
A COMPARATIVE ANALYSIS ON UNDIRECTED CUT-BASED
FORMULATIONS OF PERIODIC VEHICLE ROUTING PROBLEM

by
OĞULCAN DOĞAN

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
July 2022



OĞULCAN DOĞAN 2022 ©

All Rights Reserved



ABSTRACT

A COMPARATIVE ANALYSIS ON UNDIRECTED CUT-BASED
FORMULATIONS OF PERIODIC VEHICLE ROUTING PROBLEM

OĞULCAN DOĞAN

INDUSTRIAL ENGINEERING M.S. THESIS, JULY 2022

Thesis Supervisor: Asst. Prof. Amine Gizem Tiniç

Keywords: vehicle routing and scheduling, periodic vehicle routing problem,
integer programming, branch-and-cut

The classical Vehicle Routing Problem (VRP) is a well-studied combinatorial opti-
mization problem whose aim is to identify optimal routes for a fleet of homogeneous
vehicles to satisfy the demands of a geographically dispersed set of customers, con-
sidering a single planning period. The Periodic Vehicle Routing Problem (PRVP)
is a generalization of the classical VRP in which the planning horizon consists of
multiple periods and each customer has a set of associated possible visit schedules.
In the literature, there are many solution approaches proposed such as exact so-
lution methods, heuristic algorithms, and metaheuristics. However, exact solution
methods are much fewer in number compared to heuristic methods, and a compre-
hensive study focused on cut-based formulations of the problem is not available in
the literature. In this thesis, we propose and study several cut-based formulations
of the PVRP defined on an undirected network. Different versions of connectivity
constraints and schedule selection constraints are used to develop alternative formu-
lations. Moreover, new cut-based formulations which eliminates the use of vehicle
indices are also introduced. Since the proposed formulations contain exponentially
many connectivity constraints, we devise and implement branch-and-cut procedures
to solve them exactly. The computational experiments are prepared and conducted
for all of the formulations. The results of the experiments indicate that some of the
alternative formulations have the potential to improve computational performance.
The model without vehicle indices provides improvement in terms of reaching opti-
mality and computation times, while the models with alternative schedule selection
constraints provide promising results in terms of solution quality and average com-
putation times.
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ÖZET

PERİYODİK ARAÇ ROTALAMA PROBLEMİNİN KESİ TEMELLİ
FORMÜLASYONLARI ÜZERİNE KARŞILAŞTIRMALI BİR İNCELEME

OĞULCAN DOĞAN

ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, TEMMUZ 2022

Tez Danışmanı: Dr. Öğr. Üyesi Amine Gizem Tiniç

Anahtar Kelimeler: araç rotalama ve çizelgeleme, periyodik araç rotalama
problemi, tamsayılı programlama, dal-ve-kesi

Klasik Araç Rotalama Problemi (ARP), tek bir planlama periyodu içerisinde bir
müşteri grubunun taleplerini karşılamak amacıyla türdeş araçlardan oluşan bir araç
filosu için en düşük maliyetli rotaları belirlemeye çalışan bir kombinatoryal eniyileme
problemidir. Periyodik Araç Rotalama Problemi (PARP), planlama döneminin bir-
den çok periyottan oluştuğu ve her müşterinin bir dizi olası ziyaret çizelgesine sahip
olduğu klasik ARP’nin bir genellemesidir. Literatürde bu problemi çözmek amacıyla
önerilmiş kesin çözüm yöntemleri, sezgisel algoritmalar ve metasezgisel çözüm yak-
laşımları bulunmaktadır. Bununla birlikte PARP literatüründe, kesi temelli for-
mülasyonlara odaklanan kapsamlı çalışma eksikliği bulunmaktadır. Bu tezde, yön-
süz bir çizge üzerinde tanımlanan bir PARP için, bir temel modeli ve beş alternatif
kesi temelli formülasyon öneriyor ve bunları inceliyoruz. Alternatif formülasyonlar
geliştirmek için bağlantı kısıtlarının ve çizelgeleme seçimi kısıtlarının farklı türevleri
kullanılmaktadır. Ayrıca, PARP için araç indislerinin kullanımını ortadan kaldıran
bir yönsüz ve kesi temelli formülasyon da ortaya çıkarılmıştır. Tüm formülasyonlar
sayıca üstel olarak büyüyen bağlantı kısıtları içerdiğinden, önerilen formülasyon-
ların kesin çözümüne ulaşabilmek amacıyla dal-ve-kesi algoritması tasarlanmış ve
kullanılmıştır. Formülasyon ve çözüm yöntemlerinin belirlenmesinin ardından, tüm
formülasyonlar için hesaplamalı deneyler hazırlanmış ve uygulanmıştır. Deneylerin
sonuçları, bazı alternatif formülasyonların çözüm performansını iyileştirme potan-
siyeline sahip olduğunu göstermektedir. Araç indisleri olmayan model, en iyi sonuca
ulaşma ve çözüm süreleri açısından iyileştirme sağlarken, alternatif çizelge seçim
kısıtlarına sahip modeller, çözüm kalitesi ve ortalama çözüm süreleri açısından umut
verici sonuçlar vermektedir.
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1. INTRODUCTION

Vehicle Routing Problems (VRPs) are among the most challenging and well-studied
combinatorial optimization problems. The VRP and its variants have attracted
plenty of attention within the scientific community since its introduction by Dantzig
& Ramser (1959). In the classical VRP, the aim is to identify optimal routes for a
fleet of homogeneous vehicles in order to satisfy the (given) demands of a geograph-
ically dispersed set of customers, considering a single planning period. All routes
must begin and end at the same depot, each customer must be visited exactly once,
and the total demand assigned to any vehicle’s route should not exceed the vehicle
capacity. The objective is to minimize the total routing cost while respecting the
aforementioned constraints. To be able to model and solve VRPs encountered in
practice, numerous variants of the problem have been addressed by considering dif-
ferent objectives, including additional constraints and/or relaxing some constraints
of the classical VRP. Among some examples are the VRP with Time Windows, the
VRP with Pickup and Delivery, the Split Delivery VRP, and the Periodic VRP. This
thesis focuses on the Period VRP.

The Periodic Vehicle Routing Problem (PRVP) is a generalization of the classical
VRP in which the planning horizon consists of multiple periods and each customer
has a set of associated possible visit schedules. For each customer, one of these
schedules must be selected and the demand of the customer must be satisfied in
accordance with the selected schedule. Hence, customers may have to be visited
multiple times throughout the planning horizon depending on their schedules, but
the number of visits to a given customer at a given period is at most one. The
objective of the PVRP is to identify a set of vehicle routes for each period of the
planning horizon in a way to serve the demand at minimum total cost.

The PVRP has been a subject of research since 1974. The municipal waste collection
study of Beltrami and Bodin (1974) is considered as the introduction of PVRP
although the name PVRP did not appear explicitly in this study where varying visit
schedules are used for regions that require different amount of waste collection service
in a week. The problem can be found in the literature with different names such as
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Periodic VRP, Period VRP or Multi-Period VRP. First, the PVRP is named "the
Assignment Routing Problem" in the study of Russell and Igo (1979) which allows
visits in each period of the planning horizon with a restriction on the total number of
visits to each customer. Additionally, the instances proposed by Russell and Igo are
used as PVRP benchmarks in early studies. The paper of Christofides and Beasley
(1984) is the first to label the problem as "the Period Routing Problem" based on
the periodic structure of the PVRP. As the VRP, the PVRP has practical relevance
in a wide variety of applications such as the collection of waste and recycled goods
(Beltrami & Bodin, 1974; Russell & Igo, 1979), distribution of soft drinks (Golden
& Wasil, 1987) and more generally fast-moving consumer goods, delivery of hospital
linens (Banerjea-Brodeur, Cordeau, Laporte & Lasry, 1998) and procurement of
blood products (Hemmelmayr, Doerner, Hartl & Savelsbergh, 2009).

For the PVRP, several modeling approaches are available in the literature such as
flow-based formulations of Archetti et al. (2015), load-based formulations of Archetti
et al. (2017) and Larrain et al. (2019), and cut-based formulation of Rodriguez-
Martin et al. (2019). In the case of symmetric distances, cut-based formulations
have the potential to be more efficient as they allow reducing (halving) the number
of variables by eliminating directions on the arcs of a given network.

In the PVRP literature, exact solution methods are very limited compared to heuris-
tics and a comprehensive study on cut-based formulations has not been conducted
before. With this motivation, we propose and study several cut-based formulations
of the PVRP in this thesis. In particular, a modified version of the formulation pro-
posed by Rodriguez-Martin et al. (2019) on an undirected graph is adopted as the
base model. The modifications made on the original formulation are: (1) removal of
the driver consistency restrictions and (2) relaxation of the unit demand assumption
to allow arbitrary demands. The alternative formulations are developed by using
(i) different versions of connectivity constraints, (ii) schedule selection constraints,
and/or by eliminating (iii) vehicle indices from the base model. Performances of
the formulations are investigated through computational tests conducted on a set
of instances taken from the benchmark data set introduced by Rodriguez-Martin
et al. (2019). Due to the modifications made on the original model on Rodriguez-
Martin et al., the selected benchmark instances are also modified in terms of vehicle
capacity.

The contributions of this thesis are mainly twofold: (i) we introduce new cut-based
formulations for the PVRP with the goal of reducing the numbers of variables and
constraints as well as eliminating symmetry in the solution space compared to an
existing cut-based formulation modified and adopted as a basis, and (ii) we provide
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comparative analyses of the performances of the proposed formulations based on the
results of a detailed computational study.

The remainder of this thesis is organized as follows. The related literature on the
PVRP is reviewed in Chapter 2. In Chapter 3, the problem is defined formally and
the alternative cut-based formulations are presented. Branch-and-cut procedures
devised for solving the proposed formulations and the cut separation routine are also
described in this chapter. In Chapter 4, the results of the computational experiments
are provided along with the analyses. Chapter 5 concludes the thesis with a summary
and a discussion of our findings.
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2. LITERATURE REVIEW

The PVRP has been studied since the 1970s, and heuristics and exact approaches
have been proposed to solve the problem by many researchers. Due to the com-
putational complexity of the PVRP, many heuristic methods are proposed instead
of exact solution approaches that require longer processing times especially in early
years. The municipal waste collection study Beltrami and Bodin (1974) is consid-
ered by many researchers as the introduction of PVRP. At the time, 80% of the
budget of New York City Department of Sanitation is related to the costs came
from waste collection and sanitation services. The aim of the paper is to create an
efficient method to solve the problem, and to result in cost savings derived from the
efficiency of the routes created. For this purpose, Beltrami and Bodin proposed two
different heuristic methods and days of the week excluding Sunday as the planning
horizon in this study. While some sites have to be visited three times, while others
have to be visited on every day of the planning horizon. For the sites visited three
times a week, there are two options which are service on Monday, Wednesday and
Friday, or service on Tuesday, Thursday and Saturday. The first heuristic method is
to solve routing problem by using Clarke and Wright (1964)’s saving procedure and
then assigning routes to the day of the planning horizon based on visiting options
of the sites. The second method is to assign sites to the visiting options and then
solving the routing problem by using Clarke and Wright (1964)’s algorithm.

Five years after Beltrami and Bodin’s study, Russell and Igo (1979) published their
own study on waste collection and named the problem as “The Assignment Routing
Problem”. In the problem, more flexible visiting options are introduced. Each site
can be visited a number of times from 1 to 6 in a planning horizon. Additionally,
consecutive visits may be considered undesirable, if the number of visits are suitable.
The problem in study of Russel and Igo consists of 490 sites located in a large city and
the sites are served by four trucks. The sites that need to be visited are clustered into
126 clusters based on their proximity between them and their visit schedules. The
dataset which consists of these 126 serviceable clusters is used by many researchers
as a benchmark dataset. After the clustering, a feasible solution is obtained by
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solving a VRP for each day and the feasible solution is sequentially processed by
three different heuristic methods to gain improvements on total routing cost.

In the history of PVRP, Ryan and Foster (1976)’s integer programming formulation
is considered as one of the earliest mathematical models of the PVRP. The IP
formulation is mainly created for the VRP, but it is extended to include periodicity
of demand. The extensions discussed in the paper are specification on which days
each customer needs to be visited, interval between consecutive visits, revision of
visit schedules and workload of each vehicle over the planning horizon. Although the
IP formulation is introduced, heuristic algorithms are utilized to solve the problem
with respect to the constraints of the model. In addition, any computational results
of the PVRP formulation are not included in the paper.

Christofides and Beasley (1984) labels the problem as “the Period Routing Prob-
lem” and suggests a mathematical model to solve the PVRP. This model is widely
considered as the first IP formulation of the PVRP. In the model, a predetermined
number of visits and a set of possible visit schedules are provided for each customer,
and the scheduling constraints are written based on these sets. The objective of the
model is to minimize total routing cost over the planning horizon while satisfying
the scheduling, capacity, and sub-tour elimination constraints. These constraints
and the objective are used in majority of the PVRP formulations. Nowadays, there
are several different mathematical modeling formulations available in the literature
to solve the PVRP. The flow-based formulation of Archetti et al. (2015), load-based
formulations of Archetti et al. (2017) and Larrain et al. (2019), and cut-based for-
mulation of Rodriguez-Martin et al. (2019) can be mentioned as recent formulation
examples.

Despite the introduction of the IP formulation, Christofides and Beasley (1984)
choose heuristic methods to solve the problem. Firstly, a visit schedule is selected
for each customer and the customers are assigned to days based on the selected visit
schedules. Then, a VRP is solved for each day, and the improvement to the solution
is searched via the interchanges between visit schedules. Considering the utilization
of both mathematical modelling and heuristic methods, the hybrid optimization al-
gorithm proposed by Cacchiani et al. (2014) is a decent approach which provides
good quality solutions for well-known benchmark instances of the literature. In
their study, the authors proposed an algorithm which benefits from the set-covering
formulation of the PVRP and an iterated local search algorithm. Firstly, a col-
umn generation approach is applied to solve the LP relaxation of the set covering
formulation. The column generation process is carried out with the utilization of
an iterated local search algorithm. Then, an additional heuristic procedure which
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utilizes from a tabu list is used to obtain feasible solutions to the PVRP. The com-
putational results of the proposed algorithm provide several best-known solutions
for well-known benchmark instances of the literature. As the studies benefited from
both mathematical modelling and heuristic methods, the studies of Tan and Beasley
(1984), Russell and Gribbin (1991), Chao et al. (1995) can also be mentioned.

Exact solution methods for the PVRP are rare compared to heuristic methods due
to the computational complexity and exponential growth in size. Among the exact
solution methods, the algorithm proposed by Baldacci et al. (2011) is considered as
state-of-the-art algorithm up to the present. The study of Baldacci et al. (2011) pro-
vides an exact solution method using a set-partitioning formulation for the PVRP.
The method utilizes from an IP formulation, and LP-relaxations of the formulation.
Firstly, an optimal solution is derived from the dual of a LP-relaxation of the model.
All LP-relaxations are used to calculate stronger lower bounds for the problem. It
is proven that these lower bounds do not eliminate any optimal solution of the IP
formulation. Finally, the information gained from the dual solution and the lower
bounds are benefited to solve the IP formulation via commercial IP solver such as
CPLEX or Gurobi. As examples of the exact solution approach, there are sev-
eral other studies such as the studies of Francis et al. (2006), Francis and Smilowitz
(2006), Mourgaya and Vanderbeck (2007), Kang et al. (2005), Huerta-Muñoz (2018)
and Rothenbächer (2019).

The PVRPs can be modified with different constraints and objectives with regard
to the purpose of applications. This leads to many variants and extensions of the
PVRP. In 1992, the study of Gaudioso and Paletta (1992) was the first paper to
name the problem as “Periodic Vehicle Routing Problem”. This study can be seen as
a variant of the PVRP, because the objective of the mathematical model proposed by
the study is to minimize required number of vehicles to serve the demand instead of
minimizing the total routing cost over the planning horizon. The traveling times are
used in the constraints to restrict total traveling time of each vehicle. Additionally,
the proposed model of Gaudioso and Paletta (1992) allows vehicles to be assigned
to more than one route. With these modifications, the optimization model is solved
by using a heuristic algorithm.

One of the PVRP variants is proposed by Rodriguez-Martin et al. (2019). In
their study, each customer must be visited by the same vehicle across the planning
horizon. The motivation for their study comes from a soft drinks company which
makes regular visits to its customers. To solve this problem, the exact solution
approach is used. A MILP formulation is provided and an exact branch-and-cut
algorithm is benefited by the authors. Another contribution of this study is the
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benchmark instances randomly generated for this problem. The authors generate
240 different benchmark instances which have varying number of nodes, fleet size
of vehicles, length of planning horizon, frequency of visit and visit schedules for
customers. The studies of Baptista et al. (2002), Francis et al. (2006), Mourgaya
and Vanderbeck (2007), Schedl and Strauss (2011), Hemmelmayr et al. (2013),
Fauske et al. (2020) and Huerta-Muñoz et al. (2022) provide different variations
of the PVRP with different objective functions, constraints and solution methods
based on the motivation of their problem.
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3. PROBLEM DEFINITION AND FORMULATIONS

Consider a complete undirected graph G = (N,A) with node set N and arc set A.
The set of nodes N can be defined as N = {0,1, . . . ,n}, where node 0 corresponds to
the depot, and the other nodes correspond to customer locations. Let A = {(i, j) :
i, j ∈ N,i < j} be the set of arcs, and let cij represent a non-negative cost incurred
by the traversal of arc (i, j) ∈ A. The set of time periods is given by T = {1, . . . , t}.
A homogeneous fleet of k vehicles, denoted as K = {1, . . . ,k}, is based at the depot
node, each having a capacity of Q units. Each customer i ∈ N \ {0} has (1) an
associated demand denoted by di, which is the quantity that must be delivered per
each visit to the customer, and (2) a set of possible visit schedules denoted by Pi.
A possible visit schedule p ∈ Pi prescribes the periods in which customer i is to
be visited, should this schedule be selected for the customer. For example, if a
customer has to be visited twice in a planning horizon of five periods, a possible
visit schedule might require visits in periods 1 and 3, and prohibit visits on other
periods. In practice, alternative visit schedules that have different combinations of
allowable periods, are typically possible for each customer, which implies that the
set Pi usually contains multiple schedules regarding a given customer i.

The PVRP is the problem of identifying a least cost set of vehicle routes to satisfy the
demands of a given set of customers over a finite planning horizon that spans multiple
periods. A feasible solution to the PVRP must satisfy the following conditions: (i)
for each customer, a possible visit schedule must be selected, (ii) the total demand
that is assigned to a vehicle route should not exceed the vehicle capacity, (iii) all
routes must start and end at the depot, and (iv) the number of routes in a given
period cannot exceed the fleet size.

In this thesis, a modified version of the undirected cut-based model proposed by
Rodriguez-Martin et al. (2019) originally for the PVRP with driver consistency
constraints is adopted as a base model and alternative formulations are derived by
using (i) different versions of connectivity constraints, (ii) schedule selection con-
straints, and/or by eliminating (iii) vehicle indices from the base model. The base
model and alternative formulations are compared against each other in terms of ob-
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jective function value, computation time and optimality gap. Since all formulations
involve exponentially many connectivity constraints, branch-and-cut procedures are
devised and implemented to solve them.

We define and use the following decision variables in our formulations:

xijtk =

1, if arc (i, j) ∈ A is traversed in period t ∈ T by vehicle k ∈ K

0, otherwise

xijt =

1, if arc (i, j) ∈ A is traversed in period t ∈ T

0, otherwise

yit =

1, if customer i ∈ N \{0} is visited in period t ∈ T

0, otherwise

zitk =

1, if node i ∈ N is visited at period t ∈ T by vehicle k ∈ K

0, otherwise

sip =

1, if schedule p ∈ P is selected as visit schedule for customer i ∈ N \{0}

0, otherwise

Moreover, we let δ(S) = {(i, j) ∈ A : |S ∩ (i, j)| = 1} for S ⊆ N . If S = {i}, we simply
use δ(i) instead of δ({i}). Finally, we write xtk(A′) = ∑

(i,j)∈A′ xijtk for A′ ⊆ A.

3.1 Cut-based formulations of the PVRP

In this section, six alternative cut-based formulations of the PVRP are pre-
sented. First, the modified version of the undirected cut-based model proposed
by Rodriguez-Martin et al. (2019) is provided in Section 3.1.1 as the base model. In
Section 3.1.2, an alternative formulation is derived by expressing the connectivity
constraints in a different way, i.e., through the binary variables indicating whether
a customer is visited in a given period or not, regardless of the particular vehicle
visiting the customer (unlike the base model). Combining the connectivity con-
straints in the first two formulations yields another model for the PVRP which is
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presented in Section 3.1.3. Then, a new formulation is developed by eliminating
vehicle indices from the base model as given in Section 3.1.4 where the complexity
of the base model is reduced in terms of the number of variables and constraints.
Modifying the schedule selection constraints of the base model, another formulation
is obtained as illustrated in Section 3.1.5. Lastly, in Section 3.1.6, a combination of
the models from Sections 3.1.4 and 3.1.5 is proposed as an alternative formulation.

3.1.1 Base Model

As mentioned earlier, the undirected cut-based model proposed by Rodriguez-Martin
et al. (2019) is considered as a base model with some modifications. There are
mainly two differences between the formulation proposed by Rodriguez-Martin et
al. (2019) and our base formulation: (1) the driver consistency restrictions are
removed, and (2) customers are allowed to have arbitrary demands instead of unit
demands.

Model 1 (M1) is written as follows:

minimize
∑

(i,j)∈A

∑
t∈T

∑
k∈K

cijxijtk(3.1)

s.t.
∑

p∈Pi

sip = 1 i ∈ N \{0}(3.2)

∑
p∈Pi:t∈p

sip = yit i ∈ N \{0}, t ∈ T(3.3)

∑
k∈K

zitk = yit i ∈ N \{0}, t ∈ T(3.4)

∑
i∈N\{0}

dizitk ≤ Qz0tk k ∈ K,t ∈ T(3.5)

xtk(δ(i)) = 2zitk i ∈ N,t ∈ T,k ∈ K(3.6)

xtk(δ(S)) ≥ 2zitk i ∈ S,S ⊆ N \{0},k ∈ K,t ∈ T(3.7)

xijtk ∈ {0,1} (i, j) ∈ A,t ∈ T,k ∈ K(3.8)

sip ∈ {0,1} i ∈ N \{0},p ∈ Pi(3.9)

yit ∈ {0,1} i ∈ N \{0}, t ∈ T(3.10)

zitk ∈ {0,1} i ∈ N,t ∈ T,k ∈ K(3.11)

The objection function (3.1) is to minimize the total cost of routing. Constraints
(3.2) and (3.3) ensure that one of the possible schedules is selected for each cus-
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tomer and that each customer is visited in accordance with the selected schedule,
respectively. Constraints (3.4) guarantee that each customer is served by a vehicle,
and they establish the connection between the variables y and z. Constraints (3.5)
state the capacity restrictions for each vehicle in each period. Constraints (3.6) are
the degree constraints for the customers and the depot. Constraints (3.7) prevent
the formation of subtours, hence ensuring the connectivity of the solution. They
enforce that if a customer i ∈ S is serviced in period t by vehicle k, then at least
two arcs in the set δ(S) must be traversed in the same period. Constraints (3.8) -
(3.11) define the variable domain restrictions.

3.1.2 Model with an alternative set of connectivity constraints

Model 2 (M2) is given as:

minimize (3.1)

s.t. (3.2)− (3.6),(3.8)− (3.11)∑
k∈K

xtk(δ(S)) ≥ 2yit i ∈ S,S ⊆ N \{0}, t ∈ T.(3.12)

In this model, constraints (3.7) are replaced with constraints (3.12). This alternative
set of connectivity constraints is formulated based on the relationship ∑

k∈K zitk = yit

for all i ∈ N \{0} and t ∈ T . This relationship ensures that each customer is serviced
by at most one vehicle in period t ∈ T . Therefore, constraints (3.12) specify that if
a customer i ∈ S is visited in period t, then at least two arcs in the set δ(S) must
be traversed in the same period.

3.1.3 Model with both versions of connectivity constraints

Model 3 (M3) is provided below:

minimize (3.1)

s.t. (3.2)− (3.12).

In this model, constraints (3.7) and (3.12) are included in the formulation simulta-
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neously, with the goal of exploring its computational performance in the presence
of both sets of connectivity constraints.

3.1.4 Model without the vehicle indices

In this model, we use the variables xijt instead of their vehicle-indexed versions, and
we eliminate the zitk variables.

Model 4 (M4) is presented in the following:

minimize
∑

(i,j)∈A

∑
t∈T

cijxijt(3.13)

s.t. (3.2),(3.3),(3.9),(3.10)∑
j∈N\{0}

x0jt ≥ 2 t ∈ T(3.14)

∑
j∈N\{0}

x0jt ≤ 2K t ∈ T(3.15)

xt(δ(i)) = 2yit i ∈ N \{0}, t ∈ T(3.16) ∑
i∈S

∑
j∈S

xijt ≤ |S|− r(S) S ⊂ N \{0}, t ∈ T(3.17)

xijt ∈ {0,1} (i, j) ∈ A,t ∈ T.(3.18)

Our aim is to reduce the complexity of the model (in terms of the numbers of
variables and constraints) and eliminate symmetry by removing the vehicle index k.
To the best of our knowledge, there is no other undirected cut-based formulation,
which do not use vehicle-indexed variables, in the PVRP literature. When the
vehicle indices are omitted, the variables z and y become identical. Therefore, z

variables can be eliminated as well. As a result, constraints (3.4) – (3.7), (3.8) are
replaced with constraints (3.14) – (3.18). Objective function is now expressed using
the xijt variables, which again is to minimize the total routing cost. Constraints
(3.14) guarantee that arcs connected to the depot are traversed at least twice in each
period. Constraints (3.15) set an upper bound of K on the number of vehicle routes
per period to respect the fleet size restriction. Constraints (3.16) are the degree
constraints for the depot and the customers. In the absence of the vehicle indices,
we use a similarly defined function xt instead of xtk. In particular, for a given subset
A′ ⊆ A, the function xt is defined as xt(A′) = ∑

(i,j)∈A′ xijt. Constraints (3.17) are
the subtour elimination constraints proposed by Laporte et al. (1985), where r(S)
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is a lower bound on the number of vehicles needed to serve the customers in the
subset S and it is calculated as r(S) = ∑

i∈S
di
Q . Constraints (3.18) impose domain

restrictions on the xijt variables.

3.1.5 Model with a different schedule selection approach

Model 5 (M5) is defined as:

minimize (3.1)

s.t. (3.4)− (3.8),(3.10)− (3.11)
t′+f−1∑

t=t′
yit ≤ 1 i ∈ Sf , t′ ∈ {1, ...,T −f +1},f ∈ T(3.19)

∑
t∈T

yit = vi i ∈ N \{0}.(3.20)

In this model, schedule selection constraints (3.2) and (3.3) are replaced with (3.19)
and (3.20). Constraints (3.19) limit the number of times a customer i ∈ N \ {0} is
visited within a given number of consecutive time periods. Equivalently, these con-
straints ensure that at least a predetermined number of periods is inserted between
two consecutive visits of a customer. Here, Sf is defined as the set of nodes that
have a visit frequency of f over the planning horizon T . Constraints (3.20) guar-
antee that each customer i ∈ N \ {0} is visited exactly vi times, which represents
the frequency of visit (i.e., the required number of visits) for customer i ∈ N \ {0}
within the planning horizon. In this way, instead of making a selection from a set of
predetermined schedules, the model is allowed to decide on the periods in which each
customer will be visited with respect to the constraints (3.19) and (3.20). Different
from Model (1), this model enforces that the visits to any customer are equally
spaced in time within the planning horizon as much as possible depending on the
number of visits required. For instance, if a customer must be visited three times
in a planning horizon of five periods, only allowable visit schedule requires visits in
periods 1, 3 and 5, and prohibit visits on other periods.
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3.1.6 Model without vehicle indices with a different schedule selection

approach

Combining Model 4 with the schedule selection approach presented in Model 5,
Model 6 (M6) can be written as:

minimize (3.13)

s.t. (3.10),(3.14)− (3.20).

This formulation contains the objective function (3.13) and constraints (3.14) - (3.18)
of Model 4. The schedule selection constraints (3.2) and (3.3) are replaced with
constraints (3.19) and (3.20) of Model 5. Hence, just as in Model 5, periods to visit
each customer i ∈ N \{0} is selected by the model under the constraints (3.19) and
(3.20), without supplying predetermined visit schedules to the model.

3.2 Branch-and-cut procedures

All of the formulations presented above involve a number of connectivity constraints
that is exponential in the size of the problem. Since it is impractical to enumerate all
customer subsets and include the connectivity constraint associated with each subset
in the model, we solve the proposed formulations using a branch-and-cut approach.
In particular, we relax the connectivity constraints and separate them on the fly.
For a given formulation, we initialize the solve procedure with the corresponding
relaxation (no connectivity constraints at the beginning). Whenever an integer
solution (with an objective function value at least as good as that of the incumbent
solution) encountered during the search, we check for violation of the connectivity
constraints. If no violations are found, the current solution can be considered as the
new incumbent. Otherwise, we add the constraints violated by the current solution
(if any) to the model, which is then solved again. Detecting violations at integer
solutions is fairly easy: it can be done simply by inspecting the solution to identify
whether there are vehicle routes that are disconnected from the depot. For each
formulation, the branch-and-cut procedure outlined above is implemented using the
callback feature of Gurobi Optimizer 8.1.1.
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3.2.1 Separation of connectivity constraints for fractional solutions

The constraints (3.7) and (3.17) are separated by solving min-cut problems on prop-
erly defined support graphs. To separate constraints (3.7), LP-relaxation of Model
1 is solved without the constraints (3.7). For each i ∈ N \ {0}, k ∈ K, and t ∈ T ,
an undirected support graph G′ = (N ′,A′) is defined with the set of nodes N ′ = N

and the set of arcs A′ = {(i, j) ∈ A : xijtk > 0}. The capacity of each arc (i, j) ∈ A′

is set to xijtk. Afterwards, a min-cut problem is solved to find minimum capacity
cutset S ⊂ N ′ that separates i and depot node 0 where i ∈ S and 0 /∈ S. Finally, the
capacity of the min-cut induced by S is checked for the violation of the constraints
(3.7). If a violation is detected, the constraints (3.7) are added to the formulation.
The constraints (3.17) are separated via the same procedure with some differences
in the definition of the support graph. For each i ∈ N \{0}, and t ∈ T , an undirected
support graph G′′ = (N ′′,A′′) is defined with a set of nodes N ′′ and set of arcs A′′.
Let A′′ = {(i, j) ∈ A : xijt > 0} and N ′′ = N . The capacity of each arc (i, j) ∈ A′′ is
set to xijt. The remaining steps are the same as the separation of the constraints
(3.7). The separation procedure adopted here is similar to the one presented in
Rodriguez-Martin et al. (2019).
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4. COMPUTATIONAL RESULTS

In this chapter, we report the results of our computational study which is conducted
in order to investigate the performances of the base model (M1) and the alternative
models (M2-M6) described in the previous chapter, and we discuss our findings in
detail. In particular, a total of four sets of experiments were performed. The first
one focuses on the evaluation of the models M1-M3, which are identical except for
the connectivity constraints they involve. In the second set of experiments, the
model exhibiting relatively the best performance among M1-M3 is then compared
with M4. Based on the results of the first two sets of experiments, we also consider
separating the connectivity constraints for fractional solutions found at the root node
of the branch-and-cut tree for M1 and M4. The impact of applying the separation
routine outlined in Section 3.2.1 at fractional solutions is explored in a third set
of experiments. The fourth and final set of experiments is designed to analyze the
effect of adopting alternative schedule selection approaches presented in the previous
chapter on the computational performance of the proposed PVRP formulations.

All branch-and-cut procedures were implemented in Python 3.7.4 using the com-
mercial solver Gurobi Optimizer 8.1.1 under its default settings and a time limit
of 7200 seconds. The experiments were carried out on a virtual machine equipped
with Intel Xeon CPU E5-2640 v3 processor with 4 cores and 2.60 GHz speed, 16
GB RAM, and 64-bit operating system.

4.1 Benchmark Instances

We performed our tests on a subset of the instances in the benchmark data set
proposed by Rodriguez-Martin et al. (2019). This data set includes three versions of
each problem instance labeled as a, b, and c, which differ based on the geographical
locations of the nodes in the network. For each version, there are a total of 80
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instances with number of nodes n ∈ {11,21, . . . ,71}, number of periods within a
planning horizon t ∈ {2,3,4,5}, and homogeneous vehicle fleet size of k ∈ {2,3,4}.
Considering the size of the instances that can be tackled by our branch-and-cut
procedures, a subset of this data set is used in the experiments. The selected subset
contains 32 instances with |N | ∈ {11,21,31}, t ∈ {2,3,4,5}, and k ∈ {2,3,4} for each
of the three versions a, b, and c. Hence, a total of 96 instances was selected for our
computational study. The spatial distribution and the possible visit schedules of the
nodes are generated randomly by Rodriguez-Martin et al. (2019) in all instances of
the data set. The visit frequency of each node is considered during the generation
of the visit schedules.

4.2 Computational Results

The results of the first set of experiments, where the performances of M1-M3 are
evaluated, are provided in Tables A.1, A.2 and A.3. Second, M1 and M4 are com-
pared against each other based on the results in Tables A.4, A.5 and A.6. For the
third set of experiments, where the separation routine described earlier concerning
the fractional solutions is applied to M1 and M4, and the results are reported in
Tables A.7, A.8 and A.9. The versions of M1 and M4 with separation at fractional
solutions are denoted as M1-S and M4-S, respectively. We would like to note here
that a similar separation procedure is also applied to M3 due to its promising per-
formance, but the results are not reported here as the improvements achieved are
not significant with respect to M1-S and M4-S.

The last set of experiments is aimed at exploring the effect of the adopted schedule
selection constraints on the solution process. To this end, the models that are
identical except for these constraints, namely, M1, M4, M5, and M6, are compared
against each other. As described in Sections 3.1.5 and 3.1.6, M5 and M6 employ
an alternative set of constraints to determine a visit schedule for each customer
based on the given visit frequencies. These constraints guarantee that the visits to
any customer are equally spaced in time within the planning horizon (as much as
possible depending on the number of visits required). On the other hand, the sets
of possible schedules supplied to the model in M1 and M4 do not necessarily satisfy
this condition. Hence, for a fair comparison, the set of possible visit schedules given
to M1 and M4 for each customer are altered in a way to ensure consistency among
the instances solved by all formulations. In other words, the original visit schedules
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of the customers are modified so that each customer has the same set of possible
schedules for each model. The results are shown in Tables A.10, A.11 and A.12.

In the tables where detailed computational results are presented, first five columns
contain information about the benchmark instances used in the tests. The numbers
under the column “Ins” correspond to the (unique) id numbers of the instances and
range from 1 to 96. The columns 2-5 show the characteristics of the benchmark
instances, in particular, the number of nodes (n), the number of periods within the
planning horizon (t), the fleet size (k), and the version (a, b, or c). On the right
side of the instance information columns, the results obtained with each model are
provided in a block of three columns. For a given model, the “OBJ” column shows
the objective function value of the best solution found within the time limit, the
“Gap” column indicates the relative difference between the best upper bound and
the best lower bound at termination of the branch-and-cut procedure. When an
instance is solved to proven optimality, the gap is 0%; otherwise, it is equal to the
final gap reported by Gurobi. Under the column “Time”, the solution times are
displayed in terms of seconds.

Three abbreviations are used in the tables. When the solver concludes that no feasi-
ble solution exists for a given instance, “INF” is used to state the infeasibility of the
problem instance. When there is no conclusion of infeasibility and no feasible solu-
tion can be found within the specified time limit, the term “NFS” is used to express
that no feasible solution could be identified. Lastly, the term “TLR” indicates that
the predetermined time limit is reached before a proof of optimality or infeasibility
is obtained.

We also provide summary tables which highlights our key findings. The abbrevia-
tions used in these tables are listed and described below:

• nOpt: Number of instances solved to optimality by a model within the time
limit.

• nOpt-Best: Number of instances solved to optimality by a model with the
shortest computation time.

• nOpt-All: Number of instances solved to optimality by all models within the
time limit.

• nFeas: Number of instances for which a feasible solution was found, but opti-
mality of the solution could not be proven by a model within the time limit.

• nFeas-Best: Number of instances for which a best feasible solution was found,
but its optimality could not be proven by a model within the time limit.
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• nFeas-All: Number of instances for which a feasible solution was found by all
models within the time limit, but its optimality could not be proven by any
of the models in an experiment.

• nInf: Number of instances certified as infeasible by a model.

• nUns: Number of instances for which a model could neither find a feasible
solution nor prove infeasibility.

• nIns: Number of instances examined in a table.

• %-gap: Average gap between the best objective function value and the best
lower bound available at termination.

• Avg. Time: Average computation time of a model given a selected group of
instances.

In our comparisons, a model is considered to have returned “the best solution” if it
satisfies either one of the following conditions:

(I) Among the models that found a (certified) optimal solution, it takes the short-
est amount of computation time.

(II) Among the models that found a best feasible solution (without a proof of
optimality) when the time limit is reached, it has the smallest gap.

In Tables A.1, A.2 and A.3, the detailed results obtained with M1, M2 and M3 are
reported. These results are analyzed to determine the best one among the three
models, and to evaluate if M2 and M3 are able to achieve significant improvements
over M1 which is the base model. All models returned either an optimal or a feasible
solution to 94 instances, and labeled the instances (41) and (44) as infeasible. As
can be seen in Table 4.1, M1 is able to solve 49 instances to optimality, which is the
highest number of optimal solutions obtained across all three models, followed by
46 optimal solutions found by M3. The instance (69) is solved to optimality by M1
and M2 within the same amount of computation time, and thus, M1 and M2 are
both considered to have found the best solution in this particular case. Hence, the
total number of the best solutions (nOpt-Best and nFeas-Best) in Table 4.1 is 95
instead of 94. Examining the results further, we observe that 29 of these instances
are solved fastest by M1. In a similar manner, when the instances for which the
models can find a feasible solution are examined, M1 has the best solution for 21
instances in terms of solution quality and optimality gap. Consequently, it can be
concluded that M1 is overall the best performer among these three models taking
the results for all instances into account.
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Table 4.1 Summary table for the results of Tables A.1, A.2 and A.3

nIns = 96 M1 M2 M3
nOpt 49 43 46
nFeas 45 51 48
nInf 2 2 2
nUns 0 0 0

nOpt-Best 29 10 12
nFeas-Best 21 7 16

The average computation times of the optimal solutions and the average percentage
gaps of the feasible solutions without a certified optimality are also analyzed. To
make a fair comparison with respect to these two performance measures among the
three models, the instances that are not solved to optimality by all models, and the
ones for which a feasible solution could not be identified by all models are excluded
from the analysis. These cases are listed below:

• Only M3 could not find optimal solutions for the instance (17) within the time
limit.

• The instances (18), (45) and (53) cannot be solved to optimality by M2 unlike
the other two models.

• M1 is the only model that is able to find optimal solutions for the instances
(43), (48) and (85).

• The optimality of the solution for the benchmark instance (80) is only proven
by M3.

• For all of above instances, the same best objective function values are attained
by all models, but the optimality of the solutions cannot be proven by all three
models within the time limit.

When we exclude these instances, M1, M2 and M3 are able to identify an optimal
solution for 42 instances and all of them can find a feasible solution (without proven
optimality) for 44 instances within the time limit. The results of this analysis are
summarized in Table 4.2. Accordingly, M3 is the best performing model in terms
of average computation time, while M1 is the best performing in terms of average
percentage gap although the difference between the two models with regard to these
quantities and the solution quality is quite small. On the other hand, M2 seems to
have significantly poor performance compared to M1 and M3.
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Table 4.2 Comparison of M1, M2 and M3 based on the selected benchmark
instances

nIns = 86 M1 M2 M3
nOpt-All 42 42 42

Avg. Time 81.31 342.57 76.47
nFeas-All 44 44 44

%-Gap 5.21% 6.38% 5.59%

Taking all of the results in Tables 4.1 and 4.2 into consideration, M1 can be regarded
as the best performing model among the three models despite the improvements
achieved by M3 in terms of average computation time. M3 seems to be the second
best, while M2 is the worst performing model. Consequently, M1 is selected to
compare against M4 in the second set of experiments.

The results obtained with M1 and M4 are shown in Tables A.4, A.5 and A.6. M1
returns either an optimal or a feasible solution for a total of 94 instances, while this
is true for 86 instances in the case of M4. The instances (41) and (44) are certified
as infeasible by both models. M4 is not able produce a feasible solution or prove
infeasibility for eight instances, all of which have 31 nodes and four or five vehicles,
whereas M1 yields a feasible solution for each of these instances. Considering the
ability to identify optimal solutions, M1 and M4 achieve optimality in 49 and 64
instances, respectively. These results can be found in Table 4.3. Of the 64 instances
solved to optimality by M4, the best solutions of 58 instances are attributed to
this model in terms of computation time under the conditions discussed earlier.
Considering the instances for which an optimal solution could not be attained but a
feasible solution is discovered within the time limit, M1 has a better solution than
M4 for 24 instances. M1 is better in reaching solutions with smaller percentage gap
between obtained lower bound and best objective function value while providing
equal or better solution quality.

Table 4.3 Summary table for the results of Tables A.4, A.5 and A.6

nIns = 96 M1 M4
nOpt 49 64
nFeas 45 22
nInf 2 2
nUns 0 8

nOpt-Best 7 58
nFeas-Best 24 5
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Just like we did in the first set of experiments, here we compare M1 and M4 with re-
spect to the average computation times regarding the instances solved to optimality
by both models, and the average percentage gaps regarding the instances for which
a feasible solution is returned by both models at the end of the time limit. The
instances excluded from this comparison are outlined below:

• There are eight instances for which M4 cannot produce a feasible solution or
establish infeasibility within the given time limit. As mentioned earlier, M1
finds feasible solutions to all of these instances.

• 16 instances are solved to optimality only by M4 within the time limit.

• M1 identifies an optimal solution for instance (18), while M4 cannot.

The results of this comparison are reported in Table 4.4. There are 48 instances
which are solved to optimality, and 21 instances for which a feasible solution is
found, by both models. The average computation time of M1 is nearly twice as long
as that of M4, whereas the corresponding average gap of M1 is almost half of that
associated with M4.

Table 4.4 Comparison of M1 and M4 based on the selected benchmark instances

nIns = 69 M1 M4
nOpt-All 48 48

Avg. Time 340.39 182.86
nFeas-All 21 21

%-Gap 5.89% 11.26%

Consequently, M4 is seemingly better (and faster) at attaining optimal solutions for
the benchmark instances used in our tests. In cases where optimality is achieved by
both models, M4 has a significantly smaller average computation time. However,
considering the instances for which only a feasible solution is discovered, M1 is
mostly superior to M4 in terms of solution quality as well as the average gap. In
addition, M4 fails to produce a feasible solution for eight instances that are relatively
more difficult to solve. Overall, the choice of the best performing model between
M1 and M4 is not quite obvious based on the results of Tables A.4, A.5, A.6, 4.3,
4.4.

After the second set of experiments with M1 and M4, the versions of these two
models including the separation routine for fractional solutions at the root node of
the search tree (explained in Section 3.2.1), i.e., M1-S and M4-S are also added to
the comparative analyses. The main goal here is to strengthen the linear relaxation
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bounds of the formulations, thereby, enhancing the computational performance of
the branch-and-cut procedures. The results obtained with M1, M1-S, M4 and M4-S
are reported in Tables A.7, A.8 and A.9.

First, we provide comparisons between M1 and M1-S, and between M4 and M4-
S. M1 and M1-S find an optimal solution for 49 and 50 instances, respectively.
While M1 returns the best solution for 32 instances under the condition (I), M1-S
produces the best solution for 24 instances under the condition (II). These results
are summarized in Table 4.5. The instance (53) is solved to optimality only by M1,
whereas only M1-S identifies an optimal solution for the instances (80) and (82).
Excluding these three instances, both models achieve optimality for 48 instances,
and discover a feasible solution for 43 instances as shown in Table 4.6. M1-S has
approximately 14% smaller average computation time than M1. It also has a lower
average percentage gap. Taking everything into account (both the aforementioned
averages and the results at an individual instance level), we conclude that M1-S
outperforms M1 in a majority of the instances.

Table 4.5 Summary table for the results of M1 and M1-S from Tables A.7, A.8 and
A.9

nIns = 96 M1 M1-S
nOpt 49 50
nFeas 45 44
nInf 2 2
nUns 0 0

nOpt-Best 32 19
nFeas-Best 19 24

Table 4.6 Comparison of M1 and M1-S based on the selected benchmark instances

nIns = 91 M1 M1-S
nOpt-All 48 48

Avg. Time 251.07 217.93
nFeas-All 43 43

%-Gap 5.28% 4.95%

A summary of the results obtained with M4 and M4-S are presented in Tables 4.7
and 4.8. Accordingly, M4 fails to produce a feasible solution or establish infeasibility
for eight instances. Same applies to nine instances in the case of M4-S. M4 manages
to reach an optimal solution for 64 instances, while M4-S solves 59 instances to
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optimality. For 46 out of these 64 instances, M4 has the best solution under condition
(I). M4-S is able to return the best solution for 15 instances under condition (II).
These results are reported in Table 4.7. Only M4 finds a feasible solution to the
instances (24), (26), (30), (31) and (32) within the time limit. On the other hand,
M4-S is the only model to detect a feasible solution for the instances (27) and
(63). Focusing only on the 59 instances solved optimally by both models and the
19 instances for which both models yield a feasible solution Table 4.8 displays the
average computation times and the average gaps for M4 and M4-S. Based on the
given results, M4 has a smaller computation time than M4-S on the average, yet the
opposite is true regarding the average gap. Given that the quality of the solutions
obtained by M4-S is at least as good as those obtained by M4 in a larger number of
cases (as indicated by the nFeas-Best values in Table 4.7), having a lower average
gap points to the fact that employing the separation routine at fractional solutions is
mostly helpful in strengthening the linear relaxation bounds of the model. Despite
the improvements achieved, M4-S is mostly inferior to M4 in terms of reaching
optimality and the computation times.

Table 4.7 Summary table for the results of M4 and M4-S from Tables A.7, A.8 and
A.9

nIns = 96 M4 M4-S
nOpt 64 59
nFeas 22 26
nInf 2 2
nUns 8 9

nOpt-Best 46 18
nFeas-Best 9 15

Table 4.8 Comparison of M4 and M4-S based on the selected benchmark instance

nIns = 78 M4 M4-S
nOpt-All 59 59

Avg. Time 183.66 218.81
nFeas-All 19 19

%-Gap 10.09% 9.29%

Next, we compare all of M1, M1-S, M4 and M4-S with each other based on the
computational results shown in Tables A.7, A.8 and A.9. All models detected the
infeasibility of the instances (41) and (44) within the time limit. In addition, M4
and M4-S fail to find a feasible solution or establish infeasibility for eight and nine
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instances, respectively. M4 has 43 best solutions among optimally solved instances
under condition (I). Based on condition (II), M1 and M1-S are able to reach the
best solutions for 13 and 14 instances, respectively. These results can be seen in
Table 4.9.

Table 4.9 Summary table for the results of Tables A.7, A.8 and A.9

nIns = 96 M1 M1-S M4 M4-S
nOpt 49 50 64 59
nFeas 45 44 22 26
nInf 2 2 2 2
nUns 0 0 8 9

nOpt-Best 3 5 43 15
nFeas-Best 13 14 1 0

There are 31 instances that cannot be solved by at least one of the models within
the time limit. When these instances are excluded, the remaining 63 instances can
be used to compare the average computation time and the average percentage gap
of the models. The results of this comparison are provided in Table 4.10. Given
the time limit, there are 46 instances that can be solved to optimality by all four
models. For these instances, the shortest and the longest average computation times
belong to M4 and M1, respectively, with M4 being at least five times faster than M1.
Regarding the remaining 17 instances for which all models return a feasible solution
at the end of the time limit, M1-S has the lowest average percentage gap and the
largest number of best solutions. Despite being superior in terms of computation
time, M4 is the worst performing model in terms of solution quality and average
gap. In conclusion, M4 seems to be the most favorable option to solve the problems
which has 31 or fewer nodes and less than 4 vehicles. For larger problem sizes, M1
and M1-S are more preferable in order to obtain solutions of higher quality.

Table 4.10 Comparison of M1, M1-S, M4 and M4-S based on the selected
benchmark instance

nIns = 63 M1 M1-S M4 M4-S
nOpt-All 46 46 46 46

Avg. Time 331.6 220.62 53.8 71.73
nFeas-All 17 17 17 17

%-Gap 5.39% 4.65% 10.14% 9.63%

In our fourth and final set of experiments, the effects of different schedule selection
constraints are examined. In these experiments, the originally given possible visit
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schedules of the customers are modified to ensure consistency of the feasible solution
spaces associated with different models. M1, M5, M4, and M6 are compared and the
results are shown in Tables A.10, A.11 and A.12. We divide our analysis here into
two parts. To investigate the impact of alternative schedule selection constraints on
computational performance, the models that are identical except for the schedule
selection constraints are considered separately.

In the first part, results obtained with M1 and M5 are used to compare these two
models. Both models identify either an optimal or a feasible solution for a total of
94 instances. The instances (41) and (44) are certified as infeasible by both models.
M1 and M5 are able to optimally solve 37 and 36 instances, respectively. M1 returns
22 best solutions with regard to condition (I), and M5 yields the best solution for
35 instances regarding condition (II). Eliminating the instance (18) that is solved to
optimality only by M1, both models can find an optimal solution for 36 instances,
and a feasible solution for 57 instances within the time limit. The comparison
between M1 and M5 is summarized in Tables 4.11 and 4.12. Accordingly, the average
computation time of M1 is 10.7% lower than that of M5, whereas the average gaps
of the two models are close. It can be concluded that M1 is capable of obtaining
optimal solutions faster, but when an instance cannot be solved to optimality within
the time limit, M5 seems to be more promising in terms of solution quality based
on the number of best solutions returned.

Table 4.11 Summary table for the results of M1 and M5 from Tables A.10, A.11
and A.12

nIns = 96 M1 M5
nOpt 37 36
nFeas 57 58
nInf 2 2
nUns 0 0

nOpt-Best 22 15
nFeas-Best 24 34

Table 4.12 Comparison of M1 and M5 based on the selected benchmark instances

nIns = 93 M1 M5
nOpt-All 36 36

Avg. Time 387.69 433.88
nFeas-All 57 57

%-Gap 6.62% 6.53%
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In the second part of our analysis, M4 and M6 are compared against each other,
and the results are provided in Tables 4.13 and 4.14. M4 fails to detect a feasible
solution or prove infeasibility for 14 instances. Same applies to seven instances with
M6. The instances (41) and (44) are certified as infeasible by both models. The
numbers of instances for which an optimal solution is found by M4 and M6 are 48 and
50, respectively. The instances (82) and (84) are solved to proven optimality only
by M6. Although M4 terminates with the same solutions for these two instances,
it fails to prove their optimality within the time limit. M4 has a higher number
of best solutions regarding each of the conditions (I) and (II). Focusing on the
instances solved optimally by both models, M6 has a shorter average computation
time. In cases where both models return a feasible solution at the end of the time
limit, M4 has a slightly lower average gap. In conclusion, even though a majority
of the best solutions is attributed to M4 with respect to conditions (I) and (II),
M6 achieves considerable improvements over M4 by adopting a different schedule
selection approach, as indicated by the quantities nOpt and nFeas as well as the
average computation time.

Table 4.13 Summary table for the results of M4 and M6 from Tables A.10, A.11
and A.12

nIns = 96 M4 M6
nOpt 48 50
nFeas 32 37
nInf 2 2
nUns 14 7

nOpt-Best 30 20
nFeas-Best 19 18

Table 4.14 Comparison of M4 and M6 based on the selected benchmark instances

nIns = 78 M4 M6
nOpt-All 48 48

Avg. Time 550.07 491.4
nFeas-All 30 30

%-Gap 9.50% 9.78%

Considering the results of both parts of the analysis, it is not possible to draw
a definite conclusion as to the improvements achieved by adopting an alternative
schedule selection approach. According to the first part of the analysis, M1 out-
performs M5 in terms of attaining optimal solutions faster, whereas M5 seems to
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yield more promising results in terms of solution quality. On the other hand, the
second part of the analysis shows that M6 performs much better than M4 in several
respects. Consequently, it can be inferred that the alternative schedule selection
constraints have the potential to improve computational performance depending on
the choice of model.
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5. CONCLUSION

In this thesis, we propose and study cut-based formulations of the PVRP. In total,
five alternative formulations are proposed and compared with a model designated as
the base model (M1). Two of the alternative formulations (M2 and M3) are derived
by using different constraints for connectivity of the routes. Another alternative
formulation (M4) is proposed to reduce the complexity of the model with the elimi-
nation of the vehicle indices. To the best of our knowledge, this is the first cut-based
PVRP formulation in the literature which do not involve vehicle-indexed variables.
The other two formulations (M5 and M6) are derived by using different schedule
selection constraints. Branch-and-cut procedures are devised and implemented to
solve the formulations because of the exponential nature of the connectivity con-
straints. In addition, a cut separation routine for eliminating fractional solutions
at the root node of the search tree is embedded within the branch-and-cut proce-
dures devised to solve M1 and M4. The resulting procedures are also taken into
consideration in our comparative analyses.

After the model development, the base model and alternative formulations are com-
pared through four sets of experiments. The computational results are evaluated in
terms of objective function value, optimality gap and computation time. As a result
of the first three sets of experiments, M4 is the best model in terms of computation
times, when instances have 31 or less nodes and less than 4 vehicles. The perfor-
mance of the model deteriorates with increasing problem size. We observe that M4
has difficulty in discovering an initial feasible solution as the problem instances get
larger. With the increasing complexity, M1 and M1-S become prominent as the best
options to reduce optimality gap, thus M1-S remains ahead of M1 in terms of both
average computational time and average percentage gap. When considering the re-
sults of the fourth set of experiments, a definite conclusion cannot be reached on the
improvements gained from the alternative schedule selection constraints. While M5
and M6 can provide promising results in terms of solution quality and average com-
putation times, they also have shortcomings compared to M1 and M4. As a result,
we can say that the alternative schedule selection constraints have the potential to
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improve computational performance depending on the modeling choices made.

Future work may include models with driver consistency constraints and utilization
of the valid inequalities from the study of Rodriguez-Martin et al. (2019). Devel-
oping a method to construct an initial feasible solution that can be supplied to the
solver when solving M4 may be useful in the future, since the model seems to have
the potential to solve more complex problems efficiently with its apparent compu-
tational advantages. Additionally, the computational performances of the models
under unit demand assumption may be another subject that can be examined in
the future instead of using arbitrary demands, and the comparative analysis can be
extended using different benchmark instances from the literature.
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APPENDIX A - COMPUTATIONAL RESULT TABLES
Table A.1 Computational results of M1, M2 and M3 for the benchmark instances
with version a

M1 M2 M3
Ins. n t k Ver. OBJ Gap Time OBJ Gap Time OBJ Gap Time

1 11 2 2 a 620.48 0.00% 0.64 620.48 0.00% 0.50 620.48 0.00% 0.59
2 11 2 3 a 620.48 0.00% 1.20 620.48 0.00% 0.95 620.48 0.00% 1.00
3 11 3 2 a 834.96 0.00% 1.88 834.96 0.00% 0.95 834.96 0.00% 0.89
4 11 3 3 a 834.96 0.00% 2.42 834.96 0.00% 1.38 834.96 0.00% 10.69
5 11 4 2 a 1043.91 0.00% 1.45 1043.91 0.00% 1.21 1043.91 0.00% 1.20
6 11 4 3 a 1043.91 0.00% 3.95 1043.91 0.00% 4.95 1043.91 0.00% 2.86
7 11 5 2 a 1083.97 0.00% 5.82 1083.97 0.00% 7.88 1083.97 0.00% 9.34
8 11 5 3 a 1083.97 0.00% 49.21 1083.97 0.00% 71.48 1083.97 0.00% 55.58
9 21 2 2 a 828.98 0.00% 1.08 828.98 0.00% 0.97 828.98 0.00% 1.48

10 21 2 3 a 828.98 0.00% 1.66 828.98 0.00% 1.77 828.98 0.00% 2.88
11 21 2 4 a 828.98 0.00% 18.32 828.98 0.00% 21.55 828.98 0.00% 3.67
12 21 3 2 a 1088.36 0.00% 3.11 1088.36 0.00% 3.95 1088.36 0.00% 4.03
13 21 3 3 a 1088.36 0.00% 20.93 1088.36 0.00% 23.06 1088.36 0.00% 10.05
14 21 3 4 a 1088.36 0.00% 252.12 1088.36 0.00% 631.92 1088.36 0.00% 504.83
15 21 4 2 a 1253.47 0.00% 30.07 1253.47 0.00% 30.91 1253.47 0.00% 37.21
16 21 4 3 a 1253.47 0.00% 501.69 1253.47 0.00% 181.25 1253.47 0.00% 299.25
17 21 4 4 a 1253.47 0.00% 1199.81 1253.47 0.00% 1336.42 1253.47 1.29% TLR
18 21 5 2 a 1729.00 0.00% 1168.47 1729.00 0.61% TLR 1729.00 0.00% 1136.09
19 21 5 3 a 1729.00 1.44% TLR 1729.00 2.26% TLR 1729.00 1.41% TLR
20 21 5 4 a 1729.00 4.92% TLR 1738.54 6.64% TLR 1731.58 5.00% TLR
21 31 2 2 a 916.53 2.33% TLR 916.53 4.38% TLR 916.53 2.02% TLR
22 31 2 3 a 916.53 3.20% TLR 916.53 6.43% TLR 916.53 4.23% TLR
23 31 2 4 a 916.53 3.69% TLR 916.53 5.57% TLR 916.53 5.03% TLR
24 31 3 2 a 1285.54 5.39% TLR 1287.10 6.31% TLR 1285.54 5.00% TLR
25 31 3 3 a 1285.54 5.75% TLR 1285.54 6.52% TLR 1285.54 5.80% TLR
26 31 3 4 a 1287.10 6.31% TLR 1287.10 7.37% TLR 1285.54 6.68% TLR
27 31 4 2 a 1740.92 6.09% TLR 1751.13 6.24% TLR 1740.92 5.57% TLR
28 31 4 3 a 1748.91 6.86% TLR 1769.25 8.65% TLR 1748.91 6.27% TLR
29 31 4 4 a 1748.91 7.62% TLR 1752.34 6.07% TLR 1740.92 6.85% TLR
30 31 5 2 a 1796.70 9.38% TLR 1862.42 12.96% TLR 1777.63 8.13% TLR
31 31 5 3 a 1780.23 8.25% TLR 1788.59 9.19% TLR 1789.11 8.82% TLR
32 31 5 4 a 1828.77 12.16% TLR 1786.50 10.27% TLR 1792.46 9.95% TLR
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Table A.2 Computational results of M1, M2 and M3 for the benchmark instances
with version b

M1 M2 M3
Ins. n t k Ver. OBJ Gap Time OBJ Gap Time OBJ Gap Time
33 11 2 2 b 555.05 0.00% 0.33 555.05 0.00% 0.41 555.05 0.00% 0.42
34 11 2 3 b 555.05 0.00% 0.50 555.05 0.00% 0.89 555.05 0.00% 0.58
35 11 3 2 b 933.64 0.00% 0.80 933.64 0.00% 1.05 933.64 0.00% 1.17
36 11 3 3 b 933.64 0.00% 1.69 933.64 0.00% 1.34 933.64 0.00% 1.48
37 11 4 2 b 1202.49 0.00% 1.53 1202.49 0.00% 1.00 1202.49 0.00% 1.11
38 11 4 3 b 1202.49 0.00% 1.41 1202.49 0.00% 1.53 1202.49 0.00% 2.27
39 11 5 2 b 1457.10 0.00% 2.09 1457.10 0.00% 2.55 1457.10 0.00% 3.36
40 11 5 3 b 1457.10 0.00% 11.86 1457.10 0.00% 6.98 1457.10 0.00% 17.58
41 21 2 2 b INF INF INF INF INF INF INF INF INF
42 21 2 3 b 797.84 0.00% 408.08 797.84 0.00% 843.41 797.84 0.00% 262.73
43 21 2 4 b 797.84 0.00% 1266.40 797.84 3.24% TLR 797.84 4.45% TLR
44 21 3 2 b INF INF INF INF INF INF INF INF INF
45 21 3 3 b 1216.80 0.00% 2340.51 1216.80 1.34% TLR 1216.80 0.00% 2164.90
46 21 3 4 b 1216.80 4.59% TLR 1216.80 4.96% TLR 1216.80 4.81% TLR
47 21 4 2 b 1310.34 0.00% 69.11 1310.34 0.00% 524.95 1310.34 0.00% 207.46
48 21 4 3 b 1310.34 0.00% 4259.67 1310.34 0.73% TLR 1310.34 0.24% TLR
49 21 4 4 b 1310.34 2.33% TLR 1325.25 8.09% TLR 1310.34 9.95% TLR
50 21 5 2 b 1710.65 0.00% 429.31 1710.65 0.00% 2469.63 1710.65 0.00% 469.61
51 21 5 3 b 1710.65 1.12% TLR 1710.65 2.67% TLR 1710.65 1.10% TLR
52 21 5 4 b 1734.87 4.67% TLR 1710.65 4.06% TLR 1710.65 3.76% TLR
53 31 2 2 b 1026.38 0.00% 655.68 1026.38 0.94% TLR 1026.38 0.00% 818.22
54 31 2 3 b 1026.38 3.84% TLR 1026.38 4.89% TLR 1026.38 4.69% TLR
55 31 2 4 b 1026.38 5.99% TLR 1026.38 4.78% TLR 1026.38 4.83% TLR
56 31 3 2 b 1310.01 2.53% TLR 1316.85 4.80% TLR 1310.01 3.35% TLR
57 31 3 3 b 1312.00 3.93% TLR 1312.67 5.57% TLR 1310.01 4.37% TLR
58 31 3 4 b 1316.49 4.57% TLR 1310.01 4.12% TLR 1310.01 4.53% TLR
59 31 4 2 b 1528.74 2.44% TLR 1528.74 2.10% TLR 1528.74 2.33% TLR
60 31 4 3 b 1528.74 2.56% TLR 1528.74 2.67% TLR 1533.55 2.92% TLR
61 31 4 4 b 1528.74 2.64% TLR 1528.74 2.75% TLR 1528.74 2.75% TLR
62 31 5 2 b 2141.50 2.94% TLR 2180.76 4.87% TLR 2165.20 3.86% TLR
63 31 5 3 b 2140.22 3.04% TLR 2140.22 2.88% TLR 2190.73 5.43% TLR
64 31 5 4 b 2151.46 3.61% TLR 2216.22 6.53% TLR 2158.98 4.10% TLR
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Table A.3 Computational results of M1, M2 and M3 for the benchmark instances
with version c

M1 M2 M3
Ins. n t k Ver. OBJ Gap Time OBJ Gap Time OBJ Gap Time
65 11 2 2 c 581.49 0.00% 0.39 581.49 0.00% 0.66 581.49 0.00% 0.45
66 11 2 3 c 581.49 0.00% 0.77 581.49 0.00% 1.00 581.49 0.00% 0.78
67 11 3 2 c 672.53 0.00% 0.27 672.53 0.00% 0.33 672.53 0.00% 0.31
68 11 3 3 c 672.53 0.00% 0.41 672.53 0.00% 0.55 672.53 0.00% 0.52
69 11 4 2 c 982.55 0.00% 1.45 982.55 0.00% 1.45 982.55 0.00% 1.67
70 11 4 3 c 982.55 0.00% 2.81 982.55 0.00% 2.22 982.55 0.00% 4.27
71 11 5 2 c 1106.05 0.00% 0.70 1106.05 0.00% 0.81 1106.05 0.00% 0.77
72 11 5 3 c 1106.05 0.00% 1.39 1106.05 0.00% 1.94 1106.05 0.00% 1.27
73 21 2 2 c 807.85 0.00% 4.48 807.85 0.00% 34.73 807.85 0.00% 15.49
74 21 2 3 c 807.85 0.00% 63.97 807.85 0.00% 719.81 807.85 0.00% 74.46
75 21 2 4 c 807.85 0.00% 357.26 807.85 0.00% 1771.83 807.85 0.00% 290.56
76 21 3 2 c 966.11 0.00% 16.44 966.11 0.00% 38.13 966.11 0.00% 6.81
77 21 3 3 c 966.11 0.00% 166.42 966.11 0.00% 1434.76 966.11 0.00% 178.55
78 21 3 4 c 966.11 0.00% 600.13 966.11 0.00% 2279.26 966.11 0.00% 451.56
79 21 4 2 c 1187.64 0.00% 375.99 1187.64 0.00% 3262.25 1187.64 0.00% 271.03
80 21 4 3 c 1187.64 2.35% TLR 1187.64 4.83% TLR 1187.64 0.00% 3116.62
81 21 4 4 c 1187.64 3.27% TLR 1187.64 6.33% TLR 1187.64 3.01% TLR
82 21 5 2 c 1820.05 2.31% TLR 1837.80 7.40% TLR 1820.05 2.13% TLR
83 21 5 3 c 1818.90 6.15% TLR 1878.39 10.63% TLR 1819.84 6.20% TLR
84 21 5 4 c 1824.40 16.55% TLR 1839.81 18.42% TLR 1831.35 15.94% TLR
85 31 2 2 c 913.59 0.00% 3201.56 913.59 3.19% TLR 913.59 2.37% TLR
86 31 2 3 c 913.59 4.58% TLR 913.59 3.91% TLR 913.59 3.40% TLR
87 31 2 4 c 913.59 2.40% TLR 913.59 4.23% TLR 913.59 5.45% TLR
88 31 3 2 c 1309.23 6.14% TLR 1317.52 6.29% TLR 1317.40 7.29% TLR
89 31 3 3 c 1325.32 7.83% TLR 1329.52 8.95% TLR 1317.40 6.96% TLR
90 31 3 4 c 1335.24 8.87% TLR 1317.40 8.15% TLR 1329.47 8.65% TLR
91 31 4 2 c 1816.23 8.60% TLR 1803.58 8.83% TLR 1849.35 10.83% TLR
92 31 4 3 c 1787.49 7.79% TLR 1808.56 9.18% TLR 1812.51 8.97% TLR
93 31 4 4 c 1795.30 7.95% TLR 1812.34 9.43% TLR 1796.86 8.77% TLR
94 31 5 2 c 1754.44 4.54% TLR 1767.73 3.84% TLR 1748.04 4.03% TLR
95 31 5 3 c 1734.87 3.50% TLR 1770.04 5.48% TLR 1762.72 4.88% TLR
96 31 5 4 c 1745.10 4.47% TLR 1761.60 4.87% TLR 1775.74 5.97% TLR
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Table A.4 Computational results of M1 and M4 for the benchmark instances with
version a

M1 M4
Ins. n t k Ver. OBJ Gap Time OBJ Gap Time

1 11 2 2 a 620.48 0.00% 0.64 620.48 0.00% 0.32
2 11 2 3 a 620.48 0.00% 1.20 620.48 0.00% 0.25
3 11 3 2 a 834.96 0.00% 1.88 834.96 0.00% 0.65
4 11 3 3 a 834.96 0.00% 2.42 834.96 0.00% 0.74
5 11 4 2 a 1043.91 0.00% 1.45 1043.91 0.00% 0.59
6 11 4 3 a 1043.91 0.00% 3.95 1043.91 0.00% 0.50
7 11 5 2 a 1083.97 0.00% 5.82 1083.97 0.00% 2.14
8 11 5 3 a 1083.97 0.00% 49.21 1083.97 0.00% 3.05
9 21 2 2 a 828.98 0.00% 1.08 828.98 0.00% 0.45

10 21 2 3 a 828.98 0.00% 1.66 828.98 0.00% 0.50
11 21 2 4 a 828.98 0.00% 18.32 828.98 0.00% 0.44
12 21 3 2 a 1088.36 0.00% 3.11 1088.36 0.00% 5.95
13 21 3 3 a 1088.36 0.00% 20.93 1088.36 0.00% 6.33
14 21 3 4 a 1088.36 0.00% 252.12 1088.36 0.00% 4.47
15 21 4 2 a 1253.47 0.00% 30.07 1253.47 0.00% 39.86
16 21 4 3 a 1253.47 0.00% 501.69 1253.47 0.00% 43.40
17 21 4 4 a 1253.47 0.00% 1199.81 1253.47 0.00% 48.13
18 21 5 2 a 1729.00 0.00% 1168.47 1729.19 8.39% TLR
19 21 5 3 a 1729.00 1.44% TLR 1729.19 6.79% TLR
20 21 5 4 a 1729.00 4.92% TLR 1729.00 7.92% TLR
21 31 2 2 a 916.53 2.33% TLR 916.53 0.00% 507.12
22 31 2 3 a 916.53 3.20% TLR 916.53 0.00% 258.35
23 31 2 4 a 916.53 3.69% TLR 916.53 0.00% 404.10
24 31 3 2 a 1285.54 5.39% TLR 1285.54 0.00% 3934.15
25 31 3 3 a 1285.54 5.75% TLR 1285.54 0.00% 4886.66
26 31 3 4 a 1287.10 6.31% TLR 1285.54 0.00% 6151.28
27 31 4 2 a 1740.92 6.09% TLR NFS NFS TLR
28 31 4 3 a 1748.91 6.86% TLR 1746.66 11.15% TLR
29 31 4 4 a 1748.91 7.62% TLR 1752.03 10.84% TLR
30 31 5 2 a 1796.70 9.38% TLR 1812.03 16.20% TLR
31 31 5 3 a 1780.23 8.25% TLR 1866.34 18.37% TLR
32 31 5 4 a 1828.77 12.16% TLR 1863.94 18.63% TLR
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Table A.5 Computational results of M1 and M4 for the benchmark instances with
version b

M1 M4
Ins. n t k Ver. OBJ Gap Time OBJ Gap Time
33 11 2 2 b 555.05 0.00% 0.33 555.05 0.00% 0.27
34 11 2 3 b 555.05 0.00% 0.50 555.05 0.00% 0.25
35 11 3 2 b 933.64 0.00% 0.80 933.64 0.00% 0.69
36 11 3 3 b 933.64 0.00% 1.69 933.64 0.00% 0.75
37 11 4 2 b 1202.49 0.00% 1.53 1202.49 0.00% 0.64
38 11 4 3 b 1202.49 0.00% 1.41 1202.49 0.00% 0.63
39 11 5 2 b 1457.10 0.00% 2.09 1457.10 0.00% 1.66
40 11 5 3 b 1457.10 0.00% 11.86 1457.10 0.00% 2.72
41 21 2 2 b INF INF INF INF INF INF
42 21 2 3 b 797.84 0.00% 408.08 797.84 0.00% 57.56
43 21 2 4 b 797.84 0.00% 1266.40 797.84 0.00% 67.06
44 21 3 2 b INF INF INF INF INF INF
45 21 3 3 b 1216.80 0.00% 2340.51 1216.80 0.00% 17.53
46 21 3 4 b 1216.80 4.59% TLR 1216.80 0.00% 31.94
47 21 4 2 b 1310.34 0.00% 69.11 1310.34 0.00% 589.48
48 21 4 3 b 1310.34 0.00% 4259.67 1310.34 0.00% 1068.10
49 21 4 4 b 1310.34 2.33% TLR 1310.34 0.00% 1102.30
50 21 5 2 b 1710.65 0.00% 429.31 1710.65 0.00% 6181.64
51 21 5 3 b 1710.65 1.12% TLR 1710.65 0.00% 5332.16
52 21 5 4 b 1734.87 4.67% TLR 1710.65 0.00% 5039.51
53 31 2 2 b 1026.38 0.00% 655.68 1026.38 0.00% 120.99
54 31 2 3 b 1026.38 3.84% TLR 1026.38 0.00% 162.87
55 31 2 4 b 1026.38 5.99% TLR 1026.38 0.00% 136.29
56 31 3 2 b 1310.01 2.53% TLR 1310.44 7.14% TLR
57 31 3 3 b 1312.00 3.93% TLR 1310.01 7.47% TLR
58 31 3 4 b 1316.49 4.57% TLR 1310.44 7.46% TLR
59 31 4 2 b 1528.74 2.44% TLR 1549.48 10.44% TLR
60 31 4 3 b 1528.74 2.56% TLR 1548.59 10.23% TLR
61 31 4 4 b 1528.74 2.64% TLR 1557.72 11.07% TLR
62 31 5 2 b 2141.50 2.94% TLR 2235.42 14.87% TLR
63 31 5 3 b 2140.22 3.04% TLR NFS NFS TLR
64 31 5 4 b 2151.46 3.61% TLR 2211.16 13.87% TLR
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Table A.6 Computational results of M1 and M4 for the benchmark instances with
version c

M1 M4
Ins. n p m Ver. OBJ Gap Time OBJ Gap Time
65 11 2 2 c 581.49 0.00% 0.39 581.49 0.00% 0.29
66 11 2 3 c 581.49 0.00% 0.77 581.49 0.00% 0.36
67 11 3 2 c 672.53 0.00% 0.27 672.53 0.00% 0.17
68 11 3 3 c 672.53 0.00% 0.41 672.53 0.00% 0.18
69 11 4 2 c 982.55 0.00% 1.45 982.55 0.00% 4.05
70 11 4 3 c 982.55 0.00% 2.81 982.55 0.00% 3.77
71 11 5 2 c 1106.05 0.00% 0.70 1106.05 0.00% 0.55
72 11 5 3 c 1106.05 0.00% 1.39 1106.05 0.00% 0.78
73 21 2 2 c 807.85 0.00% 4.48 807.85 0.00% 1.73
74 21 2 3 c 807.85 0.00% 63.97 807.85 0.00% 1.52
75 21 2 4 c 807.85 0.00% 357.26 807.85 0.00% 1.72
76 21 3 2 c 966.11 0.00% 16.44 966.11 0.00% 6.21
77 21 3 3 c 966.11 0.00% 166.42 966.11 0.00% 5.23
78 21 3 4 c 966.11 0.00% 600.13 966.11 0.00% 4.80
79 21 4 2 c 1187.64 0.00% 375.99 1187.64 0.00% 102.79
80 21 4 3 c 1187.64 2.35% TLR 1187.64 0.00% 125.55
81 21 4 4 c 1187.64 3.27% TLR 1187.64 0.00% 95.83
82 21 5 2 c 1820.05 2.31% TLR 1834.91 10.88% TLR
83 21 5 3 c 1818.90 6.15% TLR 1832.45 7.54% TLR
84 21 5 4 c 1824.40 16.55% TLR 1830.25 7.27% TLR
85 31 2 2 c 913.59 0.00% 3201.56 913.59 0.00% 375.37
86 31 2 3 c 913.59 4.58% TLR 913.59 0.00% 285.83
87 31 2 4 c 913.59 2.40% TLR 913.59 0.00% 243.23
88 31 3 2 c 1309.23 6.14% TLR 1314.11 13.04% TLR
89 31 3 3 c 1325.32 7.83% TLR 1309.86 12.44% TLR
90 31 3 4 c 1335.24 8.87% TLR 1311.94 12.87% TLR
91 31 4 2 c 1816.23 8.60% TLR NFS NFS TLR
92 31 4 3 c 1787.49 7.79% TLR NFS NFS TLR
93 31 4 4 c 1795.30 7.95% TLR NFS NFS TLR
94 31 5 2 c 1754.44 4.54% TLR NFS NFS TLR
95 31 5 3 c 1734.87 3.50% TLR NFS NFS TLR
96 31 5 4 c 1745.10 4.47% TLR NFS NFS TLR
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Table A.7 Computational results of M1, M1-S, M4 and M4-S for the benchmark
instances with version a

M1 M1-S M4 M4-S
Ins. n t k Ver. OBJ Gap time OBJ Gap time OBJ Gap time OBJ Gap time

1 11 2 2 a 620.48 0.00% 0.64 620.48 0.00% 1.20 620.48 0.00% 0.32 620.48 0.00% 0.37
2 11 2 3 a 620.48 0.00% 1.20 620.48 0.00% 2.11 620.48 0.00% 0.25 620.48 0.00% 0.45
3 11 3 2 a 834.96 0.00% 1.88 834.96 0.00% 1.92 834.96 0.00% 0.65 834.96 0.00% 0.96
4 11 3 3 a 834.96 0.00% 2.42 834.96 0.00% 5.45 834.96 0.00% 0.74 834.96 0.00% 0.69
5 11 4 2 a 1043.91 0.00% 1.45 1043.91 0.00% 1.69 1043.91 0.00% 0.59 1043.91 0.00% 0.94
6 11 4 3 a 1043.91 0.00% 3.95 1043.91 0.00% 3.41 1043.91 0.00% 0.50 1043.91 0.00% 1.38
7 11 5 2 a 1083.97 0.00% 5.82 1083.97 0.00% 8.03 1083.97 0.00% 2.14 1083.97 0.00% 2.99
8 11 5 3 a 1083.97 0.00% 49.21 1083.97 0.00% 48.14 1083.97 0.00% 3.05 1083.97 0.00% 3.78
9 21 2 2 a 828.98 0.00% 1.08 828.98 0.00% 3.28 828.98 0.00% 0.45 828.98 0.00% 1.99

10 21 2 3 a 828.98 0.00% 1.66 828.98 0.00% 6.67 828.98 0.00% 0.50 828.98 0.00% 2.45
11 21 2 4 a 828.98 0.00% 18.32 828.98 0.00% 8.73 828.98 0.00% 0.44 828.98 0.00% 1.75
12 21 3 2 a 1088.36 0.00% 3.11 1088.36 0.00% 3.77 1088.36 0.00% 5.95 1088.36 0.00% 5.94
13 21 3 3 a 1088.36 0.00% 20.93 1088.36 0.00% 31.77 1088.36 0.00% 6.33 1088.36 0.00% 7.19
14 21 3 4 a 1088.36 0.00% 252.12 1088.36 0.00% 237.56 1088.36 0.00% 4.47 1088.36 0.00% 5.23
15 21 4 2 a 1253.47 0.00% 30.07 1253.47 0.00% 28.50 1253.47 0.00% 39.86 1253.47 0.00% 53.90
16 21 4 3 a 1253.47 0.00% 501.69 1253.47 0.00% 250.41 1253.47 0.00% 43.40 1253.47 0.00% 53.52
17 21 4 4 a 1253.47 0.00% 1199.81 1253.47 0.00% 839.97 1253.47 0.00% 48.13 1253.47 0.00% 22.74
18 21 5 2 a 1729.00 0.00% 1168.47 1729.00 0.00% 191.20 1729.19 8.39% TLR 1729.19 5.18% TLR
19 21 5 3 a 1729.00 1.44% TLR 1729.00 0.90% TLR 1729.19 6.79% TLR 1729.19 5.29% TLR
20 21 5 4 a 1729.00 4.92% TLR 1729.00 3.36% TLR 1729.00 7.92% TLR 1729.00 4.95% TLR
21 31 2 2 a 916.53 2.33% TLR 916.53 2.25% TLR 916.53 0.00% 507.12 916.53 0.00% 1041.04
22 31 2 3 a 916.53 3.20% TLR 916.53 3.00% TLR 916.53 0.00% 258.35 916.53 0.00% 446.23
23 31 2 4 a 916.53 3.69% TLR 916.53 3.80% TLR 916.53 0.00% 404.10 916.53 0.00% 538.51
24 31 3 2 a 1285.54 5.39% TLR 1287.10 5.54% TLR 1285.54 0.00% 3934.15 1287.90 2.47% TLR
25 31 3 3 a 1285.54 5.75% TLR 1285.54 5.73% TLR 1285.54 0.00% 4886.66 1285.54 0.00% 5161.57
26 31 3 4 a 1287.10 6.31% TLR 1287.10 6.30% TLR 1285.54 0.00% 6151.28 1287.10 2.42% TLR
27 31 4 2 a 1740.92 6.09% TLR 1743.31 6.33% TLR NFS NFS TLR 1775.10 12.49% TLR
28 31 4 3 a 1748.91 6.86% TLR 1757.65 7.19% TLR 1746.66 11.15% TLR 1769.11 11.00% TLR
29 31 4 4 a 1748.91 7.62% TLR 1761.96 8.23% TLR 1752.03 10.84% TLR 1756.39 11.32% TLR
30 31 5 2 a 1796.70 9.38% TLR 1767.50 7.75% TLR 1812.03 16.20% TLR NFS NFS TLR
31 31 5 3 a 1780.23 8.25% TLR 1781.72 9.89% TLR 1866.34 18.37% TLR NFS NFS TLR
32 31 5 4 a 1828.77 12.16% TLR 1816.21 10.70% TLR 1863.94 18.63% TLR NFS NFS TLR
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Table A.8 Computational results of M1, M1-S, M4 and M4-S for the benchmark
instances with version b

M1 M1-S M4 M4-S
Ins. n t k Ver. OBJ Gap time OBJ Gap time OBJ Gap time OBJ Gap time
33 11 2 2 b 555.05 0.00% 0.33 555.05 0.00% 1.13 555.05 0.00% 0.27 555.05 0.00% 0.33
34 11 2 3 b 555.05 0.00% 0.50 555.05 0.00% 1.05 555.05 0.00% 0.25 555.05 0.00% 0.38
35 11 3 2 b 933.64 0.00% 0.80 933.64 0.00% 2.44 933.64 0.00% 0.69 933.64 0.00% 1.72
36 11 3 3 b 933.64 0.00% 1.69 933.64 0.00% 3.12 933.64 0.00% 0.75 933.64 0.00% 0.86
37 11 4 2 b 1202.49 0.00% 1.53 1202.49 0.00% 2.46 1202.49 0.00% 0.64 1202.49 0.00% 0.81
38 11 4 3 b 1202.49 0.00% 1.41 1202.49 0.00% 3.63 1202.49 0.00% 0.63 1202.49 0.00% 0.80
39 11 5 2 b 1457.10 0.00% 2.09 1457.10 0.00% 4.57 1457.10 0.00% 1.66 1457.10 0.00% 1.61
40 11 5 3 b 1457.10 0.00% 11.86 1457.10 0.00% 13.24 1457.10 0.00% 2.72 1457.10 0.00% 1.56
41 21 2 2 b INF INF INF INF INF INF INF INF INF INF INF INF
42 21 2 3 b 797.84 0.00% 408.08 797.84 0.00% 820.86 797.84 0.00% 57.56 797.84 0.00% 65.85
43 21 2 4 b 797.84 0.00% 1266.40 797.84 0.00% 2446.90 797.84 0.00% 67.06 797.84 0.00% 93.51
44 21 3 2 b INF INF INF INF INF INF INF INF INF INF INF INF
45 21 3 3 b 1216.80 0.00% 2340.51 1216.80 0.00% 897.12 1216.80 0.00% 17.53 1216.80 0.00% 24.33
46 21 3 4 b 1216.80 4.59% TLR 1216.80 3.22% TLR 1216.80 0.00% 31.94 1216.80 0.00% 25.42
47 21 4 2 b 1310.34 0.00% 69.11 1310.34 0.00% 101.03 1310.34 0.00% 589.48 1310.34 0.00% 1487.74
48 21 4 3 b 1310.34 0.00% 4259.67 1310.34 0.00% 1605.88 1310.34 0.00% 1068.10 1310.34 0.00% 1023.09
49 21 4 4 b 1310.34 2.33% TLR 1310.34 2.92% TLR 1310.34 0.00% 1102.30 1310.34 0.00% 1303.56
50 21 5 2 b 1710.65 0.00% 429.31 1710.65 0.00% 121.17 1710.65 0.00% 6181.64 1710.65 2.26% TLR
51 21 5 3 b 1710.65 1.12% TLR 1710.65 1.73% TLR 1710.65 0.00% 5332.16 1710.65 2.45% TLR
52 21 5 4 b 1734.87 4.67% TLR 1720.76 3.40% TLR 1710.65 0.00% 5039.51 1710.65 1.20% TLR
53 31 2 2 b 1026.38 0.00% 655.68 1026.38 1.57% TLR 1026.38 0.00% 120.99 1026.38 0.00% 54.52
54 31 2 3 b 1026.38 3.84% TLR 1026.38 3.51% TLR 1026.38 0.00% 162.87 1026.38 0.00% 44.75
55 31 2 4 b 1026.38 5.99% TLR 1026.38 5.53% TLR 1026.38 0.00% 136.29 1026.38 0.00% 78.01
56 31 3 2 b 1310.01 2.53% TLR 1310.01 3.71% TLR 1310.44 7.14% TLR 1310.01 7.29% TLR
57 31 3 3 b 1312.00 3.93% TLR 1310.01 4.05% TLR 1310.01 7.47% TLR 1310.01 7.08% TLR
58 31 3 4 b 1316.49 4.57% TLR 1310.01 4.17% TLR 1310.44 7.46% TLR 1310.01 7.11% TLR
59 31 4 2 b 1528.74 2.44% TLR 1528.74 1.75% TLR 1549.48 10.44% TLR 1557.61 10.56% TLR
60 31 4 3 b 1528.74 2.56% TLR 1528.74 2.52% TLR 1548.59 10.23% TLR 1547.83 9.79% TLR
61 31 4 4 b 1528.74 2.64% TLR 1528.74 2.79% TLR 1557.72 11.07% TLR 1550.62 9.89% TLR
62 31 5 2 b 2141.50 2.94% TLR 2145.59 2.78% TLR 2235.42 14.87% TLR 2202.93 13.20% TLR
63 31 5 3 b 2140.22 3.04% TLR 2164.29 3.88% TLR NFS NFS TLR 2226.67 14.23% TLR
64 31 5 4 b 2151.46 3.61% TLR 2175.03 4.87% TLR 2211.16 13.87% TLR 2219.21 13.88% TLR
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Table A.9 Computational results of M1, M1-S, M4 and M4-S for the benchmark
instances with version c

M1 M1-S M4 M4-S
Ins. n t k Ver. OBJ Gap time OBJ Gap time OBJ Gap time OBJ Gap time
65 11 2 2 c 581.49 0.00% 0.39 581.49 0.00% 0.54 581.49 0.00% 0.29 581.49 0.00% 0.23
66 11 2 3 c 581.49 0.00% 0.77 581.49 0.00% 1.34 581.49 0.00% 0.36 581.49 0.00% 0.20
67 11 3 2 c 672.53 0.00% 0.27 672.53 0.00% 0.54 672.53 0.00% 0.17 672.53 0.00% 0.23
68 11 3 3 c 672.53 0.00% 0.41 672.53 0.00% 0.98 672.53 0.00% 0.18 672.53 0.00% 0.23
69 11 4 2 c 982.55 0.00% 1.45 982.55 0.00% 5.70 982.55 0.00% 4.05 982.55 0.00% 1.84
70 11 4 3 c 982.55 0.00% 2.81 982.55 0.00% 6.17 982.55 0.00% 3.77 982.55 0.00% 2.09
71 11 5 2 c 1106.05 0.00% 0.70 1106.05 0.00% 2.13 1106.05 0.00% 0.55 1106.05 0.00% 0.97
72 11 5 3 c 1106.05 0.00% 1.39 1106.05 0.00% 3.02 1106.05 0.00% 0.78 1106.05 0.00% 1.17
73 21 2 2 c 807.85 0.00% 4.48 807.85 0.00% 15.12 807.85 0.00% 1.73 807.85 0.00% 2.48
74 21 2 3 c 807.85 0.00% 63.97 807.85 0.00% 43.64 807.85 0.00% 1.52 807.85 0.00% 2.94
75 21 2 4 c 807.85 0.00% 357.26 807.85 0.00% 216.59 807.85 0.00% 1.72 807.85 0.00% 2.98
76 21 3 2 c 966.11 0.00% 16.44 966.11 0.00% 13.14 966.11 0.00% 6.21 966.11 0.00% 4.89
77 21 3 3 c 966.11 0.00% 166.42 966.11 0.00% 36.17 966.11 0.00% 5.23 966.11 0.00% 7.11
78 21 3 4 c 966.11 0.00% 600.13 966.11 0.00% 735.65 966.11 0.00% 4.80 966.11 0.00% 6.75
79 21 4 2 c 1187.64 0.00% 375.99 1187.64 0.00% 94.20 1187.64 0.00% 102.79 1187.64 0.00% 115.47
80 21 4 3 c 1187.64 2.35% TLR 1187.64 0.00% 1709.26 1187.64 0.00% 125.55 1187.64 0.00% 83.31
81 21 4 4 c 1187.64 3.27% TLR 1187.64 1.64% TLR 1187.64 0.00% 95.83 1187.64 0.00% 89.48
82 21 5 2 c 1820.05 2.31% TLR 1820.05 0.00% 4677.73 1834.91 10.88% TLR 1837.69 7.69% TLR
83 21 5 3 c 1818.90 6.15% TLR 1818.87 4.18% TLR 1832.45 7.54% TLR 1826.76 6.99% TLR
84 21 5 4 c 1824.40 16.55% TLR 1819.84 7.46% TLR 1830.25 7.27% TLR 1824.40 7.52% TLR
85 31 2 2 c 913.59 0.00% 3201.56 913.59 0.00% 1587.37 913.59 0.00% 375.37 913.59 0.00% 281.13
86 31 2 3 c 913.59 4.58% TLR 913.59 4.17% TLR 913.59 0.00% 285.83 913.59 0.00% 425.65
87 31 2 4 c 913.59 2.40% TLR 913.59 4.98% TLR 913.59 0.00% 243.23 913.59 0.00% 318.02
88 31 3 2 c 1309.23 6.14% TLR 1317.40 7.05% TLR 1314.11 13.04% TLR 1310.28 12.22% TLR
89 31 3 3 c 1325.32 7.83% TLR 1309.86 6.90% TLR 1309.86 12.44% TLR 1310.28 12.08% TLR
90 31 3 4 c 1335.24 8.87% TLR 1309.86 7.16% TLR 1311.94 12.87% TLR 1310.28 13.47% TLR
91 31 4 2 c 1816.23 8.60% TLR 1812.29 8.44% TLR NFS NFS TLR NFS NFS TLR
92 31 4 3 c 1787.49 7.79% TLR 1804.77 8.88% TLR NFS NFS TLR NFS NFS TLR
93 31 4 4 c 1795.30 7.95% TLR 1799.69 8.82% TLR NFS NFS TLR NFS NFS TLR
94 31 5 2 c 1754.44 4.54% TLR 1740.64 2.66% TLR NFS NFS TLR NFS NFS TLR
95 31 5 3 c 1734.87 3.50% TLR 1734.87 3.55% TLR NFS NFS TLR NFS NFS TLR
96 31 5 4 c 1745.10 4.47% TLR 1767.73 5.20% TLR NFS NFS TLR NFS NFS TLR
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Table A.10 Computational results of M1, M5, M4 and M6 for the benchmark in-
stances with version a

M1 M5 M4 M6
Ins. n t k Ver. OBJ Gap Time OBJ Gap Time OBJ Gap Time OBJ Gap Time

1 11 2 2 a 620.48 0.00% 0.72 620.48 0.00% 1.43 620.48 0.00% 1.55 620.48 0.00% 1.82
2 11 2 3 a 620.48 0.00% 2.02 620.48 0.00% 2.69 620.48 0.00% 0.96 620.48 0.00% 2.19
3 11 3 2 a 838.32 0.00% 0.59 838.32 0.00% 0.94 838.32 0.00% 0.75 838.32 0.00% 1.50
4 11 3 3 a 838.32 0.00% 1.28 838.32 0.00% 1.65 838.32 0.00% 0.69 838.32 0.00% 1.94
5 11 4 2 a 1027.52 0.00% 6.27 1027.52 0.00% 7.85 1027.52 0.00% 8.58 1027.52 0.00% 9.19
6 11 4 3 a 1027.52 0.00% 129.58 1027.52 0.00% 177.59 1027.52 0.00% 12.80 1027.52 0.00% 9.95
7 11 5 2 a 1064.49 0.00% 16.49 1064.49 0.00% 12.30 1064.49 0.00% 7.96 1064.49 0.00% 6.77
8 11 5 3 a 1064.49 0.00% 39.46 1064.49 0.00% 47.94 1064.49 0.00% 8.74 1064.49 0.00% 6.46
9 21 2 2 a 827.88 0.00% 13.17 827.88 0.00% 21.97 827.88 0.00% 41.29 827.88 0.00% 39.98

10 21 2 3 a 827.88 0.00% 109.35 827.88 0.00% 154.64 827.88 0.00% 37.36 827.88 0.00% 33.98
11 21 2 4 a 827.88 0.00% 1063.72 827.88 0.00% 600.78 827.88 0.00% 35.88 827.88 0.00% 45.99
12 21 3 2 a 1063.53 0.00% 36.41 1063.53 0.00% 35.88 1063.53 0.00% 108.42 1063.53 0.00% 169.71
13 21 3 3 a 1063.53 0.00% 401.15 1063.53 0.00% 504.75 1063.53 0.00% 67.61 1063.53 0.00% 73.82
14 21 3 4 a 1063.53 1.31% TLR 1063.53 1.31% TLR 1063.53 0.00% 199.54 1063.53 0.00% 62.31
15 21 4 2 a 1219.16 0.00% 742.85 1219.16 0.00% 379.67 1219.16 3.05% TLR 1219.16 2.98% TLR
16 21 4 3 a 1219.16 0.77% TLR 1219.16 0.84% TLR 1219.16 2.90% TLR 1221.03 3.24% TLR
17 21 4 4 a 1219.16 2.13% TLR 1219.16 1.54% TLR 1221.03 3.00% TLR 1220.28 2.92% TLR
18 21 5 2 a 1768.06 0.00% TLR 1768.06 1.70% TLR 1768.06 3.88% TLR 1768.06 5.43% TLR
19 21 5 3 a 1768.98 3.62% TLR 1769.13 3.59% TLR 1768.06 3.92% TLR 1768.06 4.76% TLR
20 21 5 4 a 1771.23 9.18% TLR 1771.08 7.90% TLR 1768.06 5.56% TLR 1768.06 4.22% TLR
21 31 2 2 a 884.92 7.19% TLR 883.13 7.25% TLR 900.66 14.39% TLR 915.25 16.59% TLR
22 31 2 3 a 883.13 8.15% TLR 884.92 7.87% TLR 896.31 14.70% TLR 896.98 14.42% TLR
23 31 2 4 a 917.06 11.59% TLR 891.67 9.11% TLR 905.76 15.58% TLR 907.02 15.44% TLR
24 31 3 2 a 1310.75 6.82% TLR 1310.62 6.63% TLR 1294.91 0.00% 1373.96 1294.91 0.00% 1361.66
25 31 3 3 a 1301.27 7.00% TLR 1294.91 6.71% TLR 1294.91 0.00% 1528.90 1294.91 0.00% 1428.25
26 31 3 4 a 1294.91 6.61% TLR 1297.03 6.80% TLR 1294.91 0.00% 1940.53 1294.91 0.00% 2002.14
27 31 4 2 a 1753.35 6.60% TLR 1759.47 6.54% TLR NFS NFS TLR NFS NFS TLR
28 31 4 3 a 1740.52 6.27% TLR 1739.26 7.82% TLR NFS NFS TLR NFS NFS TLR
29 31 4 4 a 1740.38 6.69% TLR 1848.24 13.26% TLR NFS NFS TLR 1829.34 17.26% TLR
30 31 5 2 a 1846.06 12.31% TLR 1827.62 9.92% TLR NFS NFS TLR 1956.54 20.37% TLR
31 31 5 3 a 1821.41 10.19% TLR 1798.53 8.93% TLR NFS NFS TLR 1888.00 17.78% TLR
32 31 5 4 a 1821.31 13.52% TLR 1799.48 9.98% TLR NFS NFS TLR 1858.93 16.10% TLR
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Table A.11 Computational results of M1, M5, M4 and M6 for the benchmark in-
stances with version b

M1 M5 M4 M6
Ins. n t k Ver. OBJ Gap Time OBJ Gap Time OBJ Gap Time OBJ Gap Time
33 11 2 2 b 555.05 0.00% 0.86 555.05 0.00% 0.61 555.05 0.00% 0.55 555.05 0.00% 0.92
34 11 2 3 b 555.05 0.00% 0.94 555.05 0.00% 0.80 555.05 0.00% 0.83 555.05 0.00% 1.58
35 11 3 2 b 954.87 0.00% 0.69 954.87 0.00% 1.05 954.87 0.00% 0.61 954.87 0.00% 0.87
36 11 3 3 b 954.87 0.00% 2.84 954.87 0.00% 4.48 954.87 0.00% 0.64 954.87 0.00% 1.45
37 11 4 2 b 1193.36 0.00% 1.64 1193.36 0.00% 1.86 1193.36 0.00% 1.95 1193.36 0.00% 2.34
38 11 4 3 b 1193.36 0.00% 2.86 1193.36 0.00% 3.52 1193.36 0.00% 2.41 1193.36 0.00% 2.73
39 11 5 2 b 1512.26 0.00% 0.75 1512.26 0.00% 0.59 1512.26 0.00% 0.78 1512.26 0.00% 1.56
40 11 5 3 b 1512.26 0.00% 12.63 1512.26 0.00% 8.59 1512.26 0.00% 0.70 1512.26 0.00% 1.33
41 21 2 2 b INF INF INF INF INF INF INF INF INF INF INF INF
42 21 2 3 b 797.84 0.00% 3547.25 797.84 0.00% 2279.54 797.84 0.00% 126.88 797.84 0.00% 189.75
43 21 2 4 b 797.84 3.13% TLR 797.84 3.75% TLR 797.84 0.00% 138.22 797.84 0.00% 146.66
44 21 3 2 b INF INF INF INF INF INF INF INF INF INF INF INF
45 21 3 3 b 1215.79 1.91% TLR 1215.79 1.43% TLR 1215.79 0.00% 317.97 1215.79 0.00% 288.02
46 21 3 4 b 1215.79 4.67% TLR 1215.79 4.73% TLR 1215.79 0.00% 177.32 1215.79 0.00% 341.84
47 21 4 2 b 1300.01 2.01% TLR 1300.01 1.93% TLR 1326.57 13.11% TLR 1313.63 12.46% TLR
48 21 4 3 b 1306.41 4.89% TLR 1305.18 10.25% TLR 1318.3 12.20% TLR 1325.39 12.41% TLR
49 21 4 4 b 1322.60 14.95% TLR 1306.41 6.37% TLR 1304.25 11.10% TLR 1328.58 13.17% TLR
50 21 5 2 b 1832.80 0.00% 2174.04 1832.80 0.00% 3857.83 NFS NFS TLR NFS NFS TLR
51 21 5 3 b 1782.17 4.58% TLR 1783.39 5.74% TLR 1772.8 3.16% TLR 1772.80 4.00% TLR
52 21 5 4 b 1805.49 8.06% TLR 1785.61 6.69% TLR 1772.8 2.08% TLR 1786.23 5.88% TLR
53 31 2 2 b 995.26 3.68% TLR 995.26 2.41% TLR 995.26 0.00% 2074.67 995.26 0.00% 2915.75
54 31 2 3 b 995.51 3.41% TLR 995.26 3.08% TLR 995.26 0.00% 2142.59 995.26 0.00% 2476.46
55 31 2 4 b 995.26 3.81% TLR 995.26 3.77% TLR 995.26 0.00% 2395.96 995.26 0.00% 2668.25
56 31 3 2 b 1304.14 3.84% TLR 1304.14 1.71% TLR 1304.14 7.46% TLR 1304.14 7.87% TLR
57 31 3 3 b 1304.14 4.88% TLR 1304.14 4.50% TLR 1306.82 7.93% TLR 1305.92 7.75% TLR
58 31 3 4 b 1304.14 3.97% TLR 1304.14 1.42% TLR 1304.14 7.53% TLR 1307.25 7.94% TLR
59 31 4 2 b 1521.71 1.14% TLR 1521.71 0.09% TLR NFS NFS TLR 1588.42 14.42% TLR
60 31 4 3 b 1521.71 2.39% TLR 1540.90 4.91% TLR 1555.13 12.37% TLR 1640.94 16.43% TLR
61 31 4 4 b 1521.71 2.25% TLR 1553.82 5.56% TLR 1614.2 15.99% TLR 1588.95 14.18% TLR
62 31 5 2 b 2274.21 6.68% TLR 2298.95 7.17% TLR 2292.51 14.14% TLR 2284.33 13.60% TLR
63 31 5 3 b 2278.74 7.86% TLR 2267.65 7.61% TLR 2281.84 13.69% TLR 2288.82 14.15% TLR
64 31 5 4 b 2277.51 8.35% TLR 2274.21 7.76% TLR 2280.9 13.65% TLR 2275.38 13.43% TLR

43



Table A.12 Computational results of M1, M5, M4 and M6 for the benchmark in-
stances with version c

M1 M5 M4 M6
Ins. n t k Ver. OBJ Gap Time OBJ Gap Time OBJ Gap Time OBJ Gap Time
65 11 2 2 c 536.92 0.00% 1.52 536.92 0.00% 1.31 536.92 0.00% 1.23 536.92 0.00% 1.06
66 11 2 3 c 536.92 0.00% 1.58 536.92 0.00% 3.59 536.92 0.00% 0.78 536.92 0.00% 1.09
67 11 3 2 c 627.69 0.00% 0.83 627.69 0.00% 0.69 627.69 0.00% 0.31 627.69 0.00% 0.34
68 11 3 3 c 627.69 0.00% 0.73 627.69 0.00% 0.98 627.69 0.00% 0.30 627.69 0.00% 0.31
69 11 4 2 c 982.55 0.00% 2.22 982.55 0.00% 2.37 982.55 0.00% 12.34 982.55 0.00% 6.20
70 11 4 3 c 982.55 0.00% 3.31 982.55 0.00% 3.27 982.55 0.00% 15.50 982.55 0.00% 8.98
71 11 5 2 c 1101.06 0.00% 1.36 1101.06 0.00% 1.20 1101.06 0.00% 1.39 1101.06 0.00% 1.22
72 11 5 3 c 1101.06 0.00% 2.50 1101.06 0.00% 4.23 1101.06 0.00% 1.42 1101.06 0.00% 1.14
73 21 2 2 c 796.71 0.00% 347.73 796.71 0.00% 144.60 796.71 0.00% 71.38 796.71 0.00% 40.64
74 21 2 3 c 796.71 0.00% 3229.03 796.71 0.00% 3453.99 796.71 0.00% 42.94 796.71 0.00% 47.47
75 21 2 4 c 796.71 3.69% TLR 796.71 2.62% TLR 796.71 0.00% 44.57 796.71 0.00% 47.46
76 21 3 2 c 933.39 0.00% 126.25 933.39 0.00% 126.50 933.39 0.00% 39.24 933.39 0.00% 25.34
77 21 3 3 c 933.39 0.00% 1932.33 933.39 0.00% 3767.98 933.39 0.00% 18.35 933.39 0.00% 23.49
78 21 3 4 c 933.39 1.71% TLR 933.39 2.11% TLR 933.39 0.00% 20.58 933.39 0.00% 24.17
79 21 4 2 c 1185.19 6.80% TLR 1188.18 6.49% TLR 1183.61 9.69% TLR 1183.58 9.51% TLR
80 21 4 3 c 1194.82 15.16% TLR 1199.46 17.25% TLR 1183.58 10.00% TLR 1187.34 8.87% TLR
81 21 4 4 c 1183.58 15.27% TLR 1201.22 10.90% TLR 1188.26 10.03% TLR 1189.53 9.92% TLR
82 21 5 2 c 1871.20 7.29% TLR 1851.72 6.43% TLR 1848.16 2.34% TLR 1848.16 0.00% 7004.61
83 21 5 3 c 1840.16 7.11% TLR 1836.02 7.28% TLR 1827.84 0.61% TLR 1827.84 0.65% TLR
84 21 5 4 c 1842.04 8.59% TLR 1841.17 9.08% TLR 1827.84 1.99% TLR 1827.84 0.00% 2204.15
85 31 2 2 c 899.61 3.80% TLR 899.61 3.98% TLR 909.41 16.34% TLR 902.05 15.22% TLR
86 31 2 3 c 899.61 4.08% TLR 899.61 4.08% TLR 905.07 16.04% TLR 899.64 14.87% TLR
87 31 2 4 c 907.46 4.94% TLR 899.61 4.39% TLR 906.16 15.50% TLR 908.55 17.09% TLR
88 31 3 2 c 1332.07 8.67% TLR 1347.96 9.10% TLR 1318.01 0.00% 7115.11 1318.01 0.00% 4014.70
89 31 3 3 c 1347.96 10.05% TLR 1359.52 10.21% TLR 1318.01 5.29% TLR 1318.26 3.94% TLR
90 31 3 4 c 1347.96 10.23% TLR 1318.01 6.91% TLR 1318.01 0.00% 6260.45 1318.01 0.00% 5046.15
91 31 4 2 c 1757.73 8.27% TLR 1766.81 7.95% TLR NFS NFS TLR NFS NFS TLR
92 31 4 3 c 1803.81 10.75% TLR 1792.55 9.03% TLR NFS NFS TLR NFS NFS TLR
93 31 4 4 c 1802.77 10.69% TLR 2112.47 23.46% TLR NFS NFS TLR NFS NFS TLR
94 31 5 2 c 1798.69 8.07% TLR 1788.67 7.40% TLR NFS NFS TLR 1863.78 19.97% TLR
95 31 5 3 c 1799.49 7.93% TLR 1835.51 9.50% TLR NFS NFS TLR 1865.07 19.60% TLR
96 31 5 4 c 1791.22 7.64% TLR 1798.77 7.37% TLR NFS NFS TLR NFS NFS TLR
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