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ABSTRACT

NUMERICAL SIMULATION OF COMPLEX SOFT MATTER SYSTEMS

ROOZBEH SAGHATCHI

MANUFACTURING ENGINEERING Ph.D DISSERTATION, JULY 2022

Dissertation Supervisor: Prof. Mehmet Yildiz

Keywords: soft matter, emulsion, active nematics, smoothed particle
hydrodynamics, finite volume

Soft matters are the branch of materials that can be deformed or structurally altered
under mechanical stress. These materials have contributed to many engineering ap-
plications, including microfluidics, 3D printing, and tissue engineering, among oth-
ers. Of particular interest, two essential and highly desirable in many applications
are being considered, including emulsions and active matters. Emulsions consist of
a dispersed fluid suspended in an ambient fluid leading to the multiphase system.
The water-oil emulsion is one of the well-known examples of these systems, which
can be either a single emulsion (W/O or O/W) or the double emulsion (W/O/W or
O/W/O), which are the indispensable parts of the microfluidic systems. Active mat-
ters describe systems, such as cellular tissue or bacterial suspensions that actively
consume their internal or surrounding energy and convert it into motion leading to
the collective chaotic motion known as active turbulence.

Using numerical simulations based on two different mesh-free and mesh-based
schemes, namely smoothed particle hydrodynamics and finite volume methods, we
investigate the hydrodynamics of these complex systems, allowing us to control
these systems and gain a better understanding of their behavior. First, an electro-
hydrodynamics simulation of the emulsion is performed. The confinement effects are
investigated by placing a single emulsion in a highly confined domain and applying
an external electric field. It is shown that the deformation is highly dependent on
the ratios of electrical permittivity, electrical conductivity, and confinement ratio.
Effects of combined shear and electric forces on the double emulsion are also stud-
ied. It is shown that the deformation and orientation angle of droplets are highly
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dependent on the capillary and electrical capillary numbers, and core to shell radius
ratio. It is demonstrated that in some systems, a breakup occurs, which can be
circumvented by changing the capillary and electrical capillary numbers as well as
the core to shell droplet radius ratio.

Next, the active nematic is simulated by using the continuum model for the nema-
todynamic equation. Flow behavior, nematic ordering, topological defects, vorticity
correlation, and spectrum of the kinetic energy are calculated and discussed in de-
tail. Furthermore, the active nematics’ mixing behavior is calculated and described
qualitatively. The effects of two important parameters, namely, activity and elas-
tic constant, are investigated. It is shown that the activity intensifies the chaotic
nature of the active nematic by increasing the pathline and mixing efficiency while
the elastic constant behaves oppositely. Additionally, the Impact of fluid inertia
on the collective pattern formation in active nematics is investigated. It is shown
that an incremental increase in inertial effects results in gradual melting of nematic
order with an increase in topological defect density before a discontinuous transition
to a vortex-condensate state. The emergent vortex-condensate state at low enough
viscosities coincides with nematic order condensation within the giant vortices and
the drop in the density of topological defects. It is further shown that the flow field
around topological defects is substantially affected by inertial effects. Moreover, the
strong dependence of the kinetic energy spectrum on the inertial effects is demon-
strated, which recovers the Kolmogorov scaling within the vortex-condensate phase,
but no evidence of universal scaling at higher viscosities is found. Finally, the vi-
brational motion of a cantilever beam placed in active nematics is investigated. It
is indicated that the small-scale vortices are the primary mechanism for the energy
transfer between the fluid and beam, thereby imposing the oscillatory motion. It
is also shown that the intensification of the activity increases peak frequency, and
there is a linear correlation between the peak frequency and activity. The reciprocal
relationship between viscosity and peak frequency is demonstrated as well.
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ÖZET

KOMPLEKS YUMUŞAK MADDE SISTEMLERININ SAYISAL SIMÜLASYONU

ROOZBEH SAGHATCHI

ÜRETIM MÜHENDISLIĞI DOKTORA TEZİ, MAYIS 2022

Tez Danışmanı: Prof. Dr. MEHMET YILDIZ

Anahtar Kelimeler: yumuşak madde, emülsiyon, aktif nematik, interpolasyonlu
parçacık hidrodinamiği, sonlu hacimler

Yumuşak maddeler, mekanik stres altında deforme olabilen veya yapısal olarak
değişebilen malzemelerin dalıdır. Bu malzemeler, mikroakışkanlar, 3D baskı ve
doku mühendisliği dahil olmak üzere çeşitli mühendislik uygulamalarına katkıda
bulunmaktadır. Emülsiyonlar ve aktif maddeler, birçok uygulamada karşılaşılan ve
yumuşak maddeler alanının oldukça ilgi gören iki kategorisidir. Emülsiyonlar, bir
ortam sıvısında süspanse edilen dağılmış bir sıvıdan oluşan çok fazlı sistemlerdir. Su-
yağ emülsiyonu, bu sistemlerin en iyi bilinen örneklerinden biridir ve mikroakışkan
sistemlerin vazgeçilmez bileşenleri olan tek bir emülsiyon (S/Y veya Y/S) veya çift
emülsiyon (S/Y/S veya Y/S/Y) şeklinde meydana gelebilmektedir.Aktif maddeler,
iç enerji veya çevrelerindeki enerjiyi aktif olarak tüketerek, sonucunda aktif tür-
bülans olarak bilinen toplu kaotik harekete dönüştüren hücresel doku veya bakteri
süspansiyonları gibi sistemlerdir.

Bu çalışma, interpolasyonlu parçacık hidrodinamiği ve sonlu hacimler yöntemleri
olmak üzere, ağsız ve ağ tabanlı iki farklı sayısal yöntem kullanılarak gerçekleştir-
ilen simülasyonlar aracılığıyla, söz konusu karmaşık sistemlerin hidrodinamiğini
araştırarak bu sistemlerin kontrol edilmesine ve davranışlarına dair kavrayışımızı
artırmaya olanak sağlamaktadır.Bu doğrultuda ilk olarak, emülsiyonun bir elek-
trohidrodinamik simülasyonu gerçekleştirilmiştir. Son derece sınırlı bir alana tek
bir emülsiyon yerleştirilerek ve bir dış elektrik alanı uygulanarak sınırlama etki-
leri araştırılmıştır. Deformasyonun büyük ölçüde elektriksel geçirgenlik, elektriksel
iletkenlik ve hapsetme oranı oranlarına bağlı olduğu gösterilmiştir. Ayrıca, çift emül-
siyon üzerindeki kombine kesme ve elektrik kuvvetlerinin etkileri de incelenmiştir.
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Damlacıkların deformasyon ve yönlenme açısının, kılcal ve elektrik kılcal sayılarına
ve çekirdek-kabuk yarıçap oranına büyük ölçüde bağlı olduğu gösterilmiştir. Bazı
sistemlerde, kılcal ve elektrik kılcal sayılarının yanı sıra çekirdek-kabuk damlacık
yarıçapı oranının değiştirilmesiyle önlenebilecek bir kırılma meydana geldiği göster-
ilmiştir.

Daha sonra, nematodinamik denklem için süreklilik modeli kullanılarak aktif ne-
matik simüle edilmiştir. Akış davranışı, nematik düzen, topolojik kusurlar, girdap
korelasyonu ve kinetik enerji spektrumu hesaplanmış ve ayrıntılı olarak tartışılmıştır.
Ayrıca, aktif nematiklerin karışma davranışı hesaplanmış ve niteliksel olarak tanım-
lanmıştır. İki önemli parametre olan aktivite ve elastik sabitin etkileri incelen-
miştir. Aktivitenin, katedilen mesafe ve karıştırma verimini artırarak aktif ne-
matiğin kaotik yapısını yoğunlaştırırken, elastik sabitin zıt şekilde davrandığı gös-
terilmiştir. Ayrıca, sıvı ataletinin aktif nematikte kolektif model oluşumu üz-
erindeki etkisi araştırılmıştır. Eylemsizlik etkilerindeki kademeli bir artışın, bir
girdap-yoğuşma durumuna süreksiz bir geçişten önce topolojik kusur yoğunluğunda
bir artışla nematik düzenin kademeli olarak erimesine neden olduğu gösterilmiştir.
Yeterince düşük viskozitelerde ortaya çıkan girdap-yoğuşma durumu, dev girdaplar
içindeki nematik düzen yoğunlaşması ve topolojik kusurların yoğunluğundaki düşüş
ile çakışmaktadır. Bununla birlikte, topolojik kusurların etrafındaki akış alanının
atalet etkilerinden önemli ölçüde etkilendiği gösterilmiştir. Ayrıca, kinetik en-
erji spektrumunun atalet etkilerine güçlü bağımlılığı gösterilmiştir. Bu da girdap-
yoğunlaştırma fazı içinde Kolmogorov ölçeklemesini geri getirmekte, fakat daha yük-
sek viskozitelerde evrensel ölçeklemeye kanıt sağlamamaktadır. Son olarak, aktif
nematik içine yerleştirilmiş bir konsol kirişin titreşim hareketi incelenmiştir. Küçük
ölçekli girdapların, akışkan ve kiriş arasındaki enerji transferi için birincil mekanizma
olduğu, dolayısıyla salınım hareketinin sorumlusu olduğu gösterilmiştir. Ayrıca,
aktivitenin yoğunlaşmasının tepe frekansını arttırdığı ve tepe frekansı ile aktivite
arasında doğrusal bir korelasyon olduğu gösterilmiştir. Viskozite ve tepe frekansı
arasındaki karşılıklı ilişki de gösterilmiştir.
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1. INTRODUCTION

1.1 Soft matter systems

Soft matters are the branch of materials that can be deformed or structurally al-
tered under mechanical stress. Liquids, foams, gels, emulsions, and liquid crystals,
and biological matters are examples of these materials. Soft matters have made
an outstanding contribution to many engineering applications, including microflu-
idics (Bartolo & Aarts, 2012), 3D printing (Chen, Tan, Bin Juhari, Shi, Cheng, Chan
& Song, 2020), tissue engineering (Dhariwala, Hunt & Boland, 2004), robotics (Ma-
jidi, 2019), amongst others. Of particular interest, two essential and highly desirable
in many applications are being considered, including emulsions and active matters.

1.1.1 Emulsions

Emulsions are one of the important types of soft matter, which is the mixture of
two or more immiscible fluids forming a multiphase system. These systems con-
sist of a dispersed fluid suspended in an ambient fluid. Water- oil emulsion is a
famous example of a single emulsion system where oil droplets are dispersed in the
water (Fig. 1.1-a). In some cases, more than two fluids participate in the dispersed
phase such that one fluid surrounds the other. In such conditions, one emulsion has
core and shell fluids both dispersed in the third ambient fluid, which is known as
double emulsion (Fig. 1.1-b). The emulsion properties will be very different from
those of the component liquids, making it desirable in a vast number of applica-
tions, such as wastewater treatment (Raghuraman, Tirmizi & Wiencek, 1994), food
production (Paximada, Howarth & Dubey, 2021), cosmetic industry (Tarnowska,
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Figure 1.1 Schematic representation of an emulsion deformed under the
effect of external electric field. (a) single emulsion. (b) double emulsion.

Briançon, Resende de Azevedo, Chevalier, Arquier, Barratier & Bolzinger, 2020),
drug delivery (Pontrelli, Carr, Tiribocchi & Succi, 2020), and LOC1 (Zanini, Zal-
tron, Turato, Zamboni & Sada, 2022).

One of the essential concerns of emulsions, particularly in microfluidic systems, is
their manipulation and control. For instance, these process are necessary for droplet
transportation and droplet sampling in biological LOCs (Feng, Shirani & Inglis,
2019) and mixing (Lee, Chang, Wang & Fu, 2011). Various manipulation methods
can be utilized in microfluidics, including hydrodynamic manipulation, EHD2 ma-
nipulation, thermocapillary, magnetic actuation, and acoustic radiation (Yang, Xu
& Wang, 2010). In hydrodynamic manipulation, an external hydrodynamic force is
exerted on the system. Consequently, this force creates stress on the interface, thus
reshaping/moving the droplet in the desired direction. This hydrodynamic stress
can be supplied by imposing pressure or shear force (Hudson, 2010), or designing
a specific channel geometry (T-junction (Pang, Zhou, Wang, Lei, Ren, Li, Wang &
Liu, 2020) and Flow-focusing geometry (Funfschilling, Debas, Li & Mason, 2009),
for example).

In this thesis, the main focus will be on the EHD deformation of the emulsions. Since
EHD-based control is relatively complex compared to the hydrodynamic means, the
following section will mainly introduce this method.

1Lab-on-a-Chip

2Electrohydrodynamics
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1.1.1.1 Electrohydrodynamics

EHD is the science of studying the electrically charged fluid under the applied high
voltage. The applied electric field creates pressure in dielectric media, leading to
the fluid flow in the physical domain. Therefore, EHD has become a widely used
method to manipulate emulsions and droplets in various applications such as 3D
printing (Mohammadi, Movahhedy & Khodaygan, 2019), electrocoalescence (Xia,
2019), and bioengineering (Altun, Ekren, Kuruca & Gunduz, 2019).

Investigation of EHD effect on the suspended droplet has a long history. Initially,
a very rough assumption was made for the emulsion, where the droplet and the
medium fluids were considered either perfect dielectrics or perfect conductors. How-
ever, such an assumption resulted in a unidirectional elongation of the droplet.
Concretely, the droplet was deformed in the direction of the applied electric field
only, which is known as prolate deformation (Taylor, 1964). Later, Allan et al.
(1962) showed that it is possible for the droplet to deform in the perpendicular
direction to the applied electric field (oblate elongation). This critical observation
led to a reconsideration of the simplified EHD model. Concretely, Taylor, McEwan
& de Jong (1966) revised Taylor’s earlier idea and introduced an improved model,
namely the leaky dielectric model. In the leaky dielectric model, fluid is considered
slightly conductive, allowing the free electric charge to accumulate on the interface
of the emulsion. The leaky dielectric model is one of the successful models in the
field of EHD and has been used by many researchers who want to numerically study
the different behaviors of droplets under the effect of an electric field. These stud-
ies utilized various numerical methods including FVM3 (Roghair, Musterd, van den
Ende, Kleijn, Kreutzer & Mugele, 2015), FEM4 (Santra, Mandal & Chakraborty,
2018), LBM5 (Kupershtokh & Medvedev, 2006; Lauricella, Melchionna, Montessori,
Pisignano, Pontrelli & Succi, 2018).

1.1.1.2 Confinement effect

The manipulation of fluids in geometrically constrained microchannels is of inter-
est in microfluidics. When the fluid consists of droplets, it becomes an important

3Finite Volume Method

4Finite Element Method

5Lattice Boltzmann Method
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subdivision of microfluidics called droplet-based microfluidics. Droplet-based mi-
crofluidics offers potential application in many areas, such as droplet-based LOC
devices (Fink, Hamidović, Springer, Wille & Haselmayr, 2020), microreactors (Liu,
Tian, Qiao, Zhou, Patil, Wang, Li & Mann, 2020), etc. In all droplet-based microflu-
idic devices, the dimensions of both the channel and the emulsion are comparable.
The effect of this confinement on the leaky dielectric droplet under the applied elec-
tric field is considered by Behjatian & Esmaeeli (2013) and Esmaeeli & Behjatian
(2012) for 2D and 3D geometries, respectively. In these studies, analytical proce-
dures are used to solve the governing equations, and the small droplet deformation
assumption is made. This assumption does not give an accurate result for the high
amounts of the applied electric field. Santra et al. (2018) used COMSOL Multi-
physics to simulate the droplet behavior under the confined geometry numerically.
In this study, a single droplet and two separate droplets are located between two
parallel electrodes to investigate their EHD dynamics. All of the above studies relate
droplet deformation to two factors. The first factor is the magnitude of the normal
hydrodynamics and electric stress, and the second one is the sign of the normal
hydrodynamic stress. The authors then claimed that the confinement ratio affects
these two factors.

1.1.1.3 Double emulsions

So far, it was concentrated on the dynamics of the single emulsion under differ-
ent conditions. As mentioned earlier, double emulsions also play an essential role
in many engineering applications. Double emulsions have a doubled-layer liquid
droplet structure where the inner droplet (core) is covered by an emulsifier (shell)
and further dispersed in another medium phase (Fig. 1.1-b). Double emulsions are ei-
ther oil-in-water-in-oil (O/W/O) or water-in-oil-in-water (W/O/W). These systems
have been exploited in many applications, specifically in food sciences (Paximada
et al., 2021), cosmetics (Tarnowska et al., 2020), pharmacology (drug delivery, for
instance) (Pontrelli et al., 2020), and wastewater treatment (Raghuraman et al.,
1994).

Unlike a single emulsion, relatively few investigations have been performed on manip-
ulating double emulsions considering the influence of an external electric field (Ab-
basi, Song, Kim & Lee, 2019; Santra, Das & Chakraborty, 2020; Spasic, Jovanovic,
Manojlovic & Jovanovic, 2016; Tsukada, Mayama, Sato & Hozawa, 1997), or shear
force (Chen, Liu & Shi, 2013; Hua, Shin & Kim, 2014; Luo, He & Bai, 2015), or the

4



combination of these two forces (Borthakur, Nath & Biswas, 2021; Santra, Jana &
Chakraborty, 2020) and needs further study to understand the behavior of double
emulsions comprehensively.

1.1.2 Active matter

The other vital subdivisions of soft matter systems are active matters. The world
is filled with living organisms whose scales extend from microscopic cells such as
bacteria (Meacock, Doostmohammadi, Foster, Yeomans & Durham, 2021) to more
giant creatures, including bird flocks (Bialek, Cavagna, Giardina, Mora, Silvestri,
Viale & Walczak, 2012) and fish schools (Becco, Vandewalle, Delcourt & Poncin,
2006). These living organisms are categorized as active matters since they actively
consume their internal or surrounding energy and convert it into motion.

Each entity of these materials tends to move disorderly in the system. However,
when these elements are packed together, their collective motion is no longer disor-
dered, described as an orientationally ordered phase of active matters by soft matter
science. The collective chaotic motion is known as active turbulence (Alert, Casade-
munt & Joanny, 2022; Bratanov, Jenko & Frey, 2015; Doostmohammadi, Shendruk,
Thijssen & Yeomans, 2017; Shendruk, Doostmohammadi, Thijssen & Yeomans,
2017; Urzay, Doostmohammadi & Yeomans, 2017; Wensink, Dunkel, Heidenreich,
Drescher, Goldstein, Löwen & Yeomans, 2012), and in contrast to classical turbu-
lence, it emerges in the absence of any external forces. Such chaotic flow represents
a length scale larger than the constituent elements of active matter Martínez-Prat,
Ignés-Mullol, Casademunt & Sagués (2019); Simha & Ramaswamy (2002), and the
resultant velocity and jets are much larger than the individual element speeds Klotsa
(2019); Marchetti, Joanny, Ramaswamy, Liverpool, Prost, Rao & Simha (2013). The
study of active turbulence was the subject of many experimental and numerical stud-
ies, each of which tried to imitate the collective motion of active matters to gain a
better understanding of the mechanisms and control their behavior in various fields
such as biological, medical, and food science Doostmohammadi, Thampi, Saw, Lim,
Ladoux & Yeomans (2015); Duclos, Adkins, Banerjee, Peterson, Varghese, Kolvin,
Baskaran, Pelcovits, Powers, Baskaran, Toschi, Hagan, Streichan, Vitelli, Beller &
Dogic (2020); Martínez-Prat et al. (2019); Urzay et al. (2017); Wensink et al. (2012).
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Figure 1.2 Schematic representation of active nematics. Rod-shaped nematic
particles are aligned in the same direction but are free to drift around randomly.

1.1.2.1 Active nematics

Active nematic is one class of active matter which consists of a group of rod-shaped
particles exhibiting head-tail symmetry (Fig. 1.2) which includes systems such as
MT6-motor protein mixtures (Gao, Blackwell, Glaser, Betterton & Shelley, 2015),
bacterial suspensions (Meacock et al., 2021), and cell assemblies (Doostmohammadi
& Ladoux, 2022). The Greek term nematic is given to this category because they
bear some resemblance to nematic liquid crystals. Nematic liquid crystals are made
of elongated molecules characterized by long-range orientational order. However, the
main difference between nematic liquid crystals and active nematics is the active na-
ture of the constituent particles in active nematics. Due to this characteristic of the
active nematics, topological defects generate and annihilate continuously yet ran-
domly. Such behavior destroys the long-range orientational order in active nematics
and leads to the emergence of active turbulence (Doostmohammadi, Ignés-Mullol,
Yeomans & Sagués, 2018).

Topological defects are the points in the active nematics where there are direc-
tor (n in Fig. 1.2) mismatches between the neighboring particles. These points
are the singular points, and in 2D active nematics, the predominant defects are
comet-like (+1/2) or trefoil-like (−1/2) defects where these numbers represent their
charge (Doostmohammadi & Ladoux, 2022). In order to calculate the defect charge,

6Microtubule
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one needs to perform a full (+2π) rotation around a defect point and calculate the
changes in the orientation of particles on the rotation path (Doostmohammadi et al.,
2018). In the active nematic systems, +1/2 defects are motile, and their movement
direction is toward their comet head and their comet tail in extensile and contractile
systems, respectively. This movement direction is significant as it determines the
direction of imposed force by the nematic particles (Doostmohammadi & Ladoux,
2022).

1.2 Numerical prospective

Generally, three main approaches are available to study fluid flow, including exper-
imental, analytical, and numerical methods. The experimental procedure gives the
desired results; however, it is a pretty expensive method, and in some cases, it is
impossible to perform a suitable setup. The analytical method is accurate, but it is
limited to elementary geometries and models. On the other hand, numerical meth-
ods give rise to the field of CFD7. These methods are promising as they can solve
any complex equation. However, the accuracy of the model affects the outcomes of
this method. Moreover, the large domains or complex physics such as turbulence
physics require very fine resolution, which is computationally expensive. HPC8 can
alleviate the computational cost problem and will be discussed in the next section.

In the macro-scale CFD, two general approaches exist for solving the interest equa-
tions, namely mash-free and mesh-based methods. Each of these methods has its
pros and cons. Mesh-based methods need an Eulerian grid for discretizing the phys-
ical domain. The grid makes these methods challenging to implement into geomet-
rically complex problems and physics with moving boundaries. Mesh-free methods,
however, do not need a grid and can effortlessly model these complex problems.
Computationally expensive cost is the flip side of the mesh-free methods. In this
thesis, both methods are used to simulate soft matter physics. For this purpose,
SPH9 method and FVM are used. The SPH method represents the mesh-free ap-
proach, while theFVM is typical of the mesh-based class. To implement the FVM,

7Computational Fluid Dynamics

8High Performance Computing

9Smoothed Particle Hydrodynamics
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an open source package, namely OpenFOAM10, is utilized.

1.2.1 Smoothed Particle Hydrodynamics

SPH is a mesh-free particle-based Lagrangian method invented to simulate astro-
physical problems (Gingold & Monaghan, 1977; Lucy, 1977). In SPH, macroele-
ments of the fluid are replaced with a set of particles, and they are used to calculate
and store the fluid properties. These properties are determined by interpolation vari-
ables from the particles taking advantage of kernel approximation. SPH has several
attractive features that make this method a powerful tool to deal with complicated
physics. For instance, it can effortlessly handle the moving boundaries as in free sur-
face flow (Ozbulut, Tofighi, Goren & Yildiz, 2017; Ozbulut, Yildiz & Goren, 2014a),
multiphase flow (Zainali, Tofighi, Shadloo & Yildiz, 2013a), and FSI11 (Ghazanfar-
ian, Saghatchi & Gorji-Bandpy, 2015,1; Saghatchi, Ghazanfarian & Gorji-Bandpy,
2014).

1.2.2 OpenFOAM

OpenFOAM is an open-source package based on C++ programming language that
is capable of solving complex PDEs12. OF contains various solvers and utilities to
deal with the different physical problems. OpenFOAM discretizes the PDEs based
on FVM in space and FDM13 in time (Weller, Tabor, Jasak & Fureby, 1998). It
offers pre- and postprocessing environment and can deal with 2D and 3D problems.

Due to the object-oriented nature of Openfoam, any PDE can be introduced into
the package simply. For example, the following transport equation:

(1.1) ∂T

∂t
+ ∇ · (~uT )−∇ · (ν∇T ) = 0

10Open source Field Operation And Manipulation

11Fluid-Structure Interaction

12Partial Differential Equation

13Finite Difference Method
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is implemented in OpenFOAM as (Weller et al., 1998):

solve
(
fvm::ddt(T)
+ fvm::div(phi, T)
- fvm::laplacian(nu, T)
);

which makes the code easier to write, validate, and maintain.

1.2.3 High Performance Computing

As mentioned before, the downside of the CFD techniques is their high compu-
tational costs in some physics. HPCs are developed to alleviate such difficulty by
executing parallel operations. The drawback of parallel processing is its implementa-
tion and coding, which requires the user to become familiar with the parallelization
algorithms.

Parallel computing can be applied with either shared memory hardware or dis-
tributed memory. In the former approach computational machine uses the same
memory space for the multiple processors. One famous example of shared memory
parallel computation is OpenMP14 (Chandra, Dagum, Kohr, Menon, Maydan & Mc-
Donald, 2001). However, in the distributed memory approach, each processor has its
own memory space and can not directly access the memory associated with other
processors. This system uses an explicit message passing model to perform data
exchange between processors. One of the typical examples of distributed memory
systems is MPI15 (Gropp, Lusk & Skjellum, 1999; Pacheco, 1997).

GPUs16 are also used for computation purposes in recent years, and their appli-
cation in the CFD field is getting popular. Although the original duty of GPU is
graphics rendering, their computing capability has grown, which makes GPUs faster
than CPUs17 for CFD computations. Various platforms are being used to utilize

14Open Multi-Processing

15Message Passing Interface

16Graphics Processing Unit

17Central Processing Unit
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GPU’s computational capabilities, such as OpenCL18 (Group & others, 2008) and
CUDA19 (Sanders & Kandrot, 2010). CUDA attracts more attention among re-
searchers mainly because of its enormous documentation and utilities available on
the CUDA website (https://developer.nvidia.com/cuda-zone). Furthermore, a per-
formance comparison between these two platforms reveals that CUDA performs 30%
better (Fang, Varbanescu & Sips, 2011).

1.3 Aims and scope

This thesis aims to develop an SPH method for describing two important subclasses
of soft matters, including emulsions and active nematics. The computational code
is parallelized using the CUDA platform to hasten the computational speed. Effects
of domain confinement and applied external electric fields are investigated on the
dynamics of single and double emulsions. Then, the SPH code is used to simulate
the continuum model of active nematics for the first time. At the same time, EHD
and active nematic solver is developed based on the OpenFOAM package to verify
the results obtained by SPH. It is also used to simulate the problems where SPH
encountered multiple difficulties.

This thesis is structured into nine chapters, including the introduction (current chap-
ter. 1), mathematical formulation of emulsions and active nematics (chapter. 2), nu-
merical implementation (chapter. 3), and five peer-reviewed journal articles (three
in press, two under review), one peer-reviewed conference contributions (chapters. 4
through. 8), and finally the conclusion and suggestion for the future studies (chap-
ter. 9).

18Open Computing Language

19Compute Unified Device Architecture
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2. MATHEMATICAL FORMULATION

This chapter gives the theoretical framework for the rest of this thesis. As discussed
in the introduction, the goal is to study the soft matter system, including emulsions
and active nematics. As such, we provide a theoretical framework and the formu-
lation for each of these systems separately. It should be noted that throughout
this thesis, the fluids are assumed to be incompressible, Newtonian, immiscible, and
isothermal, flowing in a two-dimensional domain.

We start this chapter by introducing the necessary equations for describing emulsion
dynamics under the effect of the electric field. Thus, we formulate the surface tension
and the electric forces and express them as volumetric local forces that can readily be
used in the governing equation. Then, active nematics are presented by introducing
the nematic orientation field and order parameter tensor. Then we explain the active
stress that introduces the instability into the system.

2.1 Emulsions

The equations describing the evolution of emulsion include conservation of mass and
linear momentum as follows (Eringen, 1980):

(2.1) ∇ ·~u= 0,

(2.2) ρ
D~u
Dt = ∇ ·Π+ ~f,

where ρ, ~u, and t, are density, the velocity vector, and time, in the given order. Π
denotes the stress tensor which includes the pressure term (−pI) with I representing
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the identity tensor, and the viscous term Πviscous = 2ρνE where ν is the kinematic
viscosity, and E = 1

2

[
∇~u+ (∇~u)†

]
represents the rate of strain tensor. D/Dt opera-

tor is the material time derivative which is defined as D/Dt= ∂/∂t+~u ·∇. The last
term ~f includes the surface tension (~fs) and electric forces (~fe). It should be noted
that the gravitational force is neglected throughout this study. In the following
sections, we aim to formulate these two forces.

2.1.1 Surface tension

Each phase tends to shrink into the minimum surface area possible in a system
containing two or more immiscible liquids. This tendency initiates from the cohesive
nature of liquid molecules known as surface tension, allowing the liquids to resist
the external forces applied to their surface.

In this study, CSF1 scheme is used to model the surface tension force (Brackbill,
Kothe & Zemach, 1992). This method expresses the surface force on the interface as
a volumetric local force (i.e., a body force) while explicitly replacing the infinitely
thin interface between two liquids with a finite thickness transition region. As
such, interface curvature is calculated as follows (Zainali, Tofighi, Shadloo & Yildiz,
2013b):

(2.3) ~fs = γκ~nδ,

where γ and δ, respectively represent the surface tension coefficient and the Dirac
delta function. κ=−∇ ·~n is the local interface curvature with ~n denoting the unit
surface normal vector.

2.1.2 Electric force

In this part, we focus on the derivation of electrostatic forces that are used in
combination with the hydrodynamic equations to explain the electrohydrodynamics
behavior of the system. We start by making some essential assumptions that allow

1Continuum Surface Force
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us to write the relevant governing equations for the electrostatic field within the
fluids and across the liquid interfaces:

• The system containing the multiphase flow is non-polarizable and non-
magnetizable.

• A quasi-static electric field model is applicable to the system.

The latter assumption is the consequence of the insignificant dynamic current, hence
the negligible influence of magnetic induction. With such an assumption, one can
ignore the magnetic induction, leading to the elimination of Ampere’s law of the list
of governing equations. In the absence of an external magnetic field, Faraday’s law
can be simplified to the following equation:

(2.4) ∇× ~E = 0,

where ~E denotes the electric field vector. From (2.4), it can be inferred that the
gradient of the electric field vector is symmetric (i.e., ∇ ~E = (∇ ~E)†). Using the
fact that the curl of a gradient of any scalar/vector-valued function is is zero (i.e.,
∇× (∇φ) = 0), we can express the electric field as (Castellanos, 1998):

(2.5) ~E =−∇φ,

where scalar φ designated the electric potential.

To account for the free electric charges in the domain, the total volume current ( ~J)
is introduced as (Eringen & Maugin, 2012):

(2.6) ~J = qv~u+~j,

where qv is the volume-charge density of free charges, ~j is the volume conduction
current density. The first term on the right-hand side of (2.6) accounts for the
convection induced by the fluid motion, and the last term denotes the ohmic cur-
rent which is related to the electric field through the following relation (Eringen &
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Maugin, 2012):

(2.7) ~j = σ ~E,

where σ is the physical property of material known as the electrical conductivity.

To relate the electric field with free electric charges, Gauss’s law is solved which can
be written as (Eringen & Maugin, 2012):

(2.8) ∇· ~D = qv,

where the electric permitivity ε determines the degree of this coupling. The term
ε ~E is known as electric displacement and is represented by ~D.

In order to obtain the conservation charge, we begin with the differential form of
Ampere’s law (Eringen & Maugin, 2012):

(2.9) ∇× ~B = 1
c

[ ∂
~D

∂t
+ ~J ] ,

where c is the speed of light in vacuum. Taking the divergence of (2.9) and noting
that the divergence of the curl of any arbitrary vector field is equal to zero (∇· (∇×
~B) = 0), yields:

(2.10) ∇· [ ∂
~D

∂t
+ ~J ] = 0.

Combining Eqs. 2.5, 2.8, and 2.10 results in the conservation of charge equation as
follows (Castellanos, 1998):

(2.11) Dqv
Dt

=−∇·~j.

In the emulsion system containing the interface between two liquids, jump conditions
are used for Maxwell’s equations to relate interfacial and bulk properties of the
emulsion. The jump conditions corresponding to Eqs. 2.4, 2.8, and 2.11 are written
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as (Eringen & Maugin, 2012; Saville, 1997):

(2.12) ~n×
∥∥∥ ~E∥∥∥= 0,

(2.13) ~n ·
∥∥∥ ~D∥∥∥= qs,

and

(2.14) δ̄qs/δt+∇s · ~K+~n ·
∥∥∥ ~J− qv~v∥∥∥= 0,

in the given order. In these equations, the symbol ‖ ‖ represents the jump of the
enclosed quantities across the interface ξ, qs is the a surface density of free charge
(charge per unit surface area), and ∇s is the surface gradient operator. δ̄qs/δt =
∂/∂t+ (~v ·~n)(~n ·∇) is the total time derivative in following the motion of ξ along
its unit normal vector ~n. The velocity of discontinuity surface is represented by ~v,
and ~K = ~k+ qs~v is the total surface current where ~k and qs~v, respectively are the
surface conduction and convection currents.

Finally, the electrostatic field is coupled to the emulsion interface by taking the
divergence of the Maxwell stress tensor Te and the result is incorporated in the
linear momentum balance equation (2.2) via volumetric electric force ~fe = ∇·Te.
The Maxwell stress tensor can be written as (Saville, 1997; Shadloo, Rahmat &
Yildiz, 2013):

(2.15) Te = ~D⊗ ~E−0.5( ~D · ~E),

It should be noted that the contribution of the induced magnetic field is neglected
in the derivation of this equation. However, alternative forms of the Maxwell stress
tensor may be found in the literature (see for example, Das & Saintillan (2021); Re-
ich, Rickert & Müller (2018); Roghair et al. (2015)). Taking the divergence of (2.15)
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and combining (2.8) yields:

(2.16) ~fe = qv ~E−
1
2
~E · ~E∇ε.

The first and the second terms on the right-hand side of (2.16) are Coulomb and
polarization forces, respectively, where the former force is the result of the interaction
between free charges and the electric field and acts along the direction of the electric
field, whereas the latter force acts along the normal direction to the interface due
to the pairs of charges.

Considering a homogeneous fluid with uniform electrical conductivity σ, permit-
tivity ε, and viscosity µ, where the system of interest is characterized by a length
scale L, two primary time scales are generally involved (Saville, 1997): the viscous
time scale tµ = ρL2/µ, and the electrical relaxation time te = ε/σ. In this the-
sis, the emulsion system is considered as conducting-conducting (leaky dielectric),
hence tµ � te. Consequently, both volume and surface charges can reach steady
state, i.e., Dqv/Dt = 0 and δ̄qs/δt = 0. Additionally, if (2.11) is written in a non-
dimensional form, recalling that tµ� te, the contribution of the surface current ~k
to the physics of problem can be neglected and the total surface current reduces to
~K ≈ qs~v. Moreover, assuming that the discontinuity surface is a material interface,
then, ~u= ~v. Therefore, relying on the aforementioned assumption, the conservation
of charge in (2.11) in the volume and on the discontinuity surface, respectively can
be simplified to (Shadloo et al., 2013):

(2.17) ∇· (σ∇φ) = 0, ~n · ‖σ∇φ‖= 0.

Furthermore, the final version of the Gauss’law for electricity for the volume
(i.e., (2.8)) and the discontinuity surface (i.e., (2.13)), respectively follows as (Shad-
loo et al., 2013);

(2.18) ∇· (ε∇φ) = qv, ~n · ‖ε∇φ‖= 0.

Upon combining (2.2) with Eqs. 2.3 and 2.16, one can obtain the equation of motion
including volumetric surface tension and electric field forces to describe the dynamics
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of emulsions under the applied electric field.

2.2 Active nematics

As mentioned in the previous chapter, active fluids are an important category of soft
matter systems. This section focuses on continuum modeling of systems containing
active microscopic particles. Despite the microscopic size of individual particles,
their collective movement exhibits significantly larger scales. We focus on active
nematics, i.e., systems where the collective dynamics manifest nematic flow symme-
tries. These systems exhibit chaotic flow in bulk due to the collective hydrodynamic
stress generated by active constituent particles.

2.2.1 Nematic Liquid Crystals

Condensed matter physics categorizes the materials into three distinct phases; solid
crystals, isotropic liquids, and liquid crystals (Fig. 2.1). Crystalline solid is a state of
matter in which the constituents are arranged in a highly ordered manner, and they
have little translational freedom. The isotropic liquid state, in contrast, has neither
orientational nor positional order, and the components are free to move randomly.
Liquid crystals fall in between, exhibiting many of the physical attributes of a liquid
(e.g., cannot withstand the shear force), while their elements are sufficiently ordered
to give rise to some anisotropy (De Gennes & Prost, 1995).

Journey in the Liquid crystal research began in 1888 when Friedrich Reinitzer, an
Austrian botanist— or biochemist in modern terms, surprisingly noticed that choles-
terol crystals had two unique melting points (Reinitzer, 1888). The crystalline solid
melted into a hazy liquid at first, but eventually, the cloudiness vanished, leaving a
clear, transparent liquid as one would expect after melting. In 1922, Friedel gave the
first classification scheme for naming the different phases of liquid crystals, including
nematic liquid crystals (Friedel, 1922). When he showed his daughter photographs
of liquid crystals taken through a microscope, she proposed the name nematics,
which originates from the Greek word “nêmatos” meanings thread (Mitov, 2014).

Nematic liquid crystals have long-range orientational order and are characterized

17



Figure 2.1 Schematic representation of matter phase. (a) Crystalline solid in
which the atoms, ions, or molecules are arranged in a definite repeating pattern and
exhibits long range periodic order. (b) Isotropic liquid with no orientational and
positional order. (c) Nematic liquid crystal characterized by molecules that have no
positional order but tend to point in the same direction (along the director n̂). The
director n̂ denotes the local average orientation of the liquid crystal.

by a coarse-grain variable, i.e., an orientation field that describes the anisotropic
structure of nematic liquid crystals. The average orientation of nematic particles is
described by the nematic orientation n̂ which is shown in Fig. 2.1c. Since nematic
particles have a head-tail symmetry structure, n̂ is an apolar quantity meaning that
n̂ and −n̂ are equivalent, thereby leading to the same ordered state. In addition to
n̂, an order parameter q is necessary to evaluate the local particles’ ordering and
distinguish isotropic liquid (Fig. 2.1b) from nematic liquid (Fig. 2.1c) which define
as follows (De Gennes & Prost, 1995):

(2.19) q =
〈
P2
(
cos2(θi)

)〉
=
〈

3
2cos

2(θi)−
1
2

〉
=
∫
f(θ)

(3
2cos

2(θ)− 1
2
)
dΩ.

Here, P2 denotes the second Legendre polynomial, θi is the angle between the lo-
cal particles and the director n̂ (Fig. 2.2). Function f(θ)dΩ is the probability
distribution function and describes the average local rod alignment. The symbol
〈 〉= 1

N

∑( ) represents the average of the enclosed quantities over the local num-
ber of particles N . The scalar quantity q measures the magnitude of alignment and
varies between 0 and 1, where q = 0 corresponds to complete orientational disorder
while for the perfect orientational order q = 1.

To define both the isotropic-nematic transition and the local orientation, we need
a single parameter that describes both q and n̂. Thus, we define a single trace-
less symmetric tensor order parameter Q using the quadrupole expansion as fol-
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Figure 2.2 Nematic particles’ orientational parameters. Each particle has its
own orientation b̂ and the average of all particles’ orientation is described by the
nematic orientation n̂. Consequently, deviation of individual particle orientation
from the mean value is represented by angle θ.

lows (De Gennes & Prost, 1995):

(2.20) Q =
〈
b̂b̂− I

d

〉
,

where, b̂ is the orientation of individual particles (Fig. 2.2), and d denotes the
dimension of space. Q can be rewritten in terms of n̂ as (De Gennes & Prost, 1995):

(2.21) Q = d

d−1q
(
n̂n̂− I

d

)
.

This formulation for Q allows us to describe the evolution of n̂ and q. Mathemat-
ically, n̂n̂ is a tensor product, and it is equivalent to ~n~n. Consequently, in (2.21),
one can treat n̂ as a polar vectorial field, eliminating the additional concerns that
arise when dealing with an apolar quantity. Inversely, director n̂ and scalar order
parameter q can be determined by calculating the eigenvectors of Q. As such, n̂ and
q are the eigenvector with the largest eigenvalue and the corresponding eigenvalue,
respectively.

2.2.2 Continuum model
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After describing the director n̂ and scalar order parameter q by tensor order param-
eter Q, we can now study their evolution in time. In order to do that, we use the
continuum approach to model the dynamics of active nematics (Doostmohammadi
et al., 2018; Marchetti et al., 2013; Prost, Jülicher & Joanny, 2015; Ramaswamy,
2010a). We begin by introducing the equation for describing the evolution of Q, and
then we move to the hydrodynamic equation of active nematics to fully describe the
behavior of system.

2.2.2.1 Active nematodynamics

The dynamics of tensor order parameter Q, is described by Beris- Edwards equation
as (Beris & Edwards, 1994):

(2.22) DQ
Dt −S = ΓH,

where S is the co-rotation term and accounts for the Q reorientations due to the
rotational and extensional components of the flow gradient, characterized by the vor-
ticity tensor Ω = 1

2

[
(∇~u)†−∇~u

]
and the rate of strain tensor E = 1

2

[
∇~u+ (∇~u)†

]
.

The derivation of these relation is given in a detailed manner in Appendix A. Con-
cretely, in the 2D domain, the co-rotation term S has the following form:

(2.23) S = λE− (Ω ·Q−Q ·Ω).

Here, λ is the tumbling parameter and adjusts the degree of coupling between ne-
matic alignment and the flow gradient (Marenduzzo, Orlandini, Cates & Yeomans,
2007a). Physically, |λ| > 1 and |λ| < 1 respectively correspond to flow alignment
and flow tumbling of nematics under the shear effect (Carenza, Gonnella, Lamura,
Negro & Tiribocchi, 2019; Thampi, Golestanian & Yeomans, 2014b).

The right-hand side of (2.22) accounts for the relaxation of Q to the minimum of the
free energy F , while this relaxation is controlled temporally by rotational diffusivity
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Γ and determined by the molecular field H defined as:

(2.24) H =−δF
δQ

+ I
2Tr

(
δF
δQ

)
,

where Tr() represents the trace operator.

Deformations in the orientation field occur at the cost of a free energy F =Fe+Fb,
which includes both the elastic free energy cost Fe and the bulk free energy Fb.
The elastic free energy Fe penalizes the gradients in the orientation, which can be
approximated by using Frank elastic free energy as (De Gennes & Prost, 1995):

(2.25) Fe = 1
2

[
Ksplay

(
∇ · n̂

)2
+Kbend

(
n̂× (∇× n̂)

)2
+Ktwist

(
n̂ · (∇× n̂)

)2]
,

where ks are the Frank elastic constants, and the three terms in (2.25) correspond
to splay, twist and bend deformation, respectively, as illustrated in Fig. 2.3. Note
that additional terms associated with boundaries are ignored in (2.25). The elastic
deformation free energy cost can be simplified into a single constant equation by
assuming that all constants in (2.25) are equal (i.e., K = Ksplay = Kbend = Ktwist).
Furthermore, since we are interested in expressing the equations in terms of Q rather
than n̂, we map Fe to derivatives in Q as follows:

(2.26) Fe = 1
2K(∇Q)2,

with k denoting a single elastic constant.

Figure 2.3 The three types of bulk director deformations that occur in
nematic liquid crystals: (a) splay, (b) bend, and (c) twist.

Another term that contributes to the cost of a free energy is the bulk free energy Fb
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that insures a stable nematic ordering at the thermodynamic equilibrium. The only
rotationally invariant function of Q are Tr[Q]2) and Tr[Q]3). To ensure thermody-
namic stability, the isotropic to nematic phase transition is built around a power
series expansion as (De Gennes & Prost, 1995):

(2.27) Fb = C0
2 + C1

2 Tr[Q]2 + C2
3 Tr[Q]3 + C3

4 (Tr[Q]2)2,

Where Cis are Landau-de Gennes coefficients, and by altering their values, one may
set the isotropic or nematic state as the global ground state. C3 should be taken as
a positive value to ensure the system’s stability against unbounded growth of the
scalar order parameter q. Moreover, in a 2D domain, we can neglect the Tr[Q]3 term
due to symmetry (De Gennes & Prost, 1995), and this choice does not affect the
continuous phase transition from isotropic to nematic (Vink, 2014). In this study
we take C0 = A, C1 = −A, C2 = 0, and C3 = A/2 with A being the only positive
coefficent that controls the bulk free energy as follows:

(2.28) Fb = A

2 (1− 1
2Tr[Q]2)2,

which is the common form in the literature (Fielding, Marenduzzo & Cates, 2011;
Marenduzzo, Orlandini, Cates & Yeomans, 2007b).

2.2.2.2 Hydrodynamics of active nematics

So far, we have introduced the equations to describe the evolution of the nematic
order tensor Q in terms of both nematic order q and orientation field n̂. In this
section, we discuss the dynamics of the velocity field to be able to describe the
active nematic systems completely.

The self-propelled active particles create flow as they move at very small Reynolds
number in the system by slightly oscillating their shape (Lighthill, 1952). According
to Newton’s third law, the mutual forces of active swimmers and the surrounding
fluid balance (Aditi Simha & Ramaswamy, 2002). Consequently, swimmers have no
monopole moments (i.e., the integration of the total momentum density must be
zero). A minimal model to describe the active particles and their farfield is, there-
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fore, a model that simplifies the swimmers as points that generate dipole moment
and subsequently induce flow field (Ramaswamy, 2010b). The swimming parti-
cles can either be pushers (extensile) or pullers (contractile). In the former type,
fluid is sucked in along the swimmers’ waist and pushed forward and backward, re-
spectively, by their heads and their tails. Consequently, the corresponding dipoles’
forces point outwards (Fig. 2.4a). In the second type, fluid is pulled in by the swim-
mers’ flagella toward their bodies and pushed outward along the swimmers’ waists.
In contrast to the pusher type, the resultant dipoles’ forces point inwards in the
puller type swimmers (Fig. 2.4b). An example of pusher-type swimmers is the E.
coli bacteria (Riley, Das & Lauga, 2018), and an example of a puller-type is the
Chlamydomonas algae (Lauga & Powers, 2009).

Figure 2.4 Schematic of active swimmers. (a) Pushers (extensile) system. (b)
Pullers (contractile) system. Red arrows denote the induced flow direction and blue
arrows represent the dipole forces. (Image taken from Saintillan (2018).)

Assuming Newtonian fluid, generalized incompressible Navier Stokes equations (i.e.,
Eqs. 2.1 and 2.2) are used for active nematics. Moreover, due to the absence of any
external electric field and surface tension force, we assume that ~f = 0.

For the active systems, apart from the pressure term −pI and the viscous term
Πviscous, the stress tensor Π includes an additional term, i.e., active stress tensor
Πactive = −ζQ which introduces the activity into the system. Πactive couples the
velocity field to the orientation field, and the magnitude of the activity coefficient
ζ controls the strength of active stress tensor. Furthermore, the sign of activity
parameter determines whether the self-propelled particles are extensile (ζ > 0) or
contractile (ζ < 0) (Simha & Ramaswamy, 2002). One may see an additional term
in the literature on active fluids, namely elastic stress tensor. However, in studies
of active nematics, this term is typically dominated by active contributions and
is commonly neglected (Blanch-Mercader & Casademunt, 2017; Hardoüin, Hughes,
Doostmohammadi, Laurent, Lopez-Leon, Yeomans, Ignés-Mullol & Sagués, 2019).
Similarly, we disregard the passive elastic term and focus on the role of active stresses
on the dynamics of nematic systems.
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2.3 Agreement between computation and experiment

One of the crucial issues in the numerical simulation of active nematics is the cal-
ibration of the parameters such that the numerical results correctly resemble the
actual behavior of the active fluid. In terms of qualitative results, the onset of ac-
tive turbulence is one of the main characteristics of active fluids, which verifies the
correctness of the used parameters in the numerical study. In terms of quantitative
results, however, various characteristics might be considered and compared between
the experimental and numerical results.

Thampi et al. (2013) performed a numerical simulation of a 2D, active nematic
suspension based on the continuum scheme and compared the rms velocity varia-
tion with the experimental results of Sanchez, Chen, DeCamp, Heymann & Dogic
(2012). Consequently, they demonstrated the similarity between activity coefficient
ζ and ATP2. Turiv, Krieger, Babakhanova, Yu, Shiyanovskii, Wei, Kim & Lavren-
tovich (2020) performed an experimental study using the cell monolayers of human
dermal fibroblasts with predesigned orientational patterns and topological defects
using a photoaligned liquid crystal elastomer to estimate the elastic constant K and
surface anchoring parameter of the tissue for a numerical study of active nemat-
ics formed by extensile units. Thijssen, Metselaar, Yeomans & Doostmohammadi
(2020) conducted a study to estimate the flow aligning parameter λ and reproduce
the experimental results on microtubule–kinesin motor mixtures.

These are examples of the ongoing studies which aim to perfectly estimate the
different parameters of the various active agents in future numerical simulations.

2Adenosine triphosphate
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3. NUMERICAL MODELS

Chapter 2 established the mathematical model to describe the complex soft mat-
ter systems, including the emulsions and active nematics. This chapter introduces
the necessary tools to solve the governing equations numerically. This study uses
two distinct numerical methods, including SPH and FVM, where both of them are
introduced in the following sections.

3.1 Smoothed Particle Hydrodynamics

The SPH method was first developed in the 1970s by Lucy (1977) and Gingold &
Monaghan (1977) independently for non-axisymmetric phenomena in astrophysical
applications. The ease of implementing the SPH method for complex physics made
it quite alluring to deal with complex physics with nonlinear behaviors. Engineering
applications of SPH emerged in the 1990s and early 2000s. Since then, this method
has developed rapidly in numerous fields, including energy, mass, and momentum
transfers.

Figure 3.1 The schematic concept behind the SPH method. A red dot shows
the particle of interest, and its neighboring particles inside the support domain are
demonstrated in blue. (The image is adapted from Dai et al. (2016).)
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To put it in a nutshell, SPH is simply an interpolation method that approximates
any function with a set of particles (Fig. 3.1). These particles carry important infor-
mation such as mass, energy, momentum, and other required properties. Mathemat-
ically, approximation of arbitrary function f on the spatial coordinate set denoted
by the vector ~ri ∈ R3 can be written as (Gingold & Monaghan, 1977):

(3.1) f(~ri)≈ 〈f(~ri)〉 ≡
∫

Ω
f(~rj)W (~ri− ~rj,h)d3~rj,

where i and j denote the particle of interest, and the neighboring particle, respec-
tively. The integral is calculated on the domain Ω, and d3~rj is a differential volume
element. W (~ri− ~rj,h) is the foundation of SPH algorithm, known as kernel func-
tion, which is an approximated form of Dirac delta function δ(~ri− ~rj) that has the
properties as follows:
(3.2)

δ(~ri− ~rj) =

0, ~ri− ~rj 6= 0

∞, ~ri− ~rj = 0
,

∫ ∞
−∞

δ(~ri− ~rj)dr = 1, δ(~ri− ~rj) = δ(~rj− ~ri).

Equation 3.1 dictates an interpolation within a spherical neighborhood defined by
the smoothing length parameter h, in which the kernel function acts as a weighting
factor. Various kernel functions are available in the literature, while in this study,
the quintic kernel function is used, which reads (Morris, Fox & Zhu, 1997):

(3.3) W (b,κh) = ad



(3− b)5−6(2− b)5 + 15(1− b)5, 0≤ b≤ 1

(3− b)5−6(2− b)5, 1≤ b≤ 2

(3− b)5, 2≤ b≤ 3

0, b≥ 3

Here, ad is the kernel normalization factor which equals 7/(478πh2) and 3/(359πh3)
in 2D and 3D, respectively, b= rij/h and rij = |~ri− ~rj|, and κ is the coefficient that
extends the smoothing length, where in this study we take κ= 3, and h as 4/3 times
the initial distance between particles.

In a discrete form, one can simply replace integration in (3.1) with a summation
over the particles of the domain as:

(3.4) fi =
Jn∑
j=1

1
ψj
fjWij,

where, Jn is the number of neighbors in the support domain of particle i, fi could
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be either a scalar, vector or tensor value function. Furthermore, d3~rj in (3.1) is
substituted with 1

ψj
, where ψj denotes the number density and defined as:

(3.5) ψi =
Jn∑
j=1

Wij.

As discussed in the previous chapter, equations that govern the complex systems
include the first and second derivatives, requiring us to provide an SPH discretization
of such terms. This task is possible upon substituting function f(~rj) by ∂f(~rj)/∂xkj
in (3.1). After performing some mathematical manipulations, one may obtain the
SPH discretization for the gradient of the arbitrary function fi as:

(3.6) ∂fi
∂xki

=
Jn∑
j=1

1
ψj
fj
∂Wij
∂xki

.

However, this form of derivative discretization does not provide sufficient accuracy
and hence requires SPH researchers to propose discretization schemes with higher
accuracy. Benefiting from the properties of a second-rank isotropic tensor, we use
the corrective SPH formulation to calculate the first-order derivative of a vector
valued function fs as follows (Shadloo, Zainali, Sadek & Yildiz, 2011):

(3.7) ∂fsi
∂xki

αkli =
Jn∑
j=1

1
ψj

(
fsj −fsi

) ∂Wij
∂xli

,

where where αkli is a second rank tensor. Similarly, the second-order derivative of
fs can be written as (Shadloo et al., 2011):

(3.8) ∂

∂xki

(
ξi
∂fsi
∂xki

)
αsli = 8

Jn∑
j=1

2
ψj

(
ξiξj
ξi + ξj

)(
fsi −fsj

) rsij
r2

ij

∂Wij
∂xli

,

where ξ may denote any hydrodynamical or electrical properties. The term with ξ is
important when dealing with the interface of the multiphase systems. The jump in
the transport parameters must be treated precisely across the interface of multiphase
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systems. Such treatment is provided by applying the WHM1 interpolation as follows:

(3.9) 2ξiξj
ξi + ξj

.

The alternative form is the following discretization scheme for laplacian term:

(3.10) ∂

∂xki

(
ξi
∂fsi
∂xki

)(
2 +akki

)
= 8

Jn∑
j=1

2
ψj

(
ξiξj
ξi + ξj

)(
fsi −fsj

) rkij
r2

ij

∂Wij
∂xki

.

This form is used to discretize (2.17) for the volume and the left hand sides of Eq.2.8,
as well as pressure poison equation (i.e., (3.15)) which will be introduced later in
this chapter.

It is now possible to discretize the governing equations of soft matter systems in
the form of the SPH scheme using the Eqs. 3.4, 3.7, and 3.8. However, additional
treatment should be considered when dealing with the incompressible flow and mul-
tiphase systems. These issues will be discussed in the following sections.

3.1.1 Treating multiphase system

In the SPH simulation of emulsion systems, interface tracking between the liquid
phases is obtained by utilizing the color function ĉ. For a system with two different
phases, for example, one phase is assigned as ĉ = 1 while the other phase the color
function is taken as ĉ= 0, and these values remain unchanged during the entire simu-
lation. To achieve a smooth and finite transition between phases and hence enhance
the convergence and accuracy of the SPH, the initial color function is smoothed out
for particles in the vicinity of the interface by using the following equation:

(3.11) ci =
Jn∑
j=1

ĉjWij
ψi

.

1Weighted Harmonic Mean
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The smoothed color function, ci is then used to calculate the interface features
described in (2.3), including unit surface normal vector n = ∇c/ |∇c| and Dirac
delta function δ' |∇c|. This formulation, however, might result in erroneous normal
vector in the calculation of surface tension force, which can be mitigated by applying
constraints on the gradient of the smoothed color function. As suggested by Morris
(2000), |∇ci| ≥ α/h constraint is used here, where, α is a numerical constant which
is taken as α= 0.08 to obtain reliable and accurate results (Tofighi & Yildiz, 2013).

Thermodynamic properties (e.g., ρ) and transport coefficients (e.g., σ, ε and µ)
can experience a discontinuity across the interface of emulsions, thereby resulting in
numerical instabilities. As described in (3.9), this problem can be solved by applying
the average scheme. The alternative averaging approach is WAM2 which utilized
the color function and defined as:

(3.12) χi = ciχd+ (1− ci)χf ,

where subscripts d and f denote the distinct fluid phases, and χ represents any
hydrodynamic or electrical fluid properties.

3.1.2 Imposing incompressibility

Various procedures are available in SPH for simulating incompressible flows. In this
thesis, two distinct procedures are used for emulsion and active nematics: the first
one is based on an artificial compressibility scheme, known as the WCSPH3 method,
and the second approach is the ISPH4 method which is based on the pressure pro-
jection scheme. In the former procedure, an equation of State is employed by the
weakly compressible SPH method which reads (Monaghan, 1994):

(3.13) pi = ρ0c20
γ

[(
ρi
ρ0

)γ
−1

]
,

2Weighted Arithmetic Mean

3Weakly Compressible SPH

4Incompressible SPH
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where, c0 is the speed of sound parameter, and γ is the specific heat-ratio, which
is taken as 7. In this study, the value of c0 is determined at each time step as
10 times of the maximum velocity in the domain in order to satisfy the incom-
pressiblity condition, which is defined by the mach number as M = (u/c) < 0.1.
The WCSPH approach provides the explicit solution for the momentum equation.
However, it limits the time step size since the speed of sound parameter becomes
the dominant velocity scale in the domain at the definition of the CFL5 stability
condition (Courant, Friedrichs & Lewy, 1928) for WCSPH.

Cummins and Rudmann have adapted the projection procedure developed by Chorin
(1968) and implemented it in the SPH, which is known as the ISPH method (Cum-
mins & Rudman, 1999).

3.1.3 Time integration and numerical treatments

In the WCSPH procedure, the modified Euler predictor-corrector time integration
scheme (Ozbulut, Yildiz & Goren, 2014b) begins with the projection of intermediate
particle velocities and positions with half time step size as un+1/2

i = uni + 0.5ani ∆t
and rn+1/2

i = rni + 0.5un+1/2
i ∆t, respectively, where n is the temporal index and ∆t

is the time step size. Due to the adopted time integration scheme, all the SPH
interpolations to compute the material derivatives are performed at this projected
particle setup. Therefore, it is sufficient to perform a neighbor search and parti-
cle pairing operation only at this stage of the time integration procedure. After
establishing the connections and computing the values of kernel function Wij, its
gradient ∇iWij, number density ψj , and all relevant pairing information between
neighboring particles such as rij and uij, the correction tensor αkli is also computed
for each particle. Followingly, the continuity equation is solved, and the particle
densities are projected by half time step size as ρn+1/2

i = ρni + 0.5kn+1/2
i ∆t. Ad-

ditionally, a density filtering treatment (Ozbulut, Ramezanzadeh, Yildiz & Goren,
2020) is implemented in order to maintain a smooth spatial density distribution in
the domain:

(3.14) ρ̂i = ρi−β
∑N

j=1
(
ρi−ρj

)
Wij∑N

j=1Wij

5Courant-Friedrichs-Lewy
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where ρ̂i is the corrected density and β is a density smoothing coefficient which is
used to eliminate spurious density variation, thereby enhancing the robustness of
the algorithm without impairing the fidelity of the results. The value of β varies
between zero and unity, and the value of unity corresponds to well known Shepard’s
interpolation. In this study, β is chosen to be equal to unity. Subsequently, the
particle pressures are computed by the equation of state Eq.3.13.

In the ISPH method, the pressure distribution is found by solving the pressure
Poisson equation with a source term being the divergence of the intermediate velocity
as given in Eq.3.15. As a result, the pressure values can be obtained in a way that
incompressibility conditions is enforced. To complete the time marching scheme,
the velocities and then the positions of the particles are corrected via Eqs.3.16 and
3.17, respectively.

(3.15) ∇·
(

1
ρ∗i

∇p
(n+1)
i

)
= ∇ ·u∗i

∆t′ ,

(3.16) u(n+1)
i = u∗i −

1
ρ∗i

∇p
(n+1)
i ∆t′,

(3.17) r(n+1)
i = r(n)

i + 1
2

(
u(n)

i +u(n+1)
i

)
∆t′+ δr(n)

i .

The APD6 correction algorithm (Shadloo et al., 2011) is applied upon the finalization
of the time step, in order to eliminate instabilities that are originated from particle
clustering and particle fractures:

(3.18) δri =
N∑

j=1

rij
r3

ij
r2

0uv∆t

Here, δri is the corrected particle position, uv =
∣∣∣∑N

j=1
(
ui−uj

)
Wij

∣∣∣/∑N
j=1Wij is the

velocity variance based APD coefficient (Ozbulut et al., 2017) and r0 =∑N
j=1 rij/N

is the average neighbor distance of the particle i.

6Artificial Particle Displacement
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Figure 3.2 Parameters in FVM discretization. Cell centroids are denoted by P
and N and d representing the distance between two centroids. The boundary face f
is located between two cells with S being its normal surface area vector (The image
from OpenFOAM (2011).)

3.2 Finite Volume Scheme

OpenFOAM utilizes finite volume discretization, which has been described by many
researchers (Ferziger, Perić & Street, 2002; Patankar, 2018; Versteeg & Malalasekera,
2007; Weller et al., 1998). Thus, we present a concise review of this scheme in this
section. After that, we describe the VoF7 method which is used to model the
multiphase flow in the simulation of emulsions.

3.2.1 FVM discretization

Similar to the SPH algorithm, three discretization procedures should be performed in
FVM, including domain, equations, and temporal discretization. Unlike the glssph
method, FVM utilizes the Eulerian grid to discretize the domain on which the
PDEs are subsequently discretized. Time discretization, if required, is performed

7Volume of Fluid
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by breaking it into a set of time steps ∆t that may change during a numerical
simulation, perhaps depending on some condition calculated during the simulation.
Concretely, space discretization requires subdividing the domain into a number of
cells, known as control volumes. These cells are contiguous, i.e. they do not overlap
one another and completely fill the domain (Fig. 3.2). Dependent variables and
other properties are stored at the cell centroid P . The cell is bounded by a set of
flat8 faces, given the generic label f . The cell faces are divided into two groups
- internal faces (between two cells) and boundary faces, which coincide with the
boundaries of the space domain. In the present study, the connectivity between
cells is such that the cells adjacent to a given cell face are identified by the indices,
and the cell edges form continuous mesh lines that begin and end on opposite cell
faces. This kind of mesh is often referred to as structured mesh. The advantage of
such a mesh is that the cell centroid can be easily addressed by double indices (i, j)
in two dimensions.

The purpose of equation discretization is to convert the PDEs into a system of al-
gebraic equations, making it possible to solve them numerically. Considering the
generic form of the standard transport equation for any tensorial quantity φ (Open-
FOAM, 2011):

(3.19) ∂ρφ

∂t︸ ︷︷ ︸
time derivative

+
advection term︷ ︸︸ ︷
∇ · (ρUφ) = ∇ · (Γµ∇φ)︸ ︷︷ ︸

diffusion term

+
source term︷ ︸︸ ︷

Sφ(φ) ,

where U is velocity, Γµ is the diffusivity and Sφ(φ) denotes the source term. To
discretize (3.19) based on the FVM, one needs to integrate the whole equation over
the control volume V and time. Most spatial derivative terms are then converted
to integrals over the cell surface S bounding the volume using the generalized form
of the Gauss’s theorem. The Laplacian term in (3.19) is integrated over a control
volume and linearized as follows (OpenFOAM, 2011):

(3.20)
∫
V

∇ · (Γµ∇φ)dV =
∫
S
dS · (Γµ∇φ) =

∑
f

(Γµ)fSf · (∇φ)f ,

where S is the surface area vector, and subscript f denotes the surface index. In the
present study, the length vector d between the center of the cell of interest P and

8For a flat face, all vertices lie in one plane.
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the center of a neighboring cell N is orthogonal to the face plane (i.e., d is parallel
to sf ). In such condition, the face gradient discretization is implicit and can be
calculated as follows (OpenFOAM, 2011):

(3.21) Sf · (∇φ)f = |Sf |
φN −φP

d
.

Similarly, the advection term is discretized as follows (OpenFOAM, 2011):

(3.22)
∫
V

∇ · (ρUφ)dV =
∫
S
dS · (ρUφ) =

∑
f

Sf · (ρU)fφf .

The face field φf can be evaluated using a variety of schemes, including CD9, UD10,
and BD11 (OpenFOAM, 2011).

The first time derivative is discretised by simple differencing in time using either
Euler implicit or Backward differencing scheme (OpenFOAM, 2011). In addition to
these terms, the divergence and the gradient terms are respectively discretized as
follows (OpenFOAM, 2011):

(3.23)
∫
V

∇ ·φdV =
∫
S
dS ·φ=

∑
f

Sf ·φf ,

(3.24)
∫
V

∇φdV =
∫
S
dSφ=

∑
f

Sfφf .

where the form in (3.24) known as Gauss integration scheme, while other scheme also
available in OpenFOAM such as least squares method and surface normal gradient
scheme.

In order to guarantee the method stability, CFL condition is applied for each cell as

9Central Differencing

10Upwind Differencing

11Blended Differencing
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follows (Courant et al., 1928; Ferziger et al., 2002):

(3.25) max
i
Ci = max

i
∆t 1

2Vi
∑
f∈∂Vi

|ϕf | ≤ Cmax,

where, Cmax is the Courant number limit and in the OpenFOAM the typical value
is Cmax = 1, and ϕf = Sf ·u denotes the volumetric flux through the face f .

3.2.2 The VoF method

The multiphase flow solver is incorporated in OpenFOAM and known as interFoam
which is a two-phase incompressible flow solver (Deshpande, Anumolu & Trujillo,
2012). This solver uses the VoF method to simulate the dynamics of fluid-fluid
interfaces. Based on the concept of color function, VoF introduces the volume
fraction of fluid i (whereas in two phase, it could be either 1 or 2) as follows:

(3.26) αi = volume of fluid i in the cell
total volume of the cell ,

where αi may vary from 0 to 1. In a two-phase system, one can drop the subscript i
such that α= 1 corresponds to the cell entirely filled by fluid 1, while α= 0 indicates
that the cell is filled by fluid 2. Moreover, the intermediate values of α define a diffuse
interface between the two fluids. At each time step, α is advected with the fluid
following equation (Deshpande et al., 2012):

(3.27) ∂α

∂t
+ ∇ · (α~u) = 0.

However, utilizing (3.27) results in a numerical diffusion that increases the diffuse
interface thickness throughout the simulation and subsequently, destroys the sharp
interface. To limit the numerical interface smearing, (3.27) is modified by adding
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an artificial compression velocity term (Ubbink & Issa, 1999) as:

(3.28) ∂α

∂t
+ ∇ · (α~u)−∇ · (α(1−α)~uc) = 0,

where, vecuc denotes the artificial compression velocity. The artificial compression
velocity term acts only in the vicinity of the interface and in the direction normal
to it. Upon finding the volume fraction field, density and viscosity are obtained
via (3.12) substituting ci by α. Consequently, surface normal vectors and surface
tension forces can be calculated as discussed in Secs. 2.1.1 and 3.1.1.
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4. Electrohydrodynamics of a single emulsion in a highly confined

domain

4.1 Introduction

In the present chapter, the deformation of a highly confined 2D Leaky dielectric
droplet under the applied electric field will be simulated using ISPH. To see the
impacts of electrical property ratios, six different systems of fluids will be employed.
All the two main components of the electrical force will be calculated on the droplet
interface and their influence on the droplet deformation will be discussed thoroughly
considering their both magnitude and sign. Furthermore, the pressure field will be
calculated inside the domain and its effect on the droplet deformation, particularly
at the high confinement ratio will be discussed. In order to facilitate the analysis, a
new parameter, namely the force ratio, will be introduced and applied on the droplet
interface to evaluate the influences of all related forces on the droplet deformation.
Additionally, it will be shown that the analytical results are not reasonable at high
confinement ratios, while our numerical method is able to calculate the physical and
justifiable deformation values at high confinement ratios.

4.2 Problem statement

This chapter is a slightly modified version of "Electrohydrodynamics of a droplet in a highly confined
domain: A numerical study" published in "Physics of Fluids" by "R. Saghatchi, A. Rahmat, and M.
Yildiz".
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Dimensionless values are formed using the following scales

x = x+/r, ρ= ρ+/ρd, µ= µ+/µf u = u+/
(
d/t+

)
,

t= t+/(d/ |uc|) , p= p+/ρd (|uc|)2 ,

D = ρd/ρf , V = µd/µf , P = εd/εf , C = σd/σf ,(4.1)

leading to Reynolds, Weber, Electro-Weber and electrical capillary numbers defined
as

(4.2) Re = ρd |uc|d
µd

, We = ρd |uc|2 d
γ

, Ew = ρd |uc|2

εdE2
∞
, Ec = We

Ew = εdE
2
∞d

γ
.

Here uc = εdE
2
∞d/µd is characteristic velocity, in which d and E∞ are the droplet

diameter, and electric field intensity respectively. Superscript + denotes dimensional
variables whereas subscripts f and d refer to background fluid and droplet phases,
respectively. Governing equations are solved using SPH method.

Figure 4.1 Schematic representation of the physical setup. The physical
domain includes a suspended droplet with the initial diameter d in an ambient fluid
under the constant electric field applied in the downward direction.

The computational domain is shown in Fig.5.1 which consists of a 2D droplet with
diameter d suspended in an ambient fluid inside a confined square domain assuming
W = H. The confinement ratio is defined as the ratio of droplet diameter to the
domain length, Wc= d/H. A uniform electric field E∞ is applied in the downward
direction. It is assumed that no gravitational force is applied and there is no relative
motion between droplet and ambient fluid initially. No-slip boundary condition is
applied on all side boundaries to imitate the confined domain. Considering the
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Table 4.1 The ratio of the material properties which is used to prove the code
accuracy and also resolution dependency test.

System P C D V
Prolate 0.5 2.0 1 1
Oblate 5.0 0.2 1 1

electric field, Dirichlet and Neumann boundary conditions are applied for horizontal
and vertical walls, respectively. All particles inside and outside the droplet are
arranged using a uniformly spaced Cartesian grid.

4.3 Numerical consistency and accuracy studies

Figure 4.2 Effect of particle resolution on the droplet deformation. Results
are obtained in Wc = 0 and Ec = 0.02. (a) quantitative result, and (b) qualitative
result.

Considering the leaky dielectric model, the droplet may deform into two distinct
configurations forming prolate or oblate shapes. The prolate shape is achieved when
the droplet elongates in the direction of the applied electric field, while the transverse
elongation of the droplet is known as oblate deformation. To check the dependency of
numerical results with respect to particle resolution, the deformation of the droplet
in an unbounded domain i.e. Wc= 0 is simulated for both prolate and oblate cases
at Ec= 0.02. Fluid properties of the respective cases are tabulated in Tab.4.1. The
simulations are performed for different values of particle resolution x/d= 20,40,60,
and 80, where x/d is the number of particles per unit of droplet’s initial diameter.
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The deformation of the droplet can be characterized as

(4.3) D = l1− l2
l1 + l2

,

where l1 and l2 are the two main axes of the deformed droplet in the directions
parallel and perpendicular to the applied electric field, respectively. So, positive
and negative values calculated by (4.3) represent prolate and oblate deformations,
respectively. It should be noted that for the unbounded domain, Wc is considered
to be small enough such that the effect of boundaries is negligible as shown in our
previous studies (see for example (Shadloo et al., 2013)).

Ec

D
∞

103 102 1010.3

0.2

0.1

0

0.1

0.2

0.3

Theory
SPH

Oblate

Prolate

Figure 4.3 Validation of current code for the EHD problem. The comparison
of the droplet deformation between our numerical simulation and analytical data
of Feng & Scott (1996) for Wc= 0 and different amounts of Ec.

The steady-state deformation of the droplet is represented in Fig. 5.2 for different
resolutions. Qualitative and quantitative comparison of the results in Fig. 5.2 in-
dicates that increasing the resolution from x/d = 20 to 40 and from x/d = 40 to
60 shows improvement in the accuracy of the results. However, no significant im-
provement has been observed from x/d= 60 to 80, so x/d= 60 is considered as the
reference particle resolution.

Validation test has been performed through simulating the droplet deformation un-
der the effect of the electric field in an unbounded domain. To achieve this, two
prolate and oblate systems based on the properties of Tab. 4.1 are modeled under
various electrical capillary numbers Ec. The effect of the electrical capillary number
on the droplet deformation is shown in Fig. 5.3 and is compared with the analyti-
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cal results of Feng & Scott (1996). Feng and Scott used the following equation for
calculating the deformation of the droplet as

(4.4) D = fdE
2
∞εd(d/2)

3(1 +C)2Pγ
,

where fd is the discriminating function defined as:

(4.5) fd = C2 +C+ 1−3P .

As it is shown in Fig. 5.3, our results perfectly match with the analytical data for
small deformations (|D∞| < 0.05). For larger deformations, however, it is observed
that the numerical data deviates from the analytical data. This is due to the as-
sumptions made in the theory which considers the droplet to remain almost circular.
Thus, the analytical predictions are only valid for small deformations. Such obser-
vations have been frequently reported by other numerical studies (see for example
(Roghair et al., 2015; Shadloo et al., 2013; Zhang & Kwok, 2005)).

4.4 Results

Here, the EHD deformation of a single droplet in a confined domain is presented
by considering six different systems of fluids, as tabulated in Tab.5.1. The proper-
ties of the first four systems are selected from experiments in micro- and bio-fluidics
applications. The properties of the other two systems are chosen hypothetically to il-
lustrate all possible forms of droplet deformation which will be thoroughly discussed.
These fluid systems are selected such that they represent the electric conductivity
of the droplet to be smaller (systems II and VI), in the same order (systems I, III,
and V), and larger (system IV) than the ambient fluid. Since the deformation of
droplets is limited to the confined characteristics of the domain, the electric capillary
number is chosen such that the unbounded deformation of the respective systems is
relatively small and equal to |D∞|= 0.05, unless stated otherwise.

Figure 4.4 represents the deformation of the droplet normalized with respect to
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the unbounded deformation for the systems in Tab.5.1. In this figure, the present
numerical data is further compared with the theoretical results of Behjatian & Es-
maeeli (2013). They have introduced an analytical solution for a confined droplet
in circular domains by

(4.6) D = Ec
3

Γ2Φ
(C+ 1)2 ,

where

(4.7) Γ = C+ 1
(C+ 1)−Wc2(C −1)

,

and

(4.8) Φ = C2 + 1−2P+F(C −P),

in which F is a characteristic function. Interested readers may refer to Behjatian &
Esmaeeli (2013) for further information.

Equation (4.6) shows that for small confinement ratios (Wc < 0.4), the normalized
deformation does not represent significant variations. At larger confinement ratios,
however, the deformation changes significantly in most cases. It is observed that
for some of the systems, the droplet elongation shifts from oblate to prolate or vice
versa. This behavior can be justified considering the variation in the magnitude and
direction of electrical and hydrodynamic forces on the interface.

It is revealed that for small to moderate values of confinement ratio, i.e, Wc < 0.6,
the present numerical method and the analytical solution produce similar results.
However, our numerical results deviate from the theory at large confinement ratios.
Considering the asymptotic behavior of the theoretical results for some of the pre-
sented systems, one can easily conclude that this cannot be valid due to the small
and limited characteristic of a confined droplet deformation. Additionally, in some
systems, the droplet might reach the boundaries and the corresponding deformation
becomes undefined. The deformation of system IV, for instance, cannot be obtained
beyond Wc = 0.6, since the droplet reaches the top and bottom boundaries. Thus,
the analytical solution is only limited to small ranges of confinement ratio while
our SPH method can predict reasonable values for large confinement ratios, and
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Figure 4.4 Variation of deformation which is normalized with the deforma-
tion at Wc= 0 with respect to the confinement ratio. Solid lines demonstrate
the analytical solution of Behjatian & Esmaeeli (2013) and points represent the SPH
results.

corresponding values of deformation are limited and physically justifiable as shown
in Fig. 4.4.

It can be shown that the hydrodynamics of the systems depends on the sign of
P −C such that the droplet and ambient fluids may circulate accordingly (Shadloo
et al., 2013). So, systems V and II are chosen which correspond to the P < C and
P > C respectively to scrutinize the confinement effect on the characteristics of the
flow. Figure 4.5- a and c demonstrates the streamlines for these systems at four
different confinement ratios of Wc = 0.6,0.7,0.8 and 0.9. Due to the symmetric
nature of the problem in x and y directions, only a quarter of the domain is shown.
In each quarter, the flow consists of a pair of vortices inside and outside of the
droplet, circulating in opposite directions since they match with their counterpart.
For system II, outside velocities run from the left and the right (θ= 0 and π) towards
the top and the bottom (θ = π/2 and 3π/2), which leads to the droplet elongation
in the x-direction (oblate shape) in an unbounded domain. For system V, ambient
velocities run from the top and the bottom (θ = π/2 and 3π/2) towards the left and
the right (θ = 0 and π) as shown in Fig. 4.5, resulting in elongation of the droplet
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Figure 4.5 Streamlines and magnitude of velocity contours. Results are shown
for (a) system II and (b) system V at various values of Wc. Due to symmetry in x-
and y- directions, only a quarter of the domain is shown.

in the y-direction (prolate shape) in small confinement ratios. At large confinement
ratios, however, the deformation of these two systems shifts from prolate to oblate
and vice versa. Nevertheless, by increasing the confinement ratio the circulation
direction of the vortices at the interior and exterior regions is not changed. Thus,
the change in the deformation due to the confinement ratio variation cannot be
justified by considering the vortex structure only. Therefore, it is needed to analyze
the electrical and hydrodynamic forces on the interface of the droplet to investigate
the reason for the deformation variation, precisely.

Santra et al. investigated the effect of confinement ratio on the magnitude of velocity
on a line passing through the center of the droplet (Santra et al., 2018). To see the
effect of confinement ratio on the velocity magnitude of the entire domain, contours
of this parameter are calculated and plotted in Fig. 4.5-a and b for systems II
and V, respectively, at various amounts of confinement ratios. As shown in this
figure, by increasing the confinement ratio for system II, velocity magnitude reacts
inversely and its value decreases inside the domain, which is consistent with the
results from Santra et al. (2018). In contrast to system II, velocity magnitude
increases by increasing the confinement ratio for system V as shown in Fig. 4.5-b.
As it is demonstrated in this figure, the velocity magnitude is relatively high at the
top and bottom sides of the droplet at Wc = 0.9 which can prove the reason for
the oblate deformation of system V at high confinement ratios. However, a detailed
investigation of the competing interfacial forces is needed which will be provided in
the following.
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Figure 4.6 Electric forces on the interface. Comparison of (a) polarization
force, (b) Coulomb force, and (c) total electric force on the interface of the droplet
at Wc= 0.9 for systems I, III and V.

Figure 4.6 represents the polarization (a), the Coulomb (b), and the total (c) electric
forces by showing their direction and magnitude on the droplet interface for systems
I, III, and V at Wc = 0.9. These three systems are selected since they represent
different behavior due to different electric force configurations. It can be easily
concluded that the polarization force acts normal to the interface in the opposite
direction of the electrical permittivity gradient, while the direction of the Coulomb
force depends on the interplay between the electric field and the electrical surface
charges. Considering Fig. 4.6-a, the polarization force stretches the droplet into a
prolate shape by acting at the top and bottom poles of the droplet in system I. In
system III, the effect of the polarization force is more pronounced at the side of the
droplet direction inwards, while system V shows an almost constant distribution of
the polarization force across the interface towards the center of the droplet. Figure
4.6-b shows that the Coulomb force acts mainly parallel to the applied electric field
vertically, representing an outward direction for systems I and V, in contrast to
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system III. By comparing the magnitude of the polarization and Coulomb force
terms, Fig. 4.6-c shows the effect of the total electric force for these three systems.
For the system I, the Coulomb and polarization forces are in the same direction
acting at the top and bottom poles, magnifying their effect. For the system III, the
Coulomb force is much stronger than the polarization force, thus it dominates the
total electric force influence. For system V, the polarization and Coulomb forces
act in opposite directions especially at the top and bottom parts of the droplet.
The interplay between these two terms results in an inward contribution from the
polarization force at the side of the droplet and an outward effect at the top and
bottom due to the stronger Coulomb force. It should be noted that the electric force
configurations of system II and VI are the same as III, so they are not represented
here for the sake of brevity. Additionally, the polarization and Coulomb forces act
on the top and bottom poles toward and outward the center respectively for system
IV, while the magnitude of the Coulomb force is greater than the polarization force.
Hence, the total electric force stretches the droplet in a vertical direction similar to
the system I, as shown in Fig. 4.7-a and c.

Figure 4.7 Total electric force on the interface of the droplet. Results are
shown for (a) system IV at Wc = 0.6 and |D∞| = 0.05, (b) system II at Wc = 0.8
and |D∞|= 0.05, and (c) system IV at Wc= 0.8 and |D∞|= 0.01.

Recalling from Fig. 4.4, |D∞| is set to 0.05 for all systems and the D/|D∞| is
evaluated up toWc= 0.95. On the other hand, it can be observed from the analytical
results shown in 4.4 that systems II and IV tend to reach very large deformations at
high confinement ratios (i.e. Wc > 0.7). However, we observe that systems II and
IV behave differently under the EHD effects. The discrepancy is due to different
electric force field configurations on the droplet interface. Figure 4.7 represents the
deformation of systems II and IV and illustrates the electric force vectors and their
magnitude on the interface. It can be clearly seen in Fig. 4.7-a that the electric
forces act at the top and bottom poles of the droplet in system IV and elongate it
into a prolate shape while the cause for the deformation of system II is the inward
electric forces at the side poles of the droplet as shown in Fig. 4.7-b. Additionally,
the magnitude of the electric forces is much larger in system IV. This results in
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large droplet deformations at relatively smaller confinement ratios where the droplet
reaches the top and bottom boundaries at Wc > 0.6. In order to represent the
deformation of system IV at larger confinement ratios, the unbounded deformation
has been changed from |D∞|= 0.05 to |D∞|= 0.01 which corresponds to the smaller
electrical capillary number. Hence, this indicates that the applied electric force is
weaker on the droplet interface leading to smaller unbounded deformations. Under
this condition, the droplet deformation of system IV can be tracked up to large
confinement ratios i.e. Wc = 0.8 reaching D/|D∞| = 6.96 as represented in Fig.
4.7-c. This shows that the analytical solution predicts the deformation of system IV
correctly only at very small unbounded deformations. For system II, however, the
analytical solution does not represent accurate results at large confinement ratios.

Figure 4.8 Effect of unbounded deformation on the variation of normalized
droplet deformation. (a) Wc = 0.6, and (b) Wc = 0.8. Solid lines demonstrate
the results of Behjatian & Esmaeeli (2013) and points represent the SPH results.

In Fig. 4.7, it is shown that the value of the unbounded deformation (e.g. in
system IV) affects the predictions at large confinement ratios and results in different
D/|D∞|. In order to analyze this effect, Fig. 4.8 represents the D/|D∞| at two
confinement ratios (a) Wc= 0.6 and (b) Wc= 0.8 for all six systems in Tab. 5.1 as
a function of |D∞|, which can be interpreted as an effect of the applied electric field
strength. At Wc= 0.6, it is observed that the analytical solution provides relatively
accurate results for all systems. For systems II and V, the variation of the unbounded
deformation does not show a considerable effect on D/|D∞| while it is observed that
for systems III and VI, the analytical solution predicts more accurate results at
large unbounded deformations. On the other hand, the variations of systems I
and IV do not indicate a meaningful relationship. At Wc = 0.8, systems I and VI
represent an approaching trend as the unbounded deformation increases, in contrast
to system II, while systems III and V do not show remarkable sensitivity to the
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variations of unbounded deformation. For system IV, there is no available data at
this confinement due to the extreme action of the electric forces by which the droplet
reaches the top and bottom boundaries at very small unbounded deformations (i.e.
D∞ < 0.02). By analyzing the data, one may notice that the analytical solution
is accurate at small and moderate confinement ratios (Wc ≤ 0.6) which confirms
our previous conclusion. For the high confinement ratios, on the other hand, high
unbounded deformation should be selected to making analytical solutions applicable.
Otherwise, there will be a difference between analytical and numerical results. The
reason behind such difference is due to the existence of complex interactions and
the interplay between electrical and hydrodynamic forces that we aim to elaborate
for some of the systems in the following.

Recalling from Fig. 4.4, one can notice that the general trend of systems I and V
are similar except the difference in numerical results at large confinement ratios.
It should be noted that for both systems I and V, the comparison of the electrical
conductivity and permittivity ratios yields P < C. So, the inner and outer vortices
around the droplet are as described in Fig. 4.5-b. Additionally, the electric forces
on the interface tend to deform the droplet into a prolate shape as shown in Fig.
4.6-a to c, as observed for both cases at small confinement ratios. In contrast, the
electrical conductivity and permittivity ratios of systems II and III result in P > C,
so it is expected that they deform into an oblate shape as seen in small confinement
ratios. However, the deformations of these two systems represent a shift from oblate
to prolate deformation at large confinement ratios. In order to explain the above-
mentioned cases, other dominating terms such as pressure should be also considered
which can highly influence the hydrodynamics of microfluidic systems. We believe
that the reason for such discrepancies is inherited in inappropriate utilization of the
pressure term in the analytical solution. In the following, it will be shown how the
pressure dominates the flow and changes the hydrodynamics of the system. This
will be represented in Fig. 4.9 by comparing the dynamics of systems I and V, as
well as in Fig. 4.10 for systems II and III.

Figure 4.9 compares the electrical and pressure forces for systems I and V. In Fig.
4.9-a, a new parameter is introduced here namely the Force Ratio (FR), which is
the ratio of forces normal to the interface at the sides and top/bottom poles of the
droplet. The FR is defined such that if FR> 1, interfacial forces deform the droplet
into a prolate shape, while FR < 1 leads to an oblate elongation. Figure 4.9-b and
c represent the contours of the pressure and the electric force vectors of systems I
and V at Wc= 0.6, 0.8, and 0.95, respectively. It is observed that system I remains
prolate at all confinement ratios, while system V shifts in an oblate deformation
at large confinement ratios. Considering FR of the system I, both polarization
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Figure 4.9 Comparison between forces on the interface of system I and
V. (a) Effect of confinement ratio on the force ratio of points on the vertical and
horizontal axes of the droplet which act in the prolate elongation. Pressure contour
and vectors of total electric force for (b) system I, and (c) system V. Unit arrows
are shown at the top-right corner of the sub-figures.

and Coulomb forces increase at large confinement ratios, while this increment is
significant for Coulomb force, resulting in the growth of the total electric force on
the interface. Accordingly, one can expect the monotonical increase of the prolate
deformation with respect to the confinement ratio. As shown in Fig. 4.4, however,
the deformation value starts to decrease at Wc = 0.8. On the other hand, FR of
the pressure indicates that in small confinement ratios, this value is around unity,
meaning that the pressure is distributed equally around the interface. However, by
further increasing the confinement ratio above Wc > 0.7, FR decreases such that
the pressure force pushes the droplet from top/bottom poles of the droplet, so it
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acts in the opposite direction of the electric forces. In very large confinement ratios
i.e. Wc > 0.8, the pressure dominates the electric forces leading to a reduction
in the prolate deformation of the droplet in system I. This explains the maximum
prolate deformation at Wc = 0.8. For system V, the FR of the polarization force
remains almost constant across all confinement ratios, while the Coulomb force
slightly increases at large confinement ratios. On the other hand, the pressure FR
decreases such that it dominates the Coulomb force. As it can be seen in Fig. 4.9-b
and c, the magnitude of the electric forces in the system I is much larger than those
in system V as represented by the unit arrows shown at the top-right corner of the
sub-figures. So, the decrease of the pressure FR is magnified enough in very large
confinement ratios so that the droplet exhibits an oblate deformation as seen in Fig.
4.4.

A similar analysis has been conducted here for systems II and III as demonstrated
in 4.10. In contrast to systems I and V, systems II and III have oblate deformations
in small confinement ratios, but increasing the confinement ratio will change their
deformation into prolate shapes. By analyzing the force ratio FR of both systems
in Fig. 4.10-a, it is revealed that the Coulomb force ratio is very small at small con-
finement ratios, showing an extreme tendency to deform the droplet into an oblate
shape. It should be noted that the Coulomb force ratio of system III is extremely
small, i.e. O(10−4) thus, it is not shown in Fig. 4.10-a. The polarisation force
ratio, on the other hand, is in the order of O(100) for both cases. This results in a
total electric force ratio in the range of O(10−1) which induces oblate deformation
for both systems, despite the presence of the opposing pressure force ratio. Subse-
quently, the interplay between the resultant electric force and the pressure enforces
the droplet to deform into an oblate shape. By increasing the confinement ratio,
the Coulomb FR remains in the same order of magnitude while the polarisation
force ratio monotonically increases for both systems. So, the resultant electric force
has an increasing trend that changes the deformation of both systems from oblate
to prolate elongation. It is observed for system II that the pressure force ratio de-
creases considerably such that it balances the effect of the total electric force in the
opposite way. This reduces the prolate deformation of the droplet in system II at
very large confinement ratios Wc > 0.8. This condition is not observed in system
III.
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Figure 4.10 Comparison between forces on the interface of system II and
III. (a) Effect of confinement ratio on the force ratio of points on the vertical and
horizontal axes of the droplet which act in the prolate elongation. Pressure contour
and vectors of total electric force for (b) system II, and (c) system III.
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5. Dynamics of a double emulsion under the combined effects of

electric field and shear flow

5.1 Introduction

in the present study, the dynamics of a 2D Leaky dielectric double emulsion is thor-
oughly investigated under the combined effect of applied electric field and shear
flow using ISPH. To address the impacts of electrical property ratios of the core,
shell, and medium, six different fluid configurations are numerically handled. All
the components of the electrical and hydrodynamics forces are calculated on the
droplet interfaces and within the flow domain correspondingly and their influence
on the droplet deformation are discussed in detail considering both their magnitude
and sign. Effects of capillary and electrical capillary numbers, droplet radius ra-
tio, electrical conductivity and permittivity ratios on the emulsion deformation and
angular orientation are explored.

5.2 Problem statement

The schematic of the physical system is shown in Fig. 5.1. As can be seen from the
figure, a 2D double emulsion droplet consists of concentric core and shell droplets

This chapter is a slightly modified version of "Dynamics of double emulsion interfaces under the combined
effects of electric field and shear flow" published in "Computational Mechanics" by "R. Saghatchi, M.
Ozbulut, and M. Yildiz"
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Figure 5.1 Schematic representation of the physical system. The double
emulsion droplet placed in a Couette device and the constant external electric field
is applied in the vertical direction.

with initial radii of r1 and r2, respectively, and is suspended in a third medium fluid
subjected to a simple shear flow in a square domain with dimensions of W = 2H.
A uniform electric field E∞ is applied in the downward direction. It is assumed
that there is no relative motion between droplets and ambient fluid initially, and
no gravitational force is present. No-slip boundary condition is applied on top and
bottom boundaries with constant velocities U and −U, respectively, while periodic
boundary condition is enforced on the right and left boundaries of the domain to
reproduce the shear-driven (Couette) flow. As for the electric potential, Dirichlet
and Neumann boundary conditions are employed for horizontal and vertical walls,
respectively. All particles inside and outside the double emulsion are arranged in
the form of a uniformly spaced Cartesian grid.

The ratio of physical properties in the domain is defined as:

Dmn = ρm/ρn, Vmn = µm/µn, Pmn = εm/εn, Cmn = σm/σn,(5.1)

whereas subscripts m and n refer to mth and nth fluids, respectively (m,n= 1,2,3).
Subscripts 1, 2 and 3 denote the core (inner droplet), shell (intermediate droplet)
and background or medium fluid phases, respectively, whereas the double subscript
mn represents the interface betweenmth and nth fluids. Important non-dimensional
parameters of the current study are Reynolds number (Re = ρ2Ud2

µ2
), Weber number

(We = ρ2U2d2
γ23

), Electro-Weber number (Ew = ρ2U2

ε2E2∞
), capillary number (Ca = We

Re =
µ2U
γ23

), and electrical capillary number (Ec = We
Ew = ε2E

2
∞d2
γ23

), where E∞ is the electric
field intensity, U is the velocity of top and bottom plates and d is the droplet
diameter. We will also use dimensionless time t in our simulation which is defined
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as t= t′U
2H where 2H is the domain width.

5.3 Numerical consistency and accuracy studies

Figure 5.2 Effect of particle resolution on the droplet deformation in pure
shear flow. (a) Quantitative, and (b) qualitative results.

Particle resolution independency test is carried out by simulating a single emulsion
droplet (r1/r2 = 0) under the effect of pure shear flow (E∞ = 0) whereby the de-
formation and angular orientation of the droplet is analyzed. Considering different
particle resolution X/d = 80,110,160, and 200 where X/d is the number of parti-
cles per unit of droplet’s initial diameter, numerical simulations are performed for
Re << 1 and Ca = 0.094, which imitate the conditions used in the experimental
study of Bruijn, de (1989). It should be noted that the density and viscosity ra-
tios are considered as Dij = Vij = 1. The extent of the deformation for the single
emulsion droplet is calculated by (4.3). However, here, l1 and l2 are the longest and
shortest diameters of the deformed droplet, respectively. In Fig. 5.2, the results of
these simulations are given both qualitatively and qualitatively for t= 0.25 . As seen
from the figure, upon increasing the particle resolution from x/d = 80 to 110 and
160, the numerical accuracy also gets improved. However, further increase in the
particle resolution does not bring about significant change in the obtained results.
Thus, x/d= 160 is selected as a reference particle resolution.

The fidelity and the reliability of our current in-house code has been proven for the
EHD simulation of a droplet in chapter 4. However, for the additional validation and
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verification tests, the deformation of a single emulsion droplet is simulated under
the pure shear flow. For this test case, the same simulation condition is consid-
ered as in the case of the particle resolution dependency analysis. SPH results are
compared with the available results from previous numerical and experimental stud-
ies. To further demonstrate the accuracy of the SPH method, another simulation
is also performed using the OpenFOAM. Having performed a mesh and time step
independency analysis, a uniform Cartesian mesh composed of 120 by 120 cells and
10−4 time step size are selected for all the simulations with OpenFOAM, while the
CFL condition is utilized to adjust the time step size throughout the simulation.
Gauss upwind scheme is used for the discretization of convection term and the Eu-
ler scheme is used for the time marching with PISO algorithm for the correction.
Transient droplet deformation is calculated for different values of Ca number and
the results are shown in Fig. 5.3-a and b. Reynolds number is set to Re = 1 and
Re<< 1 for Fig. 5.3-a and b, respectively. As shown in these figures, a close agree-
ment is observed between SPH and other numerical/experimental results as well as
the values obtained by OpenFOAM. A qualitative comparison is also realized be-
tween SPH and OpenFOAM result and shown in Fig. 5.4 for Ca = 0.194 at t = 1.
As can be readily inferred from this figure, both numerical results exhibit similar
patterns of streamlines and contour of normalized velocity magnitude.

Figure 5.3 The comparison of the single emulsion droplet deformation
under the pure shear flow. Data of the previous (a) numerical and (b) ex-
perimental studies. For the pure shear flow, numerical results of Chinyoka et al.
(2005), Mählmann & Papageorgiou (2009), and Sheth & Pozrikidis (1995), and ex-
perimental results of Bruijn, de (1989) are used here. Results of Finite Volume
simulation with OpenFOAM are compared as well.

5.4 Results
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Figure 5.4 The comparison of normalized velocity magnitude contour and
streamlines for the single emulsion droplet under the pure shear flow. The
SPH data are shown on the left and OpenFOAM on the right. Results are taken at
Ca= 0.194, and t= 1.

In this section, the dynamics of a double emulsion droplet under the combined effects
of electric field and shear flow is presented by considering six different systems of
fluids, as tabulated in Tab.5.1. The first three systems are selected from experiments
in micro- and bio-fluidics applications. The properties of the remaining systems are
chosen hypothetically but carefully to scrutinize all possible forms of double emulsion
deformation. In all simulations, core and medium fluids are identical, which is the
condition that has also been utilized in some previous numerical and experimental
studies (Abbasi et al., 2019; Opalski, Makuch, Derzsi & Garstecki, 2020; Song &
Shum, 2012; Tsukada et al., 1997). Furthermore, in all cases, viscosity and density
ratios are considered to be unity, Dmn = Vmn = 1. Double emulsion dimensions are
chosen as r2/H = 0.25 and core to shell droplet radius ratio is r1/r2 = 0.5, unless
stated otherwise.

Figure 5.5 represents the streamlines inside the domain for all systems at t= 0.4. All
sub-figures demonstrate the deformed double emulsions at Ca = 0.4 and Ec = 0.4.
As shown in this figure, the deformed shape of the double emulsions is closely related
to the conductivity ratios of the fluids. For systems I, II, III, and VI, which have
relatively large values of conductivity ratio (C21 > O(10−1)), double emulsions are
deformed and oriented without breakup. However, in systems IV and V with smaller
conductivity ratios (C21 =O(10−2)), breakup occurs. For the double emulsions with
no breakup, there is a high strength vortex inside the core, and two weak vortices
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at both sides of it. For systems IV and V, however, the pattern of streamlines is
more complex due to the breakup of the droplet.

Figure 5.5 Streamlines inside and outside of the deformed double emul-
sions. Double emulsions are deformed under the combined effect of electric field
and shear flow for Ca = 0.4 and Ec = 0.4 at the non-dimensional time t= 0.4

To see the effect of electric field and shear flow separately, a streamline of the domain
is shown in Fig. 5.6. In the sub-figures (a) and (b), the dynamics of the double
emulsions are presented in the presence of pure electric field and pure shear flow,
respectively. As it is shown in Fig. 5.6-b, all systems exhibit a similar behavior
under the effect of pure shear flow regardless of their different electrical properties
as it should be. Since in the pure EHD, the flow field is symmetric in both x- and
y- directions, only half of the domain is shown in Fig. 5.6-a. It should be noted
that all figures are plotted for the same instant of the time (i.e., t = 0.4) as in Fig.
5.5. Three different vortex patterns can be observed in the flow field under the
pure effect of the electric field. In systems II, V, and VI, there is only one vortex
in each quarter. However, for the other systems, there is a pair of vortices in each
quarter, one in the ambient fluid, and the other in either shell (systems III and IV)
or core (system I) droplets. The direction of the ambient vortex depends on the
conductivity and permittivity ratios such that the velocities run from the top and
the bottom towards the left and the right of the droplet for the systems I, II, V
and VI while it rotates in the opposite direction for the others. We have shown in
chapter 4 that for the single emulsion, velocity in medium fluid runs from poles to
the equators when C > P and vice versa. For the double emulsion, however, this is
only true when the deviation of P from unity is not too high. Thus, for the systems
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I, II, III, and IV, the circulation direction is similar to the single emulsion studied
in chapter 4. For the systems V and VI, circulation behaves reversely due to the
significant difference between P and unity.

Figure 5.6 Streamlines inside and outside of the deformed double emul-
sions. Deformations are due to (a) the pure electric field with Ec = 0.4 and (b)
the pure shear flow with Ca = 0.4 at the non-dimensional time t = 0.4. Due to the
symmetry in the y- direction of the flow in the presence of the pure electric field,
only the half of the domain is shown.

To shed light on why double emulsion breaks up and also vortex location changes, we
studied the individual effect of electrical properties of droplet, electric field strength
and the shear flow characteristic on the deformation values of core/shell droplet as
well as the droplet orientation. The deformation D and orientation θ of the core and
shell droplets are obtained for each system at t = 0.4 and tabulated in Tab.5.2 for
different cases including pure EHD, pure shear flow, and combined EHD and shear
flow. The orientation angle θ = 90 and θ = 0 correspond to prolate and oblate elon-
gations, respectively. It should be noted that in the pure EHD flow, the necessary
condition for the double emulsion breakup is the large difference in deformation val-
ues between core and shell droplets (Dcore >>Dshell). The breakup will be further
facilitated if the core and shell droplets deform into different shapes and have the
opposite deformation sign (i.e., one assumes θ < 45 and the other one has θ > 45).
These conditions are realized for systems I, III, IV, and V. However, breakup occurs
only in the system V since the strength of the electric force is large enough to elon-
gate the core droplet adequately. As a result, the core droplet splits the shell droplet
and thereby lead to the breakup of the double emulsion. In the system V, both core
and shell droplets are deformed into the prolate shape with much higher deformation
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for the core. For example, the deformation values before the breakup at t= 0.2 are
D = 0.281 and D = 0.055 for core and shell droplets, respectively. Applying a shear
force in addition to the EHD would intensify the breakup tendency of these systems.
As can be recalled from Fig. 5.5, the applied shear force would cause the double
emulsion for the system IV to undergo a breakup. Another interesting finding is
related to the orientation angle of core and shell droplets. As was remarked by Hua
et al. (2014), the orientation angle of the core is always greater than or equal to the
shell’s for the double emulsion under the pure shear flow. Our numerical results also
confirm the claim of Hua et al. for pure shear flow as well as the combined EHD and
shear flow. Recalling from Fig. 5.6, there is a pair of vortices in each quarter of the
systems I, III, and IV whereas there is only one in the systems II, V, and VI. This
can be reasoned out through considering the orientation angles given in Tab.5.2 for
the pure EHD case. The difference between the orientation angle of core and shell
droplets in the systems with a pair of vortices, is ∆θ = 90o whereas for the systems
with only one vortex is ∆θ = 0o. Moreover, in the systems with a pair of vortices
(I, III, and IV ), only for the system I, there are vortices inside the core droplet. As
shown in Tab.5.2 for the system I, the core and shell droplets deform into the oblate
and prolate shapes, respectively unlike the system III and IV, in which the core and
shell droplets deform into the prolate and oblate shapes, respectively.

Figure 5.7 present the variation of the absolute value of double emulsion deformation
as a function of the non-dimensional time for both core and shell droplets under the
effect of combined EHD and shear flow. In this figure, core and shell deformations
are shown with solid and dashed lines, respectively. As mentioned previously, the
deformation of the core droplet is much higher for systems IV and V which undergo
a breakup. Moreover, the core deformation for the system V is much greater than
that for the system IV. Consequently, the system V breaks up before the system IV.
Nonetheless, the difference between core and shell deformations are not significantly
high for the rest of the systems.

To investigate the core and shell droplet deformations, interface forces should be
evaluated in detail. As described in chapter 2, one of the important interfacial forces
is the electrical force composed of two important components, namely, Coulomb and
polarization forces. It can be easily concluded that the Coulomb force acts along the
direction of the electric field while the direction of the polarization force is normal to
the droplet interface in the opposite direction of the electrical permittivity gradient.
These two forces are demonstrated in Fig. 5.8 for all systems at t = 0.1. The
contours and directions of the Coulomb and polarization forces are shown in Fig.
5.8 (a) and (b), respectively. In the systems I and II, the Coulomb force is exerted
on the top and bottom poles of the shell droplet in the outward direction while
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Figure 5.7 Time evolution of double emulsion deformation. The solid- and
dashed- lines correspond to the core and shell deformations, respectively. Data are
taken at Ca = 0.4 and Ec = 0.4.

the polarization forces act in the outward and inward directions for the systems I
and II, respectively. By comparing the magnitude of forces for the system II, the
resultant electric force is in the outward direction similar to the system I, which
elongates both shell droplets into prolate shape. For the other systems, Coulomb
forces act in the inward direction whereas the polarization forces act toward the
center of the systems III and II unlike the systems IV and VI. By comparing the
magnitude of the Coulomb and polarization forces, the total electric forces lead to
the oblate deformation of the shell droplet for the systems III, IV, and VI. For the
system V, however, the magnitude of the electric force is higher at the sides of the
shell droplet, thus deforming it into the prolate shape. A similar analysis may be
conducted for the core droplet. Such investigation reveals that the direction of both
Coulomb and polarization forces are toward the center for the system I only, and
the resultant total electric force acts on the left and right sides of the core droplet
and stretches it to deform into the oblate shape. For the other systems, however,
the force direction and its point of application are such that the total electric force
deforms the core droplet into a prolate shape.

In addition to the electric forces, hydrodynamic interaction plays an important role
in the double emulsion dynamics (Luo et al., 2015). These interaction can be studied
considering the hydrodynamic stress tensor. Lou et al. claimed that the hydrody-
namic interaction mainly depends on the distribution of the stresses inside the shell
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Figure 5.8 Electric force on the interfaces. Comparison of (a) Coulomb force
and (b) polarization force on the interface of core and shell droplets at t = 0.1 for
all systems. Note that contours on the interface indicate the magnitude of the
corresponding force.

droplet, which is significantly affected by the core size and the deformations of the
shell and core droplets (Luo et al., 2015). Hence, pressure and viscous stresses are
shown in Fig. 5.9. Since the stress distribution of double emulsions in the systems I,
II, III, and VI are almost similar, for the sake of brevity, only system III is selected as
their representative and shown alongside the system IV and V. As shown in Fig. 5.9,
the pressure force has a significant contribution to the hydrodynamic interactions
while the viscous force is trivial in these systems since the viscosity ratio is unity.
Therefore, we only consider the pressure term in the following. The pressure value is
high in the core droplet of the system III while the maximum pressure occurs at the
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shell droplet for the system V. The pressure distribution determines the curvature
of the droplet interface and subsequently, its deformation value. As presented in
Fig. 5.9-a for the systems IV and V, pressure in the core droplet has its lower value
near the tips (high curvature) while it reaches its higher values at the equator of
the core droplet (low curvature). Within the shell droplet, regions with maximum
and minimum pressure values coincide with the different locations for the systems
IV and V. As represented in Fig. 5.9-a, there is high- and low-pressure regions at
the equator and tips for the systems IV, respectively. For the system V, however,
tips and equator correspond to the high- and low-pressure regions, respectively. The
pressure is distributed uniformly inside the core and shell droplets for the system
III, which is commensurate with the uniform curvature of these droplets, thereby
resulting in the low deformation value as represented in Fig. 5.7. The pressure
gradient inside the droplets for the system V is higher than that of the system IV,
which leads to the higher value of deformation in the system V.

To particularize the effect of shell droplet thickness on the double emulsion dynamics
and deformation, two additional core to shell droplet radius ratios, i.e. r1/r2 = 0.25
and 0.75 are also simulated. The results of these simulations are presented in Fig.
5.10-a in terms of the deformation and the angular orientation values of the dou-
ble emulsion. A detailed evaluation of this figure reveals that the variation of the
deformation with respect to r1/r2 for the core droplet has an opposite trend in com-
parison to that for the shell droplet. Namely, as the deformation increases for the
core droplet, it decreases for the shell one. This behavior can be explained consid-
ering that the deformation of droplet is directly linked to its diameter. Note that
the increase in r1/r2 can be controlled by either increasing or decreasing the diam-
eter of core or shell droplet, respectively. This can explain the opposite behavior of
core and shell deformations. Droplets with the higher extent of prolate deformation
would experience a higher inertial force under the shear flow. This force will compel
the droplet to orient itself in a horizontal position. Thus, the orientation angle of
the core droplet decreases by the increase in r1/r2. Remembering Fig. 5.8, the
direction of the electric force on the core droplet for the system III is such that it
elongates the core, hence causing prolate deformation. Because of this elongation,
the pressure force inside the shell would be higher at the poles and causes the shell
droplet to elongate and to acquire a more prolate shape accordingly. The larger
value of r1/r2 corresponds to a thinner shell droplet, in which there is not enough
space for the core droplet to deform freely, resulting in an increase in the pressure
force at the shell poles. Thus, at higher r1/r2, the shell droplet is forced to elongate
in the vertical direction and in turn has a higher orientation angle value.

To investigate the effect of electrical capillary number on the double emulsion dy-
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Figure 5.9 Hydrodynamic and shear forces on the double emulsions. Com-
parison of (a) p, (b) µdu/dx, (c) (µ/2)(du/dy+dv/dx), and (d) µdv/dy in the double
emulsion under the effect of combined electric field and shear flow at t= 0.1.

namics, the capillary number is maintained constant (Ca = 0.4) while the electrical
capillary number is changed for each system. The deformation value and the an-
gular orientation are calculated at t = 0.4 and presented in Fig. 5.10-b. Regarding
the shell droplet, the deformation value is observed to be directly related to the
electrical capillary number for all the systems except the system VI in which there
is no significant change in the deformation value. Similarly, the orientation angle is
also affected by the electrical capillary number for all systems except the system III.
These correlations can be explained considering the electric forces on the interface
of the shell droplet as has been shown in Fig. 5.8. It can be seen that the resultant
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Figure 5.10 Variation of the emulsions deformation and orientation angle
with respect to the important parameters. Effect of r1/r2 (a), Ec (b), and
Ca (c) on the deformation, D ( ) and orientation angle, θ ( ) of core
droplet (left column) and shell droplet (right column). All data are taken at t= 0.4.

electric force exerted on the top and bottom regions of the shell droplet is high
for the system III and acts inwardly to the interface. Shear flow induced angular
orientation of the droplet leads to the occurrence of a couple force that tends to
rotate the droplet in the clockwise direction, hence decreasing its orientation angle.
However, for the other systems, this couple force acts such that it rotates the shell
droplet in the counterclockwise direction thereby increasing the orientation angle.
Moreover, in the system VI, Coulomb and polarization forces on the shell droplet
interface have a relatively similar order of magnitude and act in the opposite direc-
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tions, thus resulting in a negligibly small net electric force. As a consequence, the
variation in electrical capillary number does not have a considerable effect on the
shell deformation for the system VI. It can be concluded that for those systems in
which the shell droplet undergoes an oblate deformation in the absence of shear flow,
their orientation angle decreases in mixed EHD and shear flow with an increase in
the electrical capillary number. In the system IV, one can see a minimum value in
the deformation and orientation angle at Ec = 0.2. It should be noted that applying
electric field on this system first reduces the deformation and orientation angle of
the shell due to the pure shear flow. However, on further increasing the electrical
capillary number, electrical forces on the interface become dominant and affect the
droplet behavior. Likewise, core droplet behavior can be explained by investigating
the electrical forces on its interface. As a result, the core droplet experiences a
high deformation and orientation angle at high electrical capillary numbers. For the
double emulsion in which breakup occurs, the variation of deformation with electric
capillary number is significant. For instance, in the system IV, the deformation of
the core droplet at Ec = 0.3 becomes 9.1 times of its value for the pure shear flow
(Ec = 0).

The effect of capillary number (Ca) on the double emulsion dynamics is shown
in Fig. 5.10-c for constant electrical capillary number, (Ec = 0.4). The interplay
between electrical and hydrodynamics forces determines the droplet deformation
and orientation angle. As elaborated previously, core and shell droplets have a
significant impact on each other. For instance, the deformation value for the shell
droplet of the system III first increases up to Ca = 0.1. The further increase in
the capillary number decreases the deformation value as the inertial force becomes
dominant. At high capillary numbers, however, the shell droplet thickness decreases
at the pole regions, which leads to an increase in the pressure near the poles (Fig.
5.9-a). As a consequence, the shell droplet elongates and hence acquires a larger
deformation value. For the system II, there is an extremum at Ca = 0.1 which
acts as a maximum point for the shell deformation. For the systems I and VI, the
variation of deformation as a function of the capillary number has an increasing,
which points out that the hydrodynamics forces are the dominant in these systems.
The orientation angle of shell droplet increases for the system III whereas it decreases
for the systems I, II, and VI. Core droplet behavior can be explained in a similar
manner. It can be shown that the capillary number may enhance the likelihood of the
breakup of double emulsion in the system IV. For the system V, however, breakup
occurs even without the shear flow (Ca = 0) due to the high value of resultant electric
force.

Transient behavior of double emulsions for the systems IV and V are demonstrated
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Figure 5.11 Time evolution of double emulsion during the breakup. (a)
System IV and (b) system V at Ca = 0.4 and Ec = 0.4.
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in Fig. 5.11. As mentioned previously, due to the large deformation of the core
droplets in the systems IV and V, a breakup occurs. However, the behavior of
double emulsions is quite different for these two systems. As such, the core droplet
in the system IV deforms into an "S" shape whereas the "S" shape like deformation
of the core in the system V is insignificant. Accordingly, after the pinch-off, the
shapes of two daughter droplets are different for these two systems. As shown in
Fig. 5.11, the daughter droplets in the system IV are "onion-shaped" whereas they
are "bean-shaped" in the system V. It should be noted that in the presence of shear
flow, two daughter droplets exhibit radial symmetry, while, in the absence of shear
flow, there is a reflective symmetry between them. After a complete breakup, two
daughter droplets move away from each other due to the shear forces and each act
as a single emulsion. As the time progress, the surface tension force removes the
sharp edges of the daughter droplets, thus leading to a smoother interface shape.
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6. Development of Smoothed Particle Hydrodynamics Method for

Modeling Active Nematics

6.1 Introduction

Recall that governing equations of active nematic fluids are highly coupled and in-
volves advective terms, which are rather challenging to solve with Eulerian based
approaches such as LBM. On the other hand, SPH method due to its Lagragian
nature can lend itself to the discretization and then to the solution of these equa-
tions much more effectively. Specifically, one of the biggest advantages of the SPH
method is that the advective terms in the conservation of mass and linear momentum
as well as nematodynamics equations can be discretized directly by using material
derivative terms thereby circumventing the numerical complexity associated with
the solution of these nonlinear terms. Moreover, in SPH, complex and deformable
domains, mixtures, multiphase interfaces can also be modelled with relative ease
unlike Eulerian approach. This attribute of the SPH method is particularly appeal-
ing for modeling mixing behavior in active nematics as well as nematc flow with
material interfaces and interface motion (e.g., bacterial growth), which will be the
subject of future direction of our research. In this study, due to these particular
features, the SPH method is preferred for the numerical solution of active nematic
flows.

This chapter is a slightly modified version of "Development of Smoothed Particle Hydrodynamics Method
for Modeling Active Nematics" published in "International Journal for Numerical Methods in Engineering"
by "R. Saghatchi, D.C. Kolukisa, and M. Yildiz"
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6.2 Parallelization algorithm

In this section, a parallel implementation of the developed algorithm is elaborated
along with the adopted data structure model. The in-house computer code to per-
form the simulations is built upon the CUDA GPU parallelism. An object oriented
approach that focuses on flexibility and ease of programming rather than pure com-
putational efficiency is adopted in the design of the data structures of the program,
which have also enabled the integration of the nematics variables into the SPH parti-
cle framework effortlessly. To this end, particle data is organized based on the Array
of Structures of Arrays (AoSoA) principle. Physical properties of particles, as well
as their relative values between their neighbors are stored in a Structure of Arrays
(SoA) for each particle, which are the elements of the particle array as depicted
in Figure 6.1. Through this AoSoA approach, memory coalescence is obtained for
the intermediary interaction variables (rij, rij, uij, Wij, and ∇iWij) with repetitive
usage.

Computations for each particle of the SPH system are assigned to a single thread
within the framework of the Single Instruction Multiple Thread (SIMT) execution
model of the CUDA programming language. These large numbers of threads are
grouped as blocks of threads and are designed to work simultaneously in a parallel
manner. All threads have access to the global memory of the GPU, while the
threads within the same block also have access to a specific shared memory, and
each thread has its own local memory. Following the initial distribution of particles,
the particle array is copied from the host (CPU) memory to the device (GPU)
global memory. Parallel computations are performed via the CUDA kernel functions,
which are written in isolated serial forms, and executed simultaneously for each
thread/particle in the SIMT framework. It should be noted that the term CUDA
kernel is a programming concept that should be distinguished from the term kernel
function in SPH formalism.

Generating ghost boundary particles are problematical for parallel algorithms, since
a so-called race condition appears when boundary fluid particles attempt to insert
their corresponding ghost duplicates into the particle array simultaneously. There-
fore, ghost particle generation needs to be handled serially. In this study, a single
GPU thread within a CUDA kernel is utilized for this task in order to avoid per-
forming a costly two-way memory copying operation of particle array between the
device and the host at each time step. An outline of the computational algorithm
for one time step is schematized in 1. The sequential instructions which are grouped
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Figure 6.1 Array of Structures of Arrays organization for storing particle
and interaction data. The column on the left hand side is the particle array. Each
member of the particle array consists of a SoA as depicted on the right hand side.
The SoAs for each particle "i" have members of variables that store function values
for the given particle and have array members as well to store neighbor interaction
data.

under CUDA kernels 1, 2, and 3 in 1 are serial instructions for a single thread that
is mapped for the computations of a single particle. However, the ghost particle
production operation is an exception since it is performed serially by a single GPU
thread. It should be noted that the computations that require summations of the
neighbor values include nested serial loops within the thread. A GPU-optimized
neighbor searching algorithm (Green, 2007) is implemented for computing neighbor
interactions. In this approach, the flow domain is divided by square cells, and a
pseudo particle number array is sorted according to their cell numbers at each time
step. Subsequently, linked lists of the pseudo particle number arrays are created for
each cell by utilizing shared memory arrays. As a result, a data structure is obtained,
where the threads of each particle can easily search the linked lists of neighboring
cells. In order to avoid performing this search operation repeatedly within a time
step, particle IDs of neighboring particles are stored in an array for each particle.

All main time-step computations are performed by the CUDA kernels. However,
the particle array is only copied from device memory to the host memory when the
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Algorithm 1 The algorithm for the computations of one time step
1: Initialize time step
2: Project ui and ri with ∆t/2:
3: un+1/2

i = uni +ani ∆t/2
4: rn+1/2

i = rni +un+1/2
i ∆t/2

5: Produce ghost particles for boundaries
6: Perform neighbor search:
7: Compute Wij, ∇iWij, Vi, rij, uij
8: Compute the correction tensor Ai
9: Compute kn+1/2

i
10: Project ρi with ∆t/2:
11: ρ

n+1/2
i = ρni +k

n+1/2
i ∆t/2

12: Apply density filtering
13: Compute pi
14: Compute Mn+1/2

i
15: Compute Qn+1

i = Qn
i +Mn+1/2

i ∆t
16: Compute an+1/2

i
17: Correct particle velocity, position and densities:
18: un+1

i = uni +an+1/2
i ∆t/2

19: rn+1
i = rn+1/2

i +un+1
i ∆t/2

20: ρn+1
i = ρ

n+1/2
i +kn+1

i ∆t/2
21: Apply APD
22: Finalize time step: t= t+ ∆t, n= n+ 1
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Table 6.1 Performance profile of the CUDA kernels.

Operation Percentage of computational cost
CUDA Kernel 1 43.90%
CUDA Kernel 2 30.71%
CUDA Kernel 3 24.08%

Other CUDA operations 1.31%

program needs to write the outputs for the post-process. It should be noted that the
neighbor interaction arrays, as well as the main particle array, have pre-allocated
maximum sizes. Ghost particles are added after the end of the fluid particles on
the array and their corresponding data are overwritten at each time step, while a
variable holds the value of the actual particle number in order to define the end of
the meaningful data. The same process applies to the particle neighbor interaction
arrays, which also have variable sizes throughout the simulation.

Percentages of average computational time costs of the different CUDA kernel groups
(1) over 100 iterations with ≈ 2.5×105 particles are provided in Tab. 6.1. Percent-
age of the CUDA kernel 1 reveals the impact of the serial ghost particle algorithm on
the performance of the program. Here, it can also be inferred that any improvement
on the neighbor searching algorithm may also lead to a significant increase in the
performance. To demonstrate the speed-up achieved by the CUDA-based parallel
algorithm of this study, the ratio of computational time required by the the serial Fi-
nite Volume solver of OpenFOAM to the time needed by the parallel SPH algorithm
is plotted as a function of mesh resolution in Fig. 6.2 for the solution of the same
problem. Generally, mesh-based algorithms are expected to be faster than mesh-free
methods since they have fewer number of neighbors for each computational node
and do not require updated neighbour lists throughout the simulation. As seen
in this figure, the current GPU-parallelized SPH method notably outperforms the
serial OpenFOAM particularly at higher resolutions although in this comparison,
the time integration scheme used in the SPH method is second order Runge-Kutta
whereas the one employed in the OpenFOAM is the first order Runge-Kutta (Euler)
method.

6.3 Problem definition, numerical consistency and accuracy studies
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Figure 6.2 Speed-up of the current CUDA based SPH solver with respect
to the serial OpenFOAM solver. Although the OpenFOAM requires smaller
solution time at lower resolutions (<O(5)), significant speed-up is obtained by SPH
for higher resolutions (O(6)<). "Resolution" corresponds to the number of particles
and the number of cells in the grid for the SPH and the OpenFOAM, respectively.

The computational domain is a two-dimensional square one with a normalized size
of unity. In order to avoid any confinement effect, a fully periodic unit domain
is ensured by the periodic ghost boundary treatment. The particle resolution test
is carried on with four different particle sizes, including ≈ 104, 4× 104, 2.5× 105,
and 106, and taking the physical parameters as tabulated in Tab.7.2. Results for
root mean square velocity and defect number are calculated as a function of particle
resolution and represented in Fig. 6.3a. As shown in this figure, the case with the
total number of ≈ 2.5×105 particles exhibits the desired accuracy which is selected
as a reference particle resolution. This resolution corresponds to the initial particle
distance ∆x = 0.02m, and the time step size is determined according to the CFL
condition. With the aforementioned particle configuration, average computation
time required for one time step iteration is ≈ 0.5s on an Nvidia Quadro RTX 5000
GPU.

To test the accuracy of the current numerical scheme, we performed a quantitative
and qualitative verification test studies and compared the results with the data from
the literature. The parameters used are tabulated in the last column of Tab.7.2. For
the quantitative verification, the normalized velocity- velocity correlation calculated
with SPH and the numerical results of Thampi et al. (2013) are demonstrated in
Fig. 6.3b showing that our results perfectly match with the numerical data of Thampi
et al. . Furthuremore, we performed a qualitative comparison between SPH results
and the results of Thampi et al. (2014a) for the vorticity contours. A good agrrement
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Figure 6.3 Particle resolution independency and verification of the SPH
code. (a) Resolution independency test is performed for four different particle
sizes. (b) Quantitative comparison of the current SPH method with the results
of Thampi et al. (2013). Qualitative comparision of vorticity contours between (c)
current SPH and (d) results of Thampi et al. (2014a) (Adapted with permission
from EPL publishing group).

is observed between our results (Fig. 6.3c) and data of Thampi et al. (Fig. 6.3d).

6.4 Results

The coupled governing equations introduced in chapter 2 are solved using the SPH
method. The parameters used are provided in the Tab.7.2, unless stated otherwise.
These values lie within the ranges that were reported by Chandragiri, Doostmo-
hammadi, Yeomans & Thampi (2020); Plan, Yeomans & Doostmohammadi (2021);
Santhosh, Nejad, Doostmohammadi, Yeomans & Thampi (2020a). Furthermore,
these values of the parameters satisfy the small order of Reynolds number condition
which was reported by researchers (Nejad, Doostmohammadi & Yeomans, 2021).
Zero initial velocity is used with a slightly perturbed nematic orientation as the
initial condition and the quantitative results are taken at the statistically steady
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Table 6.2 The parameters used in the simulations. Values are taken from Thampi
et al. (2014a).

Parameter value value (verification test)
Γ 0.4(Pa−1s−1) 0.0136(Pa−1s−1)
λ 0.7 0.7

A, B and C 1, 1 and 0(Pa) 0, 375 and −375(Pa)
K 0.02(N) 1(pN)
µ 2/3(Pa.s) 0.5(Pa.s)
ρ 1(kgm−3) 1(kgm−3)
ζ 0.023(Pa) 0.0125(Pa)

state.

As discussed earlier, there is no source of external energy in active fluids, and energy
is injected by the particles themselves. Since nematic fluids are inherently unstable
(Edwards & Yeomans, 2009), as the time progress, these instabilities reveal them-
selves in the form of vorticity. In Fig. 8.2, vorticity contours as well as streamlines
are shown inside the computational domain for two different positive and negative
activities at µ = 0.1pas.s. As can be seen in these figures, turbulent-like flow is
created because of the existence of vortices inside the domain which consequently
occurs due to the presence of activity that destroys the long-range nematic ordering.
Particle alignments are calculated and shown in Fig. 8.2-c. In this figure, the orien-
tation of the nematic director is observed clearly and it is seen that the variation of
vorticity depends on the nematic directors.

It is common to use the kinetic energy per mass densityin Fourier mode, E(w), to
analyze the structure of the turbulent flow (Pope & Pope, 2000):

(6.1) E(w) = 1
2〈ûi(w)ûi(w)〉,

where angular brackets 〈.〉 is the spatial average. In classic turbulent flow, a univer-
sal scaling was suggested by Kolmogorov, Levin, Hunt, Phillips & Williams (1991)
as E(w) ≈ w−5/3, where w = 2π/l is the wavenumber. In the active fluid, how-
ever, in the absence of an external source, energy is injected by the active term.
Many researchers have tried to study the kinetic energy in the active fluid. Most
recently, Alert et al. (2020a) proposed a universal scaling for the active nematics,
yet disregarding the topological defects. In the present study, kinetic energy is cal-
culated for different resolutions, and the results are presented in Fig. 7.7. In the
active fluids, the energy is injected at the wide ranges of length scales, and then, it

78



Figure 6.4 Vorticity contour and streamlines. Results are corresponding to
ζ = 0.03 (left column) and ζ =−0.03 (right column) at three different length scales.
Lower subfigures corresponds to close up views and nematic directors are also shown
only in last row. All results are taken at physical time, t = 500s.

is cascaded towards the small scales and finally is dissipated due to the viscosity. It
is also seen that the scaling is the same for all resolutions at sufficiently large scales.
By decreasing the length scale (which is equivalent to an increase in wavenumber),
this relation changes such that at the intermediate scales, it becomes w−4. It should
be noted that the very small scales requires higher resolutions, which will be investi-
gated in our future studies. Nevertheless, with the current resolution, the calculated
energy spectrum is in a good agreement with the results of previous studies (see for
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example figure 4 of Alert et al. (2020a)). In passing, it is worthy to state that the
curve in Fig. 7.7 is obtained for the case with small Reynolds number where iner-
tial effects are negligible. We will shown in the next chapter that the inertia forces
notably alter the characteristic of kinetic energy spectrum.
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Figure 6.5 Spectrum of kinetic energy for different particle resolutions.
Dashed-line with +1 and -4 slopes are presented to compare the SPH results with
the universal scaling suggested by Alert et al. (2020a).

Referring back to Fig. 7.7, one can see that the vortices with various scales exist in
the domain. However, it is conventional to select a specific length scale and calculate
the important parameters based on it. To study the length scale of the problem, one
can use velocity (vorticity)-velocity (vorticity) correlation curve inside the domain.
The normalized correlation function of property f(r) is defined as (Pope & Pope,
2000):

(6.2) Cf−f (r) = 〈f(r).f(0)〉
f(0)2 ,

where r is the spatial position from the point of interest, r = 0. In the current
study r = 0 is located at the center of the domain and r is selected to vary along
the horizontal center-line direction. This function is calculated for the vorticity and
is shown in Fig. 6.6. Although similar behavior is observed between our computed
correlation and those reported by Thampi et al. (2014b), to further reveal the high
fidelity of the proposed SPH model, in this study a same simulation is also performed
using the OpenFOAM and the results are comparatively provided in Fig. 6.6. As
the distance between the point of interest and its all neighbours within the entire
flow domain increases, the correlation function tends to become zero, indicating the
absence of correlation between two positions spaced far apart, which is also in the
agreement with the result of OpenFOAM.
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Figure 6.6 Vorticity-vorticity correlation. Results are obtained by SPH and
OpenFOAM.

Length scale (l) of active nematics flow can be calculated quantitatively using the
correlation function such that Cf−f (l) = 0 (or in some studies two-tenths of the
maximum correlation value (Thampi et al., 2013)) which is the point where the sign
of the statistically large distributed vortices is being changed. It is also possible
to define the characteristic length scale based on the active fluid properties. As
proposed by Hemingway, Mishra, Marchetti & Fielding (2016), the characteristic
length scale can be calculated as lQ ≈

√
K/ζ. Also, the characteristic velocity is

defined as vQ ≈ lQζ/Γ. Consequently, the Reynolds number (Re) is defined as Re =
ρvQlQ/µ. Adopting these scales, the Reynolds number of Re≈ 0.075 is determined
for our simulations.

As mentioned earlier, in the study of Alert et al. (2020a), the defect formation
was neglected, which plays an important role in the nematic flow. Thus, herein,
we focused on the defect formation in our simulation. The large-scale presentation
of the nematic directors is shown in Fig. 6.7-a and -b for positive and negative
activities, respectively. The topological defects are the important characteristics of
active nematics. These defects are the points where there are mismatches between
the director of neighboring particles. There are mainly two kinds of defects in the
active nematics, positive half and negative half, which are shown by red and blue
symbols, respectively in Fig. 6.7. In order to detect these defects in the flow, every
single particle is selected and alignments of its surrounding particles are compared
with each other. If the surrounding particles alignments are similar to what is shown
in Fig. 6.7-c, that particle is labeled as a defect point. The negative half defect has
a symmetric structure, so it is balanced inside the flow, whereas the positive half
does not have a balanced structure which makes it motile (Doostmohammadi et al.,
2018). Because of this motility, when these defects are created in pairs, +1/2 pairs
move away from each other. Generally speaking, there is a cycle in active nematic
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flow that describes its behavior; instabilities in the flow field lead to the formation of
local wall structures in the nematic director field. Walls are the lines that surround
a nematic region and separate these regions from each other, and they are the
points where the topological defects are being created by active stress. Due to the
gradients in the nematic field around the defects, these defects move and annihilate
and restore the nematic order, which again triggers the instability, and this cycle
repeats (Thampi & Yeomans, 2016).

Figure 6.7 Particle alignment and topological defects. Results are correspond-
ing to ζ = 0.023 (a) and ζ =−0.023 (b). A comet-like, +1/2, and a trefoil-like, −1/2
defects are shown in red filled circles and blue filled triangles respectively. Schematic
representation of defects (c).

As stated above, active walls are the places of defect formation, thus it would be
beneficial to plot and discuss it in detail. In order to demonstrate the walls inside
the domain, it is proper to plot the contour of the nematic order (q), as shown in
Fig. 6.8. This value varies between 0 and 1, while the most of domain has the value
of q ≈ 1 which is shown by the dark red color. Along the nematic walls, on the
other hand, q gets a smaller value, which is colored by light red in Fig. 6.8. It is
important to note that, as mentioned earlier, all the defects are located on the wall
where q 6= 1.

Since the activity induces energy into the nematic flow and influences its character-
istics, it is important to evaluate its effect on the flow. To define the characteristic
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Figure 6.8 Contour of the nematic order. Results are corresponding to ζ = 0.023
(a) and ζ =−0.023 (b).

Figure 6.9 Effect of activity on the root mean square of velocity for exten-
sile and contractile suspensions. The root mean square of the velocity increases
by increase in the absolute value of the activity parameter.

velocity in turbulent-like flow, it is common to use the root mean square of velocity
(Vrms), which, as an averaging term, includes both positive and negative velocity
fluctuations. This property is calculated under the effect of various amounts of
activity and demonstrated in Fig. 6.9 for extensile (ζ > 0) and contractile (ζ < 0)
suspensions. As it is seen in this figure, both extensile and contractile nematics
behave similarly, which means that the increase in the absolute value of activity
elevates the value of Vrms. It should be noted that the dependency of Vrms on the
activity is stronger for contractile than for the extensile, hence ζ < 0 stays above
the ζ > 0 curve. Moreover, it is seen that these graphs increase monotonically with
respect to activity.
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The dependency of Vrms on the activity is directly related to the velocity jets in-
duced in nematics by defects in the nematic flow. The average flow induced by
the defects is calculated for +1/2 defects and shown in Fig. 6.10. Typically +1/2
defects are associated with a vortex dipole as shown in this figure. This defect is
self-propelled in the direction shown by the arrow. The flow pattern presented in
Fig. 6.10 is consistent with that obtained by an analytical solution using Green’s
function (Giomi, 2015).

Figure 6.10 Average +1/2 defect flow. Results is taken at ζ = 0.05. The comet-
like, +1/2 defect results in the pair of vortices.

As mentioned before, the important advantages of SPH over other numerical meth-
ods is its Lagrangian nature. With this feature, one can track every single nematic
particle inside the flow and evaluate the variation of its properties during the sim-
ulation. To exploit this feature, we took five nematic particles from different initial
positions and track their trajectories during the simulation. Pathlines of these par-
ticles are shown in Fig. 6.11 for four different activities, ζ = −0.001,±0.023, and
−0.25. Initial positions are encircled and each point in pathlines represents a parti-
cle position in a specific time step. As expected, by increasing the absolute value of
activity, lengths of pathlines increase. This happens due to the high energy injection
at higher activities. Nematic particles consume this energy to move faster and con-
sequently further. At the smaller values of activity, however, viscous term dominates
the flow and dissipates the input energy. As a result, the pathlines of the nematic
particles are shorter for the smaller values of activity. Interestingly, the pathline for
the ζ =−0.023 is longer than of ζ = 0.023 which was previously observed in Fig. 6.9
which explains the difference between the Vrms curves for extensile and contractile
suspensions. This shows that the contractile (ζ < 0) suspension converts more input
energy into kinetic energy which leads to a larger velocity and displacement.

In order to track the large groups of particles, we divided the domain into four regions
and colored the particles inside of each region to distinguish the particles during the
simulation. This leads to the mixing of the particles as shown in Fig. 6.12. It should
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Figure 6.11 Nematic particles pathline. Results are taken at the same physical
time for ζ =−0.001 (a), ζ =−0.023 (b), ζ =−0.25 (c), and ζ = 0.023 (d).

be emphasized that the particles inside the whole domain have identical nematic
and hydrodynamical properties and their color only represents their initial position.
As demonstrated in Fig. 6.13, while advancing in time, the four regions start to
blend with each other, and by increasing time adequately, a uniform distribution
of particles from all regions is obtained, which demonstrates the uniform mixing
of the nematic particles. It can be inferred that the particles are free to move
in any direction, but their mutual interactions dictate which direction they move
in. Moreover, the dynamics are in fact deterministic, the seemingly-randomness
comes from the fact that the system is chaotic. Figure 6.13 also demonstrates the
effect of activity strength on the mixing behavior of active nematics. t1 = 45< t2 =
252 < t3 = 500 Sec. are the real physical times at which snapshots of the particle
positions are taken. As expected, the case with the higher value of the activity
reaches complete mixing faster whereas those with the lower values of activity need
a comparatively longer duration. The comparison of the first and the second row of
Fig. 6.13 indicates the high capability of contractile nematics for the mixing. Thus,
for the mixing purpose, contractile nematics perform better than the extensile one
and the operation speed can be hastened by increasing the activity.

Thus far, we have focused on the effect of activity on the active nematic flow char-
acteristics. As described in chapter 2, in the formulation of the nematodynamics,
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Figure 6.12 Particle representation of mixing in the active nematics. Results
correspond to ζ = 0.023 and K = 0.1 at t= 500s. The selected section is magnified
and demonstrated in the inset.

Figure 6.13 Effect of activity parameter on the mixing. Comparison of mixing
for ζ = 0.023 (first row), ζ =−0.023 (second row), and ζ =−0.25 (last row). Each
column corresponds to the identical physical time with t1 < t2 < t3.
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elastic constant, K was introduced, which plays an important role in the molecular
field tensor, H. Figure 6.14-a demonstrates the variation of the flow field with K.
As can be seen from this figure, the increase in the value of K augments the vortex
sizes, which is compatible with the relation

√
K/ζ describing the length scale of

the nematic flow. Physically, this trend can be investigated considering the energy
consumption in active nematics. The injected energy by activity is consumed for
the creation of topological defects but at the expense of free energy. Consequently,
as shown in Fig. 6.14-b, defect number strongly depends on the value of K and
decreases with an increase in K. Moreover, as discussed earlier, there is a coupling
between defects and fluid instabilities by creation and annihilation cycle of topo-
logical defects. These instabilities, on the other hand, are the reason of the vortex
creation. By decreasing the defect number, instabilities become weaker and a few
vortices are created in the flow with the larger size hence covering the whole do-
main. Similarly, lower values of K result in higher instability in which the flow is
much more chaotic. This behavior is demonstrated in Fig. 6.14-c which shows the
snapshots of the flow mixing for different values of K. It should be noted that all
of the snapshots are taken at the same physical time, t = 500. Interfaces between
different colors exhibit the instability of the flow. As shown in this figure, the inter-
face at K = 0.1 is smoother in comparison with the flow at K = 0.02, which justifies
the inverse effect of K on the instability of the flow. Thus, to increase the mixing
efficiency, it is suggested to use the smaller value of K. .
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Figure 6.14 Effect of elastic constant on the flow, defects and mixing. (a)
Contours of vorticity and streamlines, (b) topological defects and nematic ordering,
and (c) mixing. First, second and third columns represent K = 0.02, K = 0.05, and
K = 0.1, respectively.
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7. Nematic order condensation and topological defects in inertial

active nematics

7.1 Introduction

As with the Giomi (2015)’s theoretical and numerical analyses, the majority of the
previous studies have considered the micro-scale active turbulence, e.g. in cellular
monolayers, bacterial suspensions and subcellular filaments-motor protein mixtures,
where the Reynolds number is negligible (Re≈ 0), and viscous dissipation completely
dominates over any inertial effects (Alert et al., 2022). However, in many other
realizations of active matter, for example swimming organisms in environmental
flows (Houghton, Koseff, Monismith & Dabiri, 2018) and artificial active spinner
suspensions (Kokot, Das, Winkler, Gompper, Aranson & Snezhko, 2017), the inertial
effect becomes significant, and the Reynolds numbers are non-zero (Klotsa, 2019).

Table 7.1 Values of Reynolds number based on different length scales.

ν/KΓ Active Taylor integral
length scale length scale length scale

(Re) (ReT) (ReI)
125 0.03 0.0002 0.005
12.5 0.7 0.0023 0.03
1.25 250 8.2227 191

Recent studies have begun to reveal interesting impacts of inertia on self-propulsion
of active particles and inertial effects on active turbulence (Chatterjee, Rana,

This chapter is a slightly modified version of "Nematic order condensation and topological defects in inertial
active nematics" published in "Physical Review E" by "R. Saghatchi, M. Yildiz, and A. Doostmohammadi"
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Figure 7.1 Active turbulence and vortex-condensates. Snapshots of the flow
vortices for incrementally decreasing viscosities: vorticity contours for (a) ν/KΓ =
125 with Re ∼ 0.03 (equivalent to ReT = 0.0002 using the Taylor microscale and
ReI = 0.005 using the integral scale to define the Reynolds number), (b) ν/KΓ =
12.5 with Re ∼ 0.7 (equivalent to ReT = 0.0023 using the Taylor microscale and
ReI = 0.03 using the integral scale), and (c) ν/KΓ = 1.25 with Re∼ 250 (equivalent
to ReT = 8.2227 using the Taylor microscale and ReI = 191 using the integral scale).
(d) Effect of viscosity on vorticity-vorticity correlations Cω−ω(r). The distance r is
normalized by the active length scale la =

√
K/ζ. (e) Characteristic vorticity length

scale as a function of viscosity. Upon decreasing viscosity, after an initial decrease
in the size of vortices, condensates spanning the entire system are formed. The
length scale (`) equals to the length r at which Cω−ω(r) = 0. Green data points
represent an incremental increase in viscosity and show the presence of a hysteresis
loop, indicating a discontinuous transition to the vortex-condensate state.

Simha, Perlekar & Ramaswamy, 2021; Hamel, Fisch, Combettes, Dupuis-Williams
& Baroud, 2011; Khair & Chisholm, 2014; Koch & Wilczek, 2021; Linkmann, Bof-
fetta, Marchetti & Eckhardt, 2019; Löwen, 2020; Scholz, Jahanshahi, Ldov & Löwen,
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2018; Wang & Ardekani, 2012). It is shown that increasing the inertia of active par-
ticles can result in a transition from active turbulence to flocking in polar active
matter (Chatterjee et al., 2021). Moreover, using a one-fluid model of an active
matter with hyper viscosity, or a piece-wise constant viscosity, it was found that
above a certain Reynolds number active matter can manifest vortex-condensate for-
mation (Linkmann et al., 2019; Linkmann, Marchetti, Boffetta & Eckhardt, 2020)
in analogy with the condensates in classical driven 2D turbulence, where inverse
energy cascade results in the accumulation of energy at larger scales and condensate
formation (Boffetta & Ecke, 2012). More recently, it was shown how the inter-
play of advective inertia and friction can affect transitions between active turbu-
lence, inertial regime, and tamed inertial active turbulence in active nematic sys-
tems (Koch & Wilczek, 2021). While these studies have provided important insights
into the flow features of dense active matter in the presence of inertia, less is known
about how inertial effects combined with activity impact the orientational organi-
zation of active elongated particles. In particular, singularities in the orientation
field, known as topological defects, are increasingly emerging as important centers
of self-organization in biological systems (Maroudas-Sacks, Garion, Shani-Zerbib,
Livshits, Braun & Keren, 2021), with potential biological functionalities (Doostmo-
hammadi & Ladoux, 2022; Kawaguchi, Kageyama & Sano, 2017; Meacock et al.,
2021; Saw, Doostmohammadi, Nier, Kocgozlu, Thampi, Toyama, Marcq, Lim, Yeo-
mans & Ladoux, 2017) and how their dynamics are affected by inertial effects is not
yet explored.

Here, we report on the numerical investigation of the flow and nematic features
of inertial active matter. In order to investigate the fundamental impact of the
fluid inertia on the active flow behavior, a continuum model of active nematics
is employed. We start by showing the emergence of vortex condensates and then
examine its impact on the orientational order and defect density. We then show
that not only the defect density, but also the flow around defects get altered within
the condensate state and finally show how these combined changes in flow, director,
and defect patterns affect energetic features of the active turbulence.

7.2 Problem statement

To solve the coupled governing equations OpenFOAM package is used. The simu-
lation domain consists of a 2D square of size 200 × 200, which is discretized using
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Table 7.2 Values of model parameters employed in the numerical simulation, unless
stated otherwise.

Parameter value
Γ 0.4(mN−1s−1)
λ 0.7
A 1(Nm−1)
K 0.02(Nm)
ζ 0.03(Nm−1)
ρ 1(Ns2m−3)
ν [0.01,0.1,1.0](m2s−1)

the Cartesian grid with two different resolutions, 1024×1024, and 2048×2048, and
the time step size is controlled through the CFL condition (Courant et al., 1928;
Ferziger et al., 2002). Gauss Linear discretization (Moukalled et al., 2016) is used
for gradient, divergence and laplacian terms, and the PISO algorithm (Versteeg &
Malalasekera, 2007) is utilized for the velocity- pressure coupling. The time marching
is performed based on the Euler scheme (Ferziger et al., 2002). Periodic boundary
condition is enforced on the boundaries. Unless otherwise stated, the parameters
used in simulations are according to Tab.7.2. Since in this study we are mainly
interested in the impact of varying the viscosity and activity of the system, di-
mensionless viscosity ν/KΓ and dimensionless activity ζ/A, are defined. Moreover,
Reynolds number is defined as Re = laVrms/ν, where la =

√
K/ζ is the active length

scale (Giomi, 2015) and Vrms is the emergent root-mean-square velocity of the system
that varies for different activity and viscosity values. In order to compare the values
of the Reynolds number with the studies of vortex condensate formation in classic
turbulence (Boffetta & Ecke, 2012; Gallet & Young, 2013), the corresponding values
of Reynolds numbers are also reported based on the Taylor microscale and the inte-
gral scale (Pope & Pope, 2000) (Table 7.1 and Fig. 7.1). The Reynolds number based
on the Taylor microscale is calculated using ReT = λV ′rms/ν, where, λ= V ′rms

√
15ν/ε

is the Taylor microscale with ε= 2ν < EijEij > denoting the kinetic energy dissipa-
tion rate and Eij represents the strain rate tensor. V ′rms is the rms of the fluctuating
component of the velocity. The Reynolds number based on the integral scale (ReI)
is calculated using ReI = LIVI/ν, where the integral length scale LI and integral
velocity scale VI are defined as LI =

∫∞
0 k−1Ek dk

/∫∞
0 Ek dk , and VI =

√
2κ, respec-

tively (Pope & Pope, 2000; Urzay et al., 2017). Here, Ek = 1
2〈ûi(k)ûi(k)〉 is the

kinetic energy spectrum, k is the wave number, and κ = 〈uijuij/2〉 is the spatially
averaged kinetic energy.
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7.3 Results

Figure 7.2 Quantification of viscosity impact on flow and orientation prop-
erties of active nematics. Effect of viscosity on (a) rms-velocity Vrms, (b) magni-
tude of the nematic order, and (c), defect number, before and after the transition to
the vortex-condensate state. Inset in sub-figure (a) shows the semi-log plots of the
rms-velocity as a function of the logarithm of viscosity, highlighting its logarithmic
decay with viscosity.

We begin by qualitatively assessing the impact of increasing the inertia of the ac-
tive fluid on the flow patterns by incrementally reducing the kinematic viscosity
coefficient. Figure 7.1 demonstrates the vorticity contours for three representative
viscosities. Upon reducing the viscosity, the size of the vortices becomes smaller, and
the strength of vortices is enhanced (Fig. 7.1a,b). Similar to the classical turbulence
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by reducing the viscosity, and thus increasing Reynolds number, large eddies become
unstable and begin to break up, transferring their energy to comparatively smaller
eddies (Boffetta & Ecke, 2012). Moreover, in agreement with the reverse cascade dy-
namics in 2D classical turbulence, a further increase in the Reynolds number results
in the accumulation of energy from smaller scales towards the larger scales leading
to the emergence of a vortex condensate in the form of two large counter-rotating
vortices that span the entire system (Fig. 7.1c). It is important to note, however,
that in comparison to the classical inertial turbulence that is driven by external
forcing (Boffetta & Ecke, 2012), the transition to vortex-condensate here is driven
by active stress generation. The formation of vortex-condensates can best be repre-
sented quantitatively through measuring the vorticity-vorticity correlation function
Cω−ω(r) = 〈ω(r).ω(0)〉/〈ω(0)2〉, where ω = ∂xuy−∂yux (Fig. 7.1d). Before and af-
ter the emergence of the condensate, different characteristic length scales of decay
are exhibited: before the emergence of the condensate, by increasing the Reynolds
number, the correlation length decreases, while after the emergence of the vortex
condensate, the characteristic length scale is set by the system size that encompasses
the two giant vortices (Fig. 7.1d,e).

Similar flow patterns of vortex condensate formation were reported earlier based on
the one-fluid model of active polar matter with both hyper-viscosity and piece-wise
constant viscosity, where it was demonstrated that a discontinuous, subcritical phase
transition governs the emergence of the vortex condensate state (Linkmann et al.,
2019,2). By performing the hysteresis analysis, we confirmed that the crossover to
the condensate state in inertial active nematics also shows a hysteresis effect, indi-
cating a discontinuous transition to the vortex-condensate state in active nematics
(Fig. 7.1e).

It is further shown recently that in active nematics although the energy budget asso-
ciated with advective inertia could be smaller compared to active and dissipative en-
ergies, the effect can accumulate over time leading to large-scale flow patterns (Koch
& Wilczek, 2021).

In addition to the change in the size of the flow patterns, condensate formation is
accompanied by a significant increase in the strength of the flow. This can be quanti-
fied by measuring the averaged rms-velocity Vrms of the entire system after reaching
a statistical steady-state, which shows up to an order of magnitude enhancement
in the velocity upon transition to the vortex-condensate state (Fig. 7.2a). More-
over, a closer look at the variation of the velocity beyond the transition point into
the vortex-condensate state reveals a logarithmic decay of the rms-velocity with
viscosity, as exemplified by the semi-log plot in the inset of Fig. 7.2a.
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Figure 7.3 Nematic order condensation. (a) snapshots of director field and
topological defects for vortex condensates case. Colormap indicates the magnitude
of the nematic order q, and +1/2 and −1/2 topological defects are marked by yellow
comets and green triangles, respectively.(b) Averaged values of the magnitude of
order 〈q〉x,t, and defect density calculated separately inside giant vortices and the
bulk of the system excluding the giant vortices.

We next asked what would the consequences of such drastic changes in the strength
and patterns of the flow be on the orientation field of the active nematic particles.
To test this, the magnitude of the nematic order averaged over time and space 〈q〉x,t
was measured for incrementally decreasing values of viscosity (Fig. 7.2b). Interest-
ingly, the initial melting of the nematic order before the condensate formation is
followed by an increase in orientational ordering within the vortex-condensate state.
This is further accompanied by changes in topological defects density within the
system, which after an initial increase with decreasing viscosity, begins to fall as
the vortex-condensate is established (Fig. 7.2c). A closer look at the director field
associated with the vortex-condensate state reveals the underlying mechanism for
such changes in the nematic order and topological defect density: once the vortex-
condensate forms, within the two giant vortices, a nearly perfect nematic order is
established that is only disrupted by few topological defects (Fig. 7.3a), while the
bulk of the system is characterized by disordered domain laden with a high density
of the topological defects. As a result of this order condensation within the giant
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vortices, the magnitude of the order increases within the condensate phase, which
is accompanied by a drop in the total defect density.

To explain the reason for the reduction/increase in defects population/orientational
order at the condensate state, we quantified the nematic order within and outside of
the vortex condensate region, showing clearly that the emergence of giant vortices
is accompanied by the enhancement of the order and thus fewer defects within the
condensates (Fig. 7.3b).

The mechanism for this can be demonstrated in a simplified form by approximating
a giant vortex as an ideal Rankine vortex with the velocity profile in the polar
coordinate (ur = 0,uθ,uz = 0), with:

(7.1) uθ = Λ
2π

r/a
2, r ≤ a

1/r, r > a

where Λ is the strength of the circulation of Rankine vortex and a is the vortex core
size. This results in finite vorticity ωz = Λ/(πa2) and solid body rotation in the core
region. An approximately constant vorticity across the giant vortex region is evident
from the snapshots of the vortex-condensate (Fig. 7.1c). Previous works have estab-
lished that ‘walls’ of large nematic distortion and topological defects are typically
formed in the regions between separate vortices (Giomi, 2015; Thampi & Yeomans,
2016). Therefore, here, as a result of the constant vorticity and an approximate
solid body rotation within the giant vortex there is only a weak destabilizing effect
from variations in vorticity to frustrate the nematic order and as such higher order
is expected within the vortex condensates.

As such, the orientational order and topological defects display different features
within the giant vortices and the bulk of the system in the condensate phase. To
gain further insights into the potential impact of varying viscosity and also the
distinction between the bulk and the vortex region, we measured the average flow
around topological defects. It is well-established that in active turbulence with
negligible inertia, comet-shaped +1/2 defects show propulsive motion within the
system, as evident from the average flow at the highest value of the viscosity, which
is consistent with analytical predictions using Green’s function and experimental
measurements in dense cellular systems (Giomi, 2015; Meacock et al., 2021; Saw
et al., 2017) (Fig. 7.4a). Upon decreasing the viscosity the flow field around the
defects keeps its shape, however, the size of the flow vortices around the defect is
reduced and the flow strength at the defect core is enhanced (Fig. 7.4b). This means
that at lower viscosities the speed of the propulsion of +1/2 defects increases, while
their higher density leads to a more effective screening of their associated flows due
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Figure 7.4 Viscosity impact on the flow field of topological defects. Velocity
field and contours of velocity magnitude for the average defect flow at (a) ν/KΓ =
125 and (b) ν/KΓ = 12.5. (c) and (d) show the average defect flow for the vortex-
condensate state at ν/KΓ = 1.25, calculated separately for (c) defects inside giant
vortices and (d) the bulk of the system excluding the giant vortices. In (a)-(d) blue
dashed line schematically show the alignment of the +1/2 defect with respect to
the averaged flows. (e) Velocity profile around defects showing the magnitude of
velocity along a vertical axis passing through the center of defects in (a), (b), (c)
and (d).

to the stronger interactions with other defects.

Further decrease in viscosity and the emergence of the vortex-condensate, however,
completely alters flow features of the +1/2 topological defects: within the giant
vortices the defects move along their comet head and rotate around the vortex cen-
ter as characterized by the tilted averaged velocity field (Fig. 7.4c). Remarkably,
within the bulk of the condensate phase, the magnitude of the velocity also drops
at the defect core and the average flow of the +1/2 defects points along the defect
tail indicating that the defects align anti-parallel to the flow direction (Fig. 7.4d).
This is because within the bulk, the strong shear flow between the two giant vortices
aligns +1/2 defects anti-parallel to the strong flow and the defects are advected by
the strong flow between the two vortices. As such within the condensate phase,
the propulsive nature of the +1/2 defects is suppressed by the flow field established
through vortex-condensate and defects have negligible impact on the flow field, con-
trary to the active turbulence state where the propulsive nature of the +1/2 is an
indispensable determinant of the flow structure within the system (Giomi, 2015;
Thampi, Doostmohammadi, Golestanian & Yeomans, 2015). The flow characteris-
tics around defects can be further quantified by calculating the decay of the velocity
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magnitude away from the defect core, which clearly demonstrates the alterations
to the flow scale with decreasing viscosity and with the emergence of the vortex-
condensate phase (Fig. 7.4e).

It is noteworthy that the emergence of the vortex-condensate depends not only on
viscosity, but also on the activity of the particles. To show this, Fig. 7.5 illustrates
the stability diagram of the vortex-condensate formation in the viscosity-activity
phase space. As evident from the figure, even at moderately high viscosities, vortex-
condensate can form for strong enough activities. Only at significantly high viscosity,
where the inertial effects are completely suppressed by the viscous dissipation and
the convective inter-scale transfer is insignificant, no vortex-condensate is observed.
Moreover, the emergence of the vortex-condensate is only observed for extensile
(pusher) particles and even for high values of contractile activity and strong inertia
the active turbulence is established and we could not find any condensate state. We
conjecture that the observed difference between the extensile and contractile systems
can be associated with the difference in the response of the collection of extensile and
contractile active particles to the flow gradients: extensile particles collectively align
to the shear flows established by their self-generated active stresses, which leads to
the local ordering of extensile active systems, as shown previously (Santhosh, Nejad,
Doostmohammadi, Yeomans & Thampi, 2020b; Thampi et al., 2015). On the other
hand, contractile activity destroys such an ordering. This effect is best evident from
previous studies on active nematics that show combined effects of activity and flow
alignment lead to renormalization of the molecular field, as shown in the context
of intrinsic free energy of active nematics (Thampi et al., 2015): for non-zero and
positive values of the flow-aligning parameter λ, contractile ζ < 0 and extensile
activities ζ > 0 have the opposite impact on the effective free energy of the system.
As such, contractile activity increases the energetic cost of the breakdown of nematic
order, while extensile activity enhances it.

To test this conjecture directly in our simulations, we explored cases with contractile
activity (ζ < 0) and negative values of the flow-aligning parameter (λ < 0). The
results confirm that it is possible to obtain a vortex-condensate state for contractile
activities when the flow-aligning parameter is negative and emphasize that the sign
of the product ζλ is the determining factor (Fig. 7.6). Furthermore, for λ= 0 there
was no vortex-condensate state for neither contractile nor extensile activity.

Having established the impact of viscosity reduction on the flow and director field
of active nematics, we next turn to the energetic features of the flow. This is best
represented by the kinetic energy spectrum Ek = 1

2〈ûi(k)ûi(k)〉, which measures the
kinetic energy associated with differing scales characterized by the wavenumber k.
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Figure 7.5 Stability diagram for the vortex-condensate formation in active
nematics. Effect of viscosity and activity on the vortex condensation formation are
shown. Filled points represent the vortex condense state.

A numerical study of the simplified active nematics, which neglects order variation
and thus topological defects, suggested a universal scaling of the kinetic energy,
Ek ∼ k−1 at small wavenumbers (Alert, Joanny & Casademunt, 2020b). While such
a k−1 scaling is recently observed in a numerical study of active polar fluid in certain
parameter regimes (Chatterjee et al., 2021), numerical simulations of the full active
nematics did not find such universal behavior (Amiri, Mueller & Doostmohammadi,
2021; Krajnik, Kos & Ravnik, 2020; Urzay et al., 2017). Most recently, a combined
theoretical and experimental study showed different scaling regimes depending on
the external or internal dissipation mechanisms for microtubule-kinesin motor mix-
tures at oil-water interface, which represent a realization of two-dimensional active
nematic material (Martínez-Prat, Alert, Meng, Ignés-Mullol, Joanny, Casademunt,
Golestanian & Sagués, 2021).

Let us first consider the vortex-condensate case that appears at low viscosities, cor-
responding to high Reynolds numbers. In agreement with classical 2D turbulence
within the inertial range the power spectrum shows Kolmogorov scaling with a
power-law decay with the exponent −5/3 (Boffetta & Ecke, 2012) (Fig. 7.7; orange
line). This indicates that at low viscosities, the vortex-condensate generated by
local energy injection in active nematics shares similar scaling behavior as driven in-
ertial turbulence. Incremental reduction of inertial effects by successively increasing
the viscosity, however, completely alters the scaling behavior of the active nematic
turbulence. At small wavenumbers, corresponding to large scales, the kinetic en-
ergy shows again a power-law behavior with a non-universal viscosity-dependent
exponent (Fig. 7.7; purple and magenta lines). The transfer of energy to smaller
scales (larger wavenumbers), however, does not follow a universal power-law decay,
as has been suggested by analytical and numerical studies of active nematics that
neglect topological defects (Alert et al., 2020b; Giomi, 2015). Instead, representing
the energy spectrum on a semi-log plot reveals a viscosity-dependent exponential
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Figure 7.6 Active turbulence and vortex-condensates for contractile activ-
ity (ζ/A=−0.03) at ν/KΓ = 1.25. Snapshots of the flow vortices for positive, zero,
and negative tumbling parameter: vorticity contours for (a) λ= +0.7, (b) λ= 0, and
(c) λ=−0.7. (d) Effect of tumbling parameter on vorticity-vorticity correlations.

decay of the energy with wavenumber, that is due to the dominating effect of vis-
cous dissipation with reducing the inertia. This is important, because existence of
universal scaling laws for active turbulence, that are independent of activity and
viscosity, have been suggested based on power-law decay of energy spectrum with
the wavenumber as ∼ k−4 (Alert et al., 2020b). The large-scale numerical simu-
lations conducted here that account for topological defects in the system do not
show any indication of such universal scaling laws and rather suggest a dissipation
dominant exponential regime at low Reynolds numbers, calling for further studies
in this direction.
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Figure 7.7 Kinetic-energy spectra. The wavenumber is non-dimensionalized by
the active length scale la =

√
K/ζ. Solid- and dashed- lines, respectively represent

1024× 1024 and 2048× 2048 grid resolutions. While within the vortex-condensate
state a power-law decay is observed, lower viscosities manifest exponential decay
with the wavenumber (semi-log plots in the inset).
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8. Vibration induced by active nematics

8.1 Introduction

Due to the continuous energy injection of the constituent active particles, chaotic
nature in the active fluid emerges, which is known as active turbulence (Alert et al.,
2022; Bratanov et al., 2015; Doostmohammadi et al., 2017; Urzay et al., 2017;
Wensink et al., 2012). In such a chaotic flow, kinetic energy of micro-scale elements
is transferred to a passive body immersed in the active fluid such that the body ex-
periences a mechanical force on its boundaries. If the exerted energy is sufficiently
high, the body could undergoes deformation (Paoluzzi, Di Leonardo, Marchetti
& Angelani, 2016), translation (Wu, Lv, Zhao & Ai, 2018), rotation (Angelani,
Di Leonardo & Ruocco, 2009), or their combination.

Considering the induced motion of passive immersed bodies, a question may arise
such that if the active flow is also capable of generating vibrational motion due to its
chaotic and turbulent nature. As such, it should be possible to induce a constructive
oscillatory motion on a flexible body possibly made of a piezoelectric material that
can be used as a sensor to extract the physical properties of active fluid.

Generally, the behavior of active nematics is affected mainly by fluid activity and
elastic constant. In our recent unpublished work, we also showed that viscosity has
a significant role by introducing the inertia effect to the active nematics system. The
measurement of these parameters is experimentally challenging (Frishman & Keren,
2021), and often, the secondary properties are used to extract these main parame-

This chapter is a slightly modified version of "Vibration induced by active nematics" submitted to "Journal
of Fluid Mechanics" by "R. Saghatchi, and M. Yildiz"
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Table 8.1 The discretization schemes that are used in this study (Moukalled et al.,
2016).

Term Scheme

Time integration Euler
∇() Least squares
∇.() (advection term) Gauss linear (upwind)
∇2() Gauss linear

ters. Currently, the most common method to assess the activity is to measure the
ATP, the motor cluster, microtubules, or polyethylene-glycol concentrations (Doost-
mohammadi et al., 2018; Henkin, DeCamp, Chen, Sanchez & Dogic, 2014), among
others. Researchers have been working on numerical procedures such as machine
learning algorithm (Colen, Han, Zhang, Redford, Lemma, Morgan, Ruijgrok, Ad-
kins, Bryant, Dogic, Gardel, de Pablo & Vitelli, 2021) to find an alternative approach
to measure the physical properties directly.

Considering the aforementioned issues, we placed a cantilever beam in active nemat-
ics and numerically analyzed the induced vibration. We used a continuum model for
the active nematics and combined it with a fluid-structure interaction (FSI) solver
to calculate the imposed force on the beam, and consequently, analyze its motion.
We investigated the effects of vorticity and velocity field on the beam oscillation.
Then, we demonstrated the effect of three critical parameters, including fluid ac-
tivity, viscosity, and its elastic constant on the beam peak frequency and proposed
a mathematical relationship that makes direct measurement feasible for the future
practical utilization.

8.2 Problem statement

In this study, a 2D continuum approach is implemented for modeling the nematic
phase. In addition to the fluid phase, we are going to solve the governing equations
for the solid part. The model for the solid phase is introduced in Appendix B.
The discretization schemes for each separate term in the governing equations are
summarized in table 8.1. Pressure and velocity coupling throughout the fluid domain
is carried out by PISO algorithm (Versteeg & Malalasekera, 2007). Solution domain
consists of a square region with a cantilever beam located at the middle point of
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Figure 8.1 Schematic representation of problem. Physical domain includes a
cantilever beam inside active nematics. Nematic particles and the orientation vector
are represented in the inset.

Table 8.2 Values used in the numerical simulations , unless stated otherwise..

Fluid Solid
Parameter Value Parameter Value

ρ 1(Ns2m−4) ρs 1(Ns2m−4)
λ 0.7 E 0.1×106(Nm−2)
Γ 0.0136(m2N−1s−1) ν 0.3
K 0.003(N) l/w 0.05
A 1(Nm−2)
ζ 0.03(Nm−2)

the bottom boundary (see Fig. 8.1). No-slip boundary condition is applied on all
boundaries including the fluid-solid interface, while the zero-gradient condition is
used for Q. The structured Cartesian grid with 256× 256 is used to discretize the
domain and the CFL condition is enforced to control the solution time-step size.
Initially, zero velocity field is applied with uniform nematic orientation n in the
horizontal direction with a slight perturbation, and the results are evaluated at the
time step at which steady state is statistically attained.

The main parameters used in this study are tabulated in table 8.2. In this table, E
and ν, respectively, represent the elastic modulus and Poisson’s ratio, and l/w is the
length- to- thickness ratio of the beam. Based on the values in the table 8.2, we define
natural frequency of transverse vibration of a cantilever beam as ω = (βl)2

√
EI
ρsAl4

,
where βl = 1.875104, I is the area moment of inertia, A represents the cross section
area, and l is the beam length (Rao, 2011). Consequently, dimensionless time and
frequency become tω and (tω)−1, respectively. Since the activity and viscosity are
the important parameters in our study, we define dimensionless activity and viscosity
as ζ/A and µΓ, respectively.
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Figure 8.2 Vorticity and the beam displacement contours at the different
times (t∗ ≈ tω× 10−2). Results are shown for a beam with high elastic modulus
(a), and low elastic modulus (b), correspond with E = 0.01KPa and E = 1.0KPa,
respectively.

Figure 8.3 Flow and energy of the active nematics in the domain. Flow
and nematics characteristics in the domain close to the beam at tω ≈ 37×10−2 (left
column) and tω ≈ 81×10−2 (right column). (a) vorticity, beam displacement, and
the velocity vectors. (b) nematics director and their order of magnitude. (c) Effect
of beam presence on the kinetic-energy spectrum. The beam absorbs the kinetic
energy of the low-scale vortices and consumes it for vibrational motion.
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8.3 Results

We begin with the qualitative representation of the beam motion and flow field in the
physical domain. We take ζ = 0.01 and K = 0.05, and the simulations are performed
for the beams with two different values of elastic modulus, i.e., E = 0.01KPa and
E = 1.0KPa (Fig. 8.2). Beam with lower elastic modulus imitated the soft material
such as biological tissue, which can easily bend under the effect of active stress.
The beam bending is related to the flow dynamics, as shown in Fig. 8.3-a. In this
sub-figure, velocity vectors are shown in vicinity of the beam. Clearly, magnitude
of beam deformation and its orientation are controlled by the dominant direction of
velocity vectors. If two vortices appear on different sides of the beam, the strongest
one determines the bending direction as shown in Fig. 8.3-a. To further elaborate,
when the strongest vortex (or vortices) travels inside the domain and moves towards
the beam, it exerts forces on the beam and deforms it in the same direction. From
energy perspective, fluid elements inside these vortices posses a high amount of
kinetic energy. If these kinetic energies that are transferred to the beam elements
are high enough to surpass the beam’s elastic potential energy and inertial force, the
beam deforms and deflects. Thus, as the exerted force is more concentrated towards
the beam tip, beam deflection is expected to be higher. Vortices are being moved
in the domain due to the interactions of defects and the change in the director field
(Fig. 8.3-b). Furthermore, continuous energy injection creates new vortices, their
size are being changed continuously by the energy cascading and they are finally
dissipated by the viscous force. As a consequence of these periodic processes, a
random excitation is imposed on the beam, leading to random vibration.

The kinetic energy spectra can best represent quantitative features of the en-
ergy transfer to the beam, which characterizes the associated kinetic energy Ek =
1
2〈ûi(k)ûi(k)〉 at different scales. Figure 8.3-c illustrates the kinetic energy spectrum
for the wavenumber k, considering either the presence or the absence of the beam.
Characteristic length scale la =

√
K/ζ is used to normalize the wave number. As

inferred from this figure, energy at higher ranges of wavenumbers is considerably
lower when the beam is placed in the system. It shows that the beam takes fluid
energy mainly at high wavenumbers corresponding to the small-scale vortices and
consumes this energy for its oscillatory motion.

As mentioned above, fluid physical properties such as activity and viscosity could
affect the beam vibration. We first investigate the beam vibration under the differ-
ent values of activity parameters, ζ to verify this claim. The value of E = 0.1MPa
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Figure 8.4 Results for a cantilever beam within the fluid with different
activities: (a) Time history of the beam’s normalized deflection (the inset magnifies
the small spam of the vibration history); (b) Fourier Spectrum; (c) frequency versus
activity (linear relation is seen and demonstrated with a dashed line representing
the regression analysis). (d) represents the vorticity and beam deflection contours
for ζ/A= 0.12, 0.06, 0.03, and 0.015 from top to bottom row.

is taken for the beam elastic modulus to represent an actual piezoelectric trans-
ducer (Elvin, Elvin & Senderos, 2018). Beam tip displacement is monitored during
the simulation and plotted as a function of dimensionless time, as shown in Fig. 8.4-
a. This figure also presents the impact of activity on the vibrational motion of the
beam. It is observed that a rise in the activity parameter increases the displacement
amplitude. Physically, enhancing the activity is equivalent to injecting a higher
amount of energy into the fluid elements. Consequently, when transferred to the
beam, this energy could deflect the beam more and lead to a higher amount of
displacement.

To scrutinize the activity influence on the vibration frequency, we performed the
FFT1 analysis to convert the displacement from a time domain to the frequency do-
main (Moin, 2010). Due to the non-deterministic nature of the excitation, multiple
frequency peaks exist in the FFT curve. Since the maximum frequency peak is of

1Fast Fourier Transform

107



Figure 8.5 Effect of viscosity on the beam peak frequency. Inset shows
the same data in the log-log scale, indicating the reciprocal relationship between
viscosity and the peak frequency. The effect of viscosity on the size of vortices is
also shown for two different viscosity values.

interest, an AMF2 is used to smooth out the FFT curve and remove the unneces-
sary noises (Smith & others, 1997), and the resultant curves are given in Fig. 8.4-b.
As shown in this figure, the activity parameter alters the maximum or peak fre-
quency such that the peak frequency shifts towards a higher value with the increase
in activity. To obtain a possible correlation between the peak frequency and the
activity parameter, we performed the simulation for various values of activity pa-
rameters and presented the results in Fig. 8.4-c. Interestingly, a linear correlation is
observed for the peak frequency- activity parameter. The dashed line in this figure
is the linear regression resulting from these correlation, showing an apparent lin-
ear relationship between peak frequency and activity. Qualitatively, recalling that a
higher value of activity parameter is equivalent to higher energy injection into active
nematic system. This increases the energy of small-scale vortices thereby hinder-
ing their dissipation by viscous forces, and also breaks large vortices into smaller
ones with reduced energies, which is referred to as energy cascading mechanism,
(Fig. 8.4-d). Essentially, the higher the activity or energy injection, the smaller the
size of vortices. Vortices with smaller sizes can move quickly and with higher fre-
quency in the domain. These small yet strong vortices continuously collide with the
beam and result in high beam vibration frequency. Experimentally, the slope of the
peak frequency- activity curve (α in Fig. 8.4-c) is obtainable through calibrating the
piezoelectric transducer whereby it becomes possible to measure the fluid activity
parameter.

It is also worthwhile to check the dependency of the peak frequency on the bulk

2Average Moving Filter
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viscosity µ of the active fluid as well. Figure 8.5 demonstrates the variation of
peak frequency as a function of dimensionless viscosity. As shown in this figure,
the viscosity has an inverse and approximately reciprocal relationships with the
peak frequency. A log-log diagram is also presented as an inset of this figure to
illustrate this behavior better meaning that the peak frequency can be expressed
by ≈ f(1/µ) function. This behaviour can physically be explained considering the
energy cascading mechanism. Namely, the larger the viscosity is, the higher frictional
force, which can dissipate the energy of small-scale vortices. Remembering the role of
small-scale vortices in the beam oscillatory movement, an increase in the viscosity
reduces peak frequency. Meanwhile, active nematics with lower viscosity fail to
provide a substantial frictional mechanism to dissipate the energy of small-scales
vortices, resulting in an increase in the imposed energy to the beam.

It is worth noting that the numerical investigation is also performed to examine the
impact of the elastic constant K of active fluid on the beam frequency; however,
no significant effect is observed. Recalling the characteristic length scale in active
nematics, i.e. la =

√
K/ζ, one may expect that the variation in elastic constant K

should change the length scale and vortices sizes. Referring to discussion provided
to understand the correlation between the activity/viscosity and peak frequency,
this variation should also lead to changes in the peak frequency. However, in the
case of elastic constant, it should be noted that K is also responsible for penalizing
gradients in the nematic orientation, hence for the free energy (F). Consequently,
the balance between the F and vortex size determines the resultant frequency, which
undergoes insignificant change with the variation in K, as our results show. In other
words, the elastic constant does not participate in either injection or dissipation of
the energy to/from the small scale vortices, where both of them are responsible for
determination of the system’s time scale, hence the beam frequency.
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9. Conclusion

The work presented in this thesis spans several topics in complex soft matter physics
and stages of developing and using computational tools. Two different numerical
methods, i.e., smoothed particle hydrodynamics and finite volume are used to sim-
ulate the emulsions and active nematics flow. Section 9.1 summarizes the main
findings. Section 9.2 provides an outlook for continuing the research presented in
this thesis.

9.1 Summary

Firstly, in chapter 4, the EHD behavior of a droplet is studied in a highly confined
domain. Six different fluid systems are selected corresponding to the different elec-
trical properties. It was shown that in the unbounded domain, ratios of the electrical
properties are the main factors in determining the droplet deformation shape and
values. By increasing the confinement ratios, the droplet deformation value was
changed and in some cases, switched from oblate/prolate shape to prolate/oblate
elongation. The dependency of the droplet deformation on the electric force com-
ponents, including polarization and Coulomb forces, is discussed thoroughly. It was
shown that these forces are the main reason for the droplet deformation and their
strengths are highly dependent on the confinement ratio. The effect of the pressure
force is also considered, and it was shown that its contribution becomes significant
at high confinement ratios where it acts in the opposite direction with the electric
force, decreasing the deformation value at high confinement ratios. To simplify the
analysis, the force ratio was defined and used to show the contribution of each ef-
fective force on the droplet deformation. These force ratios are then sketched as a
function of confinement ratio for some systems to better understand their effect and
simplify their comparison.
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Additionally, in chapter 5 the behavior of a double emulsion is studied under the
combined effect of the electric field and shear flow. Six different systems are cho-
sen based on electrical properties. Deformation and orientation angles of the core
and the shell droplets are calculated under pure shear, pure EHD, and combined
EHD-shear flow. Flow streamline patterns are utilized to discuss the results. It
is shown that the flow vortex direction depends on the conductivity and permit-
tivity ratios. Electric force components are calculated on the interfaces and their
effects on the double emulsion dynamics are discussed comprehensively. In addition
to the EHD forces, hydrodynamics forces are also computed within the the entire
flow domain. It is pointed out that in the double emulsion with a viscosity ratio of
unity, pressure has a significant contribution to hydrodynamic forces. The effects of
capillary, electrical capillary numbers, and core to shell radius ratio on the double
emulsion dynamics are investigated as well. It is indicated that the deformation of
core/shell droplet increases/decreases with an increase in radius ratio. Double emul-
sion exhibits relatively complex behavior in response to the variation of capillary and
electrical capillary numbers which has been explained considering the interaction of
hydrodynamics and EHD forces. Finally, the breakup phenomenon is elaborated in
double emulsions and the necessary condition for the breakup is explained. Differ-
ent breakup patterns are identified in the double emulsion for the specific electrical
properties.

Secondly, in chapter 6 the weakly compressible smoothed particle hydrodynamics
method is used to simulate the active nematic fluid. The simulations are performed
with the presented GPU-based algorithm on the CUDA C++ programming language
using an object-oriented approach. Ghost periodic boundary condition is introduced
and applied to all boundaries to imposed the periodic boundary condition. Since
the nematic fluid is composed of nematic particles, collective movement of SPH
particles is perfectly mimicked the movement of the nematic particles. Fluid flow
characteristics, including vortex structures and streamlines, are exhibited, and the
turbulent-like behavior of the nematic fluid is presented qualitatively. To scrutinize
the turbulent characteristics, the relation between the kinetic energy and wavenum-
ber is evaluated. Vorticity- vorticity correlation is calculated, and the characteristic
length scale is defined based on it. Nematic orders and director is calculated and
used to detect the topological defects. Positive half and negative half defects are
discussed in detail. Results are presented for the effects of two important parame-
ters, activity and elastic constant. The effect of activity on the velocity root mean
square is evaluated, and it is seen that by increasing the absolute value of the ac-
tivity, the velocity root mean square increases as well, while its effect is strong for
negative activities. To exploit the SPH capabilities, pathlines and mixing of nematic
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particles are described qualitatively. It was shown that the length of pathlines is
proportional to the activity. The effect of the elastic constant is also calculated, and
it is shown that higher values of elastic constant exhibit larger vortex length scales
and smaller defect numbers, and inferior mixing. It was shown that the activity and
elastic constant behave oppositely in the creation of chaotic flow, which initiates
from the energy minimization.

In chapter 7 we provided finely-resolved simulations of the active nematohydro-
dynamic equations in the presence of progressively increasing inertial effects. By
incrementally reducing the fluid viscosity, we quantified the variations of emergent
system properties, including velocity, orientational order, and density of topological
defects. At sufficiently small values of viscosity the system manifests reverse en-
ergy cascade and formation of vortex condensate, as well as the Kolmogorov scaling
in the decay of the kinetic energy, similar to classical driven turbulence, albeit at
significantly lower Reynolds numbers, ReI ∼ O(102) (defined based on the integral
scale), and due to the local energy injection by activity, rather than any external
forcing. We provided a phase diagram of the vortex-condensate formation in the
activity-viscosity phase space, emphasizing the synergistic impacts of active stresses
and fluid inertia. Our results further showed that vortex-condensate formation is
accompanied by significant modifications of the orientational features of the system,
leading to order condensation and a drop in the defect density. Analyzing the defect
within the condensate state, further demonstrated a significant deviation in the flow
field around the topological defects. Importantly, we showed that the condensate-
formation in inertial active nematics depends strongly on the flow-aligning behavior
of the active particles and the extensile or contractile stresses that they generate.
Our results further revealed that in the non-condensate regime, the averaged velocity
of the entire system shows logarithmic decay with the fluid viscosity. Additionally,
within this regime, we showed that the kinetic energy spectrum lacks any universal
scaling. Indeed, the results, even at a highly viscous regime, indicated an exponen-
tial - rather than algebraic - decay of the energy spectrum with the wavenumber.
The results presented in this study demonstrate the important interplay between
the active stress generation and fluid inertia in active fluids.

Finally, in chapter 8, we presented a numerical method to solve the continuum model
of active nematics which is combined with an FSI solver to simulate the vibration
induced by active turbulence. For this purpose, we placed a cantilever beam inside
the active nematics and investigated the effect of important active fluid parameters
such as activity, viscosity and elastic constant on the beam oscillatory motion. We
provided qualitative data, including vorticity field and nematic ordering to investi-
gate the beam dynamics. Our results showed that vortex formation that initiates
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from the symmetry breaking in the nematic ordering, plays a dominant role in beam
deflection. We also indicated that the size, strength and position of vortices deter-
mine the direction and magnitude of beam deflection. Using the kinetic energy
spectrum, we demonstrated that the small-scale vortices play the primary role in
the beam oscillatory motion by transferring the kinetic energy between active fluid
and beam. We quantified the beam oscillation using FFT analysis on the beam
tip displacement data and calculate the beam peak frequency. Our results showed
that the activity and beam peak frequency are linearly correlated. The physical
phenomena behind this correlation is explained through considering the nematic
activity (which influences the energy injection into the system) and its role on re-
ducing the size of vortices. Our results further revealed the reciprocal relationship
between viscosity and beam peak frequency, which steams from the fact that vis-
cosity dissipates the energy of small-scale vortices. Finally, we analyzed the impact
of the elastic constant of active nematics on the beam peak frequency and show
that its effect is insignificant. The results presented in this chapter propose a po-
tential novel method to measure the critical parameters of active nematics that play
a significant role in determining its flow behavior using the beam peak frequency
concept. This method can be an alternative to the current challenging measure-
ment techniques that determine the activity, for example, by measuring secondary
parameters such as ATP, the motor cluster, microtubules, or polyethylene-glycol
concentration (Doostmohammadi et al., 2018; Henkin et al., 2014).

9.2 Outlook

This thesis presented emulsion dynamics under the effects of electric field and shear
flow, active nematics simulation, the impact of inertial force on the nematic flow, and
structure interaction with the active nematics. While several physics were explored,
there are still many interesting open research subjects. The discussion can be from
either computational aspect and application to physics.

Computational aspect
Here, we used CUDA parallelization platform for the SPH algorithm. As shown in
chapter 6, parallelization has led to a significant speed-up. However, the current
code can be much faster by applying further optimizations regarding the solution
and parallelization algorithms. One suggestion could be the development of an
efficient linear system solver in CUDA. The standard OpenFOAM uses OpenMP
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for the parallelization. It would be much more effective if a GPU solver is used.
Moreover, it would be intriguing to extend all simulations into 3D to be much more
realistic.

Applications
As discussed in chapter 2, throughout this thesis, all fluids are supposed to be
Newtonian ones. It would be interesting to extend the results to non-Newtonian
fluids and see the effects specifically for the emulsion dynamics. In chapters 4
and 5, we considered the same viscosity and density for all liquids and focused
mainly on the electrical properties instead. Thus it would be beneficial to take
different hydrodynamical properties for droplets and ambient liquids. As mentioned
in 5, core and medium fluids are identical are identical in the double emulsion
following the studies done by Abbasi et al. (2019); Opalski et al. (2020); Song &
Shum (2012); Tsukada et al. (1997). Extending the simulation to three-phase is
useful by considering the different properties of the core and medium fluids.

In chapter 6, we developed the SPH solver for the active nematics and showed some
potential capabilities of SPH such as mixing. Using SPH, complex and deformable
domains, mixtures, and multiphase interfaces can also be modeled with relative ease,
unlike the Eulerian approach. This attribute of the SPH method is particularly
appealing for modeling mixing behavior in active nematics as well as nematic flow
with material interfaces and interface motion (e.g., bacterial growth), which can be
the subject of the future direction of the current research. As shown in chapter 7, we
investigate the effect of inertia on active nematics. Fluid inertia is expected to play
a role in the collective organization of larger swimming organisms (Klotsa, 2019)
such as marine zooplanktons, Copepods, and brine shrimp (Artemia salina) that
are commonly encountered in environmental fluids (Houghton et al., 2018; Katija &
Dabiri, 2009; van Duren & Videler, 2003). It would be interesting to scrutinize these
problems and see the effect of activity on such physics. Finally, the FSI model in
the active fluid can have alternative potential applications such as energy harvesting
and biological applications, which might be the subject of future studies.
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Appendix A

Derivation of Beris-Edwards model

The advection part of the nematodynamic equation for Q can be derived by tak-
ing the material time derivative of the director field n̂, which can be shown to
be of the form, Dn̂/Dt = n̂ ·Ω = n̂ · (∇u−E), where Ω = 1

2

[
(∇~u)†−∇~u

]
and

E = 1
2

[
∇~u+ (∇~u)†

]
are the vorticity and the rate of strain tensors, respectively.

The dag superscript (†), (·) and ∇ respectively represent the transpose, inner dot
product and the Nabla operators. Additionally, D/Dt represents the material time
derivative which can be written as D/Dt = ∂/∂t+ u ·∇. Recalling the definition
of Q = d

d−1q
(
n̂n̂− I

d

)
or Q = 1

λ

(
n̂n̂− I

d

)
with λ = q(d−1)

d representing the scalar
part, one can rearrange n̂ based on Q as n̂n̂ = λQ + I

d , recalling the time deriva-
tive of n̂ in index notation, ˙nm = Ωmlnl, and ˙nmns = Ωmlnlns + Ωslnmnl. Using
nlns = λQls+ δls

d , then it is possible to write the time derivative of Q as follows:

(1) λDQms/Dt= Ωml(λQls+ δls
d

) + Ωsl(λQml+
δml
d

).

Every second order tensor (Tij) can be decomposed into symmetric and skew parts
by Tij = 1

2

[
(∇Tij)†+ ∇Tij

]
+
[
(∇Tij)†−∇Tij

]
. If Tij is substituted with velocity,

then the symmetric part and skew part would be the rate of strain and vorticity
tensors, respectively. Then (1) becomes:

(2) λDQms/Dt= (vm,l−Eml)(λQls+ δls
d

) + (vs,l−Esl)(λQml+
δml
d

),

where vi,j is the index notation representation of velocity gradient. By doing math-
ematical manipulations, material time derivative of Q can be written as:

(3)
λDQms/Dt= (Eml+Ωml)(λQls+ δls

d
)+(Esl−Ωsl)(λQml+

δml
d

)−2E(λQms+ δms
d

).
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It can be shown that Qklvk,l = E/λ, hence,

(4)
DQms/Dt= (Eml+Ωml)(λQls+ δls

dλ
)+(Esl−Ωsl)(λQml+

δml
dλ

)−2Qklvk,l(λQms+ δms
d

).

In addition to the terms derived above, it is also essential to include the relaxation
to free energy term using the thermodynamics of the nematic liquid crystal and
constructing the Beris-Edward model.
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Appendix B

Governing equations of the solid phase

The solid part of the model is governed by the following equation:

(5) ρ(∂~v
∂t

+ (~v ·∇)~v) = ∇ ·σs,

where σs denotes the Cauchy stress tensor and ~v represents the displacement vec-
tor. Assuming linear geometry and elastic material, Hookean tensor is defined as
σs = 2Gε+ (κ− 2

3G)Tr[ε]I, where G and κ stand for the shear and bulk modulus,
respectively, and ε= 1

2

[
∇~v+ (∇~v)†

]
is the displacement gradient tensor.

To solve the governing equations numerically, OpenFOAM is used along with the
solids4foam toolbox (Cardiff, Karač, Jaeger, Jasak, Nagy, Ivanković & Tuković,
2018) which is responsible for the coupling of fluid part with solid part and perform
the FSI analysis where both packages employ the FVM.

Utilizing the partitioned approach, the whole computational domain is decomposed
into two regions (fluid and solid) using the Dirichlet-Neumann procedure. As such,
fluid and solid models are solved separately. The velocity at the fluid-solid interface
is used as boundary condition in the solution of fluid domain, while the solid part
uses the exerted force by the fluid on the interface. Consequently, these two solutions
are coupled by dynamic (continuity of force) and kinematic (continuity of displace-
ment and velocity) conditions on the fluid-solid interface by Dirichlet-Neumann cou-
pling scheme and utilizing the Aitken adaptive under-relaxation procedure (Tuković,
Karač, Cardiff, Jasak & Ivanković, 2018).
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