
SOLVING NAVIER STOKES EQUATIONS WITH PHYSICS
INFORMED NEURAL NETWORK FOR CALCULATION OF

AERODYNAMIC FORCES

by
SILA AKPINAR

Submitted to the Graduate School of Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
July 2022



SOLVING NAVIER STOKES EQUATIONS WITH PHYSICS
INFORMED NEURAL NETWORK FOR CALCULATION OF

AERODYNAMIC FORCES

Approved by:

Prof. Serhat Yeşilyurt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Thesis Supervisor)

Assoc. Prof. Kamer Kaya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Assoc. Prof. Ahmet Fatih Tabak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date of Approval: July 27, 2022



Sila Akpinar 2022 ©

All Rights Reserved



ABSTRACT

SOLVING NAVIER STOKES EQUATIONS WITH PHYSICS INFORMED
NEURAL NETWORK FOR CALCULATION OF AERODYNAMIC FORCES

SILA AKPINAR

Mechatronics Engineering, Master’s Thesis, July 2022

Thesis Supervisor: Prof. Serhat Yeşilyurt

Keywords: scientific machine learning, physics-informed machine learning, fluid
dynamics, aerodynamics, laminar flow, turbulence

Understanding of flow dynamics is crucial in a comprehensive set of scientific dis-
ciplines, such as astrophysics, chemistry, biology, meteorology, biomedical engineer-
ing, and mechanical engineering. Nevertheless, fluid dynamics properties cannot
be well-understood in a case of complex geometry, high Mach number flow, tur-
bulence, stall, and complex reactions. Experiments can provide some insights to
study these complicated phenomena. Yet, certain information may not be obtained
accurately because of low fidelity and experimental limitations. On the other hand,
Navier-Stokes as a governing equation of viscous flow of an incompressible fluid can
be solved numerically to obtain flow properties. However, such numerical analysis
relies heavily on computational power which requires long duration to conclude and
modelling ability.

As an alternative approach, we deal with this problem by implementing a physics-
informed neural network (PINN). As a scientific machine learning algorithm, PINNs
are developed to solve partial differential equations approximately. In this thesis, we
first implement PINNs for solving Navier-Stokes equations for laminar flow over a
cylinder. Then, we apply PINN for turbulent flow over a stationary NACA0018 air-
foil with a high angle of attack. We implement the PINN approach with sparse data
from the numerical CFD study. Our results reveal that the PINN is able to recover
missing data with excellent accuracy for both laminar and turbulent flow problems.
The PINN model is also used to calculate aerodynamic forces acting on the cylinder
and on the airfoil. For force calculations, two different methods are applied to find
the optimum application with less error from the PINN approach. Results show
that gradient-based stress integration method ends up with more accurate results
than integral-based control volume approach.

iv



ÖZET

AERODİNAMİK KUVVETLERİ HESAPLAMAK İÇİN NAVIER-STOKES
DENKLEMLERİNİN FİZİK BİLGİLİ NÖRAL AĞ İLE ÇÖZÜMÜ

SILA AKPINAR

Mekatronik Mühendisliği, Yüksek Lisans Tezi, Temmuz 2022

Tez Danışmanı: Prof. Dr. Serhat Yeşilyurt

Anahtar Kelimeler: bilimsel makine öğrenmesi, fizik entegre edilmiş makine
öğrenmesi, akışkanlar dinamiği, aerodinamik, laminer akış, türbülans

Akış dinamiğinin anlaşılması astrofizik, kimya, biyoloji, meteoroloji, biyomedikal
mühendisliği ve makine mühendisliği gibi kapsamlı bir dizi bilimsel disiplinde çok
önemlidir. Bunun yanı sıra, karmaşık geometri, yüksek Mach sayılı akış, türbülans,
tutunma kaybı ve karmaşık reaksiyonlar durumunda akışkanlar dinamiği özellikleri
iyi anlaşılamaz. Deneysel çalışmalar, bu karmaşık akış davranışlarını incelemek için
bazı bilgiler sağlayabilir. Ancak, düşük doğruluk ve deneysel sınırlamalar nedeniyle
bazı bilgiler doğru olarak elde edilemeyebilir. Öte yandan, Navier-Stokes sıkıştırıla-
maz bir akışkanın viskoz akışını yöneten bir denklem olarak akış özelliklerini elde
etmek için sayısal olarak çözülebilir. Bu tür sayısal analizler, sonuçlandırmak için
uzun süre ve modelleme yeteneği gerektiren hesaplama gücüne büyük ölçüde ihtiyaç
duyar.

Alternatif bir yaklaşım olarak, bu sorunu fizik bilgili nöral ağ uygulayarak ele alıy-
oruz. Bilimsel bir makine öğrenme algoritması olarak, fizik bilgili nöral ağ, kısmi
diferansiyel denklemleri yaklaşık olarak çözmek için geliştirilmiştir. Bu tezde, ilk
önce, Navier-Stokes denklemlerini silindir üzerindeki laminer akış için fizik bilgili
nöral ağ ile çözdük. Ardından, yüksek hücum açısına sahip sabit NACA0018 kanat
profili üzerinde türbülanslı akışı çözebilmek için fizik biligili nöral ağ uyguladık. Al-
goritmayı sayısal hesaplamalı akışkanlar dinamiği çalışmasından elde edilen seyrek
verilere uyguladık. Sonuçlarımız, fizik bilgili nöral ağ modelinin hem laminer hem
de türbülanslı akış problemleri için mükemmel bir doğrulukla eksik verileri kur-
tarabildiğini ortaya koymaktadır. Modeli ayrıca silindir ve kanat üzerine etki eden
aerodinamik kuvvetleri hesaplamak için de kullandık. Kuvvet hesaplamaları için, iki
farklı yöntem uyguladık. Sonuçlar, eğim tabanlı stres integrali yönteminin, integral
tabanlı kontrol hacmi yaklaşımına göre daha doğru çalıştığını göstermektedir.

v



ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my advisor
Prof. Serhat Yeşilyurt for his patience, invaluable guidance, and for always being
supportive of me. It was a privilege to work under his supervision and I am honored
that I had this opportunity. Also, I would like to express my deepest thanks to
Assoc. Prof. Kamer Kaya. His help and comments contributed essentially to the
completion of this thesis. In addition, I would like to thank Assoc. Prof. Ahmet
Fatih Tabak for his careful evaluation of my thesis and useful remarks.

I thank Sahar Dadashi Farkhandi for her funniest friendship, Asal Saeidfar, Fate-
meh Malekabadi, Saina Farrokhpour Sani, and Mervenaz Şahin for being the best
lab mates. I am grateful to Alperen Kenan, Bilal Çatkın, Çağatay Irmak, Harun
Tolasa, Melike Cezayirlioğlu, Ömer Burak Aladağ, Selim Ahmet İz, and Özgür Tay-
lan Kenanoğlu for their invaluable friendship and for making my graduate life more
enjoyable. My special thanks go to Celal Umut Kenanoğlu for motivating me when-
ever I feel overwhelmed, for his all jokes (even for very bad ones), and his sincerest
friendship.

Last but not least, I would like to express my warmest thanks to my family, my
beloved twin sister Çağla Akpınar, my greatest companion Derin Karadeniz, and
my favorite person Atakan Güven. They are the source of happiness in my life and
I am forever indebted to have their endless love and support with me.

vi



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1. Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2. Aerodynamic Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3. Airfoil Characteristics and Aerodynamics . . . . . . . . . . . . . . . . . . . . . . 9

2.2. Physics Informed Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. Laminar Flow Over a Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1. Problem Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2. Numerical Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1. Geometry and Computational Domain. . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2. Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3. Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.4. Solver Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3. PINN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4. PINN Parametric Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1. Activation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2. Number of layers and number of nodes . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3. Learning Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.4. Batch Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.1. PINN Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



3.5.2. Force Calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4. Turbulent Flow Investigation via PINN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1. Problem Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2. Numerical Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1. Geometry and Computational Domain. . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2. Mesh Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.3. Turbulent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3. PINN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4. PINN Parametric Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1. Activation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.2. Number of layers and number of nodes . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.3. Learning Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.4. Batch Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.1. PINN Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.2. Force Calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

BIBLIOGRAPHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

viii



LIST OF TABLES

Table 3.1. L2 error norm between model predictions and reference outputs
for PINNs in different depth and width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 3.2. L2 error norm between model predictions and reference outputs
for PINNs in different mini-batch sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 3.3. PINN Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table 4.1. L2 error norm between model predictions and reference outputs
for PINNs in different depth and width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 4.2. L2 error norm between model predictions and reference outputs
for PINNs in different mini-batch sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 4.3. PINN Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 5.1. Force calculation summary that provides the relative mean ab-
solute error of stress integration and control volume methods on drag
and lift force calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

ix



LIST OF FIGURES

Figure 2.1. Airfoil geometry and terminology [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2.2. Change in the lift coefficient with respect to angle of attack [2] 10
Figure 2.3. Physics-informed neural networks (PINNs) basic structure . . . . 11

Figure 3.1. Representation of problem geometry and computational domain 17
Figure 3.2. Mesh configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 3.3. Numeric solution of passive scalar concentration field at t = 70.

Smaller rectangular domain which has a black framework is selected
as a region of interest for the PINN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 3.4. Temperature field at the interest domain on the time interval
of (70,80) with time step of 0.05 is illustrated in the scattered form. . . 22

Figure 3.5. The domain where training data for the temperature and ref-
erence data for velocity and pressure are obtained. Here, temperature
field at t = 70 is visualized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.6. Physics informed neural network architecture . . . . . . . . . . . . . . . . . . 24
Figure 3.7. MSE Loss for different activation functions . . . . . . . . . . . . . . . . . . . . 26
Figure 3.8. MSE training loss comparison for number of nodes per hidden

layer optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 3.9. MSE Loss for different learning rates . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 3.10. MSE loss for different mini-batch sizes . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 3.11. Passive scalar concentration field at t=72.3 a)reference field

b)regressed field by PINN c)absolute error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 3.12. x component of the velocity field at t=72.3 a)reference field

b)regressed field by PINN c)absolute error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 3.13. y component of the velocity field at t=72.3 a)reference field

b)regressed field by PINN c)absolute error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 3.14. pressure field at t=72.3 a)reference field b)regressed field by

PINN c)absolute error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 3.15. Relative L2 error of outputs on the domain over whole time

window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

x



Figure 3.16. Aerodynamic force calculation by SI and CV methods on ref-
erence data. CV approach includes viscous term at the boundary for
a)drag force b)lift force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.17. Aerodynamic force calculation by SI and CV methods on refer-
ence data. CV approach does not include viscous term at the bound-
ary for a)drag force b)lift force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.18. Drag force calculation a) by control volume approach and
stress field approach b) relative absolute error of applied methods . . . . 37

Figure 3.19. Lift force calculation a) by control volume approach and stress
field approach b) absolute error of applied methods . . . . . . . . . . . . . . . . . . . 38

Figure 4.1. Representation of geometry and computational domain . . . . . . . 40
Figure 4.2. Mesh configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 4.3. Selected circular domain as a region of interest for PINN al-

gorithm. Also, it represents the control volume for force calculations . 44
Figure 4.4. Eddy viscosity at the interest domain on the time interval of

(75.96,79.96) with time step of 0.04 is illustrated in the scattered form
(from the Spalart-Allmaras turbulence model). . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 4.5. y-component of the velocity field at the interest domain on
the time interval of (75.96, 79.96) with time step of 0.04 is illustrated
in the scattered form (from the Spalart-Allmaras turbulence model) . . 46

Figure 4.6. Turbulent dynamic viscosity at t = 70 on training domain is
visualized (from Spalart-Allmaras turbulence model). . . . . . . . . . . . . . . . . . 47

Figure 4.7. y-component of the velocity field at t = 70 on training domain
is visualized (from Spalart-Allmaras Turbulence model). . . . . . . . . . . . . . . 47

Figure 4.8. Physics informed neural network architecture . . . . . . . . . . . . . . . . . . 48
Figure 4.9. MSE loss for different activation functions . . . . . . . . . . . . . . . . . . . . . 49
Figure 4.10. MSE training loss comparison for number of nodes per hidden

layer optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 4.11. MSE loss for different learning rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 4.12. MSE loss for different mini-batch sizes . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 4.13. Dynamic turbulent viscosity at t=77.6 a)reference field

b)regressed field by PINN c)absolute error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 4.14. y-component of the velocity field at t=77.6 a)reference field

b)regressed field by PINN c)absolute error. Maximum error is labelled
by red dot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 4.15. x-component of the velocity field at t=77.6 a)reference field
b)regressed field by PINN c)absolute error. Maximum error is labelled
by red dot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xi



Figure 4.16. Pressure field at t=77.6 a)reference field b)regressed field by
PINN c)absolute error. Maximum error is labelled by red dot. . . . . . . . . 57

Figure 4.17. Relative L2 error of PINN algorithm for Spalart-Allmaras tur-
bulence model outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.18. Relative L2 error of PINN algorithm for k − ω turbulence
model ouputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.19. Aerodynamic force calculation by SI and CV methods on ref-
erence data of a full cycle. CV approach includes viscous term at the
boundary for a)drag force b)lift force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.20. Aerodynamic force calculation by SI and CV methods on ref-
erence data of a full cycle. CV approach does not include viscous
term at the boundary for a)drag force b)lift force . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.21. Drag force extraction from PINN model for Spalart-Allmaras
turbulence model a) method comparison b) corresponding relative
absolute errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 4.22. Lift force extraction from PINN model for Spalart-Allmaras
turbulence model a) method comparison b) corresponding relative
absolute errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 4.23. Drag force extraction from PINN model for k − ω turbulence
model a) method comparison b) corresponding relative absolute errors 63

Figure 4.24. Lift force extraction from PINN model for k − ω turbulence
model a) method comparison b) corresponding relative absolute errors 63

xii



Chapter 1

Introduction

Approach in this thesis, and necessary background are summarized here; solution
methods of partial differential equations in the context of fluid dynamics with rela-
tively newly proposed machine learning techniques are described. Especially, back-
ground is provided for application of machine learning methods in fluid dynamics.
The discussion is followed by the motivation of the thesis and the outline of the
thesis.

1.1 Literature Review

Real-life problems are modeled mathematically for better understanding and de-
veloping solutions. In physics and many other disciplines, solving partial differen-
tial equations (PDEs) is key to simulating the problem domain. Some important
PDEs are Laplace’s Equation, Poisson’s, heat equation and the wave equation. For
decades, PDEs have been approximated by numerical methods such as the finite
difference method, the finite element method, and the finite volume method[3]. Ap-
plication of those techniques is becoming challenging by the curse of dimensionality
that leads to exponential growth in computational operations and the lack of a
mathematical theory for turbulent flow [4]. Besides, some assumptions and specific
conditions are needed for numerical solving, that is tough for complex geometries.

Apart from conventional techniques, there has been growing interest in deep learn-
ing and machine learning algorithms to find surrogate models for physical problems
and tackle PDEs in fluid mechanics. Data-driven artificial neural network studies
have focused on fluid flow [5] and turbulence modeling [6, 7] due to the accumulation
of a huge amount of data from numerical simulations and experiments. Similarly,
the closure term of the Spalart-Allmaras turbulence model has been rebuilt by a su-
pervised learning algorithm [8]. A convolutional neural network (CNN) that makes

1



use of shared-encoding and decoding has been studied to predict velocity and pres-
sure fields around an airfoil by information extraction from inputs of the Reynolds
number, angle of attack and the airfoil geometry [9]. PDE functional identification
of nonlinear dynamics (PDE-FIND) algorithm has been developed to factor in spa-
tial derivatives in exploring Navier Stokes equations (NSEs) as a data-driven tool
[10]. Deep neural networks (DNNs) have been constructed for discovering turbulent
shear stress [11], observing flow in heterogeneous media [12], and Reynolds stress
prediction of channel flow [13]. Those techniques perform accurately and relatively
efficiently in computation. However, the training process requires a huge collection
of data. Acquisition of the data can be challenging from experiments, or it can
be computationally expensive from numerical analysis. In this study, Navier Stoke
Equations (NSEs) and continuity equations are approximated by physics-informed
neural networks (PINNs) [14, 15, 16]. PINNs allow to create a model in absence of
sufficient data to investigate fluid velocity and pressure field for different types of
problems such as laminar flow over a cylinder, and turbulent flow around a station-
ary airfoil with a high angle of attack.

In the late nineties, multi-layer perceptron (MLP) consisting of constraint loss func-
tion for problems governed by either ODE or PDE has been studied [17]. More
recently, physics-informed neural networks (PINNs) have been introduced to solve
nonlinear PDEs such as the advection-diffusion equation, Burger’s equation, and
Korteweg-de Vries (KdV) equation by Raissi et. al in two parts [14, 15]. Physics
informed neural network is a tool that combines scientific computing that focuses
on differential equations and machine learning. The approach is applicable for both
forward and inverse type of problems. In a forward problem, model approximates
solution of PDE based governing equations. In an inverse problem, physical quan-
tities of the problem are extracted from the data. NSEs in both velocity-pressure
form and vorticity-velocity form have been solved for laminar and turbulence flows
via PINNs, specifically called as NSFnet (Navier-Stokes flow nets) [18]. In order to
ensure low numerical stiffness in high Reynolds number flow regimes, NSFnet has
been expanded [19] with a learning rate algorithm that utilizes gradient statistics
[20].

Hidden fluid mechanics (HFM) that encodes Navier Stokes and conservation laws,
i.e., continuity, momentum, and energy, to deduce hidden velocity and pressure
quantities from passive scalar visualization is presented by Raissi et al. [16]. In
addition to being agnostic of geometry, the algorithm is also independent of the
initial and boundary conditions, which allows feasibility in the problem domain to
be chosen. In [16], HFM has been used to predict information such as aerodynamic
forces and wall shear stresses in arteries where measurement is almost impossible.

2



The aerodynamic force predictive capacity of the CNN-based deep learning model,
that is fed by force coefficients using a full-order NS solver, has been demonstrated
for several types of bluff bodies [21]. Similarly, several CNN with competitive results
compared to MLP have been performed for lift force coefficient prediction of different
airfoil geometries in a diverse flow characteristic [22].

1.2 Motivation

Scientific machine learning (SciML) is a discipline that is looking for new innovative
techniques to deal with scientific data sets [23]. It benefits from machine learning and
scientific computing. Machine learning data-driven models can be perfectly fitted
on training data; however, model may not be able to extract physically meaningful
predictions. Therefore, there is a need to teach physical laws and domain knowledge
to the machine learning model. It can be considered as informative priors that are
hard theoretical constraints. Observational, empirical, or physical understanding of
knowledge as a prior information can be advantageous to improving the training
performance of the network [24].

Generally, useful data is usually very limited for data-driven techniques as it is not
practical to obtain experimental data from complex systems. On the other hand,
while it is possible to have a huge amount of data, for example in the form of
continuous time series, governing equations behind the problem may not be known.
In most cases at best, experimental data is sparse, noisy and only partially known
when the physics based model is available. It is possible to infer missing or even
hidden quantities by recovering the solution of partial differential equation based
governing equations behind the problem from the sparse data set and partially
known physics [24].

Physics-informed Neural Networks (PINNs) [14] are an example of SciML that re-
flects the integration of data and governing equations of the physics that is driven by
generally partial differential equations. These machine learning methods can stay
robust by having governing equations as hard constraints on even imperfect data,
i.e., missing data, noisy data, or data with having outliers [24]. Such a data-efficient
physics-informed machine learning algorithm occurs as an alternative approach to
conventional numerical solvers and makes possible to deal with several problems in
computational science.

In this thesis, PINNs are applied to two-dimensional fluid flow problems that include
laminar and turbulent flows to obtain drag and lift forces on objects inside the flow.
For the laminar flow problem, flow around a cylinder is investigated by visualization

3



of passive scalar, similar to [16]. Our study expands on the work of Raissi’s [16] that
extracted lift and drag forces by taking integral of stress field over the object. On
the other hand, we highlight the application of the integral approach, i.e., control
volume approach to extract aerodynamic forces. Furthermore, turbulent flow is
considered as a second problem on a stationary airfoil with a high angle of attack.
PINN model for turbulent flow problems has only information on eddy viscosity and
y component of the fluid velocity. The pressure field and x component of the velocity
are inferred from the Navier Stokes and continuity equation. The main objective
behind the study is to explore the capability of PINN that is an immature algorithm
over different fluid flow motions. Discovering the feasibility and limitations of PINN
can lead to combining the power of machine learning and numerical methods in
future studies.

1.3 Thesis Outline

In Chapter 2, background information from aerodynamics and PINN is provided. In
the aerodynamics part, fundamental fluid properties, physical laws that govern fluid
dynamics problems, aerodynamic forces, airfoil characteristics, and stall phenomena
are mentioned briefly. Under the physics-informed neural network section, algorithm
structure is explained.

Chapter 3 presents an investigation of the laminar flow around a cylinder. For
this purpose, firstly, a 2D time-dependent numerical CFD study is developed by
COMSOL. Synthetic sparse data set is created from a numerical solution for the
PINN model, that is built to recover missing data and further used to extract hidden
unknown quantities from the governing equations.

In Chapter 4, the study is extended to turbulent flow. As a first step, a 2D time-
dependent turbulence model is conducted for modeling the flow around a stationary
airfoil. Then, sparse data set is obtained from numerical solution for PINN model
that recovers the missing data and infer hidden quantities from the governing equa-
tions.

In Chapter 5, the conclusion of the thesis is discussed and the direction to future
studies is proposed.

4



Chapter 2

Background

The second chapter provides background information for aerodynamics and physics-
informed neural networks for a better understanding of thesis motivation and
methodology. In the first part, aerodynamics fundamentals along with flow prop-
erties and physical laws are discussed to describe fluid motion. The importance
of aerodynamic forces and a couple of calculation ways are explained. Lastly, air-
foil geometry, characteristics, and aerodynamics are expressed. In the second part,
physics-informed neural networks are expressed in detail.

2.1 Aerodynamics

2.1.1 Fundamentals

Aerodynamics is addressed the motion of air, especially when the airfoil interacts
with a solid object. One of the main concerns is the prediction of aerodynamic
forces, moments, and heat transfer rate over the object. The flow pattern around the
object should be obtained accurately in order to achieve useful results for practical
applications. Fluid behavior depends on geometry, position with respect to the free
stream, altitude, and speed of the object. In general, some assumptions on fluid
properties are needed for analysing flow types [2].

For studying different flow types, some fluid property assumptions are typically
required. For instance, since the temperature gradient is so small in some cases, the
temperature is ineffective in the flow field. Density is typically taken to be constant
when temperature change is neglected. However, since density depends on both
temperature and pressure, such an assumption is invalid for high-speed flows [2].
Another example is the continuum assumption. In contrast to liquids and solids,
gases are made of discrete molecules. Therefore, gas atoms occupy the volume

5



but with a relatively low percentage. The sparse distribution of gas molecules is
neglected in many aerodynamics studies to assume the continuum behavior of the
flow when the characteristic length is sufficiently greater than the mean-free path
between the collision of gas molecules [25].

Physical laws are used to describe the fluid motion. Fundamental physical laws
are conservation of mass, conservation of momentum, and conservation of energy.
They are also known as a continuity equation, Newton’s second law of motion, and
the first law of thermodynamics respectively. For the solution of complex fluid
behaviors, generally, theoretical studies rely on some key assumptions that are valid
under specific circumstances.

The continuity equation indicates that mass is conserved and provided in the partial
differential form as follows

∂ρ

∂t
+ ∂

∂x
(ρu) + ∂

∂y
(ρv) + ∂

∂z
(ρw) = 0 (2.1)

The above equation is valid for all steady/unsteady, viscous/inviscid, compress-
ible/incompressible flow characteristics. It forms for a steady flow. For an incom-
pressible flow where a change in the density is neglected, the continuity equation is
simplified to

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (2.2)

Conservation of linear momentum is written in the closed as shown in Equation 2.3

ρg⃗ − ∇p + ∇ · τij = ρ
dV⃗

dt
(2.3)

where terms represent gravity force, pressure force, and viscous force per unit volume
respectively on the left-hand side, and density times acceleration on the right-hand
side for the velocity vector, V = [u, v, w]. If a frictionless flow is assumed, then
τij is dropped which ends up with Euler’s equation for inviscid flow. On the other
hand, viscous term τij is expressed in terms of element strain rate and viscosity
for Newtonian fluids. For an incompressible, Newtonian fluid with constant density
and viscosity Equation takes the following form in three-dimensional space, which
is known as Navier-Stokes equations [26].

6



ρgx − ∂p

∂x
+ µ(∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2 ) = ρ
Du

Dt

ρgy − ∂p

∂y
+ µ(∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2 ) = ρ
Dv

Dt

ρgz − ∂p

∂z
+ µ(∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2 ) = ρ
Dw

Dt

(2.4)

where D
Dt

= ∂
∂t

+u ∂
∂x

+v ∂
∂y

+w ∂
∂z

is the material derivative. Lastly, the differential en-
ergy equation for a Newtonian, compressible, unsteady, viscous, and heat-conducting
flow is formulated below [26].

ρCp
Du

Dt
+ p(∇ · V ) = ∇ · (k∇T ) + Φ (2.5)

where T is temperature, k is thermal conductivity and Φ is the viscous heat gener-
ation.

2.1.2 Aerodynamic Forces

When a solid object is placed inside a fluid, interaction forces acting on the object
consist of shear stress and normal stress terms. The force which is in the same
direction as upstream velocity is called drag force. The force which is perpendicular
to the upstream velocity is called drag force [27]. Two methods are explained to
calculate the resultant force here. One is from the integration of the stress field over
the object. Another one is from the Reynolds transport theorem by applying the
conservation of linear momentum on a control volume.

Method 1: Integration of stress field over the solid object

Total stress tensor is provided as follows:

σij = −pδij + τij (2.6)

where p is static pressure, τ is viscous stress tensor, and δ is kronecker delta. Total
stress tensor terms are expressed separately below.

τij = µ( ∂vi

∂xj

+ ∂vj

∂xi

) (2.7)

where µ is dynamic viscosity and µ = 1/Re = 1/200.

7



δij =

1, if i = j

0, otherwise
(2.8)

Forces acting on the object can be obtained from the integration of the stress field
over the surface area. Assume that upstream velocity is provided in the x-direction.
Since drag force occurs in parallel to upstream velocity, it is calculated from the
integration of the stress field in the x-direction as shown in Equation 2.9 where nx

is x-component of the normal vector and ny is y-component of the normal vector.
Similarly, since lift force occurs perpendicular to the upstream velocity, it is calcu-
lated from the integration of the stress field in the y-direction as shown in Equation
2.10.

FD =
∫

(−pnx + 2 µ
∂u

∂x
nx + µ (∂v

∂x
+ ∂u

∂y
) ny) dA (2.9)

FL =
∫

(−pny + 2 µ
∂v

∂y
ny + µ (∂u

∂y
+ ∂v

∂x
) nx) dA (2.10)

Method 2: Control volume approach

Reynolds Transport Theorem (RTT) is applied when system analysis is desired to
change by control volume analysis. For this purpose, RTT makes the transformation
of mathematical formulation based on specific regions rather than individual masses.
RTT application is changed according to control volume structure such as fixed,
moving, or deformable boundaries. For a fixed control volume, RTT is written in
the compact form as follows [26]:

D

Dt
(Bsys) = d

dt
(
∫

CV
Bρ dV) +

∫
CS

Bρ (V · n) dA (2.11)

where B can be any fluid property, β is an intensive value of B per unit mass,
i.e., dB/dm, ρ is density, V is velocity, n is outward unit normal vector, dA is
differential area, CS is control surface, and CV is control volume. Plugging mass,
momentum, or energy as a B property allows for the expression of physical laws
such as conservation of mass, linear momentum, and energy respectively. When B
represents linear momentum, i.e., B = mV , conservation of linear momentum for a
fixed control volume is indicated as below.

∑
F = d

dt
(
∫

CV
V ρ dV) +

∫
CS

V ρ(V · n) dA (2.12)

Equation 2.12 is a vector equation since all terms include V which represents the
8



velocity vector. ∑
F is the vector summation of forces appearing on the object. In

order to calculate lift and drag forces acting on the object in the control volume, x

and y components of Equation 2.12 should be written while considering the pressure
and viscous forces as shown below.

FD = d

dt
(
∫

CV
uρ dV) +

∫
CS

uρ(unx + vny)dA

+
∫

CS
(pnx)dA −

∫
CS

[(2µ
∂u

∂x
nx) + (µ(∂u

∂y
+ ∂v

∂x
)ny)]dA

(2.13)

FL = d

dt
(
∫

CV
vρ dV) +

∫
CS

vρ(unx + vny)dA

+
∫

CS
(pny)dA −

∫
CS

[(2µ
∂v

∂y
ny) + (µ(∂u

∂y
+ ∂v

∂x
)nx)]dA

(2.14)

2.1.3 Airfoil Characteristics and Aerodynamics

The lift and stall characteristics of an airfoil are affected by its geometry. The most
essential geometric characteristics are leading-edge radius, which affects boundary-
layer separation, the mean camber line, maximum thickness, and thickness distri-
bution. Airfoil geometric terminology is illustrated in Figure 2.1. A chord line is
a straight line that connects the leading and trailing edges of the airfoil, the corre-
sponding distance is called the chord. Angle of attack is the angle formed between
the chord line and free stream flow. The term camber, which is perpendicular to the
chord line, refers to the maximum difference between the chord line and the camber
line. The shape of the camber line is important since cambered airfoils generate
lift even at zero angle of attack while symmetric airfoils can not. The thickness of
the airfoil, which is the distance between the upper and lower surfaces, is another
perpendicular distance from the chord line [1].

Lift force varies with the angle of attack between the chord line and the free stream
velocity. Relation between the angle of attack and lift is presented in Figure 2.2
[2]. The figure shows that when the angle of attack varies within a small range, lift
behaves linearly. When the angle of attack is within the linear region, flow shows
smooth behavior with attached streamlines to the surface of the airfoil. An increase
in the angle of attack causes a tendency for separation of the streamlines from the
top surface of the airfoil. Thus, a recirculating flow occurs in the wake of the airfoil.
This flow characteristic is also named reverse flow. Hence, some portion of the fluid
flows in the opposite direction of the free stream. The viscous effect is responsible

9



Figure 2.1 Airfoil geometry and terminology [1]

Figure 2.2 Change in the lift coefficient with respect to angle of attack [2]

for fluid flow behavior that starts with separation, which named as stall. When the
flow enters the stall regime, a sudden drop occurs in the lift force on the airfoil.
Maximum lift occurs just before stall happens. Since maximum lift is an important
characteristic, especially for airplanes it determines the stall speed. In many airfoil
aerodynamics studies, it is desired to maximize the lift coefficient of the airfoil. If
the airfoil is symmetric, it is known that the angle of attack corresponding to zero
lift is zero [2].

10



2.2 Physics Informed Neural Networks

Data-driven machine learning models can be perfectly fitted on training data, how-
ever model may not be able to extract physically meaningful predictions. Inevitably,
it is necessary to incorporate physical rules and domain knowledge into the machine
learning model. Embedding physics into the machine learning model can be con-
sidered as informative priors that are hard theoretical constraints for the training.
Observational, empirical, or physical understanding of knowledge as a prior infor-
mation are advantageous for improving training performance of the network model
[24]. Generally, enough useful data is very limited for data-driven techniques as it
is not practical to obtain experimental data from complex systems. In most of the
cases, experimental data for partially known physics are available but with noise
and random interruptions. Thus, it is possible to extract missing or even hidden
quantities by recovering the solution of partial differential governing equations [24].

Physics-informed Neural Networks (PINNs) [14] are an example of SciML that com-
plement integration of data and governing equations of the physics that are driven
by generally partial differential equations. These machine learning methods can stay
robust by having governing equations as hard constraints on even imperfect data,
i.e., missing data, noisy data or having outliers [24]. Such data-efficient physics-
informed neural network models offer an alternative approach to conventional nu-
merical solvers.

Physics-informed neural network structure is illustrated in Figure 2.3. As seen from
the figure, physics-informed neural networks can be divided into two parts such as
physics-uninformed neural network and physics-informed parts. In the following,
PINN details are provided part by part.

Figure 2.3 Physics-informed neural networks (PINNs) basic structure

11



Physics-uninformed Neural Network

The first part of the PINN algorithm is an artificial conventional neural network.
Neural networks are formed as a result of the connections of neurons with each other.
Neuron is mathematically formulated in Equation 2.15.

y = σ(W T x + b) (2.15)

where x denotes inputs, W is vector of weights, σ is activation function, y is the
output of neuron [28].The depth of the network is found by the number of layers
minus one and the width is calculated from the number of neurons in a hidden
layer. The depth and width of the network affect the complexity and capability of
the neural network. Commonly, networks with hidden layers of more than two are
considered deep neural networks.

The feed-forward neural network, also called as a multi-layer perceptron (MLP), is
the simplest architecture. In such configurations, neurons are in layers, and each
neuron is connected to all neurons in their successive layer. The output of each layer
can be denoted as follows [29]:

fi(x) =


x, i = 1

σ(Wifi−1(x) + bi), i = 1, 2, ..k − 1
Wifi−1(x) + bi, i = k

 (2.16)

where i is the layer number, fi is is output of the ith layer, i = 0 is corresponding
to the input layer, σ is an activation function. Activation function takes place in
neural networks mainly for non-linearity. Even though there are some examples of
linear activation functions in the literature [30], a non-linearity is better for accurate
approximation [31, 32, 30]. Nonlinear activation function authorize neural networks
to recognize complex patterns. Wi is the weight matrix that makes a connection
between the (i − 1)th and ith layer. Lastly, k represents the output layer. Thus,
the network output is obtained by f (x; θ) = fk(x). In order to find optimum pa-
rameters θ, a learning rule is needed. Generally, this is done by cost (loss) function
minimization by an optimization algorithm.

The loss function is a measure to lead the algorithm to better performance. It is
necessary to find the distance between the predicted and expected output. This
measurement can be considered as a feedback signal to the algorithm to adjust it
as a way of learning [33]. Loss functions can be either discrete valued for classifi-
cation problems or continuous valued for regression problems. This section focuses

12



on solving regression-type problems. A general concern in regression problems is
finding a proper function that maps the relation between input features and corre-
sponding labels. Consider a feed-forward neural network fθ : Ra → Rb with network
parameters θ describing the function. A common approach for the solution is the
reconstruction of regression the problem as an optimization problem. In this sense,
the loss function, also known as the objective function or cost function, is used for
penalizing the deviations of the regression function from the data. Thus, the best
network parameters are found by minimizing loss function for optimum network
parameters θ∗. Network evaluation with a parameter set θ and corresponding loss
calculation is named as forward pass. Some mostly applied loss functions are mean
absolute error (MAE), mean absolute percentage error (MAPE), Huber loss, mean
square error (MSE), and root mean square error (RMSE). In this thesis, MSE is
implemented as [34]:

L(θ) = 1
N

N∑
i=1

(f(xi, θ) − yi)2 (2.17)

where f(xi, θ) is network prediction, yi is reference value, N is number of samples.

The loss minimization process is called training or learning. This process takes place
on the training data which is a sub-sample of the whole data space that follows, which
are being discussed in the context of deep learning. All are local optimization-based
algorithms that find local minima of the loss function in every iteration.

The gradient of the entire training data set is calculated by the gradient descent opti-
mization algorithm. To accelerate the process, stochastic gradient descent (SGD) op-
timization algorithm that calculates gradients over randomly sampled mini-batches
of data can be applied. This randomness produces stochastic behavior. Mini-batch
size and learning rate are involved in hyper-parameters of the network. The size of
the update step in each iteration is determined by the learning rate [35]. Adam Opti-
mizer is another first order gradient-based optimization algorithm with less memory
requirement. It is created by taking advantages of AdaGrad method that is good at
sparse gradients and RMSProp that is good at on-line and non-stationary conditions
[36]. In this study, Adam optimizer is implemented to the PINN algorithm.

The gradient of loss function with respect to network parameters, ∇θL(θ), is key in
the update step of the minimization process in the optimization algorithm. Back-
propagation algorithm, which takes loss information and sends it back through
the network, is implemented for gradient computation [37]. Applications of back-
propagation are not limited by the gradient of the loss function but also for any
information through a network including the Jacobian of a function. The chain rule
is applied through the network to obtain derivatives. Back-propagation executes

13



chain rule in a highly efficient way with respect to any node in the computational
graph [38].

Machine learning software libraries such as Tensorflow [39] and Pytorch [40] are
offering a technique named automatic differentiation. Instead of implementing a
back-propagation algorithm manually, automatic differentiation makes the same
construction with less effort. It creates a framework to watch desired variables
and a computational graph is produced accordingly. Graph leafs are associated
with variables and nodes are linked to the operations. Since derivations at each
operation are well-defined, the chain rule is carried out easily.

Up to this point, multi-layer perceptron type neural network structure is explained.
There are other notable types of deep learning models in the literature such as
recurrent neural network (RNN), deep belief network (DBN), long short-term mem-
ory (LSTM), deep Boltzmann machine (DBM), and restricted Boltzmann machine
(RBM) [41]. In this thesis, multi-layer perceptron (MLP) is implemented as a
physics-uninformed neural network part of the PINN algorithm.

Physics-informed part

Physical laws are taken into account in the uninformed neural network through the
definition of a custom define loss function. Uninformed neural network provides
output predictions at the end of the each iteration during training. Gradients of
the outputs with respect to the inputs are calculated by automatic differentiation
technique. Residuals of the PDE-based governing equations of the problem are cal-
culated by plugging corresponding gradients and outputs into the equations. Norm
of the equation residuals are added to the loss function. This penalization leads
better output predictions from the network.

Physics-based deep learning method brings some benefits over conventional learning
algorithms. Firstly, governing equations as physical laws are highlighted by the
help of the custom loss function. In other words, physical laws are imposed in
loss function and acting as constraints for the network training. Hence, network
predictions are forced the consider integral form of the physical laws. In conventional
neural networks, it is possible to have physically irrelevant predictions even, if the
accuracy is high.

Neural networks are data-driven methods; therefore, a huge amount of data is needed
to build well-performed neural networks. Another advantage of the physics-informed
neural network is eliminating the need of huge data sets. It is possible to train a
network for a regression-type problem without labels which corresponds to missing
data at collocation points in this study. In the absence of available data, network

14



penalization for the outputs without labels is done by minimization of the governing
equation residuals included in the loss function. In real life, it is known that col-
lecting experimental data is challenging in fluid dynamics. Reasons behind this are
because of several factors from measurement techniques to the complex geometry
of the problem. Besides, applying numerical solutions can be unfeasible in terms of
computational cost. Therefore, sparse data set is available for a problem generally.
PINN is a relatively new method to approximate PDEs to tackle sparse data sets.

For better understanding, general formulation of PINN is explained in the following
as proposed in [42]. Assume that u(x, t) is solution of a system of nonlinear partial
differential equations that formulated in the general form below:

ut + Nx[u] = 0, x ∈ Ω, t ∈ [0, T ]

u(x, 0) = h(x), x ∈ Ω

u(x, t) = g(x, t), t ∈ [0, T ], x ∈ ∂Ω

(2.18)

where N [·] is nonlinear differential operator, subscripts show gradient with respect
to either time t or spatial coordinate x, h(x) is initial condition, and g(x, t) is
boundary condition. PINN aims to infer continuous solution u(t, x) of PDE by a
neural network fθ(x, t). For this purpose, PDE residual is expressed as below to be
used in the loss function.

rθ(x, t) = ∂

∂t
fθ(x, t) + Nx[fθ(x, t)] (2.19)

where fθ(x, t) represents neural network output which is prediction of u(t, x) and θ

is network parameters. Corresponding loss function is defined by

L(θ) = Lu(θ) + Lr + Lu0(θ) + Lub
(θ) (2.20)

where the first term is data loss if observational data is available, second term is
residual of the PDE, third term is initial condition, and fourth term is boundary
condition. Then, network training is done by SGD method:

θn+1 = θn − η∇θL(θn) (2.21)

where n is iteration number, and η is learning rate.

15



Chapter 3

Laminar Flow Over a Cylinder

3.1 Problem Definition

Complex fluid behavior is observed even flow passed a simple geometry. Flow over
a cylinder is seen as one of the simplest examples of fluid-object interaction. In
this chapter, in order to perceive the feasibility of physics-informed neural networks
on fluid dynamics, laminar flow over a cylinder in two dimensions is studied. For
the PINN algorithm, sparse data set which includes only the temperature field and
velocity information at the inlet of the domain is taken from a numeric solution.
PINN algorithm is not only implemented for recovering missing temperature field
data but also for inferring latent quantities such as velocity and pressure field by ap-
proximating PDE-based governing equations. Moreover, aerodynamic forces acting
on the cylinder are extracted from the PINN algorithm. Regressed output predic-
tions are used to calculate the forces by two different methods: from the integration
of the stress field over the cylinder and from the control volume approach around
a cylinder. While the first method is mostly gradient-based, the second method is
integral-based. The purpose of implementing two different methods is to find the
best fit in terms of produced error.

3.2 Numerical Assessment

COMSOL Multiphysics is used as a CFD tool and a 2D time-dependent model is
created to simulate velocity, pressure, and stress fields around a cylinder. Besides,
energy transport by the fluid is considered. For this purpose, the laminar flow
interface of the CFD module and heat transfer in fluids interface of the heat transfer
module is applied.

16



3.2.1 Geometry and Computational Domain

A cylinder with a diameter of 1 is positioned in a rectangular domain with its axis
normal to the free stream flow, U0. If the cylinder is absent, the velocity would
be U0 everywhere in the rectangular domain. The rectangular domain represents a
wind tunnel. The length of the cylinder is considered too long when compared to
its diameter. Hence, the same behaviors occur in every plane perpendicular to the
normal in an infinite cylinder.

The computational domain which consists of a rectangular stationary domain and
cylinder is shown in Figure 3.1. The cylinder wall is defined as a no-slip boundary. In
other words, the relative fluid velocity with respect to the cylinder wall is zero, i.e.,
u = 0 at the boundary. The slip boundary condition is implemented on the top and
bottom walls of the stationary rectangular domain. Hence, there is no viscous effect
on the top and bottom walls, i.e., u ·n = 0 and thus no boundary layer development
appears. It is a valid assumption if walls are used just for keeping the flow in the
domain. Unit normal inflow velocity is defined at the inlet of the domain, and zero
pressure is applied to the outlet. Initial conditions of velocity and pressure are set
to zero.

Additionally, the thermal insulation boundary condition is applied to the top and
bottom walls. Temperature is set to 1 in cylinder walls, and 0 is assumed at the
inlet.

i

n

l

e

t

o

u

t

l

e

t

R
4R

6R

42R

stationary rectangular

domain

12R

slip wall

slip wall

no slip wall

Figure 3.1 Representation of problem geometry and computational domain

3.2.2 Governing Equations

Governing equations of the 2D laminar flow problem in the non-dimensional form are
represented below. Superfix ∗ shows that corresponding variable is non-dimensional.

17



∇∗ · u∗ = 0 (3.1)

∂u∗

∂t
+ (u∗ · ∇∗)u∗ = −∇∗p∗ + 1

Re
∇∗2u∗ (3.2)

Non-dimensional equation 3.1 applies conservation of mass and known as continuity
equation. Equation 3.2 shows Navier-Stokes equation in non-dimensional vector
form that applies conservation of momentum where u∗ is non-dimensional velocity
vector, p is non-dimensioanl pressure, Re is Reynolds number.

The flow remains in the laminar flow regime if the Reynolds number is kept on
some threshold value. Diameter-based Reynolds number is calculated as 200 from
Re = ρU0D/µ. Following scale parameters are used for non-dimensionalization:
cylinder diameter D as a length scale, free stream velocity U0 as a velocity scale,
ratio between cylinder diameter and free stream velocity D/U0 as a time scale, and
ρU2

0 as a pressure scale.

Here, laminar flow and heat transfer in fluids interfaces are coupled to model both
slow flow and energy transportation. The main benefit of the multiphysics environ-
ment is that interfaces use the same predefined properties like density. Convection-
diffusion equation which is provided in equation 3.3 is applied to define temperature
in fluid domain.

∂

∂t

∗
c∗ + u∗ · ∇∗c∗ = 1

Pe
∇∗2c∗ (3.3)

where u∗ is non-dimensional fluid velocity coming from laminar flow interface, Pe is
Peclet number, c is non-dimensional temperature.

Peclet number is related to transport phenomena. In heat transfer, it shows the
ratio between the convection of thermal energy to the fluid and the inside of the
fluid. It can be expressed as Pe = RePr where Reynolds number (Re) shows the
fluid characteristics and Prandtl number (Pr) gives the ratio between momentum
diffusivity and thermal diffusivity (α). Thermal diffusivity is expressed as k/(ρCp)
where k is thermal conductivity, and Cp is heat capacity. In this problem, transport
phenomena is characterized by Peclet number of 200 and Pr number is equal to 1.

18



3.2.3 Mesh

The flow and pressure fields are obtained by solving the governing equations with
the finite element method. Both velocity and pressure fields are discretized by
the second-order triangular elements. However, the temperature is discretized by
linear elements. Applied mesh is shown in Figure 3.2. It consists of 35896 domain
elements and 736 boundary elements. It is solved for 136589 number of degrees
of freedom within P2+P2 Comsol discretization settings. In order to resolve the
thin boundary layer along the no-slip boundary of the cylinder, the boundary layer
mesh is implemented in the normal direction along the cylinder wall. It is a layered
quadrilateral mesh that has a dense element distribution. Additionally, a smooth
transition in element size is applied from the boundary layer mesh to the interior
mesh. Corner refinement is implemented for sharp corners to decrease element size.
Since it is 2D problem, vertexes are considered sharp corners.

 

Figure 3.2 Mesh configuration

3.2.4 Solver Configuration

A nonlinear equation system is obtained from Navier Stokes equations. For this rea-
son, a nonlinear solver which is based on iterative methods is needed for the solution.
In each iteration, the formation of a linear system that is obtained from a nonlin-
ear system is employed. Since the problem is time-dependent, an additional time
marching method is implemented. The Backward Differentiation Formula (BDF)

19



solver is executed as a time-stepping method. BDF is also called as backward Eu-
ler method and is well-known for its stability. It is an implicit solver relying on
backward differentiation. The order of accuracy is set to 2.

3.3 PINN Model

In order to test the PINN algorithm on recovering missing data and approximating
PDE based-equations for inferring latent quantities, needed sparse data is taken
from conducted numeric CFD solution for laminar flow around a cylinder problem
as explained in Section 3.2. A rectangular domain with the size of [6R x 9R] as shown
in Figure 3.3 with a black label is selected as a region of interest where training data
for passive scalar and reference data for velocity and pressure fields are obtained.
It is assumed that the training data set includes a passive scalar concentration field
at the selected rectangular domain. In [16], it has been proposed that a sufficient
amount of passive scalar concentration field gradient at the boundaries can eliminate
the requirement of velocity and pressure boundary conditions to a great extent. For
the sake of the current study, the left boundary of the region of interest is treated as
the inlet boundary and velocity field information at the inlet is fed to the network. In
other words, it is assumed that boundary conditions are partially known and include
only the inlet boundary. Hence, the only inlet boundary condition is implemented
rather than all boundary conditions. As a result, the training data set is consisting
of a passive scalar concentration field on the interest domain and a velocity field
only at the inlet.

For this problem, the passive scalar concentration field refers to the temperature
field. As training data, the temperature field in the interest domain on the time
interval of (70,80) with a time step of 0.05 is available in the scattered form of the
time and spatial coordinates as illustrated in Figure 3.4. In another way, training
temperature data can be explained as (t, x, y, c)N

n=1 where n is nth training data point
from 1 to N, c is the temperature at that point. For instance, temperature field at
t = 30 is provided in Figure 3.5 for the visualization. Similarly, velocity field data
at the inlet is expressed as (t, x, y, u, v)M

m=1 where m is mth data point from 1 to M.
Total data points of the velocity field at the inlet, M, is much smaller than the total
data points of passive scalar concentration field, N.

Constructed PINN model architecture is presented in Figure 3.6. When the PINN
structure is examined, it can be observed that there are two main parts. In the
first part of the model, an uninformed neural network that has a feed-forward deep
neural network structure is mapping a function from (t,x,y) to (c,u,v,p). Automatic
differentiation is applied to outputs of the uninformed neural network to feed physics-

20



Figure 3.3 Numeric solution of passive scalar concentration field at t = 70. Smaller
rectangular domain which has a black framework is selected as a region of interest

for the PINN.

informed part for underlying physical laws by governing equations. Residuals of the
governing equations in non-dimensional form, as formulated through Equation 3.4-
3.7, are implemented to PINN for regression of passive scalar concentration, velocity
field, and pressure field.

e1 = ∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
− 1

Pe
(∂2c

∂x
+ ∂2c

∂y
) (3.4)

e2 = ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ ∂p

∂x
− 1

Re
(∂2u

∂x
+ ∂2u

∂y
) (3.5)

e3 = ∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ ∂p

∂y
− 1

Re
(∂2v

∂x
+ ∂2v

∂y
) (3.6)

e4 = ∂u

∂x
+ ∂v

∂y
(3.7)

During the training, besides minimizing the mean square of the training data, norms
of the equation residuals are minimized. Thus, physical laws underlying the problem
are used by the network as a constraint to penalize predictions of hidden quantities
whose training data are not available.

21



Figure 3.4 Temperature field at the interest domain on the time interval of (70,80)
with time step of 0.05 is illustrated in the scattered form.

L = Ldata + Leqns + LBC (3.8)

In detail, the first loss term Ldata denotes the mean square error between training
temperature data and network prediction. N is the number of training data points.

Ldata = 1
N

N∑
n=1

|cdata(tn, xn, yn) − cpred(tn, xn, yn)|2 (3.9)

LBC refers mean square of error between the velocity field at the inlet and model
predictions. M is the number of points at the inlet.

LBC = 1
M

M∑
m=1

|udata(tm, xm, ym) − upred(tm, xm, ym)|2

+ |vdata(tm, xm, ym) − vpred(tm, xm, ym)|2
(3.10)

The last term of the loss function, Leqns, calculates the norms of the equation resid-
uals. In other words, Leqns is the mean square error between equation residuals and
zero since all the terms of equations are gathered on the left side of the equations, it
is aimed to minimize equation residuals through zero). A finite set of residual points
where equations are penalized can be at a different number and located differently
from the training data set. The finite set of residuals is also known as collocation
points. In this study N and J are accepted as equal.

22



Figure 3.5 The domain where training data for the temperature and reference data
for velocity and pressure are obtained. Here, temperature field at t = 70 is

visualized.

Leqns =
4∑

i=1

1
J

J∑
j=1

|ei(tj, xj, yj)|2 (3.11)

In the following section, a parametric study is presented for finding the best-fit
network parameters for the training. Besides, weight normalization is applied to
accelerate the optimizer. Accordingly, the weight vector is parameterized, and thus
decoupling is achieved between the vector’s length and direction. Weight normal-
ization is a method that is inspired by batch normalization. However, unlike batch
normalization, a dependency between mini-batches is not observed [43]. The reason
why batch normalization, which is widely used in deep learning, cannot be applied
in PINN is that network has a physics-based interface. Otherwise, equations are
batch-dependent [16].

3.4 PINN Parametric Study

In this section, before test the physics-informed neural network on the problem,
hyper-parameter tuning is studied to reach the best-performed network parameters
for the training. Tuned parameters are activation function, number of layers, number
of nodes per layer, learning rate, and mini-batch size. A parametric study is applied

23



t

x

y

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

c

u

v

p

I

∂t

∂x

∂y

I

∂t

∂x

∂y

PDE Residual Loss 

 BC Loss 

Data Loss

Feed-forward Deep NN

(Uninformed NN)

Automatic Differentiation

Physics-constraint 

Loss Function

Adam Optimizer

Figure 3.6 Physics informed neural network architecture

manually. While other parameters are kept constant, each network with a different
value of the relevant parameter within a range is trained by 5 · 104 iterations.

3.4.1 Activation Function

The selection of activation function plays an important role in achieving accurate
PINN training because the derivative of the loss function with respect to network
parameters is used during backpropagation in the training process. Additionally,
backpropagation takes place not only for the gradient of loss but also for partial
differential equation approximation. Hence, backpropagation is dependent on the
gradient of activation function as well. Therefore, the first and second derivatives
of chosen activation function should not have vanished during the backpropagation.
For example, one of the most popular activation functions ReLu (Equation 3.12 [31])
is not a suitable choice for a PINN model since its second derivative vanishes.

In order to find the best-fit activation function, some frequently used ones in the
literature are implemented in the PINN training for 5 · 104 iterations. Mean square
error training loss results are presented in Figure 3.7. The frequently used sigmoid
function in feed-forward deep neural networks is performed worst in the PINN model.
It has not a spectacular effect since outcomes of the sigmoid change slightly as
approaches the input boundaries. That is why small gradients appear in those
regions and learning is stopped by the gradient vanishing problem. Since derivatives
are multiplied during the backpropagation and a very small gradient, i.e., near zero,
causes a zero result for the whole process. Thus, network parameters, weights,
and biases cannot be updated. On the other hand, elu (Equation 3.13) and selu

(Equation 3.4.1) as variants of the relu activation function are performed poorly

24



as well. Even though selu did not suffer from the vanishing gradient problem, was
not successful on the PINN training. In the literature, it is shown that one of the
activation function requirements for a well-trained PINN is smoothness. Since relu

and their variants show non-smooth behavior, convergence is not achieved [44].The
sin and tanh are differentiable activation functions and as seen they perform better.
The best-performed function is the swish (Equation 3.14 [45]) activation function
which is another differentiable one and implemented for full training in this study.

ReLu(x) = max(0, x) (3.12)

elu(x) = max(0, x) + min(0, α(ex − 1)) (3.13)

where α is a hyperparameter that controls values for negative inputs [46].

selu(x) = λ

x, ifx > 0

αex − α, ifx ≤ 0

where λ > 1 is defined for a slope for positive inputs [47].

swish(x) = x

1 + e−x
(3.14)

3.4.2 Number of layers and number of nodes

A well-trained PINN can be achieved with proper selection of nuumber of layers
and node numbers per layer. The number of hidden layers indicates network depth
and number of nodes in each layer shows width. As network becomes deeper and
wider, its mapping capability for complex functions increases but it may end up
with over-fitting. On the other hand shallow and narrow networks may suffer from
under-fitting. Since physics-informed neural networks struggle with sparse data
sets by using governing equation residuals calculated on collocation points in the
training, it prevents over-fitting problem. In order to find best performed network
architecture, different networks from depth of 6 to 12 and number of nodes per layer
from 100 to 250 are implemented. For each cases, training is limited by 5 · 104

iterations and other hyper-parameters are kept same. Figure 3.8 shows that as
number of layer increasing, learning capacity is increasing in case of any number of
nodes per layer as well. Networks with same number of layers but having higher
number of nodes show better learning performance. The effect of those parameters

25



0 1 2 3 4 5

104

10-4

10-3

10-2

10-1

100

101

Figure 3.7 MSE Loss for different activation functions

on the model prediction shows consistence behavior with the training as seen from
Table 3.1. As a result of relative L2 error (Equation 3.15) comparison, 12 layer and
250 nodes per layer are chosen as best fit parameters for laminar flow over a cylinder
problem.

Table 3.1 L2 error norm between model predictions and reference outputs for PINNs
in different depth and width

Nodes per layer 6 layer 7 layer 8 layer 9 layer 10 layer 12 layer
100 0.5734 0.4464 0.3812 0.286 0.3593 0.2192
150 0.3593 0.3451 0.2884 0.2419 0.165 0.1419
200 0.3203 0.2711 0.2335 0.1808 0.1676 0.2192
250 0.3834 0.2557 0.1771 0.1574 0.1341 0.1063

3.4.3 Learning Rate

For the PINN training, the Adam optimizer [48] which is a variant of the stochastic
gradient descent algorithm is applied. Rather than a learning rate, all optimizer
parameters are kept on default parameters. Learning rate provides an amount of
update in the opposite direction to the mini-batch gradients of network parameters.
The result may not be converged in the case of a high learning rate. Keeping the
learning rate relatively smaller may allow to find more optimum network weights.

26



(a) 100 node per layer (b) 150 node per layer

(c) 200 node per layer (d) 250 node per layer
Figure 3.8 MSE training loss comparison for number of nodes per hidden layer

optimization

However, a smaller learning rate creates computational cost since learning steps
become smaller but the necessary number of iterations to reach a minimum of the
cost function becomes higher. For 4 different learning rate values ranging from
10−2 to 10−5, PINN is performed with 5 · 104 iteration limited training. Figure 3.9
presents loss function behaviours for each case. Training happens slowly at small
learning rates as expected. The minimization of the loss function is greater for a
learning rate of 10−2. However, it is known that learning happens fast in the first
stages of the training and then the rate of change in learning becomes smaller. For
this reason, completing training with such a relatively high learning rate can cause
a convergence problem when loss falls some threshold. Additionally, 10−2 shows
faster learning process but it has an oscillatory behavior which points out variation
in the network weights are higher than they should be. The learning rate of 10−3

shows a sharp learning curve. As a result of the parametric study, the learning rate
is accepted as 10−2 in the first 5 · 104 iteration and it is decided to update as 10−3

in the remaining part of the training for laminar flow over a cylinder problem.

27



0 1 2 3 4 5

104

10-4

10-3

10-2

10-1

100

Figure 3.9 MSE Loss for different learning rates

3.4.4 Batch Size

The gradient of the loss function is necessary for network parameter updates as dis-
cussed in detail in section 2.2. It can be computationally costly if this process takes
place over an entire data set at the end of each iteration. For this reason, randomly
sampled small subsets of data called mini-batch are used in machine learning algo-
rithms frequently. In the case of an adequately small learning rate, training with a
mini-batch technique and an entire data set give equal results. However, the mini-
batch technique achieves good accuracy even with a bigger learning rate in smaller
time intervals [49]. One of the limiting factors of the mini-batch technique is size. A
larger mini-batch size requires more memory, Additionally, when training hardware
is selected as GPU, it is known that mini-batch size as a power of 2 provides bet-
ter run time [35]. For this work, a code is written in the Python with TensorFlow
package for GPU, therefore, powers of 2 from 512 to 8192 are used for mini-batch
size hyperparameter tuning. For this purpose, training is limited by 5 · 104 itera-
tions and the learning rate is fixed as 10−3. As seen from Figure 3.10, the learning
process speeds up as the mini-batch size increases. Additionally, the loss function
shows relatively less fluctuations in higher mini-batch sizes. Besides the training
performance, the model prediction accuracy for all cases is compared as well. Table
3.2 shows L2 error between model outputs and reference values. Accordingly, the

28



error is highest when the mini-batch size is the smallest, i.e., 512. Up to 2048, the
error is decreasing and it reaches the lowest error at 2048. Relatively higher batch
sizes such as 4096 and 8192 lead to higher errors again. As a result of the training
and prediction capabilities of networks in different mini-batch sizes, 2048 is decided
to be applied for full training of the problem.

0 1 2 3 4 5

104

10-4

10-3

10-2

10-1

100

Figure 3.10 MSE loss for different mini-batch sizes

Table 3.2 L2 error norm between model predictions and reference outputs for PINNs
in different mini-batch sizes

Batch Size L2 norm
512 0.2027
1024 0.1469
2048 0.1458
4096 0.1553
8192 0.1638

3.5 Results

Selected hyper-parameters according to parametric study and number of inputs are
summarized in Table 3.3. This section represents PINN results after the training
with 106 iterations. The network is trained and tested on the high performance
computer (HPC) with an Intel Xeon Scalable Gold 6148 processor and a single

29



Nvidia Tesla V100 (16GB, NVLink) GPU. Generally, in deep learning, an epoch
that refers to one pass through the entire data set is used as a training metric.
PINN differs from conventional deep learning techniques since a physics-informed
neural network deals with different data sets of different sizes (i.e., available training
data points and collocation points for equation residuals) at the same time. That is
why iteration is used as a training metric here rather than epoch.

Table 3.3 PINN Summary

Activation Function Swish
Batch size 2048

Learning rate 10−2 if loss > 6 · 10−3 otherwise 10−3

Optimizer Adam
Training time (in iterations) 1 million

Number of Layers 12
Node number per layer 250
Number of data points 11215

Number of collocation points 11215
Number of total time frame 201

Number of time frame (train-test) (161-40)

3.5.1 PINN Results

As shown in from Figure 3.11, the temperature field as a passive scalar concentration
is regressed successfully, and absolute error between the reference values and model
predictions are on the order of 10−3. As seen from the absolute error, higher error
occurs where eddy is the strongest. Even any other information is not provided other
than the velocity at the inlet as a boundary condition, regression of the velocity and
pressure fields shows good accuracy thanks to embedded governing equations into
PINN. Since training data for temperature field is available, training time can be
increased to reach further improvements in temperature field predictions.

Velocity field components are separately investigated in the same time frame with
the represented temperature field at Figure 3.11 over the same data points. Figure
3.12-3.13 illustrate PINN regression on x and y components of the velocity field
respectively. It is known that flow is characterized by the Reynolds number of
200 as explained in the 3.2. In this flow regime, as seen from reference velocity
field components, Figure 3.12b- 3.13b, there is no symmetry between the upstream
and downstream because eddies are observed at the wake of the cylinder. It has
been studied that the diameter-based Reynolds number should be at least 47 for
a cylinder to observe eddy shedding at the wake region [50]. The flow pattern
shows Karman Vortex street behavior in this problem. Accordingly, eddies are shed
from both sides of the cylinder boundary continuously and periodically at the wake

30



(a) (b)

(c)
Figure 3.11 Passive scalar concentration field at t=72.3 a)reference field

b)regressed field by PINN c)absolute error

region. Thus, vortices are formed in rows. As moving downstream, the energy of
the vortices is reduced by the viscosity. Consequently, as presented in Figures 3.12
and 3.13, PINN algorithm is accurately captured mentioned Karman vortex sheet
pattern. When absolute errors of the x and y components of the velocity field are
examined, absolute error is shown relatively higher at the cylinder wall boundary.
In the numerical study, cylinder boundary condition is defined as no-slip boundary
but for the PINN algorithm it is assumed that this information is not available in
order to show PINN capability in less information. For further improvements in
the velocity field prediction, cylinder-boundary condition can be imposed on loss
function as another loss term. However, when the overall domain is considered,
errors are small.

Even one single vortex shedding causes asymmetric flow around a cylinder. Thus,
the pressure distribution is changed and results in aerodynamic forces which occur
periodically on the object. Figure 3.14 shows good agreement between the PINN
pressure prediction and reference pressure field. Note that, at least velocity at
the inlet is introduced to the PINN algorithm for the sake of a unique solution.

31



(a) (b)

(c)
Figure 3.12 x component of the velocity field at t=72.3 a)reference field

b)regressed field by PINN c)absolute error

However, it is assumed that any information from pressure field is not available to
for the network training. Pressure is just extracted from the approximate solution of
Navier Stokes equations for incompressible flow by PINN. If the presented absolute
error of the pressure field in Figure 3.14 is compared with the absolute errors of the
velocity field, it can be seen that the error for pressure over the domain is relatively
higher than velocity field errors. The reason is that only the gradient of the pressure
is included in incompressible Navier-Stokes equations rather than a direct pressure
term. However, pressure regression result still can be considered in the high accuracy
range when one considers no observational data being provided.

For illustrative purposes of PINN algorithm performance, regression of velocity and
pressure fields on single time (t = 72.30) is provided in Figures 3.11-3.14. At the
whole time window of [70,80], relative L2 errors for all output fields on the interest
domain are provided in 3.15. Relative L2 error is used as an error metric as the
reference paper of this study suggested [16] since it is agnostic to any shift or scaling
on regressed and reference function. Relative L2 error is expressed in Equation 3.15.

32



(a) (b)

(c)
Figure 3.13 y component of the velocity field at t=72.3 a)reference field

b)regressed field by PINN c)absolute error

Relative L2 error =
1
N

∑N
i=1[f(xi) − g(xi)]2

1
N

∑N
i=1[g(xi) − 1

N

∑N
i=1 g(xi)]2

(3.15)

where xi is points from 1 to N in a scattered form through the domain, f is regressed
function and g is reference function g. Figure 3.15 shows prediction error is high at
the beginning of the time windows for each field. This high error can be explained
by a lack of training data when t < 70.

3.5.2 Force Calculation

Velocity and pressure fields are hidden quantities that are extracted from PINN
by training on passive scalar concentration field and underlying physical laws as a
constraint for regression. Regressed fields are used to calculate the lift and drag force
exerted on the cylinder. Two different methods are applied to calculate aerodynamic
forces. The first method is relying on stress field integration over the cylinder which
is the same applied method with the reference paper of this study [16]. As an
alternative method, the control volume approach is implemented to exert forces

33



(a) (b)

(c)
Figure 3.14 pressure field at t=72.3 a)reference field b)regressed field by PINN

c)absolute error

Figure 3.15 Relative L2 error of outputs on the domain over whole time window

from the conservation of momentum. Detailed analysis of obtaining aerodynamic
forces from stress and control volume approaches are provided in Section 2.1.2.

34



Since drag force occurs in parallel to upstream velocity, it is calculated from the
integration of the stress field in the x-direction as shown in Equation 3.16. Similarly,
since lift force occurs perpendicular to the upstream velocity, it is calculated from
the integration of the stress field in the y-direction as shown in Equation 3.17.

FD =
∫

(−pnx + 2 µ
∂u

∂x
nx + µ (∂v

∂x
+ ∂u

∂y
) ny) dA (3.16)

FL =
∫

(−pny + 2 µ
∂v

∂y
ny + µ (∂u

∂y
+ ∂v

∂x
) nx) dA (3.17)

As an alternative approach for aerodynamic force calculation, conservation of linear
momentum for a fixed control volume is indicated below.

∑
F = d

dt
(
∫

CV
V ρ dV) +

∫
CS

V ρ(V · n) dA (3.18)

Equation 3.18 is a vector equation since all terms include V which represents the
fluid velocity. ∑

F is the vector sum of forces acting on the cylinder. Control volume
of defined as boundary of the rectangular domain. In order to calculate lift and drag
forces acting on the cylinder in the control volume, x and y components of Equation
3.18 should be written while considering the pressure and viscous forces as shown
below.

FD = d

dt
(
∫

CV
u ρ dV) +

∫
CS

u ρ (unx + vny) dA

+
∫

CS
(pnx) dA −

∫
CS

[(µ 2∂u

∂x
nx) + (µ(∂u

∂y
+ ∂v

∂x
)ny)]dA

(3.19)

FL = d

dt
(
∫

CV
v ρ dV) +

∫
CS

v ρ (unx + vny) dA

+
∫

CS
(pny) dA −

∫
CS

[(µ 2∂v

∂y
ny) + (µ(∂u

∂y
+ ∂v

∂x
)nx)]dA

(3.20)

Both methods were applied to the numeric study in COMSOL for comparison. As
seen from Figure 3.16, they are in good agreement for lift and drag force calcula-
tions. In equations 3.19 and 3.20, viscous forces are taken into consideration for
the calculation of aerodynamic forces via the control volume approach. In order
to see the effect of viscous terms, they are neglected, and the validation study is
repeated as presented in Figure 3.17. Especially in the lift force, the viscous effect

35



is so small therefore it can be neglected. Although the error seems relatively high
at peak points for the drag force, there is an average of 0.58% error. Therefore,
viscous terms can be neglected for computational efficiency to avoid calculations
of unnecessary gradients. Besides, viscous terms are neglected when aerodynamic
forces are extracted from PINN predictions via a control volume approach.

(a) (b)

Figure 3.16 Aerodynamic force calculation by SI and CV methods on reference
data. CV approach includes viscous term at the boundary for a)drag force b)lift

force

(a) (b)

Figure 3.17 Aerodynamic force calculation by SI and CV methods on reference
data. CV approach does not include viscous term at the boundary for a)drag force

b)lift force

Using the velocity and pressure field predictions given by the PINN algorithm, lift
and drag forces acting on the cylinder are calculated in two ways through the men-
tioned stress and control volume methods. Figure 3.18 shows drag force extraction
from PINN predictions. As seen from the figure, both methods perform similarly.
Even the oscillations of the drag force is captured by the model, there is some offset
in terms of amplitude between the reference value and predictions by each method.

36



The mean relative absolute error (i.e., Equation 3.21) of drag force prediction is
8.84% for the stress integration method and 8.68% for the control volume method.
For both methods, at the very beginning of the time window (t=70) the relative
absolute error is maximum, about 13% and 12% for stress and cv methods respec-
tively. The higher error there can be explained by the lack of training data at t<70.

Mean Relative Absolute Error = meani|
f(xi) − g(xi)

f(xi)
| · 100 (3.21)

Mean Absolute Error = meani|f(xi) − g(xi)| (3.22)

where f(xi) is the reference data and g(xi) is the network prediction.

Figure 3.19 show the result for lift force’s from PINN predictions. When compared
with the drag force’s, PINN predictions lead to more accurate results in lift force
calculations. Here, since both the control volume and the stress methods are in very
good agreement with the reference, the error plot is given directly in absolute error
instead of the relative absolute error metric. Since, especially in the regions where
FL is zero or very close to zero, the relative absolute error results in a much larger
than 100% although the actual error is very low. Considering the mean absolute
error (i.e., Equation 3.22), this value is about 0.07 for the stress method, while it
is 0.065 for the control volume method. Besides, the maximum absolute error is
0.12 for the stress method and 0.1 for the control volume method. Here, it can be
said that the two methods show very close performances and are good at catching
oscillatory behavior with accurate amplitudes.

(a) (b)

Figure 3.18 Drag force calculation a) by control volume approach and stress field
approach b) relative absolute error of applied methods

37



(a) (b)

Figure 3.19 Lift force calculation a) by control volume approach and stress field
approach b) absolute error of applied methods

38



Chapter 4

Turbulent Flow Investigation via
PINN

4.1 Problem Definition

Complex fluid behavior and chaotic pressure changes are observed in case of tur-
bulent flow over an object. Turbulence is accepted as one of the most important
unsolved problems in science. It is known that airfoils show high lift generation when
compared with other solid objects because of their special aerodynamic design. In
high angle of attacks, stall problem causes a sudden drop in the lift force. The stall
is another complex phenomenon. In this study, flow over a stationary airfoil with a
high angle of attack in two dimension is studied in order to investigate stall in turbu-
lent flow. Firstly, 2D-time dependent CFD studies with Spalart-Allmaras and k-ω
turbulence models are conducted separately by COMSOL. Details of the numeric
study is presented in Section 4.2. From numeric solutions, two separate sparse data
sets are created for the PINN algorithm. Sparse data sets include the y-component
of the velocity field and eddy viscosity information over the domain. PINN algorithm
is not only implemented for recovering missing data of y-component velocity field
and eddy viscosity but also for inferring latent quantities such as x-component of the
velocity and pressure fields by approximating PDE-based governing equations. It is
known that eddy viscosity is a variable that does not exist in real life. It represents
transported and dissipated energy by turbulence. Therefore, it is expected to have
different eddy viscosity information from different turbulence models for the same
problem. The purpose of studying the two different data sets for the same problem is
to observe the PINN performance with different data for the regression of the same
problem with the same governing equations. Moreover, aerodynamic forces acting
on the airfoil are extracted from the PINN algorithm. Regressed output predictions

39



are used to calculate the forces by two different methods: from the integration of the
stress field over the airfoil and from the control volume approach around an airfoil.
While the first method is mostly gradient-based, the second method is integral-
based. The purpose of implementing two different methods is to find the best fit
in terms of produced error. Details of the PINN model for turbulence problem is
provided in section 4.3 and results are shown in section 4.5.1.

4.2 Numerical Assessment

CFD module of the COMSOL Multiphysics is used to create 2D time-dependent
models to simulate turbulent flow around a stationary airfoil. For this purpose, two
different turbulent flow interfaces of the CFD module are applied: Spalart-Allmaras
and k-ω turbulent flow models. Hence, two CFD studies are conducted for the same
geometry and computational domain.

4.2.1 Geometry and Computational Domain

Figure 4.1 Representation of geometry and computational domain

NACA0020 airfoil with a chord length of 1 is positioned in a rectangular domain with
a −25o angle of attack with respect to free stream flow, U0. A computational domain
that consists of a rectangular stationary domain and airfoil is shown in Figure 4.1.
The airfoil wall is defined as a no-slip boundary. In other words, the relative fluid
velocity with respect to the airfoil wall is zero, i.e., u = 0. The slip boundary
condition is implemented on the top and bottom walls of the stationary rectangular
domain. Hence, there is no viscous effect on the top and bottom walls, i.e., u · n = 0
and thus no boundary layer development appears. It is a valid assumption if walls
are used just for keeping the flow in the domain. Unit normal inflow velocity is

40



defined at the inlet of the wind tunnel, and zero pressure is applied to the outlet.
Initial conditions of velocity and pressure are set to zero.

4.2.2 Mesh Configuration

The velocity and pressure fields are obtained by solving the fluid flow governing
equations with the finite element method. Both velocity and pressure fields are
discretized by the first-order linear elements. Triangular mesh is applied over the
domain as shown in Figure 4.2. It consists of 73488 domain elements and 990
boundary elements. It is solved for 300923 number of degrees of freedom. In order
to resolve the thin boundary layer along the no-slip boundary of the airfoil, the
boundary layer mesh is implemented in the normal direction along the airfoil wall. It
is a layered quadrilateral mesh that has a dense element distribution. The thickness
of the first layer is 1/20 of the local domain element height. Number of layers is
6 and stretching factor is 1.2 which increase the thickness between the successive
layers by 20%. Additionally, a smooth transition in element size is applied from
the boundary layer mesh to the interior mesh. Corner refinement is implemented
for sharp corners to decrease element size. Since it is 2D problem, vertexes are
considered sharp corners.

4.2.3 Turbulent Model

Two CFD studies are conducted with two different turbulence models as Spalart-
Allmaras and k-ω. The reason behind conducting two different CFD studies is that
train the PINN algorithm on two data sets coming from different turbulent models
and compare the performance whether it is affected or not. Detailed information
about turbulent models is provided below.

Spalart-Allmaras Turbulence Model

Spalart-Allmaras (S-A) is a Reynolds-Averaged-Navier-Stokes (RANS) type turbu-
lence model. In other words, RANS equation is solved for the conservation of mo-
mentum, and the continuity equation is implemented for the conservation of mass.
It is known that the Spalart-Allmaras model is frequently used for aerodynamic
applications such as flow around airfoil and turbine blade simulations. In general,
it is accepted as a robust model.

Spalart-Allmaras model is known as a one-equation turbulence model[51]:

∂ν̃

∂t
+ u · ∇ν̃ = cb1S̃ν̃ − cw1fw( ν̃

lw
)2 + 1

σ
∇ · ((ν + ν̃)∇ν̃) + cb2

σ
∇ν̃ · ∇ν̃ (4.1)

41



 

Figure 4.2 Mesh configuration

where ν̃ is S-A working variable that fulfill the transport equation, ν is kinematic
viscosity.

Eddy viscosity, νt is calculated by νt = ν̃fv1, fv1 = X 3

X 3+c3
v1

, X = ν̃
ν

Modified vorticity, S̃, is calculated as follows

S̃ = S + ν̃

κ2d2 fv2 , fv2 = 1 X
1 + X fv1

(4.2)

where S is vorticity magnitude, and d is closest wall distance.

fw is a function defined by

fw = G[ 1 + c6
w3

G6 + c6
w3

]1/6, G = r + cw2(r6 − r), r = min( ν̃

S̃κ2d2
, rlim) (4.3)

Constant terms are specified as cb1 = 0.1355, σ = 2/3, cb2 = 0.622, κ = 0.41,
cw1 = cb1/κ2 + (1 + cb2/σ), cw2 = 0.3, cw3 = 2, cv1 = 7.1, rlim = 10.

42



k − ω Turbulence Model

k − ω is turbulence model also utilizes RANS equations for conservation of momen-
tum and continuity equation for conservation of mass. COMSOL Multiphysics CFD
provides the revised version of k − ω model by Wilcox [52]. k which is turbulent
kinetic energy and ω which is dissipation per unit of turbulent kinetic energy are
solved by the model from the following equations.

ρ
∂k

∂t
+ ρu · ∇k = Pk − ρβ∗kω + ∇ · ((µ + σ∗µT )∇k)

ρ
∂w

∂t
+ ρu · ∇ω = α0

ω

k
Pk − ρβ00ω

2 + ∇ · ((µ + σµT )∇ω)
(4.4)

Kinematic eddy viscosity is defined as

νT = k

ω̃
where ω̃ = max(ω, Clim

√
2SijSij

β∗ ), Clim = 7/8 (4.5)

Closure coefficients and auxiliary relations between them are specified below.

α0 = 13
25 , β00 = β0fβ, β∗ = 9

100 , σ = 1
2 , σ∗ = 3

5 , σdo = 1
8 (4.6)

σd =

0, ∂k
∂xj

∂w
∂xj

≤ 0

σdo,
∂k
∂xj

∂w
∂xj

> 0

β0 = 0.0708, fβ = 1 + 85Xw

1 + 100Xw

, Xw = |
Ω0

ijΩ0
jkSki

(βω)3 | (4.7)

where Ω0
ij is mean rotation rate tensor and Sij is mean strain rate tensor:

Ωij = 1
2( ∂ūi

∂xj

− ∂ūj

∂xi

), Sij = 1
2( ∂ūi

∂xj

+ ∂ūi

∂xj

+ ∂ūj

∂xi

) (4.8)

Pk is the production term and formulated as

Pk = µT (∇u : (∇u + (∇u)T ) − 2
3(∇ · u)2) − 2

3ρk∇ · u (4.9)

where dynamic eddy viscosity is

µT = ρ
k

ω
(4.10)

43



4.3 PINN Model

In order to see the capability of the PINN algorithm on recovering missing data and
approximating PDE based-equations for inferring latent quantities, needed sparse
data is taken from conducted numeric CFD solution for turbulent flow around an
airfoil problem as explained in 4.2. The same architecture of PINN models is created
for different turbulence models.

For the PINN models, sparse data sets are obtained from numeric solutions. A
circular domain with the radius of 2chord length as shown in Figure 4.3 is selected
as a region of interest where training and reference data are obtained. It is assumed
that the training data set includes the y component of the velocity field and eddy
viscosity at the selected circular domain. x-component of velocity and pressure fields
at the circular boundary is treated as a boundary condition to the network. As a
result, the training data set is consisting of a y-component of the velocity field,
eddy viscosity, and as a boundary condition x-component of velocity and pressure
information at the circular boundary for each algorithm corresponding to Spalart-
Allmaras and k-ω turbulence models.

Figure 4.3 Selected circular domain as a region of interest for PINN algorithm.
Also, it represents the control volume for force calculations

As training data, the y-component of the velocity field and eddy viscosity in the in-
terest domain on the time interval of (75.96, 79.96) with a time step of 0.04 is avail-
able in the scattered form of the time and spatial coordinates as illustrated in Figure
4.4 and 4.5. In another way, training data can be explained as (t, x, y, v, µT )N

n=1 where
n is nth training data point from 1 to N, v is the y-component of the velocity field,
µT is eddy viscosity at that point. For instance, v and µT at t = 76 are provided in

44



Figure 4.6 and 4.7 for the visualization. Similarly, the x-component of the velocity
field and pressure field data at the circular boundary is expressed as (t, x, y, u, p)M

m=1

where m is mth data point from 1 to M. Total points of circular boundary data, M,
is much smaller than the total data points of training data, N.

Figure 4.4 Eddy viscosity at the interest domain on the time interval of
(75.96,79.96) with time step of 0.04 is illustrated in the scattered form (from the

Spalart-Allmaras turbulence model).

Constructed PINN model architecture is presented in Figure 4.8. When the PINN
structure is examined, it can be observed that there are two main parts. In the first
part of the model, an uninformed neural network which has a feed-forward deep
neural network structure is mapping a function from (t, x, y) to (µT , u, v, p). Auto-
matic differentiation is applied to outputs of the uninformed neural network to feed
physics-informed part for underlying physical laws by governing equations. Resid-
uals of the governing equations in non-dimensional form, as formulated through
Equation 4.11-4.13, are implemented to PINN for regression of passive scalar con-
centration, velocity field, and pressure field.

e1 = ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ ∂p

∂x
− ( 1

Re
)(1 + µT

µ
)(∂2u

∂x
+ ∂2u

∂y
) (4.11)

e2 = ∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ ∂p

∂y
− ( 1

Re
)(1 + µT

µ
)(∂2v

∂x
+ ∂2v

∂y
) (4.12)

e3 = ∂u

∂x
+ ∂v

∂y
(4.13)

During the training, besides minimizing the mean square of the training data, norms

45



Figure 4.5 y-component of the velocity field at the interest domain on the time
interval of (75.96, 79.96) with time step of 0.04 is illustrated in the scattered form

(from the Spalart-Allmaras turbulence model)

of the equation residuals are minimized. Thus, physical laws underlying the problem
are used by the network as a constraint to penalize predictions of hidden quantities
whose training data are not available.

L = Ldata + Leqns + LBC (4.14)

In detail, the first loss term Ldata denotes the mean square error between training
data and network predictions. N is the number of training data points. In Figure
4.8, red arrows show outputs which have training data.

Ldata = 1
N

N∑
n=1

|µT data(tn, xn, yn) − µT pred(tn, xn, yn)|2

1
N

N∑
n=1

|vdata(tn, xn, yn) − vpred(tn, xn, yn)|2
(4.15)

LBC refers summation of mean square of errors of x-component velocity and pressure
predictions at the circular boundary. M is the number of points at the circular
boundary.

46



Figure 4.6 Turbulent dynamic viscosity at t = 70 on training domain is visualized
(from Spalart-Allmaras turbulence model).

Figure 4.7 y-component of the velocity field at t = 70 on training domain is
visualized (from Spalart-Allmaras Turbulence model).

LBC = 1
M

M∑
m=1

|udata(tm, xm, ym) − upred(tm, xm, ym)|2

+ |pdata(tm, xm, ym) − ppred(tm, xm, ym)|2
(4.16)

The last term of the loss function, Leqns, calculates the norm of the equation resid-
uals. In other words, Leqns is the mean square error between equation residuals
and zero since all the terms of equations are gathered on the left hand side of the

47



Figure 4.8 Physics informed neural network architecture

equations, it is aimed to minimize equation residuals through zero). The finite set
of residual points where equations are penalized can be at different numbers and lo-
cated differently from the training data set. The finite set of residuals is also known
as collocation points. In this study N and J are accepted as equal.

Leqns =
3∑

i=1

1
J

J∑
j=1

|ei(tj, xj, yj)|2 (4.17)

In the following section, a parametric study is presented for finding the best-fit
network parameters for the training. Besides, weight normalization is applied in
order to accelerate the optimizer. Accordingly, the weight vector is parameterized,
and thus decoupling is achieved between the vector’s length and direction. Weight
normalization is a method that is inspired by batch normalization. The reason why
batch normalization, which is widely used in deep learning, cannot be applied in
PINN is that network has a physics-based interface.

4.4 PINN Parametric Study

In this section, before applying the physics-informed neural network to the problem,
hyper-parameter tuning is studied to reach the best-performed network parameters
for the training. Tuned parameters are activation function, number of layers, num-
ber of nodes per layer, learning rate, and mini-batch size. A parametric study is
applied manually. While other parameters are kept constant, each network with a
different value of the relevant parameter within a range is trained by 5·104 iterations.
The parametric study is performed on the data coming from the Spalart-Allmaras
turbulence model and selected parameters are applied for both PINN algorithms.

48



4.4.1 Activation Function

Figure 4.9 MSE loss for different activation functions

In order to find the best fit activation function, swish, sigmoid, selu, elu, sin,
and tanh are implemented in the PINN training for 5 · 104 iterations. Mean square
error training loss results are presented in Figure 4.9. The frequently used sigmoid

function in feed-forward deep neural networks is performed worst in the PINN model.
It has not a spectacular effect since outcomes of the sigmoid change slightly as
approaches the input boundaries. That is why small gradients appear in those
regions and learning is stopped by the vanishing gradient problem. Since derivatives
are multiplied during the backpropagation and a very small gradient, i.e., near
zero, causes a zero result for the whole process. Thus, network parameter cannot
be updated. On the other hand, elu and selu as variants of the relu activation
function are performed poorly as well. Even though selu did not suffer from the
vanishing gradient problem, it has not ended up with successful PINN training.
In the literature, it is shown that one of the activation function requirements for
a well-trained PINN is smoothness. Since relu (Equation 3.12) and their variants
show non-smooth behavior, convergence is not observed [44]. The sin and tanh

are differentiable activation functions and as seen they perform better. The best-
performed function is the swish activation function which is another differentiable

49



one and implemented for full training in this study.

4.4.2 Number of layers and number of nodes

In order to find the best-performed network architecture, different networks from the
depth of 6 to 12 and the number of nodes per layer from 100 to 250 are implemented.
For each case, training is limited by 5.104 iterations and other hyper-parameters are
kept the same. Figure 4.10 shows that as the number of layers increases, learning
capacity is increasing in the case of any number of nodes per layer as well. Networks
with the same number of layers but having a higher number of nodes on them show
better learning performance. The effect of those parameters on the model prediction
shows consistent behavior with the training as seen from Table 4.1. As a result of L2
error comparison, 12 layers and 250 nodes per layer are chosen as best fit parameters
for the investigation of turbulent flow over a stationary airfoil.

(a) 100 node per layer (b) 150 node per layer

(c) 200 node per layer (d) 250 node per layer
Figure 4.10 MSE training loss comparison for number of nodes per hidden layer

optimization

50



Table 4.1 L2 error norm between model predictions and reference outputs for PINNs
in different depth and width

Nodes per layer 6 layer 7 layer 8 layer 9 layer 10 layer 12 layer
100 0.0708 0.0494 0.0375 0.0363 0.0332 0.034
150 0.0552 0.0478 0.0367 0.0349 0.0327 0.0292
200 0.0487 0.0356 0.0327 0.0298 0.0289 0.0299
250 0.0708 0.0494 0.0375 0.0363 0.0332 0.034

4.4.3 Learning Rate

For the PINN training, the Adam optimizer which is a variant of the stochastic
gradient descent algorithm is applied. Rather than a learning rate, all optimizer
parameters are kept on default parameters. For 4 different learning rate values
ranging from 10−2 to 10−5, PINN is performed with 5 ·104 iteration limited training.
Figure 4.11 presents loss function behaviours for each case. Training process is slow
at small learning rates as expected. At the beginning of training, minimization of
the loss function occurs most quickly with a learning rate of 10−2. However, it is
known that learning happens fast in the first stages of the training and then the rate
of change in learning becomes smaller. Completing training with a high learning
rate can cause a convergence problem. Additionally, 10−2 shows a faster learning
process but it has oscillatory behavior which points out that changes in the network
weights are high than they should be. The minimization of the loss function is
greater for a learning rate of 10−3. The learning rate of 10−3 shows a sharp learning
curve. As a result of the parametric study, the learning rate is accepted as 10−3 for
turbulent flow over a stationary airfoil problem.

4.4.4 Batch Size

As seen from Figure 4.12, learning process speeds up as mini-batch size increases.
Additionally, the loss function shows relatively less fluctuation in higher mini-batch
sizes. Besides the training performance, the model prediction accuracy for all cases
is compared as well. Table 4.2 shows L2 error between model outputs and reference
values. Accordingly, the error is highest when the mini-batch size is the smallest,
i.e., 512. Up to 8192, the error is decreasing and it reaches the lowest error at
8192. As a result of the training and prediction capabilities of networks in different
mini-batch sizes, 8192 is decided to be applied for full training of the problem.

51



Figure 4.11 MSE loss for different learning rates

Table 4.2 L2 error norm between model predictions and reference outputs for PINNs
in different mini-batch sizes

Batch Size 512 1024 2048 4096 8192
L2 norm 0.0364 0.0317 0.0305 0.028 0.0268

4.5 Results

Selected hyper-parameters according to parametric study and number of input sam-
ples are summarized in Table 4.3. This section represents PINN results for both
Spalart-Allmaras and k-w turbulence models after the training with 106 iterations.
The network is trained and tested on the HPC with an Intel Xeon Scalable Gold
6148 processor and a single Nvidia Tesla V100 (16GB, NVLink) GPU. Generally, in
deep learning, an epoch refers to one pass through the entire data set and is used
as a training metric. PINN differs from conventional deep learning techniques since
a physics-informed neural network deals with different data sets of different sizes
(i.e., available training data points and collocation points for equation residuals) at
the same time. That is why iteration is used as a training metric here rather than
epoch.

52



Figure 4.12 MSE loss for different mini-batch sizes

4.5.1 PINN Results

PINN Results of Spalart-Allmaras Turbulence Model

As seen from Figure 4.13, eddy viscosity (dynamic turbulent viscosity) is regressed
successfully, and absolute error between the reference values and model predictions
are on the order of 10−3. From the definition of eddy viscosity, it represents the
transport and dissipated energy of turbulence modeling therefore it is expected to
have higher values at vortexes. PINN algorithm accurately catches this dissipation.
Higher error occurs at backflow region because of the complex fluid motion, solving
Navier-Stokes equations is becoming challenging by the PINN algorithm. On the
other hand, since eddy viscosity data is available and it feeds to the network during
the training, it is straightforward to have accurate results for eddy viscosity. Simi-
larly, 4.14 shows that the y-component of the velocity field is regressed successfully
as well.

For a better understanding of the capability of the algorithm, the x-component of
the velocity and pressure fields are separately investigated in the same time frame
with the represented temperature field in Figure 4.13 over the same data points.
Figure 4.15-4.16 illustrates PINN regression on x component of the velocity and

53



Table 4.3 PINN Summary

Activation Function Swish
Batch size 8192

Learning rate 1e-3
Optimizer Adam

Training time (in iterations) 1 million
Number of Layers 12

Node number per layer 250
Number of data points 23422

Number of collocation points 23422
Number of total time frame 101

Number of time frame (train-test) 81-20

(a) (b)

(c)
Figure 4.13 Dynamic turbulent viscosity at t=77.6 a)reference field b)regressed

field by PINN c)absolute error

54



(a) (b)

(c)
Figure 4.14 y-component of the velocity field at t=77.6 a)reference field

b)regressed field by PINN c)absolute error. Maximum error is labelled by red dot.

pressure fields respectively. It is known that flow is characterized by the Reynolds
number of 50000 as explained in the numerical assessment Section 4.2. In this flow
regime, as seen from reference velocity field components 4.15b and 4.14b,algorithm
is capable of catching fluid separation from top of the airfoil. Besides, eddies of
different sizes at the wake of the airfoil are regressed accurately in terms of both
the velocity magnitude and size. At the inside of the eddies, flow is circulating so
some flow is in the opposite direction to the free stream. PINN algorithm performs
successfully at the reverse flow as well.

Asymmetric flow occurs when flow separation starts from the top of the airfoil.
Thus, the pressure distribution is changed and results in aerodynamic forces which
occur on the airfoil. Figure 4.16 shows good agreement between the PINN pressure
prediction and reference pressure field. Note that, only pressure at the circular
boundary is introduced to the PINN algorithm for the sake of a unique solution.

55



(a) (b)

(c)
Figure 4.15 x-component of the velocity field at t=77.6 a)reference field

b)regressed field by PINN c)absolute error. Maximum error is labelled by red dot.

Therefore, it is assumed that any information from pressure is not available to feed
the network rather than the boundary condition. Pressure is just extracted from the
approximate solution of Navier Stokes equations for incompressible flow by PINN.
If the presented absolute error of the pressure field in Figure 4.16 is compared with
absolute errors of the velocity field, it can be seen that the error for pressure over
the domain is similar to velocity field errors. Even though only the gradient of the
pressure is included in incompressible Navier-Stokes equations rather than a direct
pressure term, pressure regression performance is magnificently accurate.

For illustrative purposes of PINN algorithm performance, regression of velocity and
pressure fields on single time (t = 77.60) is provided above figures. At whole time
window of [75.96, 79.96], relative L2 errors for all output field on the interest domain
are provided in 4.17. As shown from the figure, algorithm prediction capability for
each output shows similar characteristics over the time windows. In other words,

56



(a) (b)

(c)
Figure 4.16 Pressure field at t=77.6 a)reference field b)regressed field by PINN

c)absolute error. Maximum error is labelled by red dot.

prediction of each output is less accurate at the beginning and end of the time
intervals. It show a kind of history effect there. Lack of data at just before the
start and just after the end time of the time windows affect predictive capability
imperfectly. Additionally, it is observed that higher error occurs at t > 79 since
approximating Navier-Stokes equations at that time is challenging by the PINN
algorithm due to the complex fluid motion.

PINN Results of k − ω Turbulence Model

Figure 4.18 shows relative L2 error of PINN predictions for k − ω turbulence model.
When results are compared with Spalart-Allmaras case which is presented in Figure
4.17, it can be seen that error is reduced for all the outputs. Especially error order
is reduced by ten-fold for u, p and c. When error characteristics is examined,
it is observed that high error at the beginning and end of the time window as
similar with Spalar-Allmaras case. However, in addition to tip points, error peak is

57



Figure 4.17 Relative L2 error of PINN algorithm for Spalart-Allmaras turbulence
model outputs

occured around t = 78. When fluid motion is examined at t = 78, separation from
tip of the airfoil is observed. PINN algorithm is suffered by prediction of outputs
at t = 78 due to the separation. As a result, although same pinn algorithm is
used regressed outputs for both turbulence models, PINN performance is different.
Accuracy is higher for the k − ω case. The reason behind is that during the training
eddy viscosity is fed to the network. Eddy viscosity is a variable shows differences
according to turbulence models. It shows that different type of training data in
terms of distribution and magnitude affects the learning capability and thus the
prediction accuracy.

4.5.2 Force Calculations

The x component of velocity and pressure fields are hidden quantities that are
extracted from PINN by training on eddy viscosity and y component of the velocity
field and underlying physical laws as a constraint for regression. Regressed fields are
used to calculate lift and drag forces on the airfoil. Aerodynamic forces are obtained
from both stress field integration method and control volume approach. Detailed
description of the derivation of these forces is provided in Section 2.1.2.

58



Figure 4.18 Relative L2 error of PINN algorithm for k − ω turbulence model ouputs

Since drag force is in parallel to the upstream velocity, it is calculated from the
integration of stress field in the x direction as shown in Equation 4.18. Similarly,
since the lift force is perpendicular to the upstream velocity, it is calculated from
the integration of stress field in the y direction as shown in Equation 4.19.

FD =
∫

(−pnx + 2 µ
∂u

∂x
nx + µ (∂v

∂x
+ ∂u

∂y
) ny) dA (4.18)

FL =
∫

(−pny + 2 µ
∂v

∂y
ny + µ (∂u

∂y
+ ∂v

∂x
) nx) dA (4.19)

As an alternative approach for aerodynamic force calculation, conservation of linear
momentum for a fixed control volume is indicated as below.

∑
F = d

dt
(
∫

CV
V ρ dV) +

∫
CS

V ρ(V · n) dA (4.20)

Equation 4.20 is a vector equation since all terms include the velocity vector V . ∑
F

is the vector sum of forces acting on the control volume. In order to calculate the
lift and drag forces acting on the airfoil in the control volume, x and y components

59



of Equation 4.20 should be written while considering pressure and viscous forces as
shown below.

FD = d

dt
(
∫

CV
u ρ dV) +

∫
CS

u ρ (unx + vny) dA

+
∫

CS
(pnx) dA −

∫
CS

[(µ 2∂u

∂x
nx) + (µ(∂u

∂y
+ ∂v

∂x
)ny)]dA

(4.21)

FL = d

dt
(
∫

CV
v ρ dV) +

∫
CS

v ρ (unx + vny) dA

+
∫

CS
(pny) dA −

∫
CS

[(µ 2∂v

∂y
ny) + (µ(∂u

∂y
+ ∂v

∂x
)nx)]dA

(4.22)

Force Calculation from PINN model for Spalart-Allmaras Turbulence Model
In order to compare the methods, both methods were applied on the numeric solu-
tion in COMSOL. As seen from Figure 4.19, both methods are in a good agreement
with each other for lift and drag force calculations. It is important to perform this
validation in order to show that the methods are implemented correctly. Viscous
forces are taken into consideration for aerodynamic force calculation via control
volume approach as seen from from last terms of Equations 4.21 - 4.22. In order to
see the effect of viscous terms at the boundary, they are discharged from equations
and validation study is repeated as presented in Figure 4.20. In both cases, the
viscous effect is so small therefore it can be neglected for computational efficiency to
avoid calculations of unnecessary gradients. Therefore, viscous terms are neglected
when aerodynamic forces are extracted from PINN predictions via control volume
approach.

Using the velocity and pressure field predictions obtained from the PINN approach,
lift and drag forces acting on the airfoil are calculated in two ways through the
stress integration and the control volume methods. Figure 4.21 shows drag force
calculation from the PINN approach. As shown in the figure, stress integration
method perfors much better than control volume approach. Beside the offset in the
amplitude, oscillatory behaviour of the drag force is partially caught by the control
volume approach. When the performances of each method is compared in terms
of mean relative absolute error, it is 4.97% for the stress integration method and
13.04% for the CV method. For both methods, at the very beginning (t=75.96) and
at the end (t=79.96) of the time window the relative absolute error is maximum,
about 26% and 36% for SI and CV methods respectively. The higher error there
can be explained by the lack of training data at t<75.96 and t>79.96.

60



(a) (b)

Figure 4.19 Aerodynamic force calculation by SI and CV methods on reference
data of a full cycle. CV approach includes viscous term at the boundary for a)drag

force b)lift force

(a) (b)

Figure 4.20 Aerodynamic force calculation by SI and CV methods on reference
data of a full cycle. CV approach does not include viscous term at the boundary

for a)drag force b)lift force

Figure 4.22 shows the lift force results from the PINN approach. There is no signifi-
cant difference between the accuracy of SI and CV methods. When the performance
of these methods are compared in terms of mean relative absolute error, we have
6.04% for the SI method and 4.97% for the CV method. In terms of mean relative
absolute error, CV performance is slightly better. As seen from the figure, initial
and final time frames are the highest error regions and CV method performs better.
Here, it can be said that the two methods show very close performances and good
at catching oscillatory behaviour in reasonable amplitudes.

61



(a) (b)

Figure 4.21 Drag force extraction from PINN model for Spalart-Allmaras
turbulence model a) method comparison b) corresponding relative absolute errors

(a) (b)

Figure 4.22 Lift force extraction from PINN model for Spalart-Allmaras turbulence
model a) method comparison b) corresponding relative absolute errors

Force Calculation from PINN model for k − ω Turbulence Model

Similarly to the Spalart-Allmaras case, force calculation from the PINN model is
done through both integration of the stress field over the airfoil and a control volume
around the airfoil. While applying the control volume approach, the viscous term is
neglected as well.

Figure 4.23 shows drag force prediction from regressed outputs. As shown in the
figure, the stress approach performs better than the control volume approach. The
mean relative absolute error for the SI method is 3.43% and 6.97% for the CV
method. SI accuracy is almost twice better. Moreover, Figure 4.24 presents the
lift force predictions. Lift force predictions with each method are better than the
drag force. Even though both methods perform similarly, stress approach accuracy
is slightly higher than the control volume. As seen from the relative absolute error

62



graph, the mean relative absolute error for the SI method is 2.96% and 4.05% for
the CV method.

On the other hand, it is possible to compare the aerodynamic force predictions
of PINN models for each turbulence model. Overall, force prediction accuracy is
higher with the PINN model for k − ω turbulence model outputs. Since outputs are
predicted more accurately in k − ω case, it is expected to have higher accuracy at
force calculation as well.

(a) (b)

Figure 4.23 Drag force extraction from PINN model for k − ω turbulence model a)
method comparison b) corresponding relative absolute errors

(a) (b)

Figure 4.24 Lift force extraction from PINN model for k − ω turbulence model a)
method comparison b) corresponding relative absolute errors

63



Chapter 5

Conclusion and Future Work

5.1 Conclusion

Obtaining flow data is one of the most difficult problems in fluid dynamics. Often
large and detailed datasets are needed to analyze the flow and calculate forces ac-
curately. For many years, conventional numerical and experimental methods have
been used to better understand fluid dynamics. Numerically, the partial differential
equation-based Navier Stokes equation as a governing equation of fluid dynamics is
solved under some assumptions. Specifically, solving the Navier Stokes equations
for turbulent flow is challenging due to lack of mathematical theory, computational
limitations, and high number of degrees of freedom. On the other hand, obtaining
data experimentally is also difficult due to experimental limitations, i.e., uncertainty
of experimental equipment. Generally, the data obtained from experiments are in-
sufficient, sparse, and noisy. Reconstruction of sparse data or missing data either
from experiments or numerical studies becomes a crucial problem. In this thesis,
in order to tackle this problem, physics-informed neural network is applied as an
alternative approach to the conventional methods [16]. For this purpose, residuals of
the governing equations as physical constraints are implemented to the loss function
of a neural network for the training.

The applicability of the PINN for solving Navier-Stokes equations for laminar flow
over a cylinder is demonstrated. Firstly, a 2D time-dependent CFD study for the
problem is conducted by COMSOL software. The sparse data set obtained from a
numerical solution for the PINN approach includes temperature field at the region
of interest and velocity data at the inlet as a boundary condition. In order to
reconstruct the velocity field and pressure fields on the domain, residuals of the
transport equation, Navier-Stokes equation, and continuity equation are formed as

64



an additional loss term in the loss function. As a result, velocity field and pressure
fields are obtained with high accuracy via the PINN.

Lift and drag forces acting on the cylinder are calculated from PINN predictions.
Two different methods are applied to calculate aerodynamic forces. The first method
relies on the integration of the stress field over the cylinder. Whilst the second one is
the control volume approach applied for the conservation of momentum. Shortly, SI
and CV respectively. While SI is a differentiation-based method, CV is an integral-
based method. Necessary derivatives are calculated by automatic differentiation of
Tensor Flow. Performances of these methods are similar. When drag force prediction
is examined, it can be said that oscillation of the force is detected but there is an
offset in the amplitude. On the other hand, SI and CV methods show similar
accuracy for lift force prediction. Lift force prediction is better than the drag force.

Subsequently, the PINN approach is applied for turbulent flow over a stationary
NACA0018. A time-dependent CFD study is conducted on 2-Dimensional domain.
Two different turbulent models such as Spalart-Allmaras and k − ω are used. The
sparse data set for the PINN obtained from numerical study includes eddy viscosity
which is used to model turbulence and the y-component of the velocity field at
the circular domain as a region of interest and boundary condition at the circular
boundary. Navier Stokes and continuity equations are solved by PINN and as a
result, x-component of the velocity and pressure fields are obtained. Results show
that PINN for k − ω turbulent flow is better at the reconstruction of the data. In
other words, the model prediction of PINN for k − ω model is more accurate than
PINN for the Spalart-Allmaras model. One of the biggest impacts is eddy viscosity
data. It can be stated that eddy viscosity data of k − ω model has more useful
information than the Spalart-Almaras model.

In similar with the cylinder problem, aerodynamic forces acting on the airfoil are
calculated by both SI and CV methods. Results of lift force calculation of PINN
for Spalart-Allmaras model reveal that SI method’s accuracy is almost three times
higher than CV method’s. For drag force calculation, the CV method is better
than the SI method. On the contrary, the result of the drag force calculation of
PINN for k − ω model shows that the SI method’s error is two times more than
the error of CV method. For the lift force prediction, the error for the SI method
is slightly less than CV method. Overall, the aerodynamic force calculation of the
PINN approach for k − ω is more accurate than the Spalart-Allmaras model as
summarized in Table 5.1. In regard to force calculation strategies, it can be said
that the SI method is preferable considering less error production.

65



Table 5.1 Force calculation summary that provides the relative mean absolute error
of stress integration and control volume methods on drag and lift force calculations.

Stress Integration Control Volume
FL FD FL FD

Spalart-Allmaras 6.04% 4.97% 4.97% 13.04%
k-ω 2.96% 3.43% 4.05% 6.97%

5.2 Future Work

Following studies can be conducted in the future:

• Artifical noise can be added to the training data which is obtained numerical
study. Thus, PINN model capability can be observed on noisy data.

• PINN approach can be applied on 3D laminar flow to understand how sus-
tainable PINN convergence.

• In order to improve the PINN training, weighted loss algorithm which arranges
weights of loss terms during the training can be implemented.

• Problem with a rotating domain rather than a stationary domain can be se-
lected. For instance, rotating airfoil can be conducted for dynamic stall pre-
diction by the PINN.

• Effect of grid spacing on the sensitivity of PINN can be studied.

66



BIBLIOGRAPHY

[1] J. Bertin and M. Smith, “Aerodynamics for engineers—second edition,” Aero-
nautical Journal, vol. 259, pp. 19–99.

[2] J. Anderson, EBOOK: Fundamentals of Aerodynamics (SI units). McGraw Hill,
2011.

[3] Y. Pinchover and J. Rubinstein, Numerical methods, p. 309–336. Cambridge
University Press, 2005.

[4] C. Beck, M. Hutzenthaler, A. Jentzen, and B. Kuckuck, “An overview on deep
learning-based approximation methods for partial differential equations,” 2020.

[5] C. Yang, X. Yang, and X. Xiao, “Data-driven projection method in fluid simu-
lation,” Computer Animation and Virtual Worlds, vol. 27, no. 3-4, pp. 415–424,
2016.

[6] W. Edeling, P. Cinnella, and R. Dwight, “Predictive rans simulations
via bayesian model-scenario averaging,” Journal of Computational Physics,
vol. 275, pp. 65–91, 2014.

[7] W. Edeling, P. Cinnella, R. Dwight, and H. Bijl, “Bayesian estimates of param-
eter variability in the k-e turbulence model,” Journal of Computational Physics,
vol. 258, no. February, pp. 73–94, 2014. Available online 23-10-2013.

[8] B. D. Tracey, K. Duraisamy, and J. J. Alonso, A Machine Learning Strategy to
Assist Turbulence Model Development.

[9] S. Bhatnagar, Y. Afshar, S. Pan, K. Duraisamy, and S. Kaushik, “Prediction of
aerodynamic flow fields using convolutional neural networks,” Computational
Mechanics, vol. 64, pp. 525–545, jun 2019.

[10] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Data-driven discovery
of partial differential equations,” 2016.

[11] A. Pal, “Deep learning emulation of subgrid-scale processes in turbulent shear
flows,” Geophysical Research Letters, vol. 47, no. 12, p. e2020GL087005, 2020.

[12] Y. Zhu and N. Zabaras, “Bayesian deep convolutional encoder–decoder net-
works for surrogate modeling and uncertainty quantification,” J. Comput.
Phys., vol. 366, p. 415–447, aug 2018.

[13] Z. Zhang, X.-d. Song, S.-r. Ye, Y.-w. Wang, C.-g. Huang, Y.-r. An, and Y.-
s. Chen, “Application of deep learning method to reynolds stress models of
channel flow based on reduced-order modeling of dns data,” Journal of Hydro-
dynamics, vol. 31, no. 1, p. 58–65, 2018.

[14] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics informed deep learn-
ing (part i): Data-driven solutions of nonlinear partial differential equations,”
2017.

67



[15] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics informed deep learn-
ing (part ii): Data-driven discovery of nonlinear partial differential equations,”
2017.

[16] M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechanics: A
navier-stokes informed deep learning framework for assimilating flow visualiza-
tion data,” 2018.

[17] I. Lagaris, A. Likas, and D. Fotiadis, “Artificial neural networks for solving
ordinary and partial differential equations,” IEEE Transactions on Neural Net-
works, vol. 9, no. 5, pp. 987–1000, 1998.

[18] X. Jin, S. Cai, H. Li, and G. E. Karniadakis, “NSFnets (navier-stokes flow
nets): Physics-informed neural networks for the incompressible navier-stokes
equations,” Journal of Computational Physics, vol. 426, p. 109951, feb 2021.

[19] H. Xu and Y. Zhang, Weiand Wang, “Explore missing flow dynamics by physics-
informed deep learning: The parameterized governing systems,” Physics of Flu-
ids, vol. 33, no. 9, p. 095116, 2021.

[20] S. Wang, Y. Teng, and P. Perdikaris, “Understanding and mitigating gradient
pathologies in physics-informed neural networks,” 2020.

[21] T. P. Miyanawala and R. K. Jaiman, “An efficient deep learning technique
for the navier-stokes equations: Application to unsteady wake flow dynamics,”
2017.

[22] Y. Zhang, W. J. Sung, and D. N. Mavris, Application of Convolutional Neural
Network to Predict Airfoil Lift Coefficient.

[23] N. Baker, F. Alexander, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm,
M. Parashar, A. Patra, J. Sethian, S. Wild, K. Willcox, and S. Lee, “Workshop
report on basic research needs for scientific machine learning: Core technologies
for artificial intelligence,”

[24] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang,
“Physics-informed machine learning,” Nature Reviews Physics, vol. 3, no. 6,
p. 422–440, 2021.

[25] J. D. Anderson Jr and J. D. Anderson, A history of aerodynamics: and its
impact on flying machines. No. 8, Cambridge university press, 1998.

[26] F. White, Fluid Mechanics. McGraw-Hill series in mechanical engineering,
McGraw Hill, 2011.

[27] P. M. Gerhart, A. L. Gerhart, and J. I. Hochstein, Munson, Young and Okiishi’s
fundamentals of fluid mechanics. John Wiley & Sons, 2016.

[28] F. Emmert-Streib, Z. Yang, H. Feng, S. Tripathi, and M. Dehmer, “An intro-
ductory review of deep learning for prediction models with big data,” Frontiers
in Artificial Intelligence, vol. 3, 2020.

[29] A. R. Webb and K. D. Copsey, Statistical pattern recognition. Wiley, 2011.
68



[30] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural net-
works,” towards data science, vol. 6, no. 12, pp. 310–316, 2017.

[31] C. Banerjee, T. Mukherjee, and E. Pasiliao, “An empirical study on generaliza-
tions of the relu activation function,” in Proceedings of the 2019 ACM Southeast
Conference, ACM SE ’19, (New York, NY, USA), p. 164–167, Association for
Computing Machinery, 2019.

[32] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436–444, 2015.

[33] F. Chollet, Deep learning with python. Manning, 2017.

[34] P. J. Bickel and K. A. Doksum, Mathematical statistics: basic ideas and selected
topics, volumes I-II package. Chapman and Hall/CRC, 2015.

[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014.

[37] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, no. 6088, p. 533–536, 1986.

[38] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[39] “https://www.tensorflow.org/,” 2015.

[40] “https://pytorch.org/,” 2016.

[41] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[42] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations,” Journal of Computational
Physics, vol. 378, pp. 686–707, 2019.

[43] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparam-
eterization to accelerate training of deep neural networks,” in Proceedings of
the 30th International Conference on Neural Information Processing Systems,
NIPS’16, (Red Hook, NY, USA), p. 901–909, Curran Associates Inc., 2016.

[44] S. Mishra and R. Molinaro, “Estimates on the generalization error of physics
informed neural networks (pinns) for approximating pdes,” 2020.

[45] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,”
2017.

[46] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units (elus),” 2015.

69

http://www.deeplearningbook.org
http://www.deeplearningbook.org


[47] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing
neural networks,” 2017.

[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014.

[49] D. Wilson and T. R. Martinez, “The general inefficiency of batch training for
gradient descent learning,” Neural Networks, vol. 16, no. 10, pp. 1429–1451,
2003.

[50] C. P. Jackson, “A finite-element study of the onset of vortex shedding in flow
past variously shaped bodies,” Journal of Fluid Mechanics, vol. 182, p. 23–45,
1987.

[51] S. R. Allmaras and F. T. Johnson, “Modifications and clarifications for the
implementation of the spalart-allmaras turbulence model,” in Seventh inter-
national conference on computational fluid dynamics (ICCFD7), vol. 1902,
ICCFD7-1902 Big Island, Hawaii, 2012.

[52] D. C. Wilcox et al., Turbulence modeling for CFD, vol. 2. DCW industries La
Canada, CA, 1998.

70


	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Literature Review
	Motivation
	Thesis Outline

	Background
	Aerodynamics
	Fundamentals
	Aerodynamic Forces
	Airfoil Characteristics and Aerodynamics

	Physics Informed Neural Networks

	Laminar Flow Over a Cylinder
	Problem Definition
	Numerical Assessment
	Geometry and Computational Domain
	Governing Equations
	Mesh
	Solver Configuration

	PINN Model
	PINN Parametric Study
	Activation Function
	Number of layers and number of nodes
	Learning Rate
	Batch Size

	Results
	PINN Results
	Force Calculation


	Turbulent Flow Investigation via PINN
	Problem Definition
	Numerical Assessment
	Geometry and Computational Domain
	Mesh Configuration
	Turbulent Model

	PINN Model
	PINN Parametric Study
	Activation Function
	Number of layers and number of nodes
	Learning Rate
	Batch Size

	Results
	PINN Results
	Force Calculations


	Conclusion and Future Work
	Conclusion
	Future Work

	BIBLIOGRAPHY

