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Abstract

Analytical problems are not solvable on a general domain in Cd when d ≥ 2.

It has been shown that in domains such as strongly psuedoconvex domains, finite

type domains, bounded symmetric domains and convex domain some analytical

problems are tractable. A common feature of these domains is that the Bergman

metric has bouded geometry on them. This led to the definition of the domains with

bounded intrinsic geometry which are introduced to the literature in the quest for

the most general type of domain on which one can solve analytical problems. They

include many of the well-known domains investigated in the literature including

the aforementioned ones. Here in this thesis we made a review of conditions of

compactness of Hankel operator on them.
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Özet

Karmaşık uzay Cd içinde genel bir alanda d ≥ 2 olduğunda analitik problem-

ler her zaman çözülemez. Güçlü psuedokonveks alanlar, sonlu tip alanlar, sınırlı

simetrik alanlar ve dışbükey alan gibi alanlarda bazı analitik problemlerin çözülebilir

olduğu gösterilmiştir. Bu alanların ortak bir özelliği, üzerlerindeki Bergman metriğinin

sınırlı geometriye sahip olmasıdır. Bu gözlem, analitik problemlerin çözülebileceği

en genel alan türü arayışında literatüre tanıtılan sınırlı içsel geometriye sahip alan-

ların tanımlanmasına yol açtı. Bunlar, yukarıda bahsedilenler de dahil olmak üzere

literatürde araştırılan iyi bilinen alanların çoğunu içerir. İşte bu tezde, Hankel op-

eratörünün üzerlerindeki kompaktlık koşullarının bir incelemesini yaptık.
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Chapter 1

Several Complex Variables

Several complex variables(SCV) is more than a generalization of complex analysis

in one variable. Many core theorems in one dimensional complex analysis are no

longer valid in SCV; for instance, one can mention the Riemann mapping theorem

and discreteness of zero sets of holomorphic functions. The concept of domain of

holomorphy, a domain that is the largest domain for some holomorphic function,

is much more complicated in several variables. Here we discuss some of the most

important perspectives which highlight the importance of SCV as an independent

research topic from one dimensional complex analysis. Our discussion follows [1]

closely; necessary background from one dimensional complex analysis is borrowed

from [2] and [3] to make the material self-sufficient for a novice reader in complex

analysis.

1.1 Domain of Holomorphy

Definition 1.1.1. Assume that Ω ⊂ Cd is open and connected, f : Ω → C is analytic

on Ω if for every P ∈ Ω and every 1 ≤ j ≤ n the function f(P1, . . . , Pj−1, Pj +

zj, Pj+1, . . . , Pd) is a holomorphic function of zj in the sense of one variable when

|zj| is small enough.

Definition 1.1.2. Open connected set Ω ⊂ Cd is called a domain of holomorphy

if there exists a holomorphic function f : Ω → Cd such that f cannot be extended

holomorphically to a domain strictly larger than Ω.
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1.1.1 Weierstrass Theorem

We start our discussion here by proving the Weierstrass’ theorem on zeros of one

variable holomorphic functions. This will allow us to prove an interesting result

which helps us to characterize domains of holomorphy in the complex plane.

Lemma 1.1.3. If u1, . . . , uN are complex numbers, and if pN =
N∏
n=1

(1 + un) and

p∗N =
N∏
n=1

(1 + |un|) then

p∗N ≤ exp(|u1|+ . . .+ |uN |) (1.1)

|pN − 1| ≤ p∗N − 1 (1.2)

Theorem 1.1.4. Let {un}n∈N be a sequence of bounded complex functions defined

on a set S ⊆ C, such that Σ|un(z)| converges uniformly on S. Then the product

f(z) =
∞∏
n=1

(1 + un(z)) (1.3)

converges uniformly on S, and f(z0) = 0 at some z0 ∈ S if and only if un(z0) = −1

for some n ∈ N

Proof. The assumption implies that Σ|un(z)| is bounded on S. Therefore, if pN is

the partial product of (1.3) by lemma 1.1.4 we can find C <∞ such that |pN(z)| ≤ C

for all N and all z ∈ S. Given ϵ > 0, choose 0 < δ <
1

2
satisfying δ ≤ ϵ

2C
. We can

find N0 such that
∞∑

n=N0

|un(z)| < δ. If M > N ≥ N0 then

|pM − pN | ≤ |pN |(eδ − 1) ≤ 2Cδ ≤ ϵ (1.4)

Where the first inequality is due to lemma 1.1.4. Using 1.4 we can see that |pM −
PN0 | ≤ 2|PN0|δ if M > N0 so that |pM | ≥ (1− 2δ)|pN0|. Hence

|f(z)| ≥ (1− 2δ)|pN0(z)| z ∈ S (1.5)

and f(z0) = 0 if and only if pN0(z0) = 0 consequently.

Corollary 1.1.5. Let {fn} be a sequence in O(Ω), none of the f ′
ns is identically zero

in any connected part of Ω and
∞∑
n=1

|1 − fn(z)| is uniformly convergent on compact

subsets of Ω. Then

f(z) =
∞∏
n=1

fn(z) (1.6)
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Converges uniformly on compact subsets of Ω and f ∈ O(Ω), consequently. More-

over, order of multiplicity of the zero of f at z is the sum of order of multiplicity of

zero of f ′
ns at z.

Proof. First part is an immediate result of the theorem 1.1.4. In the second part,

one can see that each z ∈ Ω has a neighborhood U where at most finitely many of

the f ′
ns has zero in it.

Definition 1.1.6 (Elementary Factors). Let E0(z) = 1 − z and for p ≥ 1

Ep(z) = (1 − z) exp(z +
z2

2
+ . . .+

zp

p
). These functions are called elementary

factors and first introduced by Weierstrass.

Lemma 1.1.7. |1−Ep(z)| ≤ |z|p+1 for all non-negative integers p whenever, |z| ≤ 1.

Theorem 1.1.8 (Weierstrass). Let Ω be a proper open subset of S2, where S2 is

the Riemann sphere, and A ⊂ Ω be such that it has no limit point in Ω. Assign to

each α ∈ A a positive integer mα. Then there exists f ∈ O(Ω) such that its zero set

is precisely A with order of multiplicity mα at each α ∈ A.

Proof. We can assume that ∞ ∈ Ω and ∞ /∈ A without loss of generality (Using a

linear fractional transformation the general case can be followed). Therefore S2 \Ω
will be a nonempty compact subset of the plane, and ∞ is not a limit point of A. For

A being a finite set a rational function satisfies the statement. Note that A cannot

be uncountable, otherwise it would have a limit point in Ω. Take {αn} such that it

covers each member of A exactly mα times. As S2 \ Ω is compact, for each αn ∈ A

we can find βn ∈ S2 \ Ω such that |βn − αn| ≤ |β − αn| for all β ∈ S2 \ Ω. Then

|βn − αn| → 0 as n → ∞, otherwise A would have a limit point in Ω. The claim is

that f(z) =
∞∏
n=1

En(
αn − βn
z − βn

) has the desired properties. Let K be a compact subset

of Ω. As |βn − αn| → 0 we can find N such that |z − βn| ≥ 2|αn − βn| for all z ∈ K

and n ≥ N , or |αn − βn
z − βn

| ≤ 1

2
equivalently. It follows from the lemma 1.1.7 that

|1− En(
αn − βn
z − βn

)| ≤ (
1

2
)n+1 for z ∈ K and n ≥ N . Now, the theorem 1.1.5 can be

used to prove the claim.

1.1.2 Domains of holomorphy in the Complex Plane

The following theorem plays an important role in characterizing domains of holo-

morphy in one variable.
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Theorem 1.1.9. Let Ω be an open subset of C bounded by a simple closed curve.

Then there exists f ∈ O(Ω) such that f cannot be extended holomorphically to any

open set Ω
′
containing Ω properly.

Proof. Consider the countable set A = {αj} in a way that it has no limit points

inside Ω and every point P ∈ ∂Ω is its limit point. The Weierstrass theorem now

tells us that there exists a non-trivial f ∈ O(Ω) such that its zero set is precisely

A. Assume that F is a holomorphic extension of f on a strictly larger domain,

therefore there exists a point P ∈ ∂Ω such that it is an interior point of the domain

of F , but P is a limit point of A which results in f being identically zero which is

a contradiction.

In proof of the theorem 1.1.9 we used Weierstrass’ theorem which employs ele-

mentary factors to build the required function. Another interesting approach can be

seen in the Hadamard’s gap theorem which mentions a family of analytic functions

written as a power series centered at the origin with D(0, 1) as its natural bound-

ary. To achieve this result, we need some definitions and the theorem 1.1.11 due to

Ostrowski.

Definition 1.1.10 (Regular and Singular Points). Let D be an open disk in

the complex plane, and f ∈ O(D) a point P located on the boundary of D is called

regular point of f such that we can find an open disc D
′
around P such that f can

be extended holomorphically to D ∪D′
. P is called singular if it is not regular.

Theorem 1.1.11 (Ostrowski). Suppose, λ, pk and qk are positive integers, pk is

monotone increasing, λqk > (λ + 1)pk for all integer k ≥ 0. Also, assume that

f(z) =
∞∑
n=1

anz
n has radius of convergence 1, and an = 0 if pk < n < qk for some k.

If P is a regular point of f on the unit circle and sp(z) =
p∑

n=1

anz
n, then {spk(z)}

converges in some neighborhood of P .

Proof. Without loss of generality, we can assume that P = 1. Then f can be

extended holomorphically to a domain Ω containing B(0, 1) ∪ {1}. Let g(w) =
1
2
(wλ + wλ+1) and F (w) = f(g(w)) where w is such that g(w) ∈ Ω. Note that if

|w| ≤ 1 but w ̸= 1 then |g(w)| < 1 and g(1) = 1. Therefore ϵ > 0 can be found such

that g(B(0, 1+ ϵ)) ⊂ and the series F (w) =
∞∑
n=1

bmw
m converges if |w| < 1+ ϵ. If we

look at the powers of w in (g(w))n the lowest is λn and the highest is (λ+ 1)n. By
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our assumption the highest exponent of w in (g(w))pk will be less than the lowest

exponent of w in (g(w))qk . Using the gap condition of an’s we can see that

pk∑
n=1

an(g(w))
n =

(λ+1)pk∑
m=1

bmw
m (1.7)

For |w| < 1+ϵ, as k → ∞ right hand side of (1.7) is convergent. Therefore, {spk(z)}
converges for all z ∈ g(B(0, 1) + ϵ) as desired.

Theorem 1.1.12 (Hadamard). Suppose, λ and pk are positive integers such that,

λpk+1 > (λ+ 1)pk for all integer k ≥ 0. Also, assume that

f(z) =
∞∑
k=1

akz
pk (1.8)

has radius of convergence 1, then the unit circle (T ) is the natural boundary of f ,

i.e f cannot be extended holomorphically to any domain larger than the unit disc.

Proof. Assume the contrary, i.e. there exists a point P which is a regular point

of f . From the theorem 1.1.11 we conclude that the sum in 1.8 is convergent at

some point out of closure of the unit disc which is a contradiction as the radius of

convergent of the series is 1.

1.1.3 Domains of holomorphy in Cd (d ≥ 2)

Definition 1.1.13. The polydisc of radius r > 0 centered at P ∈ Cd is defined as

follows:

Dd(P, r) = {z ∈ Cd : |zj − pj| < rj = 1, . . . , d} (1.9)

Similarly the open ball of radius r > 0 centered at P ∈ Cd is defined as follows:

B(P, r) = {z ∈ Cd : |z1 − p1|2 + . . .+ |zd − pd|2 < r2} (1.10)

A simple observation is that every polydisc is a domain of holomorphy. Consider

D2(0, 1) for example. As if f : D(0, 1) → C is a non-extendable holomorphic

function then F : D2(0, 1) → C such that F (z1, z2) = f(z1)f(z2) will also be a

non-extendable holomorphic function. Also, in one dimension theorem 1.1.9 ensures

us that D(0, r) \ D̄(0, r/2) is a domain of holomorphy. On the other hand, the

next theorem due to Hartog shows that this is not the case for Dd(0, r) \ D̄d(0, r/2)

whenever d ≥ 2.
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Theorem 1.1.14 (Hartog). If f is a holomorphic function on Ω = D2(0, r) \
D̄2(0, r/2) where r > 0 then we may find a holomorphic function F on D2(0, r) that

F |Ω = f .

Proof. Fix z1 such that |z1| < r f as a function of z2 can be expanded as a Laurent

series as follows

f(z1, z2) =
+∞∑

k=−∞

ak(z1)z
k
2 (1.11)

If r/2 < |z2| < r the series in 1.11 converges regardless of the value of z1 and the

formula ak(z1) =
1

2πi

∮
γ

f(z1, ζ)

ζk+1
dζ shows that ak(z1) is holomorphic. Similarly, if

r/2 < |z1| < r then f(z1, z2) is a holomorphic function of z2 on D(0, r). Thus

ak(z1) = 0 whenever k < 0 and r/2 < |z1| < r, and the analytic continuation shows

that ak ≡ 0 for k < 0. Therefore the function F (z1, z2) =
+∞∑
k=0

ak(z1)z
k
2 satisfies the

desired properties.

Theorem 1.1.15. B(0, 1) ∈ C2 is a domain of holomorphy.

Proof. Consider point P on the boundary of B(0, 1), define

ϕP (z) =
1

2
< z + P, P > (1.12)

Where < ., . > denotes the inner product. Obviously, ϕP (P ) = 1 and |ϕP | is strictly
less than 1 everywhere else in B̄(0, 1) \ P . Let Ã = {α̃j}j∈N be a set which has all

of the point in ∂B(0, 1) as limit point. We construct the sequence A = {αj}j∈N as

follows

α̃1, α̃1, α̃2, α̃1, α̃2, α̃3, . . . (1.13)

This way, A cover each element of Ã infinite many times. Assign rj > 0 to each

αj such that it is as large as possible and Dj ≡ D2(αj, rj) ⊂ B(0, 1). Define

Kj = B̄(0, 1−1/j) and take zj ∈ Dj \Kj. Let pj =
zj
|zj|

. This way, ϕpj(z) has larger

modulus on zj than it does on Kj. Define hj(z) =
ϕpj(z)

ϕpj(zj)
then we will have

hj(zj) = 1 and |hj|
∣∣∣∣
Kj

< tj < 1 (1.14)

For some tj. Take Nj large enough such that |mj|
∣∣∣∣
Kj

< 1
2j

where mj(z) = (hj(z))
Nj .

The theorem 1.1.4 ensures us that f(z) =
∞∏
j=1

(1 −mj(z)
j) converges uniformly on

7



each Kj and has a zero of at least j at zj. Each α̃j is repeated infinitely often so at

each Dj there are points at which f is zero with an arbitrary high order. For any

holomorphic extension of f to an open neighborhood of P ∈ ∂B(0, 1) will have a

limit point z0 of a sequence of zeros of f with increasing order, so f has a zero of

order infinity at P and f ≡ 0 which is a contradiction.

The problem of geometric description of domains of holomorphy in Cd was an

open problem for a long time, called Levi Problem. It was solve by Oka, Bremermann

et al. this geometric notion is called pseudoconvexity.

1.2 Zeros of Holomorphic Functions

In one-dimensional complex analysis, the zero set of a holomorphic function is dis-

crete. Also, in Weierstrass theorem we saw that zero set of a holomorphic function

can be any discrete set if it is not constant. A surprising consequence of Hartog

theorem is that this is no longer true for more than one variable.

Theorem 1.2.1. A holomorphic dunction f defined on a domain Ω ⊆ Cd and d ≥ 2

cannot have an isolated zero.

Proof. Let P be an isolated zero of f . Take the polydiscDd(P, r) such that f has not

any zero in it other than P . Hence, the function g(z) = 1/f(z) will be holomorphic

on Dd(P, r) \Dd(P, r/2). By Hartog’s theorem g can be extended to a holomorphic

function on Dd(P, r), more specifically it is defined at P , which is a contradiction.

The next result reveals another interesting fact on zeros of holomorphic functions

in several variables, however to prove this we need two classical results in one variable

due to Weierstrass and Hurwitz.

Theorem 1.2.2 (Weierstrass). Take {fn}n∈N as a sequence in Ã(Ω), which con-

verges uniformly on every compact subset of Ω to a function f . Then f ∈ O(Ω), in

additional {f ′
n} converges uniformly on every compact subset of Ω and its limit is

f ′.

Proof. For a ∈ Ω, take r > 0 such that D̄(a, r) ⊂ Ω. If γ is the boundary of D(a, r),

0 < ρ < r and w ∈ Ω be such that |w − a| ≤ ρ we will have

fn(w) =
1

2πi

∮
γ

fn(w)

z − w
dz (1.15)

8



and
1

|z − w|
≤ 1

r − ρ
(1.16)

Using the assumption, fn converges to f uniformly on γ, therefore

f(w) = lim
n→∞

fn(w) = lim
n→∞

1

2πi

∮
γ

fn(w)

z − w
dz =

1

2πi

∮
γ

f(w)

z − w
dz (1.17)

So, f is holomorphic on D(a, ρ) and f ∈ O(Ω) consequently. To prove the second

part, note that by a similar argument to the first part we have

1

|z − w|2
≤ 1

(r − ρ)2
(1.18)

Therefore

lim
n→∞

f ′
n(w) = lim

n→∞

1

2πi

∮
γ

fn(w)

(z − w)2
dz =

1

2πi

∮
γ

f(w)

(z − w)2
dz = f ′(w) (1.19)

So f ′
n converges to f ′ uniformly on D̄(a, ρ) as desired.

Theorem 1.2.3 (Hurwitz). Let {fn}n∈N be a sequence in Ã(Ω), and fn converges

uniformly on every compact subset of Ω to a function f , where Ω is a connected open

subset of C. Assume that each fn is none-zero on Ω. Then, either f is non-zero on

Ω or f ≡ 0.

Proof. First, note that by theorem 1.2.2 f is holomorphic and f ′
n → f ′ uniformly

on compact subsets of Ω. If f ̸≡ 0 and f vanishes on a ∈ Ω. Then we can find a

closed disc D̄(a, r) on which f has no zeros other than a and γ is the boundary of

this disc. We will have
1

2πi

∮
γ

f ′

f
dz = m (1.20)

Where m ≥ 1 denotes order of multiplicity of the zero of f at a. Also, f ′
n/fn →

f ′/f uniformly on γ, but
1

2πi

∮
γ
f ′n
fn
dz = 0 for all n as all of the fn’s are non-zero

everywhere on Ω. This is a contradiction as

0 =
1

2πi

∮
γ

f ′
n

fn
dz → 1

2πi

∮
γ

f ′

f
dz ̸= 0 (1.21)

Theorem 1.2.4. If f is a holomorphic function on a bounded domain Ω ⊂ Cd, d ≥ 2

and Z is its zero set. Then Z is cannot be compact if it is nonempty Ω.

9



Proof. Assume that Z is nonempty and compact, take X ∈ C\Ω and choose P ∈ Z

such that it is as far as possible from X. Define v⃗ =
X⃗P

|X⃗P |
, and let w⃗ be a vector

with magnitude one and normal to v⃗. Let r > 0 be small enough and integer j > 0

sufficiently large such that we can define

ϕj(ζ) = f(P + (1/j)v⃗ + rζv⃗) ζ ∈ D(0, 1) (1.22)

With this definition all ϕj’s are non-zero inD(0, 1) and ϕj → ϕ uniformly on compact

subsets of the unit disc, where ϕ(ζ) = f(P + rζw⃗). One can immediately see that

ϕ(0) = 0 and therefore ϕ ≡ 0 using the theorem 1.2.3, but this is a contradiction as

we have chosen P and w⃗ such that P + rζw⃗ ̸∈ Z whenever ζ ̸= 0

Corollary 1.2.5. For a holomorphic f on a bounded domain Ω ⊂ Cd, d ≥ 2, then

every level set of it escapes to the boundary.

Another interesting difference between one and sevaral variable complex analysis

will be revealed in the next theorem.

Theorem 1.2.6. Let Ω ⊂ Cd, d ≥ 2 be a bounded domain and f is a holomorphic

function on it and it is continuous on Ω̄. Then f(∂Ω) = f(Ω̄).

Proof. If P ∈ Ω and f(P ) = w ̸∈ f(∂Ω). Then f−1(w) is a bounded closed set

disjoint from the ∂Ω, therefore it is compact which is a contradiction by theorem

1.2.4.

Obviously the statement in the theorem 1.2.6 is not valid in one variable (one

can take f(z) = z on D(0, 1) as a counter example).

1.3 Inner Functions

Definition 1.3.1. Function f defined on B ≡ B(0, 1) ⊂ Cd is called inner, if its

modulus is 1 almost everywhere on ∂B.

Example 1.3.2 (Blaschke Factor and Product). In one dimensional complex

plane, Blaschke factor Ba(z) =
z − a

1− āz
where a ∈ B and every Blaschke product

∞∏
j=1

− āj
|aj|

Baj(z) are inner.

Every Blaschke factor, is an automorphism of the unit disc. In fact, every auto-

morphism of the unit disc can be written as a composition of a rotation around the

origin and a Blaschke factor. Also, one can easily show that (Ba)
−1 = B−a.
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Lemma 1.3.3. An inner function f on B ⊂ C which is not constant and bounded

from zero does not exist.

Proof. Consider f to be an inner function such that it is not constant and

|f(z)| ≥ c > 0 z ∈ B (1.23)

Then g(z) =
1

f(z)
is holomorphic, bounded on B. f on B is the Poisson integral of

the boundary and therefore |f(z)| < 1 on B. Similarly, |g(z)| < 1 on B. Which is a

contradiction.

Lemma 1.3.4. Range of a non-constant inner function f on B ⊂ C is everywhere

dense in B.

Proof. Assume that range of f does not cover a disc having its center at a ∈ B. The

function Ba◦f will be an inner function bounded from zero, which is a contradiction

by lemma 1.3.3.

Theorem 1.3.5. The cluster set C(P ) of a non-constant inner function f on B ⊂ C2

is the entire D̄.

C(P ) ≡ {w ∈ C| the sequence zj → P existss.t f(zj) → w} (1.24)

Proof. Let P be a point in the boundary, and Pj be a sequence of hyperplanes which
approach P from inside of the ball. Then by 1.3.4 f(Pj ∪B) is dense in D for each

j as desired.

Unlike one dimensional inner fucntions which are elementary, construction of

higher dimesional inner functions is very technical . In fact due to their odd be-

haviour, a dense collection of level sets escapes to all boundary points, their existence

was a surprising discovery in 1981. (reference needed)

1.4 Holomorphic Mappings

In one dimensional complex analysis a simply connected domain of the complex plane

is biholomorphic to the disc, this result is known as Riemann Mapping Theorem, but

this is no longer true for higher dimensions. First we prove the Riemann Mapping

Theorem and show that why it is not valid in SCV. To prove Riemann Mapping

Theorem several classical results from complex analysis are needed which are brought

here.
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Theorem 1.4.1 (Maximum Modulus Principle). Assume that f ∈ O(Ω), f is

non-constant and Ω is an open connected subset of the complex plane. If D̄(a, r) ⊂ Ω

for some a ∈ Ω and r > 0. Then, |f(a)| < max
θ

|f(a + reiθ)|.Consequently, |f | is
without local maximum on Ω.

Proof. If |f(a + reiθ)| ≤ |f(a)| for all 0 ≤ θ < 2π, then the Parseval relation yields

us
∞∑
n=0

|an|2r2n ≤ |f(a)| = |a0|2 (1.25)

Where
∞∑
n=0

an(z − a)n is analytic expansion of f at a. (1.27) implies that an = 0 for

all n ≥ 1. Therefore, f is a constant function which is a contradiction.

Theorem 1.4.2 (Schwarz’s Lemma). Consider f ∈ O(D) such that, f(0) = 0,

f ̸≡ 0 and |f(z)| ≤ M for all z ∈ D, where M > 0. Then |f(z)| ≤ M |z| for
z ∈ D. Moreover, if |f(z0)| =M |z0| for some z0 ∈ D \ {0}, then f(z) =Meiθz and

0 ≤ θ < 2π.

Define g(z) =
f(z)

z
if z ̸= 0 and g(0) = f ′(0). Then g ∈ O(D). If a ∈ ∂D, we

have

Proof.

lim sup
z→a

|g(z)| = lim sup
z→a

|f(z)| ≤ (1.26)

Where the equality comes from the fact that |a| = 1. Maximum modulus principle

now tells us that |g(z)| ≤M .

Corollary 1.4.3. We have |f ′(0)| < M , whenever the assumptions of the Schwarz’s

lemma are valid.

Theorem 1.4.4 (Open Mapping Theorem). Let f ∈ O(Ω) where Ω is a con-

nected open subset of the complex plane, and f is not constant. Then f : Ω → C is

an open map.

Proof. Let a ∈ Ω, without loss of generality we can assume that, f(a) = 0. Note that

it will be enough to show that f(Ω) is a neighborhood of 0, as we can substitute Ω

by U , a connected open set containing 0, and apply the results on f
∣∣
U
. Choose r > 0

such that D̄(a, r) ⊂ Ω and f is none-zero on D̄(a, r)\a. Then δ = inf{|f(z)|
∣∣|z−a| =

r} will be positive. Now the claim is that if w ∈ C \ f(Ω) then |w| ≥ 1
2
δ. To prove

12



this claim, let g(z) =
1

f(z)− w
. From the definition g ∈ O(Ω). By maximum

modulus principle we will have

1

|w|
= |g(a)| ≤ sup

|z−a|=r
|g(z)| = 1

inf |f(z)− w|
(1.27)

If |w| < δ, then |f(z) − w| ≥ |f(z)| − || ≥ δ − |w| for |z − a| = r. So by (1.27)
1

|w|
≤ 1

δ − |w|
or |w| ≥ 1

2
δ. Thus, either |w| ≥ 1

2
δ or |w| ≥ δ. And D(0, 1

2
δ) ⊂ f(Ω)

as desired.

Definition 1.4.5 (Holomorphic Mapping). Function F defined below is called a

holomorphic mapping from Ω ⊆ Cd to Ω′ ⊆ Cm

F (z1, . . . , zd) = (f1(z1, . . . , zd), . . . , fm(z1, . . . , zd)) (1.28)

Where each fj is a holomorphic function.

Definition 1.4.6 (Biholomorphic Mapping). A holomorphic mapping of a do-

main Ω ⊆ Cd to a domain Ω′ ⊆ Cd that is bijective is called a biholomorphic mapping

and Ω and Ω′ are called biholomorphic to eachother.

Definition 1.4.7 (Normal Families). F ⊂ O(Ω) is called a normal family if

every sequence of members of F has a uniformly convergent subsequence on compact

subsets of Ω. Note that the limit of that subsequence is not necessarily is in F .

Lemma 1.4.8. If F ⊂ O(Ω), Ω is an open connected subset of C and F is uniformly

bounded on each compact subset of Ω. Then F is a normal family.

Theorem 1.4.9 (Riemann Mapping Theorem). Let Ω be a simply connected

open set in the complex plane and is not the plane itself. Then Ω is biholomorphic

with D.

Proof. Take z0 ∈ C\Ω and F as the collection of all injective holomorphic mappings

from Ω to D. Our first claim is that F is nonempty. Ω is simply connected therefore

there exists h ∈ O(Ω) in a way that h(z) = z − w0. It is a simple observation that

h is injective. Open mapping theorem now can be used to show that h(Ω) contains

a disc D(a, r) such that 0 < r < |a|. Also, there exists no z1 and z2 in Ω such that

h(z1) = −h(z2). Therefore, the disc D(−a, r) does not intersects with h(Ω) and the

function h̃ =
r

ϕ+ a
will be a member of F .

Our second claim is that if f0 ∈ F is not surjective and z1 ∈ Ω, then there exists

13



f1 ∈ F such that |f ′
1(z1)| > |f ′

0(z1)|. Assume, f0 ∈ F , w0 ∈ D and w0 ̸∈ f0(Ω).

Then Bw0 ◦ f0 ∈ F and Bw0 ◦ f0 has no zero in Ω, so we can find g ∈ O(Ω) such

that g2 = Bw0 ◦ f0. One may observe that g is injective and g ∈ F consequently. If

w1 = g(z1), define f1 = Bw1 ◦ g and let s(z) = z2. We will have

f = B−w0 ◦ s ◦ g = B−w0 ◦ s ◦B−w1 ◦ f1 (1.29)

Note that f1(z0) = 0 and let F = B−w0 ◦ s ◦Bw1 . Using the chain rule yields

f ′(z1) = F ′(0)f ′
1(z1) (1.30)

The function F has the property that F (D) ⊂ D, applying Schwarz lemma gives us

|F ′(0)| < 1, and |f ′
0(z1)| < |f ′

1| as desired.
Fix z1 ∈ Ω and let η = sup |f ′(z1)|

∣∣f ∈ F . The third claim is that we may find

f ∈ F such that |f ′(z1)| = η, existence of f finishes the proof as f has to be

surjective otherwise we will be able to find f1 such that |f ′
1(z1)| > |f ′(z1)| which is

a contradiction. As |f(z)| < 1 for every f ∈ F and z ∈ Ω, we can conclude from

lemma 1.4.8 that F is a normal family. By definition of η, there exists a sequence

{fn} in F that |f ′
n(z1)| → η and normality of F ensures us that we may find a

subsequence that is uniformly convergent on compact subsets of Ω rename {fn} to

be that subsequence. Let h be limit of {fn} by 1.2.2 h ∈ Ω and |h′(z1)| = η. As

fn(Ω) ⊂ D, we will have h(D) ⊂ D̄, but open mapping theorem shows that actually

h(Ω) ⊂ D. We should now prove that h is also injective. Fix distinct w1 and w2 in

Ω, put α = h(w1) and αn = fn(w1) for n ≥ 1. Consider D̄0 as a closed disc with

center at w2 in a way that w1 ̸∈ D̄0 and h − α is non-zero on the boundary of D0,

this is possible since the zero set of h − α has no limit point in Ω. The sequence

fn − αn converges to h − α uniformly on D̄0 they have no zeros in D0, as they are

injective and have their zero on w1, from Hurwitz’s theorem it follows that h − α

has no zero in D0, particularly h(w1) ̸= h(w2) and h ∈ F consequently.

Theorem 1.4.10. The polydisc D2 ≡ D2(0, 1) and the ball B ≡ B(0, 1) in C2 are

not biholomorphic to each other.

Proof. Assume the contrary that B and D2 are biholomorphic and F : B → D2 is a

biholomorphic map between tham. Without loss of generality we can assume that

F (0) = 0. We define

X(B, 0) = {w ∈ C2|∃ holomorphic mapping h : D → B s.t h(0) = 0, h′(0) = w}
(1.31)
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X(D2, 0) = {w ∈ C2|∃ holomorphic mapping h : D → D2 s.t h(0) = 0, h′(0) = w}
(1.32)

Then, the Jacobian matrix F ′(0) = [
∂fi
∂zj

(0)] will be a biholomorphic map (as it is

linear) betweenX(B, 0) andX(D2, 0), for if w ∈ X(B, 0) and h be the corresponding

holomorphic function such that h(0) = 0 and h′(0) = w, then (F ◦ h)(0) = 0 and

(F ◦ h)′(0) = (F ′(0))(w) (Note that det(F ′(0)) ̸= 0 as F is a biholomorphy between

B and D2) Now, the claim is that X(B, 0) = B̄ and X(D2, 0) = D̄2. Note that this

will be a contradiction as B̄ has smooth boundary and cannot be biholomorphic to

D̄2 which has edges.

To prove that X(B, 0) = B̄, take any w ∈ B̄ then g(z) = wz maps D into B and

has the properties g(0) = 0 and g′(0) = w. Therefore, B̄ ⊆ X(B, 0). On the other

hand, if w ∈ X(B, 0). Let g : D → B be such that g(0) = 0 and g′(0) = w. Take

π1 : B → {(z1, 0)| |z1| < 1} and π1(z1, z2) = z1, along with any unitary rotation σ.

The map π1 ◦σ ◦g sends D to D and 0 to 0. We may now apply Schwarz’s lemma to

conclude that |(π1 ◦ σ ◦ g)′(0)| ≤ 1 and the chain rule yields |(π1 ◦ σ)(w)| ≤ 1. Since

σ was arbitrary we will have |w| ≤ 1 as desired. Thus X(B, 0) = B̄. It remains

us to show that X(D2, 0) = D̄2. In a similar fashion to the previous part we can

show that D̄2 ⊆ X(D2, 0). Now if w ∈ X(D2, 0) and g : D → D2 be the function

such that g(0) = 0 and g′(0) = w then both π1 ◦ g and π2 ◦ g have the conditions of

applying Schwarz’s lemma. So, |π1(w)| ≤ 1 and |π2(w)| ≤ 1 i.e. w ∈ D̄2. Whence,

X(D2, 0) = D̄2 and we are done.

1.5 Bergman Kernel

Here we will assume that Ω is a bounded subset of Cd, which is not a necessity for

many of the following materials but it is a useful simplification. In this section we

will follow the approach brought in [4].

Definition 1.5.1 (Defining Function). Defining function of Ω is a C2 function ρ

such that Ω = {z ∈ Cd : ρ(z) < 0} and ∇ρ ̸= 0 on ∂Ω.

Definition 1.5.2 (Complex Tangent Vector). If P ∈ ∂Ω, w is a complex tangent

vector at P denoted by w ∈ TP (∂Ω) if
n∑
j=1

∂ρ

∂zj
(P )wj = 0.

Definition 1.5.3 (Psuedoconvexity). ∂Ω is called weakly psuedoconvex at P if for

every w ∈ TP (∂Ω) we have
d∑

j,k=1

∂2ρ

∂zj∂z̄kwjw̄k
≥ 0. It is called strongly psuedoconvex
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at P if the inequality is strict for every w ̸= 0 and w ∈ TP (∂Ω). Then Ω is a

psuedoconvex (strongly psuedoconvex) if ∂Ω is psuedoconvex (strongly psuedoconvex)

at every point P ∈ ∂Ω.

Definition 1.5.4 (Bergman Space). The Bergman space at Ω is defined as follows

A2(Ω) = {f ∈ O(Ω)
∣∣(∫

Ω

|f(z)|2dV (z))
1
2 ≡ ||f ||A2 <∞} (1.33)

Lemma 1.5.5. If K be a compact subset of Ω, C > 0 can be found in a way

sup
z∈K

≤ CK ||f ||A2(Ω) for every f ∈ A2(Ω).

Proof. Compactness of K implies that we may find r > 0 such that for every z ∈ K

B(z, r) ⊆ Ω. Then we can write that

|f(z)| = | 1

V (B(z, r))

∫
B(z,r)

f(t)dV (t)| = | 1

V (B(z, r))

∫
Cd

f(t)XB(z,r)dV (t)| ≤

1

V (B(z, r))
||f ||L2||XB(z,r)||L2 =

||f ||A2

V (B(z, r))
1
2

Lemma 1.5.6. A2(Ω) with the inherited inner product from L2 is a Hilbert space

Proof. If {fj} ⊂ A2(Ω) is a Cauchy sequence then it has a limit f in L2(Ω). By

lemma 1.5.6 fj → f uniformly on compact subsets of Ω. By a generalization of the

Weierstrass theorem (theorem 1.2.2) to several variables we have f ∈ O(Ω).

Lemma 1.5.7. For every z ∈ Ω, ϕz : f → f(z) is in the continuous dual of A2(Ω).

Proof. Put K = z in the lemma 1.5.5.

Definition 1.5.8 (Bergman Kernel). Note that if we apply Riesz Representation

Theorem to ϕz we can conclude that there exists a unique Kz ∈ A2(Ω) such that

ϕz(f) = f(z) =< f,Kz > for every f ∈ A2(Ω). We then define the Bergman Kernel

as KΩ(z, w) = Kz(w) so f(z) =
∫
Ω

KΩ(z, w)f(w)dV (w) for every f ∈ A2(Ω).

Proposition 1.5.9. KΩ(z, w) = KΩ(w, z).

Proposition 1.5.10. Bergman Kernel with the following properties is unique:

1. KΩ(z, w) is an element of A2(Ω) in z.

2. Is conjugate symmetric.

3. Reproduces A2(Ω).
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Proof. if K ′(z, w) be another such kernel then we will have

KΩ(z, w) = KΩ(w, z) =
∫
Ω

K ′(z, t)KΩ(w, t)dV (t) =
∫
Ω

KΩ(w, t)K ′(z, t)dV (t) = K ′(z, w) =

K ′(z, w)

Remark 1.5.11. A2(Ω) as a subspace of the separable Hilbert space L2(Ω) is sepa-

rable and therefore it has a countable, total orthonormal basis.

Proposition 1.5.12. If L is a compact subset of Ω and {ϕj}j∈N ⊂ A2(Ω), then
∞∑
j=1

ϕj(z)ϕj(w) converges uniformly on L× L to the Bergman Kernel.

Proof. sup
z∈L

(
∞∑
j=1

|ϕj(z)|2)
1
2 = sup

z∈L
||(ϕj(z))j∈N||l2 = sup

z∈L & ||(aj)j∈N||l2=1

|
∞∑
j=1

ajϕj(z)| =

sup
z∈L & ||f ||A2=1

|f(z)| ≤ C

So we we have
∞∑
j=1

|ϕj(z)ϕj(w)| ≤ (
∞∑
j=1

|ϕj(z)|2)
1
2 (

∞∑
j=1

|ϕj(w)|2)
1
2 ≤ C2 and it is uni-

formly convergent in L×L consequently. If put K ′(z, w) =
∞∑
j=1

ϕj(z)ϕj(w), then one

can easily check that K ′(z, w) has the three properties in the proposition 1.5.10 so

it will be equal to KΩ(z, w).

Definition 1.5.13 (Bergman Projection). The mapping PΩ(f) =
∫
Ω

KΩ(., w)f(w)dµ(w)

where f ∈ L2(Ω) is the normal projection of L2(Ω) to A2(Ω). P is called the Bergman

Projection.

Definition 1.5.14. If Ω ⊆ Cd is a domain and f : Ω → Cd is holomorphic. Take

wj = fj(z), 1 ≤ j ≤ n. We define the holomorphic Jacobian matrix of f as follows

JCf =
∂(w1, . . . , wd)

∂(z1, . . . , zd)
(1.34)

Also if, zj = xj + iyj and wj = ζj + iηj 1 ≤ j ≤ n. The real Jacobian matrix of f is

as follows

JRf =
∂(ζ1, η1, . . . , ζn, ηn)

∂(x1, y1, . . . , xn, yn)
(1.35)

Theorem 1.5.15. det JRf = | det JCf |2.

Proof. dζ1 ∧ dη1 ∧ . . . ∧ dζn . . . dηn = (det JRf ) dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn.
Also, we have

dζ1∧dη1∧. . .∧dζn . . . dηn =
1

(2i)n
dw̄1∧dw1∧. . . dw̄n∧dwn =

1

(2i)n
(det JRf )(det JRf )dz̄1∧

dz1 ∧ . . . dz̄n ∧ dzn = | det JCf |2 dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn.
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Theorem 1.5.16 (Implicit Function Theorem). If the functions fj(w, z), 1 ≤
j ≤ m are holomorphic near (w0, z0) where (w, z) ∈ Cm × Cn. Also suppose that

fj(w
0, z0) = 0 for every 1 ≤ j ≤ m and det[

∂fj
∂wk

(w0, z0)] ̸= 0. Then, for the equation

fj(w, z) = 0 a solution w(z) in a neighborhood of z0 exists which holomorphic, unique

and satisfies w(z0) = w0.

Proof. Think of this system of equation as the 2m system ℜfj(w, z) = 0 and

Im fj(w, z) = 0, then by theorem 1.5.15 determinant of Jacobian of this 2m system

is non-zero at (w0, z0). Implicit function theorem implies that there is a solution

w(z) such that w(z0) = w0 and fj(w(z), z) = 0 where w ∈ C1. Hence, we will have
m∑
k=1

∂fj
∂wk

dwk +
n∑
k=1

∂fj
∂zk

dzk. Note that as fj’s are holomorphic we do not have any

multiples of dw̄j or dz̄j, so in the previous equation we can solve for dwk in terms

of dzj and wk’s are holomorphic as desired.

Theorem 1.5.17. If Ω1 and Ω2 are domains in Cd and f : Ω1 → Ω2 is a biholo-

morphy between them. Then we will have

det JCf(z)KΩ2(f(z), f(ζ))det JCf(ζ) = KΩ1(z, ζ) (1.36)

Proof. Let ϕ ∈ A2(Ω1), then we can write that∫
Ω1

det JCf(z)KΩ2(f(z), f(ζ))det JCf(ζ)ϕ(ζ)dV (ζ) =

∫
Ω2

det JCf(z)KΩ2(f(z), ζ̃det JCf(f
−1(ζ̃))ϕ(f−1(ζ̃)) det JRf

−1(ζ̃)dV (ζ̃) = ϕ(z)

Now theorem 1.5.10 yields us the desired conclusion.

Theorem 1.5.18. For every z ∈ Ω ⊂ Cd we have KΩ(z, z) > 0.

Proof. If {ϕj}j∈N is an orthonormal basis for A2(Ω) then KΩ(z, z) =
∞∑
j=1

|ϕj(z)| and

therefore KΩ(z, z) is non-negative. Also if KΩ(z, z) = 0 for some z ∈ Ω then we will

have f(z) = 0 for every f ∈ A2(Ω) which is a contradiction.

Definition 1.5.19 (Bergman Metric). Assume that Ω ⊆ Cd is a domain and it

is bounded we define gΩ(z) =
d∑

j,k=1

gΩjk(z)dzj ∧ dz̄k =
d∑

j,k=1

∂2

∂zj∂z̄k
logKΩ(z, z)dzj ∧

dz̄k and let square length of a tangent vector ζ = (ζ1, . . . , ζd) at a point z ∈ Ω be
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|ζ|2B,z =
∑
j,k

gjk(z)ζj ζ̄k. So the length of a C1 curve γ : [0, 1] → Ω can be defined

as l(γ) =
1∫
0

(
∑
j,k

gjk(z)γ
′
j(t)γ̄

′
k(t))

1
2dt. For P and Q as two points of Ω distance

with respect to Bergman Metric dΩ(P,Q) is defined as the infimum of length of all

piecewise C1 curves which connect them. Here in this thesis, we will show the open

ball with center at ζ ∈ Ω and radius r with respect to Bergman distance by BΩ(ζ, r)

and by dVΩ we mean the volume form induced by Bergman metric or |det[gΩjk]|dµ
where µ is the Lebesgue measure.

Remark 1.5.20. [gjk(z)] is positive definite for every z ∈ Ω and therefore the

Bergman metric is well-defined.

Theorem 1.5.21. Let f : Ω1 → Ω2 be a biholomorphy where Ω1 and Ω2 are domains

in Cd. Then f is an isometry of Bergman metric between the two spaces i.e. |ζ|B,z =
|(JCf)ζ|B,f(z) for every z ∈ Ω1 and ζ ∈ Cd.

Proof. From theorem 1.5.17 we have that

gΩ1
jk =

∂2

∂zj∂z̄k
logKΩ1(z, z) =

∂2

∂zj∂z̄k
log{| det JCf(z)|2KΩ2(f(z), f(z))} =

∂2

∂zj∂z̄k
logKΩ2(f(z), f(z)) =

∑
l,m

gΩ2
l,m(f(z))

∂fl(z)

∂zj

∂fm(z)

∂z̄k

(1.37)

Where the third equality comes from the fact that

∂2

∂zj∂z̄k
log | det JCf(z)|2 =

∂2

∂zj∂z̄k
(log det JCf(z) + log det JCf(z)) = 0 (1.38)

From (1.37) the statement follows.

Theorem 1.5.22. Let Ω ⊂ Cd be a domain and z ∈ Ω, then KΩ(z, z) = sup
||f ||A2(Ω)=1

|f(z)|2.

Proof. If ϕz is the point evaluation functional at z, then the definition of Bergman

kernel and Riesz’s representation theorem imply that ||ϕz||(A2(Ω))∗ = ||Kz||A2(Ω) and

the statement follows immediately.

1.6 ∂̄-Equation and the Hörmander’s Solution

If Ω ⊆ Cd is a domain, and f is a (p, q+1) differential form on Ω ∂̄-Problem is about

finding a (p, q) form g on Ω such that ∂̄g = f . In section 1.6.1 using a result from
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unbounded operator’s theory we show that the existence of a solution can be reduced

to the problem of finding an estimate. In section 1.6.2 some technical preliminaries

brought which are necessary to understand Hörmander’s approach to the problem [5]

in case of Ω being psuedoconvex and f having L2
loc coefficients. Finally, the general

idea of Hörmander discussed in section 1.6.3.

1.6.1 Unbounded Operators on Hilbert Spaces

Definition 1.6.1. If H1 and H2 are two Hilbert spaces, D is a dense subset of H1

and T : D → H2 is a linear operator which is not necessarily bounded. We call T a

densely defined operator from H1 to H2 and write that T : H1 → H2. We also show

the domain of T by DT .

Definition 1.6.2. A linear operator T : H1 → H2 is called closed if its graph

GT = {(x, Tx)
∣∣x ∈ DT} ⊆ H1 ×H2 is a closed set.

Definition 1.6.3. If T : H1 → H2 is a linear operator, We say ψ ∈ H2 is in the

domain of the adjoint of T and show by ψ ∈ DT ∗ if there exists a constant C > 0

which only depends on ψ such that

| < Tϕ, ψ >H2 | ≤ C||ϕ||H1 ∀ϕ ∈ DT (1.39)

Theorem 1.6.4. If ψ ∈ DT ∗, then there exists a unique member of H1 named T ∗ψ

such that

< Tϕ, ψ >H2=< ϕ, T ∗ψ >H1 ∀ϕ ∈ DT (1.40)

Proof. By the definition of DT ∗ the functional ϕ 7→< Tϕ, ψ >H2 is densely defined

and bounded, so we can extend it to a unique continuous linear functional on H1.

Riesz representation theorem ensures us that a unique member ofH1 with the desired

property for T ∗ψ exists.

Definition 1.6.5. If H1 and H2 are two Hilbert spaces we equip H1 ×H2 with the

inner product < (h1, h2), (h
′
1, h

′
2) >H1×H2=< h1, h

′
1 >H1 + < h2, h

′
2 >H2 and with

this definition H1 ×H2 will be a Hilbert space.

Definition 1.6.6. We define J : H2 × H1 → H1 × H2 with J(h2, h1) = (−h1, h2).
One can easily show that J and J−1 map closed space to closed spaces.

Theorem 1.6.7. If T : H1 → H2 is a linear operator, then (GT )⊥ = J(GT ∗).
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Proof. If (−T ∗y, y) ∈ J(GT ∗), (x, Tx) ∈ GT , then< (−T ∗y, y), (x, Tx) >=< −T ∗y, x >

+ < y, Tx >= 0 so J(GT ∗) ⊆ (GT )⊥. Conversely ,if (a, b) ∈ (GT )⊥, then for

any x ∈ DT we have 0 =< (a, b), (x, Tx) >=< a, x > + < b, Tx >. So | <
b, Tx > | = | < a, x > | ≤ ||a||||x|| and b ∈ DT ∗ consequently and we can write

that 0 =< a, x > + < b, Tx >=< a + T ∗b, x > or simply T ∗b = −a, therefore
(a, b) ∈ J(GT ∗).

Corollary 1.6.8. T ∗ is a closed operator.

Lemma 1.6.9. Let T : H1 → H2 be a closed densely defined operator and F ⊆ H2

be a closed subspace such that RangeT ⊆ F . Moreover, assume that DT ∗ is dense.

Then F = RangeT if and only if a constant C > 0 exists such that

||y||H2 ≤ C||T ∗y||H1 ∀y ∈ F ∩DT ∗ (1.41)

Proof. If (1.41) holds. Assume z ∈ F , if w ∈ T ∗(F ∩DT ∗) and w = T ∗y, we define

ϕ(w) =< y, z >. ϕ will be bounded on T ∗(F ∩ DT ∗) by C||z||. By Hahn-Banach

theorem we can extend ϕ to all of H2 and by Riesz representation theorem it has a

unique representative x. Therefore, < y, z >H2= ϕ(w) =< w, x >H1=< T ∗ y, x >H1

for every y ∈ F ∩DT ∗ . By closedness of T , we may write T ∗∗ = T so z = Tx. On the

other hand, if F = RangeT then we set for each z ∈ F an xz ∈ H1 such that Txz = z.

So for any f ∈ F ∩DT ∗ we have | < f, z >H2 | = | < f, Txz >H2 | = | < T ∗f, xz >H1

| ≤ ||T ∗f ||H1 ||xz||H1 . Therefore, if we think of the set F ∩DT ∗ ∩ f ∈ H2

∣∣||T ∗f || ≤ 1

as linear functionals on H2 the uniform boundedness principle yields that y satisfies

(1.41).

1.6.2 Technical Preliminaries

Definition 1.6.10. If Ω ⊂ Cd and p, q are two integers from 0 to 1 then L2
(p,q)(Ω)

is the space of (p, q) forms on Ω with L2(Ω) coefficients. If f ∈ L2
(p,q)(Ω) we write

that

f =
∑

|I|=p,|J |=q

fIJdz
I ∧ dz̄J (1.42)

The sum is taken over increasing multi-indices I, J . We also define the inner prod-

uct of two members f and g to be < f, g >=
∑
I,J

∫
Ω

fIJ ḡIJdV . L2
(p,q)(Ω) with this

inner product will be a Hilbert space. Also if ϕ : Ω → R is a continuous function

then L2
(p,q)(Ω, ϕ) is the space of (p, q) forms with square integrable coefficients in the

measure e−ϕdV .
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Definition 1.6.11. If Ω ⊂ Cd ,D = (
∂

∂z
)I(

∂

∂z̄
)J and f, g ∈ L1(Ω). We say that

Df = g in the weak sense (or weakly in the sense of distributions) if for all ϕ ∈ C∞
c

we have
∫
Ω

fDϕdV = (−1)|I|+|J | ∫
Ω

gϕdV .

If Ω ⊆ Cd is a domain,H1 = L2
(p,q)(Ω, ϕ1),H2 = L2

(p,q+1)(Ω, ϕ2)H3 = L2
(p,q+2)(Ω, ϕ3),

T ≡ ∂̄ : H1 → H2, S ≡ ∂̄ : H2 → H3 and F = kerS ⊆ H2. Also, f ∈ DT means

that f ∈ H1 and ∂̄f exists in the weak sense. We will prove that if ϕ1, ϕ2, ϕ3 are

chosen properly and Ω is psuedoconvex we have C > 0 such that.

||f ||2H2
≤ C2{||T ∗f ||2H1

+ ||Sf ||2H3
} ∀f ∈ DT ∗ ∩DS (1.43)

Note that this means that f also satisfies (1.41) whenever f ∈ DT ∗ ∩ F and by

lemma 1.6.9 F = kerS is exactly the set for its members f the equation ∂̄g = f has

a solution g ∈ DT . Lemma 1.6.15 simplifies the existence problem even further as

it proves for suitably chosen ϕi i = 1, 2, 3 it is enough to prove that the inequality

(1.41) holds whenever f ∈ D(p,q+1)(Ω).

Lemma 1.6.12. Consider X to be a function in C∞
0 (RN) such that

∫
XdV = 1 and

Xϵ(x) = ϵ−NX (x/ϵ), x ∈ RN . If g ∈ L2(RN) then g ∗ Xϵ(x) =
∫
g(y)Xϵ(x− y)dy =∫

g(x − ϵy)Xϵ(y)dy is a C∞ in a way that ||g ∗ Xϵ − g||L2 → 0 whenever ϵ → 0.

Distance of the support of g ∗ Xϵ from the support of g is not greater than ϵ if the

support of X is inside B(0, 1).

Lemma 1.6.13. if f =
∑

|I|=p,|J |=q+1

fIJdz
I ∧ dz̄J ∈ DT ∗ then

T ∗f = (−1)p−1
∑

|I|=p,|K|=q

n∑
j=1

eϕ1
∂(e−ϕ2fI,jK)

∂zj
dzI ∧ dz̄K (1.44)

Where fI,jK =
∑

|J |=q+1

fIJϵ
J
jk and ϵJjk is the sign of permutation between J and jK if

it exists and 0 otherwise.

Corollary 1.6.14.

eϕ2−ϕ1T ∗f =

(−1)p−1
∑

|I|=p,|K|=q

n∑
j=1

∂fI,jK
∂zj

dzI ∧ dz̄K−

(−1)p−1
∑

|I|=p,|K|=q

n∑
j=1

∂ϕ2

∂zj
fI,jKdz

I ∧ dz̄K

≡ T ∗f +Af

(1.45)
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Where A is an operator obtained by multiplication to a C∞ function and T ∗ is a

first order partial differential operator.

Lemma 1.6.15. Let ηm m ∈ N be a sequence in C∞
0 (Ω) in a way that 0 ≤ ηm ≤ 1

and ηm = 1 on any compact subset of Ω when m is large enough and each ηm has

compact support. Assume that ϕ2 ∈ C1(Ω) and that e−ϕj+1

n∑
k=0

|∂ηm
∂z̄k

|2 ≤ e−ϕj j =

1, 2; m ∈ N. Then D(p,q+1)(Ω) is dense in DT ∗ ∩DS with the graph norm ||f ||G =

||f ||H2 + ||T ∗f ||H1 + ||Sf ||H3.

Proof. If f ∈ DS then S(ηmf)− ηmSf = ∂̄ηm ∧ f by using the assumption we have

eϕ3|S(ηmf)−ηmSf |2 ≤ |f |2e−ϕ2 . Now the dominated convergence theorem combined

with the fact that ηm = 1 whenm is large enough yield that ||S(ηmf)−ηmSf ||H3 → 0

wheneverm→ 0. Now we claim that if f ∈ DT ∗ and η ∈ C∞
0 (Ω) then ηf ∈ DT∗ as we

have < ηf, Tu >H2=< f, T (η̄u) >H2 + < f, η̄Tu− T (η̄u) >H2=< ηT ∗f, u >H1 + <

ηf,−∂̄∧u >H2 where u ∈ DT and the second equality tells us that < ηf, Tu >H2 can

be written in form of a anti-linear functional in terms of u which is continuous with

respect to the norm ||u||H1 so by Riesz representation theorem there exists a v ∈ H1

such that < v, u >H1=< ηf, Tu >H2 and the claim is proved. Using the fact we just

proved we can write that < T ∗(ηmf) − ηmT
∗f, u >H1=< f, η̄mTu − T (η̄mu) >H2

and again by using the lemma’s assumption | < T ∗(ηmf) − ηmT
∗f, u >H1 | ≤∫

|f |e−ϕ2/2|u|e−ϕ1/2dV and consequently |T ∗(ηmf) − ηmT
∗f |2e−ϕ1 ≤ |f |2e−ϕ2 . By

applying the dominated convergence theorem again we reach to the conclusion that

||T ∗(ηmf) − ηmT
∗f ||H1 → 0 as m → ∞. Therefore if f ∈ DT ∗ ∩ DS ηmf → f in

the graph norm, note that this means that to prove the statement we only need to

prove that for every f ∈ DT ∗ ∩ DS with compact support we can find a sequence

fn of members of D(p,q+1) which is convergent to f in the graph norm. So let

f ∈ DT ∗ ∩ DS and have compact support, define fn = f ∗ X 1
n
as in lemma 1.6.12

by performing the convolution on each coefficient of f . Lemma 1.6.12 also tells

us that for large enough n support of all fn’s lie in a fixed compact set and so

||f − fn||H2 → 0. Also it is easy to check that Sfn = (Sf) ∗ X 1
n
and therefore

||Sf − Sfn|| → 0 as n → ∞. With the notation of equation (1.45) it is easy to

show that (T ∗+A)fn = (T ∗+A)f ∗X 1
n
+Afn− (Af) ∗X 1

n
but the right hand side

converges to (T ∗ + A)f as n → ∞ and ||T ∗fn − T ∗f ||H1 → 0 consequently which

means that fn → f in the graph norm and the proof is complete.

Remark 1.6.16. If we let ψ ∈ C∞ to be such that |∂̄ηm|2 ≤ eψ for all m ∈ N then

for any choice of ϕ ∈ C∞, ϕ1 = ϕ− 2ψ, ϕ1 = ϕ− ψ, ϕ3 = ϕ satisfy conditions of the

lemma 1.6.15.
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1.6.3 Hörmander’s Existence Theorem

Based on what we have proved in the last section we only need to find a proper

choice for ϕ which we can show the existence of solution for the ∂̄-Problem. Here

the main idea is that for a psuedoconvex domain we can find such a ϕ.

Lemma 1.6.17. If Ω ⊂ Cd is a psuedoconvex domain then a C∞, ϕ : Ω → R exists

in a way that
d∑

j,k=1

∂2ϕ

∂zj ∂̄
wjw̄k ≥ 2(|∂̄|2 + eψ)

d∑
j=1

|wj|2 for every w ∈ Cd.

Lemma 1.6.18. For a psuedoconvex Ω ⊆ Cd if we choose ϕ as in lemma 1.6.17

and ψ, ϕ1, ϕ2, ϕ3 as in the remark 1.6.16 then for every f ∈ D(p, q + 1)(Ω) we have

||f ||2H2
≤ C(||T ∗f ||2H1

+ ||Sf ||2H3
) where C is a positive constant.

Theorem 1.6.19. Let f be a (p, q+1) form with L2
loc coefficients satisfying ∂̄f = 0

in the weak sense, then a (p, q) form u on Ω with L2
loc coefficient exists in a way that

∂̄u = f in the weak sense.

Proof. It implies from the assumptions of the theorem that ϕ̃ : Ω → R exists in a

way that f ∈ L2
(p,q+1)(Ω, ϕ̃). We can find a ϕ with the condition of the lemma 1.6.17

and large enough such that ϕ− ψ ≥ ϕ̃, where in the notation of remark 1.6.16 this

means that f ∈ L(p, q+1)2(Ω, ϕ2) as well. Applying lemmas 1.6.18 and 1.6.9 we can

find a solution u ∈ L2
(p,q)(Ω, ϕ1) to the problem which also means that coefficients of

u are in L2
loc as well.
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Chapter 2

Hankel Operators on Domains

with Bounded Intrinsic Geometry

Domains with bounded intrinsic are first introduced to the literature by A. Zimmer

in [6], later in [7] he derived a necessary and sufficient condition on the symbol

function for compactness of the Hankel operator. Here we brought an explanatory

review of this work.

2.1 Preliminaries

Definition 2.1.1 (Approximate Inequalities). Consider f, g : Ω → R, we denote
f ≲ g or equivalently g ≳ f if a constant C > 0 exists such that f(z) ≤ Cg(z) for

every z ∈ Ω. Also if f ≳ g and g ≳ f we will write f ≍ g.

Definition 2.1.2 (Levi form). Assume that Ω is a domain in Cn and f : Ω → R
is C2. Levi form of f would be defined as follows

L(f) =
n∑

j,k=1

∂2f

∂zj∂z̄k
dzj ∧ dz̄k (2.1)

Remark 2.1.3. f is plurisubharmonic if L(f) is a semi-positive (1, 1) form.

Remark 2.1.4. It implies from the definition that L(logKΩ(z, z)) = gΩ.

Definition 2.1.5 (Functions with Self Bounded Gradient). We say that a C2

plurisubharmonic function λ : Ω → R has self bounded gradient if ||∂λ(z)||L(λ(z)) =
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sup{|(∂λ(z))(X)|
∣∣X ∈ Cd,L(λ(z))(X,X) ≤ 1} is uniformly bounded on Ω. Or

equivalently, there exists a constant C > 0 such that |
d∑
j=1

∂λ

∂zj
Xj|2 ≤ C

d∑
j,k=1

∂2λ

∂zj∂z̄k
XjX̄k

for all X ∈ Cd.

Definition 2.1.6 (Hankel Operator). For Ω ⊂ Cd being a bounded domain

and ϕ ∈ L2(Ω) as the symbol function its associated Hankel operator is defined

as Hϕ(f) = ϕ.f −PΩ(ϕ.f) = (i−PΩ)(ϕ.f) where f ∈ dom(Hϕ) = {f ∈ A2(Ω)
∣∣ϕ.f ∈

L2(Ω)}.

Definition 2.1.7 (Domain with Bounded Intrinsic Geometry). Domain Ω ⊂
Cd is called a domain with bounded intrinsic geometry if there exists Kahler metric

g on it such that

1. g has bounded sectional curvature and positive injectivity radius.

2. There exists λ : Ω → R which is C2, its Levi form is bi-Lipschitz to g and

||∂λ||g is bounded on Ω.

The following theorem is an immediate corollary of the theorem 4.5 of [8] and

the definition of a domain with bounded intrinsic geometry.

Theorem 2.1.8. Assume that Ω ∈ Cd is bounded domain with bounded intrinsic

geometry, then one may find C > 0 such that for plurisubharmonic ϕ2 : Ω →
{−∞}∪R and α ∈ L2,loc

(0,1)(Ω) with ∂̄α = 0, u ∈ L2,loc(Ω) exists such that ∂̄u = α and∫
Ω

|u|2e−ϕ2dµ ≤ C

∫
Ω

||α||2gΩe
−ϕ2dµ < +∞ (2.2)

Theorem 2.1.9. Assume that Ω ∈ Cd is a bounded domain having bounded intrinsic

geometry. Then for every r > 0 we can find a sequence (ζm)m∈N in Ω such that:

(1) If i ̸= j then dΩ(ζi, ζj) ≥ r.

(2) Ω =
⋃
m∈N

BΩ(ζm, r).

(3) For any R > 0 we have sup
z∈Ω

#{m
∣∣ζm ∈ BΩ(z,R)} < +∞.

We will accept the following theorem, which is a deep result of combining [9],[10]

and theorem 3.2 of [6], without proof.

Theorem 2.1.10. Assume that Ω ∈ Cd is a bounded domain with bounded intrinsic

geometry and ζ ∈ Ω an embedding Nζ : B → Ω exists which is holomorphic in a way

that Nζ(0) = ζ and gEUC ≍ N∗
ζgΩ on B.
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Corollary 2.1.11. C1 > 0 exists such that BΩ(ζ,
r

C1

) ⊂ Nζ(rB) ⊂ BΩ(ζ, C1r)

whenever r <
1

C1

.

Theorem 2.1.12. The function βζ : B × B → C, with the definition βζ(u,w) =

KΩ(Nζ(u),Nζ(w)) detN
′
ζ(u)detN

′
ζ(w) has the following properties.

(1) C2 > 1 exists in a way that
1

C2

≤ βζ(w,w) ≤ C2 whenever ζ ∈ Ω and w ∈ B.
(2) For every 0 < δ < 1 and multi-indices I, J there exists Cδ,I,J > 0 in a way that

|∂
|I|+|J |βζ(u,w)

∂uI∂w̄J
| ≤ Cδ,I,J for all ζ ∈ Ω and u,w ∈ δB.

Theorem 2.1.13. There exists r0 > 0 and C3 > 1 such that, if ζ ∈ Ω and z ∈
Nζ(r0B) then

1

C3

KΩ(z, z)KΩ(ζ, ζ) ≤ |KΩ(z, ζ)|2 ≤ C3KΩ(z, z)KΩ(ζ, ζ).

Proof. From the first part of the theorem 2.1.12 we have that

1

C2

≤ βζ(u, u) ≤ C2

For all u ∈ B and u = 0 in particular. Also fixing 0 < δ < 1 we will have

|∂βζ
∂u

(u, 0)| < K when u ∈ δB for some K > 0 which only depends on δ, as a

result of second part of theorem 2.1.12. Then for r0 < δ and u ∈ r0B we can write

that
1

C2

− r0K < |βζ(u, 0)| < C2 + r0K. So an appropriate choice of r0 will lead us

to the inequality
1

2C2
2

≤ |βζ(u, 0)|2 ≤ 2C2
2 u ∈ r0B

Now let z = Nζ(u) where u ∈ r0B, we can write that

|KΩ(z, ζ)|2 = |βζ(u, 0)|2| detN′
ζ(u)|−2| detN′

ζ(0)|−2

Now the choice of 2C4
2 for C3, yields us the desired result.

Theorem 2.1.14. Let u : Ω → [0 ∞) is such that log(u) is plurisubharmonic and

r < C1, then there exists C4 such that u(ζ) ≤ C4

r2n
KΩ(ζ, ζ)

∫
B(ζ,r)

udµ for all ζ ∈ Ω.

Proof. By theorem 2.1.10 we have that Nζ(
r
C1
B) ⊂ BΩ(ζ, r), therefore∫

r
C1

B

(u ◦Nζ)(w)| detN′
ζ(w)|2dµ(w) ≤

∫
BΩ(ζ,r)

udµ
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Plurisubharmonicity of log(u) along with holomorphicity of Nζ now tells us that

log(u)◦Nζ+log | detN′
ζ |2 is plurisubharmonic so is its exponential (u◦Nζ).| detN′

ζ |2.
Mean-value theorem now can be used to deduce that

u(ζ)| detN′
ζ(0)|2 ≤

C2n
1

r2nµ(B)

∫
BΩ(ζ,r)

udµ

Now by theorem 2.1.12 we will have:

u(ζ) ≤ C2n
1 C2

r2nµ(B)
KΩ(ζ, ζ)

∫
BΩ(ζ,r)

udµ

And therefore C4 =
C2n

1 C2

µ(B)
works for our purpose.

Theorem 2.1.15. For r < C1 and ζ ∈ Ω we have∫
Ω

|KΩ(z, ζ)|2dµ(z) ≤
C4

r2n

∫
BΩ(ζ,r)

|KΩ(z, ζ)|2dµ(z)

Proof. In theorem 2.1.14 let u = |KΩ(., ζ)|2 and note thatKΩ(ζ, ζ) =
∫
Ω

|KΩ(z, ζ)|2dµ(z).

Theorem 2.1.16. For every z ∈ Ω we have KΩ(z, z)dµ(z) ≍ dVΩ(z) i.e we can find

C5 > 1 such that

1

C5

KΩ(z, z)dµ(z) ≤ dVΩ(z) ≤ C5KΩ(z, z)dµ(z)

for all z ∈ Ω.

Proof. Theorem 2.1.10 implies that

1

C2d
1

≤ | det [(N∗
ψgΩ)]| ≤ C2d

1

And
1

C2d
1

| detN′
ψ(0)|−2 ≤ | det [(N∗

ψgΩ)]| ≤ C2d
1 | detN′

ψ(0)|−2

Now if we let C5 = C2d
1 C2 by theorem 2.1.12 we will have

1

C5

KΩ(z,z)dµ(z) ≤ dVΩ(z) ≤ C5KΩ(z,z)dµ(z)

as desired.
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Definition 2.1.17. Let Ω ⊆ Cd for every ζ ∈ Ω we define sζ(z) =
1√

KΩ(ζ, ζ)
KΩ(z, ζ).

Note that sζ ∈ A2(Ω) and ||sζ ||2 = 1.

Theorem 2.1.18. If ζm → ∂Ω, then sζm converges locally uniformly to the zero

function.

Proof. Let {ϕj} be an orthonormal basis for A2(Ω) then by Holder’s inequality and

1.5.12 we may write that

||sζm(z)|| ≤ (
∞∑
j=0

|ϕj(z)|2)
1
2 =

√
KΩ(z, z) ∀z ∈ Ω

Applying Montel’s theorem we may pass to a subsequence sζm locally uniformly

convergent to a holomorphic function f . Let us assume that f is nonzero. Fatou’s

Lemma implies that
∫
Ω

|f |2dµ ≤ 1. Let Km be a sequence of compact sets in Ω in a

way that
∫
Km

|f |2dµ →
∫
Ω

|f |2dµ again by passing to a subsequence of {sζm} we may

assume that
∫
lim
Km

|sζm − f |2dµ = 0 so we will have

lim sup
m→∞

||sζm−f ||2 = lim sup
m→∞

||(sζm−f)XΩ\Km ||2 ≤ ||sζmXΩ\Km||2+||fXΩ\Km||2 = 1−||f ||2

Choosing r < C1, we may apply theorem 2.1.14 on |f |2 to write that

|f(ζm)| ≤
C4

r2d

√
KΩ(ζm, ζm)(

∫
B(ζm,r)

|f |2dµ)
1
2 ∀m ≥ 1

As the Bergman metric is proper and ζm → ∂Ω for any compact K ⊂ Ω the set

BΩ(ζm, r) ∩K will be empty for large enough m, hence lim
m→∞

∫
BΩ(ζm,r)

|f |2dµ = 0 and

lim
m→∞

|f(ζm)|√
KΩ(ζm, ζm)

= 0. This means that for large m we have ||hm(ζm)||2 < 1 and

|hm(ζm)| >
√
KΩ(ζm, ζm) which is a contradiction due to the theorem 1.5.22.

Definition 2.1.19. Let ϕ ∈ L2(Ω), we define the multiplication operator Mϕ as

Mϕ(f) = ϕ.f . Note that its domain would be dom(Mϕ) = {f ∈ A2(Ω) : ϕ.f ∈
L2(Ω)}.

2.2 Multiplication Operator

Theorem 2.2.1. Let Ω ⊂ Cd be a domain with bounded intrinsic geometry and

ϕ ∈ L2(Ω). Then:
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1. The following are equivalent:

(a) ∃r > 0 such that sup
ζ∈Ω

∫
BΩ(ζ,r)

|ϕ|2dVΩ < +∞

(b) dom(Mϕ) = A2(Ω)andMϕ : A
2(Ω) → L2(Ω) is bounded.

2. The following are equivalent:

(a’) ∃r > 0 such that lim
ζ→∂Ω

∫
BΩ(ζ,r)

|ϕ|2dVΩ = 0

(b’) dom(Mϕ) = A2(Ω)andMϕ : A
2(Ω) → L2(Ω) is compact.

Proof.

(i) (b′) ⇒ (a′):

By theorems 2.1.13 and 2.1.16 every ζ ∈ Ω we can find r > 0 and C > 0 such

that
1

C
dVΩ ≤ |sζ |2dµ ≤ CdVΩ

on BΩ(ζ, r). Let ζm be a sequence such that ζm → ∂Ω and

lim
m→∞

∫
BΩ(ζm,r)

|ϕ|2dVΩ = lim sup
ζ→∂Ω

∫
BΩ(ζ,r)

|ϕ|2dVΩ

By theorem 2.1.18 sζm converges locally uniformly to 0, so it converges weakly

to 0. By compactness of Mϕ we may conclude that

lim
m→∞

∫
Ω

|ϕ.sζm|2dµ = 0

And

lim
m→∞

∫
BΩ(ζm,r)

|ϕ|2dVΩ ≤ C lim
m→∞

∫
Ω

|ϕ.sζm|2dµ = 0

As desired

(ii) (b) ⇒ (a):

Let ζm be a sequence such that

lim
m→∞

∫
BΩ(ζm,r)

|ϕ|2dVΩ = sup
ζ∈Ω

∫
BΩ(ζ,r)

|ϕ|2dVΩ
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By a similar argument from the previous part we have

lim
m→∞

∫
BΩ(ζm,r)

|ϕ|2dVΩ ≤ C lim
m→∞

∫
Ω

|ϕ.sζm |2dµ <∞

As Mϕ is bounded and ||sζm||2 = 1 for all m ≥ 1.

(iii) (a) ⇒ (b):

Let f ∈ A2(Ω) and {ζm} be a sequence of distinct points in Ω satisfying

conditions in 2.1.9 i.e.

(1) If i ̸= j then dΩ(ζi, ζj) ≥ r.

(2) Ω =
⋃
m∈N

BΩ(ζm, r).

(3) L = sup
z∈Ω

#{m : ζm ∈ BΩ(z, 2r)} < +∞.

If we apply 2.1.14 on |f |2 we will have that for z ∈ BΩ(ζm, r)

|f(z)|2 ≲ KΩ(z, z)

∫
BΩ(z,r)

|f |2dµ ≲ KΩ(z, z)

∫
BΩ(ζm,2r)

|f |2dµ

Theorem 2.1.16 implies:∫
BΩ(ζm,r)

|ϕ.f |2dµ ≲ (

∫
BΩ(ζm,r)

|ϕ|2KΩ(z, z)dµ)(

∫
BΩ(ζm,2r)

|f |2dµ) ≲

(

∫
BΩ(ζm,r)

|ϕ|2dVΩ)(
∫

BΩ(ζm,2r)

|f |2dµ) ≲ (

∫
BΩ(ζm,2r)

|f |2dµ)

Therefore∫
lim
Ω

|ϕ.f |2dµ ≲
∑

lim
m

∫
BΩ(ζm,r)

|ϕ.f |2dµ ≲
∑

lim
m

∫
BΩ(ζm,2r)

|f |2dµ ≤ L

∫
Ω

|f |2dµ

So dom(Mϕ) = A2(Ω) and MN is bounded

(iv) (a′) ⇒ (b′):

Let {fn} be a sequence of weakly convergent to 0 unit vectors in A2(Ω). We

will show that Mϕ(fn) converges strongly to 0 which is a sufficient condition

for compactness of Mϕ. Same as the previous part we may take a sequence

{ζm} of distinct points in Ω such that:
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(1) If i ̸= j then dΩ(ζi, ζj) ≥ r.

(2) Ω =
⋃
m∈N

BΩ(ζm, r).

(3) L = sup
z∈Ω

#{m : ζm ∈ BΩ(z, 2r)} < +∞.

Here note that ζm → ∂Ω as a consequence of above properties. By a similar

argument to the previous part∫
BΩ(ζm,r)

|ϕ.fn|2dµ ≲ (

∫
BΩ(ζm,r)

|ϕ|2dVΩ)(
∫

BΩ(ζm,2r)

|fn|2dµ)

Given ϵ > 0, as lim
ζ→∂Ω

∫
BΩ(ζ,r)

|ϕ|2dVΩ = 0 we may find M > 0 such that

∫
BΩ(ζm,r)

|ϕ|2dVΩ < ϵ ∀m > M

{fn} converges to 0 weakly so it does converge to 0 locally uniformly as well.

This allows us to write

lim
n→∞

∑
m≤M

∫
BΩ(ζm,2r)

|fn|2dµ = 0

So

lim sup
n→∞

∫
Ω

|ϕ.fn|2dµ ≤ lim sup
n→∞

∫
BΩ(ζm,r)

|ϕ.fn|2dµ ≲

lim sup
n→∞

∑
m

(

∫
BΩ(ζm,r)

|ϕ|2dVΩ)(
∫

BΩ(ζm,r)

|fn|2dµ)

= lim sup
n→∞

∑
m>M

(

∫
BΩ(ζm,r)

|ϕ|2dVΩ)(
∫

BΩ(ζm,r)

|fn|2dµ) ≤ lim sup
n→∞

∑
m>M

ϵ(

∫
BΩ(ζm,r)

|fn|2dµ) ≤ ϵL.

So Mϕ(fn) strongly converges to 0 as desired.

2.3 Hankel Operator with C1-Smooth Symbol

Theorem 2.3.1. Let Ω ⊂ Cd be a domain with bounded intrinsic geometry and

ϕ ∈ C(Ω) ∩ S(Ω) then:
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(1) If r > 0 exists in a way that

sup
ζ∈Ω

∫
BΩ(ζ,r)

||∂̄ϕ||2gΩdVΩ < +∞

Hϕ extends to a bounded operator on A2(Ω).

(2) If there exists r > 0 such that

lim
ζ→∂Ω

∫
BΩ(ζ,r)

||∂̄ϕ||2gΩdVΩ = 0

Hϕ extends to a compact operator on A2(Ω).

Proof. Define M : A2(Ω) → L2(Ω) as M(f) = ||∂̄ϕ||gΩ .f . Let f ∈ dom(Hϕ) it

follows from the definition that

||Hϕ(f)||2 = min
h∈A2(Ω)

||fϕ− h||2

Theorem 2.1.8 also implies that C > 0 and some u ∈ L2(Ω) exist such that ∂̄u = f∂̄ϕ

and ∫
Ω

|u|2dµ ≤ C

∫
Ω

|f |2||∂̄ϕ||2gΩ = C||M(f)||22

Take h = fϕ− u ∈ A2(Ω) we may write that

||Hϕ(f)||2 ≤ ||fϕ− h||2 = ||u||2 ≤
√
C||M(f)||2

And the result follows immediately using theorem 2.2.1.

2.4 Hankel Operator

Theorem 2.4.1. Let Ω ⊂ Cd be a bounded domain with bounded intrinsic geometry

and ϕ ∈ S(Ω). Then the following are equivalent:

(1) Hϕ extends to a compact operator

(2) There exists r > 0 such that:

lim inf
ζ→∂Ω

{
∫

BΩ(ζ,r)

|ϕ− h|2dVΩ : h ∈ O(BΩ(ζ, r))} = 0
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Proof. (i) (1) ⇒ (2): Let {ζm} be a sequence converging to ∂Ω. Theorem 2.1.18

implies that sζm converges weakly to zero. Hϕ is compact so

lim
m→∞

||Hϕ(sζm)|| = 0

Theorem 2.1.13 ensures us that we can find r > 0 and C > 1 in a way that

for every ζ ∈ Ω and z ∈ BΩ(ζ, r) we have

1

C
|KΩ(z, ζ)|2 ≤ KΩ(z, z)KΩ(ζ, ζ) ≤ C|KΩ(z, ζ)|2

Perhaps by increasing C and using theorem 2.1.16 we may also assume that

on every BΩ(ζ, r).
1

C
dVΩ ≤ |sζ(z)|2dµ ≤ CdVΩ

So we may conclude that sζm is non-vanishing on BΩ(ζm, r). As dom(Hϕ)

is dense in A2(Ω) for all m we may find a sequence {fm,k}k∈N in dom(Hϕ)

converging to sζm . We can also choose km such that

1

C
|fm,km| ≤ |sζm| ≤ C|fm,km|

as sζm is non-vanishing on BΩ(ζm, r). So by changing km to a larger enough

value we can also assume that

lim
m→∞

||Hϕ(fm,km)||2 = 0

Put fm = fm,km . The function hm = f−1
m PΩ(ϕfm) would be in O(BΩ(ζm, r)).

Now we may write that

lim
m→∞

∫
BΩ(ζm,r)

|ϕ− hm|2dVΩ = lim
m→∞

∫
BΩ(ζm,r)

|ϕfm − Pm(ϕfm)|2|fm|−2dVΩ ≤

lim
m→∞

C2

∫
BΩ(ζm,r)

|Hϕ(fm)|2dµ ≤ lim
m→∞

C2||Hϕ(fm)||22 = 0

as desired.

(ii) (2) ⇒ (1):

(I) Step 1: Let C1 and Nζ be as in theorem 2.1.10. If r1 <
r

C2
1

by theorem

2.1.9 we may find a sequence {ζm} of distinct points in Ω such that

(1) If i ̸= j then dΩ(ζi, ζj) ≥ r1.
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(2) Ω =
⋃
m∈N

BΩ(ζm, r1).

(3) L = sup
z∈Ω

#{m : ζm ∈ BΩ(z, 3r/2)} < +∞.

By completeness of Bergman Metric we have ζm → ∂Ω. So for each m

there exists hm ∈ O(BΩ(ζm, r)) such that

lim
m→∞

ϵm = lim
m→∞

∫
BΩ(ζm,r)

|ϕ− hm|2dVΩ = 0

Assume that X : B → [0, 1] is a smooth function with compact support in

a way that X ≡ 1 on C1r1B and supp(X ) ⊂ r

C1

B. Define Xm = X ◦N−1
ζm
.

By theorem 2.1.10 we have

B(ζm, r1) ⊂ Nζm(C1r1B) ⊂ X−1
m

supp(Xm) ⊂ Nζm(
r

C1

B) ⊂ BΩ(ζm, r)

It also implies

||∂̄Xm||gΩ = ||∂̄Xm||N∗
ζgΩ

≤ C1||∂̄X||2 ≲ 1

Defining X̂m =
1∑

n

Xn

Xm we have

||∂̄X̂m||gΩ = || 1∑
n

Xn

∂̄Xm−
Xm

(
∑
n

Xn)2

∑
n

∂̄Xn||gΩ ≤ (L+1) sup
n≥1

||∂̄Xn||gΩ ≲ 1

Now let ϕ1 =
∑
m

X̂mhm and ϕ2 = ϕ− ϕ1.

(II) Step 2: We claim that lim
ζ→∂Ω

∫
min

|ϕ2|2dVΩ = 0. Note that by 2.2.1 this

means that

(1) dom(Mϕ2) = A2(Ω) and Mϕ2 is a compact operator

(2) dom(Hϕ2) = A2(Ω) and Hϕ2 is a compact operator

(3) dom(Hϕ1) = dom(Hϕ)

Take ζ ∈ Ω and let {m1, . . . ,mk} = {m : supp(Xm) ∩ BΩ(ζ, r/2) ̸= ∅} ⊂
{m : ζm ∈ BΩ(ζ, 3ζ/2)}. Note that k has to be less than or equal to L.

So ∫
BΩ(ζ,r/2)

|ϕ2|2dVΩ =

∫
BΩ(ζ,r/2)

|
k∑
j=1

ˆXmj
(ϕ− hmj

)|2dVΩ

≤
k∑
j=1

∫
BΩ(ζmj ,r)

|ϕ− hmj
|2dVΩ ≤ Lmax{ϵm : ζ ∈ supp(ζm)}

And the claim follows immediately.
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(III) Step 3: Let r2 <
r

2
be small enough such that if w ∈ supp(X ) then

B(w,C1r2) ⊂ 1

C1

B. Now the claim is that if ζ ∈ supp(Xn) ∩ supp(Xm)

then ∫
BΩ(ζ,r2)

|hn − hm|2dVΩ ≤ ϵm + ϵn

For ζ ∈ supp(Xn) ∩ supp(Xm) we have

BΩ(ζ, r2) ⊂ BΩ(ζn, r) ∩ BΩ(ζm, r)

So∫
BΩ(ζ,r2)

|hn−hm|2dVΩ ≤
∫
BΩ(ζ,r2)

|hn−f |2dVΩ+
∫
BΩ(ζ,r2)

|f−hm|2dVΩ ≤ ϵm+ϵn

And we have the claim proved.

(IV) Step 4: lim
ζ→∂Ω

∫
BΩ(ζ,r2)

||∂̄ϕ1||2gΩdVΩ = 0.

Note that it suffice to prove that∫
BΩ(ζ,r2)

||∂̄ϕ1||2gΩdVΩ ≲ max{ϵm : ζ ∈ supp(Xm)}

For ζ ∈ Ω let {m1, . . . ,mk} = {m : supp(Xm) ∩ BΩ(ζ, r2) ̸= ∅} ⊂ {m :

ζm ∈ BΩ(ζ, r + r2)}. Note that k ≤ L as r2 <
r

2
. And ∂̄ϕ1(ζ) =

k∑
j=1

hmj
∂̄X̂mj

on BΩ(ζ, r2). Also as {X̂m} is a partition of unity we have

k∑
j=1

hmj
∂̄X̂mj

= 0 on BΩ(ζ, r2). Hence on BΩ(ζ, r2) we have

∂̄ϕ1 =
k∑
j=2

(hmj
− hm1)∂̄X̂mj

(2.3)

So it follows from previous steps that∫
BΩ(ζ,r2)

||∂̄ϕ1||2gΩdVΩ ≤
k∑
j=2

∫
BΩ(ζ,r2)

|hmj
− hm1|2dVΩ ≤

k∑
j=2

(ϵmj
+ ϵm1) ≲

max{ϵm : ζ ∈ supp(Xm)}

Now we may argue that Hϕ = Hϕ1 +Hϕ2 is extendable to a compact operator

on A2(Ω)
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Definition 2.4.2. Let Ω ⊂ Cd be a domain we say that the function ϕ is holomorphic

on every analytic variety in ∂Ω if for every holomorphic map F : D → ∂Ω the

function ϕ ◦ F is holomorphic.

Lemma 2.4.3. Let ϕ be holomorphic on every analytic variety in ∂Ω, then r > 0

exists in a way that

lim inf
ζ→∂Ω

{
∫
BΩ(ζ,r)

|ϕ− h|2dVΩ : h ∈ O(BΩ(ζ, r))} = 0

Proof. Let r <
1

2C1

. Then BΩ(ζ, r) ⊂ Nζ(
1
2
B) for every ζ ∈ Ω. Consider {ζm} as a

sequence in Ω such that ζm → ∂Ω in a way that

lim sup
ζ→∂Ω

inf{
∫
BΩ(ζ,r)

|ϕ− h|2dVΩ : h ∈ O(BΩ(ζ, r))} =

lim
m→∞

{
∫
BΩ(ζm,r)

|ϕ− h|2dVΩ : h ∈ O(BΩ(ζm, r))}

By probably passing to a subsequence we may also assume that Nζm converges

locally uniformly to N : B → Ω̄. By properness of Bergman distance and the fact

that Nζ(B) ⊂ BΩ(ζ, C1) we have N(B) ⊂ ∂Ω. By assumption h0 = ϕ ◦N would be

holomorphic. Let us define hm = h0 ◦N−1
ζm

∣∣
BΩ(ζm,r)

we will have

lim
m→∞

∫
BΩ(ζm,r)

|ϕ− hm|2dVΩ ≤ lim sup
m→∞

∫
1
2
B
|ϕ ◦Nζm − h0|2N∗

ζmdVΩ ≤

C2d
1 lim sup

m→∞

∫
1
2
B
|ϕ ◦Nζm − h0|2dµ = 0

Lemma 2.4.4. Let F : D → ∂Ω be holomorphic and z0 ∈ D, then there exist

δ0 > 0 and sequence {ζm} such that Nζm locally uniformly converges to a holomorphic

function N : B → ∂Ω where N(0) = F (z0) and F (D(z0, δ0)) ⊂ N(B)

Proof. ∂Ω is C0 so we may find unit vector v ∈ Cd and δ0 > 0 in a way that

tv+F (D(z0, δ0)) ⊂ Ω for all t ∈ (0, δ0). Define ζm = δ0
m
v+F (z0), and let dKΩ and dKD

denote Kobayashi distances on Ω and D. Distance decreasing property of Kobayashi

metric ensures us that for all w ∈ D(z0, δ0) we have

dKΩ (ζm,
δ0
m
v + F (w)) ≤ dKD (0,

w − z0
δ0

)

37



Theorem 1.8 in [6] implies that there exists δ > 0 such that

δ0
m
v +Ψ(D(z0, δ)) ⊂ BΩ(ζm,

1

2C1

) ⊂ Nζm(
1

2
B)

By perhaps passing to a subsequence we may assume that Nζm converges locally

uniformly to N : B → Ω̄ so N(0) = lim
m→∞

Nm(0) = F (z0). Properness of Bergman

distance and the fact that Nζ(B) ⊂ BΩ(ζ, C1) now tell us that N(B) ⊂ ∂Ω. And

F (D(z0, δ)) ⊂ N(B) consequently.

Lemma 2.4.5. Consider that r > 0 exists in a way that

lim inf
ζ→∂Ω

{
∫
BΩ(ζ,r)

|ϕ− h|2dVΩ : h ∈ O(BΩ(ζ, r))} = 0

then ϕ is holomorphic on every analytic variety in ∂Ω.

Proof. By Lemma 2.4.4 we need to show that for a sequence {ζm} in Ω such that

ζm → ∂Ω and Nζm locally uniformly converges to N : B → ∂Ω which is holomorphic

and we have ϕ ◦N is holomorphic in a neighborhood of 0. By assumption for each

m ∈ N there exists hm ∈ O(BΩ(ζm, r)) such that

lim
m→∞

ϵm = lim
m→∞

(

∫
BΩ(ζm,r)

|ϕ− hm|2dVΩ)1/2 = 0

Choose r1 < min
r

C1

, 1. Then Nζm(r1B) ⊂ BΩ(ζm, r) and ĥm = hm ◦ Nζm is well

defined on r1B. Also define ϕ̂m = ϕm ◦ Nζm which converges uniformly on r1B to

ϕ̂ = ϕ ◦Nζm . Theorem 2.1.10 implies∫
r1B

|ϕ̂m−ĥm|2dµ ≤ C2d
1

∫
r1B

|ϕ̂m−ĥm|2N∗
ζmdVΩ = C2d

1

∫
Nζm (r1B)

|ϕm−hm|2dVΩ ≤ C2d
1 ϵ

2
m

ϕ̂m converges uniformly to ϕ which implies that
∫
r1B |ĥm|

2dµ is uniformly bounded.

Perhaps by replacing ĥm with a subsequence we may consider it as a locally uniformly

convergent sequence to a holomorphic function ĥ on r1B. Now we may use Fatou’s

lemma to write ∫
r1B

|ϕ̂− ĥ|dµ ≤ lim inf
m→∞

∫
r1B

|ϕ̂m − ĥm|2dµ = 0

Which is the desired result.

Theorem 2.4.6. Assume that Ω ∈ Cd is a domain with bounded intrinsic geometry

and {Nζ : ζ ∈ Ω} satisfies the conditions in theorem 2.1.10. Then the following are

equivalent:
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(1) logKΩ(z, z) has self bounded gradient

(2) For every r > 0 there exists C > 1 such that if dΩ(z, ζ) ≤ r then

1

C
≤ KΩ(z, z)

KΩ(ζ, ζ)
≤ C

(3) For every r > 0, C > 1 exists in a way that if ζ ∈ Ω then

1

C

1

µ(BΩ(ζ, r))
≤ KΩ(ζ, ζ) ≤ C

1

µ(BΩ(ζ, r))

(4) For every r > 0, C > 1 exists such that if ζ ∈ Ω then on BΩ(ζ, r) we have

1

C

dµ

µ(BΩ(ζ, r))
≤ dVΩ ≤ C

dµ

µ(BΩ(ζ, r))

(5)

sup
ζ∈Ω

||∂w log | detN′
ζ |
∣∣
w=0

||2 < +∞

Proof. (i) (1) ⇒ (2): Define Q = supz∈Ω ||∂ logKΩ(z, z)||gΩ which is finite by as-

sumption. logKΩ(z, z) is real valued so ∂̄ logKΩ(z, z) = ∂ logKΩ(z, z). There-

fore

sup
z∈Ω

||d logKΩ(z, z)||gΩ ≤ 2Q

And

exp(−2QdΩ(z, ζ)) ≤
KΩ(z, z)

KΩ(ζ, ζ)
≤ exp(2QdΩ(z, ζ))

for all z, ζ ∈ Ω consequently.

(ii) (2) ⇒ (3): Consider C1 to be the constant in theorem 2.1.10. We prove the

statement in 2 steps

(i) If r <
1

C1

. Let ζ ∈ Ω then by theorem 2.1.10 we may write that

Nζ(
r

C1

B) ⊂ BΩ(ζ, r) ⊂ Nζ(C1rB)

Therefore,∫
r

C1

B
| detN′

ζ(w)|2dµ(w) ≤ µ(BΩ(ζ, r)) ≤
∫
C1rB

| detN′
ζ(w)|2dµ(w)
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Now it follows from theorem 2.1.12 and the assumption that

| detN′
ζ(w)|2 ≍

1

KΩ(Nζ(w),Nζ(w))
≍ 1

KΩ(ζ, ζ)

for w ∈ B. Note that KΩ(ζ, ζ) is independent of w and integrating with

respect to w would tell us that C > 1 exists in a way that if ζ ∈ Ω then

1

C

1

µ(BΩ(ζ, r))
≤ KΩ(ζ, ζ) ≤ C

1

µ(BΩ(ζ, r))

(ii) If r ≥ 1

C1

. Choose r0 <
1

C1

By theorem 2.1.9 we may find {ζm} a

sequence of distinct points in Ω such that

(1) If i ̸= j then dΩ(ζi, ζj) ≥ r0.

(2) Ω =
⋃
m∈N

BΩ(ζm, r0).

(3) L = sup
z∈Ω

#{m : ζm ∈ BΩ(z, r + r0)} < +∞.

By the previous step if ζ ∈ Ω then

µ(BΩ(ζ, r)) ≥ µ(BΩ(ζ, r0)) ≳
1

KΩ(ζ, ζ)

It also implies that

µ(BΩ(ζ, r)) ≤
∑

ζj∈BΩ(ζ,r+r0)

µ(BΩ(ζj, r0)) ≲ L max
ζj∈BΩ(z,r+r0)

1

KΩ(ζj, ζj)
≲

1

KΩ(ζ, ζ)

and the assertion follows immediately

(iii) (3) ⇒ (2): Choose r > 0 if dΩ(z, ζ) < r then

KΩ(z, z)

KΩ(ζ, ζ)
≲
µ(BΩ(ζ, r))

µ(BΩ(z, 2r)
≤ 1

and
KΩ(z, z)

KΩ(ζ, ζ)
≳
µ(BΩ(ζ, 2r))

µ(BΩ(z, r)
≥ 1

(iv) (2 and 3) ⇒ (4): Choose r > 0 by theorem 2.1.16

dVΩ(z) ≍ KΩ(z, z)dµ(z)

By the assumption we have that on BΩ(ζ, r)

dVΩ(z) ≍ KΩ(z, z)dµ(z) ≍
1

µ(BΩ(ζ, r))
dµ(z)
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(v) (4) ⇒ (2): Choose r > 0 by theorem 2.1.16

dVΩ(z) ≍ KΩ(z, z)dµ(z)

So if z ∈ BΩ(ζ, r) we have

KΩ(z, z) ≍
1

µ(BΩ(ζ, r))

and

KΩ(z, z) ≍ KΩ(ζ, ζ)

consequently.

(vi) (2) ⇒ (5): Let {ζm} be a sequence such that:

sup
ζ∈Ω

||∂w log | detN′
ζ(w)||w=0||2 = lim

m→∞
||∂w log | detN′

ζm(w)||w=0||

Define fm : B → C as fm =
detN′

ζm
(w)

detN′
ζm
(0)

. Theorem 2.1.10 ensures us that there

exists C1 > 0 such that for all ζ ∈ Ω

Nζ(B) ⊂ BΩ(ζ, C1)

Applying theorem 2.1.12 we may write that

|fm(w)|2 ≍
KΩ(ζ, ζ)

KΩ(Nζ(w),Nζ(w))
≍ 1

By Montel’s theorem and perhaps by replacing the sequence with a subse-

quence we may assume that fm locally uniformly converges to f : B → C
which is holomorphic. Then

sup
ζ∈Ω

||∂w log | detN′
ζ(w)||w=0||2 = lim

m→∞
||∂w log | detN′

ζm(w)||w=0||2 = lim
m→∞

||∂fm(0)||2 =

||∂f(0)||2 < +∞

(vii) (1) ⇐⇒ (5): By theorem 2.1.10

||∂z logKΩ(z, z)|z=ζ ||gΩ = ||∂w logKΩ(Nζ(w),Nζ(w))|w=0||N∗zgΩ ≍

||∂w logKΩ(Nζ(w),Nζ(w))|w=0||2

Moreover by theorem 2.1.12 ||∂w log βζ(w,w)|w=0||2 is uniformly bounded and

by definition

∂w logKΩ(Nζ(w),Nζ(w))|w=0 = (∂w log βζ(w,w)− ∂w log | detN′
ζ(w)|2)|w=0

which proves the assertion.
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[4] S. G. Krantz, Function Theory of Several Complex Variables, 2nd Ed. Provi-

dence, RI, USA: AMS Chelsea Publishing, 1992.

[5] L. Hormander, An Introduction to Complex Analysis in Several Variables, 3rd

Ed. Amesterdam, Netherland: North Holland, 1990.

[6] A. Zimmer, “Compactness of the ∂̄-neumann problem on domains with bounded

intrinsic geometry,” Journal of Functional Analysis, vol. 281, no. 1, p. 108992,

2021.

[7] A. Zimmer, “Hankel operators on domains with bounded intrinsic geometry,”

2021.

[8] J. D. McNeal and D. Varolin, “L2 estimates for the ∂̄ operator,” Bulletin of

Mathematical Sciences, vol. 5, no. 2, pp. 179–249, 2015.

[9] D. Wu and S.-T. Yau, “Invariant metrics on negatively pinched complete kähler

manifolds,” Journal of the American Mathematical Society, vol. 33, no. 1,

pp. 103–133, 2020.

[10] W.-X. Shi, “Ricci flow and the uniformization on complete noncompact kähler

manifolds,” Journal of Differential Geometry, vol. 45, no. 1, pp. 94–220, 1997.

42


