T pick,deliver);
my(r) < r.parent for r € regions;

Is.append((Gy,inity, goaly, picky, deliver;,my));

return Is;
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Algorithm 2: CreateFirstLevel: An algorithm to create the abstract grid
graph at the top level, Level 0

Input: a grid graph G, and a first level size (X,Y)

Output: abstracted graph for the first level, its regions, and the region counter
regionctr < 0;

regionsize < ([rows(G)/X], [cols(G)/Y]);

regions < [|;

// Divide G into X %Y subgrids, create regions for them

for i in {0,...,X-1} do

for jin {0, ..., Y-1} do

ul < (i * regionsize[0], j * regionsize[l]);

mm < G[ul[0] : ul[0] + regionsize[0]][ul[1] : ul[l] 4 regionsize[1]];
r < newRegion(,ul, mm, regionctr);

regionctr < regionctr + 1;

regions.append(r);

/* For every region, first get the connected components (cs) of their membership matrices (mm).
If there are more than one, create a new region for each and remove the original. Remove
empty regions. */

for r in regions do

cs = connecteds(r);

if /cs/ > 1 then
for c in cs do

rn < newRegion(r.parent, r.ul, ¢, regionctr);
regionctr < regionctr + 1; regions.append(rn);
regions.remove(r);

else if /cs/== 0 then

‘ regions.remove(r);

/* Iterate over all pairs of regions, find which vertices of G fall into them, if there is an
edge in GG between the the vertices of regions, add the pair of region ids to first level
edges e */

e < [

for 7 in regions do

r1.vertices < findVertices(G,r);

for r2 in regions do
verticesy < ri.vertices();
verticess <— ro.vertices();

if v € verticesy, vy € verticesy such that (vy,v2) € g then

‘ e.append((ry.id,ra.id));
rs < {r.id for r € regions};

return (rs,e), regions, regionctr;
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Algorithm 3: CreateNewLevel: An algorithm to create a new hierarchical
level graph for HMAPDC

Input: a grid graph G, regions rs of the previous level, a region counter rgctr

Output: graph, regions of the new level and the region counter

regionctr < rgctr;

prevregionsize < (rows(rs[0].mm), cols(rs[0].mm))

regionsize <— ([prevregionsize|0]/2], [prevreegionsize[l]/2]);

regions < [J;

/* Divide each given region into 4 (2x2) new ones, by dividing their membership matrices into
subgrids. */

for r in rs do

for i in {0,1} do

for jin {0,1} do

ul < (r.ul[0] + i * regionsize[0], r.ul[l] + j * regionsize[1]);

mm < r.mm[ul[0] : ul[0] 4 regionsize[0]][ul[1] : ul[l] + regionsize[1]];

rnew < newRegion(r.id, ul, mm, regionctr);

regionctr < regionctr + 1;

regions.append (rnew);
/* For every region, first get the connected components (cs) of their membership matrices (mm).
If there are more than one, create a new region for each and remove the original. x/
for r in regions do
cs = connecteds(r);
if /cs/> 1 then
for c in cs do
rnew < newRegion(r.parent, r.ul, ¢, regionctr);
regionctr < regionctr + 1;
regions.append (rnew);
regions.remove(r);
else if [cs/| == 0 then

‘ regions.remove(r);

/* Iterate over all pairs of regions, find which vertices of G fall into them, if there is an
edge in GG between the the vertices of regions, add the pair of region ids to the level
edges ¢ */

e[

for 71 in regions do

r1.vertices < findVertices(G,ry);

for ro in regions do
verticesy < r1.vertices();
verticess < ro.vertices();

if Juy € verticesy, vy € verticesy such that (vi,v2) € Eg then

‘ e.append((ry.id,ra.id));
rs < {r.id for r € regions};

return (rs,e),regions, regionctr;
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Algorithm 4: adoptToLevel

Input: regions, agents A, init and goal for A, tasks T, pick and deliver for T

Output: init;, goal;, pick;, deliver;

mnit; < 0;

goal; < 0;

pick; < 0;

deliver; < {;

/* For every agent, project their initial and goal locations to the current
level, by finding which region they fall into, by going through the
vertices that fall into each regionm. x/

for a in A do

i« init(a);

g + goal(a);

for r in regions do
if 7 in r.vertices then

| init;(a) < r.ad ;
if g in r.vertices then
| goali(a) < r.id;

/* for every task, project their pick and delivery locations to the current
level, the same way as above. */
for t in T do
p < pick(t);
d < deliver(t);
for r in regions do
if p in rwertices then
| picki(a) < r.id ;
if g in r.vertices then
| deliveri(a) < r.id;
return init;, goal;, pick;, delivery;

Algorithm 5: findVertices
Input: grid graph G, a region on this graph
Output: a list of vertices that fall into the region with respect to G
vs « [f;
ul < region.ul;
for row in {0, ..., rows(region.mm) - 1} do
for col in {0, ..., cols(region.mm) - 1} do
if mm/frow/[col] == 0 then
| vs.append(toVertex(G,(ul[0] + row, ul[1] + col)));
return vs;

5.5.1 An example for graph partitioning

An example of our partitioning method can be seen in Figure 5.9. This time, 2x2

is chosen as first level size. The levels are 2,0,1 from top to bottom in the figure
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respectively. It can be seen that in the first level we divided the regions into their
connected components. When moving from Level 0 to 1, we did not further divide
the already smaller regions dark blue, brown and dark green. Every level has an
expected region size. For level 0 this is 4x4 (8/2 % 8/2) and for Level 1 2x2 (4/2 x
4/2). Since no dimension of the smaller regions is greater than 2, they are of the
expected size (or smaller) and are not divided further. The rest of the regions (e.g
the red one) is divided into four regions as shown, for [ = 1. The next level after

that is level 2, which is the original graph.

We handle odd grid sizes the same way, only the expected level sizes are up-ceiled
whenever necessary. In Figure 5.10, the levels are respectively 2,0,1 as well. The
expected level size of level 0 is 3x3 ([5/2] x [5/2]).

Figure 5.8 An Example grid graph and its matrix representation

(a) A grid graph G.

000000 0 0]
00111100
00100100
11100100
00000100
00001100
00000000
0000000 O

(b) Matrix representation of G.
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Figure 5.9 An example of partitioning

(a) The original grid graph G.

(b) Go given by CreateFirstLevel(G,(222)). Regions are colored differently. Obstacles do not
belong to any region. Normally, regions in this level are 4x4 grids, but the obstacles required us
to divide some regions, e.g., the yellow and dark blue regions r; and r2. 71 and ro still have 4x4
membership matrices. For r1, only the yellow colored nodes are members in this matrix, i.e., has
value 0. After the call for CreateFirstLevel, regions are the set of regions depicted in Gp, and
rgctr =9 as can be traced from Algorithm 2

000071 111
00111 111
0011|1110
11111110

(¢) ri.mm and ro.mm. respectively. Both r1.ul and ra.ul are (0,0)

(d) Gy given by CreateNew Level (G, regions,rgctr)
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Figure 5.10 An odd example of partitioning

(a) An empty 5x5 grid G.

(b) Level 0 graph Gy created by calling CreateFirstLevel(G,(222)).

(c) Level 1 graph i1, created by calling C'reate New Leve L(G,regionsg, regioncounter).
regionsg and  regioncounter are outputs of in the output of
CreateFirstLevel(G, (2x2) ).
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Figure 5.11 A 3-level example for HMAPDC, first part.
o P’

d1

d2 92

(a) A MAPDC instance. There are two agents (with goal locations denoted g and g?)
and two tasks (with pick locations p!, p? and delivery locations d', d?). First agent a; is

colored black, the other, as gray.

IP1 d

(b) Level 0 and its solution. Gy is a 4x4 grid, highlighted by thick borders. Here, Th = {1}
and T, = {2}. The regions that agents pass through are colored light blue and pink
respectively. These will be the regions that agents will be able to move through in the

lower levels.
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Figure 5.12 A big example for HMAPDC, second part.

(a) Level 1 and its solution. The regions of G; are highlighted by thick borders. It is an
8x8 grid in this case. The task assignment is the same as Level 0. The regions agents
move through in this level are colored blue and red respectively. Their paths at this level

are colored white. Again, the agents will be able to move through only the blue and red
regions in the lower level.

ﬁ
?

(b) Level 2 and its solution. Go is the original grid G. In the solution, the agents are
assigned the same tasks again. They move through blue (respectively red) colored nodes
to complete their tasks and reach their goal destination.



5.6 HMAPDC: Solving MAPDC using ASP Hierarchically

Here, we give a detailed description of our methodology. Algorithm 6 describes the

main method.
We proceed to describe how we form the ASP instances for the sub-problems.

We have mentioned that the hierarchical levels are 6-tuples (G; =
(Vi, Ey),inity, goaly, pick, deliver;,m;). For each level, we call FI the level facts.
Level facts of a level has all the level dependent information about a MAPDC

instance I. F'l is obtained from a level as follows:

agent(a). fora € A
node(v). for v eV,
edge(v,k). for (v,k) € Fj
init(a,v) for a € A, init;(a) =v
goal(a,v). for a € A, goalj(a) =v
task(r,p,d). for r € T, pick;(r) = p, deliver;(r) = d

capacity(c). for c

The function level Facts(Gy, A,inity, goal;, T, pick;,deliver;) returns the set of facts

mentioned above.

In addition to these, for MAPDC-Middle and MAPDC-Bottom, we need the
information on which agent can visit which vertices. We call these facts F'”. The
function called findValids described in Algorithm 7 takes a solution to the previous
level s, level vertices V;, and my;, and returns a set of '"valid(a,v)." facts that

describes agent a can move through vertex v.
Algorithm 6 details our method.

After obtaining the facts for the MAPDC-Top instance, we solve it via ASP at
line 2. In the loop that spans lines 3-7, we use the previous solution s to obtain
FY. then together with other facts that constitute the MAPDC-Middle instance,
we solve it and store the answer set in s. We do this for all MAPDC-Middle
instances, and then between lines 8-9 we obtain the facts for the last level, which
constitute the MAPDC-Bottom instance, and solve it.
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Algorithm 6: HMAPDC

Input: A MAPDC instance I = (G,0, A,init, goal, T, c), hierarchical levels
L = [(Gy,initg, goaly, picky, deliverg,myp), . . .,
(Gnumlevelsfl ) Zﬁlitnumlevelsf 1, goalnumlevelsfl apiCknumlevelsfl )

delivernumlevelsfl ) mnumlevelsfl)}
Output: A solution to [

Flo « levelFacts(Go, A, initg, goaly, T, picko, delivery);
s < compute answer set for Py, UF fo,
for [ in {1,... ,numlevels-2} do
FV « findValids(s, Vj, my);
FIi < levelFacts(Gy, A, inity, goaly, T, picky, delivery);
s < compute answer set for P,,;qUF I UF?

FY «+ ﬁndValids(s, Vnumlevelsfla mnumlevelsfl)Q
FInumlevels—l —

levelFaCtS(Gnumlevels—la A: 1N pymievels—1, goalnumlevels—la Ta pic}fnumlevels—la
deliveTnumlevels— 1 ) 3

s <— compute answer set for Py, U FInumievels—1J FV;

solution < extract answer from s;

return solution;

Algorithm 7: findValids

Input: a solution s as an answer set (to the sub-problem at level [ —1), V;, my;
Output: a set of facts of valid/2 atoms that represent the regions agents can
move through in level [
valids < {};
for traversal(a,t,v) in s do
for v; in V; do
if v == my(v;) then
| valids « valids U"valid(a,v1).”;
return valids;
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5.6.1 An example for HMAPDC

Consider the example in Figure 3.2. Figure 5.1 illustrates how we can apply
HMAPDC to this instance. There are just two levels in this case. The first
level reduces the dimension of the grid to 4x4. The regions are colored orange and
gray. We then find paths for agents in this abstracted graph, such that each agent

arrives at its goal region and all the tasks are completed.

In the second and last level we solve the original problem on the original graph,
but the agents are limited in which nodes they can use to complete their traversals
as implied from the upper level. Green nodes are only allowed to the green agent,
magenta nodes to the magenta agent, and blue nodes to both. This way, both the
grounder and the solver do not need to explore all possible paths for agents but a

considerably small subset of them.

An example with 3 levels (one top, one middle, one bottom) can be seen in Figure

5.11 and its continuation (Figure 5.12).

5.7 Limitations of HMAPDC

As will be apparent in Section 7 where we present our results, HM APDC performs
much better in terms of computation time. However, this is achieved through sac-
rifice on both completeness and optimality. We also do not have any guarantees on
the level of sub-optimality HMAPDC causes.

Figure 5.13 shows one case where HMAPDC cannot find a solution. First picture
is the given instance. Second picture shows the regions created for the top level by
bold borders. In order to solve the instance, agents 1 and 2 need to swap places
in a corridor, which is normally possible. But the high level solution found in the
second picture, which did not take into consideration the collision and swapping
constraints, forces the paths of agents to stay in the green zone in the third picture.
The dark blue area is out of bounds for both agents in the third picture, thus the
agents cannot use those nodes to give way to each other and a solution cannot be

found.

Also, the solution we find at the first level should have considerable influence on
both the makespan we find and the computation cost. This may be overcomed

by producing several solutions at the highest level, which is computationally the

40



Figure 5.13 A demonstration of the incompleteness of HMAPDC

1

(a) The original MAPDC instance.

g a'

7N
o ®
- -

(b) Level 0 (regions are differentiated by bold borders) and its solution.

1

\./

(c) At Level 1, both agents are restricted to the green nodes and cannot use dark
blue nodes to give way to each other. No solution can be found for this level.

cheapest and has the most influence on the successive levels, and solving the problem

with a portfolio of first level solutions.

5.8 Further Augmentations to HMAPDC

We propose two additional and separate augmentations to HMAPDC. Firstly, we
propose adding an extra MAPDC-Middle level before MAPDC-Bottom. We

call this additional layer.

41



Secondly, we propose the task assignment heuristic. We add al and/or h to
HMAPDC to denote when we use these augmentations as HMAPDC+al,
HMAPDC+h, HMAPDC+al+h.

5.8.1 HMAPDC+al: Adding an extra layer before MAPDC-Bottom

Normally, the last MAPDC-Middle level has regions of size 2x2 and we pass its
solution directly to MAPDC-Bottom which enforces collision constraints. With
the additional MAPDC-Middle level, we reduce the region sizes further down to
1x1, meaning we solve the problem on the original graph but without the collision
constraints. The solution produced restricts MAPDC-Bottom to just being able
to reschedule the agents on the paths given by the additional layer. This may help
with the larger graphs, but also increase the possibility that MAPDC-Bottom

will not be able to find a solution.

We apply this heuristic by inserting Algorithm 8 to Algorithm 1 just before the
return statement, after Line 13. We add a copy of the last level to the sequence of

levels we need to solve, only changing the parents of the regions to themselves.

Algorithm 8: additional layer

Ga = (Vu, Eqp),inity, goalyy, picky, deliverq,my; < Is[-1];
ma(v) < v for v € Vy;
Is.append ((Gyy, inity;, goalyy, pickyy, deliverq,my));

5.8.2 Task Assignment Heuristic

Normally with HMAPDC, we only restrict the movement of agents into regions
of the graph. But with this heuristic, we also enforce the task assignment given by
MAPDC-Top onto lower levels. Since we decrease the number of choices in lower

levels, we expect this to help with solution time.

To implement this heuristic, we need a function called findAssignments(s) which
will take as input a solution s, and extract and return a list of "assignment(a,id)."
facts. This will be done in a very similar way to Algorithm 7, thus we do not detail its
implementation. Let us call these facts F'*, and insert "F® < findAssignments(s);"
into Algorithm 6 after line 2.
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Then, we need to add these facts that constitute the top level assignments to the
level facts F for every [ > 0. We do this by inserting "F « Fliu F%;" into the

same algorithm after line 5.

5.9 HMAPDC-P: Utilizing Diverse Solutions to Improve HMAPDC

One shortcoming of HMAPDC is that the solutions found by higher levels can
affect performance a lot both in terms of computation time and makespan, and that
we do not have the means to tell what kind of top level solution would benefit the

lower levels most.

One way to approach this would be to find some diverse solutions on the highest
level and have HMAPDC try all of them. Morag, Felner, Stern, Atzmon, Boyarski,
Louis & Toledano (Morag et al.) shows that having several attempts using fast but

sub-optimal solvers can improve performance significantly.

Eiter et al. (2009) provides methods to find similar/diverse solutions for ASP pro-
grams. With CLINGO, we can populate a given number of solutions to an ASP

program, but we do not have any guarantees on their similarity /diversity.

If we wanted k solutions that are at least d distant to each other by a defined metric,
we can utilize online method 2 given in Eiter et al. (2009). This method runs the
program for k£ times, and adds appropriate constraints in each iteration to ensure

the solutions found are similar or diverse. Algorithm 9 uses this method.

To utilize this method, we require a similarity measure between two solutions. We
also want this similarity measure to be impactful, meaning solutions that are distant
to each other with respect to this measure differ sufficiently. One such measure could
be the similarity between task assignments of two solutions. Paths of agents depend
heavily on which tasks an agent must perform, so this measure should be impactful.
Consider two answer sets s1,$2, which have assignment/2 atoms and let T" be the
set of tasks, A be the set of agents for the instance we are solving. Task-similarity

of these would be

[{t € T|Ja € A, assignment(a,t) € s \assignment(a,t) € sa}|
n
We propose a Task Assignment Portfolio (TAP) (Algorithm 9) that computes p
solutions to MAPDC-Top, such that no two solutions are more than r task-similar.
As TAP produces solutions, it calls HMAPDC-P which is presented in Algorithm
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10. HMAPDC-P is a slightly modified version of HMAPDC. It does not solve
the first level and instead takes its solution as an additional input. Since TAP does
not depend on any output from HMAPDC-P, several HMAPDC-P runs can be

made in a parallel way as new solutions to the first level are produced.

Below is the ASP program P, fo1i0 Which is used in Algorithm 9. This program

constrains a new solution to be at most r task-similar to any previous solution.

:— L{task(I,P,D): prevAssignment(S,A,I), assignment(A,I)},
limit (L), prevSolution(S).

"limit (|7 |T|])." should be added to the program.

Algorithm 9: TAP (Task Assignment Portfolio)

Input: a MAPDC instance [, a first level size (X,Y), allowed task-similarity
r, size of portfolio p

Ppomffolio — Pportfolio U {limit (Lr=[T[]). };

L <« createLevels(Z, (X,Y));

G, initg, goaly, picky, delivery <— L[0];

Flo « levelFacts(Go, A, initg, goaly, T, pick, deliverg);

/* In the loop, find top-level solutions, run HMAPDC-P with the found solutions, and add

constraints to the portfolio program so that consequent top-level solutions are diverse.
*/

for iin {1,...,p} do .

s < solve(Pyop U Pport folio U F'0);

HMAPDC-P(I,s,L);

assignments < find Assignments(s);

Pportfolio — Pportfolio U {prevSolution(i).}U

{prevAssignment (i,a,t).|assignment(a,t). € assignments};
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Algorithm 10: HMAPDC-P

Input: A MAPDC instance I = (G,0, A,init,goal,T,c), a solution to the first
level s, hierarchical levels L = [(Gy,initg, goaly, picky,deliveryg,mg), . . .,
(Gnumlevelsfl ) initnumlevelsf 15 goalnumlevelsfl apiCknumlevelsfl )

delivernumlevelsfl y mnumlevelsflﬂ
Output: a solution to [

for kin {1,...,numlevels-2} do
FY « findValids(s, V}, my);
Fi « levelFacts(G), A, init;, goal;, T, picky, deliver;);
s < compute answer set for P,;qUFUFY
FY ﬁndvahds(s> Vnumlevelsfla mnumlevelsfl)Q
Flnumlevels—1
levelFaCtS(Gnumlevelst A; initnumlevelsfla goalnumleuelsfla T7 pid{numlevelsfla
delivernumlevels— 1 ) )
s < compute answer set for Py, U FInumievels—1J FV;

8 solution <— extract solution from s;

return solution;

5.10 On the Generalizability of of HMAPDC

Even though HMAPDC is designed to solve MAPDC, it should be clear that
it could be used for MAPF as well. But there are other MAPF variants with
different definitions of tasks, different requirements like group completion (Nguyen
et al., 2019), or even versions where agents have batteries and need to visit charging

stations when they run out of energy (Bogatarkan et al., 2020).

We believe many of these versions can benefit from a spatial hierarchical scheme like
HMAPDC.

Our tasks have two steps, but more steps for tasks would be easy to adapt to. In gen-
eral, variants of MAPF that introduce some kind of assigned or to-be-assigned way-
points for agents would require little change in the general algorithm of HMAPDC
which is presented in Algorithm 6.

Also consider the case where agents need to charge their battery after certain number
of moves at certain charging locations on the grid. This case may require more
changes to HMAPDC. One approach could be to include force the higher level
solutions to have a battery charging point in the paths of all the agents. Another
could be to find the solution to an abstract level and then expanding it such that

the path includes the nearest charging station.
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6. Experimental Evaluations

We evaluate our methods for MAPDC by empirically analyzing their scalability,

and compare them with each other.

6.1 Research Questions

We are interested in testing the computational performance of our ASP solutions
for MAPDC. The approaches differ in their optimality, completeness and intended

usage so it would be best to state our research questions for each of them separately.

MAPDC-ASP and MAPDC-M are complete and optimal methods. It should be
expected that they scale poorly as the problem size grows. Though such ASP-based

methods can still be used as sub-solvers for distributed approaches (Zhang ct al.,
2021).

Here are the questions that we want to investigate for our MAPDC methods

e How does MAPDC-ASP (respectively MAPDC-M) scale as the problem

size increases?
o How does the grid structure affect the computational performance?
— When there are random obstacles?
— When there is a structure e.g a warehouse?

« How does MAPDC-ASP, MAPDC-M and MAPDC-P (Tajelipirbazari
et al., 2022) differ in performance and utility?

Our questions regarding HMAPDC are the following.

e How does HMAPDC scale?
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Table 6.1 Benchmark 1: Warehouse configurations used in our experiments.

Configuration 1 2 3 4 5 6 7
Grid Size 10x10 10x10 10x10 10x10 10x20 10x40 20x20
Shelf Width 1 1 2 2 2 2 2
Vertical Distance 1 1 1 2 2 2 2
Horizontal Distance 1 2 1 2 2 2 2

« How does initial region size affect performance/solution quality?
o How much optimality is compromised?
o How does HMAPDC compare to MAPDC-ASP and MAPDC-M?

« How does the proposed heuristics and augmentations (i.e., adding an addi-
tional layer, task assignment heuristic, starting with diverse solutions) improve
the performance of HMAPDC?

6.2 Benchmarks

We created several benchmarks to investigate these questions.

6.2.1 Benchmark 1

The first benchmark is comprised of configurations described in Table 6.1 and is
made to answer the following research questions: how do MAPDC-ASP and
MAPDC-M perform in different warehouse designs? - how do they scale?

We have generated 7 different warehouse environments, varying the grid size, shelf
width and horizontal /vertical distances between shelves as described in Table 6.1.
Two of these configurations are shown in Figure 6.1 and Figure 6.2. In these config-
urations, the initial and goal locations of agents are on the last row of the grid, and
we leave a margin of 2 cells from the left and the bottom before starting the shelves.
We also leave a margin on the right, equal to the vertical distance from the top.
If the shelves touch the right wall, we clear the right-most column from shelves as
in Figure 6.2. In order to have predictable hardness for tasks, picking and delivery

locations of the tasks are scattered along exactly one shelf in the vertical direction.

For each such warehouse configuration, we have created 9 triples by varying the
number of agents, the number of tasks, and the capacity of the agents. For every
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Figure 6.1 Configuration 1 of Table 6.1

Figure 6.2 Configuration 7 of Table 6.1

combination of configuration, agent number, task number and capacity, we have
randomly generated 5 instances and reported the average computation times and

makespans.
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6.2.2 Benchmark 2

With our second benchmark, we are interested in investigating how MAPDC
methods and HMAPDC compare in terms of the makespans and the computa-
tion time. For this, we created instances that push the capabilities of MAPDC
methods, while being relatively easy to handle for HMAPDC. We generate graphs
for grid sizes 24x24, 36x36, 48x48 with no obstacles, 10% random obstacles, and
warehouse structure, and on these grid graphs we consider 5, 10, 20 agents. For the
10% random obstacles case, we place obstacles on the grid randomly by generating
a random number between the vertex values (0-99 for a 10x10 grid), and if the grid
is not fully connected after all obstacles are placed, we restart the process. The
number of tasks are determined by multiplying the number of agents and the given

capacity in the experiment. For each combination of these parameters, we generate
5 MAPDC instances.

For warehouse instances, we leave a margin of 1 cell from the top and the right side,
then start laying the shelves. We lay 10 cell-long shelves horizontally and then clear
the right-most column from shelves. We also clear the last row of the grid. The

24x24 warehouse configuration is given in Figure 6.3.

Unlike Benchmark 1, the start and goal locations of agents, as well as pick and

deliver locations of tasks are completely random.

6.2.3 Benchmark 3

In order to test the scalability of HMAPDC, and its comparison with other ap-
proaches, we generated bigger instances. We use grids of sizes 24x24, 48x48, 72x72,
and 96x96. We use the same graph structures as Benchmark 2. We consider 5, 10,
20, 40, 60 agents; and one task for each agent. For each grid and number of agents,
we generate 5 MAPDC instances. Again, the initial and goal location of agents as

well as pick and delivery location of tasks are completely random.
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Figure 6.3 Warehouse configuration for grid gize 24x24
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6.3 Experiments

We design several experiments to answer our research questions. For all the experi-
ments, we have used the ASP solver CLINGO (Version 4.5.4), on a Linux server with
dual 2.4 GHz Intel E5-2665 CPUs and 64 GB memory.

6.3.1 Experiment 1

This experiment aims to measure the scalability of our single-shot and multi-shot
encodings, and is run on Benchmark 1. It was done in Tajelipirbazari et al. (2022)
and with two different encodings. We tested two encodings against each other, one
of them is our graph based approach, MAPDC-G, which we presented in Section
3 and call MAPDC-M. The other is MAPDC-P, which is a planning based

encoding.

We have experimentally evaluated MAPDC-P and MAPDC-M as to better un-
derstand their scalability in terms of the computation time. We also test the usability
of MAPDC-ASP.

We also run CLINGO with both default and handy settings and report our findings.

In later experiments, especially with ones that involve HMAPDC, we desire bigger
warehouses. For any instance on a grid bigger than 20x20, we choose shelf width as

10, and vertical and horizontal distances as 1.

6.3.2 Experiment 2

This experiment aims to find what initial size we should choose for HMAPDC. We
test on empty grids, grids with 10% random obstacles, and grids with corridors in

them (called warehouse). We run this experiment on Benchmark 3 with capacity 1.

We have chosen to experiment with the following first level sizes: 6x6, 8x8, 10x10,
12x12. These sizes are managable for our multi-shot encodings, especially for the

first level where we waive collision constraints.
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6.3.3 Experiment 3

We aim to compare our multi-shot solution and HMAPDC with Experiment 3. We
compare the makespans and solution times to learn how suboptimal HMAPDC is

and how much time it saves us.

We run this experiment on Benchmark 2. The instances of Benchmark 2 are designed

to be challenging enough for our multi-shot encoding, where using the sub-optimal
HMAPDC becomes more reasonable.

Task counts for this experiments are given as number of agents * capacity.

6.3.4 Experiment 4

We test our augmentations to HMAPDC. Recall that we proposed two augmenta-
tions called additional layer and task assignment heuristics. We run this experiment

on Benchmark 3 and report the time taken and the makespan.

6.3.5 Experiment 5

With this test, we aim to demonstrate how our portfolio approach, TAP, can help
with improving performance. We run it on a portion of Benchmark 3, specifically
the ones with grid size 72x72. Although TAP can be parallelized, we run TAP to
work sequentially and report the first and best solutions both in terms of time and
makespan. Benchmark 3 has 5 instances per configuration, but we test our approach
on 1 instance for each configuration. We run TAP with first level size 8x8, and try

two different portfolio sizes: r =0.75,p =4, and r =0.9,p = 10.

Furthermore, we choose some configurations that previous experiments could not

solve and apply TAP on them to see whether it helps with completeness.
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7. Results

We present the results of our experiments in this section.

7.1 Results for Experiment 1: Scalability of MAPDC Methods

We have observed (Figure 7.1) that increasing the number of agents helps both
MAPDC-P and MAPDC-G (identical to MAPDC-M) in finding solutions more
efficiently. This observation makes sense as increasing the number of agents effec-
tively reduces the number of tasks assigned to an agent, and, in turn, reduces the

maximum makespan for the problem instance.

We have observed (Figure 7.2) that increasing the number of tasks increases the
number of tasks that needs to be completed by each agent. Hence, the maximum
makespan also increases, and this reduces the efficiency of both MAPDC-P and
MAPDC-M. Note that some of the instances could not be solved within the time

limit as the number of tasks increases to 32 for 16 agents.

Similar to increasing the number of agents, increasing the capacity of agents (Fig-
ure 7.3) leads to a decrease in maximum makespan, and thus reduces the computa-
tion time for both MAPDC-P and MAPDC. 1t is interesting to compare results in
Figures 7.1 and 7.3. Even though increasing the number of agents and the capacity
both reduce the maximum makespan and improve runtime performance, improve-
ments in Figure 7.3 are more visible. This showcases the importance of capacity in
the MAPDC problem. We reason that increase in the number of agents reduces
the maximum makespan, but at the same time strains the solving process due to

increased number of possible collisions to avoid.

We have also compared the single-shot and multi-shot computations of CLINGO
over some MAPDC instances (Table 7.1). The single-shot ASP formulations of

MAPDC utilize weak constraints to optimize the maximum makespan, while a suf-
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ficiently small upper bound is provided on the makespan for the purpose of ground-
ing. In our experiments with single-shot, we have provided the optimum makespans
as upper bounds on makespans. In this way, the single-shot computations do not
need to make too many optimizations for large upper bounds but show their best
performance alleviating the disadvantage of grounding due to large makespans. It
can be seen that even under these ideal conditions, the multi-shot computations
perform nearly as good as the single-shot ones for many instance. The run-time of
multi-shot computations include the time required to find the optimum makespan,

making them more practical to use, in particular, with MAPDC-P.

Furthermore, we have evaluated the single-shot computations with anytime search,
with time threshold of 1000 seconds, over some MAPDC instances with an upper
bound of 80 on makespan (Table 7.2). We have observed that anytime search helps
with finding a solution for more instances, in particular, for MAPDC-M, but at

the cost of computation time due to grounding with a large makespan.

Finally, our experiments show that using CLINGO with handy configuration (as in Er-
dem et al. (2013)) improves the computational performances of MAPDC-P and
MAPDC-M for hard instances (cf. results for Configurations 6 and 7 at Table 7.4).
This suggests the use of CLINGO with a portfolio of different configurations.
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Figure 7.1 Experiment 1: Scalability as the number of agents increases when capacity =
1 (Table 7.3).
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Figure 7.3 Experiment 1: Scalability as the capacity increases (Table 7.3).
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Table 7.1 Experiment 1: Comparison of single-shot and multi-shot computations over

Configuration 5 instances (agents, tasks, capacity).

Single-shot Multi-shot
MAPDC-G MAPDC-P MAPDC-G MAPDC-P

CPU | makespan CPU | makespan CPU | makespan CPU | makespan
instance time | (#solved) time | (#solved) time | (#solved) time | (#solved)
(2,2,1) 2.98 35.4 (5) 0.99 35.4 (5) 1.92 35.4 (5) 2.16 35.4 (5)
(2,4,1) 9.52 47.4 (5) 27.59 47.4 (5) 13.23 47.4 (5) 27.48 47.4 (5)
(2, 4, 2) 4.63 41.6 (5) 8.13 41.6 (5) 3.84 41.6 (5) 14.54 41.6 (5)
(4,4, 1) 7.51 37.4 (5) 4.49 37.4 (5) 4.66 37.4 (5) 4.79 37.4 (5)
(4,8,1) | 25.11 | 426 (5) 39.14 | 42.6 (5) 30.60 | 42.6 (5) 41.68 | 426 (5)
(4, 8, 2) 12.62 41.0 (5) 40.48 41.0 (5) 11.81 41.0 (5) 36.41 41.0 (5)
(8,8,1) 15.49 34.8 (5) 16.63 34.8 (5) 9.73 34.8 (5) 13.15 34.8 (5)
(8,16, 1) | 146.90 | 39.5 (4) | 493.02 | 39.5 (4) | 410.00 | 39.5 (4) | 307.07 | 39.5 (4)
(8, 16, 2) 29.71 36.6 (5) 255.04 36.6 (5) 38.94 36.6 (5) 128.82 36.6 (5)

Table 7.2 Experiment 1: Single-shot computations with anytime search vs multi-shot
computations, over Configuration 7 instances (agents, tasks, capacity), with the time
threshold of 1000 secs and the upper bound 80 on makespan.

Single-shot anytime

MAPDC-G MAPDC-P
instance CPU Makespan CPU Makespan
Time (#opt/#solved) | Time (#opt/#solved)
@ 4, 1) 95.58 3.0 (5/5) 57.99 43.0 (5/5)
48,1 201.12 56.2 (5/5) 794.14 56.2 (4/5)
(4,8,2) 122.59 52.4 (5/5) 710.64 52.4 (5/5)
(8,8,1) 180.66 8.0 (5/5) 202.67 8.0 (5/5)
(8,16,1) 855.31 58.2 (2/5) timeout timeout
(8,16,2) | 255.07 51.4 (5/5) 097.27 76.5 (0/2)
(16,16,1) | 457.70 19.4 (5/5) 097.23 67.0 (0/4)
(16,32,1) 997.61 69.4 (0/5) timeout timeout
(16,32,2) 836.89 54.0 (2/5) timeout timeout
Multi-shot
MAPDC-G MAPDC-P
instance CPU Makespan CPU Makespan
Time (#opt/#solved) | Time (#opt/#solved)

@ 4, 1) 16.99 13.0(5) 16.21 43.0(5)
4,8,1) 162.02 56.2(5) 233.99 56.2(5)
(4,8,2) 12.35 52.4(5) 127.96 52.4(5)
(8,8,1) 18.76 18.0(5) 64.74 48.0(5)
(8,16,1) | 440.30 57.0 (3) 816.02 56.5 (2)
(8,16,2) 72.07 51.4(5) 511.79 49.8(4)
(16,16,1) | 128.51 494 (5) 544.47 47.0 (4)
(16,32,1) | timeout timeout timeout timeout
(16,32,2) 264.36 52.2 (4) timeout timeout
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Table 7.3 Results with CLINGO’s default configuration

MAPDC-G MAPDC-P
configuration | agents | tasks | capacity | CPU time | makespan (#solved) | CPU time | makespan (#solved)
2 2 1 0.46 244 (5) 0.53 2441 (5)
2 4 1 0.96 314 (5) 2.57 314 (5)
2 4 2 0.69 20.8 (5) 2.19 20.8 (5)
1 1 1 0.86 23.6 (5) 0.79 23.6 (5)
Configuration 1 4 8 1 3.52 28.6 (5) 4.33 28.6 (5)
4 8 2 1.45 27.0 (5) 2.69 27.0 (5)
8 8 1 2.29 25.0 (5) 255 25.0 (5)
8 16 1 128.86 28.2 (5) 71.54 28.2 (5)
8 16 2 6.72 26.2 (5) 12.27 26.2 (5)
2 2 1 0.3 21.2 (5) 0.37 21.2 (5)
2 4 1 0.88 20.6 (5) 2.28 20.6 (5)
2 4 2 0.81 29.2 (5) 2.34 29.2 (5)
1 1 1 0.98 246 (5) 0.96 24.6 (5)
Configuration 2 4 8 1 7.36 29.8 (5) 6.75 29.8 (5)
4 8 2 1.66 27.4 (5) 3.10 27.4 (5)
8 8 1 2.05 27.2 (5) 387 27.2 (5)
8 16 1 95.61 27.6 (5) 59.76 27.6 (5)
8 16 2 6.53 26.6 (5) 11.92 26.6 (5)
2 2 1 0.40 22.8 (5) 0.44 22.8 (5)
2 4 1 1.04 33.4 (5) 4.01 33.4 (5)
2 4 2 0.76 31.4 (5) 2.68 31.4 (5)
4 4 1 0.95 26.4 (5) 1.05 26.4 (5)
Configuration 3 | 4 8 1 413 30.8 (5) 7.15 30.8 (5)
4 8 2 2.66 20.8 (5) 6.28 2.8 (5)
8 8 1 2.78 26.4 (5) 3.65 26.4 (5)
8 16 1 286.58 29.4 (5) 165.75 29.4 (5)
8 16 2 6.95 27.8 (5) 21.45 27.8 (5)
2 2 1 0.45 234 (5) 0.18 234 (5)
2 4 1 1.01 29.8 (5) 2.48 29.8 (5)
2 4 2 0.74 27.4 (5) 1.69 27.4 (5)
1 1 I 1.07 26.2 (5) 0.96 26.2 (5)
Configuration 4 | 4 8 1 13.74 30.2 (5) 8.87 30.2 (5)
4 8 2 2.31 26.4 (5) 3.49 26.4 (5)
8 8 1 2.39 25.0 (5) 3.05 25.0 (5)
8 16 1 201.95 28.8 (5) 107.11 28.8 (5)
8 16 2 7.02 26.4 (5) 19.34 26.4 (5)
2 2 1 1.92 35.4 (5) 2.69 35.4 (5)
2 4 1 13.23 47.4 (5) 44.88 47.4 (5)
2 4 2 3.84 41.6 (5) 23.37 41.6 (5)
1 1 1 1.66 374 (5) 6.19 374 (5)
Configuration 5 4 8 1 30.69 42.6 (5) 38.96 42.6 (5)
4 8 2 11.81 41.0 (5) 29.34 41.0 (5)
8 8 1 9.73 318 (5) 17.99 318 (5)
8 16 1 410.00 39.5 (4) 429.42 39.5 (4)
8 16 2 38.94 36.6 (5) 139.65 36.6 (5)
1 1 1 27.82 56.6 (5) 70.44 56.6 (5)
4 8 1 429.16 72.5 (4) 440.65 70.3 (3)
4 8 2 110.65 65.0 (5) 253.01 65.0 (5)
8 8 1 50.36 52.6 (5) 212.67 52.6 (5)
Configuration 6 8 16 1 422.37 54.0 (1) timeout timeout
8 16 2 187.27 57.6 (5) 138.18 48.0 (1)
16 16 1 176.37 58.2 (5) timeout timeout
16 32 1 timeout timeout timeout timeout
16 32 2 440.93 55.2 (4) timeout timeout
1 1 1 16.99 13.0 (5) 16.21 13.005)
4 8 1 162.02 56.2 (5) 233.99 56.2 (5)
4 8 2 42.35 52.4 (5) 127.96 52.4 (5)
8 8 1 18.76 180 (5) 64.74 18.0 (5)
Configuration 7 8 16 1 440.30 57.0 (3) 816.92 56.5 (2)
8 16 2 72.97 51.4 (5) 511.79 49.8 (4)
16 16 1 12851 19.4 (5) 54447 47.0 (4)
16 32 1 timeout timeout timeout timeout
16 32 2 264.36 52.2 (4) timeout timeout
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Table 7.4 Results with CLINGO’s handy configuration

MAPDC-G MAPDC-P
configuration | agents | tasks | capacity | CPU time | makespan (#solved) | CPU time | makespan (#solved)
2 2 1 057 244 (5) 0.50 2441 (5)
2 4 1 1.00 314 (5) 2.30 314 (5)
2 4 2 0.88 20.8 (5) 1.63 20.8 (5)
1 1 1 i3 236 () 0.72 236 ()
Configuration 1 4 8 1 2.82 28.6 (5) 3.93 28.6 (5)
4 8 2 1.75 27.0 (5) 2.26 27.0 (5)
8 8 1 3.07 25.0 (5) 2.64 25.0 (5)
8 16 1 68.69 28.2 (5) 63.33 28.2 (5)
8 16 2 5.47 26.2 (5) 13.30 26.2 (5)
2 2 1 0.50 21.2 (5) 0.37 21.2 (5)
2 4 1 1.06 29.6 (5) 2.10 29.6 (5)
2 4 2 0.98 29.2 (5) 2.22 29.2 (5)
1 1 1 1.31 246 (5) 1.01 24.6 (5)
Configuration 2 4 8 1 4.48 29.8 (5) 6.52 29.8 (5)
4 8 2 1.95 27.4 (5) 2.92 27.4 (5)
8 8 1 3.07 27.2 (5) 373 27.2 (5)
8 16 1 52.22 27.6 (5) 50.02 27.6 (5)
8 16 2 4.62 26.6 (5) 13.29 26.6 (5)
2 2 1 0.49 22.8 (5) 0.42 22.8 (5)
2 4 1 1.08 33.4 (5) 3.44 33.4 (5)
2 4 2 0.90 314 (5) 3.02 314 (5)
1 1 I 1.23 26.4 (5) 1.09 26.4 (5)
Configuration 3 4 8 1 2.99 30.8 (5) 6.49 30.8 (5)
4 8 2 2.52 20.8 (5) 5.69 20.8 (5)
8 8 1 319 26.4 (5) 3.20 26.4 (5)
8 16 1 146.62 29.4 (5) 172.00 29.4 (5)
8 16 2 5.30 27.8 (5) 20.61 27.8 (5)
2 2 1 0.5 234 (5) 047 234 (5)
2 4 1 1.14 20.8 (5) 2.16 29.8 (5)
2 4 2 0.87 27.4 (5) 1.65 27.4 (5)
1 1 I 151 26.2 (5) 0.90 26.2 (5)
Configuration 4 | 4 8 1 8.58 30.2 (5) 8.64 30.2 (5)
4 8 2 2.33 26.4 (5) 2.84 26.4 (5)
8 8 1 347 25.0 (5) 3.00 25.0 (5)
8 16 1 97.73 28.8 (5) 110.21 28.8 (5)
8 16 2 6.25 26.4 (5) 17.32 26.4 (5)
2 2 1 3.10 354 (5) 2.37 354 (5)
2 4 1 10.83 47.4 (5) 37.53 47.4 (5)
2 4 2 5.13 416 (5) 19.80 416 (5)
1 1 1 752 374 (5) 551 374 (5)
Configuration 5 | 4 8 1 24.77 42,6 (5) 40.43 42,6 (5)
4 8 2 12.05 41.0 (5) 33.51 41.0 (5)
8 8 1 15.43 34.8 (5) 15.27 34.8 (5)
8 16 1 221.68 39.5 (4) 376.10 39.5 (4)
8 16 2 20.96 36.6 (5) 127.45 36.6 (5)
1 1 1 57.50 56.6 (5) 113 56.6 (5)
4 8 1 393.59 72.5 (4) 479.13 72.5 (4)
4 8 2 75.52 65.0 (5) 212.28 65.0 (5)
8 8 i 107.17 52.6 (5) 94.21 52.6 (5)
Configuration 6 | 8 16 1 283.07 54.0 (1) 734.57 54.0 (1)
8 16 2 184.27 57.6 (5) 491.01 50.5 (2)
16 16 1 336.67 58.2 (5) 801.47 54.7 (3)
16 32 1 timeout timeout timeout timeout
16 32 2 414.33 55.2(5) timeout timeout
1 1 1 38.02 13.0 (5) 12.92 13.0 (5)
4 8 1 140.77 56.2 (5) 214.01 56.2 (5)
4 8 2 61.09 52.4 (5) 91.01 52.4 (5)
8 8 1 101.25 180 (5) 1813 18.0 (5)
Configuration 7 8 16 1 372.09 54.8 (4) 818.10 57.0 (3)
8 16 2 129.54 51.4 (5) 451.97 51.4 (5)
16 16 T 270.70 49.4 (5) 378.01 47.0 (4)
16 32 1 timeout timeout timeout timeout
16 32 2 328.81 52.3 (4) timeout timeout
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7.2 Results For Experiment 2: Initial size for HMAPDC

Tables 7.5, 7.6, 7.7 and 7.8 report our results for HMAPDC with initial sizes 6x6,
8x8, 10x10, 12x12 for Level 0. Each table reports results on different grid sizes for the
MAPDC instance. In the tables, type describes the type of obstacles, none stands
for no obstacles, random for 10% random obstacles, wh for warehouse obstacles, a
states the agent count. For this experiment task count is equal to agent count for

all instances. Agent capacities are 1.

Figures 7.4, 7.5, 7.6 visualize the mentioned tables for different graph types. The
line plots are for run times and the column plots are for makespans. The columns are

also labeled with the number of instances solved in the given time of 2000 seconds.

One thing to note would be that the number of instances solved and the performance
metrics should be considered simultaneously. For example consider Figure 7.5, grid
size 96x96 and agent count 40. At first glance, 6x6 for first level size seems to find
the best makespans. But it can only find answers for 3 instances out of 5, it is highly
probable that those 3 instances are easier to solve, i.e., their optimal makespans may
be low. The other first level sizes solve 4 or 5 instances. The other instances that
they are able to solve may have higher optimal makespans, bringing the reported

average makespan higher. The same is true for runtime.

For this reason, the most accurate conclusions that can be arrived from the plots pre-
sented in figures mentioned above are the ones where the number of solved instances

are the same for different first level sizes.

An observation about these figures is that the most successful approach, especially
with respect to the makespan, may fluctuate considerably as any parameter of the
configurations change. For example, consider Figure 7.5, 72x72 grid. As agent
count goes from 10 to 20, first level sizes 8x8 and 10x10 change place in terms of
their makespan performance, while the other approaches more or less stay in their
previous rank. We speculate this is because of the discrete and complicated nature

of partioning a graph.

Having said this, it is possible to come to some conslusions from these figures. For
example, first level size 12x12 consistently performs worse than other approaches
in terms of runtime, and in many cases it can produce smaller makespan solutions.
This is to be expected. Imagine increasing first level size indefinitely. One would get
close to using MAPDC-M, which would find the optimum makespan but would

take much longer to do so.
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Another observation is that first level size 6x6 consistenly finds worse makespans
than other approaches in many cases. This should also be intuitive, since it abstracts
the input graph the most, resulting in the biggest region sizes. As the region sizes
grow, the solutions to abstract HMAPDC levels become more and more detached

from the actual graph.

These results also pinpoint when HMAPDC fails to find a solution. Consider Table
7.5, type warehouse and agent count 60. HMAPDC mostly fails for all of the first
level sizes we experimented with. In this configuration, there are both corridors and
a large number of agents. Waiving collision constraints on higher levels constrains
the bottom level in such a way that the agents cannot easily give way to each other
and no solution can be found in the given time of 2000 seconds, or maybe a solution
is impossible with the said constraints. We tackle this problem with our portfolio

approach with Experiment 5.

Finally, we make the observation that first level sizes 8x8 and 10x10 perform well
for many configurations we test on. This means there is a sweet spot for first level
size, and that finding exactly which first level size to choose for an instance is not
an easy problem for HMAPDC. More analysis on this can be done, but we are
content with choosing 8x8, a general well-performer in many cases, to be our default

first level size for further experiments.

24x24 no obstacles 72x72 no obstacles
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50.00 | 5. 50.0 50.0
855 5555
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48x48 no obstacles 96x96 no obstacles
= Gx6 == 8x8 10x10 == 12x12 == 6x6 == 8x8 10x10 == 12x12
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Figure 7.4 Experiment 2: Results for instances with no obstacles

Figure 7.7 shows computation time performance for the 3 graph types we use. It
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24x24 random obstacles 72x72 random obstacles
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Figure 7.5 Experiment 2: Results for instances with 10% random obstacles
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Figure 7.6 Experiment 2: Results for instances with warehouse setting

seems like graph type does not affect scalability.

Warchouse type consistently performs better as grid size grows, this is because
there are a lot of obstacles in the grid. This means the graph we are working with

is considerably smaller than the other types. Also, the average number of edges a
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Table 7.5 Experiment 2: Results for grid size 24x24

6x6 8x8 10x10 12x12
type a time(s) | makespan | time(s) | makespan | time(s) | makespan | time(s) | makespan
5 4.52 52.2(5) 3.66 49.2(5) 3.60 49.2(5) 5.46 49.2(5)
10 7.65 50.0(5) 7.36 51.8(5) 7.37 51.8(5) | 12.21 50.6(5)
none | 20 | 18.17 51.4(5) | 15.17 50.0(5) | 15.22 50.0(5) | 25.20 47.0(5)
40 | 46.33 54.2(5) | 36.69 49.2(5) | 36.68 49.2(5) | 73.39 48.2(5)
60 | 87.14 55.0(5) | 93.13 57.4(5) | 93.11 57.4(5) | 183.04 52.2(5)
5 1.04 54.6(5) 3.38 52.8(5) 3.37 52.8(5) 5.0 51.4(5)
10 8.16 56.4(5) 7.58 54.4(5) 7.51 54.4(5) | 12.56 53.2(5)
random | 20 | 23.45 62.2(5) | 20.66 60.0(5) | 20.71 60.0(5) | 33.06 56.0(5)
40 | 4470 59.0(5) | 41.31 54.8(5) | 41.25 54.8(5) | 76.85 53.2(5)
60 84.28 59.4(5) 83.75 57.0(4) 83.69 57.0(4) 165.30 54.6(5)
5 2.52 54.2(5) 2.20 50.6(5) 2.20 50.6(5) 3.39 19.2(5)
10 4.77 53.4(5) 4.57 51.8(5) 4.64 51.8(5) 7.26 47.8(5)
wh |20 | 1374 59.8(4) | 14.15 58.0(5) | 14.34 58.0(5) | 26.33 57.0(4)
40 | 35.22 59.3(3) | 51.25 60.0(3) | 51.41 60.0(3) | 88.07 58.0(1)
60 | 98.63 67.0(1) | 100.20 61.0(1) | 101.44 61.0(1) 0.00 0.0(0)

Table 7.6 Experiment 2: Results for Grid Size 48x48

6x6 8x8 10x10 12x12

type a time(s) | makespan | time(s) | makespan | time(s) | makespan | time(s) | makespan
5 33.87 114.0(5) 25.33 109.6(5) 26.19 107.4(5) 35.57 108.8(5)

10 95.18 112.8(5) 56.16 106.2(5) 53.68 103.8(5) 63.95 105.8(5)

none 20 135.70 109.0(5) 113.25 107.6(5) 109.52 103.2(5) 136.88 102.2(5)

40 291.01 105‘2(5) 212.23 103.4(5) 217.55 99.6(5) 271.88 98.6(5)

60 487.46 110.4(5) 454.36 113.0(5) 437.35 108.4(5) 558.74 106.6(5

5 32.15 112.2(5) 29.74 118.6(5) 32.32 123.4(5) 36.79 116.4(5

10 63.81 116.2(5) 54.83 113.8(5) 60.02 115.0(5) 67.83 114.4(5

random 20 134.56 114.2(5) 107.96 113.4(5) 105.92 109.8(5) 118.15 106.0(5

( (

( (

( (

( (

( (

( (

( (

40 | 31045 | 121.0(5) | 21347 | 109.0 209.04 | 105.6(5) | 280.92 | 107.6(5
60 | 455.85 | 118.6(5) | 398.17 | 116.2
5 15.45 | 110.0(5) 1451 | 1072
10 | 35.84 | 115.4(5) | 40.73 | 1208
wh 20 | 88.98 | 124.2(5) 67.64 | 1114
40 | 219.49 | 135.3(3) | 204.37 | 128.0
60 | 286.35 | 124.7(3) | 283.37 | 1145

437.62 | 117.8(5) | 534.63 | 116.4(

5)

5)

5) 14.82 108.4(5) 16.87 | 102.4(
5) 40.26 118.4(5) 45.53 | 112.6(
5) 74.66 113.4(5) 89.72 | 108.2(
5) 224.16 126.5(4) 226.59 | 113.0(
4) 373.74 122.2(4) 461.19 | 115.8(

node has is lowest in the warehouse setting, resulting in a smaller search space for
the traversals of agents. As graph size grows, random obstacle type again performs

better than the no obstacle type, because of the same reasons.
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Table 7.7 Experiment 2: Results for Grid Size 72x72

6x6 8x8 10x10 12x12
type a time(s) | makespan | time(s) | makespan | time(s) | makespan | time(s) | makespan
5 73.33 151.8(5) 55.96 143.6(5) 67.53 139.6(5) 58.81 | 139.6(5)
10 | 12023 | 145.0(5) | 114.23 | 142.6(5) | 126.61 | 133.4(5) | 106.32 | 138.0(5)
none 20 347.69 160.4(5) 287.29 155.0(5) 376.19 151.2(5) 296.72 | 148.8(5)
40 745.72 157.8(5) 654.65 158.6(5) 785.64 152.6(5) 702.48 | 151.2(5)
60 | 1045.38 156.8(5) 964.01 158.4(5) | 1377.33 158.8(5) | 1028.50 | 152.6(5)
5 76.91 156.2(5) 85.60 163.6(5) 87.01 159.6(5) 73.37 | 156.4(5)
10 192.99 176.4(5) 200.96 179.6(5) 198.21 164.8(5) 178.37 | 167.8(5)
random | 20 671.62 189.4(5) 376.10 178.0(5) 543.68 185.2(5) 451.37 | 178.2(5)
40 766.93 165.0(4) 727.63 169.6(5) 901.05 169.8(5) 929.40 | 174.8(5)
60 | 1159.32 171.8(4) 918.77 155.0(4) | 1235.43 161.8(4) | 1013.92 | 157.2(4)
5 48.90 165.4(5) 44.82 160.4(5) 44.18 155.8(5) 41.29 | 143.8(5)
10 97.82 162.6(5) 108.57 166.8(5) 90.14 156.4(5) 87.29 | 151.2(5)
wh 20 226.23 174.0(5) 204.17 166.0(5) 190.33 157.8(5) 200.50 | 152.6(5)
40 681.91 205.8(4) 619.28 195.0(3) 652.21 192.2(5) 721.83 | 191.0(3)
60 758.36 181.4(5) 784.85 181.2(4) 838.35 181.6(5) 933.62 | 174.2(4)
Table 7.8 Experiment 2: Results for Grid Size 96x96
6x6 8x8 10x10 12x12
type a time(s) | makespan | time(s) | makespan | time(s) | makespan | time(s) | makespan
5 473.73 238.8(5) 297.62 228.0(5) 215.20 218.8(5) 442.42 | 219.8(5)
10 555.21 219.8(5) 333.25 203.0(5) 374.63 208.4(5) 463.57 | 200.0(5)
none 20 | 1247.28 230.5(4) 951.48 222.8(5) 922.90 220.6(5) | 1070.13 | 215.6(5)
40 | 1516.17 189.0(1) | 1527.38 200.6(5) | 1389.41 197.0(4) | 1682.03 | 194.8(4)
60 0.00 0.0(0) | 1556.26 182.5(2) | 1584.51 176.5(2) | 1557.08 | 166.0(1)
5 204.09 209.2(5) 149.27 200.0(5) 195.06 201.6(5) 152.09 | 189.8(5)
10 559.33 233.2(5) 538.39 242.0(5) 510.15 250.6(5) 595.72 | 232.6(5)
random | 20 765.67 214.8(5) 813.37 221.6(5) 701.10 211.4(5) 891.56 | 214.2(5)
40 | 1055.19 154.7(3) | 1399.23 209.2(4) | 1329.12 204.2(5) | 1481.46 | 198.2(4)
60 0.00 0.0(0) 0.00 0.0(0) 0.00 0.0(0) 0.00 | 0.0(0)
5 150.40 228.4(5) 130.16 223.4(5) 156.19 228.0(5) 123.26 213.2(5)
10 301.55 226.0(5) 298.51 230.2(5) 536.73 238.2(5) 326.85 | 227.2(5)
wh 20 904.51 279.0(5) 636.70 243.2(5) 724.43 254.2(5) 647.57 | 238.2(4)
40 | 1116.17 234.7(3) | 1173.58 228.6(5) | 1028.20 222.6(5) | 1066.00 | 216.4(5)
60 1461.84 221.0(1) 1645.06 229.5(2) 1435.26 218.5(2) 1723.15 215.5(2)
24x24 48x48
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Figure 7.7 Experiment 2: Computation time by graph type for first level size 8x8
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7.3 Results for Experiment 3: MAPDC-M vs HMAPDC

Table 7.9 shows the performance of our multi-shot approach vs HMAPDC for
Benchmark 2 instances. The column size shows the grid size (all grids are square).
Column c is for capacity. Since the metrics we mainly care about in this experiment
are the speedup we gain by using HMAPDC and the sub-optimality HMAPDC
causes, we only report results for instances that both of them can solve. Table
7.9 contains values for computation time, number of rules, and makespan, while
7.10 reports the said metrics as a summary of the former table. The metrics on
the summary table are calculated as: speedup = multi-shot solving time / hmapdc
solving time, suboptimality = HMAPDC makespan / multi-shot makespan, rules
savings = multi-shot rules / HMAPDC rules.

We also do the same experiment for 2 graphs that have a very high percentage
of obstacles, obtained from Bogatarkan et al. (2019). Both are 20x20 grids. We
randomly generated 3 instances for each configuration in Tables 7.11, 7.12 which
contain the actual values and their summary respectively. Figures 7.8 and 7.9 show
the grids.

+
1.

Figure 7.8 Experiment 3: Grid gl (Bogatarkan et al., 2019)

E'.

The configurations that are not present in these tables are ones that the multi-shot

approach failed to solve.
As can be seen from Table 7.9, HMAPDC is at least an order of magnitude faster,
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g NS

Figure 7.9 Experiment 3: Grid g2 (Bogatarkan et al., 2019)

and sometimes 2. This also holds for the graphs with a high percentage of obstacles
as reported in Tables 7.11 and 7.12.

We observe up to 18% sub-optimality in Table 7.10. The sub-optimality is unpre-

dictable and we did not recognize a pattern to it.
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Table 7.9 Experiment 3: MAPDC-M vs HMAPDC on instances both can solve.
All grids are square shaped.

grid grid Multishot HMAPDC
size type a | ¢ | time(s) rules makespan | time(s) rules makespan
none 511 69.2 | 2.36E+07 44.63 2.7 | 7.84E+05 47.50
04 none 512 170.0 | 3.09E+07 53.75 5.1 | 1.38E+06 55.75
none |10 |1 219.2 | 5.81E407 50.00 7.3 | 2.05E+06 51.00
none | 10| 2 542.4 | 7.78E407 59.33 16.2 | 3.69E+06 65.00
random | 5|1 68.1 | 2.19E+07 48.00 3.1 | 8.84E405 50.80
94 random | 5| 2 362.9 | 2.82E4-07 57.00 6.5 | 1.56E+06 62.00
random | 10 | 1 199.1 | 5.84E+07 57.60 10.4 | 2.62E+06 60.80
random | 10 | 2 671.1 | 5.21E+07 53.50 13.7 | 3.07E+06 61.00
wh 511 44.8 | 1.12E+07 54.20 3.2 | 8.48E+05 58.20
94 wh 512 744.0 | 1.62E4-07 66.60 9.1 | 1.61E+06 74.60
wh 101 89.3 | 2.48E+07 54.80 6.2 | 1.60E+06 59.00
wh 10 | 2| 1927.9 | 2.60E+07 55.00 9.6 | 1.92E+06 60.00
none 511 754.1 | 1.99E+408 73.80 10.6 | 2.66E+06 78.20
36 none 512 1179.5 | 1.84E408 73.00 14.1 | 3.46E+06 86.00
none | 10 | 1| 1412.7 | 3.656E408 71.00 17.6 | 4.41E+06 72.50
random | 5 | 1 535.7 | 1.53E+408 74.00 10.4 | 2.50E+06 81.00
36 | random | 5| 2| 1395.6 | 1.94E+4+08 83.67 21.4 | 4.37TE406 98.33
random | 10 | 1 | 1228.5 | 3.21E+408 75.33 21.9 | 5.12E406 84.33
wh 511 240.0 | 7.49E4-07 79.20 8.4 | 1.86E+06 90.00
36 wh 512 452.3 | 8.58E+07 84.00 9.8 | 2.29E+06 86.00
wh 101 957.8 | 1.74E+408 85.60 26.3 | 5.06E+06 99.40
48 none 511 928.1 | 3.10E+408 62.00 5.0 | 1.39E+06 62.00
48 | random | 5| 1| 1762.2 | 5.44E+08 88.50 13.9 | 3.44E+06 92.50
48 wh 511 1176.6 | 2.72E408 101.75 16.6 | 3.74E+06 108.00
wh 10 | 1] 1750.9 | 5.41E+08 99.00 35.7 | 7.88E+06 117.00
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Table 7.10 Experiment 3: Summary table for Table 7.9 that shows the advantages
(and disadvantages) of HMAPDC against MAPDC-M

grid size | grid type | a | ¢ | speedup | suboptimality | rules savings
none 511 25.6 1.064 30.06

o4 none 512 33.4 1.037 22.46
none 10 | 1 29.9 1.020 28.36

none 10 | 2 33.4 1.096 21.12

random 511 21.8 1.058 24.76

924 random 512 56.1 1.088 18.10
random | 10 | 1 19.1 1.056 22.29
random | 10 | 2 48.9 1.140 16.95

wh 511 13.9 1.074 13.24

94 wh 512 81.7 1.120 10.05
wh 101 14.3 1.077 15.56

wh 10 | 2 200.8 1.091 13.55

none 511 71.5 1.060 74.99

36 none 512 83.7 1.178 53.13
none 10 |1 80.4 1.021 82.77

random 511 51.7 1.095 61.09

36 random 512 65.3 1.175 44.49
random | 10 | 1 56.0 1.119 62.73

wh 511 28.6 1.136 40.35

36 wh 512 46.3 1.024 37.42
wh 10 |1 36.4 1.161 34.46

38 none 511 186.0 1.000 223.94
48 random 511 126.4 1.045 158.15
48 wh 511 70.9 1.061 72.71
wh 101 49.0 1.182 68.62

Table 7.11 MAPDC-M vs HMAPDC on high obstacle graphs from Bogatarkan
et al. (2019)

MAPDC-M HMAPDC
graph | a | ¢ | time(s) rules makespan | time(s) rules makespan
o1 41.4 | 1.45E+07 47.3 2.9 | 8.05E+405 48.3
D512 50.4 | 1.34E+07 44.3 3.3 | 8.93E+05 48.3
| 10| 1| 105.1 | 2.80E+07 44.3 6.3 | 1.70E+06 48.3
& 10 | 2 144.4 | 2.74E+07 44.0 7.7 | 1.94E4-06 49.3
20| 1 219.0 | 5.53E407 41.7 10.9 | 2.62E+06 44.0
20 | 2 771.7 | 6.71E407 47.0 21.6 | 3.68E+06 49.3
o1 33.7 | 1.21E+07 43.3 2.3 | 6.74E405 43.3
o2 208.3 | 1.34E4-07 44.0 3.5 | 8.63E4+05 47.3
5 10 |1 60.6 | 1.99E+07 36.0 3.7 | 1.05E+06 38.7
& 10 | 2| 1746 | 2.69E+07 43.7 8.1 | 2.01E+06 51.7
201 190.4 | 5.16E+407 40.3 9.1 | 2.33E4+06 41.7
20 | 2 470.7 | 6.02E4-07 43.0 15.9 | 3.39E+406 46.0
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Table 7.12 Summary table for Table 7.11 that shows the advantages (and disadvan-
tages) of HMAPDC against MAPDC-M

graph | a | ¢ | speedup | suboptimality | rules savings
511 14.07 1.021 18.00

512 15.44 1.090 15.02

1 10| 1 16.62 1.090 16.41
& 10 | 2 18.74 1.121 14.11
20 [ 1 20.16 1.056 21.09

20 | 2 35.74 1.050 18.25

511 14.35 1.000 18.01

512 60.08 1.076 15.50

o2 101 16.50 1.074 19.03
10 | 2 21.49 1.183 13.33

20 [ 1 20.81 1.033 22.19

20 | 2 29.55 1.070 17.75
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7.4 Results for Experiment 4: Augmentations and Heuristics for

HMAPDC

With this experiment, we aim to test our augmentations to HMAPDC. Tables 7.13,
7.14 and 7.15 report our findings for different grid sizes from Benchmark 3. For each
configuration, we highlighted the best performing method in terms of computation

time.

It can be seen through Tables 7.13, 7.14, 7.15 that usually, without any augmenta-
tion, HMAPDC performs the best. When another method performs better, it is
not by a large margin. Consider Table 7.13, the last row. The biggest performance
gain in the table is between h and no heuristic in this row, but even then it is
only a speedup of around 5%. Also, the row before the last one shows no heuristic

outperforming h with a better margin.

Our rationale of using al, the additional layer heuristic, was that the last level of
HMAPDC where we solve MAPDC-Bottom is the one that takes the most time.
It is no wonder, since it is the only layer with collision constraints. We claimed that if
we add an MAPDC-Middle level before the last, we could help the last level since
all it would need to would be to reschedule the agents on the paths dictated by this
added layer. However, although MAPDC-Middle levels are easier to solve since
there are no collision constraints, it is still computationally non-negligable. So, even
though the last level is solved easier, the added layer adds enough computational

cost to negate the benefits.

With the task assignment heuristic h, our rationale was that since we would be
restricting the search space by enforcing the top level task assignments onto lower
levels, in practice this did not help much. We speculate the reason for this is that
once the paths of agents are restricted, the tasks they can take on is already restricted
sufficiently. For an agent to be assigned a task, it needs to be able to visit both the
pick and deliver location of a task. We actually observe that in some cases using h
can be a bit detrimental to performance. By restricting the task assignments, we

may also be discarding solutions with lower makespans.
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Table 7.13 Experiment 4: Results for Grid Size 24x24

al h al+h no heuristic
grid type | a time(s) | makespan | time(s) | makespan | time(s) | makespan | time(s) | makespan
5 3.80 19.6(5) 3.64 19.2(5) 3.74 19.6(5) 3.66 192(5)
10 7.72 52.2(5) 7.23 51.8(5) 7.29 52.2(5) 7.36 51.8(5)
none 2 | 1585 50.4(5) 18.11 50.0(5) 16.11 50.4(5) | 15.17 50.0(5)
40 | 3981 49.4(5) | 41.84 49.8(5) | 40.85 50.2(5) | 36.69 49.2(5)
60 | 102.35 57.4(5) | 101.95 57.6(5) | 110.53 58.0(5) | 93.13 57.4(5)
5 351 52.8(5) 347 52.8(5) 3.69 53.2(5) 3.38 52.8(5)
10 8.04 54.8(5) 7.7 54.2(5) 8.29 54.8(5) 7.58 54.4(5)
random 20 21.03 59.2(5) 21.28 60.0(5) 21.58 59.5(4) 20.66 60.0(5)
40 | 39.37 52.7(3) | 41.26 54.4(5) | 45.37 54.5(2) | 41.31 54.8(5)
60 | 90.04 55.7(3) | 90.64 58.5(4) | 100.34 58.3(3) | 83.75 57.0(4)
5 2.67 51.0(5) 2.19 50.6(5) 2.62 51.0(5) 2.20 50.6(5)
10 5.53 52.2(5) 4.69 52.4(5) 5.61 52.8(5) 4.57 51.8(5)
wh 2 | 16.63 58.4(5) | 13.86 58.0(5) | 16.37 58.2(5) | 14.15 58.0(5)
40 | 57.89 60.7(3) | 59.10 63.0(2) | 67.73 63.5(2) | 51.25 60.0(3)
60 | 108.74 61.0(1) | 94.05 61.0(1) | 102.98 61.0(1) | 100.20 61.0(1)
Table 7.14 Experiment 4: Results for Grid Size 48x48
al h al+h no heuristic
grid type | a time(s) | makespan | time(s) | makespan | time(s) | makespan | time(s) | makespan
5| 25.71 | 100.8(5) | 26.43 | 100.4(5) | 26.98 | 109.8(5) | 25.33 | 109.6(5)
10 | 5647 | 106.6(5) | 57.00 | 107.6(5) | 57.62 | 108.0(5) | 56.16 | 106.2(5)
none | 20 | 111.74 | 108.0(5) | 11524 | 108.0(5) | 116.49 | 108.4(5) | 113.25 | 107.6(5)
40 | 23433 | 103.8(5) | 235.65 | 104.0(5) | 245.20 | 104.4(5) | 212.23 | 103.4(5)
60 465.45 114.0(5) 543.92 113.6(5) 544.93 114.0(5) | 454.36 113.0(5)
5| 28.08 | 118.6(5) | 2043 | 116.2(5) | 29.37 | 116.6(5) | 20.74 | 118.6(5)
10 | 5798 | 114.4(5) | 5522 | 113.0(5) | 57.10 | 113.4(5) | 54.83 | 113.8(5)
random 20 120.26 116.2(5) 118.72 113.4(5) 122.29 113.8(5) | 107.96 113.4(5)
40 217.54 108.2(5) 242.63 110.2(5) 261.57 110.6(5) | 213.47 109.0(5)
60 433.04 117.2(5) 532.46 121.0(5) 576.03 123.0(4) | 398.17 116.2(5)
5| 1657 | 106.8(5) | 14.62 | 106.4(5) | 1506 | 106.8(5) | 14.51 | 107.2(5)
10 | 4624 | 121.6(5) | 40.15 | 121.2(5) | 4583 | 121.6(5) | 40.73 | 120.8(5)
wh 20 | 79.66 | 112.2(5) | 73.54 | 114.2(5) | 87.93 | 114.6(5) | 67.64 | 111.4(5)
40 | 251.95 | 128.4(5) | 237.81 | 127.4(5) | 286.16 | 127.8(5) | 204.37 | 128.0(5)
60 334.32 115.0(4) 356.14 117.5(4) 440.72 118.0(4) | 283.37 114.5(4)
Table 7.15 Experiment 4: Results for Grid Size 72x72
al h al+h no heuristic
grid type | a time(s) | makespan | time(s) | makespan | time(s) | makespan | time(s) | makespan
5| 50.17 | 144.4(5) | 57.83 | 143.6(5) | ©58.58 | 144.0(5) | 55.96 | 143.6(5)
10 116.96 143.0(5) 124.01 145.0(5) 123.09 145.4(5) | 114.23 142.6(5)
none 20 292.41 155.4(5) 337.37 158.6(5) 340.80 159.0(5) | 287.29 155.0(5)
40 703.63 160.0(5) 693.93 159.0(5) 722.17 159.4(5) | 654.65 158.6(5)
60 | 1009.98 | 158.0(5) | 1209.30 | 156.5(4) | 1305.58 | 163.4(5) | 964.01 | 158.4(5)
5[ 83.18 | 164.4(5) 85.65 | 163.8(5) 8436 | 164.2(5) | 560 | 163.6(3)
10 | 20536 | 181.0(5) | 216.23 | 184.4(5) | 219.79 | 184.8(5) | 200.96 | 179.6(5)
random | 20 | 39441 | 179.6(5) | 415.63 | 177.0(5) | 419.27 | 177.4(5) | 376.10 | 178.0(5)
40 774.00 170.8(5) 869.36 172.2(5) 850.26 172.6(5) | 727.63 169.6(5)
60 | 963.49 | 155.5(4) | 1392.62 | 160.5(4) | 1354.59 | 161.0(4) | 918.77 | 155.0(4)
5| 46.60 | 159.6(5) | 42.00 | 159.6(5) 1625 | 160.0(5) | 44.82 | 160.4(5)
10 | 121.89 | 167.0(5) | 109.41 | 167.2(5) | 120.19 | 167.6(5) | 108.57 | 166.8(5)
wh 20 | 24111 | 167.8(4) | 193.95 | 160.2(5) | 219.67 | 160.6(5) | 204.17 | 166.0(5)
40 740.91 196.7(3) 808.54 204.0(3) 970.74 204.3(3) | 619.28 195.0(3)
60 950.94 181.8(4) | 1139.31 183.0(3) | 1328.63 183.7(3) | 784.85 181.2(4)
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7.5 Results for Experiment 5: Starting with a Portfolio of Task-Diverse

Solutions

Table 7.16 shows the results for starting with p = 4 solutions (at the top level)
where no two of these solutions can be more than r = 0.75 task-similar. a time
threshold of 1000 seconds, to solve 1 instance of each configuration with grid size
72x72 in Benchmark 3. We report the first solution as well as the ones with the best

computation time and with the best makespan.

It can be seen that , when we start with a portfolio of 4 diverse solutions at the
top level, we can speed up the computation by up to 30% for the best case. It
is also possible to find solutions with meagerly better makespans. It also shows,
however, that using a portfolio does not result in consistent performance gains.
Only 3 out of 15 configurations resulted in more than 10% speedup, and for many

of the configurations the first solution is nearly as good as the best ones.

Table 7.16 Experiment 5: Starting with a portfolio of diverse solutions, for 72x72
instances, r =0.75, p =4

grid first best time best makespan
type a time(s) | makespan | time(s) | makespan | speedup | time(s) | makespan | makespanup
5 51.49 148 51.49 148 1.00 51.49 148.00 1.00
10 99.08 129 87.09 131 1.14 99.08 129.00 1.00
none 20 313.42 158 313.42 158 1.00 313.42 158.00 1.00
40 524.44 149 498.47 149 1.05 524.44 149.00 1.00
60 861.25 152 843.39 146 1.02 843.39 146.00 1.04
5 67.45 168 65.48 168 1.03 69.06 164.00 1.02
10 189.03 180 189.03 180 1.00 203.14 173.00 1.04
random | 20 400.57 183 307.16 164 1.30 307.16 164.00 1.12
40 966.91 189 948.26 187 1.02 948.26 187.00 1.01
60 744.48 146 744.48 146 1.00 744.48 146.00 1.00
5 34.22 141 34.22 141 1.00 34.22 141.00 1.00
10 67.96 148 57.06 140 1.19 57.06 140.00 1.06
wh 20 225.69 173 219.69 161 1.03 219.69 161.00 1.07
40 - - - - - - - -
60 776.14 176 763.86 177 1.02 776.14 176.00 1.00

To demonstrate how using a portfolio of top level solutions helps with incomplete-
ness, as discussed in Section 5.7, we decided to try this approach on the most
problematic configurations from Benchmark 3. Consider Table 7.5, type warehouse
and agent count 60. Level 0 sizes 6x6, 8x8, and 10x10 could only solve 1 out of 5
instances, while 12x12 failed in all instances in the given 2000 seconds. But, when
an instance of this configuration could be solved, it took around 100 seconds to do
so. Consider the result for Level 0 size 8x8, 1 instance was solved in 100 seconds.
This result points to the incompleteness of HMAPDC, for all 4 other instances
of the same configuration, bad first level solutions restricted the lower levels such
that a solution was impossible to find (as in Figure 5.13). If the first level solutions

were slightly different, this could have been prevented. Thus, we test our portfolio
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method to see whether we can solve these instances by utilizing a diverse set of first
level solutions. We applied our portfolio method with » = 0.9 and p = 10, first level
size 8x8, with a time limit of 250 seconds, to all 5 instances of this configuration.
Table 7.17 contains our results. The columns 0-4 are different instances of the same
configuration. The rows 0-9 are different runs of the portfolio. It can be seen that,
with the portfolio approach, we could solve 4/5 instances compared to 1/5, which

was the case in Table 7.5, warehouse, 60 agents, first level size 8x8.

Table 7.17 Experiment 5: Starting with a portfolio of diverse solutions (r =0.9, p=
10), for 24x24, warehouse, 60 agents, Benchmark 3 instances

i 0 1 2 3 4

p | time(s) | makespan | time(s) | makespan | time(s) | makespan | time(s) | makespan | time(s) | makespan
0] - - - - 102.52 61 -

1 | 84.53 61 - - - - -

2| - - - - _ - -

3| 92.6 64 - - - - -

4 | 91.31 58 - - 77.07 56 -

5 | - - _ _ _ _ _

6 - - - - - - -

7 76.65 57 - - - - - -
8 | - - 76.68 56 - - - - 69.14 59
9 | 106.37 64 72.66 56 - - - - - -

Consider the instance from Table 7.16 that our portfolio approach could not solve
with » =0.75, p=4. Since we could not find an answer with these settings, we tried
to solve it with » = 0.9, p = 10. Table 7.18 reports the results for each run in the
portfolio. We were able to find a solution when we increased the size of the portfolio.
We intuitively increase r when we increase the portfolio size. This is because the
difference in task assignments we enforce is between all pairs of solutions we work
with, enforcing a high difference ratio (low r), could misguide the algorithm to find

bogus task assignments to be able to satisfy the difference constraints.

Table 7.18 Experiment 5: Starting with a portfolio of diverse solutions (r =0.9, p =
10), results for the instance from Table 7.16 with grid type warehouse, a = 40

p | time(s) | makespan
0 N N
1 - -
2 - -
3 - -
4 - -
5| 762.17 199
6 - -
7 718.27 203
8

9

Since it seems like our portfolio approach is more successful with a higher portfolio

size, we re-performed the test for Benchmark 3, 72x72 instances, the same way we

described for the results in Table 7.16 with p = 10 and = 0.9. Results for this

experiment are given in Table 7.19. It can be seen that this time all the instances

were solved, and we have a speedup for more of the instances. This shows that our
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portfolio approach is best used with a big portfolio size.

Table 7.19 Experiment 5: Starting with a portfolio of diverse solutions, for 72x72
instances, 7 =0.9, p =10

grid first best time best makespan
type | a time makespan | time makespan | speedup | time makespan
5 51.67 148 51.67 148 1.00 51.67 148
10 98.93 129 72.84 129 1.36 98.93 129
n 20 | 311.21 158 | 263.48 149 1.18 | 263.48 149
40 521.4 149 | 495.87 149 1.05 | 542.43 148
60 | 860.37 152 | 844.83 146 1.02 | 844.83 146
5 67.29 168 54.98 152 1.22 54.98 152
10 | 189.32 180 185.3 180 1.02 | 203.38 173
r 20 | 402.56 183 | 274.09 158 1.47 | 274.09 158
40 - - | 903.25 183 - | 903.25 183
60 | 743.39 146 729.9 146 1.02 | 749.02 142
5 33.94 141 33.94 141 1.00 33.94 141
10 68.13 148 55.16 140 1.24 55.95 138
w 20 | 224.01 173 | 164.08 153 1.37 | 164.08 153
40 - - | 717.63 203 - | 762.38 199
60 | 772.86 176 | 730.09 178 1.06 | 789.46 172

There is one downside to increasing the portfolio size. We say that runs in a portfolio
can be easily parallelized, but for a new run of HMAPDC-P to start, a new first
level solution must be generated. Even though the first level is the easiest one
to solve because of its small size and high level of abstraction, it still takes time
to compute diverse solutions. This effect is more apparent in instances with high
number of agents and tasks. We can calculate how long all the previous first level
solutions takes until we come to a specific run, and add that overhead time to the
time of each run. This way, we can obtain the time passed from the moment our
portfolio approach starts and the moment we obtain the first solution. Table 7.20
reports our results in such a way. Note that some small speed-ups are lost since they
were not significant enough to account for the overhead time. For example, consider
the last row of Table 7.20. Before adjusting for the mentioned overhead, we have
a speedup of 6% for some top-level solution in the portfolio, but after adjusting for
the time it takes to start the HMAPDC-P run for that solution, the first solution
found before diversifying became the best performer and we lost the speedup. It
can still be seen that the trend of improvement continues after adjusting for the

overhead.
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Table 7.20 Experiment 5: Starting with a portfolio of diverse solutions, for Bench-
mark 3, 72x72 size instances with first level size = 8x8, p =10, r = 0.9, adjusted for
first level costs

grid first best time adjusted best time
type a | time(s) | time(s) | speedup | time(s) | speedup
5 51.67 51.67 1.00 51.71 1.00

10 98.93 72.84 1.36 73.07 1.35

none 20 | 311.21 263.48 1.18 266.38 1.17
40 521.4 | 495.87 1.05 | 505.95 1.03

60 | 860.37 | 844.83 1.02 | 860.37 1.00

5 67.29 54.98 1.22 54.99 1.22

10 | 189.32 185.3 1.02 | 186.21 1.02

random | 20 | 402.56 | 274.09 147 | 277.28 1.45
40 -1 903.25 - 968.2 -

60 | 743.39 729.9 1.02 | 743.39 1.00

5 33.94 33.94 1.00 33.96 1.00

10 68.13 55.16 1.24 55.42 1.23

wh 20 | 224.01 | 164.08 1.37 | 176.81 1.27
40 - | 717.63 - 764.6 -

60 | 772.86 | 730.09 1.06 | 772.86 1.00
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8. Discussion

Our results demonstrate the scalability of our approaches. Even though we have
two optimal and complete methods, one single-shot MAPDC-ASP and one multi-
shot MAPDC-M, practically we only use the multi-shot one since it is more useful
when we are trying to find the optimal makespan for a given MAPDC instance.
MAPDC-M is an optimal and complete method that scales poorly both with
increasing number of agents and increasing grid sizes. Our sub-optimal and incom-
plete approach HMAPDC scales much better, and it can be used as a portfolio to

partially compensate for its incompleteness and sub-optimality.

HMAPDC is most incomplete when there are narrow corridors in the environ-
ment and the number of agents are high. But, if the high level solution allows it,

HMAPDC can still successfully solve the instance in a reasonable time.

Our proposed augmentations to HMAPDC cannot reliably improve performance,

and sometimes are detrimental to it.

The portfolio approach sometimes can improve performance, but its usefulness is
most apparent in the improvement on the success rate for configurations with a

high rate of failure.

We discuss some other possible augmentations to HMAPDC that we left for future

work.

Even though HMAPDC is designed to be fast, and is much faster than our multi-
shot method MAPDC-M, its unpredictable incompleteness is something we would
like to get rid of if possible.

One augmentation could be to add not all but some of the collision constraints
we waive for the higher abstract levels. For example, we cannot add the vertex
collision constraint since many agents can be present in a region, but we can add
the swapping constraint. This way, agents may be inclined to give way to each
other in cases with narrow corridors in higher levels, which is one of the reasons our

algorithm is incomplete as was demonstrated in Figure 5.13.
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This could be possible by adding the following lines to the step(t) subprograms
of ASP programs Py, and Pp,q, to forbid agents from swapping their positions in
1 or 2 time steps. Forbidding swapping in two time-steps is also necessary since
otherwise agents could abuse the waiving of vertex collision constraint to swap their

positions.

:— traversal(Al,t,V1), traversal(A2,t,V2), traversal(Al,t-1,V2),
traversal (A2,t-1,V1), Al != A2, V1 < V2.

:— traversal(Al,t,V1), traversal(A2,t,V2), traversal(Al,t-2,V2),
traversal (A2,t-2,V1), A1l !'= A2, V1 < V2.

But consider Table 7.5, warehouse setting with 60 agents, where HMAPDC with
different first level sizes mostly failed to find solutions in the given time. In practice,
HMAPDC will lose success rate when there are narrow corridors and high number
of agents. But introducing these constraints at higher levels for instances with high
number of agents, even when the grid size is managable, will increase solving time
in such a drastic way that even the highest abstract levels will not be solved in a
timely manner. We tested this for one of the unsolved instances of said configuration
with 1000 seconds time limit, first level size 8x8, and even the first level could not
be solved in the given time. We believe adding other kinds of constraints would be

detrimental, too, when the agent count is high.

Another approach to reduce the incompleteness could be to restrict the number of
agents in regions of abstract levels. Technically, since only the paths and not the
traversals of agents affect lower level solutions, this could be circumvented by the
algorithm by rescheduling the agents on their same paths, resulting in no difference
in the solutions. But maybe, in practice, it may result in higher level solutions that
have the agents give way to each other. This kind of restriction on the number of
agents in regions can be implemented by adding the following rules to the step(t)

subprogram of Py, and P,yq:
:— L+1{agent (A) :traversal(A,t,V)}, rlim(V,L), node(V).

Where "r1im(V,L)." should be added to the level facts with respect to the number

of vertices in a region (|region.vertices|).

We were not able to rigorously test this, but as with the previous suggestion of
adding some constraints on higher levels, we tested on the same instance that could
not be solved by HMAPDC with first level size 8x8. It still could not find a solution

in 1000 seconds.

Note that for both of the cases, our portfolio approach TAP was able to produce
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solutions in around 100 seconds.

We believe this means, together with the relative failure of the augmentation al and
the heuristic A we tested for, that it is hard to improve HMAPDC. Our portfolio
approach is the only approach that at least showed relative promise of improving
the performance of HMAPDC, but it can frequently help with its incompleteness

for large portfolio sizes.

It is possible to introduce other ways to use a portfolio of top-level solutions. Intro-
ducing a new similarity measure would be a possibility. In our experience, measuring
the similarity of solutions MAPDC instances via agent paths proved to be a chal-

lenging problem, but we believe it may be promising.

One other way to expand on HMAPDC could be to analyze the high level solu-
tions and pinpoint the regions that could be problematic in the sense that agents
would need to swap locations, or there is heavy traffic through the region. Then,
neighbouring regions may be added to the valids of agents for them to give way to

each other more easily.
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9. Related Work

There are a plethora of studies on MAPF, and its variants that focus on warehouse
environments. The problem is approached with a variety of methods, including
search based (Honig et al., 2018), ASP based (Erdem et al., 2013; Gémez et al.,
2021), satisfiability based (Surynek, 2012), and integer linear programming (Yu &
LaValle, 2016) approaches.

Some studies on MAPF utilize spatial hierarchies like we do. Kazemy (2018) was
the inspiration behind our HMAPDC method. They are concerned with solving
a generalized version of MAPF which also has waypoints for agents, and take an
input grid and create hierarchical levels for the grid. They solve their version of
MAPF by solving each level and restricting agents into regions implied by previous
levels as we do. Their hierarchical method is designed for robotics applications
where some cells on the grid may have partial obstacles. They utilize replanning
to compansate for infeasible solutions that may arise from an agent trying to pass
through a cell with partial obstacles. In general, while utilizing hierarchical levels in
a similar way to us, this study is more interested in the robotics applications of their
approach, while we are focused on a more abstract computational problem. Also, the
problem we work on has an additional combinatorial element to it with the addition
of tasks that need to be allocated to agents. We also differ in the manner we create
abstract graphs, where we have a top-down approach (start with a desired first level
size and continue creating finer levels until original grid is reached), and they have
a bottom-up approach (continue abstracting the graph until a level with sufficient
coarseness is reached). They also use ASP to solve their hierarchical levels, utilizing
both multi-shot and single-shot programs in their algorithm, unlike HMAPDC

which only uses multi-shot programs.

Husar et al. (2022) studies improvements on reduction based approaches to MAPF,
like our ASP based methods. As we restrict the traversals of agents with respect
to a spatial hierarchy, they restrict the paths of agents in similar ways, e.g., to
their shortest path to their goals. Unsurprisingly, complying with our experience,

their methods that guarantee optimality and completeness have limited use, while
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methods that waive these guarantees result in considerable speed-ups.

Morag et al. aims to approach MAPF practically, i.e., cleverly using fast, easy to
implement, albeit sub-optimal, methods with several attempts to reduce the average
sub-optimality and incompleteness. This was the inspiration behind our portfolio
method, as it is computationally cheap to generate first level solutions. They use
prioritized planning as a simple method and modify it slightly to utilize random

restarts. They report that their approach is promising when compared to optimal
ones such as CBS (Ma & Koenig, 2016).

Like us, a number of studies focus on warchouse environments. TAPF (Ma &
Koenig, 2016) and later GTAPF (Nguyen et al., 2019) are introduced as problems
that fits this environment via the addition of targets that must be reached by any
agent. Ma & Koenig (2016) introduces a conflict based search (CBS) method to
optimally solve TAPF, where the number of targets must be equal to the number
of agents, and Nguyen et al. (2019) provides an ASP based optimal solution to the

more generalized GTAPF, where agents need to complete possibly multi-step tasks.

Gomerz et al. (2021) introduces an ASP encoding for MAPF, improving on other
ASP based methods (such as Erdem et al. (2013)) by utilizing search to reduce the
grounding size of the programs and reducing the grounding complexity of the ASP
programs. Their search based improvement restrict the generation rule for agent
paths so that useless paths are not explored; if the shortest path of an agent from its
current location to its goal location is longer than the times-steps it has left to reach
its goal, we should not explore the paths that could be generated from there. They
also reduce the grounding complexity so that the number of collision constraints
generated depends linearly on the number of agents, instead of quadratically in
our case. Both improvements can be considered for our encodings in future work,
though the implementation may require tinkering since they approach MAPF as a

planning problem instead of a graph problem like we do.

Hoénig et al. (2018) works on an unnamed MAPF variant, where shelves need to be
moved to goal stations by automated agents in an automated warehouse environ-
ment. They present a CBS based optimal method in terms of total plan lengths,
and a bounded suboptimal method called ECBS. Since their formulation is made for
moving underneath shelves and carrying them to goal stations, they do not consider
capacities for agents unlike us. Their suboptimal ECBS method also is bounded
suboptimal, unlike our HMAPDC method.

Ma et al. (2017) introduces Multi-agent Pick and Delivery (MAPD) problem, which

is a similar problem to MAPDC but in a setting where pick-and-deliver tasks are
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introduced to the environment dynamically. They provide token based solutions
to the problem which are not optimal but produce solutions near-real-time. It
should also be noted that in MAPD, agents do not have goal locations, which is a

considerable difference from our approach.

Liu et al. (2019) study MAPD problems by first assigning tasks to agents, and then
use a search-based path finding algorithm to compute collision-free paths, while

considering the task assignment and minimizing the makespan.

Chen et al. (2021) introduces capacities to MAPD and they propose a coupled
method that searches for the best assignment of tasks to agents. Chen et al. (2021)
is the only other method with capacities to our knowledge. They also optimize for
total travel delay, which is the sum of plan lengths for agents, instead of optimizing

for makespan like we do.
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10. Conclusion

We have mathematically modelled MAPDC problem and introduced novel meth-
ods to solve it using ASP. These methods are MAPDC-ASP, MAPDC-M, and
HMAPDC. We further proposed augmentations to HMAPDC, one of which is

our portfolio method, which we believe to be promising.

We analyzed the scalability of our methods in a variety of experiments. Be-
cause of the theoretical hardness of the problem, our complete and optimal meth-
ods MAPDC-ASP and MAPDC-M scale poorly as the problem size grows.
HMAPDC scales to much bigger graphs and agent numbers, but is incomplete
and suboptimal. Our portfolio approach can be utilized to alleviate the incomplete-

ness to a degree.

HMAPDC depends on a graph partitioning scheme. We detail the implementation
of such a scheme for grid graphs, and tested what Level 0 size we should choose. To
our understanding, Level 0 sizes 8x8 and 10x10 perform best on most cases, but for

even bigger grid sizes than we tested for, 12x12 might be considered as well.

We investigated whether our proposed augmentations to HMAPDC were bene-
ficial, and concluded that only the portfolio approach is promising for the most

part.

We left the comparison of our methods with other approaches as future work. Al-
though there are no studies that work on the exact same problem as us (MAPDC),
there are similar problems such as MAPD which we can make a comparison with

by changing our formulations to not include goal locations for agents.

We also discussed how HMAPDC can be improved further and left the suggested

improvements as future work.
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