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Abstract

Acquiring knowledge about a topic is a complex process that requires an individual

to gradually understand all concepts related to this topic. The learning experience for in-

dividuals can be enhanced by visualizing the key characteristics that serve as a guide for

learning. Equipping learners with a concept map that orders concepts, represented as no-

des, to be studied according to their prerequisite order, indicated by direct edges, helps

them stay on track. However, existing algorithms for automatic prerequisite detection are

too inaccurate, which reduces learners’ trust in such maps as one assumes the prerequisite

relation to be completely reliable. In this work we propose to replace prerequisite rela-

tions with less authoritative coverage relations, as they indicate only that one concept is

broader and related to another one. Since most of the prerequisites of a given concept are

less difficult than the concept itself, we argue that combining the coverage relation with

concept’s difficulty scores encodes similar semantics as the prerequisite relation. Howe-

ver, due to the coverage relation being less authoritative, potentially inaccurately detected

coverage relations may be ignored by learners.Such relations are considered more like

recommendations instead of facts. In turn, this change in perception about the reliability

of the edges in the resulting concept map creates less frustration for learners. Further, two

additional aspects, the unstructured nature and the abundance of the learning materials

should also be considered for devising a salable method for concept map’s construction.

With this in mind, this thesis aims to automatically construct from unstructured tex-

tual learning materials a concept map that encodes concept difficulty as node color and
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connects concepts through coverage edges. To that end, we divide the problem into two

subtasks: extracting concepts from unstructured text and constructing the concept map

by estimating the difficulty of each extracted concept before inserting coverage edges

among them. Specifically, we first develop an unsupervised method to extract concepts

from unstructured textual learning materials and then compute a difficulty score for each

of the identified concepts in the second subtask with a novel unsupervised method. We

find that our concept extraction method is more accurate than existing state-of-the-art met-

hods. To the best of our knowledge, we have proposed the first unsupervised method for

finding the concept’s difficulty. Our experiments demonstrate the feasibility of our pro-

posed difficulty prediction method.It also provides evidence for our core assumption that

prerequisites of a given concept tend to be easier than the concept itself, which renders our

methodology viable. These findings imply that our proposed methodology yields concept

maps for courses that help individuals navigate concepts more successfully in practice.
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Ķavram Haritalarının Yapılandırılmamış Metinlerden Otomatik

Çıkarılması

Saima Gul

Bilgisayar Bilimi ve Mühendisliği

Doktora Tezi, 2022
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Özet

Bir konu hakkında bilgi edinme, bireyin bu konuyla ilgili tüm kavramları aşamalı olarak

anlamasını gerektiren karmaşık bir süreçtir. Bireyler için öğrenme deneyimi, öğrenme

için bir rehber görevi gören temel özellikleri çizge şeklinde görselleştirerek geliştirilebilir.

Öğrencileri, düğümler olarak temsil edilen kavramları, doğrudan kenarlarla gösterilen

önkoşul sıralarına göre incelenecek şekilde sıralayan bir kavram haritası ile donatmak,

doğru patikada kalmalarına yardımcı olur. Bununla birlikte, otomatik önkoşul tespiti

için mevcut algoritmalar çok hatalı sonuçlar verebilmektedir, bu durum önkoşul ilişkisi

tamamen güvenilir olduğu varsayıldığından öğrencilerin bu tür kavram haritalarına olan

güvenini azaltır. Bu çalışmada, önkoşul yerine bir kavramın diğeriyle ilişkili olduğunu

gösteren kapsama ilişkisini kullanmayı öneriyoruz. Belirli bir kavramın önkoşullarının

çoğu, kavramın kendisinden daha az zor olduğu için, kapsama ilişkisini kavramın zor-

luk puanları ile birleştirmenin, önkoşula benzer anlamı kodladığını savunuyoruz. Ancak,

önkoşul ilişkisinden farklı olarak kapsama ilişkisinin daha az kısıtlı olması nedeniyle,

potansiyel olarak yanlış tespit edilen kapsama ilişkileri öğrenciler tarafından göz ardı

edilebilir. Bu tür ilişkiler daha çok tavsiyeler olarak kabul değerlendirilebilir. Buna

karşılık, ortaya çıkan kavram haritasındaki kenarların güvenilirliğine ilişkin algıdaki bu

değişiklik, öğrenciler için daha az hayal kırıklığı yaratır. Ayrıca, kavram haritasının

inşasına özel bir yöntem tasarlamak için iki ek husus, yapılandırılmamış doğası ve öğrenme

materyallerinin bolluğu da dikkate alınmalıdır.
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Bu bağlamda, bu tez ile, yapılandırılmamış metinsel öğrenme materyallerinden, kavram

zorluğunu düğüm rengi olarak kodlayan ve kavramları kapsama kenarları aracılığıyla bir-

birine bağlayan bir kavram haritasını otomatik olarak oluşturmayı amaçlamaktayız. Bu

amaçla, problemi iki alt işe ayırıyoruz: yapılandırılmamış metinden kavramların çıkarılması

ve bunların arasına kapsama kenarları eklemeden önce çıkarılan her kavramın zorluğunu

tahmin ederek kavram haritasının oluşturulması. Özetle kavramları çıkarmak için dene-

timsiz bir yöntem geliştirildi. Yapılandırılmamış metinsel öğrenme materyalleri kullanan

ve yeni bir denetimsiz yöntemle ikinci alt işte tanımlanan kavramların her biri için bir

zorluk puanı hesaplandı. Bu yolla kavram çıkarma yöntemimizin mevcut en son teknoloji

yöntemlerden daha doğru olduğunu gösterdik. Bildiğimiz kadarıyla, kavramın zorluğunu

bulmak için ilk denetimsiz yöntemi bu tezde önermiş olduk. Deneylerimiz, önerilen zor-

luk tahmin yöntemimizin uygulanabilirliğini göstermektedir. Ayrıca, belirli bir kavramın

ön koşullarının kavramın kendisinden daha kolay olma eğiliminde olduğu gerçeği de

metodolojimizi uygulanabilir kılan temel varsayımımız için kanıt sağlamaktadır. Bu bul-

gular, önerilen metodolojimizin, bireylerin pratikte kavramlar arasında daha başarılı bir

şekilde yol almasını sağlayan kavram haritalarının oluşturulmasında faydalı olduğunu

göstermektedir.

ix



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
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Chapter 1

Introduction

Knowledge acquisition about a specific topic is a complex process which requires an indi-

vidual to gradually understand each concept related to this topic from learning materials.

Hence, the effective representation of concepts with their interconnected relationships in

the respective learning materials is of utmost importance for successful learning. This

formal representation of knowledge is known as conceptualization, in which the set of

concepts, entities, objects sharing the same objectives and relationships among them are

defined [1]. Uncovering this initially hidden structure step by step from the learning ma-

terial is the key challenge for individuals to master that topic. While the effectiveness

of this learning process depends on an individual, it can be supported by means that em-

phasize the underlying conceptualization. Ontologies like DBpedia [2], which contains

the same information as Wikipedia, but in a more structured way, are one such means,

because they are an explicit specification of conceptualization [3] due to their ability to

encode multiple types of relations among concepts, allowing a broad range of applica-

tions. Nevertheless, ontologies alone are insufficient due to the sheer amount of relations

and concepts they contain. But in combination with concept maps [4], which represent

concepts as nodes and edges indicate existing relationships, ontologies become promis-

ing resources for enhancing the learning experience. For one, because concept maps limit

the amount of visualized data to avoid information overload [5] and to highlight specific

relations among concepts. In particular, they may summarize key points from learning

2



materials or emphasize connections among seemingly unrelated concepts that challenge

individuals’ understanding about the reason why those connections exist. Ultimately,

these visualizations help individuals realize their misconceptions, aid in deepening the

understanding about connections among concepts and guide individuals toward a better

learning experience. One popular type of relationship is the prerequisite relation which

indicates the concepts that must be known in advance to understand a specific concept.

The concepts to be taught in the course are shown as nodes and a directed edge points

from a basic concept to an advanced one if the advanced one expects knowledge about

that particular basic concept. On the one hand, this enables a smoother learning expe-

rience for individuals and independent learners as a prerequisite graph already encodes

specific learning paths that individuals may follow to master a course. But at the same

time this relation communicates to individuals that they must obey these paths, which can

be problematic if any of those relations is incorrect - be it either a missing prerequisite re-

lation between two concepts or an unnecessary one that is not required for understanding

a concept. Concept maps with prerequisite relations are typically created either manually

by experts or automatically by exploiting metadata from structured textual documents like

author-assigned keywords from scientific articles [6], the order in which concepts are pre-

sented in books [7], because it is challenging to extract relevant information solely from

unstructured textual documents. Therefore, these methods are only applicable to a tiny

fraction of available learning materials. Despite using metadata, the performance of exist-

ing methods for prerequisite detection produce too many incorrect predictions [8, 9, 10].

We argue that the coverage relation, which shares some commonalities with the prereq-

uisite relation, is more suitable to guide individuals through a course because an edge

pointing from concept ci to cj only indicates that ci is more abstract than cj while also

being related to cj , but not that ci must be studied before cj . This way individuals would

be more forgiving in case of incorrect coverage relations than in the case of incorrect pre-

requisite relations. Equipping individuals with additional information in the concept map

increases the chance of them being able to discern if a relation represents solely a coverage

relation, i.e., it is an artifact in the data, or potentially an actual prerequisite relation. One
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helpful indicator to discern both types could be the difficulty of a concept if we assume

that advanced concepts tend to be more difficult than their prerequisites. By encoding

concept difficulty as node color in the concept map and connecting concepts according

to the coverage relation, individuals can explore courses by traversing course concepts

in the order of the coverage relation while disregarding potentially noisy coverage edges

due to node colors indicating concept difficulty. In other words, in this thesis we explore

the possibility of approximating prerequisite edges with a combination of coverage edges

and node color denoting concept difficulty. Although the idea of estimating concept dif-

ficulty is intuitive, the task known as predicting conceptual text complexity [11] has been

introduced only lately. Hence, this field is still unexplored with only a limited number of

supervised methods and benchmark datasets being available.

With this in mind, the goal of this thesis is to construct automatically a concept map

from unstructured learning materials depicting related concepts while encoding concept

difficulty by node color. Assuming unstructured textual learning materials makes the

methods to be developed flexible and exploit the abundance of available materials. This

amount of data also requires our methods to scale well, thus they must adopt an unsuper-

vised approach. To that end, we divide the task into two subtasks: 1) extracting concepts

from learning materials and 2) constructing the resulting concept map by computing a

concept difficulty score to be used for encoding concept difficulty and by determining

coverage edges among the concepts. More specifically, for the first subtask only those

concepts are extracted from learning materials that have a corresponding Wikipedia arti-

cle as this ensures the concepts’ presence in DBpedia, which is important for the second

subtask, because we extract features that leverage hierarchical information from DBpedia

for estimating concept difficulty.

For the first subtask, we propose COBEC (Context-Based Extraction of Concepts), a

new unsupervised method for concept extraction. COBEC only assumes that all concepts

are related to a common overarching topic, which is not restrictive, given that learning

materials for a course are all related to that course. While different unsupervised and

supervised approaches exist, none of them take the context, in which a concept is ex-
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tracted, into account. For example, while the extracted concept ”Local Area Network”

is irrelevant in the context of the topic ”Data Structures”, it is highly relevant in the con-

text of ”Wireless Network Security”. Similarly, context may be exploited to determine in

which sense a concept is used as concepts might be ambiguous. For example, if a learn-

ing material mentions the concept ”Process”, one has to take the context into account to

disambiguate the sense in which ”Process” is used - is the learning material referring to it

in the sense of ”Chemical Process”, ”Biological Process”, or in a different sense? If mul-

tiple terms related to biology occur as context in the learning material, it is more likely

that ”Process” refers to ”Biological Process”. Therefore, one should first disambiguate a

concept before determining its relevance with respect to the context. We demonstrate that

idea allows COBEC to outperform existing state-of-the-art methods on different datasets.

Hence, COBEC identifies the most important concepts with regard to the context.

CODIF (Concept Difficulty), our unsupervised approach addressing the second sub-

task takes these concepts as input to estimate their difficulty, while requiring each concept

to have an unstructured textual description as well as an entry in Wikipedia/DBpedia.

Features used in that computation cover three main aspects, namely the content of the

concept description, the position of a concept in the hierarchical structure of DBpedia,

and the amount of background information required to understand that concept. While

methods exist for assessing the difficulty of questions or exams based on the responses

of students in assessments, there is limited work on estimating the difficulty of entire

documents, especially when only a concept description is available.

We demonstrate in our experiments that our unsupervised method yields promising

results for estimating concept difficulty, while also showing the general feasibility of our

proposed methodology for constructing concept maps by providing evidence that our as-

sumption of a concept’s prerequisites being not more difficult than the concept itself is

reasonable. As part of our experimental evaluation on both subtasks, we created five new

benchmark datasets in total - three for the first subtask and two for the second one. While

the three new datasets can be used for testing methods that only require unstructured texts,

the two new datasets for the second subtask are the first ones to cover the educational do-
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main.

In summary, our main contributions are:

1. We propose an unsupervised method for extracting context-based concepts from

unstructured text.

2. We present a novel mechanism to infer and update the context information from the

input documents and by demonstrating that leveraging the inferred context infor-

mation improves the quality of the extracted candidate concepts.

3. We propose a promising unsupervised method for predicting the difficulty of each

concept based only on its textual description.

4. We show that a concept’s prerequisites tend to be not more difficult than the concept

itself.

5. We release three new benchmark datasets for concept extraction on unstructured

textual learning materials and two for predicting the difficulty of concepts based on

their textual descriptions.

Chapter 2 explains the related work, before Chapter 3 introduces common concepts

that are needed for understanding the proposed methods thereafter. Moreover, it describes

the two subtasks to be addressed in this thesis. Chapter 4 explains COBEC, our proposed

method for concept extraction from learning materials. Afterwards the same chapter elu-

cidates CODIF, our unsupervised method tackling the second subtask for assigning each

extracted concept a difficulty score, which forms the basis for computing the coverage

relation. In Chapter 5 the experiments and results for both subtasks are reported. Last

but not least, the thesis is concluded in Chapter 6 with a summary and outlook into future

research avenues.
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Chapter 2

Related Work

In this chapter we describe existing methods separately for the first subtask of concept

extraction in Section 2.1 and for the second subtask of predicting the difficulty of concepts

in Section 2.2. Relevant for the second subtask is also the automatic construction of

concept maps, which is analyzed in Section 2.3.

2.1 Concept Extraction

Keyphrase extraction is a popular task with a multitude of existing supervised and unsu-

pervised methods. One common idea for unsupervised methods is to limit the type of part

of speech that represent candidate concepts, i.e., promising phrases that could or could

not turn out to be concepts. For example, [12] consider only noun phrases as candidate

concepts and based on their properties, such as frequency or length, they are regarded as

concepts or not. Likewise, [13] rely on extracting noun phrases - either nouns or com-

pound nouns - from parse trees to identify concepts. Therefore, any concepts violating

that assumption cannot be extracted, whereas our method makes no assumption about the

grammatical structure of concepts. In general, candidate concepts could be represented by

any type of part of speech. To accomplish this, [14] propose to score the candidates based

on phraseness, i.e., how likely a candidate represents a concept, and informativeness of

a candidate concept instead of relying on part of speech. Other works pursue a similar
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avenue by ranking candidate concepts based on different unsupervised heuristics. One

such popular heuristic is TF-IDF (term frequency-inverse document frequency) which

was proposed by [15]. It assigns high scores to terms that occur frequently in a specific

document, but rarely in other documents. In contrast to our method, TF-IDF does not take

the context into account, but we use it as a baseline method in our experiments. Another

idea to rank concepts in an unsupervised manner is to model the extracted concepts as

nodes in a graph and to score their importance according to graph-based properties like

the centrality of a concept in the graph, where more central concepts receive higher scores.

Popular methods include TextRank [16], TopicRank [17], and MutltipartiteRank [18]. As

opposed to these methods, we model the context information instead of the concepts as

a graph and rank the concepts based on that context information, which is ignored in

the aforementioned graph-based methods. We use them as baselines in our experiments.

In [19] the authors extend TextRank by assigning non-uniform weights to links accord-

ing to the co-occurrence of the involved terms, but conceptually the model remains the

same, thus it suffers from the same drawbacks as TextRank and we do not include it as

another baseline. YAKE!, proposed by [20], is a state of the art unsupervised method that

extracts five statistical features to detect keyphrases. It performs well on different datasets

about various topics which use different languages, although it does not take the context

of keyphrases into account when ranking them. Since it outperforms other unsupervised

methods, we include it as a competitive baseline. A different unsupervised approach is

to cast the problem of detecting keyphrases as a market basket analysis problem to apply

frequent pattern mining techniques, e.g., in [21]. The authors represent concepts as n-

grams and assume that if an n-gram represents a concept, neither its prefix nor its postfix

of length n-1 may represent a concept. Therefore a concept is either included or omitted.

However, this heuristic could easily miss concepts, e.g., if ”Neural network” is a concept

”Neural network optimization” could not be a separate concept, whereas in our method

both could represent separate concepts. [22] propose a two-phase method for extracting

concepts from research paper titles by combining a probabilistic generative model and

grammar rules tailored to short texts. While it is theoretically possible to extend this
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method to texts of variable length, this avenue has not been explored yet. In contrast, our

method naturally deals with textual documents of arbitrary length. The work closest to

ours is described in [23], where the authors utilize Wikipedia to filter out concepts, which

are represented by n-grams, that have no Wikipedia article. The remaining n-grams are

ranked according to TF-IDF and other heuristics to regard only the top-ranked n-grams as

extracted concepts. While our method follows a similar strategy, we adopt DBpedia [2]

which is a knowledge base and provides a structured way to access information that is

available on Wikipedia and other platforms like Yago [24]. In contrast to [23], our heuris-

tic for ranking n-grams considers context information. Overall, previous unsupervised

methods for keyphrase extraction utilize different heuristics to rank candidates. However,

these heuristics do not take explicitly context information into account. In contrast, our

method exploits the fact that we know in advance that the set of unstructured textual doc-

uments is related to the central topic. Therefore, we model context information explicitly

to rank candidates based on that information.

In terms of supervised methods, many supervised approaches based on statistical fea-

tures exist [25, 26, 27, 28, 29]. However, they require labeled, domain-specific datasets

which are expensive and time-consuming to obtain. While deep learning methods suf-

fer from the same drawbacks, they tend to provide more accurate results at the expense

of more training data. [30] introduce a recurrent neural network architecture to extract

keyphrases from tweets, which is unsuitable for our specific scenario because learning

materials could be arbitrarily long depending on the resource (book versus lecture slides)

creating challenges for this type of network like the well known vanishing gradient prob-

lem [31]. [32] propose an attention-based LSTM to extract keywords from text docu-

ments. This supervised model considers the current sentence as the context of a word to

decide if it is part of a keyphrase or not. However, context information beyond the current

sentence is not considered as opposed to our method. Nevertheless, KEA [29] is a popular

baseline as it utilizes two domain-agnostic features, one of them being TF-IDF. Despite

being a supervised method, we also utilize KEA as a baseline to assess COBEC.
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2.2 Conceptual Text Complexity

The task of predicting the difficulty of an entire document has been first formally de-

scribed in [11], where the authors argue that work up to this point has only considered

lexical and syntactical features, while discarding the textual content itself. In line with

that argument, the authors refer to this task as predicting conceptual text complexity. Ac-

cording to this definition of the task, most prior work addresses a different task, namely

predicting different types of difficulty. For example, in [33] the authors determine the

difficulty of a concept based on a single feature, which is the position of a concept in an

ontology. They argue that the deeper a concept is in the hierarchical structure of an ontol-

ogy, the more difficult it is. However, this may lead to ties where multiple concepts sit at

the same level in the ontology. In [34], the researchers focus on determining the difficulty

of quiz questions, but not on estimating the difficulty for entire textual documents. The

particular features used were popularity, selectivity and coherence, which are defined on

an ontology. All works up to this point only address the task of predicting conceptual

text complexity partially. Nevertheless, we leverage the aforementioned features in our

work as they are defined on ontologies. The most similar work to ours are [11] and [35].

[11] introduces the conceptual text complexity task and proposes a supervised model that

leverages 13 features that were obtained by constructing a graph through linking detected

entities from the texts according to the existing relationships among their DBpedia arti-

cles. A follow-up study by the same authors [35] adds also syntactical and lexical features

to the existing 13 features, which results in an enhanced performance. In contrast to both

of these works, our method works in an unsupervised fashion, thus we do not consider

them as baseline methods.

Query difficulty prediction is another task that is related to our problem. A well-

performing supervised method is explained in [36], where the authors demonstrate that

predicting the difficulty of topics associated with a query improves the ability of their

system to rate the difficulty of queries. The 32 features extracted for topic detection are

of lexical and syntactical nature, but we do not utilize any of them.

Another factor that affects the difficulty of a document is the required background in-
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formation to understand a concept. Identifying the background information is also closely

related to the task of finding the prerequisite relation between two given concepts. While

the former task focuses on identifying which knowledge is required for understanding, the

latter task deals with determining if there is a prerequisite relationship between a given

pair of concepts. Since prerequisite detection is a popular task, we focus specifically on

works that utilize knowledge bases and web taxonomies. A supervised machine learning

approach is proposed in [37] by using Wikipedia as a main knowledge base to extract

features which are used by different classifiers to establish the prerequisite relationship

among learning objects or course concepts. While some of our extracted features are

similar to the ones from [37], we adopt an unsupervised approach which cannot be com-

pared with a supervised one. [38] and [39] leverage student assessments and test data for

identifying prerequisites. However, these approaches are not applicable if assessments

are unavailable, which is the case in our problem setting. Another study [9] proposes

to utilize the Wikipedia link structure to identify pairwise prerequisite relationships be-

tween concept pairs based on a single metric known as Reference Difference (RefD). This

method is unsupervised and based on the idea that if a related set of concepts of concept

ci refers more frequently to concept cj than the related set of concepts of cj refers to ci,

cj is more likely the prerequisite of ci. Otherwise ci is more likely a prerequisite of cj .

In our method we consider background information as an aspect that impacts the over-

all difficulty of a concept. Therefore, we include RefD amongst other features related to

background information for determining concept difficulty.

2.3 Automatic Construction of Concept Maps

There are several methods for constructing concept maps from text documents. The

method proposed in [6] assumes that the input documents, here research articles, are

structured, as this method relies on the presence of keywords assigned by the authors of

the articles for constructing the concept maps instead of extracting the keywords as well.

While the the authors of [7] construct concept maps from books, their method exploits
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structured metadata from the books such as the table of contents. In contrast to these

works, our method is more flexible as it does not assume the presence of any metadata in

the input documents. In other words, it is agnostic to the type of textual learning materials

used as input documents.
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Chapter 3

Preliminaries and Problem Definition

This chapter introduces the basic concepts and terminology that is used throughout the

thesis. First, to avoid confusion we clarify the meaning of key terms to be used in the

remainder in Section 3.1. Then, in Section 3.2, we provide the relevant details that we

leverage from DBpedia in our work. Finally in Section 3.3, we define each subproblem

associated with the automatic construction of concept maps.

3.1 Terminology

In theory the terms concept, keyword, and keyphrase have different meanings. While a

keyword is highly specific as it is a single word that describes relevant parts of the con-

tent of a document, a keyphrase has the same function as a keyword, but is comprised of

multiple keywords. A set of keywords and keyphrases describe a concept, which tends

to refer to an abstract notion in the document (”love”), although it could also describe

concrete things (”book”). Note that a concept might or might not be explicitly stated in

a document. For example, the keyword ”Addition” and the keyphrase ”Matrix Multipli-

cation” both describe specific aspects of the concept ”Matrix Operators”, which might or

might not appear explicitly, in a document. Moreover, a document might contain multiple

concepts, e.g., the aforementioned document could also contain the keywords ”Rows”,

”Columns”, and the keyphrase ”Dimension of a Matrix” describing the concept ”Matrix”.
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The document itself may be about the topic ”Linear Algebra”, thus we use the term topic

in this chapter to refer to a more abstract concept. As can be seen from the examples,

keywords or keyphrases like ”Matrix Multiplication” or ”Addition” can also be concepts

but not the other way around. However, in our particular scenario documents represent

learning materials. Thus, the concepts that they explain to learners must be explicitly

stated in the text. Therefore, the main difference between keyword/keyphrase and concept

has disappeared and thus we use these three terms interchangeably in the remainder of

this paper. Similarly concept extraction and keyphrase extraction are used interchange-

ably. Nevertheless we distinguish between a concept and a topic, as the latter is broader.

Another term we use frequently, n-gram refers to a phrase comprising n words. For ex-

ample, ”Dimension of a Matrix” is a 4-gram. Thus, when tokenizing text into n-grams,

i.e., splitting the text on a whitespace into words, one moves a sliding window of size n

across the text to obtain all text sequences comprising n adjacent words. For example, if

the sentence ”I like learning.” is tokenized into 2-grams, the resulting bigrams would be

”I like” and ”like learning”.

3.2 DBpedia

We use DBpedia as our knowledge base as it is an up to date knowledge base for Wikipedia,

where each Wikipedia article has a corresponding DBpedia entry. DBpedia is stored as

a directed graph encoded according to the RDF model [40] where nodes correspond to

DBpedia entries and different types of edges (=predicates) link these nodes to describe

different kinds of connections between these nodes. These predicates are extracted from

Wikipedia articles, thus DBpedia is a means to access information, that is available in

Wikipedia, in a more structured way via SPARQL queries [40], which enable efficient

graph matching to retrieve subgraphs. In this work we utilize the following DBpedia

properties:

• dct:subject - describes the categories in which that concept is used

• skos:broader - retrieve the parent categories of a category
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• dbo:abstract - extracts the first lines of a Wikipedia article

• rdfs:label - extracts the associated Wikipedia page title/label for a concept, it might

be lexically similar to the concept or could be different.

• dbo:wikiPageWikiLink - Wikipedia link structure plays an important role for ex-

tracting a variety of information in different problem domains. These annotations

are performed by the contributors of Wikipedia articles according to the Wikipedia’s

”Manual of Style”, which requires to select the important concepts and assign link

to the related articles. As mentioned in relevant work this information has been uti-

lized by many researchers to find the prerequisite relationship among topics or con-

cepts. Based on the similar hypothesis we used DBpedia’s dbo:wikiPageWikiLink

property to extract the reference links associated with a concept and to further in-

vestigate that which sort of information they could provide which could help us to

predict the difficulty of a concept.

By combining the DBpedia properties dct:subject and skos:broader one may traverse the

hierarchical structure of DBpedia ontology.

3.3 Problem Definition

The automatic construction of a concept map from unstructured text is primarily divided

into two subtasks, first the extraction of concepts and second the computations of dif-

ficulty score of each concept and identification of relationships among them. Based on

these two subproblems we define our problem statements as follows.

3.3.1 Extraction of Concepts from Unstructured Text

In our scenario we are given a set of unstructured text documents D = {d1, ...dn} that

describe a set of concepts C = {c1, ...cm}, m ≥ 1, n ≥ 1. The goal is to identify the most

relevant concepts from C. Each concept ci ∈ C is assigned a relevance score Ri, where

higher scores indicate higher relevance. We cast this problem as a ranking task where we
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retrieve those l concepts cj ∈ C at the k top ranks with the highest l relevance scores Rj ,

l ≥ k. Our proposed method, COBEC, assumes that the concepts ci ∈ C share a mutual

underlying topic T , i.e., they describe certain aspects of T .

For example, in the educational domain, T could represent the course topic and di

would correspond to the learning materials describing the different concepts ci to be

taught as part of the course curriculum. Therefore, each extracted candidate concept cp

from di is related to T and describes it to some extent, which is expressed by a weight wp.

We refer to the set of all these tuples (cp, wp) as context information.

3.3.2 Computation of Difficulty Scores and Identification of Rela-

tions

In our scenario we are given a set of concepts C = {c1, . . . cm},m ≥ 1. All concepts ci

have a corresponding Wikipedia or DBpedia entry. The goal is to automatically construct

a concept map comprised of nodes and edges, where nodes correspond to concepts from

C and a directed edge from concept ci to cj indicates that ci is broader than cj and that

ci is related to cj . We simply refer to this relation as coverage relation. We assume

that ci explains the bigger picture and provides a context in which the more specific cj

is discussed. In that sense ci might be a prerequisite of cj , but it could also only be

related to ci. Coverage is measured according to the hierarchical structure of DBpedia.

More specifically, directed edges are inserted from ci to cj if ci is is a parent, grandparent

or great-grandparent of cj , as it is known that DBpedia categories quickly become too

abstract [41]. Moreover, the color of a node ci in the concept map encodes its difficulty

score ds(ci) according to our proposed unsupervised method CODIF, which results in

lower scores for simpler concepts and in higher scores for more difficult concepts. In

general, difficulty scores can take any value in the range 0 ≤ ds(ci) ≤ 1.
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Chapter 4

Methodology

In this chapter we will explain our proposed solutions for addressing the two subtasks

presented in Sections 3.3.1 and 3.3.2, respectively. First, Section 4.1 presents the method-

ology for extracting concepts in an unsupervised manner from learning materials. With

these identified concepts at hand, Section 4.2 explains how to compute their difficulty

scores for constructing a concept map automatically.

4.1 COBEC

Thinking in terms of concepts in the educational domain offers benefits for learning and

teaching. Thinking about teaching materials for a course in terms of concepts enables

instructors to design their classes accordingly such that they emphasize the connections

between concepts [42]. This, in turn, makes it easier for learners to understand and re-

member the essence of a course. Similarly, it empowers learners to be curious and explore

connections to seemingly unrelated concepts by themselves. This example underscores

the vital role that concepts play in learning. But it leads to the question: how to iden-

tify such concepts for learners? Usually unstructured documents - be they lecture slides,

books, or subtitles of videos - are suggested or provided by instructors as learning mate-

rials. However, reading them all is prohibitively time-consuming for learners, especially

with the rising demand of online education, where learners hold responsibility for un-
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derstanding taught concepts sufficiently well. Thus, ideally one would provide learners

with a summary containing the most relevant concepts that are discussed in learning ma-

terials so that they can judge individually whether it is beneficial to study them or not.

Alternatively concepts could also be visualized as concept maps [4], where concepts are

represented by nodes and edges denote existing relationships, to emphasize the connec-

tions between concepts, e.g., [6] or [7].

To date a multitude of methods have been proposed to extract relevant concepts or

keyphrases. This indicates not only the importance of the task, which is also relevant

in many domains other than education, but also its difficulty. While some methods are

tailored to a specific type of learning materials, as they rely on additional metadata like

author-assigned keywords or a table of contents, others require a labeled corpus for train-

ing. However, in this work we argue that all of these methods neglect one important

aspect, which is the context in which a concept is extracted. For example, while the

extracted concept ”Local Area Network” is irrelevant in the context of the topic ”Data

Structures”, it is highly relevant in the context of ”Wireless Network Security”. Similarly,

context may be exploited to determine in which sense a concept is used as concepts might

be ambiguous. For example, if a learning material mentions the concept ”Process”, one

has to take the context into account to disambiguate the sense in which ”Process” is used

- is the learning material referring to it in the sense of ”Chemical Process”, ”Biological

Process”, or in a different sense? If multiple terms related to biology occur as context

in the learning material, it is more likely that ”Process” refers to ”Biological Process”.

Therefore, one should first disambiguate a concept before determining its relevance with

respect to the context. With that in mind, in this chapter we propose COBEC (Context-

Based Extraction of Concepts), a novel unsupervised method for extracting concepts from

a set of unstructured, i.e., only raw text is available, textual learning materials. It com-

bines natural language processing (NLP) techniques with a knowledge base, DBpedia in

our case. COBEC extracts the relevant concepts from a set of input documents in two

phases: (1) by extracting candidate concepts from unstructured text documents, then dis-

ambiguating and ranking these concepts based on the inferred context information and (2)
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by enriching this context information with the help of DBpedia. Through the utilization

of DBpedia our method is also capable of discovering out-of-vocabulary (OOV) words as

context information, i.e., phrases that do not occur in the set of input documents. Likewise

it naturally groups semantically similar concepts together in the rankings, i.e., semanti-

cally similar keyphrases receive the same ranks. In our experiments we demonstrate that

COBEC is competitive when compared with seven popular supervised and unsupervised

methods on four datasets about different topics in education. On three of these datasets

it outperforms its competitors. Last but not least we publish two new datasets about the

topics ”Data Mining” and ”Operating Systems” that were both extracted from books. To

the best of our knowledge, there are no suitable datasets available for this type of learn-

ing material, thus we hope to advance the field with these new benchmark datasets. In

summary, our main contributions are:

1. We propose an unsupervised method for extracting context-based concepts from

unstructured text

2. We present a novel mechanism to infer and update the context information from the

input documents.

3. We demonstrate that leveraging the inferred context information improves the qual-

ity of the extracted candidate concepts.

4. We make two new benchmark datasets for concept extraction available.

In Section 4.1.1 we introduce the methodology for extracting concepts in an unsupervised

manner.

4.1.1 Methodology

First we present a short overview of DBpedia, a core component of COBEC, before we

briefly outline COBEC in general and then delve into its details.
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Figure 4.1: Workflow of COBEC to extract all concepts at the β top ranks from a set of

unstructured textual input documents.

4.1.2 Overview

Fig. 4.1 depicts an overview of COBEC’s workflow. Our method comprises two phases

and represents concepts with n-grams. The aim of the first phase is to extract candidate

concepts and rank them according to their relevance w.r.t. topic T based on the initial con-

text information. As part of the first phase, unstructured textual input documents di ∈ D

are preprocessed using common NLP techniques to identify n-grams which correspond

to candidate concepts ci ∈ C, i.e., n-grams that potentially represent concepts (see Sec-

tion 4.1.3). This set of candidates is filtered through a knowledge base, DBpedia in our

case, to retain only those candidates which have a DBpedia entry (see Section 4.1.3).

All remaining candidates at this stage are regarded as context information related to

the underlying shared topic T , where T is assumed to exist as COBEC’s performance

benefits if this assumption holds, but there is no hard requirement for T ’s existence. Yet

design decisions in Sections 4.1.5 and 4.1.7 were made with the idea in mind that T exists.

If that is not the case, COBEC’s performance could deteriorate.

The context information stores tuples of candidates and a weight reflecting their con-
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tribution towards the context (see Section 4.1.4). Since some of these candidates have

multiple DBpedia entries, they are disambiguated s.t. each candidate is mapped to ex-

actly one DBpedia entry, before ranking them according to their relevance w.r.t. topic T

represented by the context information (see Section 4.1.5). Then the top-ranked candi-

dates serve as input for the second phase.

Since the quality of disambiguating and ranking candidate concepts depends mainly

on the reliability of the available context information, the goal of the second phase is to en-

rich this data with the help of DBpedia and to re-disambiguate and re-rank the candidates

afterwards. At this stage the context information is comprised solely of n-grams from

D which tend to represent specific concepts. Therefore, our idea is to complement these

with more abstract n-grams, which are potentially OOV words, from DBpedia that bias

the context information towards topic T . For this phase to succeed, only the α top-ranked

candidates are considered because these are most likely describing T . These top-ranked

candidates serve as input for DBpedia to construct a DBpedia subgraph that comprises

a) the candidates, b) the candidates’ categories according to DBpedia, and c) also the

categories’ parent categories as nodes (see Section 4.1.6).

Based on the assumption that the α top-ranked candidates describe T implicitly, the

goal is to infer T from the subgraph. Since all candidates describe T , we assume that

the most important node in the subgraph is closely related to T . The centrality of a node

can be interpreted as a proxy for its importance. Thus, the term most similar to T is the

central node in the subgraph (see Section 4.1.7). Similarly, other abstract words in the

subgraph close to the central node are likely to describe T sufficiently accurately. Thus,

to steer the context towards this central node and therefore towards T , the nodes from the

subgraph are added to the context information, s.t. the central node contributes the most

(see Section 4.1.8). Then all candidates are re-disambiguated and re-ranked according to

Section 4.1.5 and all n-grams at the β = k top ranks correspond to the l most relevant

concepts according to Section 3.3.1.
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UnigramFiltering 
 

[process, kernel, switch, operating,program,processes,state, one,context, address, read, 
system,time,may,context_swtich,operating_systems,user_thread,operating_system, 
context_switching,ebp_register,user_thread,operating_system_kernel,process_control_block, 
parameters_onto _stack] 

 

CustomStemmer 

[process, kernel, program,processes,state, one, address, read, time, may,context_switch, 
operating_systems,user_thread,operating_system,context_switching,ebp_register, 
user_thread,operating_system_kernel,process_control_block,parameters_onto _stack] 

 

DbpediaResourceFinder 
 

[process, kernel, program, state, one, address, read, time,may, context_switch, 
operating_system,user_thread,ebp_register,user_thread,operating_system_kernel, 
process_control_block,parameters_onto_stack] 

 

 
Figure 4.2: Filtering process for a set of candidate concepts sampled from a tokenized

input document about ”Operating Systems”. Candidates in bold font are filtered out at

their respective stage: first unigrams are removed if they are part of longer frequent n-

grams, then semantically similar n-grams are merged after data cleaning and lastly n-

grams with no DBpedia entry are discarded.

4.1.3 Preprocessing and Filtering Candidate Concepts

First the unstructured textual documents di ∈ D are tokenized into n-grams represent-

ing the initial candidate concepts ci ∈ C. From C, n-grams representing stopwords are

removed using a stopword list comprising common terms. Counting the occurrences of

the remaining candidates ci in D yields a set of tuples τ = {(ci, fi), . . . } comprising a

candidate ci and its respective frequency fi. Removing short, infrequent n-grams from

τ (and therefore also from C) according to a frequency threshold ft reduces noise. Our

heuristic is based on the idea that a unigram (n = 1) is meaningful and thus should be

retained if and only if it occurs at least ft times more often than any larger n-gram which

contains this unigram somewhere.

Formally, this translates to: given (ci, fi) ∈ τ and (cj, fj) ∈ τ , where ci is a unigram

and cj corresponds to an n-gram of higher order, i.e., n ≥ 2, that contains ci at some

position, then ci is retained if and only if fi > fj + ft. If there are multiple n-grams cj of

higher order that contain ci, fj refers to most frequently occurring cj .

The remaining n-grams from C are merged according to two rules, s.t. only a single n-
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gram is present for semantically similar n-grams. First, a plural token is filtered out if it is

also present in singular form. Second, the present participle of a regular verb is discarded,

if a version without it exists, e.g., “context-switching” is removed if “context-switch” is

already present. From the remaining candidates in C, we filter out those with no matching

DBpedia entry. Note that no stemming is applied because no matching DBpedia entries

exist for stemmed n-grams.

The whole filtering process is illustrated in Fig. 4.2 for a given tokenized input doc-

ument about the topic ”Operating Systems”. With the help of the minimum frequency

threshold ft, the n-grams ”switch”, ”operating”, ”context” and ”system” are removed as

they appear in longer n-grams. Then merging semantically similar n-grams leads to the

removal of multiple n-grams, e.g., ”operating systems” is removed because its singular

form already exists. Similarly, there is no DBpedia entry for ”may”, hence it is excluded

from C. Likewise ”parameters onto stack” is filtered out due to no matching DBpedia

entry. The latter example also illustrates that using DBpedia as a proxy for concepts is

a reasonable choice since ”parameters onto stack” itself does not represent a concept,

although it is relevant in ”Operating Systems” as part of other concepts.

4.1.4 Extracting Context Information

The remaining candidates after Section 4.1.3 form the initial context information Cinfo,

i.e., we assume that they describe the underlying topic T . But the context information

also includes the degree to which each candidate contributes to the context. Therefore,

the context information comprises tuples (ci, wi), where ci represents a candidate concept

from C and weight wi its contribution to the context information. wi is calculated as:

wi = |ci| (4.1)

where |ci| corresponds to the number of words in ci.

At this point only n-grams with matching DBpedia entries remain in Cinfo, since we

employed DBpedia as a filter to remove meaningless n-grams in Section 4.1.3. With that

in mind, Eq. 4.1 assigns higher weights to the longer remaining n-grams as they carry
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Figure 4.3: The context information for ”Process” is visualized as a word cloud, where

a bigger font size of an n-gram implies that it has a higher contribution to the context.

In a) the context information for ”Process” in ”Chemistry” is shown, in b) the context

information for ”Process” in ”Biology” is depicted, and in c) the context information for

”Process” in ”Computing” is illustrated.

more contextual information and are more domain-specific than shorter ones, thus they

describe the underlying topic T more accurately and should therefore have higher weights.

For example, the bigram ”operating system” is more descriptive than the unigrams

”operating” and ”system” individually.

Overall, the context information is a set of tuples containing the n-grams with their

weights as described above. Since we assume that all n-grams are related to the underlying

topic T . Therefore, the context information approximates T , which is shown in Fig 4.3.

In Fig 4.3(a) the context information describes the underlying topic ”Chemical process”,

whereas in Fig 4.3(b) it describes ”Biological Process”, and in Fig 4.3(c) it describes

”Process” in ”Computing” without necessarily mentioning these topics explicitly.

4.1.5 Ranking and Disambiguating Concepts

Since COBEC assumes that the context information describes the underlying topic T ,

that all candidate concepts have in common, we utilize the context information for dis-

ambiguating n-grams, i.e., to map each candidate to a single DBpedia entry. For ex-
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ample, the n-gram ”Process” has 43 matching DBpedia entries. If used in the context

of ”Operating Systems”, the correctly disambiguated word sense in this case would be

”Process (computing)”, whereas in the context of ”Law” the appropriate sense could be

”Legal process”. COBEC disambiguates candidate concepts by computing the contextual

relevance score (CRS) as follows:

CRSi =

∑
cj∈Cinfo∩DBPi

wj

|DBPi|
(4.2)

where wj is the weight assigned to candidate concept cj in Cinfo, and DBPi corresponds

to ci’s abstract in DBpedia which is processed and tokenized according to Section 4.1.3,

except that remaining n-grams in DBPi do not need a matching DBpedia entry, i.e., stop-

words and infrequent n-grams are removed, and semantically similar n-grams are merged,

which leaves only {1, 2, 3}-grams. The abstract is accessed through the dbo:abstract prop-

erty of ci’s DBpedia entry.

In other words, we sum up the weights of all those n-grams from the abstract that

match an n-gram in the context information. Since the length of the abstracts varies for

different entries, the score is normalized by the length of the abstract. Therefore, CRSi

of a candidate concept ci will be high if its DBpedia abstract contains many n-grams

that have high weights in the context information. If there are multiple DBpedia entries

matching a candidate ci, CRSi is computed for each of the entries and the one with the

maximum CRSi∗ is used as the word sense of ci. In theory there could be multiple

CRSi∗, which is resolved by selecting one of the tied CRSi∗ randomly, although this has

never happened in any of our experiments as it would indicate that two DBpedia entries

describe the same candidate. Once all candidates are mapped to exactly one DBpedia

entry, they are ranked w.r.t. the context information according to CRSi. Thus, Eq. 4.2 is

used both for disambiguating and ranking a candidate concept and it also corresponds to

Ri as described in Section 3.3.1.

Note that for ranking CRSi may introduce ties if two different candidate concepts

either share the same tuples in the context information or tuples with the same weight.

Thus, these two candidates most likely describe either the same concept or they are at least
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Figure 4.4: Constructing the directed graph G with DBpedia for the candidate concept

”Process (computing)” by traversing its corresponding DBpedia graph leveraging the

properties ”dct:subject” and ”skos:broader”.

semantically similar. For this reason COBEC does not split ties when ranking candidates.

4.1.6 Extracting a Graph from DBpedia

For steering the context information towards topic T with the α top-ranked candidates

from the first phase, more abstract n-grams from DBpedia are added to the context infor-

mation. One suitable type of information provided by DBpedia is the dct:subject property

for a candidate concept, which describes the categories in which that concept is used.

These categories are hierarchically structured in DBpedia, meaning that one can also

retrieve the parent categories of a category by utilizing the corresponding skos:broader

property in DBpedia. Thus, we construct a directed graph Gi from DBpedia by extracting

for each of the α top-ranked candidate concepts its categories (dct:subject) and their re-

spective parent categories (skos:broader). In other words, for each candidate we traverse

26



the

DBpedia graph for exactly two hops to construct its directed graph Gi. Directed

edges in Gi are inserted from a candidate to its categories and from these to their par-

ent categories. Note that creating such a graph Gi for each candidate yields a set G∗ of

α disconnected graphs, namely G∗ = {Gi, . . . , Gα}. However, since those α top-ranked

candidates tend to share common DBpedia nodes, which is either a category (dct:subject),

a parent category (skos:broader), or both, some of the directed graphs Gi ∈ G∗ are con-

nected with each other forming a larger connected graph. In practice, most Gi ∈ G∗

will be connected due to the α top-ranked candidates being similar, which increases their

probability of sharing common DBpedia nodes, but this is not enforced by our graph

construction method. At the end of creating G∗, we select the largest connected com-

ponent and refer to this directed graph as G in the remainder. Since we assume that all

α top-ranked candidates refer to T , it is most likely that those in the largest connected

component describe T . We note that G could contain cycles as part of the construction

process. The reason for not traversing the DBpedia graph beyond two hops is that the

DBpedia categories quickly become too abstract. This decision is motivated by the find-

ings in [41], in which the researchers found that relevant concepts lie close to each other,

i.e., few hops apart, in the DBpedia graph.

We illustrate the construction process of G in Fig. 4.4 for the candidate concept

”Process”, which was disambiguated in the first phase according to Eq. 4.2 as ”Pro-

cess (computing)” by DBpedia since the input documents are about the topic ”Operating

Systems”. ”Computing”, which corresponds to the category information in DBpedia, is

added by DBpedia to the name to uniquely identify the word sense of ”Process”. Then

we extend ”Process (computing)” by two hops to construct G.

From its DBpedia entry COBEC retrieves the dct:subject property to access all cate-

gories in which ”Process (computing)” occurs. After retrieving their DBpedia entries -

”Concurrent computing” and ”Operating system technology” - we extract their parent

categories from their entries according to the information present in the skos:broader

property. Therefore, the parent categories of the former one are ”Computing infrastructure”,
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”Concurrency (computer science)”, ”Computer programming” and for the latter one there

is only one, namely ”Operating systems”. G now includes all these nodes - the concept,

its categories and their parent categories with directed edges indicating how these nodes

were traversed in DBpedia. This procedure is repeated for all α top-ranked concepts to

construct G.

4.1.7 Inferring the Central Node in the Graph

COBEC leverages the central node in G to assess the relevance of each node. The cen-

tral node corresponds to the central topic which represents the underlying topic T most

accurately. To determine the central topic, we combine multiple centrality metrics as cen-

trality can be defined in multiple ways and each metric covers a different aspect of it. To

compute centrality metrics in G, we focus on its largest connected component and con-

vert it into an undirected graph since edge orientation provides no additional information

in our setting. We refer to the undirected version of G as G̃, where all directed edges

are replaced with undirected ones. As centrality metrics we adopt degree centrality, Katz

Centrality, Eigenvector Centrality, PageRank Centrality, Betweenness Centrality, Close-

ness Centrality and Information Centrality which are all described in [43]. These seven

metrics comprise our set of centrality metrics CM to estimate the node centrality in G̃.

The centrality score CSc of a node c in G̃ is computed as:

CSc =
∑
i∈CM

CMi(c)

rankci
(4.3)

where CMi(c) denotes the centrality value computed by centrality metric i for node c and

rankci corresponds to the rank assigned to c by centrality metric i. This way CSc will be

high if a centrality metric assigns a high centrality value to c and ranks it among the most

central nodes. The central topic then corresponds to the node with the highest CSc.

4.1.8 Updating Context Information

To update the context information from Section 4.1.4, we add each node ci from G̃, but

first its weight wi is determined. With the identification of the central node according to
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Section 4.1.7, we weigh the contribution of each node in G̃ towards the context informa-

tion as some of these nodes might introduce noise. Since we assume that the central node

represents the underlying topic T most accurately, it contributes the most to the context

information, while nodes that are farther, i.e., more hops, away from the central node have

a smaller contribution. To that end, COBEC traverses G̃ in breadth-first order starting at

the central node, to which we refer as root, to avoid cycles. Then each visited node ci

is added to the context information as a tuple (ci, wi) with contribution wi, where wi is

computed as

wi = N − hops(root) (4.4)

hops(root) measures the number of hops that node ci is away from the node root and

N = number of nodes in G̃. Thus, nodes that are farther away from root receive lower,

yet positive weights that contribute to the context information. For example, if there are

three nodes root, c, d in G̃, then wroot = 3. For the other two nodes there are two cases.

Either c and d are directly connected with root, then their weights are set to wc = wd =

2. Otherwise all three nodes form one of two paths: either (1) root is connected to c

which, in turn, is linked to d or (2) root is connected to d, which shares an edge with

c. In case (1) the weights are wc = 3 − 1 = 2 and wd = 3 − 2 = 1, while in case

(2) the resulting weights are wd = 3 − 1 = 2 and wc = 3 − 2 = 1. The weights

assigned by Eq. 4.4 to n-grams extracted from DBpedia tend to be higher than those

assigned to n-grams in the first phase according to Eq. 4.1 because typically there are more

nodes in G̃ than n-grams ci are long, i.e., N > |ci|. As a result, the n-grams extracted

from DBpedia will steer the context information towards topic T which, in turn, will

affect the re-disambiguation and re-ranking of candidate concepts at the end of the second

phase. This is a deliberate choice because context information extracted from DBpedia

is potentially more reliable than the n-grams from the first phase. Finally, most of the

abstracts in DBpedia start the definition sentence of an article with the respective category

of the concept. Thus, when capturing that concept’s category with DBpedia, it should

contribute substantially to the updated context information, which, in turn, will affect

both the ranking and disambiguation process afterwards. In case ci is already present in
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the context information from the first phase, the tuple with the larger weight wi will be

preserved, which is usually the one re-computed by Eq. 4.4.

Note that it is possible that ci represents out-of-vocabulary words, i.e., words that do

not occur in any of the input documents D, which is the case if a node in G̃ does not appear

in D. After updating the context information with all tuples (ci, wi) from G̃, ci ∈ G̃, all

candidate concepts C are re-disambiguated and then re-ranked according to Section 4.1.5.

All those candidates at the β top ranks are the final output of COBEC, which corresponds

to the l most relevant concepts according to Section 3.3.1.

4.2 CODIF

Individuals can easily get overwhelmed and confused by information from different learn-

ing materials covering the same course concepts. One solution to this problem is equip-

ping them with tools that highlight the key ideas, that is the most relevant concepts and

how they are related to each other, in order to guide individuals’ learning experience.

Concept maps [4] have this capability by visualizing the relevant information as a graph.

More specifically, they represent concepts as nodes and relationships as edges. Hence,

they are flexible and can depict different information depending on the purpose. One

popular type of relationship is the prerequisite relation which indicates the concepts that

must be known to understand a given concept. Therefore, concepts maps visualizing this

type of relation are also known as prerequisite graphs. Prerequisite graphs are either con-

structed manually by experts or by exploiting metadata from structured textual documents

like author-assigned keywords from scientific articles [6], the order in which concepts are

presented in books [7], because it is challenging to extract relevant information solely

from unstructured textual documents. This implies that these methods leverage only a tiny

fraction of available learning materials. Another aspect to consider is the semantic author-

ity and reliability that the prerequisite relation communicates to individuals - this relation

is not a recommendation but a fact that individuals have to obey. While this interpreta-

tion gives individuals the confidence to master a course concept by concept, it does not
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allow for errors, at least individuals would expect this relation to be correct without any

exceptions. But in practice, predicting prerequisite relations turns out to be challenging

and has resulted in too many incorrect predictions to date [7, 8, 9, 10, 44, 45, 46, 47, 48].

If individuals suffer from those inaccuracies while using a prerequisite graph as a guide

for mastering a course, their trust in the graph will vanish quickly, e.g., if it contains

unnecessary relations while missing some crucial prerequisite relationships.

Hence, our goal is to construct a concept map for guiding individuals which expresses

similar semantics as the prerequisite relation, namely a partial order for studying the con-

cepts, while being less authoritative. This way it is more transparent to individuals that the

relation is only a recommendation, which they can disobey at times. Another requirement

for our method is allowing not only structured textual learning materials, but also un-

structured ones. This provides more data to extract more accurate relations: while a large

subset of structured learning materials might adopt a similar approach to explain a course,

unstructured materials could be more diverse, and combining multiple learning materials

would therefore lead to more accurate relations among concepts. And the last require-

ment is the ability of our method to scale to larger datasets from a myriad of domains,

which favors an unsupervised approach over a supervised one. With these requirements

in mind, the goal in this chapter is to construct a concept map based on unstructured learn-

ing materials for a course in an automated fashion. Our concept map is centered around

two aspects, namely replacing the prerequisite relation by a coverage relationship, and

encoding concept difficulty as node color in the resulting map. With this color informa-

tion, individuals are equipped to make better decisions when it comes to deciding the next

concept to study. For example, given a subgraph of related concepts, it would be more

intuitive to study the simpler concepts first. However, estimating the difficulty of concepts

has been introduced only recently as a separate task known as predicting conceptual text

complexity [11]. Hence, only a limited number of methods exist. Similarly, only few

benchmark datasets exist and none of them is from the educational domain. Therefore,

we propose a unsupervised method, called CODIF (Concept Difficulty), that assigns each

concept a difficulty score from 0 (easy) to 1 (hard) based on the concept’s textual descrip-
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tion. To accomplish this goal, CODIF leverages features from three domains, namely the

content of the concept description, the position of a concept in the hierarchical structure of

DBpedia, and the amount of background information required to understand that concept.

For CODIF to work, it assumes the existence of a DBpedia/Wikipedia entry per concept,

otherwise some features cannot be extracted. Using COBEC (Context-Based Extraction

of Concepts) [49] or similar unsupervised methods for concept extraction, we can extract

concepts from unstructured textual concept descriptions that are used for constructing our

concept maps. However, in this chapter we limit ourselves to the scenario where con-

cepts have already been identified and the goal is to visualize relationships among those

concepts while coloring the concepts according to their difficulty score. We select the

coverage relation between pairs of concepts to decide if an edge exists. More precisely,

a directed edge from concept ci to concept cj is inserted if and only if ci is more ab-

stract in the DBpedia hierarchical structure than cj , while cj must be within three hops,

which is motivated by the findings in [41], where the researchers found that relevant con-

cepts lie only few hops apart in the DBpedia graph. The direction of the edge implies

that ci is potentially simpler than cj and the key motivation for this assumption is that a

more abstract concept is more common, thus it occurs in more contexts which makes it

more likely for individuals to be already familiar with the basic ideas from other contexts.

Moreover, ci sets the context for cj which makes it easier to understand the more specific

cj . Therefore, ci is either a prerequisite of cj or ci is at least related to cj . Combining this

information with the node color, i.e., concept difficulty, equips learners with the ability to

better identify prerequisite relations, because we assume that prerequisites are not harder

than the concept itself. Thus, any coverage relations violating this assumption represent

less likely prerequisite relations and can potentially be ignored by learners. As part of the

evaluation of CODIF, we also create two benchmark datasets for the educational domain,

which are intended to spur research about predicting conceptual text complexity, which

is an important task given the abundance of available text documents on the internet that

overwhelm people. Hence, a better categorization in terms of their difficulty level or ac-

cessibility would be beneficial to all types of interested individuals. Last but not least,
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we showed that the key assumption of our concept map visualization, namely that a con-

cept’s prerequisites tend to be not harder to learn than the concept itself, holds in practice,

which implies that our idea of approximating prerequisite relations by a combination of

coverage relations and node color indicating concept difficulty is feasible.

In summary, our main contributions are:

1. We propose a promising unsupervised method for predicting conceptual text com-

plexity.

2. We demonstrate that our extracted set of features is sufficient to estimate conceptual

text complexity.

3. We show that a concept’s prerequisites tend to be not more difficult than the concept

itself.

4. We make two new benchmark datasets for predicting conceptual text complexity

available.

The remainder is structured as follows. First, in Section 4.2.1 we clarify what we

mean by the term ”difficulty”. Discussing the methodology for constructing a concept

map, that encodes concept difficulty as the node color, follows in Section 4.2.2.

4.2.1 Notion of Difficulty

Before explaining the details about how to estimate concept difficulty, we discuss existing

definitions of difficulty and then clarify what we understand by this term in the remainder

of this chapter.

The notion of concept difficulty is subjective by nature, because it is affected by mul-

tiple factors. The first factor is language [50]. Considering only language, one may define

a difficult concept as ”a difficult concept is one that is based on a primitive concept”.

Similarly, one may say that a concept is simple if it is represented by a single lexeme,

which is the most basic unit in a language to convey meaning, and otherwise it is com-

plex. A large set of linguistic features has been proposed over the years to capture the
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linguistic aspects of concept and they have been grouped into morphological features,

syntactical features, and semantic features [51]. Closely related to language is also the

reading difficulty, which is affected by multiple aspects which are categorized into syntac-

tic depth, relational semantics, and prospective ambiguity [52]. A different approach for

defining difficulty has been proposed in [53], where simple concepts are defined as those

that preserve their meaning across different domains. This factor is known as specificity.

The content of the document describing a concept also contributes to difficulty: from

an individual’s perspective more technical computations or more required mathematical

understanding make a concept more difficult as these concepts are less common and do

not have many applications across different domains [54]. Similarly, if the description

of a concept is long, it contains more information which makes it more difficult to un-

derstand [55]. Background knowledge is also an aspect affecting concept difficulty: if

individuals possess the expected background knowledge, they tend to find learning a new

concept easier than others who lack some of that background knowledge [56]. Related to

this idea is also the factor known as simultaneously learning, according to which simple

concepts are those that can be learned sequentially instead of in parallel [57].

These different definitions and ideas clearly establish that concept difficulty cannot

be objective as not only features related to the description of a concept contribute to its

difficulty, but also individual factors like background knowledge which varies from indi-

vidual to individual. To reduce subjectivity in the remainder of this work, we clarify what

we mean when talking about concept difficulty. Most importantly, we assume that indi-

viduals share a similar set of visible and hidden factors, e.g. background knowledge, that

affect how they perceive the difficulty of a concept. While this assumption permits a small

number of individuals to disagree on the difficulty of concepts, combining the opinions

of all individuals will converge toward the true difficulty of every concept regardless of

individual disagreement. In other words, in our discussions hereafter we assume that only

features of a concept’s description differ, while differences in individuals, which could

change the perception of the concept’s actual difficulty, are ignored.
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Table 4.1: Extracted features.

Feature Category Feature Name

Content Mathematical Complexity

Specificity

Granularity

Related Knowledge

Ambiguity

Background Knowledge
DBpedia Hierarchy

RefD

4.2.2 Methodology

We use both DBpedia and Wikipedia as resources to extract features to predict the diffi-

culty of concepts. In Section 4.2.3 we explain how the features are extracted and com-

puted. We aggregate those features to compute a difficulty score in Section 4.2.4, which

can be used as a basis for automatically constructing a concept map by encoding nodes

with a color according to their difficulty score as explained in Section 4.2.5.

4.2.3 Feature Extraction

In this section, we propose several Wikipedia and DBpedia-based features to compute a

difficulty score for a concept. The features are grouped into three categories based on

what they measure. Table 4.1 provides an overview of all the features that we extract.

Content-related features are extracted from the Wikipedia article of a concept, whereas

the specificity of a concept is estimated by its position in the hierarchical structure of

DBpedia. Last but not least, features related to the required background knowledge to

understand a concept are derived from the concept’s DBpedia page and Wikipedia article,

respectively.
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Content-related Features

Arguably the most common indicator of a concept’s difficulty is based on how the con-

cept is described in text. While prior works largely on lexical features as an indicator of

difficulty other aspects affecting the difficulty of a concept are listed in Section 4.2.1. In

fact, language might not be the best indicator. At least in our preliminary experiments the

computation of readability scores like the Dale-Chall readability formula [58] or the com-

mon Flesch-Kincaid grade level formula [59] did not correlate well with the true concept

difficulty. While more sophisticated lexical approaches could be more useful, an analysis

of different approaches is beyond the scope of this thesis. All extracted features from this

category are extracted from Wikipedia. For content analysis specifically, one aspect to

consider is how mathematical an explanation is, as captured by our feature Mathematical

Complexity. While it might be more useful for concepts related to STEM (Science, Tech-

nology, Engineering, and Mathematics) topics, it might fail for certain concepts related to

Social Sciences that involve no equations.

Mathematical Complexity MC(ci) counts the occurrences of different mathematical

symbols, notations, formulas, and equations in the description of concept ci. We assume

that encountering many mathematical expressions in a concept description makes under-

standing more challenging. In particular, the following exhaustive list of expressions

serve as proxies for detecting mathematical expressions: ”\mathbf”, ”\frac”, ”\lambda”,

”\max”, ”\star”, ”\operatorname”, ”\mapsto”, ”\quad”, ”\tfrac”, ”\varepsilon”, ”\langle”,

”\rangle”, ”\geq”, ”\leq”, ”\mathcal”, ”\sigma”, ”\prime”, ”\min”, ”\log”, ”\Omega”,

”\Theta”, ”\lim”, ”\infty”, ”\tfrac”.

Specificity-related Features

Features in this category are centered around the idea that learning a more general con-

cept is simpler than a more specific one. One reason for this assumption is that broader

concepts tend to be more common and thus they might be already known from other con-

texts in which individuals familiarized themselves with the basic ideas. In contrast, more

specific concepts are more relevant for experts and they thus require more knowledge. All
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Figure 4.5: A section of Wikipedia’s article for the concept ”Bloom Filters” shows the

mathematical background information required to fully understand the detailed imple-

mentation of this concept.
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specificity-related features are extracted from DBpedia.

For category information DBpedia provides a well-defined class structure for each

DBpedia entry. By default if a concept has a DBpedia Uniform Resource Identifier (URI)

it shows its existence as a resource page in the ontology. However, a subset of these

resource pages are DBpedia categories, i.e. a concept acts also as a broader category. This

may even happen at the lowest granularity level of the class structure - some concepts on

the lowest level still represent valid categories in DBpedia and any concept that represents

a category can be considered more general than others that only represent the concept

itself. For instance, the concepts ”Merge sort”, ”Sorting algorithm”, and ”Algorithm” all

are valid resource pages in DBpedia, but the latter two concepts are categories as well

and therefore they are more general. The linguistic feature which is used by DBpedia

to distinguish between a simple resource page and a category for the same label is the

singular or plural form of the label. For example ”Algorithm” and ”Algorithms” are two

different DBpedia pages with different values for the predicate rdf:type. Generally, for

DBpedia categories the predicate rdf:type has the value of skos:concept.

Granularity GRAN(ci) of concept ci is a Boolean feature that exploits the afore-

mentioned information to indicate if ci is a concept or a broader category, where we

assume that broader categories tend to be easier to learn because they are more common

and potentially occur in different contexts, which makes it more likely that individuals

encountered them before. It is computed as follows:

GRAN(ci) =

0, if ci is a class and rdf:type == skos:concept

1, otherwise
(4.5)

In other words, GRAN(ci) is only 1 if ci represents a specific concept and 0 whenever it

is a more general concept, i.e., a category.

Related knowledge RK(ci) of a concept ci is another way to capture specificity. If a

concept has more related concepts, we assume it to be more generic and therefore easier to

fully grasp. This information is extracted by examining for each concept the link structure

of Wikipedia, which is available in DBpedia. The essence of this idea is described by the
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Table 4.2: Few examples of concepts from DSA, the relevant predicate value of rdf:type

and the corresponding result for Granularity according to Equation 4.5.

Concept label rdf:type GRAN(ci)

Sorting algorithm owl:Thing, dbo:Software 1

Sorting algorithms skos:Concept 0

Quicksort dbo:Software 1

Mergesort dbo:Software 1

out-degree, which can be obtained by:

RK(ci) =
∑
j

wij (4.6)

, where wij corresponds to the weight of the edge from ci to cj and i ̸= j.

Ambiguity AMB(ci) also measures a certain type of specificity of concept ci. If ci

is more common and therefore easier, it occurs likely in multiple categories. One way

to capture this assumption is by checking if COBEC had to disambiguate ci. In this case

ci is more likely a common and familiar concept. Therefore, AMB(ci) is a Boolean

feature that describes if concept ci was disambiguated by COBEC or not. It is computed

according to:

AMB(ci) =

1, if ci wasn’t disambiguated

0, otherwise
(4.7)

Background Knowledge-related Features

Another aspect that contributes to the difficulty of a concept is the required background

knowledge. Based on the notion that a lack of background knowledge makes a concept

harder, whereas satisfying all required or expected background knowledge simplifies un-

derstanding a concept, we assume that concepts with more required background knowl-

edge are harder to master. Features from this category are extracted from either Wikipedia

or DBpedia.
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Figure 4.6: Example for extracting the feature DBpedia Hierarchy. Two subgraphs are ex-

tracted from the DBpedia hierarchy by expanding the parent category, grandparent cate-

gory, and great-grandparent category of ci=”Quicksort” in (a) and cj=”Sorting algorithm”

in (b). Thus, the graph is expanded by three hops according to the DBpedia hierarchy. The

size of each node depicts its number of outgoing edges - the more outgoing edges a node

has, the bigger the corresponding node is. It can be seen that one of the parents of ”Sorting

algorithm”, namely ”Sorting algorithms”, is the grandparent of ”Quicksort”, which indi-

cates that ”Quicksort” will be at a lower level than ”sorting algorithm” in the combined

version of these two graphs. According to our assumption this suggests that ”Sorting al-

gorithm” is part of the required background information for understanding ”Quicksort”.
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c1

c2

c5

c3

c4

Figure 4.7: Example for the introduction of cycles when computing the feature DBpe-

dia Hierarchy. The node labels correspond to the processing order of the nodes when

computing the feature. For example, first DBPH(c1) was computed, then DBPH(c2),

etc. The resulting cycle is a consequence of the processing order of the nodes and to deal

with such situations consistently, we omitted all prerequisites involved in the cycle. This

means for the given example that c1 is not counted as a prerequisite for c2, c2 does not

count as a prerequisite of c3, c3 does not count as a prerequisite of c4, c4 does not count

as a prerequisite of c5, and c5 does not count as a prerequisite of c1.

DBpedia Hierarchy DBPH(ci) counts the number of prerequisites for concept ci

according to the hierarchical structure of DBpedia. We assume that a more abstract con-

cept, i.e., a concept that is at a higher level in the DBpedia hierarchy, is easier to learn

than a more specific concept, which is at a lower level in the hierarchy. If the more ab-

stract concept is also a parent (P ), grandparent (GP ) or a great-grandparent (GGP ) of

the more specific concept, the abstract concept is regarded as a prerequisite for the more

specific concept. The P/GP/GGP relations are defined in terms of the parent category

of a concept, i.e., a given concept is expanded by three hops toward its parent categories,

s.t. additional nodes from one level (=parents), two levels (=grandparents), and three lev-

els (=great-grandparents) are included in a subgraph G, which contains those additional

nodes from the three levels according to the DBpedia hierarchy and directed edges point

from a more specific level to a more abstract level. The reason for not traversing the

DBpedia graph beyond three hops for this feature is that the DBpedia categories quickly

become too abstract. This decision is motivated by the findings in [41], in which the

researchers found that relevant concepts lie only few hops apart in the DBpedia graph.

DBPH(ci) for concept ci is computed by comparing it with all other nodes cj ∈ C \{ci}
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using the method explained above. In other words, Gi is constructed by expanding ci by

three hops along the parent category and the same happens for constructing Gj by expand-

ing cj by three hops as well. Now cj is counted as a prerequisite of ci after merging Gi and

Gj into Gk if and only if cj is among the parents, grandparents, or great-grandparents of ci

in Gk. In other words, if and only if ci is a child of ck in Gk, cj is counted as a prerequisite

for ci. To clarify this process, a sample computation of DBpedia Hierarchy is presented

in Fig. 4.6 based on the graphs of the two concepts ”Quicksort” and ”Sorting algorithm”.

Note that the computation of DBPH(ci) will introduce cycles with high likelihood when

building a graph that contains all ci ∈ C nodes and an edge from ci to cj if and only if ci is

more abstract than cj according to DBpedia Hierarchy. Those cycles occur based on how

ci are processed and as a post-processing step, when computing DBPH(ci) for concept

ci, we remove all edges ci → ci+1 from the resulting graph that were part of a cycle of

length n, cyclen = (ci → ci+1, . . . ci−1+n → ci+n), which implies that ci is ignored as a

prerequisite for ci+1when computing DBPH(ci+1) assuming that the edge ci → ci+1 is

part of a cycle. This is illustrated with an example in Fig. 4.7.

Reference Distance (RefD) is an unsupervised measure to estimate the prerequisite

relation between a pair of concepts ci and cj based on the Wikipedia link structure [9].

We refer to this as RefD(ci, cj). This feature is widely available in various forms of

text, such as in hyperlinks, notes, and book citations. RefD specifically assumes that

the higher frequency of references is evidence for a pairwise prerequisite relation. In

particular, given ci and cj , then cj would be more likely considered as a prerequisite of ci

if most of the related concepts of ci refer to cj , while only few of the related concepts of cj

refer to ci. REF (ci) counts how many prerequisites a concept ci has among all concepts

cj ∈ C \ ci according to RefD. It is computed as:

REF (ci) =
∑

cj∈C\{ci}

I(RefD(ci, cj)) (4.8)

, where I(c) is an indicator function that takes the corresponding RefD score between ci
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and cj as input to return 1 if and only if cj is a prerequisite of ci according to RefD:

I(RefD(ci, cj)) =

1, if RefD(ci, cj) > 0

0, otherwise

4.2.4 Computing a Difficulty Score for a Concept

We compute a difficulty score ds for concept ci as follows:

ds(ci) = MC(ci)+GRAN(ci)+RK(ci)+AMB(ci)+DBPH(ci)+REF (ci) (4.9)

Since low values for all features from Section 4.2.3 are always assumed to indicate easier

concepts, low difficulty scores refer to easier concepts, whereas higher scores identify

harder concepts.

4.2.5 Constructing a Concept Map with Difficulty Scores

Given the difficulty scores of all concepts, i.e., ds(ci) for ci ∈ C, based on Equation 4.9,

they can be mapped to a continuous color map. For example, lighter colors may corre-

spond to easier concepts, whereas darker colors indicate harder concepts. An edge from

concept ci to concept cj in this concept map represents a coverage relation, in which ci

corresponds to a related and more abstract concept than cj . This relation is determined

by DBpedia Hierarchy when computing DBPH(cj) for all nodes ci that are considered

as prerequisites of cj , an edge from ci to cj is added to the concept map. In other words,

DBPH(cj) does not return the number of prerequisites as described in Section 4.2.3, but

instead returns a list of prerequisites of cj . For the sake of simplicity, we refer to such

edges in the concept map as ci covering cj according to the coverage relation.
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Chapter 5

Experiments and Results

In this chapter we evaluate our methods proposed for the two subtasks of concept extrac-

tion and concept map construction based on difficulty scores. Section 5.1 explains the

detailed evaluation of COBEC while Section 5.2 focuses on CODIF.

5.1 Evaluation of COBEC

In our evaluation we focus on analyzing COBEC in terms of four research questions

(RQ). First, we quantify the performance of our method in Section 5.1.4 (RQ1). In Sec-

tion 5.1.5 we analyze separately the underlying main assumption of COBEC’s second

phase, namely if the identified central node according to Section 4.1.7 is similar to the

underlying topic (RQ2). We then qualitatively investigate COBEC in terms of concepts

with ties in Section 5.1.6 (RQ3). Last but not least, in Section 5.1.7 we investigate the

robustness of our method when varying the parameter β, which determines how many of

the candidate concepts at the top ranks to consider as concepts at the end of the second

phase (RQ4). This is important for real-world applications of COBEC in order to set

default values for the parameters in the absence of labeled datasets.
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5.1.1 Datasets

In addition to evaluating our method on four common datasets used for evaluating keyphrase

extraction algorithms, SemEval[60], Wiki20[61], Theses1001, and Nguyen2007[62]; we

also test it on three newly created datasets - DM, OS, and DB. The latter three datasets

are tailored specifically to our scenario of extracting concepts from a set of unstructured

textual learning materials, which are books in our case. All datasets are summarized in

Table 5.1.

SemEval is the largest dataset in our experiments. It consists of 244 scientific papers

extracted from the ACM digital library of four different research areas about computer

science (CS). Each paper length varies from six to eight pages. The gold concepts are

both author-assigned and reader-assigned. Among these gold labels 19% do not appear

in the text, therefore the maximum achievable recall is 81%, thus with the maximum

F1-score on this dataset would be 89% assuming 100% precision.

In this dataset each paper would have its own underlying topic, which would be the

problem the respective paper addresses. Therefore, the underlying topics are not explicitly

given in this dataset as they could be described with synonyms.

Nguyen2007 comprises 209 scientific papers to which student volunteers assigned

keywords without seeing the author-assigned keywords to avoid introducing any bias.

Similarly to SemEval, the 209 underlying topics are ambiguous and correspond to the

problems addressed in the papers.

Theses100 contains 100 full master and PhD theses from the University of Waikato

covering a diverse range of domains such as chemistry, psychology, and computer science.

Each thesis represents an underlying topic, which is not explicitly given.

Wiki20 consists of 20 research article related to CS. Fifteen teams assigned key-

words to each papers using Wikipedia article titles as the candidate vocabulary which

implies that there are gold labels which do not occur in any of the papers. A unique

feature of the dataset is that it provides the gold labels as well as the Wikipedia la-

bels. For example, if the gold label is ”Process”, the corresponding Wikipedia label

1https://github.com/zelandiya/keyword-extraction-datasets
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will be ”Process (computing)” because ”Process” is ambiguous and is disambiguated on

Wikipedia. Since our approach is Wikipedia-based, we can leverage those Wikipedia

labels for evaluation purposes as well: either COBEC ranks the gold label or the cor-

responding Wikipedia label among the most relevant candidate concepts - in either case

they are counted as true positives since both labels refer to the same concept. However,

since the baseline methods are independent of Wikipedia, we report for COBEC two re-

sults: one that utilizes only gold labels as true positives (GOLD) like all baseline methods

and one utilizing Wikipedia and gold labels (GOLD+WIKI). An additional advantage of

the latter set of labels is that it can be also used as an indicator for the effectiveness

of our word sense disambiguation technique (Section 4.1.5): an improved performance of

COBEC with GOLD+WIKI labels over our method with GOLD labels would suggest that

our method manages to map some extracted ambiguous concepts to the correct Wikipedia

articles.

Like in SemEval, each research article has its own underlying topic, namely the prob-

lem it addresses. Therefore, the underlying topics are not given explicitly.

DM is a dataset we created to test our method further on academic texts in the form

of books. The dataset comprises all 20 chapters of a data mining book[63] where we treat

each chapter as a separate input document. Moreover, we ignored any available metadata

such as the table of contents. Instead we only used the raw text from the book pages.

We recruited three experts to let them discuss which concepts are taught in the different

chapters. All 477 extracted gold concepts in the dataset result from unanimous decisions

among these experts. Each chapter has its own underlying topic, but in contrast to Wiki20

and SemEval, they are unambiguous and given explicitly as the topics correspond to the

chapter titles.

DB is the second dataset that we created. It was extracted from a book about database

management systems[64] and covers all 27 chapters, where each chapter represents a

separate document. Adopting the same annotation strategy as described in DM leads to

the extraction of 395 gold concepts. The chapter titles correspond to the unambiguous

underlying topics like in DM.
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OS is the third new dataset that we created and is a toy dataset, but it is a toy dataset.

It is based on the ”Process”2 chapter of an online book about ”Operating Systems” 3. We

applied the same annotation procedure as described in DM. This resulted in the extraction

of 43 gold concepts from that chapter.

One of the authors has been teaching this course for a long time, thus we mainly

include it for illustrative purposes. Although we also report the performance of COBEC

on this dataset, we do not draw any conclusions from it due to its small size.

5.1.2 Baseline Methods and Evaluation Metrics

We employ popular state of the art methods from Section 2.1 as baselines in our experi-

ments. Specifically, we choose TF-IDF[15], TextRank (TextR)[16], KEA[29], TopicRank

(TopicR)[17], MutltipartiteRank (MultiPR)[18] and YAKE![20]. [65] implemented these

methods 4 and also included MultiPR and YAKE! after their publications. All of these

methods are unsupervised except KEA which is supervised. We apply them with their

default values in our experiments. Moreover, for comparison we also include a commer-

cially available tool, MonkeyLearn (MonkL) 5.

Since we cast the task of detecting concepts as a ranking problem, we follow the tra-

ditional approach of measuring the performance based on the concepts at the k top ranks.

Since the baselines do not permit ties, this approach is equivalent to measuring the per-

formance based on the k top-ranked concepts. However, as pointed out in Section 4.1.5,

COBEC does not split ranks in case of ties because the tied candidate concepts are se-

mantically similar and refer to the same gold label. This implies that COBEC potentially

utilizes more than k candidates at its k top ranks. This setup favors our method over the

baselines, as by chance multiple true positives could theoretically be tied at the same rank.

Therefore we introduce COBEC-T for a fair comparison, which splits ties in COBEC

randomly. However, we always report results for COBEC and COBEC-T to illustrate the

2https://cnx.org/contents/epUq7msG@2.1:vLiqr17-@1/Process
3http://cnx.org/content/col10785/1.2/
4https://github.com/boudinfl/pke
5https://monkeylearn.com/
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real capabilities of COBEC since concepts end on a tied rank if they are either closely

related or even synonyms. Thus, a human would benefit from seeing a list with candi-

date concepts, among which some might have tied ranks, and in practice COBEC would

be used instead of COBEC-T. Nevertheless, we only compare COBEC-T with baselines

and only report results for COBEC. For measuring the performance of COBEC and the

baseline methods in all our experiments, we evaluate each document of a dataset sepa-

rately and then report macro-averaged results over all documents in line with previous

works[20]. As the performance metric we adopt macro-averaged F1-scores at rank k.

In addition, we also report macro-averaged precision at rank k and recall at rank k to

give more insights about the capabilities of the methods. In one experiment (see Sec-

tion 5.1.6), we also adopt R-precision which considers only the k top-ranked concepts in

a document with k being set to the number of gold concepts in the respective document.

Therefore, it indicates how many of the gold concepts were among the top-ranked candi-

date concepts of an input document. Due to the minimal differences between micro- and

macro-averaged performance metrics across our experiments, we only report the latter

ones.

Across all experiments we compute performance metrics based on exact matches,

i.e., only detected concepts that match exactly a gold concept label are counted as true

positives, while those detected ones that are semantically similar or partial matches are

omitted.

5.1.3 Dataset Preprocessing and Experimental Settings

In terms of preprocessing the datasets we assume that concepts may be described as n-

grams of length n = {1, 2, 3}, which implies that gold concepts of four words or more in

our test datasets can neither be captured with our method nor the baselines. This decision

is in line with previous works [20] which also discarded longer n-grams. In addition, as

shown in Table 5.1, longer n-grams occur rarely in our datasets. The frequency threshold

for unigrams is set to 15 and to 2 for bigrams and trigrams, respectively, meaning that ex-

tracted candidate concepts with fewer occurrences are discarded. In addition to excluding
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common English stopwords, we also exclude typical words from academia as defined in

the academic word list[66] 6 as all our datasets are from the educational domain.

Across all experiments we initialize our method as follows. In COBEC we set α = 5,

i.e., only the five top-ranked candidates from the first phase are passed into the second

phase for constructing the subgraph from DBpedia. As stated earlier, choosing a small

value for α is important to avoid propagating noisy candidate concepts into the second

phase. Since the different algorithms used in this experiment return a different number of

concepts, we consider only the concepts at the 15 top ranks per method. For our method

this translates to setting β = 15. Considering the 15 top-ranked candidate concepts is

chosen similarly to [20] where the 10 top-ranked ones were taken into account.

5.1.4 RQ1: Comparison with Baseline Methods

In this experiment we assess the viability of COBEC and COBEC-T and evaluate how

well they fare against the seven supervised and unsupervised baselines introduced in Sec-

tion 5.1.2. The settings described in Section 5.1.3 are used for the experiments.

The macro-averaged F1-scores of COBEC and COBEC-T with the seven baselines

are depicted in Table 5.2. The results for precision are in Table 5.3, and the results for

recall are in Table 5.4. We report results for COBEC in Table 5.2a and for COBEC-T in

Table 5.2b separately for the first and second phase to measure the benefits of the second

phase on the performance.

First phase of COBEC-T COBEC-T’s first phase outperforms all baselines on three

datasets in terms of F1-score, namely DM, Wiki20, and DB, while not being worse than

at most 2% on the other datasets than the best method. Overall, this indicates that the

method is promising.

6http://www.essp-ny.org/images/stories/CCSS_academic_vocabulary_by_

number.pdf
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Second phase of COBEC-T COBEC-T’s second phase exhibits superior performance

on five datasets in terms of F1-score, which are DM, Wiki20, OS, DB, and Nguyen2007,

while not performing more than 1.5% worse on the other two datasets than the best meth-

ods. Similar observations hold true for recall and precision. Regardless of the perfor-

mance metric, COBEC-T outperforms all baselines consistently on the datasets extracted

from learning materials, which are OS, DM, and DB.

First phase vs. second phase of COBEC-T The second phase consistently exhibits

better performance in terms of F1-score than using only COBEC-T’s first phase, where

the performance improvement ranges from 0.6%-7%. COBEC-T’s performance also im-

proves consistently in terms of recall and precision, with recall SemEval being the only

exception in that recall and precision decrease in the second phase compared to the first

one. For COBEC-T precision also decreases in the second phase on Nguyen2007. Overall

these results indicate that enriching the context information with more abstract categories

from DBpedia is a feasible strategy to steer the context towards the underlying topic.

However, this hypothesis will be assessed in more depth in Section 5.1.5.

Word sense disambiguation in COBEC-T As a byproduct of our experiment, we com-

puted for Wiki20 the performance of COBEC-T using two types of gold concepts as de-

scribed in Section 5.1.1: GOLD and GOLD+WIKI. Including the WIKI labels lets us

check if COBEC-T could disambiguate ambiguous candidate concepts properly. The im-

provement of 4.8% observed with the latter set of labels over the regular gold concepts in

the first phase and the improvement by 4.4% in the second phase suggest that our word

sense disambiguation method is able to map most of the ambiguous candidate concepts

to correct DBpedia entries.

COBEC the same patterns observed for COBEC-T also hold for COBEC, but it consis-

tently outperforms COBEC-T due to concepts ending up at the same tied rank.

Overall, COBEC-T, and similarly COBEC, perform best on the datasets extracted

from books - DM, OS, and DB - regardless of the performance metric. There are two
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Figure 5.1: Resulting graph G̃ for dataset OS in the second phase of COBEC. All nodes

are added to the context information and contribute with their weights according to Eq. 4.4

(with N = 15), depicted in black circles, to the context.

possible explanations for this result. On the one hand, SemEval, Wiki20, Nguyen2007,

Theses100 deal with state of the art research articles, thus COBEC is less likely to find

DBpedia entries for candidate concepts, whereas DM, OS, and DB are extracted from

books which explain common and established concepts for which it is more likely to find

corresponding DBpedia entries. On the other hand, we speculate that another possible

explanation for this result could be that research articles are interdisciplinary, thus the

candidate concepts revolve around multiple underlying topics which would violate the

implicit assumptions made in COBEC and COBEC-T. But this hypothesis needs further

exploration in the future.

To give a better intuition about the actual categories that are added to the context

information in the second phase of COBEC-T, we illustrate in Fig. 5.1 the resulting graph

G̃ (according to Section 4.1.6, Section 4.1.7, and Section 4.1.8) on OS. We use α = 5
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as in all other experiments. Thus, the 5 top-ranked concepts after the first phase, which

are indicated by orange are added to the graph. Then they are expanded by DBpedia to

retrieve and add their categories. Similarly, expanding these categories in DBpedia adds

all their parent categories. These two expansion steps add all nodes in the graph that

are not orange. After computing their centrality scores, ”Operating system technology”

is identified as the most central node, which corresponds to the central topic. Since G̃

contains 15 nodes, N in Eq. 4.4 is set to N = 15. Starting from this node the resulting

weights of the nodes are assigned and represented by black circles in Fig. 5.1.

5.1.5 RQ2: Relation between the Central Node and Underlying Topic

Although we reported in Section 5.1.4 that the second phase of COBEC-T leads to per-

formance gains, in this experiment we investigate if this improvement can be explained

by the underlying topic being similar to the central node or if the observed improvements

are more likely due to chance. We analyze this question with the following experimental

design using the settings described in Section 5.1.3. Given a dataset, we run COBEC-T

with both phases and as part of that process, we obtain the DBpedia graph according to

Section 4.1.6 and the central node according to Section 4.1.7. Here we do not distinguish

between COBEC-T and COBEC as the same arguments hold for both methods. However,

we utilized COBEC-T to generate the results reported in Table 5.5.

Our main hypothesis in the second phase is that identifying the central node in the

extracted DBpedia graph and assigning it the highest weight before adding it to the context

information is responsible for the enhanced performance of COBEC. To investigate this

hypothesis, we test if the central node is more related to the underlying topic than the

other nodes in the extracted DBpedia graph. If this is the case, we found evidence that the

central node, which has the biggest impact on re-ranking candidate concepts according to

the context information at the end of the second phase, steers the re-ranking process in

the right direction for more accurate concept extraction. This experiment assumes that the

underlying topics are explicitly known, otherwise they could be ambiguous as explained

in Section 5.1.1. Only OS, DM, and DB meet this criterion, hence the other datasets are
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excluded from this experiment.

We measure the coverage between the central node and the underlying topic by the

cosine similarity between their vector embeddings, which are known to preserve seman-

tic relations [67]. More specifically, in our experiment we compute two similarities for

each document in a dataset: 1) the similarity between the embedding of the central node

and the embedding of the underlying topic (SINGLE-SIM), and 2) the average similarity

between the underlying topic with all nodes in the extracted DBpedia graph according to

Section 4.1.7 (AVG-SIM). However, in AVG-SIM the central node is excluded because it

is already considered in SINGLE-SIM. If SINGLE-SIM is significantly larger than AVG-

SIM, it indicates that the central node is more similar to the underlying topic and thus

that it steers to re-ranking procedure towards a more accurate ranking which enhances

COBEC’s performance. To ensure that SINGLE-SIM is larger than AVG-SIM not due

to chance, we measure the significance (significance level p=0.05) of the results by the

non-parametric one-sided Wilcoxon signed-rank test as the distributions of the similarity

scores are unknown and we only evaluate one direction, i.e., if SINGLE-SIM is larger than

AVG-SIM. We report SINGLE-SIM and AVG-SIM macro-averaged over all documents

in a dataset. In our experiments we use fastText embeddings [68, 69] which have the

advantage to provide embeddings for out-of-vocabulary (OOV) words, i.e. words that did

not occur in the training data, by representing words as subwords. Thus, if there is no em-

bedding for a certain OOV word and also none for any of its subwords, fastText combines

the embeddings of the unigrams that constitute that particular OOV word. For example,

if ”hello” is such an OOV word, its embedding is a combination of the embeddings of the

unigrams ”h”, ”e”, ”l”, ”l”, and ”o”. We rely on pre-trained fastText embeddings that were

trained on the English Wikipedia 7, where all embeddings are 300 dimensional vectors.

We note that OS must be discarded from the datasets in this experiment as it contains only

a single document, which renders performing a statistical significance test meaningless.

The results of this experiment are shown in Table 5.5. While SINGLE-SIM is sig-

nificantly larger than AVG-SIM on DB, this is not the case for DM. Nevertheless, the

7https://fasttext.cc/docs/en/pretrained-vectors.html

54

https://fasttext.cc/docs/en/pretrained-vectors.html


macro-averaged SINGLE-SIM score is consistently larger than AVG-SIM score in both

datasets. However, for DM it can not be ruled out by the significance test that we obtained

these scores by chance. One possible explanation for the non-significant result is that in

DM there are four chapters for which AVG-SIM is at least twice as large as SINGLE-SIM.

Upon manual inspection it turns out that the central nodes are semantically different from

the underlying topic, although they describe the contents of the chapters accurately. For

example, in the chapter ”Cluster analysis: advanced concepts”, different methods using

trees as data structures and hierarchical methods are described in detail. Accordingly,

COBEC identifies ”Trees” as the central node, while other nodes in the DBpedia graph,

such as ”Cluster analysis”, are naturally more similar to the chapter title. Therefore, the

similarity of the remaining DBpedia graph without the central node has a high chance to

exhibit a higher similarity. This example highlights the shortcoming of our experiment

and explains why the statistical significance might not be the best decision criterion in

this experiment. In light of this discussion we interpret our results in Table 5.5 as a partial

confirmation of our initial hypothesis that the central node is at least partially responsible

for enhancing COBEC’s performance in the second phase

5.1.6 RQ3: Qualitative Analysis of Ties in COBEC

Ties in COBEC favor its performance when considering the k = 15 top-ranked concepts

in our experiment because unlike other methods, COBEC does not resolve ties as they

indicate that different candidate concepts refer to the same concept as explained in Sec-

tion 4.1.5.

To analyze if the concepts with tied ranks are semantically similar or even synonyms,

we use the settings described in Section 5.1.3 for COBEC and utilize both of its phases.

For the sake of brevity we examine only the 10 (instead of 15) top-ranked concepts for

COBEC, TextRank, and MonkeyLearn on OS for a qualitative assessment of the ties in

Table 5.6. Overall, COBEC includes 18 instead of 10 candidates with seven ties. Upon

manual

inspection one can see that those ties all represent semantically similar concepts as op-
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posed to TextR and MonkL. For example, ”PCB” is the abbreviation of ”Process control block”

and ”Stack pointer” is closely related to ”Call stack”, whereas both baselines tend to rank

more abstract candidates towards the top. At the end of the first phase seven ties occur

in COBEC and after re-disambiguation and re-ranking at the end of the second phase

the same number of ties exists among the 10 top-ranked candidate concepts. Normally

the number of ties is stable across both phases. The only exception we observed is that

the number of concepts involved in ties increases slightly, although the number of ties

remains the same. This may happen if candidates representing the same gold label were

incorrectly disambiguated in the first phase, but after updating the context information,

they are now correctly disambiguated, thus previously incorrectly matched candidates

merge with existing ties.

5.1.7 RQ4: Robustness of COBEC

In practice, α and β are the two parameters to tune in COBEC apart from setting the

frequency thresholds of unigrams, bigrams, and trigrams for preprocessing the input doc-

uments. The range of value for α is limited because the top-ranked concepts after the

first phase are assumed to be accurately describing the underlying topic T that all input

documents are related to. Otherwise the context information is updated with unrelated

noisy n-grams. Therefore, we do not vary α in this experiment, only β, which controls

how many of the candidate concepts at the top ranks to consider as concepts. Note that

we now use COBEC instead of COBEC-T because as stated before, we use COBEC in

practice instead of COBEC-T and in this experiment we propose sensible default param-

eters for COBEC in the absence of gold labels for parameter tuning. In a realistic setting

β will not be set to an absolute number which depends on a dataset, but it is rather set

in relative terms w.r.t. the dataset size. This way the same β leads to a different number

of detected concepts based on the dataset: if more candidate concepts exist, more actual

concepts are extracted and vice versa. Therefore, we set β = Pc allowing us to vary c.

Here Pc denotes that only those candidate concepts are considered as concepts if they

are at least in the c-th percentile of the re-ranked candidate concepts. Apart from setting
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β = Pc, we use the settings described in Section 5.1.3. In addition to the different per-

centiles, we also report R-precision, for the same reason we use percentiles: the number

of gold concepts could vary across documents and datasets. which considers only the k

top-ranked concepts on a dataset with k being equal to the number of gold concepts in the

respective dataset. Therefore, it indicates how many of the gold concepts were among the

top-ranked candidate concepts.

The results of this experiment are depicted in Table 5.7. Despite varying the percentile

over a range of values, the F1-scores remain at a similar level. The only notable exception

is observed in DM with a decrease in F1-score by 5.4% from P75 to P25, whereas the F1-

scores vary at most by 2.7% otherwise. While there is room for fine-tuning c on a dataset,

for real-world scenarios, without any available gold labels, our experiments suggest that

setting c = 50 as the default value for β leads to stable results which are also close to the

R-precision values across all datasets.

5.1.8 Discussion and Conclusion(COBEC)

In this work we proposed an unsupervised method to extract concepts from unstructured

textual learning materials for a course. Assuming that all documents are related to a sin-

gle central topic, namely the course topic itself, enables our approach to infer context

information explicitly for disambiguating and ranking extracted candidate concepts un-

like existing methods. Our method comprises two phases, where the first one focuses

on identifying suitable candidate concepts that describe the central topic, while the sec-

ond one aims at enriching the available context information with the help of the graph

structure extracted from DBpedia to re-disambiguate and re-rank all extracted concepts

more accurately. In the experiments conducted on seven datasets our novel method out-

performs all seven popular baselines on five datasets and is competitive on the other two

demonstrating its efficacy. Further experiments revealed its robustness when varying its

parameters. Our three newly created datasets for the topics ”Data Mining”, ”Operating

Systems”, and ”Database Management Systems” along with the code are available8.

8https://github.com/gulsaima/COBEC
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One limitation of our proposed method is that it fails if there is no DBpedia entry for a

candidate concept. This is more likely to occur for the most recent discoveries in science

as it takes a while until they become accepted and popular enough to justify a DBpedia

entry. To mitigate this problem, we plan to combine our method with fuzzy matches.

More precisely, we will combine our method with the idea that a language model, such as

BERT[70], already represents a knowledge base[71]. When trained on the latest research

articles, such a language model would provide indicators as to whether a candidate con-

cept, that does not exist in DBpedia, should be retained or discarded. Furthermore, in the

future our goal is to reduce the processing time required for word sense disambiguation.

While it may take several minutes in the current implementation to disambiguate a can-

didate concept, there is room for improvement. By discarding candidates based on their

categories or parent categories using the DBpedia property ”rdf:type” one can potentially

speed up the processing time. Once our novel method is mature enough, we will integrate

it as a plugin into Moodle.

Another plan for the future is to investigate why COBEC performs particularly well

on the datasets extracted from books compared to regular research articles. Our idea is

to use other types of learning materials as input documents, especially lecture slides and

subtitles of lectures, to see if COBEC outperforms other methods on such datasets as

clearly as it did on books.

5.2 Evaluation of CODIF

To assess how feasible our proposed method is for constructing automatically a concept

map with concepts as nodes, coverage edges interconnecting the nodes, and node color

encoding concept difficulty, we conduct four experiments that assess different aspects of

the methodology. Each experiment focuses on one specific research question (RQ):

1. RQ1 - How does CODIF perform and which feature categories are most important?

(Section 5.2.2)

2. RQ2 - Can existing prerequisite datasets be labeled automatically? (Section 5.2.3)
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3. RQ3- How similar is our coverage relationship to the prerequisite relationship?

(Section 5.2.4)

4. RQ4 - How do the resulting concept maps look like? (Section 5.2.5)

In RQ1 we focus on quantifying the quality of the computed difficulty scores for concepts.

RQ2 explores a strategy for creating more labeled datasets for the task of predicting con-

ceptual text complexity from existing datasets for prerequisite detection, whereas RQ3

investigates the quality of the edges to be added in the concept map. Last but not least,

RQ4 analyzes the overall quality of the resulting concept maps while also examining the

hypothesis that prerequisites of a concept are easier than the concept itself, which is an

essential assumption for our proposed methodology to automatically construct a concept

map from unstructured textual learning materials.

5.2.1 Datasets

Since the task of predicting conceptual text difficulty was introduced only recently [11],

not many datasets exist. To the best of our knowledge only two datasets exist, one of

them using articles from the simple and normal Wikipedia [72]. However, as pointed out

in [73], half of the sentences in simple Wikipedia are not simplifications of the original

sentences. The other dataset, which is known as Newsela [73], contains 1130 newspa-

per articles and human editors created four simplified versions of each article, and each

version is simpler than the previous one. Hence these simplified versions are suitable for

children and second language learners with varying language proficiency. But none of the

datasets covers the educational domain. Moreover, Newsela only provides labels w.r.t.

the same article, which allows only comparing simplified versions of the same article

with each other, but not across different articles. Therefore, we created suitable datasets

based on Metacademy9, where experts provide prerequisite relationships between concept

pairs for a number of domains. We specifically focused on the domains ”Data Structures

& Algorithms” (DSA) and ”Machine Learning” (ML), since are common undergraduate

9https://metacademy.org/
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courses in computer science. DSA comprises 29 concepts in total, whereas ML contains

140 concepts. We asked two experts to label both datasets in terms of the concepts be-

ing either ”easy” or ”hard”. Both were instructed to rate the difficulty of a concept only

based on its Wikipedia article. Experts resolved disagreeing labels by discussions. Their

inter-annotator agreement according to Cohen’s kappa was κ = 0.86 on ML and κ = 0.81

on DSA, which are both considered almost perfect agreement [74]. The resulting label

distributions are shown in Table 5.8. Since the relative amount of hard concepts is higher

in ML than in DSA, ML seems slightly more difficult, which seems intuitive, given that

more background in mathematics is required to comprehend all ML concepts. However,

both datasets are imbalanced as easy concepts are more prevalent than hard ones.

5.2.2 RQ1: Performance of CODIF and Feature Category Impor-

tance

To measure the performance of CODIF, we apply it to ML and DSA and compute for

each concept ci ∈ C its difficulty score ds(ci) according to Equation 4.9. To quantify the

performance of CODIF, we solve a binary classification task with the labels ”easy” and

”hard” that are available as ground truth in DSA and ML. Therefore, we discretize the

continuous scores of CODIF by running k-means with k = 2 to cluster the resulting diffi-

culty scores of all concepts. All concepts in the cluster with lower average difficulty score

are assigned the label ”easy”. Similarly, all concepts in the cluster with higher average dif-

ficulty score receive the label ”hard”. This way we can measure CODIF’s performance in

terms of accuracy, F1-score, precision, and recall. Due to the datasets being imbalanced,

reporting only accuracy is insufficient. Since CODIF is the first unsupervised method, we

report the results of a majority label classifier as baseline method which assigns the most

common label, which is ”easy” in case of both datasets according to Table 5.8, to any

given concept.

Table 5.9 shows the results for CODIF and the baseline method, including the use of

different combinations of feature categories for CODIF. What stands out is that the best

subset of feature categories comprises only Content and Background Information, but not
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Specificity. The resulting best performance for this subset is 0.87 in terms of F1-score

on DSA and 0.8 on ML, whereas the performance drops in terms of F1-score, when us-

ing all feature categories, by 0.1 on DSA and by 0.2 on ML respectively, indicating that

Specificity has problems to capture concept difficulty especially on ML. This is further

supported by looking at performances of any other subset of feature categories involving

Specificity - each time that subset exhibits a substantially worse performance on ML than

on DSA. One reason for the better performance of CODIF using any subset involving

Specificity on DSA could be that it is an artifact due to the smaller dataset size compared

to ML. Another reason could be directly presented by the performance of the baseline

method. The baseline method performs better on DSA than on ML as expected because

the label distribution is more skewed toward easy concepts on DSA. The performance

on DSA is competitive with CODIF, using only Content and Background Information, in

terms of F1-scores. Therefore, an alternative explanation for Specificity worsening the

performance of CODIF could be that Specificity tends to perform better for easy concepts

which are more prevalent in DSA. Nevertheless, more datasets are needed to identify the

exact cause. But CODIF, using only features from the Content and Background Informa-

tion category, outperforms all other variants across all metrics. Only in terms of recall on

ML the category Content is more accurate. But overall, the results indicate that Specificity

should not be considered. In terms of the most important feature category, Background

Information wins because it performs well consistently across all datasets and metrics

with little variance unlike Content, which struggles with the distinction of easy and hard

concepts on ML, which becomes clear when looking at its low precision of 0.63.

5.2.3 RQ2: Automatically Labeling Prerequisite Datasets

Due to the limited number of datasets, we also explore the idea of automatically labeling

existing prerequisite datasets in terms of difficulty. To that end we hypothesize that ”the

number of prerequisites of a concept indicates how challenging it is for an individual to

understand that concept. Thus, the more prerequisites a concept has, the harder it is”

(H1). This is motivated by the idea that having to understand a large number of prereq-
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uisites first, before applying this knowledge to actual concept to be learned, is a difficult

task in its own right. In contrast, learning a concept without having any prerequisites

appears to be easier.

The binary difficulty labels for the concepts of ML and DSA are automatically de-

rived according to the following procedure. Given the set of prerequisite datasets D =

{DSA, ML}, each d ∈ D contains a set of concepts C. For each concept ci ∈ C, its

true number of prerequisites is counted in d. Let that count be cnti. After processing

all concepts in d, all counts cnti are available. Applying k-means with k = 2 to these

counts yields two clusters ce and ch. All concepts belonging to ce, the cluster contain-

ing the lower counts on average, are assigned the ”easy” label, while the concepts from

cluster ch, which contains the concepts with higher counts on average, are assigned the

label ”hard”. Comparing these automatically assigned labels with those determined by

the experts in Section 5.2.1 allows us to examine our hypothesis H1 from above based on

the resulting confusion tables for ML (Table 5.10a) and DSA (Table 5.10b). In addition to

reporting accuracy, F1-score, precision, and recall like in Section 5.2.2, we also measure

the correlation coefficient to see if there is a linear relationship between the two variables,

the automatically assigned labels and the ground truth labels from Section 5.2.1.

The resulting performances are reported in Table 5.11. While the number of prereq-

uisites works surprisingly well on ML with an F1-score of 0.84, it yields less reliable

predictions on DSA with only 0.68. In terms of correlation coefficient, there is medium

correlation (r = 0.5) between the automatically assigned labels and the ground truth la-

bels on ML, whereas the correlation is very weak on DSA. This can be explained by the

fact that most concepts were considered easy by experts, although they have many pre-

requisites. This leads to the question if either DSA or ML is an artifact or whether there

is simply no inherent relationship between the prerequisite detection task and predicting

conceptual text complexity, which can only be answered with more datasets.
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5.2.4 RQ3: Similarity between Coverage and Prerequisite Relation-

ship

To test how accurately the coverage relation based on DBpedia Hierarchy (cf. Sec-

tion 4.2.3) captures prerequisites, we compare it with prerequisite relations discovered

by RefD. Both methods are unsupervised and RefD was devised for detecting prerequi-

sites, whereas DBpedia Hierarchy estimates prerequisites based on the DBpedia hierar-

chy. Since one requirement for our method to construct concept maps is that it scales,

only unsupervised methods are considered. For prerequisite detection RefD is the only

available method. On each dataset we compute coverage and prerequisite relations for

all pairwise combinations of concepts, resulting in the confusion matrices shown in Ta-

ble 5.12. While RefD has problems to distinguish false positives from true negatives in

Tables 5.12b and 5.12a, DBpedia Hierarchy struggles with separating true positives from

false negatives as shown in Tables 5.13b and 5.13a. This leads to the performances re-

ported in Table 5.14, where the coverage relation is more accurate with a higher recall,

while RefD is more precise. Overall, both relations perform similarly poorly in terms of

F1-scores on ML, while on DSA the coverage relation achieves a twice as high F1-score

with 0.3 compared to RefD, but given the size of DSA this might be an artifact. Overall,

the results indicate that the coverage relation performs at least as well as RefD in terms

of detecting prerequisite relations, thus making it a viable choice for connecting nodes in

the concept map.

5.2.5 RQ4: Concept Maps for ML and DSA

Here we perform a qualitative analysis of the generated concept maps in terms of how

well they serve their purpose of guiding individuals correctly. To that end, we employed

CODIF, using only the feature categories Background Knowledge and Content according

to Section 5.2.2 to generate concept maps for DSA and ML, where nodes correspond to

concepts and edges are inserted based on the coverage relation. Note that the continuous

difficulty scores instead of the discrete difficulty labels are used for encoding concept
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Figure 5.2: Resulting concept map for DSA according to our proposed methodology,

where nodes represent concepts from DSA, edges represent the coverage relation accord-

ing to Section 4.2.5. Similarly, the node color encodes concept difficulty, where lighter

colors correspond to simpler concepts and darker colors to harder concepts.
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Figure 5.3: Resulting concept map for ML according to our proposed methodology, where

nodes represent concepts from ML, edges represent the coverage relation according to

Section 4.2.5. Similarly, the node color encodes concept difficulty, where lighter colors

correspond to simpler concepts and darker colors to harder concepts.
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difficulty as node color. We only clustered those scores in Section 5.2.2 to evaluate our

method based on ground truth discrete difficulty labels of concepts. When constructing

the concept map, not all edges need to be shown. For instance, if there is an edge from

concept ci to cj , an edge from cj to ck, and an edge from ci to ck, the last edge is redundant

because there is already a path connecting ci with ck, thus the edge from ci to ck does not

add any new information, it only clutters the graph. The edge from ci to ck is known as a

transitive edge. Therefore, after constructing the concept map, we remove transitive edges

by computing its transitive reduction [75]. The statistics of both resulting concept maps

are shown in Table 5.15. Most notably the percentage of transitive edges in a concept

map increases with the number of concepts, thus it becomes important to declutter the

resulting map by removing such transitive edges. The concept maps are also suitable to

evaluate our hypothesis that ”prerequisites of a given concept tend not to be harder than

the concept itself”(H2). To that end we consider the true prerequisites from ML and DSA,

respectively, and count for how many of those H2 holds.

The concept map for DSA is depicted in Fig. 5.2. It is directly clear from the node

coloring that the majority of concepts is easy. Only ”Bloom filter” and ”Dijkstra’s al-

gorithm” stand out as difficult concepts. With background knowledge about DSA it is

immediately clear that ”Binary search tree” being a prerequisite of ”Pointer (computer

programming)” is incorrect, which is more likely to be noticed by an individual with no

background knowledge because a more difficult concept, ”Binary search tree”, is a pre-

requisite for a simpler one. But applying this heuristic in case of ”Recursion (computer

science)” being a prerequisite of ”Computational complexity” would be incorrect because

the identified prerequisite relation is correct, although the prerequisite is harder than the

concept itself. When checking all correct prerequisites to analyze H2, it turns out that

39/52 (75%) of the prerequisites are not harder than the given concept in DSA. There-

fore, our heuristic seems applicable. Although we depict the resulting concept map of

ML in Fig. 5.3, it is only included for the sake of completeness, as too many concepts

with too many edges exist, which makes the concept map hard to read without zooming

into certain areas, which is impossible to do in this thesis. However, we note that ”Beta
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distribution” is the hardest concept, followed by ”Kalman filter” and ”Bayesian network”.

While there are also examples where our heuristic expressed in H2 holds and fails, when

looking at all true prerequisites in ML, 208/306 (68%) of the prerequisites are not harder

than the given concept. This indicates again that our heuristic appears to be useful.

5.2.6 Discussion and Conclusion(CODIF)

We proposed an unsupervised method for the task of predicting conceptual text complex-

ity. Our goal was to estimate the difficulty of concepts from the educational domain to

construct a concept map automatically based on the concepts extracted from unstructured

textual learning materials. The nodes in this concept map encode their difficulty based

on node color, while we use coverage relationships among concepts to interconnect them.

We argued that this relation combined with the difficulty score equips individuals with

the ability to learn concepts in a specific sequence that is reminiscent of the prerequisite

order because we assumed that prerequisites for a given concept are not harder than the

concept itself. Thus, even in case of incorrect relations, individuals will notice and ignore

such edges because hard concepts should not be related to easier concepts. Our unsuper-

vised method for estimating the difficulty of a given concept extracts features based on the

concept’s position in the hierarchical structure of DBpedia, the given textual description

of the concept as well as background information needed for understanding that specific

concept. Aggregating those features into a score yields the approximate concept diffi-

culty. When analyzing in Section 5.2.2 with regard to RQ1 how well CODIF performs, it

turns out that CODIF outperforms a majority label baseline and features from the category

Specificity worsen CODIF’s performance as it seems that the information these features

capture overlaps with features from Background Information and Content, but the latter

two are more accurate at distinguishing easy from difficult concepts. Hence, CODIF only

uses the features from those two categories. Instead of using a specific feature category to

label existing prerequisite datasets automatically, in Section 5.2.3 we use only the num-

ber of prerequisites as a feature to predict the difficulty label as this information is already

present in such datasets, which is why this feature can be extracted easily without needing
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any preprocessing or expensive feature extraction procedure.

The experiment conducted in Section 5.2.4 stresses the difficulty of predicting prereq-

uisite relations as neither the well-established RefD metric nor our coverage relation based

on the DBpedia Hierarchy feature detect prerequisite relations reliably (see Table 5.14).

Nevertheless, based on the semantic authority of both types of relations, the DBpedia

Hierarchy feature is preferable, because it captures more prerequisites than RefD due to

a higher recall, which is the more important metric compared to precision as missing

prerequisite edges are worse for individuals than including redundant edges. As a conse-

quence of this experiment, the concept maps for ML and DSA in Section 5.2.5 contain

more edges than needed. But the maps provide evidence in favor of our assumption that

prerequisites of a concept tend to be at most as difficult as the concept itself. This, in

turn, suggests that our general idea for constructing a concept map based on the cover-

age relation with node colors denoting concept difficulty is a viable approach, while the

insertion of edges poses the biggest challenge due to the poor performance of detecting

prerequisites with either the prerequisite or the coverage relation.

Although simple in nature, our method performs well in the evaluation on our two

newly created and released benchmark datasets. Moreover, the resulting concept maps

supported our hypothesis that prerequisites of a concept tend to be not harder than the

concept itself. Therefore, the idea of constructing concept maps with our methodology

is viable, but inserting reliable relationships among the concepts poses the biggest chal-

lenge. As a byproduct of the labeling process for the two benchmark datasets we also

experimented with a heuristic to automatically assign difficulty labels to concepts based

on their number of prerequisites. An advantage of this heuristic is that no expensive

feature extraction procedure is required. However, this information is only available for

prerequisite datasets, and in our experiments the heuristic produced difficulty labels of

mixed quality and it is unclear how reliable it is in general. This does not rule out the pos-

sibility that there might be an inherent link between prerequisite detection and conceptual

text complexity, but it indicates that other aspects, such as how a concept is described,

will probably also have to be included.
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One drawback of our method is that it relies on the existence of a concept in Wikipedia

or DBpedia. But given that Wikipedia and DBpedia are constantly getting updated, this

limitation might vanish over time. Another avenue for addressing this problem is to

combine our method with fuzzy matches. More precisely, we will combine our method

with the idea that a language model, such as BERT[70], already represents a knowledge

base[71]. Currently our method takes into account features from DBpedia, the concept

description, and background information. However, when the experts labeled our two

datasets, they mentioned that some Wikipedia articles were considered easy or hard based

on the visualizations - either images, animations, or videos. While our current method al-

ready yields good results, integrating features from those visualizations into our approach

would potentially improve the performance. Student assessment data would constitute an-

other promising factor to integrate into our method, similar to [38] and [39], who rely only

on this assessment data. However, this student assessment data would only be available

if our method were to be integrated into a fully fledged e-learning platform. In such an

e-learning platform additional features could be considered that take into account an indi-

vidual’s cognitive capacity, analytical reasoning skills [76] as they all affect how concept

difficulty is perceived subjectively. This additional information could be used to provide

a sequence of learning materials tailored to an individual [77]. Annotating more datasets

for the task of predicting conceptual text complexity has a high priority in the future. This

would allow re-evaluating our proposed heuristic to label prerequisite datasets automati-

cally with difficulty labels based on the idea that harder concepts have more prerequisites.

Our obtained mixed results on two datasets do not allow to draw any conclusions about

the usefulness of our heuristic to mitigate the scarceness of suitable benchmark datasets

yet. A closely related research avenue concerns evaluating the quality of the automat-

ically derived difficulty labels with our simple heuristic when assigning more nuanced

difficulty labels and not only the binary case. Our proposed heuristic is flexible enough

to accommodate more granular difficulty labels. Our plan is to analyze this in the future

not only on our two released datasets about conceptual text complexity, but more prereq-

uisite datasets to see if our simple heuristic is robust or just an artifact. Related to this
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avenue is also testing our methods on courses from other domains than computer science,

because some features, most notably Mathematical Complexity, might be inappropriate

for concept descriptions that do not contain any mathematical equations. Last but not

least, we also plan to investigate the role of language for predicting concept difficulty as

common readability scores failed to correlate with concept difficulty in our preliminary

experiments. One reason might be their simplistic nature, thus a more sophisticated ap-

proach like [78] might be able to distinguish difficult linguistic concept descriptions more

accurately.
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Table 5.2: Macro-averaged F1-scores of COBEC and COBEC-T versus seven baseline

methods on seven different datasets. Note that the scores of our method with * are ob-

tained with the GOLD+WIKI labels, whereas the others utilize only GOLD labels (see

Section 5.1.1 for an explanation). The best performance on each dataset is marked in

bold.

(a) First (COBEC(1)) and second phase of COBEC (COBEC(2)).

Dataset COBEC(1) COBEC(2) YAKE! MultiPR TopicR TextR KEA TF-IDF MonkL

SemEval 0.124 0.132 0.112 0.079 0.070 0.028 0.096 0.093 0.103

DM 0.288 0.307 0.101 0.068 0.043 0.010 0.079 0.080 0.082

Wiki20
0.174

0.216*

0.197

0.241*
0.094 0.071 0.063 0.003 0.092 0.084 0.074

OS 0.448 0.510 0.186 0.325 0.255 0.023 0.172 0.068 0.092

DB 0.263 0.321 0.182 0.126 0.113 0.001 0.119 0.045 0.207

Theses100 0.0906 0.123 0.090 0.100 0.088 0.004 0.120 0.073 0.064

Nguyen2007 0.209 0.227 0.212 0.173 0.136 0.036 0.176 0.170 0.161

(b) First (COBEC-T(1)) and second phase of COBEC-T (COBEC-T(2)).

Dataset COBEC-T(1) COBEC-T(2) YAKE! MultiPR TopicR TextR KEA TF-IDF MonkL

SemEval 0.094 0.100 0.112 0.079 0.070 0.027 0.096 0.093 0.103

DM 0.242 0.254 0.101 0.068 0.043 0.010 0.077 0.080 0.082

Wiki20
0.166

0.214*

0.184

0.230*
0.094 0.071 0.063 0.003 0.092 0.084 0.074

OS 0.310 0.380 0.186 0.325 0.255 0.023 0.172 0.068 0.092

DB 0.244 0.293 0.182 0.126 0.113 0.001 0.119 0.045 0.207

Theses100 0.078 0.093 0.090 0.100 0.088 0.004 0.120 0.073 0.064

Nguyen2007 0.196 0.212 0.212 0.173 0.136 0.036 0.176 0.170 0.161
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Table 5.5: Macro-averaged similarities between the central node and the underlying topic

(SINGLE-SIM), average similarity between the underlying topic and all nodes in the DB-

Pedia graph (AVG-SIM) and the respective p-value of a one-sided Wilcoxon signed-rank

test, where significant differences (p=0.05) are highlighted with *.

Dataset SINGLE-SIM AVG-SIM (test statistic, p-value)

DM 0.522 0.493 (W=132, p=0.16)

DB 0.557 0.486 (W=272, p=0.02)*
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Table 5.6: Comparison of the 10 top-ranked concepts extracted from the dataset OS using

our method, TextRank (TextR) and MonkeyLearn (MonkL).

Rank COBEC TextR MonkL

1 Stack pointer, Process systems Process

Activation record,

Call stack

2 Process User process systems Multiple cpu machine

3 Kernel, Process systems Collection of instructions

Operating system kernel

4 Interrupt, Various process states Program

Software interrupt

5 PCB , Several processes Time

Process control block

6 Call, Independent processes Modern computer system

System call

7 Input, Parallel processes Multithreading

User input

8 Context switch Active processes Several process

9 Interrupt handler, Distinguish process Computer architecture

Handler

10 Thread Independent process Computer program
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Table 5.7: Macro-averaged F1-scores of COBEC per dataset when varying β, where we

set β = Pc and Pc denoting that only those candidate concepts correspond to actual

concepts if they are at least in the c-th percentile of the top-ranked candidate concepts

after the second phase.

Dataset P75 P50 P25 R-precision

SemEval 0.115 0.129 0.129 0.128

Wiki20 0.174 0.201 0.185 0.203

DM 0.279 0.262 0.225 0.279

OS 0.400 0.422 0.421 0.418

Theses100 0.113 0.121 0.134 0.129

Nguyen2007 0.170 0.220 0.207 0.217

DB 0.264 0.304 0.304 0.299

Table 5.8: Descriptive statistics of our newly created datasets ML and DSA.

Dataset Concepts Easy Hard

DSA 29 22 (76%) 7 (24%)

ML 140 87 (62%) 53 (38%)
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Table 5.9: Performance of CODIF when using only specific feature categories for pre-

dicting concept difficulty. The best performance per dataset is highlighted in bold font.

Feature Category Dataset Accuracy F1-score Precision Recall

Majority Label (Baseline)
DSA 0.76 0.86 0.76 1.0

ML 0.62 0.77 0.62 1.0

All
DSA 0.66 0.77 0.77 0.77

ML 0.59 0.60 0.76 0.48

Content
DSA 0.69 0.81 0.76 0.86

ML 0.62 0.77 0.63 0.99

Specificity
DSA 0.69 0.80 0.79 0.81

ML 0.46 0.36 0.68 0.24

Background Information
DSA 0.73 0.82 0.82 0.82

ML 0.73 0.78 0.78 0.78

Content + Background

Information

DSA 0.79 0.87 0.83 0.90

ML 0.75 0.80 0.81 0.78

Content + Specificity
DSA 0.66 0.76 0.80 0.73

ML 0.46 0.36 0.68 0.24

Background Information

+ Specificity

DSA 0.66 0.78 0.75 0.82

ML 0.57 0.57 0.76 0.45
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Table 5.10: Confusion tables per dataset comparing the automatically derived label with

the true label.

(a) ML.

Automatic Label

G
ro

un
d

Tr
ut

h

Easy Hard

Easy 81 27

Hard 6 26

(b) DSA.

Automatic Label

G
ro

un
d

Tr
ut

h

Easy Hard

Easy 13 9

Hard 4 3

Table 5.11: Accuracy, F1-score, precision, recall when predicting the difficulty labels

based on the number of prerequisites of each concept according to Hypothesis H1.

Dataset Accuracy F1-score Precision Recall

DSA 0.59 0.68 0.81 0.59

ML 0.77 0.84 0.76 0.93

Table 5.12: Confusion matrix per dataset comparing the overlap between prerequisites

according to DBpedia Hierarchy and the true prerequisite edges.

(a) ML.

DBpedia Hierarchy

Pr
er

eq
ui

si
te Yes No

Yes 51 255

No 1168 8257

(b) DSA.

DBpedia Hierarchy

G
ro

un
d

Tr
ut

h

Easy Hard

Easy 16 36

Hard 38 330
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Table 5.13: Confusion matrix per dataset comparing the overlap between prerequisite

edges according to RefD and the true prerequisite edges.

(a) ML.

RefD

Pr
er

eq
ui

si
te Yes No

Yes 181 125

No 5018 4475

(b) DSA.

RefD

G
ro

un
d

Tr
ut

h

Easy Hard

Easy 23 29

Hard 209 159

Table 5.14: Accuracy, F1-score, precision, recall for predicting prerequisite edges based

on DBpedia Hierarchy and RefD.

Method Dataset Accuracy F1-score Precision Recall

DBpedia Hierarchy
ML 0.85 0.067 0.17 0.04

DSA 0.82 0.30 0.31 0.30

RefD
ML 0.48 0.066 0.59 0.03

DSA 0.43 0.16 0.44 0.10

Table 5.15: Summary statistics of the concept maps: number of nodes (#Nodes), number

of edges before transitive reduction (#Edges (before)), number of edges after transitive

reduction (#Edges (after), percentage of transitive edges that were removed from the con-

cept map (% Transitive edges).

Dataset #Nodes #Edges (before) #Edges (after) % Transitive edges

DSA 29 54 41 24%

ML 140 1219 398 67%
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Chapter 6

Conclusion and Future Work

This chapter first sums up the thesis and then discusses implications of our findings. Af-

terwards, future research directions that go beyond the topics discussed in Chapters 4

and 5 are outlined.

6.1 Summary

While having a concept map visualizing coverage relations among concepts, whose node

colors encode concept difficulty, offers many benefits to learners, to date there is no

method available that constructs such a concept map in an automatic fashion. Hence,

we set out in this thesis to develop methods that work with any unstructured textual learn-

ing materials to construct such a map automatically. To accomplish this goal, we divided

this task into two separate subtasks, namely extracting concepts from unstructured tex-

tual learning materials and then constructing the respective concept map, which involves

computing a difficulty score per concept as well as determining coverage edges among the

concepts. The difficulty score provides additional information to individuals, which helps

them discern potentially unreliable from reliable coverage edges based on the assumption

that prerequisites of a concept might not be harder than the actual concept itself. Using

coverage instead of prerequisite relations creates a concept map with less strict recom-

mendations for individuals for studying concepts in a certain sequence. which, in turn,
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allows inaccuracies due to the additional visual cues provided by coloring nodes accord-

ing to their difficulty scores as prerequisites tend to not be more difficult than the given

concept to learn. Therefore, this thesis proposed to estimate prerequisite relations with a

combination of node color and coverage edges.

Proposing a novel unsupervised method for concept extraction was motivated by the

fact that existing methods failed to consider context information. This idea proved to be

helpful for identifying the most relevant concepts in learning materials, given the context,

because a valid concept may be relevant in one context and completely irrelevant in an-

other one. More specifically, the context information was exploited for disambiguating

concepts and for determining if the disambiguated sense of the concept was relevant in the

given context or not. As a result, the conducted experiments confirmed that our method

outperformed state-of-the-art methods.

For the second subtask we proposed an unsupervised method for estimating concept

difficulty that extracts different features about a concept. Given that the task of predict-

ing conceptual text complexity was introduced only recently, we focused on non-lexical

features that affect how difficult a concept is perceived to be. Therefore, our extracted

features were based on the hierarchical structure of DBpedia, the given textual descrip-

tion of this concept, and background information required for understanding that specific

concept. Aggregating those features resulted in their difficulty scores. Edges among con-

cepts were added in the concept map based on the closeness of concepts according to the

hierarchical structure of DBpedia. Although simple in nature, our method for concept

difficulty prediction performed surprisingly well in the evaluation, while the quality of

the inserted edges leaves room for improvement in the future.

6.2 General Conclusion

When evaluating our unsupervised method for the first subtask, we found that it outper-

formed existing state-of-the-art methods on four existing benchmark datasets and also

three newly created datasets that were particularly created for the educational domain.
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Those new datasets cover the topics ”Data Mining”, ”Database Management Systems”,

and a book chapter from operating systems about ”Process”. Our method is flexible as

it expects unstructured textual descriptions for concepts, while making two assumptions

about the concepts to be extracted. For one, they must have existing DBpedia entries.

Secondly, relevant concepts are related to a broader, overarching topic. While this might

sound restrictive, there is no limitation on how abstract the overarching topic should be.

For example, ”Data Mining” or ”Database Management Systems” are suitable choices.

As part of the evaluation process of our method for computing a difficulty score per

concept in the second subtask, we created two new datasets covering the educational do-

main, which are ”Machine Learning” and ”Data Structures and Algorithms”, because no

datasets existed for this domain before. This is due to the fact that the task of predicting

the difficulty of entire documents, which represent textual descriptions of concepts in our

case, has only been introduced recently [11]. Thus, with the release of these two new

datasets, we hope to stimulate more research related to the task of conceptual text com-

plexity. Related to that goal we also explored the possibility of automatically assigning

difficulty labels to benchmark datasets that were created for prerequisite detection. The

heuristic for assigning those labels automatically was based on the idea that harder con-

cepts have more prerequisites, which is only available as reliable information in datasets

that were specifically labeled for the task of prerequisite detection. Due to the limited

number of datasets for evaluation, we cannot draw any conclusions about the reliability

of our heuristic yet as we observed mixed results on our two datasets. Therefore, more

datasets are needed to draw conclusions about a potential connection between the task

of prerequisite detection and predicting conceptual text complexity. However, the key

assumption of our proposed concept map, namely that a concept’s prerequisites tend to

be not more difficult than the concept itself, turned out to hold in most cases. Thus, our

idea of replacing prerequisite relations by a combination of coverage edges and difficulty

scores, expressed by node color, in a concept map seems promising. The main limitation

of our proposed methods is that only concepts with a DBpedia or Wikipedia entry are pro-

cessed. But due to both of these resources constantly getting updated with new entries,
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this appears to be a minor drawback. One way to mitigate this problem is to explore the

idea that a language model, such as BERT[70], already represents a knowledge base[71],

which might be sufficient for our purposes.

6.3 Future Work

While this thesis proposes methods for constructing a concept map in which node color

represents a concept’s difficulty and directed edges indicate a coverage relation, the re-

sulting concept map could be enhanced if the visualization were available in an e-learning

platform. Apart from having additional data such as student assessments available for esti-

mating concept difficulty more accurately, it would be possible to personalize the concept

map. For example, given the performance of other learners on the platform, their perfor-

mance could be mapped to the nodes and contrasted with the performance of the logged

in individual visually in the map. However, that would require additional information

about which concepts are covered by each assessment question because normally each

question covers more than a single concept. Quantifying the contribution of each concept

to each question poses another research problem that requires to be addressed before it

can be visualized accordingly. Another important future research direction is devising

a novel unsupervised method for extracting coverage or prerequisite edges because our

experiments showed the difficulty of this particular task.

We can extract pre-requisite relation by utilizing the “Background feature” of CODIF.

We implemented RefD and used DBpedia hierarchy feature to find the number of pre-

requisite for a concept. It is pertinent to mention that we used some heuristics to compute

DBPH feature by using DBpedia ontology instead of directly using the ontological struc-

ture. The combination of these two features may result in more accurate pre-requisite

relations.
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[35] S. Štajner and I. Hulpus, , “When shallow is good enough: Automatic assessment of

conceptual text complexity using shallow semantic features,” in Proceedings of the

12th Language Resources and Evaluation Conference, pp. 1414–1422, 2020.

[36] A.-M. Vercoustre, J. Pehcevski, and V. Naumovski, “Topic difficulty prediction in

entity ranking,” in International Workshop of the Initiative for the Evaluation of

XML Retrieval, pp. 280–291, Springer, 2008.

[37] F. Gasparetti, C. De Medio, C. Limongelli, F. Sciarrone, and M. Temperini, “Prereq-

uisites between learning objects: Automatic extraction based on a machine learning

approach,” Telematics and Informatics, vol. 35, no. 3, pp. 595–610, 2018.

[38] R. Scheines, E. Silver, and I. M. Goldin, “Discovering prerequisite relationships

among knowledge components.,” in EDM, pp. 355–356, 2014.

[39] A. Vuong, T. Nixon, and B. Towle, “A method for finding prerequisites within a

curriculum.,” in EDM, pp. 211–216, 2011.

[40] M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo, “Dbpedia sparql

benchmark–performance assessment with real queries on real data,” in International

semantic web conference, pp. 454–469, Springer, 2011.

[41] I. Hulpus, C. Hayes, M. Karnstedt, and D. Greene, “Unsupervised graph-based topic

labelling using dbpedia,” in Proceedings of the sixth ACM international conference

on Web search and data mining, pp. 465–474, 2013.

[42] M. Young, D. Lambert, C. Roberts, and M. Roberts, Knowledge and the future

school: Curriculum and social justice. Bloomsbury Publishing, 2014.

88



[43] M. Newman, Networks: An Introduction. Oxford University Press, 2010.

[44] A. Miaschi, C. Alzetta, F. A. Cardillo, and F. Dell’Orletta, “Linguistically-driven

strategy for concept prerequisites learning on italian,” in Proceedings of the Four-

teenth Workshop on Innovative Use of NLP for Building Educational Applications,

pp. 285–295, 2019.

[45] R. Manrique, B. Pereira, and O. Mariño, “Exploring knowledge graphs for the iden-

tification of concept prerequisites,” Smart Learning Environments, vol. 6, no. 1,

pp. 1–18, 2019.

[46] L. Pan, C. Li, J. Li, and J. Tang, “Prerequisite relation learning for concepts in

moocs,” in Proceedings of the 55th Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), pp. 1447–1456, 2017.

[47] G. Adorni, C. Alzetta, F. Koceva, S. Passalacqua, and I. Torre, “Towards the iden-

tification of propaedeutic relations in textbooks,” in International Conference on

Artificial Intelligence in Education, pp. 1–13, Springer, 2019.

[48] M. C. Aytekin, S. Rabiger, and Y. Saygın, “Discovering the prerequisite relation-

ships among instructional videos from subtitles,” in Proceedings of the 13th Inter-

national Conference on Educational Data Mining, pp. 569–573, EDM, 2020.
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