
 
 

 

5G SLOT ANTENNA DESIGN WITH MACHINE LEARNING 

by 

ONUR ELÇİN 

Submitted to the Graduate School of Engineering and Natural Sciences  

in partial fulfillment of  

the requirement for the degree of Master of Science 

Sabancı University 

June 2022 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ONUR ELÇİN 2022 © 

All Rights Reserved



 

iv 
 

 

ABSTRACT 

5G SLOT ANTENNA DESIGN WITH MACHINE LEARNING 

ONUR ELÇİN 

Electronics Engineering, M. Sc. Thesis, July 2022 

Thesis Supervisor: Prof. İbrahim Tekin 

Keywords: 5G, Slot Antenna, Machine Learning, Deep Learning 

5G technology is promising to be the future technology due to its higher data output, 

lower latency, and higher channel capacity. Many transceiver structures are designed for 

5G and antennae play a crucial role in these structures with their gain, bandwidth, and 

directional properties. To satisfy the needs of the system, RF engineers use tools such as 

HFSS, AWR, and CST to design optimum antennas. These tools can simulate the real 

behavior of antennae at the cost of time and hardware memory. To solve the computation 

cost issue, this thesis focused on using machine learning tools to do antenna design. First, 

a slot antenna topology was chosen based on the 5G antenna and designed using HFSS 

and traditional optimization methods. The parameters of the chosen topology were swept 

to create a dataset for machine learning. This dataset was used for predicting realized gain 

and s-parameters. To find the optimum design, input parameters in the datasets were 

interchanged with output parameters to locate the best lengths. These lengths were swept 

with machine learning and deep learning tools to exhaustively search for an improved 

design. As a result of this multi-step process, a better-performing antenna was designed 

in a shorter time and with less computation cost. 
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ÖZET 

MAKİNE ÖĞRENMESİ İLE BOŞLUKLU 5G ANTEN TASARIMI 

ONUR ELÇİN 

Elektronik Mühendisliği, Yüksek Lisans Tezi, Haziran 2022 

Tez Danışmanı: Prof. İbrahim Tekin 

Anahtar Kelimeler: 5G, Boşluklu Anten, Makine Öğrenmesi, Derin Öğrenme,  

5G teknolojisi yüksek veri kapasitesi, düşük gecikme ve arttırılmış kanal kapasitesi ile 

geleceğin teknolojisi olma yolundadır. Bu teknoloji ile uyumlu alıcı-verici sistemleri 

tasarlanmaktadır ve bu sistemlerde kazanç, bant genişliği ve yönlülük özellikleri ile 

antenler önemli bir rol oynamaktadır. Teknolojinin gereksinimlerini karşılamak için 

HFSS, AWR ve CST gibi tasarım araçları mühendisler tarafından sıkça kullanılmaktadır. 

Her ne kadar bu simülasyon araçları anten özelliklerini gerçeğe çok yakın bir şekilde 

tahmin edebilse bile ciddi miktarlarda zaman ve donanım kaynakları kullanırlar. Bu 

sorunların üstesinden gelebilmek için makine öğrenme ile anten tasarımı yapmak bu tezin 

konusu olmuştur. Tezin ilk aşaması olarak boşluklu bir anten yapısı seçilmiştir ve klasik 

tasarım metotları ile HFSS ile bir tasarım ortaya konulmuştur. Bu tasarımında kritik rol 

oynayan uzunluk parametreleri değiştirilerek farklı tasarımlar oluşturuldu ve performans 

parametreleri kaydedilerek bir veri tabanı yaratıldı. Bu veri tabanı makine öğrenmesi ile 

antenlerin kazançları ve yansıma katsayılarını belirlemek için kullanılmıştır. En uygun 

tasarımı bulabilmek için girdi ve çıktı parametreleri yer değiştirilerek uzunluk bilgileri 

güncellenmiştir. Bu güncellemeden sonra bulunan uzunluklar makine öğrenmesi ve derin 

öğrenme algoritmaları ile bir daha taranmıştır. Birkaç adım içeren bu tasarım sürecinin 

sonunda daha iyi performansa sahip bir anten daha hızlı ve daha az donanım gereksinimi 

ile tasarlanmıştır. 
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INTRODUCTION 

The antenna is a crucial part of transceiver systems, and this section will briefly explain 

the main problems encountered during the design process. Then a solution to this problem 

will be proposed with the usage of machine learning. The rest of this chapter is left to the 

explanation of the thesis roadmap to give a clear understanding of the steps taken. 

1.1.  Problem Definition 

Antenna design starts with the determination of theoretical lengths. To verify the lengths, 

simulation tools such as HFSS, CST and AWR are used. These tools can include many 

parasitic effects that are not included in the theory. Due to these effects, the initial design 

generally does not hold up to the expectations. To overcome this situation, lengths in the 

design are swept to find optimum values. Due to the nature of trial and error, it is hard to 

define how long it will take to complete the optimization process. 

 

In a study, it was shown that simulation of a 4x4 array takes around 6 min with 0.7 GB 

RAM usage, but the same setup with a 16 x 16 array takes 8 hours with 11.6 GB RAM 

usage [1]. The time it takes for each simulation can differ from seconds to hours, 

increasing exponentially as the sizes increase. The designer is in a spot where he/she must 

do a trade-off between accuracy and speed. Even though there are methods to speed up 

the process, such as symmetry and boundary assumptions, these assumptions come with 

their own accuracy problems. The time and resource problems have become even more 

important for 5G technologies due to the requirement of custom solutions for clients. To 

fulfill every need, the design process must be sped up considerably. 
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1.2.  Proposed Solution 

This thesis proposes to decrease the time and hardware required for antenna design by 

using machine learning tools. Machine learning algorithms extract a model from a dataset 

to predict a new data point. This method can be used to determine the performance 

parameters of an antenna without the need for simulation software. After a model is 

trained, it only requires input parameters to make a prediction.  

 

Another advantageous part of machine learning is its ability to discover hidden patterns. 

Instead of predicting the performance parameters of an antenna, the thesis moves the 

limits one step further by predicting the length parameters. This is done by interchanging 

input and output variables to predict a length at a specific performance point. This 

approach enables the designer to test a configuration that was not in the scope of initial 

parameters, thus facilitating the design process even more. Using performance parameters 

as inputs also lets the designer customize the antenna as the new requirements are added, 

thus improving the flexibility of the whole process. 

1.3. Thesis Organization 

After a brief description of the problem and proposed solution in the first chapter, the 

thesis will continue with key background information about the topic. Topics covered 

will be 5G technology, software used for antenna design, and work done related to 

machine learning in antenna design. Due to the interdisciplinary structure of this thesis, 

it is aimed at giving a clear understanding of key concepts from both disciplines. 

 

The third chapter will be about the design of the proposed antenna. Traditional design 

methods will be covered in this section and their effect on the antenna performance will 

be displayed. The main purpose of this section is to show the steps of the design process 

and the effort needed to achieve a well-performing antenna. 

 

After the completion of the initial antenna design, the machine learning part of the thesis 

will be included. The beginning of the fourth chapter will explain how an antenna design 

problem is converted into a machine learning problem and continue with dataset 
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generation and features of the dataset. Then suitable algorithms for the proposed solution 

will be explained and their performance will be evaluated with cross-validation. The best-

performing algorithm will be chosen as the basis for the next steps. Finally, the chapter 

will be concluded with a novel iterative way of predicting length parameters by 

interchanging input and output parameters. A score metric is also added to make an 

alternative way of comparing results. An extra step of exhaustive sweep will be done to 

improve the design even further.  

 

A subset of machine learning, deep learning, will be discussed in the fifth chapter and 

neural networks will be used for antenna design like machine learning.  Designs created 

by deep learning and machine learning algorithms will be compared. To extend the 

application of the learning tools, two separate designs will be made for 25 GHz and 31 

GHz with both machine learning and deep learning. Then the thesis will be concluded 

with a comparison of the results and a discussion about achievements.  
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BACKGROUND 

This chapter of the thesis will cover the key background information required. A brief 

introduction to 5G will be told to explain the reasoning behind the choice over other 

technologies such as 3G and 4G. A summary of antenna design tools will be given to 

discuss their operating mechanism and to derive advantages and disadvantages. The 

chapter will be concluded with a review of other machine learning applications in the 

antenna design area to understand the state of the art. 

2.1.  Importance and Place of 5G 

To understand the drive behind the 5G technology, it is important to realize the trend over 

the years. When the data rate of technologies used in the last 40 years is compared, an 

approximately 10-fold increase in data rate is observed every decade [2]. To satisfy the 

data rate requirement of user equipment (UE), millimeter wave frequency became the 

obvious choice and initiated the foundation of 5G technology. 

 

A similar argument can be made for channel capacity. With an increasing number of UE, 

the number of participants in each communication channel also increases. Even though 

there are methods such as OFDMA (Orthogonal Frequency Division Multiple Access) to 

increase the channel capacity by distributing channel resources orthogonally, they are still 

limited by the total resources of the channel [3]. An improved version of OFDMA, 

NoFDMA (Non-orthogonal Frequency Division Multiple Access), is promising to 

increase the channel capacity while keeping the user’s performance the same, but it is 

questionable whether overloading of the channel (including more users than the channel 

limit) can be scaled up as the demand increases [4]. 5G technology provides a simple 
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solution by introducing a higher capacity channel with higher operating frequencies and 

bandwidths. 

 

Even though higher data output and channel capacity are the most advertised properties 

of 5G technologies, low latency should not be forgotten. Low latency is even more 

important for mission-critical communications such as telediagnosis, telesurgery, virtual 

reality, and augmented reality. Today’s standard 4G RAN (Radio Access Network) limits 

these applications due to its old structure. 5G technologies can operate shorter time 

windows, thus it is possible for this technology to lower latency with smaller sized 

packets, new coding, and modulation schemes [5]. The benefits of lower latency will be 

more visible as concepts such as virtual reality continue to become a part of the daily 

routine with the help of 5G. 

 

The higher data rate, channel capacity, and lower latency are the driving features of 5G 

technology and the reason behind these features can be summarized as the usage of 

millimeter waves [6]. Although the benefit of using a higher frequency is non-negligible, 

new challenges arise with this frequency. As seen in Frii’s Transmission Equation given 

below, received signal power decreases proportionally to the square of decreased 

wavelength 𝜆 [7]: 

𝑃𝑟 = 𝐺𝑡𝐺𝑟𝑃𝑡 (
𝜆

4𝜋𝑟
)

2

 
2.1 

From LTE frequencies to microwave frequencies, there is at least an extra 20 dB extra 

power loss expected for 5G applications theoretically. For some low signal-to-noise ratio 

(SNR) applications like radar and satellite communication, such conditions directly 

invalidate the application itself. It is important to note that this is the theoretical extra path 

loss. There can be other obstacles in the medium of the wave traveling, thus decreasing 

the signal power level even more. A recent study shows that materials become harder to 

penetrate as the frequency increases from the low GHz region to 10 GHz [8].  The degree 

of loss depends on the material type and thickness. Nevertheless, millimeter wave signals 

have lower penetration compared to larger wavelengths [9] .  
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Both penetration issues and higher path loss decrease the power level of 5G signals. To 

overcome these issues, many RF transceivers are forced to maximize their gains and 

minimize system losses. Antennae are also subject to this restriction. One way to improve 

performance is to use an array formation. With antenna arrays, higher directivity leads to 

higher gains, but it requires proper feeding and placement. Some studies focus on antenna 

and array topologies to improve gain and bandwidth properties. One recent study uses 

defected ground structures and slots to improve the performance of the radiating element 

and the whole structure is inkjet-printed to facilitate the production [10]. Another work 

focuses on placing two different antenna array formations with different radiating 

elements to improve coverage [11]. Many other examples can be given and all of them 

share a common point. To establish the basis of 5G, custom antennae and array solutions 

are required, and this is only possible with an accelerated design process. 

2.2. Tools Used for Antenna Design 

Whether it is a GPS antenna or a mobile antenna for 5G, every antenna design starts with 

the theoretical determination of initial lengths. This can be done using formulas if it is a 

well-formulated topology, or an existing design can be adapted by changing radiating 

element sizes concerning operating frequency. It is hard to determine the exact behavior 

of the first design, so simulation software such as HFSS, CST, and AWR is used to 

simulate the performance and do optimization. The working principle explained will be 

about HFSS, but other software shares a similar principle. 

 

HFSS uses FEM (Finite Element Method) method to divide a 3D structure into many 

smaller parts. These parts are finite elements used for calculating the electric fields based 

on boundary conditions [12]. After the first calculation of the electric fields, the error 

metric is controlled and if it is above the user-defined limit, a higher mesh is applied to 

divide the structure into even smaller parts [13]. Electric fields are calculated one more 

time and the process is repeated until the error metric is lower than the limit. When the 

error residual is below the limit, the software continues to calculate performance 

parameters of the design at a given frequency. A flow chart of the FEM steps can be seen 

in Figure 1. 
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Figure 1: HFSS FEM steps 

With FEM, HFSS can give accurate results but there is always a tradeoff between 

accuracy and the computation time. The main reasons behind the computation cost can 

be listed as: 

• Strict accuracy limitation  

o A higher accuracy results with a large mesh, which increases the 

computation time. 

• High frequency of operation 

o Shorter wavelengths require a denser mesh to include all electromagnetic 

effects. 

• Broadband applications 

o Each solution must be prepared for each frequency of interest, so the 

complexity problem scales with bandwidth. 

In the case of 5G applications, a shorter wavelength directly increases the mesh density. 

Even designs with low fractional bandwidth can have bandwidths in the range of GHz. 

The only trade-off mechanism that is left is accuracy, which must be kept as high as 

possible. Even though HFSS and many other tools are preferred for 5G antenna design, 

their computational cost remains a debated topic. 
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2.3. Usage of Machine Learning with Antenna Design 

Computation cost of the electromagnetic simulation tools remains a major issue. The 

nature of the design process is like a trial-and-error method. To optimize the design, the 

designer must sweep as many parameters as possible. The sweep set increases 

exponentially as the number of parameters and sweep range increases. The process 

becomes unfeasible very fast and the designer is forced to use intuition to guess the best 

way to optimize. Even though there are optimizers which use a cost function to test 

multiple designs, they are still bound by the computation resources required for each test.  

 

An interesting method to solve this issue appeared as machine learning tools became more 

popular. These tools were able to extract a pattern from a dataset to make prediction for 

a new data point. Such models achieved great success in areas like image and voice 

recognition and did not take a lot of time to take part in antenna design. A study in 2020 

showed that it is possible to do antenna matching with machine learning and the effect of 

each parameter on reflection coefficient is also analyzed [14]. Even though the research 

focused on tuning a single parameter, the results looked promising. Another recent study 

focused on reviewing the accuracy of well-known machine learning algorithms on chosen 

a set of antennas [15]. Results showed that in every design, machine learning algorithms 

were faster with reasonable accuracy. The findings of the paper were parallel with the 

expectations, but the evaluation of these tools with multioutput problems was not 

included. Usage of machine learning was not limited by the design of the radiating 

element. A recent research paper argued that it is possible to optimize cellular network 

deployment by reinforcement learning. The paper showed that conventional algorithms 

are prone to increase network size due to their high complexity and suggested a novel 

way to optimize cellular networks [16].  

 

Many examples can be found in literature about antenna design and its benefits to the 

design process, but most of the arguments were centered on the speed aspect. 

Additionally, machine learning tools were used mostly as supplementary tools instead of 

the design tool itself. To do a design just using machine learning tools and its performance 

still requires extra research and time.  
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TRADITIONAL ANTENNA DESIGN 

A 5G slot antenna will be designed for demonstrating steps taken and resources used 

during an antenna design process. In the beginning, the chapter will mention design steps 

and end goals. A discussion about the topology choice will be done and it will be followed 

by the design phase itself. This phase will consist of steps taken to optimize the results. 

Results will be displayed at the end of the chapter and a brief discussion about the 

performance and resources used will be shown. 

3.1. Design Flow and Goals 

The design phase starts with the establishment of the expected performance of the 

antenna. As the first step, the antenna must fulfill these conditions: 

 

• The antenna operating frequency will be centered at 28 GHz and must have a 

bandwidth of 3 GHz. More specifically, the designed antenna will function in the 

n257 band, which has the highest number of 5G NR networks deployed around 

the globe [17].  

 

• The designed antenna is expected to have around 5 dBi gain in a given bandwidth. 

 

• The antenna must be directional and there should not be any major back lobe or 

side lobe. Any strong side/back lobe formation may cause interference problems 

with other parts of the transceiver. 
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• The topology chosen must be unique to a degree. Well-known topologies, such as 

patch antenna, inverted F-antenna, and Vivaldi antenna, are already formulated 

and modelled in the literature. There is not any advantage of creating machine 

learning models of these topologies. 

 

• The topology chosen must be easy to parametrize. Shapes like spirals and irregular 

polygons require a lot of lengths and coordinate parameters. Such conditions 

increase the size of the model and limit the applicability of the model to other 

topologies with similar shape. 

 

It is important to realize that the designed antenna does not have to be a slot antenna, but 

the properties of this topology, which will be told in the next part, are parallel with the 

requirements. When the topology choice is concluded, an initial design will be 

constructed, and features of the antenna will be adjusted according to the needs of the 

design at that point. 

3.2. Topology Choice 

Recent 5G antenna publications were analyzed and designs in line with the requirements 

of the thesis were chosen. A common trait of the designs is their slot base. Slot type is 

advantageous due to their flexibility over performance with both patch and slot tuning. 

Additionally, their shape can be well defined with parameters such as patch position/size 

and slot position/size. The best four candidates are shown in Figure 2 and each design has 

the following properties: 

• Figure 2a is a T-slot type antenna for mobile terminals and specifically designed 

for array formations. Array formation has a center frequency of 28 GHz and 

bandwidth of 2 GHz approximately [18]. The array has a gain of 10 dB with 8 

radiating elements, but the main lobe has a large circular radiation pattern with a 

coverage range of 360o. A radiation in a single direction would be more 

advantageous.  

 



 

11 
 

• Another slot-based antenna is shown in Figure 2b. This topology used two 

different designs as a pair for both 4G and 5G systems. Ant-3 and Ant-4 operate 

at 28 GHz with a bandwidth of 1.5 GHz and have 10 dBi gain as an array [19]. 

The radiation pattern consists of two large side lobes instead of one and radiating 

elements are also made of sub elements to increase the gain. The performance of 

the antenna is dependent on a large floating patch which makes the whole design 

unnecessarily large. 

 

• A similar topology is shown in Figure 2c. Unlike the previous design, the radiating 

elements are placed on opposite sides and fed with two separate feedlines. The 

design has a bandwidth of 2 GHz with a center frequency of 27.5 GHz and outputs 

9.5 dBi gain as an array formation [20]. Like previous topology given in  Figure 

2c, there are multiple slots in various coordinates which is not suitable for 

parametrization.  

 

• Topology in Figure 2d has a couple of distinct features. It is straightly designed 

as a single element and has broadband characteristics. The proposed antenna has 

a bandwidth of 20 GHz centered at 30 GHz and a varying gain of 2 – 4 dBi over 

the bandwidth [21]. This antenna also suffers from a back lobe, but the large 

bandwidth leaves designers room for trade off and single element design is more 

flexible, unlike the strict positioning requirements of arrays. Due to the potential, 

this topology was chosen as the basis of this paper. 
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Figure 2: Best candidates for desired topology: (a) T-type slot antenna, (b) 4G and 5G 

combined slot, (c) opposite placed slot array and (d) broadband circular slot antenna 

Lower gain and the existence of the back lobe are the main flaws of the chosen topology. 

These flaws will be the main topic of the design phase and various methods will be tested 

to improve those aspects.  

3.3. Design Phase 

To improve the bandwidth and prevent back lobe radiation, size of feed, patch and slot 

were tested with different values, but back lobe radiation remained comparable to the 

main lobe as shown in Figure 3. 
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Figure 3: Front and back lobe radiation of initial design at 28 GHz 

To completely negate the back lobe, addition of an extra layer was decided. The reasoning 

comes from image theory. Image theory states that electric fields created by charges next 

to conductive surfaces experiences mirroring effect. This effect can be realized as the 

existence of a new charge as it is mirrored over the conductive surface [22]. The idea is 

to reflect lobe radiation to the front side by careful placement of the metal surface. With 

addition of an extra layer, a stack-up in Figure 4 was created. The reflector ground plane 

removed the back lobe as shown in Figure 5 and the broadband characteristic is also 

removed as shown in Figure 6.  

 

Figure 4: Stack-up and top view of floating GND added design 
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Figure 5: Radiation pattern of floating GND added design at 28 GHz and φ= 0o / 90o 

 

Figure 6: S11 of reflector GND added design 

Even though the main problems of the initial design were solved, addition of a floating 

GND had other issues: 

• The design still did not have a major main lobe and the existence of two sides 

lobes causes signal transmission in an unwanted direction. 

 

• These performances are achieved with a 1.8 mm RT Duroid 5880 substrate which 

is not a standard substrate size and the design is not suitable for edge feed coaxial 

connector.  
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The design is impractical for fabrication, so a more realistic design can be seen in Figure 

7. The floating ground patch and substrate were kept shorter to leave enough headroom 

for the connector. Additionally, screw holes were added for inclusion of parasitic effects. 

The stub used for matching was also removed to simplify the design. Parameters that are 

crucial for performance are shown in Figure 8 and their values are displayed in Table 1. 

These parameters were measured with respect to connector headroom to keep the lengths 

consistent with the initial topology.  

 

Figure 7: Finalized design with connector socket and elongated feed 

 

Figure 8: Critical length parameters for finalized design 

  



 

16 
 

Parameter Description Value (mm) 

𝑳𝒇 Length of the feedline 3.1 

𝑾𝒇 Width of the feedline 0.5 

𝑹𝒑𝒙 X radius of the patch 1.65 

𝑹𝒑𝒚 Y radius of the patch 0.96 

𝒀𝒑 Y coordinate of center of the patch 2.1 

𝑹𝒔𝒙 X radius of the slot 2.3 

𝑹𝒔𝒚 Y radius of the slot 1.92 

𝒀𝒔 Y coordinate of center of the slot 2.84 

Table 1: List of crucial parameters for final design 

After removal of the matching stub, addition of connector headroom, usage of different 

substrate and enlargement of substrate, the final design was able to have a bandwidth of 

2.74 GHz centered at 27.89 GHz and results were shown in Figure 9. The realized gain 

was considered to include all the mismatch losses and achieved a 4.6 dBi gain over the 

bandwidth. The highest realized gain was observed at 28.5 GHz with 5.9 dBi and 

displayed in Figure 10. Realized gain was measured for φ = 0o and θ = 180o and radiation 

patterns for φ = 0o, φ = 45o, φ = 90o and φ = 135o can be found in Figure 11. Back lobe 

radiation consists of two small lobes which are only visible for φ = 0o and the highest gain 

point is towards θ = 150o. 

 

 

 

Figure 9: S11 of the final design 
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Figure 10: Realized gain for φ = 0o and θ = 180o of the final design over 23 – 33 GHz 

 

Figure 11: Final design’s realized gain for φ = 0o, φ = 45o, φ = 90o and φ = 135o at 28 

GHz 
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3.4. Results 

The final antenna design was able to solve the problems observed in initial topology. Gain 

performance was improved to 4.6 – 5.9 dBi from 2 – 4 dBi while removing unwanted 

back lobe radiation. Additionally, removal of matching stub made the whole structure 

simpler to model, which is advantageous for machine learning tools in the next section. 

As expected, the broadband performance of the antenna was removed, but still showed 

enough bandwidth to cover commonly used n257 band. Some performance degradation 

was expected due to increased feedline length, but it was in the range of theoretical 

estimations [23]. 

 

Even though the improvements are remarkable, addition of another layer makes the whole 

structure 3 layered, which is not a standard practice in PCB manufacturing. The 

requirement of headroom for edge mount coaxial feeding also makes whole design a little 

bit awkward for system integration. Nevertheless, the antenna performance is in line with 

the anticipations and a detailed comparison with other works in the literature can be seen 

in Table 2. Works in Table 2 with single gain value indicates the maximum gain observed 

in the given bandwidth. 
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Frequency 

(GHz) 

Bandwidth 

(GHz) 

Gain 

(dBi) 

Element Count 

(Array / Single) 

This Work 27.89 2.74 4.6 – 5.9 Single 

[18]. 28 2 12.5 8 

[19] 28 1.5 10 4 

[20] 27.5 2 9.5 4 

[21] 30 20 2 - 4 Single 

[24] 28 2 8 - 11 4 

[25] 18 1 5 Single 

[26] 21.5 1 5.3 Single 

[27] 28.75 0.66 18.41 16 

Table 2: Comparison with the other works in the literature 
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ANTENNA DESIGN WITH MACHINE LEARNING 

This section of the thesis will cover the steps for designing an antenna with machine 

learning. The section will start with a discussion of the expected performance of the 

machine learning and design steps will be introduced shortly. Important aspects of the 

process such as dataset generation and algorithm evaluation will follow. Results of the 

proposed method will be presented, and a comparison will be done with respect to 

traditional methods. 

4.1. Design Flow and Goals 

The main argument of the thesis to achieve better performing antennae with a shorter 

time span. To build upon this idea, the goals of this section can be listed as: 

 

• Antenna designed by the machine learning tool must have better performance in 

overall. By better, it strictly means a higher realized gain and lower reflection 

coefficient over the frequency band. The degree of improvement is not strictly 

defined because: 

 

o Initial design performs better than the other examples in the literature, so 

comparison with the state of art is not meaningful. 

 

o Antenna design is based on trade off principle like many other disciplines. 

An antenna cannot be improved without degrading other properties, so this 

work does not expect to have gain performance of an array configuration, 

which is unrealistic. 
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• The time aspect is a crucial part of the argument. It is established that machine 

learning tools only use a model to make a prediction, unlike simulation software 

which must calculate all the electromagnetic effects. Due to this operational 

difference, it is expected from machine learning tools to output results one order 

of magnitude faster than the traditional simulation tools. 

 

• The mismatch losses are considered for the calculation of realized gain, so the 

proposed method must be able to generate multioutput results. Separate models 

for separate output parameters are not accepted. 

 

To fulfill these goals, the first step will be dataset generation and a discussion about 

dataset properties will be presented. Hardware and software used will be detailed to 

establish a common ground. A brief description will be told about the available algorithms 

and their performance will be evaluated to decide among them. After the establishment 

of the algorithm, a score metric will be defined to quantify the success of the algorithm. 

The chapter will be concluded with results after the detailed explanation of the proposed 

method. 

4.2. Dataset Generation and Properties 

Table 1 includes key aspects of the proposed antenna which will be used as inputs of the 

machine learning algorithms. Another input will be the frequency of the simulation done. 

All the designs will be simulated from 23 GHz to 33 GHz with 0.5 GHz intervals and 

each frequency will correspond to a single entry to the dataset. For the outputs, two most 

important parameters, S11 (reflection coefficient) and realized gain (RG) will be recorded 

for each entry. Realized gain will be measured at position φ = 0o and θ = 180o which is 

the direction orthogonal to the radiating surface. Dataset has 9 input parameters and 2 

output parameters, which are shown in Table 3. Lengths are displayed in millimeters, 

frequency has an unit of GHz and output parameters shown with dB. 
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Input Parameters  Output Parameters  

Lf Wf Rpx Rpy Yp Rsx Rsy Ys Freq  S11 RG 

Table 3: Parameters found in the dataset 

Dataset contains 6081 datapoints and each datapoint corresponds to a S11 and a realized 

gain measured at a single frequency with given lengths. Each design will have S11 and 

realized gain results from 23 GHz to 33 GHz, which corresponds to 21 datapoints with 

0.5 GHz intervals. From a design perspective, the dataset contains 289 unique designs. 

Each parameter’s mean, standard deviation, minimum value, maximum value, and values 

at 25%, 50% and 75% are shown in Table 4. 

 Lf Wf Rpx Rpy Yp Rsx Rsy Ys Freq S11 RG 

Mean 3.03 0.46 1.43 0.95 2.24 2.24 1.94 2.75 28.00 -6.86 2.59 

StD 0.41 0.12 0.29 0.15 0.22 0.16 0.12 0.14 3.03 4.24 1.94 

Min 1.50 0.1 0.3 0.40 1.85 1.60 1.60 2.44 23.00 -38.97 -9.64 

25% 2.70 0.45 1.4 0.96 2.10 2.20 1.90 2.70 25.50 -9.00 1.32 

50% 3.10 0.50 1.5 0.96 2.15 2.30 1.92 2.80 28.00 -6.08 2.76 

75% 3.50 0.50 1.65 1.00 2.30 2.30 2.00 2.84 30.50 -3.68 3.96 

Max 3.50 0.70 1.75 1.20 3.10 2.70 2.40 3.00 33.00 -0.62 6.09 

Table 4: Statistic properties of each parameter in the dataset 

The dataset is generated by sweeping length parameters one by one with different values. 

Unfortunately, it is not feasible to simulate every available variation. Thus, there is not a 

uniform distribution among the data points. For example, Wf is 0.50 mm for both 50% 

and 75% value and Rpy is 0.96 mm for both 25% value and 50% value.  Even though 

machine learning algorithms are designed for handling non-uniform distribution, extra 

attention must be paid during the accuracy calculation. Another important point is the 

hardware and software used during this dataset generation.  All the simulations are done 

with dense meshing for each frequency in HFSS and interpolation methods are not used. 

HFSS 2021 version was used with maximum accuracy settings and simulations are done 

with the hardware detailed in Table 5. 6051 datapoints are generated in a time span of 41 

hours which corresponds to 24.3 seconds for each datapoint. 24.3 seconds will be taken 

as the basis for comparison with machine learning tools. 
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Processor 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz   2.30 GHz 

Installed RAM 16.0 GB  

System type 64-bit operating system, x64-based processor 

Table 5: Hardware used for generation of the dataset 

4.3. Algorithm Choice and Performance Evaluation 

After the generation of the dataset, the next phase is the determination of the possible 

algorithms. It is expected to develop a mathematical model, which can predict 2 different 

outputs with 9 different inputs. This problem can be formulized as: 

(𝑦1, 𝑦2) = 𝐹(𝑥1, 𝑥2 … 𝑥9) 
4.1 

Model F denotes the well-known regression problem in which the interaction between 

independent variables is displayed in the form of a mathematical model [28]. Even though 

regression is a general problem which machine learning algorithms focus on, there are a 

few algorithms that can do multioutput regression [29]. Major algorithms which can 

perform multioutput regression can be listed as: 

• Linear Regression 

• K-Nearest Neighbor Regression 

• Decision Tree Regressor 

• Random Forest Regressor 

Among these algorithms, linear regression is the simplest one because of the first-degree 

polynomial model. This model can be represented as: 

𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 
4.2 

Even though it is a simple model, this model can be used to formalize real-life problems 

such as the relationship between GDP and unemployment rate as shown in Okun’s law 

[30].  Unlike linear regression, K-Nearest Neighbour (KNN) checks the nearest K 

neighbors around the point of interest to guess the value of the prediction. A very basic 

visualization of this method is shown in Figure 12b, in which the value of the prediction 
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varies as K values change. A high value of K may result in underfitting by missing the 

patterns, while low values of K cause overfitting by including inaccurate data points [31] 

. The best choice of K depends on the test and must be found by trying multiple values.  

Unlike KNN, decision trees divide the dataset space into sections to find the value of a 

prediction. The division of the space is done by various matrices in which the entropy is 

minimized [32]. The size of the tree and segmentation depend on the dataset and must be 

found by trial and error. The random forest can be seen as an improved version of decision 

trees, because it uses multiple smaller trees to find the best model. A basic illustration of 

decision trees and random forest algorithms is also given in Figure 12c and Figure 12d. 

 

Figure 12: Illustration of multioutput regression algorithms: (a) Linear Regression, (b) 

KNN Regression, (c) Decision Tree Regressor and (d) Random Forest Regressor 

To evaluate the performance of each algorithm, a 5-fold cross validation technique is used 

with a mean absolute value (MAE) as the success metric. Due to the simplicity of linear 

regression, it was chosen as a base model with a MAE of 1.98. For the KNN algorithm, 

algorithm type, leaf size and neighbor size hyperparameters are tuned as shown in Table 

6 [33]. The best setup showed that on average there is a 0.67 dB difference between the 

real and predicted values of S11 and RG. 
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K = 2 K = 5 K = 10 

Type 
Leaf 

Size 
MAE Type 

Leaf 

Size 
MAE Type 

Leaf 

Size 
MAE 

Ball 1 0.69 Ball 1 0.75 Ball 1 0.83 

Ball 10 0.67 Ball 10 0.76 Ball 10 0.83 

Ball 100 0.68 Ball 100 0.76 Ball 100 0.84 

KD 1 0.68 KD 1 0.76 KD 1 0.84 

KD 10 0.67 KD 10 0.76 KD 10 0.84 

KD 100 0.70 KD 100 0.75 KD 100 0.84 

Brute 1 0.71 Brute 1 0.75 Brute 1 0.82 

Brute 10 0.69 Brute 10 0.76 Brute 10 0.84 

Brute 100 0.73 Brute 100 0.76 Brute 100 0.84 

Table 6: Hyperparameter tuning table for KNN algorithm 

For decision trees, the same cross validation method was applied. The tuned parameters 

can be listed as the criterion, splitter choice, and samples required for splitting. After the 

hyperparameter tuning, the best MAE was observed as 0.52 dB. A summary of the 

hyperparameter tuning is shown in Table 7  [34]. 
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Samples =2 Samples = 5 Samples = 10 

Criteria Splitter MAE Criteria Splitter MAE Criteria Splitter MAE 

Square Best 0.54 Square Best 0.56 Square Best 0.52 

Square Random 0.54 Square Random 0.57 Square Random 0.60 

Friedman Best 0.54 Friedman Best 0.52 Friedman Best 0.54 

Friedman Random 0.54 Friedman Random 0.57 Friedman Random 0.59 

Absolute Best 0.73 Absolute Best 0.87 Absolute Best 0.92 

Absolute Random 0.69 Absolute Random 0.70 Absolute Random 1.05 

Poisson Best 0.67 Poisson Best 0.66 Poisson Best 0.67 

Poisson Random 0.61 Poisson Random 0.62 Poisson Random 0.62 

Table 7: Hyperparameter tuning table for decision tree algorithm 

The random forest algorithm is also tuned with cross-validation as shown in Table 8. 

Criterion, estimator number, and samples required for splitting are tested with various 

values and setup with a squared error criterion, 100 estimators and 2 splitting samples 

showed the best performance with 0.5 dB error  [35]. This setup also has the best 

performance among the algorithms which were used for the rest of the thesis.  
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Samples =2 Samples = 5 Samples = 10 

Criteria Estimator MAE Criteria Estimator MAE Criteria Estimator MAE 

Square 50 0.51 Square 50 0.52 Square 50 0.53 

Square 100 0.50 Square 100 0.52 Square 100 0.55 

Square 200 0.51 Square 200 0.51 Square 200 0.55 

Absolute 50 0.87 Absolute 50 0.89 Absolute 50 0.90 

Absolute 100 0.86 Absolute 100 0.86 Absolute 100 0.92 

Absolute 200 0.84 Absolute 200 0.88 Absolute 200 0.92 

Poisson 50 0.56 Poisson 50 0.59 Poisson 50 0.62 

Poisson 100 0.57 Poisson 100 0.59 Poisson 100 0.62 

Poisson 200 0.57 Poisson 200 0.60 Poisson 200 0.62 

Table 8: Hyperparameter tuning table for random forest algorithm 

4.4. Score Metric 

Machine learning tools can make many predictions in a short period. To compare each 

result, a systematic scoring method must be developed. First, a set of frequencies was 

created to evaluate the antenna designed at 28 GHz with 3 GHz bandwidth: 

𝐹 = {26.5 , 27.0, 27.5 , 28.0 , 28.5 , 29.0 , 29.5} 
4.3 

 S11 and RG values at the frequencies given in F were predicted with machine learning: 

𝑆11(𝑓) , 𝑓 𝜖 𝐹 
4.4 

𝑅𝐺(𝑓) , 𝑓 𝜖 𝐹 
4.5 

The natural logarithm of the absolute value of S11 was taken and summed with the RG 

value at the given frequency as shown in Eq. 4.6. The S11 value below -10 dB was 
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accepted as well-matched impedance, so any value lower than -10 would overshadow the 

contribution made by RG. To negate this effect, natural logarithm was used. 

𝑆𝑐𝑜𝑟𝑒(𝑓) = ln(|𝑆11(𝑓)|) + 𝑅𝐺(𝑓) , 𝑓 𝜖 𝐹 
4.6 

Each score is summed up to find the final score of the design as shown in Eq. 4.7. 

This score metric gives a score of 53.92 for the antenna designed with HFSS. For 

machine learning tools, the goal is set to surpass 53.92. 

∑ 𝑆𝑐𝑜𝑟𝑒(𝑓) , 𝑓 𝜖 𝐹

𝑓

 
4.7 

4.5. Iteration and Exhaustive Sweep 

To start the proposed iterative process, a starting point must be chosen. This point can be 

a point in the dataset or an arbitrary point if the chosen length does not cause any physical 

overlap or intersection. This point can be defined as P0, which has coordinates Lf, Wf, 

Rpx, Rpy, Rsx, Rsy, Yp and Ys as A0, B0, C0, D0, E0, F0, G0 and H0. 

  𝑃0(𝐴0, 𝐵0, 𝐶0, 𝐷0, 𝐸0, 𝐹0, 𝐺0, 𝐻0)  4.8 

To find the optimum lengths of the input parameters, they are grouped as pairs as the first 

step. Parameters which define the same object or property are put into the same group. 

For example, feed length and feed width both correspond to features of feedline. Thus, 

they are grouped as a Group 1. The grouping process can be seen in  Figure 13. 
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Figure 13: Grouping of input parameters 

In Figure 14, S11 and RG were replaced with Group 1 and Group 1’s place was taken by 

S11 and RG. With this setup, a machine learning model was trained.   

 

Figure 14: Parameter interchange and model training for Group 1 

 

 

Parameters corresponding to Group 1 were removed from the initial design and they were 

replaced with S11 = -10 dB and RG = 5 dB. The reasoning behind these values is the 
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requirement of -10 dB S11 as impedance matching and 5 dBi realized gain being close to 

other works in the literature. Instead of predicting the performance values, length values 

are predicted, which is the core of the design process. The initial design is updated with 

the predicted values and design P1 was generated. A summary of this step is shown in 

Figure 15. 

 

Figure 15: Generation of the second design with machine learning 

The same procedure continued with the replacement of Group 2 with performance 

parameters. Another model was trained, and this model was used with design P1 to predict 

C1 and D1. Prediction of C1 and D1 concluded with design P2. Generation of the second 

model is shown in Figure 16 and design P2 can be seen in Figure 17. 
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Figure 16: Generation of the second model with machine learning 

 

Figure 17: Generation of the third design 
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The proposed iterative method can be continued indefinitely, but a convergence criterion 

must be chosen. To complete the iteration: 

• The last five models’ scores must be within 2 points compared to each other. 

These scores are calculated with respect to the score metric defined in the previous 

section. 

• The final score must be higher than 53.92 which is the score of the design done 

with HFSS. 

It is important to note that the design found in the end of the iteration is not the end of the 

process. Parameters of the result of the iteration will be swept to +3% and -3% their values 

to check for any better design. The choice of 3% is done to prevent any intersection issues 

and the result of the exhaustive research will be the final design. 

4.6. Results 

After the iteration process, a design with a score of 55.34 was achieved in the 8th version. 

The score was over 53.92 and remained within 2 points in the last five iterations. The 

results table can be found in Table 9 and each update is shown in bold. To show the effect 

of each update, the contribution of S11 and RG is displayed separately in Figure 18. 

Design Lf Wf Rpx Rpy Yp Ys Rsx Rsy Score 

P0 2.5 0.45 1.50 0.90 2.30 2.6 2.00 2.00 29.10 

P1 2.96 0.43 1.50 0.90 2.30 2.6 2.00 2.00 28.32 

P2 2.96 0.43 1.58 0.91 2.30 2.6 2.00 2.00 30.09 

P3 2.96 0.43 1.58 0.91 2.10 2.84 2.00 2.00 49.32 

P4 2.96 0.43 1.58 0.91 2.10 2.84 2.29 2.00 53.69 

P5 3.14 0.46 1.58 0.91 2.10 2.84 2.29 2.00 53.66 

P6 3.14 0.46 1.69 0.96 2.10 2.84 2.29 2.00 54.19 

P7 3.14 0.46 1.69 0.96 2.10 2.83 2.29 2.00 55.50 

P8 3.14 0.46 1.69 0.96 2.10 2.83 2.30 2.07 55.34 

Table 9: Iteration results of machine learning 
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Figure 18: S11, RG and total score of each design version 

Design P8 was chosen for exhaustive sweep and each parameter was tested for three 

different values. A total of 6561 designs were tested in 22.6 minutes and the best result 

with a 56.03 score, is shown in Table 10. 

Design Lf Wf Rpx Rpy Yp Ys Rsx Rsy Score 

Pfinal 3.14 0.44 1.77 0.96 2.1 2.84 2.40 2.00 56.03 

Table 10: Best result of exhaustive sweep 

The iteration process took 37 minutes to complete, so the prediction of 6570 points and 

finding a result of 56.03 required 59.6 minutes. Each design has 21 different frequency 

values, so 137970 different performance predictions were made for various designs at 

various frequencies. This corresponds to 0.026 seconds for each calculation. A 

comparison with the design of HFSS can be seen in Table 11. Both calculation time and 

score results indicate that the algorithm can achieve the desired results. 
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 Calculation Time (s) Score 

HFSS 24.3 53.92 

Machine Learning 0.026 56.04 

Table 11: Comparison of machine learning with traditional design method 
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DEEP LEARNING AND NEURAL NETWORKS 

Desired results were achieved with machine learning algorithms, but the improvement 

seen in the results corresponds to only a 1 – 2 dB increase. To achieve a higher score, a 

neural network will be used. Neural networks are inspired from neuron structures, and 

they are capable of modelling complex problems with various layers and neuron 

configurations. This chapter will cover the development of a neural network and results 

achieved from both the neural network and deep learning will be compared. 

5.1. Neural Networks 

Neural networks were proposed as learning tools based on the structure of a neuron. 

Neuron is made of consecutive sections and the incoming signal is sent to the next section 

if it fulfills the activation requirement. Similarly, a neural network takes the input 

parameters as an incoming message. Then each parameter is sent to a neuron with 

different weights. These neurons are in hidden layers between input and output. A neural 

network with 1 input layer, 2 hidden layers and an output layer is shown in  Figure 19 as 

an example. It is important to note that each output of a layer is sent to the next layer with 

weights. Inclusion of the weights can be seen as coefficients used in a linear regression 

problem [36]. For example, inputs of the first hidden layer in Figure 19 can be represented 

as: 

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 𝑓𝑜𝑟 𝐹1(𝑋) 
5.1 

𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 𝑓𝑜𝑟 𝐹2(𝑋) 
5.2 
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Figure 19: An example of a neural network with four layers 

Each neuron takes the weighted input parameters and passes through a function like a 

neuron cell. If the weighted input can activate the function and an output is created. Then 

the output is also weighted and sent to the next neuron and the cycle continues. Even 

though the core mechanism of each neuron is based on linear regression, by changing the 

number of neurons in each layer and layer count, complex models can be achieved. For 

example, the output of G1(X) shown in Eq. 5.3 is not a simple linear model anymore. 

𝐺1(𝑐1 ∗ 𝐹1(𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3) + 𝑐2 ∗ 𝐹2(𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3)) 
5.3 

The key difference between machine learning and deep learning is deep learning’s 

capability of creating various complex models with the usage of neural networks. This 

capability can be used to create more complex models for the problem proposed in this 

thesis. Like machine learning, the best structure for a neural network depends on the 

dataset and the problem itself, so a trial-and-error method is required to find the best 

structure. Before that, some rule of thumb concepts must be considered: 
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• Without any hidden layer, a neural network is a linear regression algorithm which 

can be used for linearly dependent systems. Inclusion of a single layer can be used 

to model higher degree relations. Two or more layers are used for systems that are 

complex and have many dependent relations. It is important to note that each layer 

increases the complexity of the learning process. Thus, the system must be kept 

as simple as possible. 

 

• For neurons in each layer, the choice depends on the dataset and the problem itself. 

To keep the complexity as low as possible, a neuron number that is less than the 

input number and greater than the output number is good practice. 

 

Considering these rules of thumbs, a neural network with 1 input layer, 2 hidden layers 

and an output layer was created. The input layer contained 9 input parameters used in the 

machine learning part and the output layer had 2 parameters, which were RG and S11. 

For hidden layers, various neuron configurations are tested in Table 12, in which columns 

denote the number of neurons in first hidden layer and rows denote the number neurons 

in the second hidden layer. Each validation loss is calculated with 5-fold cross validation 

and the lowest loss (0.58) with 6 neurons in the first hidden layer and 6 neurons in the 

second hidden layer was chosen as the final topology. 
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       L1 

L2 
3 4 5 6 7 8 

3 0.76 0.63 0.67 0.74 0.66 0.70 

4 0.64 0.72 0.63 0.75 0.67 0.73 

5 0.82 0.70 0.71 0.63 0.72 0.80 

6 0.78 0.60 0.62 0.58 0.71 0.67 

7 0.67 0.64 0.67 0.63 0.65 0.74 

8 0.63 0.65 0.73 0.68 0.77 0.65 

Table 12: Validation loss of the proposed neural network with various neuron numbers 

for each hidden layer 

5.2. Comparison with Machine Learning 

Iteration with machine learning was able to give a score higher than a traditionally 

designed antenna, but it improved the results by only a few points. To improve 

performance, a hybrid approach was adopted. Machine learning for iteration and deep 

learning for exhaustive sweep was used. As a starting point for sweeping, the results 

found in Table 9 were used. The setup for exhaustive sweep was applied without a change 

and it took 312.6 minutes to test 137970 predictions. Due to more complex structure of 

neural networks, it was expected to have longer computation time and expectations were 

met with a nearly 14-fold increase in the exhaustive sweep time. The whole process took 

345 minutes and the best result found was 57.72, which was higher than the result found 

with machine learning. A comparison of the results found with traditional design 

methods, machine learning and deep learning can be found in Table 18. 
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 Calculation Time (s) Score 

Machine Learning 0.026 56.04 

Deep Learning 0.15 57.72 

Table 13: Comparison of result found with traditional methods, machine learning and 

deep learning 
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NEW DESIGNS AT DIFFERENT FREQUENCIES 

This chapter will cover the steps taken to design antennae at 25 GHz and 31 GHz instead 

of 28 GHz with learning tools. An initial statement of purpose will be declared to give a 

reasoning for steps taken and methods discussed in previous chapters will be applied. The 

chapter will be concluded with the results and comparison of learning methods.  

6.1. Goals 

Even though the results observed from deep learning and machine learning were superior 

compared to traditionally designed antennas, performance of the proposed method must 

be tried in other frequencies to fully see the improvement. Additionally, extra 

investigation must be done on initial iteration point to evaluate their effect on the 

proposed method. For these reasons: 

• New designs will operate at 25 GHz and 31 GHz to show performance of the 

algorithms in full frequency spectrum. 

 

• There is not an antenna traditionally designed for 25 GHz and 31 GHz, so design 

with the best score in the dataset corresponding to given center frequencies will 

be chosen as a point of comparison.  

 

• Design with the highest score in the dataset will be used as the initial point for 

iteration. By starting from a point with a higher score, it is expected to improve 

the score in the iteration phase. 
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The original goals of achieving a higher score than the traditionally designed antenna, in 

this case it will be the antenna with the highest score in the dataset, and faster design time 

are also included as goals of this section. 

6.2. Iteration and Exhaustive Sweep 

As the initial step, the dataset was scanned for the best design for 25 GHz with a 

bandwidth of 3 GHz. The best design, which is shown as P0 in Table 14, was used as the 

initial point. After 7 iterations, a score improvement from 48.49 to 48.83 was observed. 

The observed improvement was less remarkable than the improvement observed in the 

iteration phase of the 28 GHz design. Only Wf, Yp and Ys were updated, which explains 

the low change in the scores. The whole process was completed in 32 minutes and scores 

of each version can be seen in Table 14. 

Design Lf Wf Rpx Rpy Yp Ys Rsx Rsy Score 

P0 3.00 0.10 1.50 0.60 2.15 2.60 2.70 2.00 48.49 

P1 3.00 0.097 1.50 0.60 2.15 2.60 2.70 2.00 48.62 

P2 3.00 0.097 1.50 0.60 2.15 2.60 2.70 2.00 48.62 

P3 3.00 0.097 1.50 0.60 2.04 2.45 2.70 2.00 48.83 

P4 3.00 0.097 1.50 0.60 2.04 2.45 2.70 2.00 48.83 

P5 3.00 0.097 1.50 0.60 2.04 2.45 2.70 2.00 48.83 

P6 3.00 0.097 1.50 0.60 2.04 2.45 2.70 2.00 48.83 

P7 3.00 0.097 1.50 0.60 2.04 2.45 2.70 2.00 48.83 

Table 14: Iteration steps of 25 GHz antenna with starting point as the best data point in 

the dataset 

The same steps were repeated for the 31 GHz design and the best design in the dataset for 

31 GHz was chosen as the starting point of the iteration. Like 25 GHz design, only Lf and 

Wf were updated one time and a score improvement of 46.36 to 46.54 was observed. The 

details about each iteration can be found in Table 15 and the whole iteration step was 

concluded in 23 minutes. A step-by-step score change of 25, 28 and 31 GHz designs were 

graphed in Figure 20 to display the effect of the initial point. 
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Design Lf Wf Rpx Rpy Yp Ys Rsx Rsy Score 

P0 3.50 0.50 1.00 1.00 2.60 3.00 2.20 2.40 46.36 

P1 3.40 0.46 1.00 1.00 2.60 3.00 2.20 2.40 46.54 

P2 3.40 0.46 1.00 1.00 2.60 3.00 2.20 2.40 46.54 

P3 3.40 0.46 1.00 1.00 2.60 3.00 2.20 2.40 46.54 

P4 3.40 0.46 1.00 1.00 2.60 3.00 2.20 2.40 46.54 

P5 3.40 0.46 1.00 1.00 2.60 3.00 2.20 2.40 46.54 

Table 15: Iteration steps 31 GHz antenna with starting point as the best data point in the 

dataset 

 

Figure 20: Design scores for iteration steps of 25, 28 and 31 GHz designs 

Both designs were swept with machine learning and deep learning models as the next 

step. Each parameter was swept from 97% value to 103% with 3% steps, which made a 

total of 6561 different designs. Machine learning was able to complete the process in 24.3 

minutes for 25 GHz design and 23.2 minutes for 31 GHz. On the other hand, the sweep 

process took 307 minutes for 25 GHz design and 299 minutes for 31 GHz design with 

deep learning. The results of each sweep is shown in Table 16. 
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Design Lf Wf Rpx Rpy Yp Ys Rsx Rsy Score 

ML25GHz 3.00 0.103 1.50 0.60 2.09 2.52 2.70 2.00 50.13 

DL25GHz 3.09 0.10 1.55 0.62 2.02 2.60 2.78 1.94 51.21 

ML31GHz 3.40 0.48 1.00 1.00 2.60 3.00 2.20 2.40 48.35 

DL31GHz 3.5 0.47 1.03 1.03 2.52 3.00 2.27 2.47 47.23 

Table 16: Machine and deep learning results of 25 GHz and 31 GHz designs 

6.3. Results 

After the completion of an exhaustive sweep, the total time spent was considered to 

calculate the time required for a performance parameter at a single frequency of a single 

design. Like the work done for 28 GHz, both machine learning and deep learning were 

faster than HFSS  in the range of 10 – 100 folds. A score improvement from 48.88 to 

50.13 and 51.21 were observed for the 25 GHz design. For 31 GHz, the score was 

increased to 48.35 and 47.23 from 46.84. Table 17 summarizes the results found in this 

chapter. 

 Calculation Time (s) Score 

HFSS 25 GHz 24.30 48.88 

HFSS 31 GHz 24.30 46.84 

ML 25 GHz 0.025 50.13 

DL 25 GHz 0.147 51.21 

ML 31 GHz 0.020 48.35 

DL 31 GHz 0.140 47.23 

Table 17: Exhaustive sweep score values of 25 and 31 GHz designs with machine 

learning and deep learning 
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FABRICATION 

This chapter will cover the fabrication steps done for antennae with the best performance 

at 25, 28 and 31 GHz. Preparations done before the fabrication will be told and problems 

encountered during the fabrication will be detailed. A brief description of the post 

fabrication process and measurement setup will be included. Measurement results will be 

given in a separate section in the following chapter to display every result in a single 

chapter. 

7.1 Fabrication Preparations 

For the fabrication process, RF connectors were placed to check if there is an 

intersection with the substrate. Placement of the connectors can be seen in Figure 21. 

 

Figure 21: 25, 28 and 31 GHz designs with connectors 

 

After the validation of the connector placement, all the designs were placed to a single 

PCB to facilitate the production phase. Additionally, the radiating and reflector part of 

the antenna was separated due to usage of different substrates. In Figure 22, the radiating 

layer with Rogers 4003 0.2 mm substrate is shown from bottom side. For connector holes, 

placeholder parts were shown with dull green parts. These parts were added to mark their 

location as drill points in Gerber files. The reflector layer of the antenna is also shown in 
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Figure 23. This layer consisted of small patches (shown in light blue) to reflect lobe 

radiation. Gerber files were taken for radiating and reflector layer and sent to fabrication. 

 

Figure 22: Radiating layer of the combined designs 

 

Figure 23: Reflector layer below the radiating part 

7.2 Fabrication Phase 

The fabrication process was done with a PCB milling machine, which was a common tool 

used for manufacturing PCB prototypes. Although these machines are capable of 

handling tolerances of 0.1 mm on less than 0.2 mm substrates, fabrication problems still 

occur. The first prototype for the radiating layer was shown in Figure 24. The main 

problems observed in the first prototype can be listed as: 

• Torn patches. The metal density of the structure was very low compared to 

standard PCB fabrication. In most of the PCBs, large GND layers are kept in 

contact to keep the radiation from the transmission line constrained. For antennae, 

the opposite is aimed to have the highest degree of radiation. When the lack of 

metal density and thin substrate are combined, mechanical stability of the PCB is 

significantly decreased. 

 

• Unfinished copper milling. The fact that large portions of copper must be milled, 

the tip of the milling tools can become blunt in a short time. To prevent this 



 

46 
 

situation, less sensitive but more durable milling tools were used for large copper 

areas. The disadvantage of this method is the accuracy of the milling depth. Too 

deep milling can penetrate the deep substrate and too thin milling can leave the 

copper in contact.  

 

• Non-uniform transmission line thickness. Even though milling can be done with 

0.1 mm accuracy, the feedline itself is 0.1 mm. Even a variation of 0.03 mm can 

result with 0.07 mm to 0.013 mm thick lines. 

 

Figure 24: First prototype of the radiating layer with fabrication problems 

After many fabrication trials, acceptable radiating layers were achieved in the 5th and 6th 

prototypes. For the reflector layer, there were not any problems with the fabrication. 

7.3 Measurement Setup 

After the fabrication of the antennae, it was decided that it would be better for 

measurements to separate each antenna from each other. As seen in Figure 25, parts 

separating reflectors and antennae were cut out. Additionally, some parts of the antennae 

were trimmed out to remove copper residues. Connector holes opened with needles and 

structures were combined with epoxy. Because of the effect of epoxy on the overall 
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substrate thickness, it was only applied to the sides of the antennae, not between layers. 

A clearer representation can be seen in Figure 25. 

 

Figure 25: Final antennae for measurement with their reflector and radiating layers 
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Figure 26: Close up view of 31 GHz antenna with  epoxy residues (purple) and 

connector headroom (blue) 

For the measurement, anechoic chamber located in SUNUM (Sabancı University 

Nanotechnology and Application Center) was used. This anechoic chamber uses a 

reference antenna to test the radiation pattern of DUT (Device Under Test). A reference 

antenna can be seen in Figure 27 and the DUT was located as shown in Figure 28. To 

measure radiation pattern and gain values, DUT was rotated in azimuth and elevation 

axis. This process was repeated for 28 GHz and 31 GHz and results can be in the Results 

Chapter. 
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Figure 27: Reference antenna used in anechoic chamber 

 

Figure 28: 25 GHz antenna in the measurement setup 
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RESULTS 

Results of the designed antennae will be compared with the simulation results of HFSS 

to verify the accuracy of the proposed method. To follow order of design process, the 28 

GHz design will be discussed first, and it will be followed by the 25 GHz and 31 GHz 

designs. After the comparison of the simulation results, fabrication results will be shown. 

8.1. 28 GHz Design Results 

Different designs with machine learning and deep learning were done and their 

performance were compared with the proposed score metric. As stated in section 4.3, a 

MAE of 0.50 dB was observed for the machine learning tools, which corresponds to a 

score variation of 3.5 in the worst-case scenario. To remove any uncertainties, proposed 

designs were tested with HFSS one more time and score values based on HFSS results 

were also shown. Additionally, the design with the highest score in the dataset was also 

displayed as another point of comparison. As seen in Figure 29, both machine learning 

and deep learning design have better matching compared to the traditional design and the 

best design found in the dataset. Although the deep learning design’s center frequency 

was a little bit shifted to 29 GHz, it still had enough bandwidth for the 5G n257 band. 
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Figure 29: HFSS S11 results of machine learning design, traditional method design, best 

design in the dataset and deep learning design for 28 GHz 

Realized gains of the proposed designs were shown in Figure 30. Every design had an 

average of 5 dBi gain in its bandwidth and the results are close to each other between 26.5 

GHz to 28 GHz. The real difference was observed at 29.5 GHz, in which both machine 

learning and deep learning design have higher gains. 

 

Figure 30: Realized gains of machine learning design, traditional method design, best 

design in the dataset and deep learning design for 28 GHz 
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8.2. 25 GHz and 31 GHz Design Results 

Like the previous section, designs for 25 GHz were simulated with HFSS to see the exact 

performance. In Figure 31, S11 performance of learning algorithms were not as good as 

the best design in the dataset. The deep learning design’s center frequency was shifted 

down to the lower end of the bandwidth and machine learning’s S11 values are lower 

than the best design in the dataset. Even though S11 performance is not remarkable, 

machine learning and deep learning still have slightly higher scores. The reason behind 

this phenomenon can be seen in Figure 32. In every frequency of interest, both machine 

learning and deep learning design have 0.1 – 0.3 dB higher gains. Due to a low increase 

in realized gain values and slight performance degradation in S11, proposed designs have 

score values very close to the best design in the dataset. 

 

Figure 31: S11 of 25 GHz designs for machine learning, deep learning, and the best in 

dataset 
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Figure 32: RG of 25 GHz designs for machine learning, deep learning, and the best in 

dataset 

31 GHz machine learning and deep learning design were also simulated with HFSS and 

their S11 results can be seen in Figure 33. Unlike 25 GHz, machine learning improved 

S11 and the graph has a shape very similar to the best design in the dataset. Deep learning 

also had better S11 results, which were closer to 31 GHz center frequency compared to 

other designs. When realized gain values were checked, machine learning had 0.1 – 0.3 

dB gain over the whole frequency band as shown in Figure 34. Deep learning design had 

a different behavior in which higher gain values were observed for the lower end of the 

bandwidth and lower gain values for the higher end of the bandwidth. Due to slight 

improvement in both S11 and RG, machine learning was able to give designs with higher 

scores. 
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Figure 33: S11 of 31 GHz designs for machine learning, deep learning, and the best in 

dataset 

 

Figure 34: RG of 31 GHz designs for machine learning, deep learning, and the best in 

dataset 

Final comparison of the scores with respect to machine learning tools and HFSS 

simulations is given Table 18. Both the machine learning and HFSS scores of traditional 

and best in the dataset for 28 GHz are very close to each other. The 28 GHz machine 

learning design’s HFSS score was higher than the estimation score and the opposite is 

true for deep learning. Nevertheless, both scores of both designs were higher than the goal 

53.92 score. 

For 25 GHz and 31 GHz, points of comparison were chosen with respect to the best 

performing designs in the dataset. In both frequencies, designs were able to have 1 – 2 
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point higher score than the dataset design, which was also true for the designs of 28 GHz. 

Every score value for every design can be seen in Table 18. 

FREQUENCY METHOD 
CALCULATION 

TIME (S) 

ESTIMATED 

SCORE 

HFSS 

SCORE 
2

8
 G

H
Z

 Machine 

Learning 
0.026 56.04 57.74 

Deep Learning 0.150 57.72 57.16 

2
5

 G
H

Z
 Machine 

Learning 
0.025 50.13 49.43 

Deep Learning 0.147 51.21 50.25 

3
1
 G

H
Z

 Machine 

Learning 
0.020 48.35 48.65 

Deep Learning 0.140 47.23 47.40 

Table 18: Calculated scores of the designs with respect to machine learning estimations 

and HFSS simulation 

8.3. Fabrication Results 

After the fabrication of the antennae, S11 and gain values were compared to the best 

machine learning/ deep learning designs. Measurements were taken with respect to the 

reference antenna, so to find the actual gain, the relationship given below must be used: 

𝐷𝑈𝑇 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 + (𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐺𝑎𝑖𝑛 − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡)

+ 𝑆11 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + 𝐶𝑜𝑛𝑒𝑐𝑡𝑜𝑟 𝐿𝑜𝑠𝑠𝑒𝑠 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑈𝑇 𝐺𝑎𝑖𝑛 8.1 

After the measurement of S11 and calculations of the gains, measurement data were 

combined with simulation data. In Figure 35 and Figure 36, it can be seen that significant 

performance degradation is observed for both S11 and gain. A similar case was also 

observed for 28 GHz and 31 GHz designs. Even though some matching were observed 
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for 30 – 33 GHz in the 28 GHz design, lower performance was observed for fabricated 

antennae in general. 

 

Figure 35: Fabrication and simulation S11 results of 25 GHz design 

 

Figure 36: Fabrication and simulation gain results of 25 GHz design 
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Figure 37: Fabrication and simulation S11 results of 28 GHz design 

 

Figure 38: Fabrication and simulation gain results of 28 GHz design 
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Figure 39: Fabrication and simulation S11 results of 31 GHz design 

 

Figure 40: Fabrication and simulation gain results of 31 GHz design 
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CONCLUSION 

 

In the beginning of the thesis, it was stated that the goal was to design a slot antenna for 

5G n257 band using machine learning. This antenna had to be designed faster than the 

simulations done in HFSS and must have better results. End results proved that: 

• Both neural networks and machine learning tools were able to design the antenna 

faster than the HFSS simulation. The expectation was set as a 10-fold increase in 

speed, but both machine learning and deep learning were able to surpass the 

expectations. Other works in the literature also pointed out the speed of these 

estimation tools, so these results were not a surprise.   

 

• Both machine learning and deep learning designs had scores 1 – 2 points higher 

than the initial proposed antenna. Even though an increase was achieved there are 

some issues that must be underlined: 

 

o For the 28 GHz design, the traditionally designed antenna had similar 

performance compared to other works in the literature, so it is hard to 

comment on the increase observed with learning tools. The results were 

higher than the state of art, so it is hard to tell whether this design had the 

best performance possible or there is another better design which we don’t 

know yet.  

 

o For the 25 GHz and 31 GHz designs, the degree of improvement was close 

to the improvement observed in 28 GHz with respect to the best designs 

in the dataset, but the score levels were not same. From the state of the art 

and the results observed from 28 GHz, it was known that scores around 55 

are possible, which was not achieved by both the 25 GHz and 31 GHz 
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designs. Thus, it is clear to say that the improvement observed is limited 

by the dataset. If the frequency of interest includes low score designs, then 

the design generated by the learning tools will be lower compared to the 

other designs generated at other frequencies. Although this is a logical 

thing to observe, dependency on the dataset is a major flaw. 

 

o The general behavior of the algorithms was also different from each other. 

In every frequency of design, machine learning results were slightly 

improved versions of the best designs found in the dataset. For deep 

learning, there was always a part which was way different than the best 

design in the dataset. For example, every design at 28 GHz was centered 

at 28 GHz, but deep learning design was centered at 29 GHz. The different 

behavior is clearer when the 25 GHz and 31 GHz designs were compared. 

In a way, designs generated by deep learning are more unique to an extent 

which also reasonable. For machine learning, random forest technique was 

used which was based on dividing dataspace into parts to make a 

prediction. Thus, the result found was closely related to dataspace. For 

deep learning, neural networks were used to create a multistep model with 

various activation conditions. Thus, the estimation was more dependent 

on the model than the dataspace. From this perspective, it can be said that 

deep learning has a higher potential to find better results, but computation 

time is a deterrent compared to machine learning. 

 

To sum up the argument, it can be said that the set goals were achieved with some 

remarks, but this does not mean that every aspect of the proposed problem was covered. 

For example: 

• All the work done in the thesis was done with respect to a single topology. If 

another topology was required, then the whole work done for traditional design 

and machine learning design had to restart. Even though it was far easier for 

machine learning to adapt because it is just a change of input and output size, it 

still requires generating a new dataset, which is time-consuming. A more general 

method, which can be applied to multiple topologies, can be the next step for the 

machine learning tools. 



 

61 
 

 

• Although machine learning tools are faster in general compared to HFSS, they 

are also suffering from complexity problems. For example, would the proposed 

method be feasible for a dataset which contains millions of data points? 

Unfortunately, testing this hypothesis also requires the generation of data, which 

is not feasible. This aspect may be investigated if the proposed methods are 

applied to another problem with more data available. 

 

• The nature of the prediction algorithms depends on their hyperparameters and the 

number of configurations that can be tested is limitless. This thesis used the rule 

of thumbs and commonly used methods to tune hyperparameters, but there is 

always room for testing other setups.  

 

For the results of the fabrication process, a separate section must be given. Due to the 

high frequency nature of the process, many parasitic effects can change the results. For 

this fabrication process, observed problems can be listed as: 

 

• Tolerances. The designs were very sensitive to placement of radiating and 

reflector elements. Thus, any error in the placement directly affects the results. 

 

• Feedline pin. The connector used for measurement feeds the antenna by pressing 

the pin to feedline with mechanical pressure. It is hard to say that this connection 

is reliable without any soldering. 

 

• Connector screw placement. Connector screws were fixed with a small aperture 

under the screw holes. Unlike the CAD models given by the manufacturer, these 

apertures require a larger connector headroom, which was not the case. Direct 

connection with these apertures and the reflector layers made the floating ground 

a real ground, which directly changed the behavior of the antenna. 

 

o A larger headroom could have been given, but this would also change the 

performance of the antenna. 
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• Usage of reference antenna. It is important to note that the gain values were 

calculated with respect to a reference measurement, so any error in the reference 

measurement is also reflected in measurements done for this project. 

 

Many other factors can be listed, but it has been proven that this topology was not suitable 

for simple fabrication even though it was advantageous for machine learning. 
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