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ABSTRACT

SOLVING HARD STABLE MARRIAGE PROBLEMS USING LOGIC-BASED
METHODS

SELİN EYÜPOĞLU

Computer Science and Engineering M.Sc. Thesis, July 2022

Thesis Supervisor: Prof. Dr. Esra Erdem

Keywords: stable marriage problems, declarative problem solving, answer set
programming, propositional satisfiability, constraint programming

Matching problems have been studied in economics, starting with the seminal paper
of Gale and Shapley, which has led to a Nobel Prize in 2012, utilizing game theory
methods with the goal of a mechanism design. One of the well-known matching
problems is the Stable Marriage Problem (SM). In SM, for a set of n men and
n women, we are given the preferences of individuals: for each man, a complete
ranking of the women is specified as preferred partners; similarly, for each woman, a
complete ranking of the men is specified as preferred partners. The goal is to marry
all men and women (i.e., to find n couples) in such a way that marriages are stable:
no man and woman in different couples prefer each other to their partners.

We consider a variant of SM, called SMTI, where rankings may be incomplete (i.e.,
some partners are not acceptable) or may include ties (i.e., some partners are pre-
ferred equally). We investigate three hard variants of SMTI, that aim to compute
optimal stable matchings with respect to different measures of fairness: Sex-Equal
SMTI (maximizes the equality of satisfaction among sexes), Egalitarian SMTI (max-
imizes the total satisfaction of the preferences of all agents), and Max Cardinality
SMTI (minimizes the number of singles).

We introduce a suite of novel declarative methods to solve these hard variants of
SMTI, using Answer Set Programming (ASP), Constraint Programming (CP), and
Propositional Satisfiability (SAT). We empirically evaluate the scalability of meth-
ods over randomly generated instances, as the probability of incompleteness and
probability of ties change. For Max Cardinality SMTI, we also compare these meth-
ods with the existing approaches based on Integer Linear Programming (ILP) and
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Local Search (including Hill-Climbing and Genetic Algorithms). We observe that
the declarative methods (ASP, ILP, CP, SAT) are more promising compared to the
local search algorithms as the problems get harder with more ties and incomplete-
ness.
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ÖZET

MANTIK TEMELLİ YÖNTEMLER KULLANARAK ZOR İSTİKRARLI
EVLİLİK PROBLEMLERİNİ ÇÖZME

SELİN EYÜPOĞLU

Bilgisayar Bilimi ve Mühendisliği Yüksek Lisans Tezi, Temmuz 2022

Tez Danışmanı: Prof. Dr. Esra Erdem

Anahtar Kelimeler: istikrarlı evlilik problemi, bildirimsel problem çözme, çözüm
kümesi programlama, önermesel gerçeklenebilirlik, kısıt programlama

Bu tez çalışmasında, sıralamaların eksik olabileceği (yani bazı partnerlerin tercih
edilmediği) veya denklik içerebileceği (yani bazı partnerlerin eşit tercih edildiği),
SMTI (eksik ve denklik içeren sıralamalarla istikrarlı evlilik problemi) adı verilen
bir SM varyantını ele alıyoruz. Farklı adalet ölçülerine göre optimum istikrarlı
eşleşmeleri hesaplamayı amaçlayan üç SMTI varyantını araştırıyoruz: Cinsiyet Eşit-
likçi SMTI (cinsiyetler arasında memnuniyet eşitliğini maksimize eder), Eşitlikçi
SMTI (tüm kişilerin tercihlerinin toplam memnuniyetini maksimize eder) ve Maksi-
mum Kardinalite SMTI (çiftlerin sayısını maksimize eder).

Çözüm kümesi programlaması, kısıtlı programlama ve önermesel gerçeklenebilirlik
kullanarak SMTI’ın bu zor türevlerini çözmek için yeni bildirimsel yöntemler sunuy-
oruz. Yöntemlerin rastgele oluşturulmuş örnekler üzerinde ölçeklenebilirliğini deney-
sel olarak analiz ediyoruz. Maksimum Kardinalite SMTI için, bu yöntemleri aynı
zamanda mevcut tamsayılı doğrusal programlama ve yerel arama yaklaşımlarıyla
karşılaştırıyoruz. Problemler daha fazla denklik ve eksiklik içerdiğinde, bildirimsel
yöntemlerin yerel arama algoritmalarına göre hesaplama açısından diğer yaklaşım-
lardan genel olarak daha iyi olduğunu gözlemliyoruz.
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1. INTRODUCTION

Matching problems have been studied in economics, starting with the seminal pa-
per of Gale & Shapley (1962), which has led to a Nobel Prize in 2012, utilizing
game theory methods with the goal of a mechanism design. Matching problems
are about markets where individuals are matched with individuals, firms, or items,
typically across two sides, as in employment (Roth & Sotomayor, 1992) (e.g., who
works at which job), kidney donation (e.g., who receives which transplantable or-
gan) (Manlove & O’Malley, 2014; Roth, Sonmez & Utku Unver, 2005), and mar-
riages (Gale & Shapley, 1962; Iwama, Manlove, Miyazaki & Morita, 1999) (e.g., who
marries with whom). In each problem, preferences of individuals, firms, or items are
given, possibly along with other information (e.g., the quotas of the universities in
university entrance) (Alkan & Gale, 2003; Alkan & Moulin, 2003).

We introduce a suite of novel declarative methods to solve these hard variants of
SMTI, using Answer Set Programming (ASP) (Brewka, Eiter & Truszczynski, 2016;
Lifschitz, 2002; Marek & Truszczyński, 1999; Niemelä, 1999; Simons, Niemelä &
Soininen, 2002), Constraint Programming (CP) (Jaffar & Lassez, 1987; Rossi et al.,
2006; Van Hentenryck, 1989), and Propositional Satisfiability (SAT) (Biere et al.,
2009; Gomes, Kautz, Sabharwal & Selman, 2008).

Our contributions can be summarized as follows:

• We introduce novel methods to solve SMTI and all its hard variants using
ASP.

• Based on the CP models of SMTI and Max Cardinality SMTI by Gent &
Prosser (2002), we introduce novel methods to solve Egalitarian and Sex-Equal
SMTI. We implement all these methods for Google-OR CP-SAT and Choco
solvers.

• We adapt the SAT formulation of Drummond, Perrault & Bacchus (2015) for
hospital-resident problems with couples to solve SMTI. Based on the updated
SAT formulation, we introduce novel methods to solve Max Cardinality SMTI
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and Egalitarian SMTI using Partial Weighted MaxSAT.

• We implement these methods using the state-of-the-art solvers: ASP solver
Clingo, ASP solver Cmodels with SAT solver ZChaff, SAT solver Lin-
geling, MaxSAT solver CashWMaxsat, CP solvers Google-OR CP-SAT
and Choco.

• We empirically compare several methods to solve Egalitarian and Sex-Equal
SMTI using ASP.

• We compare ASP with propositional satisfiability (SAT) (Biere et al., 2009;
Gomes et al., 2008) over randomly generated SMTI instances. For a com-
parison of ASP with SAT, we adapt the ASP implementation of SMTI for
Cmodels (Giunchiglia, Lierler & Maratea, 2004) that utilizes the SAT solver
ZChaff (Moskewicz, Madigan, Zhao, Zhang & Malik, 2001) to compute so-
lutions. We also use the updated SAT formulation to solve SMTI, and use the
SAT solver Lingeling (Biere, 2010) to compute solutions.

• We repeat the experiments conducted by Gent & Prosser (2002) by implement-
ing their CP models for finding a complete stable matching and a largest stable
matching. We use a set of randomly generated instances and state-of-the-art
CP solvers Choco and Google-OR CP-SAT to compute solutions.

• We empirically compare these methods comprehensively over randomly gener-
ated instances of different sizes, in terms of their scalability, as the probabilities
of incompleteness and ties change. For this purpose, we implement the random
instance generator proposed by Gent & Prosser (2002).

• We also compare these methods with the three existing approaches for Max
Cardinality SMTI: Kwanashie & Manlove (2014)’s method based on Integer
Linear Programming (ILP) (Kantorovich, 1960), Gelain, Pini, Rossi, Ven-
able & Walsh (2013)’s method based on Hill Climbing (Lin & Kernighan,
1973; Selman & Gomes, 2006), Haas (2021)’s method based on Genetic Algo-
rithms (Holland, 1992). For these comparisons, we use the existing implemen-
tations of ILP methods for ILP solver Gurobi and Google-OR MIP solver. We
revise the implementation for Gurobi to enhance its performance.

• We extend our studies further by considering sticky-stability (Afacan, Ali-
ogullari & Barlo, 2016) for SMTI, update our ASP method for stickiness and
present our experimental results.

Some of these methods are briefly discussed in our short paper (Eyupoglu, Fidan,
Gulesen, Izci, Teber, Yilmaz, Alkan & Erdem, 2021).
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In the rest of the thesis, first we introduce the definitions of the problems (Sec-
tion 2.1) then we introduce our solutions using ASP (Section 3), CP (Section 4),
SAT (Section 5). After we present the results of our empirical evaluations (Section 6)
and discuss related work (Section 8), we conclude (Section 9). We also present our
extended studies (Section 7).
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2. STABLE MARRIAGE PROBLEMS

One of the well-known matching problems is the Stable Marriage Problem (SM). In
SM, for a set of n men and n women, we are given the preferences of individuals:
for each man, a complete ranking of the women is specified as preferred partners;
similarly, for each woman, a complete ranking of the men is specified as preferred
partners. The goal is to marry all men and women (i.e., to find n couples) in such a
way that marriages are stable: no man and woman in different couples prefer each
other to their partners.

We consider a variant of SM, called SMTI, where rankings may be incomplete (i.e.,
some partners are not acceptable) or may include ties (i.e., some partners are pre-
ferred equally).

Table 2.1 Summary of the complexities of SM problems

Problem Complexity
SM P (Gale & Shapley, 1962)
SMI P (Gusfield & Irving, 1989)
SMT P (Manlove, 2014, Thm 3.2)
SMTI P (Irving, 1994)
SMTI (strong) P (Irving, 1994)
SMTI (weak) P (Gärdenfors, 1975, Thm 1)
Egalitarian SMI P (Manlove, 2014, Thm 1.14)
Egalitarian SMT (and thus
Egalitarian SMTI)

NP-hard (Manlove, Irving, Iwama, Miyazaki &
Morita, 2002, Thm 7)

Maximum Cardinality SMTI NP-hard (Manlove et al., 2002, Lemma 1)
Sex-Equal SMTI NP-hard (Kato, 1993, Thm 2.1)

We investigate three hard variants of SMTI (Kato, 1993; Manlove et al., 2002),
that aim to compute optimal stable matchings with respect to different measures of
fairness: sex-equality (preferences of men and women are considered to be equally
important), egalitarian (preferences of every individual are considered to be equally
important), maximum cardinality (minimizes the number of singles). The complex-
ities of these variants are presented in Table 2.1.
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2.1 SMTI

The Stable Marriage problem with Ties and Incomplete lists (SMTI) is defined by
a set M of men, a set W of women, for each man x ∈M a partial ordering ≻x over
Wx ⊆W where incomparability is transitive, and for each woman y ∈W a partial
ordering ≻y over My ⊆M where incomparability is transitive.

Let mrank : M ×W 7→ {1, . . . , |W |} be a partial function such that mrank(x,y) =
r represents that a woman y is man x’s rth preferred choice with respect to ≻x

and wrank : W ×M 7→ {1, . . . , |M |} be a partial function such that wrank(y,x) = r

represents that a man x is woman y’s rth preferred choice with respect to ≻y.

A man x is acceptable to a woman y if wrank(x,y) is defined. Similarly, a woman y

is acceptable for a man x if mrank(x,y) is defined.

A matching for a given SMTI instance is a partial function µ : M 7→W . A man x is
single if µ(x) is undefined and a woman y is single if µ−1(y) is undefined.

A pair (x,y) of a man and a woman is called a blocking pair for a matching µ if the
following conditions hold:

A1 x and y are acceptable to each other,

A2 x and y are not married to each other (i.e., µ(x) ̸= y),

A3 (a) x and y are both single,

(b) mrank(x,y) < mrank(x,µ(x)) and y is single,

(c) wrank(y,x) < wrank(y,µ−1(y)) and x is single or

(d) mrank(x,y) < mrank(x,µ(x)) and wrank(y,x) < wrank(y,µ−1(y)).

A matching for SMTI is called stable if it is not blocked by any pair of agents.
Note that we consider weakly stable matchings. It is assumed that marriage to an
acceptable partner is preferred over being single.

We consider three hard variants of SMTI (Kato, 1993; Manlove et al., 2002), that aim
to compute optimal stable matchings with respect to different measures of fairness:
sex-equality, egalitarian and maximum cardinality.
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2.2 Egalitarian SMTI

Egalitarian SMTI maximizes the total satisfaction of the preferences of all agents.
Since the preferred agents have lower rankings, this total satisfaction is maximized
when the sum of ranks of all agents is minimized.

Let µ be a matching and M denote the set of matchings in a given problem. For
every man x ∈M , the satisfaction cµ(x) of x’s preferences is defined with respect to
µ as follows: cµ(x)=R if mrank(x,µ(x))=R. Similarly, for every woman y ∈W , we
define the satisfaction cµ(y)=R if wrank(y,µ−1(y))=R. Then, the total satisfaction
of preferences of all agents is defined as follows: c(µ) = ∑

x∈M∪W cµ(x). Then, a
matching µ∈M with the minimum c(µ) is egalitarian.

Egalitarian SMTI is NP-Hard (Manlove et al., 2002, Thm 7).

2.3 Sex-Equal SMTI

Sex-Equal SMTI maximizes the equality of satisfaction among sexes. We define the
sex equality by the following cost function c(µ)=|∑x∈M cµ(x)−∑

y∈W cµ(y)|. Then,
a matching µ∈M with the minimum c(µ) is sex-equal.

Sex-Equal SMTI is NP-Hard (Kato, 1993, Thm 2.1).

2.4 Max Cardinality SMTI

Max Cardinality SMTI maximizes the number of matched pairs. A matching µ∈M
is a maximum cardinality matching if it is a matching that maximizes |µ|. The
number of matched pairs is maximized when the number of singles is minimized.

Max Cardinality SMTI is NP-Hard (Manlove et al., 2002, Lemma 1).
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3. SOLVING HARD SMTI PROBLEMS USING ANSWER SET

PROGRAMMING

We introduce novel methods for solving SMTI and its hard variants using Answer
Set Programming (ASP).

3.1 Answer Set Programming

Answer Set Programming (ASP) (Brewka et al., 2016) is a form of declarative pro-
gramming which is useful in knowledge-intensive applications. ASP is based on
the stable model (answer set) semantics of logic programming Gelfond & Lifschitz
(2000). We consider ASP programs that consist of rules of the form

Head ← A1, . . . ,Am,not Am+1, . . . ,not An

where n≥m≥ 0, Head is an atom or ⊥, and each Ai is an atom. A rule is called a
fact if m = n = 0 and a (hard) constraint if Head is ⊥.

Cardinality expressions are special constructs of the form l{A1, . . . ,Ak}u where each
Ai is an atom and l and u are nonnegative integers denoting the lower and upper
bounds Simons et al. (2002). Programs using these constructs can be viewed as
abbreviations for programs that consist of rules of the form. Such an expression
describes the subsets of the set {A1, . . . ,Ak} whose cardinalities are at least l and
at most u.

Cardinality expressions can be used in heads of rules; then they generate many
answer sets whose cardinality is at least l and at most u. For instance, the answer sets
for the program 2{p1, ...,p7}4← are subsets of the set {p1, ...,p7} whose cardinality
is at least 2 and at most 4.
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Schematic variables A group of rules that follow a pattern can be often described in
a compact way using “schematic variables”. For instance, the cardinality expression
1{p1, . . . ,p7}1 can be represented as 1{p(i) : index(i)}1, along with a definition of
index(i) that describes the ranges of variables: index(1..7).

Weighted weak constraints with priorities The ASP programs can be augmented with
“weak constraints”—expressions of the following form (Buccafurri, Leone & Rullo,
2000):

∼←Body(t1, ..., tn)[w@p, t1, ..., tn]

Here, Body(t1, ..., tn) is a formula (as in the body of a rule) with the terms t1, ..., tn.
Intuitively, whenever an answer set for a program satisfies Body(t1, ..., tn), the tuple
⟨t1, ..., tn⟩ contributes a cost of w to the total cost function of priority p. The ASP
solver tries to find an answer set with the minimum total cost. For instance, the
following weak constraint

∼←p(i),p(i+1), index(i), index(i+1)[1@2, i]

instructs Clingo to compute an answer set that does not include both p(i) and
p(i + 1), if possible. However, if Clingo cannot find such an answer set, it is
allowed to compute an answer set with these atoms p(i) and p(i + 1) but with an
additional cost of 1 per each such i. Weak constraints are considered by Clingo
according to their priorities.

3.2 Solving SMTI using ASP

Input of an SMTI instance ⟨M,W,mrank,wrank⟩ is formalized in ASP by a set
FI of facts using atoms of the forms man(x) (“x is a man in M”), woman(y) (“y

is a woman in W”), mrank(x,y,r) (i.e., mrank(x,y) = r) and wrank(y,x,r) (i.e.,
wrank(y,x) = r). In the ASP formulation P of SMTI, the variables x, x1 denote
men in M and y, y1 denote women in W .

The first pair of rules of the program P characterize a set of individuals of the
opposite set for each man and woman who they prefer over being single:

maccept(x,y)←mrank(x,y,r).
waccept(y,x)← wrank(y,x,r).
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and the concept of mutual acceptability:

acceptable(x,y)←maccept(x,y),waccept(y,x).

Preferences of man x (i.e., x prefers y to y1) and woman y are defined (i.e., y prefers
x to x1) in terms of rankings.

mprefer(x,y,y1)←mrank(x,y1, r),mrank(x,y,r1), r > r1.

wprefer(y,x,x1)← wrank(y,x1, r),wrank(y,x,r1), r > r1.

We define a matching between men and women where both parties find each other
acceptable with the cardinal constraint of 1 for each man.

{marry(x,y) : acceptable(x,y)}1←man(x).

In order to guarantee that a woman is not matched to more than one man, we use
the following constraint:

←{marry(x,y) : man(x)}> 1,woman(y).

Individuals who stay single under the represented matching by marry atoms are
described by the msingle and wsingle atoms.

msingle(x)←man(x),{marry(x,y) : woman(y)}0.

wsingle(y)← woman(y),{marry(x,y) : man(x)}0.

To establish stability, we refer to conditions A1–A3. The following set of constraints
respectively describe and eliminate blocking pairs that are described by (a) – (d) of
A3. Conditions A1 and A2 also hold for each constraint.

← acceptable(x,y),msingle(x),wsingle(y).
← wsingle(y),marry(x,y1),mprefer(x,y,y1),acceptable(x,y).
←msingle(x),marry(x1,y),wprefer(y,x,x1),acceptable(x,y).
←marry(x,y1),marry(x1,y),mprefer(x,y,y1),wprefer(y,x,x1).

Given the ASP formulation P whose rules are described above and the ASP de-
scription FI of an SMTI instance I, the ASP solver Clingo generates a stable
matching.
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3.3 Solving Hard Variants of SMTI using ASP

To solve Sex-Equal SMTI, we add the following weak constraint to optimize sex
equality:

∽←− t = #sum{r1− r2,x,y : marry(x,y),mrank(x,y,r1),wrank(y,x,r2)}. [|t|@1]

To solve Egalitarian SMTI, we add the following weak constraint to minimize the
cost function:

∽←−marry(x,y),mrank(x,y,r1),wrank(y,x,r2). [r1+ r2@1,x,y]

To solve Max Cardinality SMTI, we add the following weak constraints to minimize
the number of singles:

∽←− wsingle(x). [1@1,W,x]
∽←−msingle(y). [1@1,M,y]

Note that combinations of these optimizations are possible, by giving priorities to
weak constraints: instead of specifying just the weight t of the weak constraints, we
need to specify also their priorities p by an expression w@p.
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4. SOLVING HARD SMTI PROBLEMS USING CONSTRAINT

PROGRAMMING

We present existing and novel methods to solve SMTI and its hard variants using
Constraint Programming (CP). We present Gent and Prosser’s encoding for finding
a complete matching for SMTI (Section 4.2) and the largest matching. After that,
we introduce our methods for solving the hard variants of SMTI (Section 4.3).

4.1 Constraint Programming

A Constraint Satisfaction Problem (CSP) is described by a triple P = ⟨X,D,C⟩,
where X = ⟨x1, . . . ,xk⟩ is a k-tuple of variables, D = ⟨D1, . . . ,Dk⟩ is a k-tuple of cor-
responding domains such that xi ∈Di, and C = ⟨C1, . . .Ct⟩ is a t-tuple of constraints.
A constraint Cj is defined by a pair ⟨Rj ,Sj⟩, such that Rj is a relation on the vari-
ables Sj = {s1 . . . sm} ⊆ {x1, . . .xk}. Specifically, Rj ⊆Dsi× . . .Dsm . A solution to a
CSP P = ⟨X,D,C⟩ is an k-tuple A = ⟨ai, . . .ak⟩ such that ai ∈Di and all constraints
in C are satisfied. Given a solution A = ⟨ai, . . .ak⟩, a constraint Cj = ⟨Rj ,Sj⟩ is
satisfied if Rj holds when A is projected onto Sj (Freuder & Mackworth, 2006).

For optimization, based on an objective function, Constraint Optimization Prob-
lems (COPs) are considered. A COP is described by a CSP P = ⟨X,D,C⟩ and an
objective function f : D(x1)× . . .D(xk)→ Q. An optimal solution for a COP is a
solution d to P which maximizes or minimizes f(d) (van Hoeve & Katriel, 2006).
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4.2 Gent & Prosser’s CP Model for SMTI

Gent & Prosser (2002) introduce CP models for SMTI for finding a complete stable
matching, if one exists, and finding the largest stable matching. We implement their
models for Google OR-Tools using CP-SAT solver.

Firstly, we describe the CP model for SMTI for finding a complete matching. The
model uses a variable mi for each man xi ∈M , and wj for each woman yj ∈W . For
each variable mi,

domain(mi) = {j : yj is acceptable to xi}.

For each wj , domain(wj) is defined similarly.

For every pair (xi,yj) of a man xi ∈M and a woman yj ∈W that are acceptable to
each other, the CP model includes the following constraints:

¬(wj = i′∧mi = j) (xi′ ∈M,i ̸= i′,xi′ is acceptable to yj),

¬(mi = j′∧wj = i) (yj′ ∈W,j ̸= j′,yj′ is acceptable to xi),

¬(wj = i′∧mi = j′) (xi′ ∈M,yj′ ∈W,mrank(xi,yj) < mrank(xi,yj′),
wrank(yj ,xi) < wrank(yj ,xi′)).

The first constraint above guarantees that a woman y is matched to exactly one
man. The second constraint guarantees that a man x is matched to exactly one
woman. The third constraint guarantees that there is no pair (x,y) ∈M ×W such
that x is matched to a woman y′ and y is matched to a man x′ where x and y prefer
each other to their current partners. In this way, the CP model ensures that there
are no blocking pairs, hence the stability of the matching.

4.3 Solving Hard Variants of SMTI using CP

To solve Max Cardinality SMTI, we consider Gent & Prosser’s CP model for finding
the largest matching for SMTI. In their model, dummy man dummym and dummy
woman dummyw are introduced, such that each man x prefers all women on his
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preference list to dummyw and each woman y prefers all men on her preference
list to dummym. Note that an assignment to dummym or dummyw denotes being
single.

The CP model for SMTI for finding the largest matching uses a variable mi for each
man xi ∈M and wj for each woman yj ∈W . For each variable mi,

domain(mi) = {j : yj is acceptable to xi}∪{dummyw}.

For each wj , domain(wj) is defined similarly.

The constraints are identical to the constraints of the CP model for finding a com-
plete matching such that M and W include dummy man and dummy woman. To
solve Max Cardinality SMTI, we include a minimization statement with the follow-
ing objective function:

|{xi ∈M |mi = dummyw}|.

To solve Egalitarian SMTI, for each pair (xi,yj) who find each other acceptable,
a Boolean variable bij is introduced such that bij is true if and only if (xi,yj) are
married. Then, the following objective function is minimized for Egalitarian opti-
mization: ∑

(xi,yj)∈M×W

(mrank(xi,yj)+wrank(yj ,xi))× bij).

To solve Sex-Equal SMTI, we utilize bij variables and minimize the following objec-
tive function:

|
∑

(xi,yj)∈M×W

(mrank(xi,yj)× bij−wrank(yj ,xi)× bij)|.
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5. SOLVING SMTI PROBLEMS USING SAT

We introduce novel methods to solve SMTI and its hard variants using Propositional
Satisfiability (SAT). We present Drummond et al.’s formulation SAT-E for solving
SMP-C (Section 5.2) and show how we adapt their formulation to solve SMTI.
After that, we introduce our methods to solve Max Cardinality and Egalitarian
SMTI (Section 5.3).

5.1 SAT

A Boolean variable x is a variable that takes a value from the set {0,1}. A literal
is either a Boolean variable x (positive literal), or its negation ¬x (negative literal).
A clause is a disjunction over literals and a CNF formula conjunction over clauses.
A truth assignment I : X 7→ {0,1} satisfies a clause C = (c1 ∨ ·· · ∨ ck) if for any
ci, I(ci) = 1 if ci is a positive literal, or I(ci) = 0 if ci is a negative literal. A
truth assignment satisfies a formula if it satisfies all its clauses. The formula φ is
satisfiable if such an assignment exists. Given a formula φ, the SAT problem is to
decide whether φ is satisfiable or not.

The MaxSAT problem is an optimisation problem related to SAT. The objective is
to maximize the number of satisfied clauses (Li & Manyà, 2009).

The weighted MaxSAT problem is defined by a CNF formula φ = (C1∧·· ·∧Ck) and
a bounded positive number associated with each clause Ci. The objective is to find
a satisfying assignment I that maximizes the sum of weights of satisfied clauses.

Given a CNF formula, the Partial MaxSAT problem allows clauses to be declared
relaxable (soft) or non-relaxable (hard). The aim is to find an assignment that
satisfies all the hard clauses and the maximum number of soft clauses (Li & Manyà,
2009).
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The partial weighted MaxSAT problem is a combination of Partial MaxSAT and
weighted MaxSAT that distinguishes between hard and soft clauses. An optimal
solution to a partial weighted MaxSAT problem is a truth assignment that satisfies
all hard clauses and maximizes the sum of weights of soft clauses.

5.2 Solving SMTI using SAT

Drummond et al. (2015) introduce a SAT formulation SAT-E for solving SMP-
C (stable matching with couples). In SMP-C, residents are placed into hospital
programs which have quotas. Both residents and hospitals report preferences over
each other. Some doctors may form a couple and give their preferences as a couple.
The preference lists may be incomplete. However, their definition do not take ties
into account. The aim is to find a stable matching such that no doctor-hospital pair
form a blocking pair.

Since SM is a restriction of SMP-C, such that there are no couples and the quota of
each hospital is 1, their formulation can be adapted to solve SMTI.

A dummy woman dummyw is introduced and added to men’s preference lists as
the least preferred woman. Let n + 1 be the assigned index to dummyw and let
W ′ = W ∪{dummyw}. Let wAcci denote the set of women who are acceptable to
xi ∈M , and let mAccj denote the set of men who are acceptable to yj ∈W .

The modified SAT formulation uses two sets of variables.

• Man matching variables: {mmatchi[j]|yj ∈W ∧ yj is acceptable to xi}. Note
that mmatchi[j] is true iff woman yj is matched to xi and mmatchi[n + 1] is
true if xi is single.

• Woman matching variables:
{wmatchj [k]|yj ∈ W ∧ (1 ≤ k ≤ max{xi∈mAccj}wrank(yj ,xi))}. Note that
wmatchj [k] is true iff a man xi in such that 0≤ wrank(yj ,xi)≤ k have been
matched to yj .

Next, we present the clauses used in the modified formulation.

The following clauses are added to ensure that a man is matched to exactly one
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woman, including dummyw. For each xi ∈M , the following clauses are added:

(5.1)
∧

yj ,y′
j∈W ′

(¬mmatchi[j]∨¬mmatchi[j′])

(5.2)
∨

w∈W ′
mmatchi[j].

Next, the following set of formulae are added to ensure consistency of man matching
and woman matching variables.

(5.3) wmatchj [0]≡
∨

xi∈M s.t. wrank(yj ,xi)=1
mmatchi[j]

(5.4) wmatchj [k]≡

(wmatchj [k−1]∧ (
∧

xi∈M s.t. wrank(yj ,xi)=k−1
¬mmatchi[j]))

∨
(¬wmatchj [k−1]∧ (

∨
xi∈M s.t. wrank(yj ,xi)=k−1

mmatchi[j]))

Finally, we add formulae to ensure stability. For each man, xi ∈M and for each
yj ∈ wAcci if |{x′

i ∈M |wrank(yj ,x
′
i) = wrank(yj ,xi)}|= 1:

• if wrank(yj ,xi) > 1, the following formula is added

(5.5)
∧

yj′∈W s.t. mrank(xi,yj′)≤mrank(xi,yj)
¬mmatchi[j′]→

wmatchj [wrank(yj ,xi)−1].

• else, the following formula is added

(5.6)
∧

yj′∈W s.t. mrank(xi,yj′)≤mrank(xi,yj)
¬mmatchi[j′].
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else, the following formula is added

(5.7)
∧

yj′∈W s.t. mrank(xi,yj′)≤mrank(xi,yj)
¬mmatchi[j′]→

wmatchj [wrank(yj ,xi)].

The formulae (5.5) & (5.6) enforce that if xi is not matched to any of his weakly
preferred women than yj , then yj must be matched to one of the men, whom she
strictly prefers to xi. This way, no pair (xi,yj) can form a blocking pair. Note that
the formula (5.7) is necessary if there is more than one man who is ranked as same
as xi by yj . It might be the case that yj is also matched to one of these men, which
does not violate stability since a blocking pair requires mutual strict preference.

This formulation is different from SAT-E in the following ways:

• Doctor matching variables of SAT-E are cast as man matching variables, and
program matching variables as woman matching variables. Couple matching
variables are omitted since there are no couples. The formulae (5.1) & (5.2)
correspond to clauses 1.a & 1.b of SAT-E which establish a unique matching.
The formulae (5.3) & (5.4) ensure consistency of man matching and woman
matching variables.

• To handle ties, each person in the first tie group are considered, instead of the
mostly preferred person. Hence, 3.a of SAT-E is adapted as (5.3). Similarly,
(5.4) corresponds to 3.b.

• The stability clauses (4) of SAT-E are adapted in (5.5) – (5.7). We dis-
tinguish the cases based on the size of the tie group that xi occurs in the
preference list of woman wj . For the case where it is 1, woman yj must be
matched to a strictly preferred man. If the size is larger than 1, then woman
yj can be matched to a man x′

i whom she ranks the same as xi as well.
This is allowed by using wmatchj [wrank(yj ,xi),1] variables (i.e., woman wj

is matched to a man x′
i whom she ranks wrank(yj ,xi) or higher), instead of

wmatchj [wrank(yj ,xi−1),1] variables.

The formulation above suffices to find a stable matching.

17



5.3 Solving Hard Variants of SMTI using SAT

In order to find the largest matching, we extend the formulation by soft clauses. For
each man xi ∈M , the following soft clause is introduced

¬matchi[n+1],

and set its weight to 1. Since the objective is to minimize the number of singles
(i.e., maximize the number of married men), the weight for each soft clause which
denotes that a xi is not single, is set 1 in order to count the number of married men.
Then, the MaxSAT solution for this formulation is maximal in terms of the number
of married men.

To solve Egalitarian SMTI, for each man xi ∈ M and woman wj ∈ W who are
mutually acceptable, the following soft clause is added

matchi[j],

and its weight is set to |M | + |W | − (mrank(xi,yj) + wrank(yj ,xi)). Let
mrank(xi,yj) + wrank(yj ,xi), be the total rank of the pair (xi,yj). The objective
function for Egalitarian SMTI is a minimization of total ranks that matched pairs
assign to each other. Since a MaxSAT solver is used, total rank of a pair is sub-
tracted from the maximum value that a total rank can take, which is |M |+ |W |. In
this way, larger weights are assigned to pairs with lower total rank.

Note that if there are no soft clauses that denote single men, the MaxSAT solver
tries to match every man to a woman to maximize the total cost of satisfied soft
clauses. Hence, we add the following soft clause for each man xi ∈M

matchi[n+1],

and set its weight to |M |+ |W |. Since being single does not contribute to the
objective value of Egalitarian SMTI, the cost of any soft clause that denotes being
single is higher than any soft clause that corresponds to a man-woman pair.
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6. EXPERIMENTS

We have empirically analyzed the computational performances of declarative meth-
ods for SMTI, to better understand their strengths and weaknesses in terms of a
variety of measures.

We have compared several ASP approaches to solve Egalitarian and Sex-Equal SMTI
(Section 6.1).

We have empirically compared ASP to SAT approaches to solve SMTI (Section 6.2)
by using Clingo, Lingeling, and Cmodels with ZChaff.

We have repeated the experiments conducted by Gent & Prosser (2002) for finding
a complete stable matching and finding the largest stable matching using Choco and
Google OR-Tools CP-SAT solver (Section 6.3).

We have also performed experiments to evaluate our declarative methods and com-
pare them with ILP and local search approaches using a variety of solvers (Sec-
tion 6.4).

6.1 ASP Experiments

We have investigated two questions in these experiments: 1) the scalability of our
ASP-based methods presented above to solve SMTI and its variants, 2) how these
methods can be further improved by reformulating some of the constraints.
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6.1.1 Experimental Setup

The tests were run on a local machine with Intel Xeon(R) W-2155 3.30GHz CPU
and 32GB RAM, which has Ubuntu 18.04.1 as operating system. We have used
Clingo version 5.2.2.

We set the time limit for each solver to 2000 seconds, and memory limit to 2 GB.

6.1.2 Benchmarks

To test and analyze the models and our implementations, we need an instance
generator. For this, we have implemented the random instance generator proposed
by Gent & Prosser (2002).

The random instance generator takes 3 inputs to generate instances: instance size n,
(i.e, number of men and women), probability of incompleteness p1, and probability
of ties p2. We have generated a benchmark set, with instance sizes n = 50 and
n = 100, where the value of p1 changes in the range of [0.1, 0.8] and the value of p2
changes in the range [0.1, 0.9] with 0.1 step. There are 144 combinations and for
each combination, we have generated 10 instances and averaged the results.

6.1.3 Results

We present the results for our ASP methods using Clingo for solving SMTI (Ta-
ble 6.1), Max Cardinality SMTI (Table 6.2), Egalitarian SMTI (Table 6.3) and
Sex-Equal SMTI (Table 6.4). In the tables, the numbers in square brackets denote
how many of the 10 instances could be solved.

We make the following observations: Our ASP-based methods for SMTI and Max
Cardinality SMTI, presented above, are scalable for relatively large instances.

To further improve the computational performance of Egalitarian and Sex-Equal
SMTI, we have investigated other ASP methods.
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Table 6.1 SMTI with Clingo: Average CPU-Times (in seconds) for varying p1
and p2 values.

p2

Size p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 50

0.1 5.07 4.99 4.96 4.82 4.74 4.61 4.36 4.03 3.09
0.2 3.41 3.39 3.33 3.27 3.17 3.04 2.91 2.63 1.88
0.3 2.11 2.05 2.02 2.01 1.92 1.86 1.73 1.51 1.14
0.4 1.23 1.2 1.17 1.19 1.12 1.09 1.0 0.92 0.63
0.5 0.68 0.65 0.65 0.64 0.61 0.6 0.51 0.45 0.34
0.6 0.35 0.33 0.35 0.32 0.3 0.29 0.26 0.22 0.17
0.7 0.16 0.15 0.15 0.14 0.14 0.14 0.12 0.11 0.09
0.8 0.06 0.07 0.06 0.06 0.07 0.06 0.05 0.05 0.03

n = 100

0.1 120.5 116.94 122.21 121.05 107.89 108.29 104.07 95.7 81.07
0.2 80.14 80.63 78.42 79.3 74.38 69.78 68.89 66.07 54.74
0.3 45.37 45.36 43.66 43.22 40.64 38.17 39.63 34.1 29.4
0.4 27.52 26.65 26.15 25.84 25.27 23.86 22.75 21.76 17.96
0.5 14.52 14.06 14.13 13.99 13.93 13.13 13.29 11.21 9.64
0.6 7.12 7.16 7.2 7.02 6.87 7.53 6.17 5.83 4.63
0.7 3.12 3.19 3.12 3.12 3.08 3.09 2.8 2.41 1.87
0.8 0.95 0.96 0.97 0.92 0.93 0.84 0.74 0.64 0.46

Table 6.2 Max Cardinality SMTI with Clingo: Average CPU-Times (in seconds).

p2

Size p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 50

0.1 6.79 6.69 6.57 6.45 6.28 6.26 5.88 5.37 4.19
0.2 4.78 4.68 4.65 4.54 4.29 4.1 3.93 3.58 2.49
0.3 2.85 2.78 2.71 2.64 2.5 2.43 2.33 2.05 1.58
0.4 1.74 1.74 1.69 1.7 1.53 1.52 1.37 1.28 0.93
0.5 1.04 0.99 1.0 0.98 0.9 0.91 0.75 0.69 0.52
0.6 0.56 0.52 0.56 0.51 0.44 0.43 0.4 0.35 0.24
0.7 0.24 0.23 0.23 0.21 0.18 0.19 0.15 0.14 0.11
0.8 0.07 0.07 0.08 0.09 0.08 0.08∗ 0.07 0.05 0.04

n = 100

0.1 164.37 171.73 158.44 152.13 162.43 148.38 143.9 139.34 119.09
0.2 114.99 114.34 110.97 106.19 106.82 98.89 93.74 90.68 79.94
0.3 62.53 61.5 57.85 63.05 59.38 55.7 56.82 48.24 43.39
0.4 35.2 35.14 34.88 34.39 33.78 32.13 29.58 27.36 22.89
0.5 18.07 19.05 18.42 17.91 18.09 16.63 16.43 14.31 12.04
0.6 8.57 8.4 8.34 8.11 8.33 8.58 7.25 6.83 5.39
0.7 3.44 3.55 3.42 3.42 3.67 3.5 3.22 2.68 2.19
0.8 1.1 1.07 1.08 1.04 1.08 1.01 0.95 0.81 0.58

* 1 instance reached time limit (over 2000 seconds)
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Table 6.3 Egalitarian SMTI with Clingo: Average CPU-Times (in seconds) for
n = 50.

p2

p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 5.45 5.32 5.41 5.58 6.28 29.91 600.68[7] TO TO
0.2 3.84 3.87 3.94 4.13 5.66 66.59 403.27[9] TO TO
0.3 2.46 2.43 2.51 2.9 4.74 168.82 465.52[7] TO TO
0.4 1.47 1.46 1.5 1.5 4.13 22.58 276.27[6] TO TO
0.5 0.81 0.77 0.81 0.9 1.25 33.21 497.58[5] TO TO
0.6 0.44 0.4 0.44 0.75 1.06 37.59 641.19[6] TO TO
0.7 0.17 0.17 0.18 0.41 0.48 6.56 1358.46[3] TO TO
0.8 0.07 0.07 0.08 0.12 0.75 9.89[7] 674.07[4] TO TO

TO: Timeout (over 2000 seconds).

Table 6.4 Sex-Equal SMTI with Clingo: Average CPU-Times (in seconds) for
n = 50.

p2

p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 TO TO TO TO TO TO TO TO TO
0.2 TO TO TO TO TO TO TO TO TO
0.3 TO TO TO TO TO TO TO TO TO
0.4 1909.7[1] TO 877.16[2] TO TO TO TO TO TO
0.5 1305.27[2] 592.94[3] 297.8[2] 1658.6[1] 953.01[1] TO 1182.33[2] 1437.34[3] TO
0.6 835.24[7] 656.42 1159.53[4] 910.1[4] 1093.83[4] 1048.79[8] 722.22[7] 758.89[3] TO
0.7 82.61 70.12 240.72 211.46 115.87 245.94 906.8[8] 488.83[4] 896.77[2]
0.8 6.98 9.33 19.6 13.45 17.54 70.72 34.5 211.64 356.36[7]

TO: Timeout (over 2000 seconds).

22



6.1.4 Other ASP approaches for Egalitarian SMTI

Instead of the straightforward weak constraints used for Egalitarian SMTI below,
to minimize ∑

x∈M∪W cµ(x):

∽←−marry(x,y),mrank(x,y,r1),wrank(y,x,r2). [r1+ r2@1,x,y]

we have considered the following alternative formulations.

• (version 1) computes ∑
x∈M cµ(x) + ∑

x∈W cµ(x) utilizing auxiliary atoms of
the forms mancost(x,r) and womancost(y,r):

mancost(x,r1)←marry(x,y),mrank(x,y,r1).
womancost(y,r2)←marry(x,y),wrank(y,x,r2).
∽←−mancost(x,r1). [r1@1,M,x]
∽←− womancost(y,r2). [r2@1,W,y]

• (version 2) computes ∑
x∈M cµ(x)+∑

x∈W cµ(x) without introducing auxiliary
atoms:

∽←−marry(x,y),mrank(x,y,r1).[r1@1,M,x]
∽←−marry(x,y),wrank(y,x,r2).[r2@1,W,y]

• (version 3) first utilizes chaining to describe, for every married couple (x,y),
the ranges 1..r1 and 1..r2 such that mrank(x,y)=r1 and wrank(y,x)=r2, and
then utilizes these ranges to specify the weak constraints so that Clingo can
better benefit from propagation and learning:1

mcost(x,r1)←marry(x,y),mrank(x,y,r1).
mcost(x,r1−1)←mcost(x,r1), r1 > 1.

wcost(y,r2)←marry(x,y),wrank(y,x,r2).
wcost(y,r2−1)← wcost(y,r2), r2 > 1.
∽←−mcost(x,c).[1@1,M,x,c]
∽←− wcost(y,c).[1@1,W,y,c]

The results for these three versions are presented in Table 6.5, in comparison with
the basic version with the straightforward weak constraints. We have observed
that slightly more number of hard instances can be solved with the versions 1 and
2. Meanwhile, we have observed a significant improvement with the version 3 for

1This version of the weak constraints is suggested to us by Max Ostrowski at the Potassco list (August 30,
2021).
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Table 6.5 Egalitarian SMTI with Clingo: Average CPU-Times (in seconds) for
n = 50.

p2

Program p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

basic

0.1 5.45 5.32 5.41 5.58 6.28 29.91 600.68[7] TO TO
0.2 3.84 3.87 3.94 4.13 5.66 66.59 403.27[9] TO TO
0.3 2.46 2.43 2.51 2.9 4.74 168.82 465.52[7] TO TO
0.4 1.47 1.46 1.5 1.5 4.13 22.58 276.27[6] TO TO
0.5 0.81 0.77 0.81 0.9 1.25 33.21 497.58[5] TO TO
0.6 0.44 0.4 0.44 0.75 1.06 37.59 641.19[6] TO TO
0.7 0.17 0.17 0.18 0.41 0.48 6.56 1358.46[3] TO TO
0.8 0.07 0.07 0.08 0.12 0.75 9.89[7] 674.07[4] TO TO

version 1

0.1 6.77 6.57 6.66 6.83 8.74 37.26 599.54[6] TO TO
0.2 4.52 4.41 4.54 4.53 5.91 230.48[9] 585.33[9] TO TO
0.3 2.77 2.76 2.82 3.04 4.9 51.01[9] 417.19[6] TO TO
0.4 1.54 1.6 1.58 1.68 4.17 21.37 264.8[6] TO TO
0.5 0.98 0.97 0.98 1.04 1.31 31.22 391.16[5] TO TO
0.6 0.53 0.48 0.54 0.82 1.01 34.51 526.19[6] 764.65[1] TO
0.7 0.24 0.22 0.23 0.44 0.47 6.57 674.72[4] TO TO
0.8 0.07 0.08 0.09 0.12 0.76 201.13[9] 479.74[8] 774.31[1] TO

version 2

0.1 6.34 6.22 6.39 6.6 7.76 47.38 322.73[7] 1026.42[1] TO
0.2 4.17 4.21 4.27 4.54 5.85 50.64 278.07[8] TO TO
0.3 2.59 2.54 2.59 2.92 4.86 44.73[9] 484.22[8] TO TO
0.4 1.55 1.55 1.53 1.61 3.96 19.03 395.45[7] 1586.22[1] TO
0.5 0.93 0.9 0.93 1.02 1.25 29.01 886.65[2] TO TO
0.6 0.5 0.47 0.52 0.81 1.0[7] 29.13[9] 348.67[6] 1290.3[2] TO
0.7 0.2 0.2 0.21 0.41 0.57[2] 3.96[4] TO TO TO
0.8 0.07 0.08 0.08 0.12 0.76 17.07[8] 472.26[7] TO TO
0.1 6.62 6.6 6.7 6.85 7.31 11.25 32.79 766.17[6] TO
0.2 4.38 4.41 4.52 4.63 5.04 13.48 28.54[9] 335.75[2] TO
0.3 2.73 2.73 2.76 2.99 3.69 12.77 104.09 522.89[4] TO

version 3 0.4 1.63 1.64 1.64 1.71 2.83 6.58 103.73[8] 824.53[4] TO
(chaining) 0.5 0.97 0.93 0.97 1.08 1.19 10.4 115.4[8] 1162.78[2] TO

0.6 0.52 0.49 0.54 0.7 0.88 10.37 263.36[9] 653.44[4] TO
0.7 0.2 0.2 0.22 0.3 0.36 2.77 481.47[9] 1374.47[2] TO
0.8 0.08 0.09 0.09 0.13 0.43 163.25 74.75[9] 167.91[2] 758.19[1]

TO: No answer set is computed in 2000 seconds.

harder instances with p2 = 0.8 and p2 = 0.9. Though, Egalitarian SMTI still seems
to be a hard problem for ASP.

We have also investigated how much suboptimal the solutions are computed by
Clingo using anytime search with our chaining-based formulation and a threshold
of 10 seconds. We have considered harder instances with more ties (i.e., p2 > 0.5).
The results are presented at Table 6.6, reporting the average of the suboptimal values
computed by Clingo for 10 instances, the average of the optimal values for these
instances, the number of instances for which the suboptimal value equals the optimal
value, and the average CPU time for computing the initial solution in seconds. For
each p1 and p2, at least one suboptimal solution is computed for each instance.
The computed suboptimal values are observably close to the optimal values. For
most of the instances, Clingo finds the optimal value within 10 seconds but spends
approximately 2000 seconds to verify the optimality. These results suggest the use
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Table 6.6 Egalitarian SMTI with Anytime Clingo: Average computed value
[optimal value], the number of computed optimal solutions (#Opt), and average
CPU time to compute first solution over 10 instances with n = 50, using Clingo

with Anytime Search with a time threshold of 10 seconds.
p2=0.6 p2=0.7 p2=0.8 p2=0.9

Computed First Computed First Computed First Computed First
p1 [Optimal] #Opt (sec) [Optimal] #Opt (sec) [Optimal] #Opt (sec) [Optimal] #Opt (sec)
0.1 410.9[410.1] 8 0.15 363.6[361.0] 6 0.01 320.3[312.3] 2 0.01 261.0[234.1] 0 0.01
0.2 390.1[390.1] 10 0.05 343.9[343.4] 9 0.04 297.9[289.7] 2 0.01 248.6[221.4] 0 0.0
0.3 364.3[364.3] 10 0.06 322.4[322.4] 10 0.02 283.5[278.0] 2 0.01 241.0[215.2] 0 0.0
0.4 346.6[346.6] 10 0.06 298.4[296.7] 7 0.01 259.0[254.3] 0 0.0 225.3[198.3] 1 0.0
0.5 312.6[312.6] 10 0.02 271.5[270.3] 7 0.01 247.0[239.4] 1 0.0 203.4[184.9] 0 0.0
0.6 277.2[277.1] 9 0.02 243.9[242.2] 7 0.01 217.1[211.9] 2 0.0 180.7[165.7] 0 0.0
0.7 236.3[236.3] 10 0.01 213.8[212.1] 5 0.0 183.6[180.4] 3 0.0 152.1[143.9] 0 0.0
0.8 188.1[188.1] 10 0.0 169.6[169.3] 8 0.0 148.1[145.6] 1 0.0 128.0[124.8] 1 0.0

of ASP with anytime search for Egalitarian SMTI.

6.1.5 Other ASP approaches for Sex-Equal SMTI

Based on the promising results of Egalitarian SMTI, instead of the straightfor-
ward weak constraints used for Sex-Equal SMTI below, to minimize |∑x∈M cµ(x)−∑

y∈W cµ(y)|:

∽←− t = #sum{r1− r2,x,y : marry(x,y),mrank(x,y,r1),wrank(y,x,r2)}. [|t|@1]

we have considered the following alternative formulation that utilizes chaining to
describe the ranges of costs.

mcost(t)← t = #count{1, c,m : mcost(m,c)}.
wcost(t)← t = #count{1, c,w : wcost(w,c)}.
cost(|t1− t2|)←mcost(t1),wcost(t2).
cost(t−1)← cost(t), t > 1.
∽←− cost(t), t! = 0.[1@1, t]

The results of our experiments with this chaining-based formulation, presented at
Table 6.7, illustrate a significant improvement in computational performance, con-
sidering the number of instances that can be solved within the given time threshold.
Though, Sex-Equal SMTI still seems to be a hard problem for ASP.

We have also investigated how much suboptimal the solutions are computed by
Clingo using anytime search with our chaining-based formulation and a threshold
of 10 seconds. We have considered harder instances with more ties (i.e., p2 > 0.5).
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Table 6.7 Sex-Equal SMTI with Clingo: Average CPU-Times (in seconds) for
n = 50.

p2
Program p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

basic

0.1 TO TO TO TO TO TO TO TO TO
0.2 TO TO TO TO TO TO TO TO TO
0.3 TO TO TO TO TO TO TO TO TO
0.4 885.96[1] TO 842.16[1] 1710.85[1] TO TO TO 1522.53[2] TO
0.5 999.53[3] 1285.43[4] 796.71[3] 1129.08[1] 1057.15[2] TO 1248.73[3] 853.61[2] TO
0.6 976.46[6] 610.99 859.49[5] 883.93[7] 951.71[7] 1103.2[9] 768.81[7] 506.23[3] TO
0.7 175.75 162.89 308.12 309.89 155.91 304.19 704.74[5] 984.09[5] 1432.4[2]
0.8 9.52 13.24 20.07 17.21 21.17 123.11 54.04 423.64[9] 847.13[8]

chaining

0.1 410.75 283.28 248.9 254.53 261.94 289.79 201.33 450.76[9] 442.77[5]
0.2 257.84 173.88 172.3 171.38 215.68 186.1 114.89 223.85[9] 531.74[8]
0.3 153.62 170.87 165.9 176.72 103.1 124.98 176.51 113.81[8] 123.51[3]
0.4 69.78 67.29 65.9 62.12 123.9 180.76 209.12 163.38[9] 697.26[7]
0.5 47.83 47.03 45.5 50.09 34.88 37.79 92.22 172.7 277.7[4]
0.6 23.85 20.89 22.32 24.5 22.58 33.66 31.49 246.33[9] TO
0.7 9.37 8.84 8.6 9.34 12.69 16.67 160.07 1053.19[3] TO
0.8 2.09 2.11 1.89 2.0 3.79 55.62 134.62 765.52[5] TO

TO: No answer set is computed in 2000 seconds.

Table 6.8 Sex-Equal SMTI with Anytime Clingo: Average computed value
[optimal value], the number of computed optimal solutions (#Opt) [number of
instances for which a suboptimal solution was found], and average CPU time to

compute first solution over 10 instances with n = 50, using Clingo with Anytime
Search with a time threshold of 10 seconds.

p2=0.6 p2=0.7 p2=0.8 p2=0.9
Computed #Opt First Computed #Opt First Computed #Opt First Computed #Opt First

p1 [Optimal] [Solved] (sec) [Optimal] [Solved] (sec) [Optimal] [Solved] (sec) [Optimal] [Solved] (sec)
0.1 NS - - NS - - NS - - 415.9[0.0] 0[10] 1.32
0.2 NS - - NS - - 504.44[0.0] 0[9] 1.37 244.9[0.1] 0[10] 0.91
0.3 414.0[0.1] 0[1] 1.59 422.5[0.1] 0[6] 2.3 313.1[4.7] 0[10] 1.58 231.7[9.6] 0[10] 0.58
0.4 424.5[5.3] 0[4] 2.31 339.56[0.7] 0[9] 1.71 277.6[0.0] 0[10] 1.31 160.3[8.8] 0[10] 0.44
0.5 292.86[0.2] 0[7] 2.92 140.7[1.3] 0[10] 2.36 115.3[2.9] 0[10] 0.72 130.0[3.2] 0[10] 0.26
0.6 108.4[3.6] 0[10] 2.06 59.9[0.2] 1[10] 1.25 77.4[1.2] 0[10] 0.42 92.4[10.2] 0[10] 0.17
0.7 13.4[4.9] 6[10] 1.79 29.3[8.2] 1[10] 0.39 35.4[7.3] 0[10] 0.17 55.1[6.3] 0[10] 0.11
0.8 4.4[2.2] 7[10] 0.29 12.7[5.1] 3[10] 0.13 15.7[3.3] 0[10] 0.08 38.6[5.9] 0[10] 0.05

NS: No answer set is computed in 10 seconds.

The results are presented at Table 6.8, reporting the average of the suboptimal values
computed by Clingo for 10 instances, the average of the optimal values for these
instances, the number of instances for which the suboptimal value equals the optimal
value, the number of instances for which a suboptimal solution is computed, and
the average CPU time for computing the initial solution in seconds. For most of the
problems, for each p1 and p2, at least one suboptimal solution is computed for each
instance. However, there are still some instances for which a suboptimal solution
cannot be found with anytime search in 10 seconds. Also, the computed suboptimal
values are not close to the optimal values. Therefore, unlike our observations with
Egalitarian SMTI experiments, these results do not suggest the use of ASP with
anytime search for Sex-Equal SMTI.

26



6.2 SAT Experiments

We have empirically evaluated two SAT approaches over randomly generated SMTI
instances. First, we have adapted our ASP implementation of SMTI for Cmod-
els (Giunchiglia et al., 2004) that utilizes the SAT solver ZChaff (Moskewicz
et al., 2001). Second, we have used our SAT formulation for SMTI (Section 5) and
use Lingeling (Biere, 2010) to compute solutions.

6.2.1 Experimental Setup

The tests were run on a local machine with Intel Xeon(R) W-2155 3.30GHz CPU and
32GB RAM, which has Ubuntu 18.04.1 as operating system. We have used Clingo
version 5.2.2, Cmodels version 3.79 with the SAT solver ZChaff 2007.3.12, and
SAT-E version released on May 17, 2016 with the SAT solver Lingeling bcj. The
algorithm for preprocessing instances and generating clauses for SAT-E is imple-
mented in Python programming language with version 3.6.9. We set the time limit
for each solver to 2000 seconds, and memory limit to 2 GB.

6.2.2 Benchmarks

We have used the same benchmark instances as described in Section 6.1.2.

6.2.3 Results and Discussions

For SMTI, we have compared two SAT approaches: SAT (using Cmodels with
ZChaff), and SAT (using SAT-E with Lingeling). We have also included the
ASP (Clingo) results for further comparisons.

For each solver, for each combination of p1 and p2, the average CPU times are
reported in Table 6.9 for n = 50 and n = 100. The average number of atoms and
clauses introduced by SAT-E and Cmodels are presented in Table 6.10. We have
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observed that for all three implementations, the computation time decreases as p1
(i.e., probability of incompleteness) increases.

As p2 (i.e., probability of ties) increases, the computation time decreases for Clingo
and Cmodels, while it slightly increases for SAT-E. Clingo and Cmodels are
comparable for p1 ≥ 0.5 but Clingo is more advantageous than Cmodels due to
less consumption of memory for p1 < 0.5.

In general, SAT-E is more advantageous than Cmodels, due to smaller theory
sizes and a more efficient SAT solver. For instance, for n = 50 and p1 = p2 = 0.1,
SAT-E generates a propositional theory with 4561 atoms and 113267 clauses in av-
erage, whereas Cmodels generates a propositional theory with 113425 atoms and
1296263 clauses in average. According to a survey about the SAT solver compe-
titions (Järvisalo, Le Berre, Roussel & Simon, 2012), Lingeling performs signifi-
cantly better than ZChaff.
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Table 6.9 SMTI: Average CPU-Times (in seconds) for varying p1 and p2 values.

p2
Solver p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
n = 50 0.1 5.07 4.99 4.96 4.82 4.74 4.61 4.36 4.03 3.09

C
li

ng
o

0.2 3.41 3.39 3.33 3.27 3.17 3.04 2.91 2.63 1.88
0.3 2.11 2.05 2.02 2.01 1.92 1.86 1.73 1.51 1.14
0.4 1.23 1.2 1.17 1.19 1.12 1.09 1.0 0.92 0.63
0.5 0.68 0.65 0.65 0.64 0.61 0.6 0.51 0.45 0.34
0.6 0.35 0.33 0.35 0.32 0.3 0.29 0.26 0.22 0.17
0.7 0.16 0.15 0.15 0.14 0.14 0.14 0.12 0.11 0.09
0.8 0.06 0.07 0.06 0.06 0.07 0.06 0.05 0.05 0.03

C
m

od
el

s

0.1 7.29 7.18 7.18 6.93 6.62 6.44 5.97 5.41 4.38
0.2 4.92 4.95 4.85 4.7 4.6 4.2 4.04 3.7 2.95
0.3 3.34 3.31 3.23 3.17 3.03 3.01 2.68 2.41 1.88
0.4 2.02 1.99 1.97 1.98 1.89 1.83 1.64 1.53 1.11
0.5 1.19 1.12 1.16 1.13 1.06 1.07 0.89 0.81 0.61
0.6 0.61 0.57 0.6 0.56 0.51 0.5 0.46 0.39 0.28
0.7 0.26 0.25 0.24 0.23 0.23 0.22 0.19 0.17 0.13
0.8 0.1 0.1 0.1 0.09 0.1 0.09 0.08 0.08 0.07

SA
T

-E

0.1 0.73 0.73 0.71 0.83 0.74 0.78 0.73 0.84 0.7
0.2 0.52 0.56 0.58 0.57 0.69 0.75 0.69 0.62 0.64
0.3 0.41 0.45 0.46 0.48 0.53 0.52 0.52 0.53 0.49
0.4 0.3 0.33 0.34 0.39 0.4 0.39 0.43 0.44 0.41
0.5 0.22 0.23 0.25 0.27 0.29 0.32 0.32 0.33 0.34
0.6 0.16 0.16 0.18 0.19 0.19 0.22 0.23 0.25 0.27
0.7 0.1 0.1 0.11 0.12 0.13 0.14 0.14 0.16 0.16
0.8 0.06 0.06 0.07 0.07 0.08 0.08 0.08 0.09 0.11

n = 100 0.1 120.5 116.94 122.21 121.05 107.89 108.29 104.07 95.7 81.07

C
li

ng
o

0.2 80.14 80.63 78.42 79.3 74.38 69.78 68.89 66.07 54.74
0.3 45.37 45.36 43.66 43.22 40.64 38.17 39.63 34.1 29.4
0.4 27.52 26.65 26.15 25.84 25.27 23.86 22.75 21.76 17.96
0.5 14.52 14.06 14.13 13.99 13.93 13.13 13.29 11.21 9.64
0.6 7.12 7.16 7.2 7.02 6.87 7.53 6.17 5.83 4.63
0.7 3.12 3.19 3.12 3.12 3.08 3.09 2.8 2.41 1.87
0.8 0.95 0.96 0.97 0.92 0.93 0.84 0.74 0.64 0.46

C
m

od
el

s

0.1 M M M M M M M M M
0.2 M M M M M M M M M
0.3 M M M M M M M M M
0.4 M M M M M M M M M
0.5 23.29 23.33 23.49 23.66 23.91 23.77 21.38 17.03 14.37
0.6 12.63 12.93 12.97 12.62 11.95 11.72 10.22 8.64 6.71
0.7 4.62 4.85 4.66 4.73 4.87 4.62 3.88 3.44 2.71
0.8 1.47 1.42 1.45 1.4 1.4 1.28 1.16 1.01 0.76

SA
T

-E

0.1 5.86 5.25 5.94 5.82 6.63 7.5 6.35 7.3 5.15
0.2 4.08 4.93 5.38 4.74 6.45 5.96 6.69 6.31 5.39
0.3 3.7 4.12 4.58 3.71 4.67 5.03 4.58 5.21 4.06
0.4 2.82 2.78 2.77 3.3 3.98 4.28 4.43 4.95 3.85
0.5 1.88 1.97 2.12 2.24 2.86 2.72 3.01 3.26 3.0
0.6 1.27 1.2 1.42 1.29 1.91 1.97 1.97 2.01 1.42
0.7 0.58 0.65 0.63 0.72 0.82 0.52 1.1 0.97 0.85
0.8 0.27 0.28 0.31 0.32 0.36 0.39 0.4 0.41 0.41

M: No answer set is computed due to the memory limit (2 GB).
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Table 6.10 SMTI: Average program size for varying p1 and p2 values with n = 50

p2
Solver p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#atoms 0.1 113425 112634 112320 110987 111095 109762 108012 104989 96243

C
m

od
el

s

0.2 89963 90285 90230 89101 88298 87244 85941 83127 7602
0.3 71035 70487 70567 70404 69397 69143 67309 64401 57927
0.4 53118 52825 51973 52700 51603 51357 49781 48818 43102
0.5 38439 37674 37980 37733 37144 37668 34827 33615 30541
0.6 26444 25382 26313 25192 24580 24654 23674 22664 19953
0.7 15863 15638 15549 15338 15134 15239 14381 14004 12168
0.8 8078 8315 8229 7929 8014 7647 7400 7004 6373

SA
T

-E

0.1 4561 4549 4546 4522 4527 4499 4470 4412 4209
0.2 4035 4047 4048 4029 4012 3997 3975 3904 3750
0.3 3557 3549 3556 3554 3532 3540 3493 3436 3264
0.4 3043 3037 3018 3037 3016 3013 2976 2971 2795
0.5 2551 2527 2544 2542 2525 2552 2466 2430 2323
0.6 2075 2031 2078 2037 2014 2030 1998 1977 1855
0.7 1552 1545 1542 1540 1536 1542 1517 1507 1424
0.8 1037 1062 1059 1038 1050 1036 1023 1005 956

#clauses 0.1 1296263 1279570 1276494 1254057 1255637 1229722 1191007 1129910 962283

C
m

od
el

s

0.2 937668 937568 935593 919152 905123 887740 864279 813669 681242
0.3 670565 659872 660876 659103 641055 637263 609766 562206 464503
0.4 443675 439157 428319 435531 421185 417162 395655 377376 297961
0.5 280194 271381 274901 270723 263916 268156 237253 221306 181749
0.6 164589 154443 162863 152339 147149 146310 137174 124952 98137
0.7 79703 77568 77378 75205 73489 73914 67096 62831 48854
0.8 31065 31959 31535 29783 29984 27705 26257 23537 19860

SA
T

-E

0.1 113267 112769 112840 111994 112858 112572 112637 113063 112663
0.2 89763 90366 90651 89949 89769 89690 89944 89656 90452
0.3 70816 70513 70890 71112 70659 71194 70580 70288 69436
0.4 52875 52774 52180 53241 52605 53017 52538 53488 52607
0.5 38173 37552 38096 38113 37914 38974 36965 37190 37651
0.6 26151 25201 26327 25417 25072 25611 25230 25403 25022
0.7 15534 15400 15420 15377 15379 15761 15404 15747 15043
0.8 7722 8026 8013 7790 7990 7824 7782 7784 7740
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6.3 CP Experiments

We have repeated the experiments conducted by Gent & Prosser (2002) by imple-
menting their CP models. Similarly to their experiments, we present our results in
terms of search effort and solubility. We have used a set of randomly generated in-
stances of size n = 10 and n = 50 to empirically compare two state-of-the-art solvers:
Choco and Google-OR CP-SAT.

6.3.1 Experimental Setup

We have run our implementations of the CP models in Choco and OR-Tools.

As suggested by Gent and Prosser, in addition to scalability in timings, we also
analyze the search effort relative to constrainedness κ. In order to calculate con-
strainedness κ, for each pair (xi,yj) ∈M ×W , and each case that satisfies the con-
dition of the constraint, we add log(1− 1

|domain(mi)|×|domain(wj)|). Finally, we divide
this sum by Σxi∈M log (|domain(mi)|)+Σyj∈W log (|domain(wj)|).

In order to evaluate the search effort, we report the number of branches visited
during search, as reported by the CP-SAT solver of OR-Tools. Gent and Prosser
report the average number of search nodes explored during search, as reported by
Choco solver, in order to evaluate search effort. We use the same metric for our
experiments of Choco. We also report solubility, which is the rate of instances
where CP-SAT solver or Choco found a complete matching.

The tests were run on a local machine with Intel Xeon(R) W-2155 3.30GHz CPU
and 32GB RAM, which has Ubuntu 18.04.1 as operating system. The algorithms
are implemented in Python programming language with version 3.6.9, and Java
programming language with version 11.0.15. We also use OR-Tools version 9.0.9048
and Choco solver version 4.10.9. We set the time limit to 2000 seconds.
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6.3.2 Benchmarks

To test and analyze the models and our implementations, we have used the ran-
dom instance generator proposed by Gent & Prosser (2002). The random instance
generator takes 3 inputs to generate instances: instance size n, (i.e, number of men
and women), probability of incompleteness p1, and probability of ties p2. We have
generated a benchmark set, with instance sizes n = 10 and n = 50, where the value
of p1 change in the range of [0.1, 0.8] with 0.1 step and the value of p2 changes
in the range [0.1, 1.0] with 0.01 step. For each combination of p1 and p2, we have
generated 100 instances and averaged the results.

Note that the experimental setup of Gent and Prosser considers the same p1 and p2
values with n = 10, where 50 instances were randomly generated for each combina-
tion of p1 and p2 values.

Table 6.11 Average constrainedness of benchmark instances.

p2
Size p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 10

0.1 0.8 0.77 0.75 0.71 0.67 0.62 0.57 0.5 0.44
0.2 0.78 0.76 0.73 0.7 0.65 0.61 0.56 0.51 0.46
0.3 0.77 0.74 0.72 0.69 0.65 0.6 0.56 0.51 0.47
0.4 0.76 0.74 0.71 0.68 0.65 0.61 0.57 0.53 0.5
0.5 0.77 0.74 0.72 0.69 0.66 0.63 0.59 0.57 0.54
0.6 0.8 0.78 0.75 0.73 0.7 0.68 0.65 0.63 0.61
0.7 0.87 0.85 0.81 0.82 0.79 0.76 0.74 0.73 0.7
0.8 1.01 0.99 0.97 0.95 0.94 0.93 0.89 0.9 0.91

n = 50

0.1 1.66 1.64 1.62 1.59 1.55 1.49 1.41 1.25 0.91
0.2 1.54 1.52 1.5 1.47 1.43 1.38 1.29 1.13 0.81
0.3 1.42 1.4 1.38 1.35 1.31 1.26 1.17 1.02 0.71
0.4 1.3 1.28 1.26 1.23 1.19 1.13 1.05 0.9 0.63
0.5 1.18 1.16 1.14 1.11 1.07 1.01 0.92 0.78 0.55
0.6 1.06 1.04 1.01 0.98 0.94 0.88 0.8 0.68 0.49
0.7 0.94 0.92 0.89 0.86 0.82 0.76 0.69 0.58 0.45
0.8 0.83 0.81 0.78 0.75 0.71 0.66 0.59 0.52 0.44

Table 6.11 presents the average constrainedness of benchmarks instances with n = 10
and n = 50 used in our experiments.

We have run our implementations of the models in Choco and OR-Tools on two sets
of benchmark instances, with n = 10 and n = 50. For n = 10, we present the results
of both solvers. For n = 50, Choco resulted in timeout for each 1 instance out of 3,
hence we only present results of OR-Tools.
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6.3.3 Results: Existence of a complete stable matching

We have implemented the CP model of Gent & Prosser (2002) for finding a complete
stable matching and repeated their experiments with Choco and Google-OR CP-
SAT solvers.

6.3.3.1 Search effort plotted against the probability of ties

Fig. 6.1(a) shows the average cost of the decision problem, in terms of search nodes,
plotted against p2 values for different values of p1, for n = 10. Fig. 6.1(b) shows the
average number of visited branches by OR-Tools, for n = 10. Fig. 6.1(c) shows the
same values as Fig. 6.1(b) for n = 50.

Fig. 6.1(d) shows the average cost of the decision problem, in terms of search nodes,
as reported by Gent and Prosser (Gent & Prosser, 2002, Figure 5) for n = 10.
Tables 6.12 and 6.13 provide further details; the numbers in square brackets denote
the number of instances (out of 100) for which a complete matching was found.

We have observed a similar increasing trend in terms of search effort with increasing
p2 values for different values of p1. We have observed that the results of OR-Tools
for n = 10 show a similar trend as Gent and Prosser’s results. However, there is an
inconsistency between the results of our experiments with Choco and the results of
Gent and Prosser, in terms of search effort.

6.3.3.2 Search effort plotted against the constrainedness of instances

Fig. 6.2(a) shows the average number of visited search nodes by Choco, plotted
against κ values for different values of p1, for n = 10. Fig. 6.2(b) shows the aver-
age number of visited branches for n = 10. Fig. 6.2(c) shows the same values as
Fig. 6.2(b), for n = 50. Fig. 6.2(d) shows the average cost of the decision problem,
in terms of search nodes, as reported by Gent and Prosser (Gent & Prosser, 2002,
Figure 6) for n = 10.

A clear distinction of κ values between different p1 values can be observed in our
results for n = 50. Unlike Gent and Prosser’s results for n = 10, our results for
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(a) (b) (c)

(d)

Figure 6.1 Search effort plotted against p2: (a) the average number of visited search
nodes, by the Choco solver (n = 10) (b) the average number of visited branches, by

the CP-SAT solver of OR-Tools (n = 10) (c) the average number of visited
branches, by the CP-SAT solver of OR-Tools (n = 50), (d) the average number of

visited search nodes by Choco (Gent & Prosser, 2002, Figure 5) (n = 10).

Table 6.12 Finding a complete matching: Search effort for n = 10: the average
number of visited search nodes by the Choco solver, and the average number of

visited branches by the CP-SAT solver of OR-Tools.

So
lv

er

p2

p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
ho

co

0.1 413.23[99] 409.62[99] 341.9 222.62[99] 111.96 100.86 114.46 47.51 18.4
0.2 299.75[99] 237.83[94] 282.62[98] 207.04[97] 164.37 75.1 59.46 24.92 16.6
0.3 188.63[87] 149.57[90] 180.2[91] 174.04[98] 100.74[98] 48.54 31.37 24.98 21.67
0.4 120.41[70] 128.02[84] 83.27[89] 92.16[96] 70.4[94] 59.87[98] 57.08 22.59[99] 14.62
0.5 51.24[50] 61.71[62] 42.54[70] 50.9[79] 31.42[86] 27.28[95] 18.09[99] 11.94[98] 11.6
0.6 27.5[32] 31.17[42] 23.06[53] 21.83[60] 17.32[79] 13.46[82] 10.37[84] 8.69[91] 8.34[97]
0.7 8.13[15] 8.62[21] 12.4[35] 8.0[32] 8.7[47] 6.88[57] 6.45[71] 5.2[69] 5.19[86]
0.8 7.0[2] 2.44[9] 3.44[9] 1.73[11] 2.77[26] 3.26[27] 2.93[43] 2.74[34] 2.97[37]

C
P-

SA
T

0.1 14.57[99] 29.47[99] 62.89 108.31[99] 177.16 252.2 317.52 380.03 421.98
0.2 11.66[99] 29.45[94] 51.59[98] 97.0[97] 162.87 226.26 274.98 327.51 356.21
0.3 7.26[87] 26.2[90] 37.95[91] 69.72[98] 129.08[98] 187.78 224.78 274.28 306.77
0.4 6.19[70] 13.13[84] 34.91[89] 54.11[96] 96.64[94] 141.24[98] 176.98 219.63[99] 242.93
0.5 5.88[50] 12.5[62] 27.13[70] 38.53[79] 72.8[86] 101.32[95] 138.65[99] 153.53[98] 183.92
0.6 2.12[32] 4.45[42] 12.06[53] 24.9[60] 37.15[79] 57.35[82] 71.4[84] 95.34[91] 102.68[97]
0.7 0.0[15] 5.62[21] 5.4[35] 9.88[32] 17.04[47] 27.65[57] 35.18[71] 44.72[69] 47.36[86]
0.8 0.0[2] 0.89[9] 2.44[9] 1.45[11] 1.81[26] 9.41[27] 6.42[43] 8.38[34] 13.73[37]

34



Table 6.13 Finding a complete matching: Search effort of CP-SAT solver for
n = 50: the average number of visited branches.

p2
p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 282.94 673.99 1379.08 2297.86 3708.81 5411.25 7308.47 9585.94 11788.42
0.2 246.82 573.05 1345.21 2297.99 3375.27 4954.66 6854.59 8815.36 10638.22
0.3 212.68 586.08 1152.72 1987.9 3280.52 4559.18 6055.07 7750.3 9263.53
0.4 188.2[99] 497.95[99] 1080.83 1831.62 2868.41 3964.97 5391.01 6763.09 7859.13
0.5 127.87[97] 362.18 909.39 1525.26 2476.64 3449.64 4642.15 5602.56 6550.43
0.6 99.51[88] 305.07[91] 698.35 1298.04 2057.37 2902.45 3700.05 4501.28 5192.23
0.7 69.1[61] 168.76[87] 522.19[93] 963.38 1559.91 2224.32 2838.33 3320.42 3799.49
0.8 24.55[20] 103.51[39] 284.96[69] 532.7[82] 1034.6[94] 1418.31 1811.75 2145.96[99] 2395.38

n = 50 show a steep decline in terms of search effort with increasing κ values. Gent
and Prosser’s observations hold for the results of OR-Tools for n = 10 and n = 50.
In comparison to results of OR-Tools for n = 10, the role of incompleteness on the
search effort is more clear for n = 50. We have observed inconsistency in terms of
the number of search nodes between our experiments and Gent and Prosser’s.

(a) (b) (c)

(d)

Figure 6.2 Search effort plotted against κ: (a) the average number of visited search
nodes, by the Choco solver (n = 10) (b) the average number of visited branches, by

the CP-SAT solver of OR-Tools (n = 10) (c) the average number of visited
branches, by the CP-SAT solver of OR-Tools (n = 50), (d) the average number of

visited search nodes by Choco (Gent & Prosser, 2002, Figure 6) (n = 10).
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6.3.3.3 Solubility plotted against the probability of ties

Fig. 6.3(a) shows the average solubility plotted against p2 values for different values
of p1, for n = 10. Both implementations resulted in same answers to the correspond-
ing decision problems, hence we present the results by a single plot. Fig. 6.3(b) shows
the results of OR-Tools, for n = 50. Fig. 6.3(c) shows the same plot as reported by
Gent and Prosser (Gent & Prosser, 2002, Figure 3) for n = 10. We have observed
high solubility for higher p2 values in both plots. Unlike the results for n = 10, we
have observed overall higher solubility in our experiments. We have observed that
the role of incompleteness decreases as ties increases for n = 50.

(a) (b)

(c)

Figure 6.3 Solubility plotted against p2: (a) solubility (n = 10), (b) solubility
(n = 50), (c) solubility (Gent & Prosser, 2002, Figure 3) (n = 10).

Fig. 6.4(a) shows the average solubility returned by OR-Tools and Choco implemen-
tations plotted against κ values for different values of p1, for n = 10. Fig. 6.4(b)
shows the results of OR-Tools, for n = 50. Fig. 6.4(c) shows the same plot as re-
ported by Gent and Prosser (Gent & Prosser, 2002, Figure 4) for n = 10. Unlike
the results for n = 10, we have not observed a declining trend in solubility with
increasing κ values. We have observed that the role of incompleteness decreases as
constrainedness increases for n = 50.
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(a) (b)

(c)

Figure 6.4 Solubility plotted against κ: (a) solubility (n = 10), (b) solubility
(n = 50), (b) solubility (Gent & Prosser, 2002, Figure 4) (n = 10).
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6.3.4 Results: Finding a largest stable matching

We have implemented the CP model of Gent & Prosser (2002) for finding a largest
stable matching and repeated their experiments with Choco and Google-OR CP-
SAT solvers.

Fig. 6.5(a) shows the average number of visited search nodes by Choco solver in
log scale to find the largest stable matching, plotted against p2 values for different
p1 values, for n = 10. Fig. 6.5(b) shows the average number of visited branches by
OR-Tools in log scale, for n = 10. Fig. 6.5(c) shows the same values as Fig. 6.5(b),
for n = 50. Tables 6.14 and 6.15 provide further details.

Fig. 6.5(d) shows the average number of search nodes in log scale to find the largest
stable matching, as reported by Gent and Prosser (Gent & Prosser, 2002, Figure 9)
for n = 10. However, there is an inconsistency between the results of our experiments
with Choco and the results of Gent and Prosser, in terms of search effort.

Table 6.14 Max Cardinality SMTI: Search effort for n = 10: the average number of
visited search nodes by the Choco solver, and the average number of visited

branches by the CP-SAT solver of OR-Tools.

p2
Solver p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Choco

0.1 7.96 7.71 7.44 7.0 7.31 6.61 6.33 5.27 5.9
0.2 8.22 7.73 7.36 7.1 7.1 6.53 5.68 6.22 5.94
0.3 8.25 7.94 8.1 7.68 7.08 6.54 6.92 6.45 5.62
0.4 8.02 7.91 7.65 7.43 7.05 6.44 5.94 5.8 6.32
0.5 7.35 7.49 7.39 7.04 6.83 6.44 6.28 5.64 6.29
0.6 6.64 6.53 6.61 6.31 6.34 6.57 6.2 5.37 5.91
0.7 5.74 5.66 5.7 5.7 5.7 5.46 5.19 5.54 5.38
0.8 4.76 5.02 4.94 4.8 4.7 4.85 4.92 4.96 4.87

CP-SAT

0.1 3.9 4.94 6.14 6.96 7.69 8.22 8.54 8.82 8.98
0.2 3.66 4.97 5.91 6.85 7.62 8.09 8.37 8.63 8.78
0.3 2.89 4.8 5.6 6.53 7.35 7.92 8.18 8.44 8.61
0.4 2.66 4.13 5.64 6.34 7.09 7.63 7.93 8.2 8.38
0.5 2.46 4.37 5.43 6.11 6.83 7.31 7.71 7.88 8.1
0.6 1.6 3.52 4.87 5.67 6.41 6.89 7.24 7.52 7.71
0.7 1.08 3.07 4.46 4.99 5.83 6.32 6.75 6.96 7.24
0.8 0.31 2.58 3.54 4.37 4.97 5.57 5.95 6.17 6.43
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(a) (b) (c)

(d)

Figure 6.5 Search effort plotted against p2: (a) the average number of visited
nodes by the Choco solver, in log scale (n = 10) (b) the average number of visited
branches by the CP-SAT solver of OR-Tools, in log scale (n = 10) (c) the average

number of visited branches by the CP-SAT solver of OR-Tools, in log scale
(n = 50), (d) the average number of visited search nodes by Choco, in log scale

(Gent & Prosser, 2002, Figure 9) (n = 10).

Table 6.15 Max Cardinality SMTI: Search effort of CP-SAT solver for n = 50: the
average number of visited branches.

p2
p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 8.21 9.5 10.54 11.28 11.93 12.48 12.9 13.27 13.57
0.2 8.02 9.33 10.48 11.26 11.8 12.34 12.81 13.16 13.43
0.3 7.82 9.36 10.29 11.07 11.77 12.23 12.63 12.98 13.24
0.4 7.66 9.11 10.22 10.97 11.59 12.06 12.49 12.79 13.01
0.5 7.12 8.74 10.0 10.72 11.4 11.85 12.27 12.53 12.76
0.6 6.86 8.5 9.73 10.61 11.16 11.63 11.97 12.24 12.46
0.7 6.26 8.07 9.5 10.22 10.84 11.37 11.64 11.86 12.08
0.8 5.63 7.67 8.96 10.29 15.47 10.8 11.12 11.38∗ 11.68

* 1 instance reached time limit (over 2000 seconds)
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6.4 Empirical Comparisons: ASP, CP, ILP, SAT and Local Search

We evaluate our ASP, CP and SAT methods by using a variety of solvers. We also
add comparisons to ILP and local search methods which are discussed in our short
paper (Eyupoglu et al., 2021). We have revised the Gurobi implementation for our
experiments.

6.4.1 Experimental Setup

To test and analyze the models and implementations, we have run our implementa-
tions with benchmark instances.

The tests were run on a local machine with Intel Xeon(R) W-2155 3.30GHz CPU
and 32GB RAM, which has Ubuntu 18.04.1 as operating system. The algorithms are
implemented in Python programming language with version 3.6.9. Additionally, we
have used Gurobi version 9.1.1, OR-Tools version 8.1.848, Clingo version 5.2.2, and
SAT-E version released on May 17, 2016 with the MaxSAT solver CashWMaxsat
(Lei, Cai, Wang, Peng, Geng, Wan, Deng & Lu, 2021).

The time limit is set to 2000 seconds for each solver, and memory limit is set to 4
GB.

6.4.2 Benchmarks

We have used the same benchmark instances as described in Section 6.1.2.

6.4.3 Results

The ILP based method of Kwanashie and Manlove (2014) is adapted by utilizing
Google-OR Tools CP-SAT solver to solve Max Cardinality, Egalitarian and Sex-
Equal SMTI, for which the empirical results are denoted by OR-CP(KM). The
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results for the implementation of the ILP model are denoted by OR-MIP(KM) for
the OR-Tools MIP solver, and Gurobi(KM) for Gurobi.

The results for the implementation of Gent & Prosser (2002)’s CP model are denoted
by OR-CP(GP). For each solver, for each combination of p1 and p2, the average CPU
times for solving Max Cardinality SMTI are reported in Table 6.16 for n = 50, and
in Table 6.19 for n = 100. The average CPU times for the implementation of the
local search algorithm (LTIU) and genetic algorithm (GA) are presented for Max
Cardinality SMTI, in Table 6.17 for n = 50, and Table 6.20 for n = 100. We have also
investigated the suboptimality of the solutions computed by LTIU and GA. We have
considered instances for which LTIU and GA have overall higher time consumption
(p2 < 0.5). The results are presented at Table 6.18 for n = 50 and Table 6.21 for
n = 100, reporting the average of the suboptimal values computed for 10 instances,
the average of the optimal values for these instances, and the number of instances
for which the suboptimal value equals the optimal value.

The average CPU times for n = 50 are presented in Table 6.22 for solving Egalitarian
SMTI, and Table 6.23 for solving Sex-Equal SMTI. In the tables, the numbers in
square brackets denote how many of the 10 instances could be solved.

The search effort results for solving Max Cardinality SMTI are presented in Ta-
ble 6.24, in terms of average number of choices made by Clingo, average number
of branches visited by CP-SAT solver, and average number of propagations made
by CashWMaxsat during search, in log scale. The search effort results for solving
Egalitarian SMTI and Sex-Equal SMTI are presented in Table 6.25 and Table 6.26
using the same metrics, respectively. The results for Clingo are obtained by using
the chaining-based formulations for Egalitarian SMTI and Sex-Equal SMTI.

6.4.4 Discussions

For Max Cardinality SMTI, for a pair of p1 and p2 values, average CPU times to
solve instances increase with the value of n for each solver. This is due to the
increase in the number of constraints to be satisfied in ILP approaches (Gurobi and
OR-Tools solvers), larger space of matchings to search in the local search approaches
(LTIU and GA), and the larger program size for ASP (Clingo). For a pair of n and
p2 values, as p1 increases, the number of blocking pairs most likely decreases, and
thus the average CPU time usually increases for local search methods (due to larger
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Figure 6.6 CPU Time(s) for solving Max Cardinality SMTI p2 = 0.2, 0.5, and 0.8
with n = 100

space of matchings). Meanwhile, the time consumption for other methods usually
decreases as the preference lists get shorter since there are less number of constraints
/ rules / clauses. However, it is unexpected to see that for n = 100 and p1 = 0.8,
CashWMaxsat has relatively higher time consumption, especially for p2 > 0.6.

For a pair of n and p1 values, as p2 increases, the number of ties increases, and thus
the average CPU time usually decreases for the local search methods (due to larger
possibility of stable matchings, and, in addition, due to more variety in the initial
population for GA). Meanwhile, the number of blocking pairs most likely increases,
and thus the average CPU time usually increases for ILP and CP methods (due
to larger constraints). The rules / constraints in ASP do not get larger, but the
number of stability constraints increases, and thus the average CPU time usually
decreases.

For the experimental results for n = 50, we have observed that the average CPU
times are comparable for Clingo and CashWMaxsat. It is interesting to observe
that CashWMaxsat outperforms Clingo and OR-CP(GP) for p1 = 0.1. OR-
CP(GP) is also inferior to MIP, ASP and SAT approaches in terms of scalability for
Max Cardinality SMTI. The memory usage and time consumption of OR-CP(GP)
becomes significantly worse than other methods when n increases to 100. For n = 50,
OR-CP(GP) and CashWMaxsat are more advantageous for instances with shorter
preference lists and less number of ties. Moreover, for n = 100, CashWMaxsat
is more efficient than LTIU for p1 = 0.7 and p1 = 0.8, and GA for p1 = 0.8 when
p2≤ 0.6.

For local search approaches, we have observed that LTIU and GA have similar results
in terms of suboptimality. Both approaches find optimal matchings for almost all
instances where there is a complete matching, whereas suboptimality decreases with
increasing p1 values.

Figure 6.6 provides a comparison of the different approaches with respect to the CPU
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time for n = 100. It can be observed that, for most instances, these approaches are
comparable to each other, and that the local search methods and CashWMaxsat
take more time for larger values of p1 (when the preference lists are more incom-
plete). We can also observe that, for smaller values of p1 < 0.7, GA is more efficient,
whereas, for larger values of p1 ≥ 0.7, Clingo is more efficient. It is also notable
that Gurobi(KM) and OR-MIP(KM) outperform other approaches.

For Sex-Equal SMTI and Egalitarian SMTI, we have observed that the average
CPU times are larger for the CP and ASP approaches when compared with the
Max Cardinality SMTI experimental results (Table 6.16). Note that there is a
larger number of instances that could not be solved with these approaches within
the given time threshold. The ILP approaches, on the other hand, perform better.

For Egalitarian SMTI, observe that OR-CP(GP) outperforms Clingo and OR-
CP(KM) for p2 > 0.5, and CashWMaxsat for p2 > 0.6. For Sex-Equal SMTI,
OR-CP(GP) clearly outperforms Clingo. It also outperforms OR-CP(KM) for
p2 = 0.9. It can be concluded that OR-CP(GP) is more efficient than Clingo and
OR-CP(KM), for instances with shorter preference lists that contain higher number
of ties.

It is interesting to observe that Clingo has better results for Max Cardinality
SMTI, compared to Egalitarian SMTI and Sex-Equal SMTI. This may be related to
the objective functions: Egalitarian SMTI and Sex-Equal SMTI aims to minimize
the sum of costs that are calculated by addition or subtraction of some nonnegative
numbers whereas Max Cardinality SMTI aims to minimize the sum of 1’s. The large
CPU times for the ASP approach for Sex-Equal SMTI could also be due to the use
of aggregates in weak constraints.

Figure 6.7 provides a comparison of ASP, CP and SAT approaches for solving Max
Cardinality SMTI, in terms of search effort for n = 50. It is interesting to observe
that for a fixed value of p1, the search effort for CashWMaxsat slightly decreases
for larger values of p2 while CPU time increases. We also observe that for larger
values of p2, search effort decreases for Clingo while it increases for OR-Tools’
CP-SAT solver. Our observation for the CP approach is consistent with Gent and
Prosser’s.

For Egalitarian SMTI, we observe that for a fixed p1 value and increasing p2 values,
the search effort for OR-CP(GP) grows faster than Clingo and CashWMaxsat.
However, OR-CP(GP) finds the optimal solution for each instance within the time
threshold, hence is more efficient than Clingo and CashWMaxsat. For Sex-
Equal SMTI, we also observe that for a fixed p1 value and increasing p2 values, the
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(a) (b) (c)

Figure 6.7 Search effort for solving Max Cardinality SMTI plotted against p2: (a)
the average number of choices by Clingo, in log scale (n = 50) (b) the average

number of visited branches by the CP-SAT solver of OR-Tools, in log scale (n = 50)
(c) the average number of propagations by CashWMaxsat, in log scale (n = 50).

search effort for OR-CP(GP) grows faster than Clingo.
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Table 6.16 Max Cardinality SMTI: Average CPU-Times (in seconds) for n = 50.

p2
Solver p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Clingo

0.1 6.79 6.69 6.57 6.45 6.28 6.26 5.88 5.37 4.19
0.2 4.78 4.68 4.65 4.54 4.29 4.1 3.93 3.58 2.49
0.3 2.85 2.78 2.71 2.64 2.5 2.43 2.33 2.05 1.58
0.4 1.74 1.74 1.69 1.7 1.53 1.52 1.37 1.28 0.93
0.5 1.04 0.99 1.0 0.98 0.9 0.91 0.75 0.69 0.52
0.6 0.56 0.52 0.56 0.51 0.44 0.43 0.4 0.35 0.24
0.7 0.24 0.23 0.23 0.21 0.18 0.19 0.15 0.14 0.11
0.8 0.07 0.07 0.08 0.09 0.08 0.08∗ 0.07 0.05 0.04

Gurobi(KM)

0.1 0.44 0.47 0.48 0.5 0.49 0.52 0.58 0.66 0.59
0.2 0.34 0.35 0.37 0.39 0.4 0.44 0.46 0.54 0.51
0.3 0.27 0.29 0.32 0.37 0.33 0.36 0.38 0.41 0.39
0.4 0.21 0.22 0.22 0.24 0.26 0.28 0.29 0.33 0.32
0.5 0.17 0.16 0.17 0.18 0.19 0.21 0.21 0.23 0.24
0.6 0.12 0.12 0.14 0.14 0.14 0.15 0.16 0.17 0.16
0.7 0.09 0.09 0.1 0.1 0.11 0.11 0.12 0.12 0.11
0.8 0.07 0.07 0.07 0.08 0.08 0.08 0.08 0.09 0.09

OR-MIP(KM)

0.1 0.69 0.71 0.72 0.72 0.73 0.74 0.77 0.8 0.84
0.2 0.55 0.57 0.58 0.6 0.6 0.61 0.62 0.65 0.7
0.3 0.44 0.46 0.48 0.48 0.49 0.5 0.52 0.53 0.56
0.4 0.35 0.36 0.36 0.38 0.39 0.39 0.4 0.43 0.45
0.5 0.27 0.27 0.29 0.29 0.3 0.31 0.31 0.33 0.36
0.6 0.21 0.2 0.22 0.23 0.23 0.24 0.24 0.25 0.27
0.7 0.15 0.15 0.16 0.16 0.17 0.18 0.18 0.19 0.19
0.8 0.11 0.11 0.11 0.12 0.12 0.13 0.13 0.14 0.14

OR-CP(KM)

0.1 0.9 0.93 0.91 1.03 1.05 1.07 1.11 1.14 1.32
0.2 0.74 0.73 0.75 0.77 0.81 0.85 1.03 1.0 0.99
0.3 0.59 0.6 0.62 0.64 0.65 0.73 0.81 0.75 0.76
0.4 0.47 0.47 0.48 0.5 0.51 0.6 1.61 0.75 0.6
0.5 0.38 0.37 0.38 0.41 0.44 0.46 0.53 0.54 0.53
0.6 0.3 0.29 0.31 0.33 0.34 0.41 0.52 0.81 0.4
0.7 0.24 0.23 0.24 0.26 0.3 0.4 0.48 0.58 0.31
0.8 0.18 0.18 0.19 0.19 0.21 0.88 0.29 0.26 0.39

OR-CP(GP)

0.1 17.37 17.06 17.14 16.91 17.14 17.03 17.23 16.59 14.51
0.2 12.31 12.42 12.4 12.29 12.09 12.43 12.03 12.07 10.34
0.3 8.73 8.64 8.66 8.68 8.44 8.79 8.49 7.9 6.86
0.4 5.72 5.64 5.53 5.72 5.55 5.56 5.4 5.3 4.38
0.5 3.53 3.46 3.54 3.5 3.45 3.55 3.18 3.06 2.69
0.6 2.04 1.93 2.06 1.98 1.9 1.92 1.85 1.72 1.44
0.7 0.95 0.93 0.96 0.95 0.94 0.98 0.91 0.88 0.72
0.8 0.35 0.38 0.38 0.36 0.38 0.36 0.36 0.33 0.3

CashWMaxsat

0.1 0.72 0.72 0.72 0.73 0.71 0.73 0.75 0.73 0.72
0.2 6.28 6.86 7.08 8.66 9.72 13.68 19.38 45.62 64.06
0.3 3.75 4.59 5.52 6.0 6.87 8.99 19.35 41.91 43.58
0.4 3.16 3.37 3.27 4.38 4.69 5.93 10.73 20.53 33.49
0.5 2.24 2.28 2.29 2.81 2.86 4.54 5.34 19.42 29.0
0.6 1.29 1.37 1.68 2.29 2.21 2.58 3.53 4.68 13.1
0.7 0.73 0.86 0.94 0.95 1.08 1.6 1.81 2.62 5.88
0.8 0.29 0.41 0.41 0.56 1.26 2.16 6.87 1.29 2.2

* 1 instance reached time limit (over 2000 seconds)
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Table 6.17 Max Cardinality SMTI: Average CPU-Times (in seconds) for LTIU and
GA with n = 50.

p2
Solver p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LTIU

0.1 0.46 0.51 0.4 0.47 0.4 0.39 0.36 0.33 0.24
0.2 0.36 0.4 0.36 0.41 0.36 0.33 0.36 0.28 0.22
0.3 0.36 0.39 0.37 0.33 0.3 0.31 0.28 0.26 0.21
0.4 43.33 0.33 0.28 0.9 0.29 0.25 0.26 0.22 0.18
0.5 15.57 0.27 2.45 0.27 0.34 0.24 0.5 0.38 0.15
0.6 16.71 29.4 6.27 12.75 0.54 0.27 0.2 0.19 0.31
0.7 47.9 43.58 82.46 14.97 29.92 397 5.64 14 1.08
0.8 114.67 94.89 85.28 93.76 77.39 54.16 65.11 37.17 17.27

GA

0.1 0.05 0.07 0.09 0.1 0.11 0.11 0.11 0.1 0.1
0.2 0.05 0.06 0.08 0.09 0.1 0.1 0.1 0.09 0.09
0.3 0.04 0.06 0.07 0.08 0.09 0.09 0.09 0.09 0.08
0.4 18.69 0.05 0.06 0.07 0.07 0.08 0.08 0.07 0.07
0.5 9.01 0.04 0.05 0.06 0.06 0.06 0.06 0.06 0.06
0.6 8.88 17.34 0.04 8.94 0.05 0.05 0.05 0.05 0.05
0.7 23.74 14.98 38.57 7.37 7.33 7.68 0.04 0.04 0.04
0.8 62.31 43.37 42.71 41.75 29.28 23.16 21.96 0.05 4.87

Table 6.18 Max Cardinality SMTI: Average computed value [optimal value], and
the number of computed optimal solutions (#Opt) over 10 instances with n = 50,

for LTIU and GA.
p2=0.1 p2=0.2 p2=0.3 p2=0.4

Computed Computed Computed Computed
Solver p1 [Optimal] #Opt [Optimal] #Opt [Optimal] #Opt [Optimal] #Opt

LTIU

0.1 50[50] 10 50[50] 10 50[50] 10 50[50] 10
0.2 50[50] 10 50[50] 10 50[50] 10 50[50] 10
0.3 50[50] 10 50[50] 10 50[50] 10 50[50] 10
0.4 49.6[49.8] 8 50[50] 10 50[50] 10 50[50] 10
0.5 49.8[49.9] 9 50[50] 10 50[50] 10 50[50] 10
0.6 49.8[49.9] 9 49.6[49.8] 8 50[50] 10 49.8[49.9] 9
0.7 49.4[49.7] 7 49.4[49.8] 7 48.6[49.6] 5 49.8[50.0] 9
0.8 46.2[48.1] 0 47.8[49.2] 2 48.2[49.1] 3 48.0[49.2] 2

GA

0.1 50[50] 10 50[50] 10 50[50] 10 50[50] 10
0.2 50[50] 10 50[50] 10 50[50] 10 50[50] 10
0.3 50[50] 10 50[50] 10 50[50] 10 50[50] 10
0.4 49.6[49.8] 8 50[50] 10 50[50] 10 50[50] 10
0.5 49.8[49.9] 9 50[50] 10 50[50] 10 50[50] 10
0.6 49.8[49.9] 9 49.6[49.8] 8 50[50] 10 49.8[49.9] 9
0.7 49.2[49.7] 7 49.6[49.8] 8 48.6[49.6] 5 49.8[50.0] 9
0.8 45.8[48.1] 0 48.2[49.2] 3 47.8[49.1] 3 48.0[49.2] 3
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Table 6.19 Max Cardinality SMTI: Average CPU-Times (in seconds) for n = 100.
So

lv
er

p2

p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
li

ng
o

0.1 164.37 171.73 158.44 152.13 162.43 148.38 143.9 139.34 119.09
0.2 114.99 114.34 110.97 106.19 106.82 98.89 93.74 90.68 79.94
0.3 62.53 61.5 57.85 63.05 59.38 55.7 56.82 48.24 43.39
0.4 35.2 35.14 34.88 34.39 33.78 32.13 29.58 27.36 22.89
0.5 18.07 19.05 18.42 17.91 18.09 16.63 16.43 14.31 12.04
0.6 8.57 8.4 8.34 8.11 8.33 8.58 7.25 6.83 5.39
0.7 3.44 3.55 3.42 3.42 3.67 3.5 3.22 2.68 2.19
0.8 1.1 1.07 1.08 1.04 1.08 1.01 0.95 0.81 0.58

G
ur

ob
i(K

M
)

0.1 4.66 4.76 4.84 4.99 5.17 5.37 5.74 6.01 6.17
0.2 3.51 3.58 3.66 3.91 3.97 4.25 4.46 4.38 4.53
0.3 2.53 2.6 2.7 2.86 3.0 3.07 3.22 3.35 3.48
0.4 1.79 1.84 1.92 1.95 2.12 2.19 2.23 2.36 2.4
0.5 1.25 1.25 1.34 1.37 1.49 1.58 1.66 1.65 1.71
0.6 0.81 0.83 0.88 0.95 1.02 1.08 1.21 1.2 1.19
0.7 0.53 0.55 0.56 0.6 0.66 0.71 0.77 0.79 0.76
0.8 0.35 0.35 0.38 0.39 0.41 0.45 0.46 0.48 0.45

O
R

-M
IP

(K
M

)

0.1 5.91 5.98 6.02 6.17 6.2 6.22 6.31 6.56 6.75
0.2 4.68 4.75 4.77 4.88 4.87 4.88 4.98 5.09 5.37
0.3 3.59 3.65 3.73 3.77 3.84 3.77 3.86 3.94 4.05
0.4 2.64 2.7 2.72 2.76 2.81 2.74 2.74 2.85 3.0
0.5 1.86 1.88 1.92 1.94 1.99 1.98 2.01 2.03 2.18
0.6 1.27 1.31 1.35 1.39 1.38 1.4 1.41 1.45 1.53
0.7 0.83 0.86 0.88 0.92 0.94 0.94 0.95 0.94 1.0
0.8 0.54 0.55 0.58 0.59 0.62 0.62 0.61 0.62 0.64

O
R

-C
P(

K
M

)

0.1 7.63 7.98 8.16 8.41 8.81 9.77 13.72 13.91 26.17
0.2 6.57 6.67 6.83 7.59 7.47 7.13 8.89 12.4 18.25
0.3 4.66 4.81 5.65 5.81 6.21 12.48 9.86 19.66 20.61
0.4 3.54 3.73 4.01 4.27 6.88 6.1 31.63 25.45 13.72
0.5 2.6 2.67 3.16 3.29 5.16 8.3 6.18 4.99 10.15
0.6 1.86 1.92 2.1 3.06 5.61 7.67 9.82 6.13 6.37
0.7 1.27 1.33 1.55 3.48 4.65 13.28 6.64 6.88 3.37
0.8 0.89 0.9 1.11 1.59 17.22 72.66 195.72 15.32 1.6

O
R

-C
P(

G
P)

0.1 M M M M M M M M M
0.2 M M M M M M M M M
0.3 M M M M M M M M M
0.4 M M M M M M M M M
0.5 M M M M M M M M M
0.6 24.77 25.69 25.93 25.87 26.35 27.69 27.33 26.13 21.24
0.7 11.18 11.52 11.14 11.35 11.53 11.35 11.34 10.42 9.15
0.8 3.95 3.9 3.99 3.91 3.92 3.82 3.7 3.56 2.97

C
as

hW
M

ax
sa

t 0.1 7.49 7.51 7.63 7.42 7.73 7.92 8.09 8.33 8.29
0.2 5.47 5.52 5.52 5.62 5.66 5.7 5.96 6.14 6.14
0.3 3.83 3.98 3.95 3.93 3.99 4.01 4.13 4.28 4.2
0.4 2.63 2.71 2.7 2.67 2.79 2.74 2.82 2.96 2.84
0.5 1.75 1.74 1.78 1.86 1.85 1.79 1.87 1.87 1.87
0.6 1.05 1.09 1.1 1.09 1.14 1.16 1.12 1.17 1.12
0.7 0.59 0.6 0.59 0.62 2.35 0.65 0.64 6.69 0.59
0.8 2.98 3.24 4.19 6.9 7.63 69.63 75.36 116.65 113.46

M: Memory limit reached (over 4 GB)
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Table 6.20 Max Cardinality SMTI: Average CPU-Times (in seconds) for LTIU and
GA with n = 100.

p2
Solver p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LTIU

0.1 5.69 5.46 5.83 5.29 5.65 4.84 5.01 4.25 3.69
0.2 4.90 4.94 5.2 4.96 5.09 4.6 4.55 3.8 3.16
0.3 4.45 4.55 4.36 4.42 4.47 4.17 4.04 3.48 2.93
0.4 3.86 3.83 3.93 3.69 3.78 3.78 3.3 3.02 2.9
0.5 3.5 95.63 3.42 3.3 3.29 2.97 2.88 2.96 2.37
0.6 2.94 83.01 6.05 2.6 12.54 2.66 2.56 2.15 1.72
0.7 141.2 126.92 80.2 16.23 7.5 3.88 4.79 4.92 2.09
0.8 420.05 529.24 235.42 245.69 244.11 136.01 111.51 88.17 17.62

GA

0.1 0.2 0.28 0.33 0.38 0.41 0.42 0.41 0.38 0.34
0.2 0.18 0.25 0.3 0.34 0.36 0.37 0.37 0.35 0.31
0.3 0.16 0.22 0.27 0.3 0.32 0.33 0.32 0.31 0.27
0.4 0.14 0.19 0.23 0.26 0.28 0.28 0.28 0.26 0.24
0.5 0.12 0.16 0.19 0.22 0.23 0.24 0.24 0.22 0.2
0.6 0.1 0.13 0.16 0.17 0.19 0.2 0.19 0.18 0.17
0.7 56.72 0.1 51.88 0.13 0.14 0.15 0.15 0.14 0.13
0.8 288.81 333.06 123.44 81.91 0.1 0.1 0.1 0.1 0.09

Table 6.21 Max Cardinality SMTI: Average computed value [optimal value], and
the number of computed optimal solutions (#Opt) over 10 instances with n = 100,

for LTIU and GA.
p2=0.1 p2=0.2 p2=0.3 p2=0.4

Computed Computed Computed Computed
Solver p1 [Optimal] #Opt [Optimal] #Opt [Optimal] #Opt [Optimal] #Opt

LTIU

0.1 100[100] 10 100[100] 10 100[100] 10 100[100] 10
0.2 100[100] 10 100[100] 10 100[100] 10 100[100] 10
0.3 100[100] 10 100[100] 10 100[100] 10 100[100] 10
0.4 100[100] 10 100[100] 10 100[100] 10 100[100] 10
0.5 100[100] 10 99.8[100] 9 100[100] 10 100[100] 10
0.6 100[100] 10 99.8[100] 9 100[100] 10 100[100] 10
0.7 99.6[99.8] 9 99.6[100] 8 99.8[100] 9 100[100] 10
0.8 98[98] 10 97.6[99] 4 99[99.8] 7 99.2[100] 6

GA

0.1 100[100] 10 100[100] 10 100[100] 10 100[100] 10
0.2 100[100] 10 100[100] 10 100[100] 10 100[100] 10
0.3 100[100] 10 100[100] 10 100[100] 10 100[100] 10
0.4 100[100] 10 100[100] 10 100[100] 10 100[100] 10
0.5 100[100] 10 100[100] 10 100[100] 10 100[100] 10
0.6 100[100] 10 100[100] 10 100[100] 10 100[100] 10
0.7 99.8[99.8] 10 100[100] 10 99.8[100] 9 100[100] 10
0.8 98[98] 10 97.4[99] 5 99[99.8] 7 99.6[100] 8
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Table 6.22 Egalitarian SMTI: Average CPU-Times (in seconds) for n = 50.
So

lv
er

p2

p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
li

ng
o

0.1 6.62 6.6 6.7 6.85 7.31 11.25 32.79 766.17[6] TO
0.2 4.38 4.41 4.52 4.63 5.04 13.48 28.54[9] 335.75[2] TO
0.3 2.73 2.73 2.76 2.99 3.69 12.77 104.09 522.89[4] TO
0.4 1.63 1.64 1.64 1.71 2.83 6.58 103.73[8] 824.53[4] TO
0.5 0.97 0.93 0.97 1.08 1.19 10.4 115.4[8] 1162.78[2] TO
0.6 0.52 0.49 0.54 0.7 0.88 10.37 263.36[9] 653.44[4] TO
0.7 0.2 0.2 0.22 0.3 0.36 2.77 481.47[9] 1374.47[2] TO
0.8 0.08 0.09 0.09 0.13 0.43 163.25 74.75[9] 167.91[2] 758.19[1]

G
ur

ob
i(K

M
)

0.1 0.42 0.44 0.46 0.46 0.48 0.5 0.52 0.59 0.66
0.2 0.34 0.35 0.36 0.39 0.4 0.42 0.49 0.57 0.65
0.3 0.27 0.29 0.29 0.32 0.34 0.35 0.39 0.48 0.85
0.4 0.21 0.22 0.22 0.24 0.27 0.28 0.37 0.43 0.48
0.5 0.17 0.16 0.18 0.19 0.19 0.23 0.25 0.32 0.59
0.6 0.12 0.12 0.14 0.15 0.15 0.18 0.2 0.27 0.32
0.7 0.09 0.1 0.1 0.11 0.11 0.12 0.15 0.17 0.31
0.8 0.07 0.08 0.09 0.09 0.09 0.1 0.1 0.12 0.16

O
R

-M
IP

(K
M

)

0.1 0.7 0.72 0.73 0.75 0.76 0.79 0.83 0.99 1.3
0.2 0.56 0.58 0.59 0.61 0.62 0.67 0.7 1.01 1.28
0.3 0.45 0.47 0.48 0.51 0.52 0.53 0.63 0.98 1.9
0.4 0.35 0.36 0.37 0.39 0.44 0.47 0.66 0.86 1.14
0.5 0.28 0.27 0.29 0.32 0.32 0.37 0.45 0.75 1.28
0.6 0.21 0.21 0.22 0.24 0.25 0.35 0.37 0.58 0.93
0.7 0.15 0.15 0.16 0.18 0.19 0.2 0.28 0.42 0.63
0.8 0.11 0.11 0.12 0.12 0.14 0.16 0.17 0.24 0.39

O
R

-C
P(

K
M

)

0.1 1.01 1.04 1.07 1.38 2.13 96.34 417.34[5] TO TO
0.2 1.43 1.51 1.19 1.85 3.71 196.42 391.73[6] TO TO
0.3 1.1 1.19 1.33 1.78 11.76 60.11[8] 561.85[4] TO TO
0.4 0.9 1.0 1.01 1.19 9.06 108.64 629.32[4] TO TO
0.5 0.79 0.77 0.81 1.14 1.97 147.54 213.31[3] TO TO
0.6 0.6 0.61 0.65 1.84 2.25 131.32 82.9[1] TO TO
0.7 0.45 0.45 0.49 1.19 1.21 26.87 951.98[1] TO TO
0.8 0.35 0.36 0.36 0.44 1.48 55.2[8] 477.63[3] TO TO

O
R

-C
P(

G
P)

0.1 17.89 19.14 19.85 20.22 20.88 21.35 22.36 26.17 25.5
0.2 12.32 12.36 12.42 12.3 12.25 12.72 13.4 17.21 15.08
0.3 8.8 8.7 8.81 8.86 8.68 8.78 8.91 8.59 8.0
0.4 5.78 5.78 5.66 5.81 5.75 5.8 5.9 6.16 5.04
0.5 3.62 3.52 3.65 3.64 3.62 3.77 3.46 3.69 3.46
0.6 2.13 2.02 2.2 2.1 2.04 2.14 2.11 2.06 1.88
0.7 1.03 1.02 1.05 1.06 1.07 1.1 1.11 1.12 1.04
0.8 0.41 0.43 0.44 0.43 0.45 0.45 0.46 0.45 0.47

C
as

hW
M

ax
sa

t 0.1 0.86 1.22 3.16 35.82 585.88[9] 680.27[3] TO TO TO
0.2 5.62 6.04 7.04 7.92 9.63 11.96 13.45 31.42 39.33
0.3 3.85 5.29 6.15 6.89 7.44 8.16 12.28 26.84 37.98
0.4 3.19 3.33 3.56 5.05 6.08 7.42 13.27 19.42 26.41
0.5 2.03 2.19 2.35 3.13 2.76 4.32 4.93 13.97 24.36
0.6 1.37 1.37 1.72 2.12 1.9 3.55 4.29 6.62 16.06
0.7 0.72 0.9 0.97 0.99 1.25 1.5 2.39 6.25 10.57
0.8 0.28 0.41 0.37 0.47 0.62 0.72 0.95 1.53 3.14

TO: Timeout (over 2000 seconds)
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Table 6.23 Sex-Equal SMTI: Average CPU-Times (in seconds) for n = 50.

So
lv

er

p2

p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
li

ng
o

0.1 410.75 283.28 248.9 254.53 261.94 289.79 201.33 450.76[9] 442.77[5]
0.2 257.84 173.88 172.3 171.38 215.68 186.1 114.89 223.85[9] 531.74[8]
0.3 153.62 170.87 165.9 176.72 103.1 124.98 176.51 113.81[8] 123.51[3]
0.4 69.78 67.29 65.9 62.12 123.9 180.76 209.12 163.38[9] 697.26[7]
0.5 47.83 47.03 45.5 50.09 34.88 37.79 92.22 172.7 277.7[4]
0.6 23.85 20.89 22.32 24.5 22.58 33.66 31.49 246.33[9] TO
0.7 9.37 8.84 8.6 9.34 12.69 16.67 160.07 1053.19[3] TO
0.8 2.09 2.11 1.89 2.0 3.79 55.62 134.62 940.11[5] TO

G
ur

ob
i(K

M
)

0.1 0.48 0.56 0.55 0.6 0.64 0.71 0.81 0.8 0.77
0.2 0.39 0.44 0.48 0.63 0.55 0.74 0.76 0.93 0.71
0.3 0.31 0.35 0.38 0.46 0.53 0.52 0.64 0.6 0.58
0.4 0.25 0.27 0.28 0.32 0.37 0.38 0.44 0.47 0.46
0.5 0.2 0.21 0.25 0.26 0.3 0.37 0.29 0.35 0.35
0.6 0.16 0.16 0.18 0.21 0.2 0.23 0.25 0.24 0.23
0.7 0.12 0.13 0.14 0.15 0.15 0.17 0.17 0.18 0.17
0.8 0.1 0.1 0.1 0.11 0.12 0.12 0.12 0.13 0.13

O
R

-M
IP

(K
M

)

0.1 0.84 0.84 0.86 0.87 0.93 0.98 1.08 1.36 1.95
0.2 0.67 0.69 0.71 0.74 0.74 0.87 0.91 1.51 2.36
0.3 0.54 0.55 0.56 0.58 0.63 0.67 0.7 1.01 1.21
0.4 0.45 0.44 0.44 0.48 0.51 0.52 0.64 0.94 1.35
0.5 0.35 0.36 0.37 0.38 0.38 0.51 0.51 0.75 1.06
0.6 0.27 0.27 0.29 0.32 0.32 0.41 0.52 0.46 0.47
0.7 0.21 0.21 0.22 0.23 0.24 0.26 0.31 0.42 0.34
0.8 0.16 0.17 0.18 0.18 0.19 0.21 0.22 0.22 0.32

O
R

-C
P(

K
M

)

0.1 1.94 2.01 1.81 2.15 2.22 2.47 2.6 2.13 11.04
0.2 1.57 1.6 1.32 1.01 0.96 1.23 1.15 1.73 46.04[9]
0.3 0.7 0.76 0.78 0.83 0.9 0.96 1.14 4.07 48.42[4]
0.4 1.04 1.08 1.11 1.13 1.33 1.47 2.07 3.88 474.78[5]
0.5 0.41 0.41 0.45 0.47 0.5 0.56 1.6 9.06 434.35[5]
0.6 0.33 0.33 0.36 0.4 0.4 0.7 1.01 19.24 76.53[1]
0.7 0.26 0.27 0.28 0.3 0.32 0.4 8.62 82.19[6] 163.76[6]
0.8 0.23 0.23 0.24 0.25 0.29 1.75 1.64 9.4 80.41[8]

O
R

-C
P(

G
P)

0.1 23.94 24.07 24.89 24.18 23.58 23.2 23.48 22.81 23.97
0.2 14.57 14.9 15.1 15.39 15.18 16.15 16.2 18.3 19.19
0.3 10.34 10.32 9.81 9.85 9.69 9.81 9.76 9.51 8.77
0.4 6.88 6.93 7.02 6.93 6.79 7.09 6.59 6.9 6.23
0.5 4.31 4.26 4.43 4.45 4.57 4.58 4.11 4.38 4.48
0.6 2.52 2.44 2.61 2.53 2.5 2.61 2.74 2.47 2.4
0.7 1.3 1.31 1.36 1.42 1.23 1.3 1.35 1.42 1.16
0.8 0.48 0.52 0.54 0.55 0.59 0.59 0.58 0.61 0.6

TO: Timeout (over 2000 seconds)
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Table 6.24 Max Cardinality SMTI: Search effort for n = 50.

p2
Solver p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Clingo

0.1 14.2 13.2 12.83 13.57 13.48 11.98 11.09 9.59 8.86
0.2 12.89 13.4 12.45 13.82 12.6 12.1 10.64 9.91 9.07
0.3 13.2 12.64 12.44 12.67 12.01 11.27 10.61 9.46 8.34
0.4 12.31 12.03 12.19 12.28 11.86 11.53 10.63 9.57 8.54
0.5 11.93 12.05 12.01 11.76 11.64 11.07 10.27 9.1 8.3
0.6 11.66 11.68 11.59 11.65 11.15 10.55 9.99 9.5 8.72
0.7 11.45 11.31 11.38 10.75 11.2 10.83 9.33 9.11 9.07
0.8 10.89 10.84 10.91 11.0 10.96 10.76∗ 10.73 9.34 9.3

OR-CP(GP)

0.1 7.39 8.53 8.85 9.37 9.63 10.06 10.72 11.07 11.54
0.2 6.34 7.69 8.63 9.28 9.62 10.15 10.53 11.15 11.47
0.3 6.23 7.84 8.63 9.1 9.42 9.95 10.5 11.02 11.35
0.4 5.98 7.47 8.15 8.61 9.63 10.13 10.43 10.8 11.14
0.5 6.13 6.9 8.13 8.71 9.28 9.72 10.35 10.6 11.16
0.6 5.44 6.23 7.87 8.85 9.18 9.62 10.02 10.39 10.86
0.7 2.51 5.85 7.58 8.41 8.75 9.27 9.74 10.26 10.43
0.8 3.69 5.83 7.01 7.73 8.51 9.34 9.46 10.05 10.01

CashWMaxsat

0.1 18.8 18.98 18.95 19.17 18.82 19.11 19.28 19.22 18.04
0.2 8.05 7.79 8.18 6.91 6.59 7.04 7.05 6.42 6.39
0.3 7.96 7.7 6.83 6.94 6.48 6.72 6.14 6.52 6.31
0.4 7.43 7.48 7.54 6.44 7.27 6.24 6.66 6.43 6.04
0.5 7.51 6.84 7.53 7.47 7.13 6.8 6.79 6.21 6.11
0.6 7.61 7.35 7.32 6.66 7.06 6.94 6.58 6.51 5.82
0.7 7.53 7.38 7.21 7.26 6.7 6.94 6.46 6.27 6.4
0.8 7.9 7.28 7.68 7.16 6.83 6.85 6.4 6.3 5.94

* 1 instance reached time limit (over 2000 seconds)
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Table 6.25 Egalitarian SMTI: Search effort for n = 50.

p2
Solver p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Clingo

0.1 13.29 13.52 13.71 14.13 14.66 16.53 18.83 23.63[6] TO
0.2 12.99 13.11 13.44 13.88 14.57 17.65 18.96[9] 22.75[2] TO
0.3 12.77 13.05 13.27 13.84 15.0 18.1 21.04 23.36[4] TO
0.4 12.44 12.61 12.82 13.13 15.36 17.09 21.45[8] 24.02[4] TO
0.5 12.19 12.3 12.57 13.33 13.88 17.99 21.88[8] 25.04[2] TO
0.6 11.87 11.96 12.24 13.68 14.36 18.26 22.81[9] 24.45[4] TO
0.7 11.53 11.56 11.93 13.08 13.59 16.62 23.84[9] 26.02[2] TO
0.8 10.84 11.03 11.28 12.23 14.13 22.44 21.74[9] 23.21[2] 25.92[1]

OR-CP(GP)

0.1 7.42 8.84 9.2 10.43 12.38 13.32 12.9 10.93 14.43
0.2 6.36 7.75 8.87 10.84 11.2 12.35 12.7 12.95 11.33
0.3 6.1 8.06 8.87 10.5 10.34 10.94 13.27 10.69 11.29
0.4 5.63 7.68 8.4 8.96 9.61 10.01 10.14 11.3 11.04
0.5 6.26 6.56 8.14 8.96 9.37 9.91 9.91 10.42 12.61
0.6 5.52 6.21 8.11 8.98 9.25 9.42 10.48 10.37 10.82
0.7 1.85 5.98 7.52 8.59 8.59 9.46 9.58 10.05 10.49
0.8 3.58 6.03 7.21 7.81 8.79 9.02 9.23 9.6 10.02

CashWMaxsat

0.1 M M M M M M M M M
0.2 12.04 12.1 12.13 12.12 12.23 12.28 12.39 12.66 13.01
0.3 11.85 11.9 11.99 12.12 12.02 12.21 12.31 12.43 12.81
0.4 11.64 11.68 11.79 11.82 11.87 12.01 12.15 12.37 12.77
0.5 11.43 11.51 11.42 11.56 11.57 11.85 12.0 12.15 12.62
0.6 11.15 11.1 11.39 11.4 11.45 11.6 11.77 12.06 12.5
0.7 10.93 11.0 11.02 11.11 11.18 11.37 11.62 11.84 12.21
0.8 10.38 10.55 10.81 10.75 11.03 11.12 11.32 11.6 11.82

M: Memory limit reached (over 4 GB)
TO: Timeout (over 2000 seconds)

Table 6.26 Sex-Equal SMTI: Search effort for n = 50.

p2
Solver p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Clingo

0.1 13.38 13.57 13.96 14.38 15.12 16.05 16.15 17.89[9] 17.65[5]
0.2 13.04 13.14 13.72 14.37 15.39 15.57 15.78 16.8[9] 18.38[8]
0.3 12.76 13.16 13.43 14.07 14.62 15.94 16.99 16.8[8] 17.11[3]
0.4 12.5 12.7 13.01 13.05 15.24 16.04 16.85 16.57[9] 18.88[7]
0.5 12.22 12.31 12.67 13.63 13.8 14.68 16.53 17.55 18.32[4]
0.6 11.89 11.99 12.33 13.66 14.26 15.64 15.66 18.61[9] TO
0.7 11.55 11.54 12.04 13.19 14.88 15.33 19.06 21.63[3] TO
0.8 10.94 11.39 11.75 12.59 14.46 18.76 19.91 22.56[5] TO

OR-CP(GP)

0.1 7.55 8.58 9.11 9.57 10.18 10.8 11.74 12.41 12.06
0.2 6.64 7.76 8.69 9.72 10.44 12.0 12.62 13.97 14.15
0.3 6.15 7.75 8.5 9.64 10.15 10.89 11.28 11.81 11.19
0.4 5.93 7.39 8.16 9.07 9.85 10.22 10.35 10.94 11.17
0.5 5.98 6.48 7.78 8.74 9.08 10.18 10.08 10.58 10.93
0.6 5.76 6.2 7.86 8.69 8.87 9.61 10.21 10.18 12.24
0.7 3.56 5.92 7.83 8.14 8.55 9.27 9.64 10.12 10.45
0.8 4.49 6.07 7.13 7.65 8.29 9.07 9.27 9.66 9.9

TO: Timeout (over 2000 seconds)
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7. FURTHER STUDIES ON SMTI

We extend our studies further by considering an alternative stability concept for
SM. For this purpose, we study the notion of sticky-stability proposed by Afacan
et al. (2016) (Section 7): we define sticky-SMTI (Section 7.1), propose an ASP
method for solving sticky-SMTI (Section 7.2) and present our experimental results
(Section 7.3).

Sticky-stability is introduced in paper Sticky Matching in School Choice (Afacan
et al., 2016) to accommodate appeal costs in school placements. Their work focuses
on the appeals that solely arise from priority violations. The appeal costs are incor-
porated in the traditional matching framework under the assumption that a rational
parent would appeal to a violation of his/her child’s priority at a school, given that
appealing is more advantageous than the cost.

In their framework, students’ (or parents’) answers to the following question are
collected: “What is the least rank difference between school pairs where you would
be willing to appeal in the case a priority violation if your appeal would definitely be
granted?”. Based on the student’s answer, his/her stickiness degree is defined as the
given least rank difference minus one. Given preferences of students, their stickiness
degrees, schools’ priorities and capacities, a matching (placement of students into
schools) is sticky-stable if

• no student prefers being unassigned to his/her assignment,

• any student’s more preferred school has full capacity, and

• there is no student-school pair such that the rank difference between his/her
assignment and the school is greater than his/her stickiness degree, and s/he
has a higher priority than another student who is assigned to that school.

Note that Gale and Shapley’s stability coincides with sticky-stability when each
student’s stickiness degree is zero.
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7.1 Sticky-Stable SMTI

Afacan et al. (2016) introduce a weakening of stability that results in improved
efficiency and no appeals against priority violations. Motivated by these results, we
investigate the efficiency improvements in hard variants of SMTI. For that purpose,
we define sticky-stable SMTI problem.

We allow men and women to personalize the level of preference violations that they
would comply with, by allowing them to report their stickiness degrees. We slightly
modify the stickiness degree definition to fit our definitions better. Each agent
is required to specify their stickiness degree alongside their preference list. The
stickiness degree of a man(woman) is equal to one less than his(her) answer to the
following question: “What is the least rank difference between women(men) where
you would be willing to appeal in the case a priority violation if your appeal would
definitely be granted?”. Let sticky : (M ∪W ) 7→ N be a function which maps every
agent to their stickiness degree. Then, sticky-SMTI problem with sticky stability is
characterized by the tuple ⟨M,W,mrank,wrank, sticky⟩.

A matching µ is sticky-blocked by a pair (x,y) ∈M ×W , if the following hold:

S1 x and y are acceptable to each other,

S2 x and y are not married to each other (i.e., µ(x) ̸= y),

S3 (a) x and y are both single,

(b) mrank(x,µ(x))−mrank(x,y) > sticky(x) and y is single,

(c) wrank(y,µ−1(y))−wrank(y,x) > sticky(y) and x is single or

(d) mrank(x,µ(x)) − mrank(x,y) > sticky(x) and wrank(y,µ−1(y)) −
wrank(y,x) > sticky(y).

A matching is called sticky-stable if it is not sticky-blocked by any pair of agents.
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7.2 Solving Sticky-SMTI using ASP

The input of a sticky-SMTI instance ⟨M,W,mrank,wrank, sticky⟩ is formalized in
ASP by extending the set of facts FI , as described in Section 3, by atoms of the
form sticky(x,k) (“stickiness degree of agent x is k, i.e., sticky(x) = k”).

We revise our ASP formulation by modifying the set of rules that describe preferences
of men and women to incorporate sticky-stability. We define preferences of man x

(i.e., x prefers y to y1) and woman y (i.e., y prefers x to x1) in terms of rankings
and their stickiness degree.

mprefer(x,y,y1)←mrank(x,y1, r),mrank(x,y,r1),sticky(x,k), r− r1 > k.

wprefer(y,x,x1)← wrank(y,x1, r),wrank(y,x,r1),sticky(y,k), r− r1 > k.

7.3 Experimental Results

We conduct experiments using our ASP formulations and Clingo to investigate
the effect of sticky-stability for solving hard variants of SMTI. To evaluate the
sticky stability under optimization, we compare the optimization values for hard
variants with traditional stability. We evaluate these comparisons by answering
the following question “How much does stickiness improve optimality?”. We also
compare average CPU times to answer the question “How much does stickiness
improve computational performance?”.

The weak constraint introduced in Section 3.3 is utilized to solve Max Cardinality
sticky-SMTI. The straight-forward and chaining-based weak constraints presented
in Section 6.1.4 and Section 6.1.5 are utilized to solve Egalitarian sticky-SMTI and
Sex-Equal sticky-SMTI, respectively. The benchmark instances are extended by
assigning a stickiness degree of 1 to each man, and 0 to each woman.

In Table 7.1, the average number of singles for traditional stability are presented.
The instances with incompleteness between 0.1 and 0.5 are omitted since the number
of singles is mostly 0. The minimum number of singles decreases to 0 for each
benchmark instance when stickiness is introduced.
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Table 7.1 Max Cardinality SMTI: Average number of singles for n = 50.

p2
p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.6 0.2 0.4 0 0.2 0 0 0 0 0
0.7 0.6 0.4 0.8 0 0.2 0 0 0 0
0.8 3.8 1.6 1.8 1.6 0.6 0.2 0 0 0

The average CPU times for solving Max Cardinality sticky-SMTI are reported in
Table 7.2. The results are comparable to the results for traditional stability. We
observe that stickiness does not provide a significant improvement in computational
performance. Similarly to instances with n = 50, the minimum number of singles de-
creases to 0 for each benchmark instance with stickiness. We conclude that for Max
Cardinality, there is a notable improvement in optimality, but not in computational
performance.

Table 7.2 Max Cardinality optimization: Average CPU-Times (in seconds).

p2
Size p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 6.79 6.69 6.57 6.45 6.28 6.26 5.88 5.37 4.19
0.2 4.78 4.68 4.65 4.54 4.29 4.1 3.93 3.58 2.49
0.3 2.85 2.78 2.71 2.64 2.5 2.43 2.33 2.05 1.58

SMTI 0.4 1.74 1.74 1.69 1.7 1.53 1.52 1.37 1.28 0.93
(n = 50) 0.5 1.04 0.99 1.0 0.98 0.9 0.91 0.75 0.69 0.52

0.6 0.56 0.52 0.56 0.51 0.44 0.43 0.4 0.35 0.24
0.7 0.24 0.23 0.23 0.21 0.18 0.19 0.15 0.14 0.11
0.8 0.07 0.07 0.08 0.09 0.08 0.08∗ 0.07 0.05 0.04
0.1 5.22 5.03 5.04 4.8 4.79 4.47 4.1 3.5 2.1
0.2 3.56 3.55 3.54 3.04 2.98 2.86 2.53 2.17 1.31
0.3 2.21 2.16 2.12 1.99 1.84 1.79 1.64 1.32 0.79

sticky-SMTI 0.4 1.32 1.28 1.23 1.23 1.17 1.2 0.96 0.77 0.38
(n = 50) 0.5 0.77 0.82 0.74 0.67 0.64 0.61 0.46 0.36 0.22

0.6 0.39 0.34 0.36 0.33 0.3 0.29 0.24 0.18 0.11
0.7 0.15 0.15 0.15 0.13 0.12 0.11 0.1 0.09 0.07
0.8 0.08 0.06 0.06 0.06 0.06 0.05 0.04 0.04 0.03
0.1 164.37 171.73 158.44 152.13 162.43 148.38 143.9 139.34 119.09
0.2 114.99 114.34 110.97 106.19 106.82 98.89 93.74 90.68 79.94
0.3 62.53 61.5 57.85 63.05 59.38 55.7 56.82 48.24 43.39

SMTI 0.4 35.2 35.14 34.88 34.39 33.78 32.13 29.58 27.36 22.89
(n = 100) 0.5 18.07 19.05 18.42 17.91 18.09 16.63 16.43 14.31 12.04

0.6 8.57 8.4 8.34 8.11 8.33 8.58 7.25 6.83 5.39
0.7 3.44 3.55 3.42 3.42 3.67 3.5 3.22 2.68 2.19
0.8 1.1 1.07 1.08 1.04 1.08 1.01 0.95 0.81 0.58
0.1 92.04 91.52 90.17 89.94 88.54 85.99 80.62 74.38 56.44
0.2 62.69 62.62 62.77 62.42 61.92 58.78 55.34 50.5 32.92
0.3 35.19 36.28 35.5 34.94 33.5 31.38 30.34 27.34 19.89

sticky-SMTI 0.4 26.18 25.85 24.72 24.19 23.82 22.94 21.22 16.91[9] 11.31
(n = 100) 0.5 14.11 16.43 13.75 13.21 13.03 12.21 11.95 10.31 6.8

0.6 8.45 12.2 7.17 6.75 6.32 6.16 5.44 4.76 2.89
0.7 3.33 3.53 2.98 2.79 2.76 2.76 2.26 1.79 1.09
0.8 0.99 0.92 0.91 0.81 0.77 0.7 0.59 0.47 0.28
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We present the results for Egalitarian sticky-SMTI and Sex-Equal sticky-SMTI us-
ing straight-forward and chaining-based formulations in Table 7.3 and Table 7.4,
respectively. We observe that the performance notably deteriorates in terms of time
consumption, when compared to traditional stability. This is possibly caused by
larger space of matchings due to sticky-stability. It is also interesting to observe
that chaining provides better improvement for Sex-Equal sticky-SMTI than Egali-
tarian sticky-SMTI.

In Table 7.5 and Table 7.6, we present average optimal values computed by Clingo
using chaining-based formulations for Egalitarian and Sex-Equal optimization, re-
spectively. We observe that there is a slight improvement in optimal values for
Egalitarian optimization with stickiness. Note that Clingo cannot find optimal
solutions for any of the instances with p2≥ 0.4 for Egalitarian sticky-SMTI, hence
our comparison is restricted. For Sex-Equal optimization, we observe that there is
a significant improvement in optimal values. For almost each instance, the optimal
value decreases to 0 when stickiness is introduced.

We conclude that for Egalitarian optimization, the computational performance wors-
ens while optimality slightly improves when stickiness is introduced. However, for
Sex-Equal optimization, stickiness significantly improves optimality while computa-
tional performance slightly worsens.
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Table 7.3 Egalitarian optimization: Average CPU-Times (in seconds) for n = 50.

ve
rs

io
n

p2

p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ba
sic

(s
tic

ky
-S

M
T

I)

0.1 355.25[8] 1236.92[5] 133.79[1] TO TO TO TO TO TO
0.2 73.34 172.33[7] 870.15[3] TO TO TO TO TO TO
0.3 81.51 227.91[6] TO TO TO TO TO TO TO
0.4 52.89 455.18[5] TO TO TO TO TO TO TO
0.5 38.43[8] 528.8[7] 1176.89[1] TO TO TO TO TO TO
0.6 221.48[9] 600.6 TO TO TO TO TO TO TO
0.7 88.69 844.21[5] TO TO TO TO TO TO TO
0.8 34.8 497.03[5] 695.11[1] TO TO TO TO TO TO

ch
ai

ni
ng

(s
tic

ky
-S

M
T

I)

0.1 256.31 870.76[8] 301.61[1] TO TO TO TO TO TO
0.2 95.29 409.01 1094.85[4] TO TO TO TO TO TO
0.3 111.12 239.43[6] 1632.77[1] TO TO TO TO TO TO
0.4 116.94 991.32[9] TO TO TO TO TO TO TO
0.5 64.47[8] 412.37[6] 669.64[1] TO TO TO TO TO TO
0.6 313.35 753.16[9] TO TO TO TO TO TO TO
0.7 131.38 763.34[6] 1428.69[1] TO TO TO TO TO TO
0.8 21.78 759.43[7] 597.72[1] TO TO TO TO TO TO

ch
ai

ni
ng

(S
M

T
I)

0.1 6.62 6.6 6.7 6.85 7.31 11.25 32.79 766.17[6] TO
0.2 4.38 4.41 4.52 4.63 5.04 13.48 28.54[9] 335.75[2] TO
0.3 2.73 2.73 2.76 2.99 3.69 12.77 104.09 522.89[4] TO
0.4 1.63 1.64 1.64 1.71 2.83 6.58 103.73[8] 824.53[4] TO
0.5 0.97 0.93 0.97 1.08 1.19 10.4 115.4[8] 1162.78[2] TO
0.6 0.52 0.49 0.54 0.7 0.88 10.37 263.36[9] 653.44[4] TO
0.7 0.2 0.2 0.22 0.3 0.36 2.77 481.47[9] 1374.47[2] TO
0.8 0.08 0.09 0.09 0.13 0.43 163.25 74.75[9] 167.91[2] 758.19[1]

TO: Timeout (over 2000 seconds)
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Table 7.4 Sex-Equal optimization: Average CPU-Times (in seconds) for n = 50.
ve

rs
io

n

p2

p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ba
sic

(s
tic

ky
-S

M
T

I)

0.1 TO TO TO TO TO TO TO TO TO
0.2 TO TO TO TO TO TO TO TO TO
0.3 TO TO TO TO TO TO TO TO TO
0.4 TO TO TO TO TO TO TO TO TO
0.5 TO TO 772.78[1] TO TO TO TO TO TO
0.6 1248.89[4] 1587.36[3] 1219.22[2] 854.95[4] 663.89[5] 460.92[1] 189.56[2] 224.88[2] TO
0.7 640.57 737.86[9] 562.21[9] 544.95[8] 468.17[7] 183.51[6] 734.49[2] 1038.07[7] 354.71[3]
0.8 46.36 37.31 59.58 152.56 41.83 487.05[9] 201.71 242.83 154.56[9]

ch
ai

ni
ng

(s
tic

ky
-S

M
T

I)

0.1 1235.66[9] 1101.75[9] 902.55[9] 714.64[8] 526.75[9] 265.78[7] 257.97[7] TO 417.28[1]
0.2 596.75 775.73 553.13 458.14[9] 496.73[8] 269.84 205.59[9] 831.66[5] 1442.84[4]
0.3 628.05 399.2 321.53 219.84 241.37 314.82[9] 246.77[6] 163.38[4] 875.59[1]
0.4 229.63 193.25[9] 228.8 167.61 116.58 153.53[8] 144.8[8] 341.76[4] 1355.42[1]
0.5 147.18 95.74 169.34 81.46 76.31 120.21 137.22[8] 337.76[9] 867.91[1]
0.6 61.87 68.46 64.73 50.95 58.66 84.41 495.0[9] 420.49[8] TO
0.7 25.36 45.21 29.47 31.16 103.26 38.62 193.94[9] 216.74[5] TO
0.8 4.95 9.94 10.74 12.62 43.37 50.49 67.14[9] 244.69[4] 1393.38[1]

ch
ai

ni
ng

(S
M

T
I)

0.1 410.75 283.28 248.9 254.53 261.94 289.79 201.33 450.76[9] 442.77[5]
0.2 257.84 173.88 172.3 171.38 215.68 186.1 114.89 223.85[9] 531.74[8]
0.3 153.62 170.87 165.9 176.72 103.1 124.98 176.51 113.81[8] 123.51[3]
0.4 69.78 67.29 65.9 62.12 123.9 180.76 209.12 163.38[9] 697.26[7]
0.5 47.83 47.03 45.5 50.09 34.88 37.79 92.22 172.7 277.7[4]
0.6 23.85 20.89 22.32 24.5 22.58 33.66 31.49 246.33[9] TO
0.7 9.37 8.84 8.6 9.34 12.69 16.67 160.07 1053.19[3] TO
0.8 2.09 2.11 1.89 2.0 3.79 55.62 134.62 940.11[5] TO

TO: Timeout (over 2000 seconds)

Table 7.5 Egalitarian optimization: Average optimal values for Egalitarian
sticky-SMTI (Average optimal values for Egalitarian SMTI) for n = 50.

p2
p1 0.1 0.2 0.3
0.1 591.8(629.2) 573.12[8](610.9) 509.0[1](543.9)
0.2 538.8(565.2) 508.5(542.3) 501.5[4](509.6)
0.3 515.1(534.7) 497.83[6](533.3) 464.0[1](472.4)
0.4 470.8(500.5) 446.22[9](474.2) TO(455.3)
0.5 412.5[8](463.3) 391.5[6](434.2) 347.0[1](410.4)
0.6 373.2(407.5) 350.0[9](380.9) TO(360.9)
0.7 308.2(345.0) 288.5[6](331.7) 302.0[1](310.5)
0.8 226.9(259.0) 224.29[7](255.7) 213.0[1](228.7)

TO: Timeout (over 2000 seconds)

59



Table 7.6 Sex-Equal optimization: Average optimal values for Sex-Equal
sticky-SMTI (Average optimal values for Sex-Equal SMTI) for n = 50.

p2
p1 0.1 0.2 0.3 0.4 0.5 0.6
0.1 0.11[9](11.7) 0.0[9](3.9) 0.0[9](2.6) 0.0[8](0.6) 0.0[9](1.6) 0.0[7](0.2)
0.2 0.0(13.6) 0.0(15.2) 0.0(2.1) 0.0[9](1.1) 0.0[8](0.6) 0.0(0.1)
0.3 0.0(9.9) 0.0(6.9) 0.0(1.1) 0.0(0.3) 0.0(0.1) 0.0[9](0.1)
0.4 0.0(38.3) 0.0[9](2.6) 0.0(4.6) 0.0(10.2) 0.0(5.2) 0.0[8](5.3)
0.5 0.0(28.1) 0.0(10.6) 0.0(9.0) 0.0(3.3) 0.0(1.1) 0.0(0.2)
0.6 0.0(16.3) 0.0(16.4) 0.0(10.2) 0.0(1.9) 0.0(1.8) 0.0(3.6)
0.7 0.0(40.2) 0.0(18.2) 0.0(4.1) 0.0(1.5) 0.0(12.1) 0.0(4.9)
0.8 0.0(18.6) 0.0(8.5) 0.0(4.2) 0.0(3.2) 0.0(10.6) 0.0(2.2)
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8. RELATED WORK

Numerous ASP, LP, CP and SAT models have been introduced to solve stable
matching problems.

8.1 ASP Methods for Stable Matching Problems

Clercq, Schockaert, Cock & Nowe (2016) introduced an ASP method for SMTI that
is flexible enough to compute stable matchings for the three-dimensional variant,
which is called 3D-SMTI. Their method is also demonstrably flexible enough to
select matchings based on Sex-Equal, Egalitarian, Minimum Regret and Max Car-
dinality optimization. Amendola (2018) investigated an ASP method for SM that
is derived from its abstract argumentation modeling. They introduce an incoherent
ASP program to solve Stable Roommates Problem by applying the same approach.
Erdem, Fidan, Manlove & Prosser (2020) introduced an ASP method to compute
stable matchings for Stable Roommate Problems with Ties and Incomplete lists
(SRTI). The authors also introduced weak constraints to solve Almost, Egalitarian
and Rank Maximal SRTI. Additionally, the authors provided an empirical analysis
for comparing their method to Amendola’s ASP method.

8.2 CP Methods for Stable Marriage Problems

Gent, Irving, Manlove, Prosser & Smith (2001) presented two CP encodings to
solve Stable Marriage Problem (SM) and Stable Marriage Problem with Incomplete
lists (SMI). For the first encoding, reduced domains are obtained upon enforcing
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AC which correspond to GS-lists that are obtained from Extended Gale-Shapley
algorithm (EGS). Second is a Boolean encoding based on which a SAT encoding was
introduced by Gent, Prosser, Smith & Walsh (2002) for SMTI. They also conducted
experiments, using random instance generator of Gent & Prosser (2002) to evaluate
computing a complete matching for SMTI, if one exists. In Gent & Prosser (2002),
authors extend their first encoding to provide a CP model for finding a complete
matching for SMTI, and finding the largest or smallest stable matching. They
provided the first empirical study of the complete solutions on the related decision
and optimisation problem by using Choco solver.

8.3 SAT Methods for Stable Matching Problems

Drummond et al. (2015) presented a SAT and an IP encoding (SAT-E and IP-E)
for solving SMP-C, where SAT-E is a novel approach. In their study, SMP-C (sta-
ble matching with couples) is cast as the problem of matching residents to hospital
programs. In SMP-C, both residents (hospitals) express their preferences over hos-
pitals (residents) whom they accept being matched with, in terms of preference lists.
There may be some couples of residents each of which provides a joint preference list
over hospitals. The aim is to find a stable matching in which no resident-hospital
pair has motive to appeal. An empirical study is presented where both of which are
state-of-the-art solvers Lingeling (Biere, 2010) and CPLEX are used to solve SAT-
E and IP-E, respectively. They also implemented two existing deferred acceptance
(DA) style algorithms and provide an empirical analysis to compare them with SAT
and IP approaches. They showed that SAT is an effective method that outperforms
IP and DA approaches.

8.4 Stability

Due to significant efficiency losses caused by traditional stability, researchers have
proposed several ways of weakening stability such as “pseudo-stability” (Abdulka-
diroglu, 2011), “individual trade stability” (Papai, 2013), “justness” (Morrill, 2015),
and ”sticky-stability” (Afacan et al., 2016). Sticky-stability was introduced to ac-
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commodate appeal costs in school placements. Authors introduce two sticky-stable
mechanisms in school choice domain which are more efficient than DA. Although
being prone to misreporting under complete information case, the mechanisms show
advantageous strategic qualities for obtaining sticky-stable matchings. Moreover,
such mechanisms yield more efficient and appeal-free outcomes.
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9. CONCLUSIONS

We have conducted an empirical study to compare a variety of methods to solve
hard variants of SMTI: Max Cardinality, Sex-Equal and Egalitarian SMTI. We have
introduced a novel Answer Set Programming (ASP) formulation that utilizes weak
constraints, which is implemented for Clingo. We have implemented the CP models
proposed by Gent & Prosser (2002) for Google OR-Tools and Choco solver, and
replicate their experiments for finding a complete stable matching and finding a
largest stable matching. We used their method for finding a largest stable matching
to solve Max Cardinality SMTI and adapted it for solving other hard variants. We
also adapted the SAT formulation of Drummond et al. (2015) to solve SMTI along
with Max Cardinality and Egalitarian SMTI. We have empirically compared these
declarative methods over randomly generated instances. We also compared them to
existing ILP and local search approaches. For this purpose, we have used an existing
Integer Linear Programming model of Max Cardinality SMTI which is adapted it
for solving other hard variants and implemented for Gurobi and Google-OR Tools
(MIP and CP). We have used the implementations of two different existing local
search algorithms to solve Max Cardinality SMTI.

We have also performed experiments to compare Answer Set Programming with
Propositional Satisfiability, over SMTI instances. For the latter, we have utilized
Cmodels with the SAT solver ZChaff, and SAT-E implementation with the SAT
solver Lingeling.

There are several important discussions. First of all, modeling is an important
step in all these problem-solving methods. For that reason, we have utilized the
existing and empirically evaluated models in the literature, for SAT, ILP and local
search. We have come up with our own ASP formulation for SMTI variants after
trying different formulations and considering elaboration tolerance, as the existing
ASP formulations of the stable marriage problems used as benchmarks in the ASP
competitions address SMT problem (a tractable variant of SM (Irving, 1994)).

In our experiments that we replicate from Gent & Prosser (2002), we observe simi-
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lar results in terms of search effort and solubility for OR-Tools while our results for
Choco solver are inconsistent with Gent & Prosser’s. In our comparison of meth-
ods for optimization variants, it interesting to observe that the declarative methods
(ASP, SAT, ILP, CP) are more promising than local search algorithms as the prob-
lems get harder with more ties and incompleteness. Our experimental results also
indicate that while ASP, SAT and CP approaches are mostly comparable, ILP ap-
proaches are generally more efficient. It is also notable that the CP model of Gent
& Prosser (2002) does not scale well for Max Cardinality SMTI, in terms of memory
consumption.

Additionally, we have described a variation of SMTI which is based on sticky-
stability (Afacan et al., 2016), called sticky-SMTI. We have presented the experi-
mental results for solving Max Cardinality, Egalitarian, and Sex-Equal sticky-SMTI.
We have observed a significant improvement in optimality for Max Cardinality and
Sex-Equal optimization while the CPU times are comparable with traditional sta-
bility.

Based on our experiences with the declarative programming paradigms, the difficulty
of adapting existing models for SMTI and its hard variants was similar for ILP and
CP. Adapting the SAT formulation was challenging due to edge cases that stem
from ties in preference lists. It was easier to implement existing models in ILP
and CP using the state-of-the-art solvers. Although ASP is a substantially different
paradigm, inventing a straight-forward model for SMTI was relatively easy given a
basic familiarity with the syntax and semantics. Moreover, observing answer sets
makes debugging much easier compared to others.

For future work, there are interesting problems regarding our methodology and
stable matching problems. For instance, solving Sex-Equal SMTI using SAT is a
future work for us. We are also interested in extending our formulations to solve
other stable matching problems such as Stable Roommate Problem with Ties and
Incomplete lists (SRTI), and to solve other optimization variants of SMTI such as
Minimum Regret SMTI and Rank Maximal SMTI. We believe that an extended
empirical study that compares these methods for solving diverse stable matching
problems will be valuable to better understand the strengths of declarative methods.

65



BIBLIOGRAPHY

Abdulkadiroglu, A. (2011). Generalized matching for school choice. Working Paper,
Duke University.

Afacan, M. O., Aliogullari, Z. H., & Barlo, M. (2016). Sticky matching in school
choice. Economic Theory, 64 (3), 509–538.

Alkan, A. & Gale, D. (2003). Stable schedule matching under revealed preference.
Journal of Economic Theory, 112 (2), 289–306.

Alkan, A. & Moulin, H. (2003). Mathematical theories of allocation of discrete
resources: equilibria, matchings, mechanisms. Elsevier.

Amendola, G. (2018). Solving the stable roommates problem using incoherent an-
swer set programs. In Proceedings of the RiCeRcA Workshop co-located with
the 17th International Conference of the Italian Association for Artificial In-
telligence, volume 2272 of CEUR Workshop Proceedings.

Biere, A. (2010). Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT race 2010.
Technical report, FMV Technical Reports 10/1.

Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.). (2009). Handbook of Sat-
isfiability, volume 185 of Frontiers in Artificial Intelligence and Applications.
IOS Press.

Brewka, G., Eiter, T., & Truszczynski, M. (2016). Answer set programming: An
introduction to the special issue. AI Magazine, 37 (3), 5–6.

Buccafurri, F., Leone, N., & Rullo, P. (2000). Enhancing disjunctive datalog by
constraints. IEEE Trans. Knowl. Data Eng., 12 (5), 845–860.

Clercq, S. D., Schockaert, S., Cock, M. D., & Nowe, A. (2016). Solving stable
matching problems using answer set programming. Theory Pract. Log. Pro-
gram., 16 (3), 247–268.

Drummond, J., Perrault, A., & Bacchus, F. (2015). SAT is an effective and complete
method for solving stable matching problems with couples. In Proc. of IJCAI,
(pp. 518–525).

Erdem, E., Fidan, M., Manlove, D. F., & Prosser, P. (2020). A general framework
for stable roommates problems using answer set programming. Theory Pract.
Log. Program., 20 (6), 911–925.

Eyupoglu, S., Fidan, M., Gulesen, Y., Izci, I., Teber, B., Yilmaz, B., Alkan, A.,
& Erdem, E. (2021). Proceedings 37th international conference on logic pro-
gramming (technical communications): Stable marriage problems with ties
and incomplete preferences: An empirical study. Electronic Proceedings in
Theoretical Computer Science, 345, 189–190.

Freuder, E. C. & Mackworth, A. K. (2006). Constraint satisfaction: An emerging
paradigm. In Handbook of Constraint Programming, volume 2 of Foundations
of Artificial Intelligence (pp. 13–27). Elsevier.

Gale, D. & Shapley, L. S. (1962). College admissions and the stability of marriage.
The American Mathematical Monthly, 69 (1), 9–15.

Gärdenfors, P. (1975). Match making: Assignments based on bilateral preferences.
Behavioral Science, 20 (3), 166–173.

Gelain, M., Pini, M. S., Rossi, F., Venable, K. B., & Walsh, T. (2013). Local search
approaches in stable matching problems. Algorithms, 6 (4), 591–617.

66



Gelfond, M. & Lifschitz, V. (2000). The stable model semantics for logic program-
ming. Logic Programming, 2, 10.

Gent, I. P., Irving, R. W., Manlove, D. F., Prosser, P., & Smith, B. M. (2001). A
constraint programming approach to the stable marriage problem. In Proc. of
CP’01, (pp. 225–239).

Gent, I. P. & Prosser, P. (2002). An empirical study of the stable marriage problem
with ties and incomplete lists. In Proc. of ECAI, (pp. 141–145).

Gent, I. P., Prosser, P., Smith, B., & Walsh, T. (2002). SAT encodings of the stable
marriage problem with ties and incomplete lists. In Proc. of SAT, (pp. 133–
140).

Giunchiglia, E., Lierler, Y., & Maratea, M. (2004). SAT-based answer set program-
ming. In Proc. of AAAI, (pp. 61–66).

Gomes, C. P., Kautz, H. A., Sabharwal, A., & Selman, B. (2008). Satisfiability
solvers. In F. van Harmelen, V. Lifschitz, & B. W. Porter (Eds.), Handbook
of Knowledge Representation, volume 3 (pp. 89–134). Elsevier.

Gusfield, D. & Irving, R. W. (1989). The Stable Marriage Problem: Structure and
Algorithms. MIT Press.

Haas, C. (2021). Two-sided matching with indifferences: Using heuristics to improve
properties of stable matchings. Computational Economics, 57 (4), 1115–1148.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press.

Irving, R. W. (1994). Stable marriage and indifference. Discrete Applied Mathemat-
ics, 48 (3), 261–272.

Iwama, K., Manlove, D. F., Miyazaki, S., & Morita, Y. (1999). Stable marriage with
incomplete lists and ties. In Wiedermann, J., van Emde Boas, P., & Nielsen,
M. (Eds.), Automata, Languages and Programming, volume 1644, (pp. 443–
452). Springer.

Jaffar, J. & Lassez, J.-L. (1987). Constraint logic programming. In Proc. of POPL,
(pp. 111–119).

Järvisalo, M., Le Berre, D., Roussel, O., & Simon, L. (2012). The international sat
solver competitions. AI Magazine, 33 (1), 89–92.

Kantorovich, L. V. (1960). Mathematical methods of organizing and planning pro-
duction. Management Science, 6 (4), 366–422.

Kato, A. (1993). Complexity of the sex-equal stable marriage problem. Japan
Journal of Industrial and Applied Mathematics, 10 (1), 1–19.

Kwanashie, A. & Manlove, D. F. (2014). An integer programming approach to the
hospitals/residents problem with ties. In Proc. of Operations Research, (pp.
263–269).

Lei, Z., Cai, S., Wang, D., Peng, Y., Geng, F., Wan, D., Deng, Y., & Lu, P. (2021).
Cashwmaxsat: Solver description. In MaxSAT Evaluation 2021.

Li, C. M. & Manyà, F. (2009). Maxsat, hard and soft constraints. In Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications
(pp. 613–631). IOS Press.

Lifschitz, V. (2002). Answer set programming and plan generation. Artificial Intel-
ligence, 138 (1-2), 39–54.

Lin, S. & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-
salesman problem. Oper. Res., 21 (2), 498–516.

67



Manlove, D. (2014). Algorithmics of matching under preferences. In Bull. EATCS.
World Scientific Publishing Co. Pte. Ltd.

Manlove, D. F., Irving, R. W., Iwama, K., Miyazaki, S., & Morita, Y. (2002). Hard
variants of stable marriage. Theoretical Computer Science, 276 (1-2), 261–279.

Manlove, D. F. & O’Malley, G. (2014). Paired and altruistic kidney donation in the
UK: algorithms and experimentation. ACM J. Exp. Algorithmics, 19 (1).

Marek, V. W. & Truszczyński, M. (1999). Stable models and an alternative logic
programming paradigm. In The Logic Programming Paradigm (pp. 375–398).
Springer.

Morrill, T. (2015). Making just school assignments. Games and Economic Behavior,
92, 18–27.

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff:
engineering an efficient sat solver. In Proc. of IEEE DAC, (pp. 530–535).

Niemelä, I. (1999). Logic programs with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelligence,
25 (3), 241–273.

Papai, S. (2013). Matching with minimal priority rights. Working Paper, Concordia
University.

Rossi, F., van Beek, P., & Walsh, T. (Eds.). (2006). Handbook of Constraint Pro-
gramming, volume 2 of Foundations of Artificial Intelligence. Elsevier.

Roth, A. E., Sonmez, T., & Utku Unver, M. (2005). Pairwise kidney exchange.
Journal of Economic Theory, 125 (2), 151–188.

Roth, A. E. & Sotomayor, M. (1992). Two-sided matching. Handbook of game theory
with economic applications, 1, 485–541.

Selman, B. & Gomes, C. P. (2006). Hill-climbing search. In Encyclopedia of Cognitive
Science. American Cancer Society.

Simons, P., Niemelä, I., & Soininen, T. (2002). Extending and implementing the
stable model semantics. Artif. Intell., 138 (1), 181–234.

Van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming. MIT
Press.

van Hoeve, W. & Katriel, I. (2006). Global constraints. In Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence (pp. 169–208).
Elsevier.

68



APPENDIX A

ASP formulations

In Figure A.1, we present the ASP formulation presented to Clingo for solving
SMTI, which is introduced in Section 3.2.

In addition to the ASP formulation presented in Figure A.1, corresponding straight-
forward weak constraints are presented to Clingo, for solving Max Cardinality
SMTI (Fig. A.2), Egalitarian SMTI (Fig. A.3) and Sex-Equal SMTI (Fig. A.7).
These weak constraints are introduced in Section 3.3.

We also present alternative versions of weak constraints presented to Clingo for
solving Egalitarian SMTI in Figure A.4 (version 1), Figure A.5 (version 2), and
Figure A.6 (chaining), and Sex-Equal SMTI in Figure A.8 (chaining) which are
introduced in Section 6.1.

Implementations of Gent and Prosser’s CP model

In Figure A.9, we present our Python implementation of Gent and Prosser’s CP
model presented to OR-Tools’ CP-SAT solver, for finding a stable matching. We
also present our implementations presented to CP-SAT solver, in addition to the im-
plementation for finding a stable matching, for solving Max Cardinality SMTI, Egal-
itarian SMTI, and Sex-Equal SMTI in Figure A.10, Figure A.11 and Figure A.12,
respectively.
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% man M prefers W to being single
maccept(M, W) :- man(M), woman(W), mrank(M, W, R).

% woman W prefers man M to being single
waccept(W, M) :- man(M), woman(W), wrank(W, M, R).

% acceptability
acceptable(M, W) :- maccept(M, W), waccept(W, M).

% generate matching
{marry(M, W) : woman(W), acceptable(M, W)}1 :- man(M).
:- {marry(M, W) : man(M)} > 1, woman(W).

% singles
msingle(M) :- man(M), {marry(M, W) : woman(W)}0.
wsingle(W) :- woman(W), {marry(M, W) : man(M)}0.

% man M prefers woman W1 to woman W2.
mprefer(M, W1, W2) :- mrank(M, W1, R1), mrank(M, W2, R2), R1 < R2.

% woman W prefers man M1 to man M2.
wprefer(W, M1, M2) :- wrank(W, M1, R1), wrank(W, M2, R2), R1 < R2.

% M1 and W2 form a blocking pair.
:- man(M1; M2), woman(W1; W2), marry(M1, W1), marry(M2, W2),

mprefer(M1, W2, W1), wprefer(W2, M1, M2).
% M and W2 form a blocking pair.
:- man(M), woman(W1; W2), marry(M, W1), wsingle(W2),

acceptable(M, W2), mprefer(M, W2, W1).
% M1 and W2 form a blocking pair.
:- man(M1; M2), woman(W), marry(M1, W), msingle(M2),

acceptable(M2, W), wprefer(W, M2, M1).
% M and W form a blocking pair.
:- man(M), woman(W), msingle(M), wsingle(W), acceptable(M, W).

#show marry/2.
#show msingle/1.
#show wsingle/1.

Figure A.1 ASP formulation for solving SMTI

:~ msingle(M). [1@1,m,M]
:~ wsingle(W). [1@1,w,W]

Figure A.2 Weak constraint for solving Max Cardinality SMTI

:~ marry(M, W), mrank(M, W, R1), wrank(W, M, R2). [R1+R2@1,M,W]

Figure A.3 Weak constraint (basic) for solving Egalitarian SMTI
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mancost(M, R1) :- marry(M, W), mrank(M, W, R1).
womancost(M, R2) :- marry(M, W), wrank(W, M, R2).
:~ mancost(M, R1). [R1@1, m, M]
:~ womancost(W, R2). [R2@1, w, W]

Figure A.4 Weak constraint (version 1) for solving Egalitarian SMTI

:~ marry(M, W), mrank(M, W, R1). [R1@1,m,M]
:~ marry(M, W), wrank(W, M, R2). [R2@1,w,W]

Figure A.5 Weak constraint (version 2) for solving Egalitarian SMTI

mcost(M, R1) :- marry(M, W), mrank(M, W, R1).
mcost(M, R1 - 1) :- mcost(M, R1), R1 > 1.

wcost(W, R2) :- marry(M, W), wrank(W, M, R2).
wcost(W, R2 - 1) :- wcost(W, R2), R2 > 1.

:~ mcost(M,C). [1@1, m, M, C]
:~ wcost(W,C). [1@1, w, W, C]

Figure A.6 Weak constraint with chaining (version 3) for solving Egalitarian SMTI

:~ T = #sum{R1-R2, M, W: marry(M, W), mrank(M, W, R1),
wrank(W, M, R2)}. [|T|@1]

Figure A.7 Weak constraint (basic) for solving Sex-Equal SMTI

mcost(M, R1) :- marry(M, W), mrank(M, W, R1).
mcost(M, R1 - 1) :- mcost(M, R1), R1 > 1.

wcost(W, R2) :- marry(M, W), wrank(W, M, R2).
wcost(W, R2 - 1) :- wcost(W, R2), R2 > 1.

mcost(T) :- T = #count{1,C,M: mcost(M,C)}.
wcost(T) :- T = #count{1,C,W: wcost(W,C)}.

cost(|T1-T2|) :- mcost(T1), wcost(T2).
cost(T-1) :- cost(T), T>1.
:~ cost(T), T!=0. [1@1,T]

Figure A.8 Weak constraint (chaining) for solving Sex-Equal SMTI
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from ortools.sat.python import cp_model

model = cp_model.CpModel()
x = {}
y = {}
# creating variables
for mIndex in range(1, numberOfMan+1):

# for each man, create a variable with
# the domain of his acceptable partners
x[mIndex] = model.NewIntVarFromDomain(cp_model.Domain.FromValues(

getAcceptableWomenSet(mIndex)), name=’m{}’.format(mIndex))
for wIndex in range(1, numberOfWoman+1):

# for each woman, create a variable with
# the domain of his acceptable partners
y[wIndex] = model.NewIntVarFromDomain(cp_model.Domain.FromValues(

getAcceptableMenSet(wIndex)), name=’w{}’.format(wIndex))

# for each man-woman pair, check the conditions
# where an illegal marriage or a blocking pair occur
for mIndex in range(1, numberOfMan+1):

for wIndex in range(1, numberOfWoman+1):
iswm, i = isWomanInManList(mIndex, wIndex)
ismw, j = isManInWomanList(mIndex, wIndex)
# ensure that they are mutually acceptable
if iswm and ismw:

# eliminate illegal marriages
mpref = breakTies(manDict[mIndex])
wpref = breakTies(womanDict[wIndex])
widx = mpref.index(wIndex)
midx = wpref.index(mIndex)
for k in range(len(mpref)):

if k != widx:
# ensure that there cannot be the case where man
# with mIndex is matched to a woman other than woman
# with wIndex, but woman with wIndex is matched to him
model.AddForbiddenAssignments([x[mIndex], y[wIndex]],

[(mpref[k], mIndex)])

for l in range(len(wpref)):
if l != midx:

# ensure that there cannot be the case where woman
# with wIndex is matched to a man other than man
# with mIndex, but man with mIndex is matched to her
model.AddForbiddenAssignments([y[wIndex], x[mIndex]],

[(wpref[l], wIndex)])
# eliminate blocking pairs
# find next woman/man in the pref lists of mIndex/wIndex
nextwidx, nextmidx = findNext(mIndex, wIndex)
# ensure that next elements exist for both
if nextwidx != -1 and nextmidx != -1:

for k in range(nextwidx, len(mpref)):
for l in range(nextmidx, len(wpref)):

# ensure that there cannot be the case where man
# with mIndex and woman with wIndex are both matched to
# less preferred partners

model.AddForbiddenAssignments(
[y[wIndex], x[mIndex]],[(wpref[l], mpref[k])])

Figure A.9 Python implementation of Gent and Prosser’s CP model for SMTI
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# Max Cardinality optimization
mm_vars = [model.NewBoolVar(’mm{}’.format(mIndex))

for mIndex in range(1,numberOfMan+1)]
for i, mvar in enumerate(mm_vars):

model.Add(x[i+1] <= numberOfWoman).OnlyEnforceIf(mvar)
model.Add(x[i+1] > numberOfWoman).OnlyEnforceIf(mvar.Not())

model.Maximize(sum(mm_vars))

Figure A.10 Python implementation for solving Max Cardinality SMTI

# Egalitarian optimization
costs = []
for mIndex in range(1, numberOfMan + 1):

for wIndex in range(1, numberOfWoman + 1):
if mrank[mIndex][wIndex] is not False and

inst[wIndex][mIndex] is not False:
b = model.NewBoolVar()
cost = model.NewIntVar(0, 2*numberOfMan + 1)
# ensure b_ij is true if and only if x_i and y_j are married
model.Add(x[mIndex] == wIndex).OnlyEnforceIf(b)
model.Add(x[mIndex] != wIndex).OnlyEnforceIf(b.Not())
# cost for x_i and y_j is 0 if they are not married,
# else it is equal to the sum of ranks
# that they give to each other
model.Add(cost == 0).OnlyEnforceIf(b.Not())
model.Add(cost == (mrank[mIndex][wIndex] +

wrank[wIndex][mIndex])).OnlyEnforceIf(b)
costs.append(cost)

# minimize total cost
model.Minimize(sum(costs))

Figure A.11 Python implementation for solving Egalitarian SMTI
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mcosts = []
wcosts = []
z = model.NewIntVar(0, numberOfMan**2, ’z’)
for mIndex in range(1, numberOfMan + 1):

for wIndex in range(1, numberOfWoman + 1):
if inst.mrank[mIndex][wIndex] is not False and

inst.wrank[wIndex][mIndex] is not False:
b = model.NewBoolVar(str(mIndex) + ’-’ + str(wIndex))
mcost = model.NewIntVar(0, numberOfWoman, ’mcost’+str(mIndex))
wcost = model.NewIntVar(0, numberOfMan, ’wcost’+str(wIndex))
# ensure b_ij is true if and only if x_i and y_j are married
model.Add(x[mIndex] == wIndex).OnlyEnforceIf(b)
model.Add(x[mIndex] != wIndex).OnlyEnforceIf(b.Not())
# ensure mcost for the pair (x_i,y_j)

equals to the mrank(x_i, y_j)
model.Add(mcost == 0).OnlyEnforceIf(b.Not())
model.Add(mcost == (inst.mrank[mIndex][wIndex]))

.OnlyEnforceIf(b)
# ensure wcost for the pair (x_i,y_j)

equals to the wrank(y_j, x_i)
model.Add(wcost == 0).OnlyEnforceIf(b.Not())
model.Add(wcost == (inst.wrank[wIndex][mIndex]))

.OnlyEnforceIf(b)
mcosts.append(mcost)
wcosts.append(wcost)

# ensure z equals to |sum of mcosts - sum of wcosts|
model.Add(z >= (sum(mcosts) - sum(wcosts)))
model.Add(z >= -(sum(mcosts) - sum(wcosts)))
# minimize the abs value
model.Minimize(z)

Figure A.12 Python implementation for solving Sex-Equal SMTI
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