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Abstract

Vision-based navigation is one of the most attractive research subjects on mo-
bile robot applications. An image-based navigation strategy was developed for
a collaborative UAV-UGV system in this thesis. The work focuses primarily on
terrain depth analysis, terrain image stitching, path planning, and motion control
of the robot system. Novel algorithms for path planning and image stitching were
developed as part of the thesis. In the terrain depth analysis, both stereo and
structure from motion problems were tackled and their comparative advantages
were highlighted. In addition, the performance of the onboard vision system used
on UAV was evaluated using the system identification techniques to check its suit-
ability for UAV motion control. In developing the new image stitching algorithm,
inertial data was also used in addition to image data, and more accurate results
were obtained than pure vision-based techniques. The developed path planning
algorithm provided faster and more accurate results than the well-known A* and
PRM, two widely used path planning algorithms. Simulation and experimental
results obtained from the implementation of the algorithms show the effectiveness
of the developed techniques for the collaborative navigation of heterogeneous robot
systems.
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Tanımlama

Özet

Vizyona dayalı navigasyon, mobil robot uygulamaları konusunda en ilgi çekici
araştırma konularından biridir. Bu tezde işbirliğine dayalı bir İHA-UGV sistemi
için görüntü tabanlı bir navigasyon stratejisi geliştirilmiştir. Çalışma öncelikle
arazi derinliği analizi, arazi görüntüsü dikişi, yol planlaması ve robot sisteminin
hareket kontrolüne odaklanmaktadır. Tez kapsamında yol planlaması ve görüntü
dikişi için yeni algoritmalar geliştirilmiştir. Arazi derinliği analizinde hem stereo
hem de hareket problemlerinden kaynaklanan yapı ele alınmış ve karşılaştırmalı
avantajları vurgulanmıştır. Ek olarak, İHA’da kullanılan yerleşik görüş sistemi-
nin performansı, İHA hareket kontrolüne uygunluğunu kontrol etmek için sistem
tanımlama teknikleri kullanılarak değerlendirilmiştir. Yeni görüntü dikişi algorit-
masının geliştirilmesinde, görüntü verilerine ek olarak eylemsizlik verileri de kul-
lanılmış ve saf görüşe dayalı tekniklere göre daha doğru sonuçlar elde edilmiştir.
Geliştirilen yol planlama algoritması, yaygın olarak kullanılan iki yol planlama
algoritması olan iyi bilinen A* ve PRM’den daha hızlı ve daha doğru sonuçlar
vermiştir. Algoritmaların uygulanmasından elde edilen simülasyon ve deneysel
sonuçlar, heterojen robot sistemlerinin işbirliğine dayalı navigasyonu için geliştirilen
tekniklerin etkinliğini göstermektedir.



Acknowledgments

I am deeply grateful to my thesis advisor, Professor Dr. Mustafa Unel, for his
unwavering support and guidance throughout my Master’s studies at Sabancı Uni-
versity. His unique perspective, dedication, and passion for research have been a
constant source of inspiration for me. I couldn’t have achieved this without his
invaluable support and motivation. I have gained a wealth of knowledge and ex-
perience from my advisor not only in the subjects he taught but also in various
other areas outside the classroom.

I would like to extend my sincerest appreciation to my thesis jurors, Associate
Professor Dr. Kemalettin Erbatur and Associate Professor Dr. Huseyin Uvet, for
their invaluable feedback and for taking the time to review my M.Sc. thesis. Also
special thanks and regards to Associate Professor Kemalettin Erbatur for his early
guidance at the beginning of my Master’s journey, particularly for the valuable
insights and skills he imparted on me in the Autonomous Mobile Robotics course.

I want to send my special thanks to Assist. Prof. Dr. Melih Turkseven because
of his guidance, trust, and patience throughout my assistantship journey. I am
grateful for his insights into the challenges and rewards of being an academic. His
mentorship has been invaluable.

Special thanks to Ilker Sevgen, Zafer Comlekci, Onur Cirakoglu, Yavuz Toksoz
and intern Berksan because of their incredible help, patience and labour during
my experiments. Without their hands behind me, I would encounter excessive
delays in the completion of my preparations.

I send my sincere thanks to my colleagues in Control, Vision, and Robotics (CVR)
group and Lab 1093 members. I never imagined that I would have such a research
group during my master’s journey. My valuable friends made my journey easier
thanks to their friendships. All these names will remain my friends for the rest of
my life.

Finally, I would like to thank my extended family but especially my dear parents,
and grandpa for all their love and endless support throughout my life.

v



To my family, who have always believed in me and
supported me in my academic pursuits, may this thesis
serve as inspiration for the next generation to chase

their own dreams and achieve greatness. . .

vi



Contents

Abstract iii
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Chapter 1

Introduction

The level of autonomy and cooperation of robots is advancing daily. The commu-

nication capabilities of homogeneous and heterogeneous robots make the majority

of missions simpler and more precise. To comprehend the relationships between

these processes, it is necessary to have prior knowledge of this topic’s fundamental

steps.

For autonomous missions, the robot must first know where it is, where it needs

to go, and how to get there. The responses to these questions are separated

based on whether the environment was previously known (i.e., mapped case) or

unknown (i.e., unmapped case). After this separation, the robot perceives its envi-

ronment (perception), localizes itself within this environment (localization), plans

its path to avoid dynamic and static obstacles, and then executes the movement.

All of these actions are referred to as navigation. Therefore, navigation includes

algorithms for perception and motion estimation, as well as path planning and

optimization, to connect the start point to the goal point by having a model of

the environment, perceiving and analyzing the environment to determine its posi-

tion/situation within the environment, and planning and executing the movement.

Localization is frequently performed using GPS, but because GPS has an error

margin of up to 3 meters, which affects the sensitivity of autonomous vehicles, it

1



Introduction 2

is preferable to use optical and sonar sensors in addition to GPS. After localiza-

tion, the robot’s perception of its environment becomes an important issue. In

environmental perception, subjects and methods are again subdivided based on

whether the environment’s objects are static or dynamic. In the case of dynamic

obstacles, robots can either wait until the dynamic object leaves the camera’s field

of view, which is the simpler option or select a different route by analyzing the

past and present movements of the dynamic obstacle and estimating its future

location, which is more difficult. Especially considering that this second case is

significantly more demanding in terms of processing load and that it is assumed

that the dynamic objects used in the case are constantly moving at a constant

speed and orbit, it produces results that fall far short of the desired performance

goals. When it comes to path planning, the results depend directly on whether

the environment is known beforehand or not, and if it is known, what type of map

is utilized (topographic, 3D, or 2D). A trajectory is planned using probabilistic or

deterministic algorithms such as RRT*, and A*, after defining the desired point

and detecting obstacles on the surface of maps based on prior knowledge. Espe-

cially in 2D maps where the depth is unknown, where segmentation of the map’s

structures is performed, the path drawn for the robot may not be suitable. Conse-

quently, Simultaneous Localization and Mapping steps, which are frequently used

in unmapped cases to reconstruct 3D maps, are increasingly preferred, especially

in the past decade. All of these processes are fundamental to the autonomous

navigation of mobile robots. For instance, detailed, high-resolution maps that

were previously known cannot be used in large-scale outdoor applications because

they consume a great deal of memory and may become inoperable as a result of

environmental changes such as natural disasters.

Against all of these fundamental steps, since the majority of these conditions are

not provided in the majority of real-world applications, the robots’ capabilities be-

come excessively constrained or their performance suffers. In addition, robots that

utilize GPS for localization may become impractical in GPS-denied environments,

such as subterranean obstacles, or in cases where the signal is weak. Recent stud-

ies have emphasized the importance of increasing productivity by communicating
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and cooperating with more than one robot (robot-robot communication) in order

to complete tasks and expand capabilities. In autonomous navigation and data

collection steps, flying robots (UAV) (commonly referred to as flying eye - bird

eye) establish heterogeneous communications with the ground or water vehicles.

In this thesis, it is examined a case intended to deploy an unmanned aerial vehicle

(UAV) and ground vehicles. The primary objective is to send the ground vehicle

to the desired location in various environments while processing the map images

from the air vehicle. The fact that the map is be obtained mere seconds before the

mission permits map planning and segmentation on the current map. This step

differs from previously known maps in this regard. Also, since only the map of

the desired area is stored in memory, processing time and system performance are

anticipated to increase. In addition, since the camera that views the map is not

fixed, it is utilized image stitching techniques by capturing multiple overlapping

images in order to extend the map as needed.

On the other hand, as stated in the preceding paragraph, segmentation and depth

information are also crucial for analyzing uncharted terrain. This situation is

most problematic on 2D maps. Therefore, 3D topographic maps are preferred

in the majority of recent studies. There are numerous ways to create a 3D map

of the environment. However, the Lidar sensor is predominantly used in SLAM

methods and in situations where it is impossible to take images from above, such

as underground. In recent years, various depth recognition techniques and image-

based 3D modeling have also gained popularity for reconstructing maps.

The developed system consists of various subsystems, each of which has its own

methods for achieving results. When it is examined the current state of this

concept, it is observed that there are numerous studies on UAV and UGV col-

laboration, but these studies do not completely cover the subsystems mentioned

above in terms of the ideas and methods breaking apart. However, each subsystem

can be viewed as separate and distinct topic. Therefore, it is separated the arti-

cles according to the sub-systems, such as self-localization and mapping, SLAM,
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stitching techniques, and path planning in the state of the art to cover the most

recent advancements in the related fields.

Last but not least, this type of hybrid system appears suitable for use in areas

such as SaR missions, civilian delivery, and hazard site autonomy projects includ-

ing vehicle management on construction sites. Nevertheless, if it is considered

the DARPA’s projects beyond 2020 and the work done in the space industry, it

is possible to conclude that such hybrid autonomous systems will be more valu-

able to the defense and space industries in the next decade. Particularly in the

space industry, since it is not possible to determine depth from satellites, nor is

it possible to control a robot from the earth due to radio wave delays of 5 to 20

minutes along the entire path (i.e., impulse signal transfer from World to Mars

takes approximately 3.5 minutes, an image transfer from Mars to Earth takes at

around 20 minutes).

1.1 Motivation

Sending a UGV autonomously from a random location to the desired location in

unmapped, rough, and GPS-denied environments by selecting the optimal path

without going through a pit and avoiding both static and dynamic obstacles is

an attractive and promising research problem. Utilizing a UAV to solve this issue

offers numerous benefits, particularly in terms of mapping the environment. With

the cameras they carry, UAVs are very useful for analyzing structures that cannot

be seen from the perspective of a UGV camera. In addition, the depth reconstruc-

tion, image segmentation, and stitching techniques employed in UAV-captured

terrain images increase the likelihood of constructing a safer path in expansive

working areas. Each of these steps necessitates further research. According to

the literature review conducted, no study combining these three research topics

to solve the vision-based navigation problem for robot systems could be found.

This thesis was motivated primarily by the potential innovations and promising
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novel approaches that the use of these techniques together will bring to the topic

of heterogeneous robot collaboration.

1.2 Problem Formulation

Path planning is one of the most crucial issues in mobile robot applications. De-

spite the fact that many algorithms have been developed to solve the problem

with high efficiency over the past few decades, computer vision, machine learn-

ing, and deep learning techniques have allowed the algorithms to reach a higher

level. However, the topic is still open to research because even the best-known

probabilistic and deterministic algorithms do not produce exact results under all

circumstances.

When examining autonomous applications, Dijkstra and A* from deterministic

methods, and PRM and RRT* from probabilistic methods, have been the most

popular algorithms since the beginning of the 21st century. However, even these

algorithms cannot guarantee that they provide the correct route when the terrain’s

depth is unknown. Since these algorithms operate on the occupancy grid of the

map, which is the binary representation of the terrain image, depth is ignored.

Due to insufficient terrain analysis, robots cannot eliminate the risk of colliding

with hills or falling into a chasm that is not visible on a single terrain image.

Therefore, particularly in the last decade, it has developed several image-based

path planning algorithms that use topographic maps (2.5D maps) to solve the

unknown depth problem, or the depth reconstruction techniques have begun to be

used to determine the next surface step of the robot.

The technique of stereo imaginary depth reconstruction, which is one of the pri-

mary techniques followed by the developed path planning algorithm, should not be

used frequently for global path planning. Because the technique identifies which

obstacle in the image is closest to the camera, which is typically used for local

path planning to avoid dynamic and static obstacles but does not provide a global
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path. Furthermore, it is not possible to use it alone because there are more robust

algorithms and systems that perform this task more effectively.

On the other hand, since the proposed path planning algorithm identifies the path

on an image, image-stitching techniques are required to expand the scanned area.

Despite the fact that several feature-based and direct image stitching techniques

exist in the literature, the techniques require large overlapping regions and a sig-

nificant number of pixel similarities between image pairs, and their outputs are

subject to certain constraints.

In addition, vision-based UAV control, which is a part of the thesis, is an attractive

problem because the UAV has a fairly complex structure to control, and there are

numerous linear and nonlinear control approaches in the literature to solve this

problem. Managing the position control of a UAV using only an onboard sensing

system and no external motion tracker remains a significant challenge.

This thesis aims to drive a UGV over the shortest distance possible in an un-

explored rugged terrain with the assistance of a UAV by avoiding topographical

undulations and static and dynamic obstacles, as well as developing novel tech-

niques for the aforementioned problems. To achieve this objective, it is necessary

to review the literature on UAV-UGV collaborative systems, vision-based naviga-

tion in the field, and UAV and UGV control techniques and analysis applicable

to the creation of the map and its interpretation. This dissertation develops and

presents novel techniques, particularly path planning and image stitching, as a

result of the conducted experiments.
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1.3 Contributions

The thesis’s contributions can be summarized as follows:

• A novel image-based path planning algorithm is proposed in which the path

between automatically detected initial and desired points is estimated using surface

depth and terrain image features.

• The stereo depth reconstruction is used in the proposed path planning algorithm

to compute a global path that avoids negative and positive obstacles.

• Performances of Convolutional Neural Networks and different hand-crafted feature-

based approaches for stereo depth reconstruction techniques are compared using

machine learning classifiers.

• Comparative analyses of the performance of stereo depth reconstruction and

structure from motion methods for terrain depth reconstruction are performed.

• Using an onboard vision system, quadrotor parameters are estimated, and it is

demonstrated that the onboard vision system can be used for UAV motion control.

• A novel technique for image stitching utilizing UAV-IMU data has been devel-

oped.

1.4 Outline

The structure of the thesis is as follows:

In Section 2, the literature review conducted on UAV-UGV collaborative systems

is presented. In addition to UGV classification and modeling, this section dis-

cusses linear and nonlinear UAV control strategies. In addition to image stitching

techniques, the state of the art is also reported for mapping methods.

In Section 3, titled ”Terrain Analysis and Topographic Map Building for Hetero-

geneous Robot Systems,” the effects of various machine learning classifiers and
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CNN method on stereo depth reconstruction technique are discussed, and struc-

ture from motion technique is explained after giving explicit camera calibration

steps. In addition, the proposed algorithm for image stitching is described at the

end of this section.

In section 4, the survey and experiments conducted regarding image-based mo-

tion and path planning are explained. The proposed algorithm for image-based

path planning is explained here. Moreover, system identification experiments of

a quadrotor using an onboard vision system are also conducted under this title.

The significance and performance of vision-based systems for UAV motion control

are then demonstrated.

The experimental setups and actual and simulated experiment environments are

described in section 5. The section concludes with a discussion of the obtained

image-based path planning results.

The thesis concludes with some concluding remarks and possible future directions

in section 6.



Chapter 2

Literature Review

2.1 Heterogeneous Robot Collaboration

Multi-robot systems improve not only the system’s capacity to solve the target

problem in less time and with less energy waste but also its adaptability and re-

siliency when performing complex tasks. Multi-robot collaborative systems may

consist of robots of the same type, referred to as homogeneous robot collaboration,

or robots of different types, such as unmanned aerial vehicles (UAV), unmanned

ground vehicles (UGV), and unmanned underwater vehicles (UUV), referred to as

heterogeneous robot systems. These systems are classified as centralized or decen-

tralized according to their coordination strategies. In centralized systems, a leader

robot or observer controls a group of robots, which act as a unit. In decentralized

systems, robots of the same rank share the sub-branches of a fundamental task,

and each robot strives to complete its assigned task autonomously. Using onboard

sensors or global tracking systems, each robot avoids collisions as it progresses

through the process.

In the literature, numerous heterogeneous and homogeneous multi-robot naviga-

tion systems are described. When solving a problem, these systems typically follow

the steps of task decomposition, formation distribution, perception and control,

9
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and navigation. Since the very first day mobile robots were discussed, the navi-

gation issue has remained of the utmost significance. Due to the development of

intelligent control and perception methods, unmanned aerial vehicles have been

utilized more frequently and successfully in mapping and navigation issues over

the past several decades.

2.1.1 UAV-UGV Collaboration

Literature reviews demonstrate that UAV-UGV collaborative systems are capable

of performing a variety of missions, including intelligent surveillance and reconnais-

sance (ISR), autonomous localization/mapping, and navigation missions. During

these missions, various UAVs, such as fixed wing, rotary wing, and hybrid UAVs,

and UGVs, such as differential drive, holonomic, nonholonomic, steering, or tank

drive ground vehicles, may be utilized. The type of UAV has a significant impact

on the performance of mapping and aerial surveillance when, depending on the

surface structure, the type of UGV affects the success rate and efficiency. For the

experimental setups of the thesis, a skid-steering wheeled UGV and a rotary-wing

quadrotor are chosen.

Figure 2.1: UAV Types and Specifications

In the paper [1], the UAV used as part of a cooperative system serves as both

a flying sensor and a tether attachment device. A tether connects two robots,

allowing the UAV to anchor the tether to a structure located on a steep terrain
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that is inaccessible to UGVs. Thus, improving the UGV’s poor traversability by

not only providing a broader range of scanning and mapping from the air, but

also by allowing the UGV to climb steep terrains via tether winding. Moreover,

the authors present a framework for autonomous collaborative navigation and

tether attachment in an unknown environment. The UAV uses visual-inertial

navigation with 3D voxel mapping and planning for obstacle avoidance where

the voxel mapping means the division of the surface into small cubes, with each

cube taking on a different color based on its height. Furthermore, this article

compares the pros and cons of possible methods for tether anchoring from multiple

perspectives. In addition, the entire system consists only of UGVs and UAVs; there

is no external central computer. The UGV operates ROS, which is linked to the

UAV client. For localization, both robots use dead reckoning based on odometry

and IMU data. The UAV’s onboard computer receives voxel data from the lidar

sensor (or a similar sensor such as Time-of-Flight (ToF) sensor) and converts it

into a grid map. Using these grids and depth data, the path planning algorithm

then determines the optimal route for detecting obstacles and cliffs by locating

the optimal path. As is common knowledge, the aerial vehicle has a mission other

than observing the map and locating a suitable obstacle to attach the hook. In

order to complete the specific mission, UAV navigation is of utmost importance.

Nevertheless, the detection algorithm also employs simple steps. Initially, the

UAV takes off and hovers at a height of one meter before using a ToF sensor

and camera to detect surfaces and depths. After detecting the environment, it

chooses an obstacle that remains on a higher surface and circles around it. After

completing the trajectory, the system searches for a suitable landing area using

grids generated during image processing. Following these trajectory and detection

processes, only the onboard tow is active, and the UGV is climbing the cliff. In

order to increase the likelihood of successful anchoring, an experiment is conducted

to evaluate the anchoring strategy. An autonomous mission experiment in the

field with an obstacle and a cliff that is representatively constructed in indoor and

more realistic outdoor environments demonstrates the viability and capability of

the proposed system.
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The papers that discuss collaborative mapping and navigation efforts employ par-

allel techniques and comparable hardware. Due to the use of a blimp as an aerial

viewing robot, the research presented in this paper [2] is significantly distinct from

the majority of projects with a similar objective and more suitable for long-term

missions. In addition, since the lidar sensor, stereo camera, and wide-angle cam-

era are all utilized concurrently, the collected data and resulting maps are more

precise, and errors caused by incorrect depth information during map planning

are minimized. The authors discuss the inefficiencies of indoor mapping and nav-

igation techniques at the outset of the paper. They advocate for the possibility of

developing a novel system that can address these issues and improve efficiencies.

They propose a system that designs a UAV-UGV team consisting of two custom-

built mobile robots. The UAV serves as an external eye for the UGV, observing

the scene from an inaccessible vantage point. Continuous estimation of the UAV’s

relative position allows it to maintain a fixed position relative to the UGV. The

development of this autonomous navigation system hinges on the localization of

both UAVs and UGVs, the mapping of the surrounding environment, and effi-

cient path planning using multiple sensors. Vision techniques provide the relative

positioning of the aerial and ground vehicle to handle the lack of GPS. These

robots can move in tandem because of a marker placed beneath the blimp and a

wide-angle camera mounted on the ground vehicle and pointing perpendicularly

upward. In addition, both robots utilize IMU sensors for individual localization,

and UAV and UGV communicates with each other via the wireless network and

onboard raspberry computers. The central computer on UGV is primarily used to

run SLAM and depth recognition algorithms, and USB ports are used to connect

the cameras and lidar sensors to the central computer. Ultimately, the entire sys-

tem utilizes vision and SLAM algorithms in GPS-denied environments to predict

the environment, 3D mapping, and point-by-point travel (via the shortest route).

The proposed system is evaluated in an indoor environment resembling a cluttered

construction site. The system’s performance demonstrates the viability of devel-

oping and deploying in the near future a robust and automated data collection

system for construction applications.
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This study [3] applies mathematical algorithms to a typical rescue scenario. In

a manner similar to the previous paper, the UAV camera is utilized as a ”flying

eye,” and the UAV provided global information via its vision sensor. To model

the environment, the images are then processed with the SURF algorithm and

image binarization. On the basis of the UAV’s data, the optimized path planning

algorithm A* proposes a route. Then a feasible path for UGV rescue is designed.

In the physical configuration, a flying and ground robot and a central computer

are present. In contrast to the previous article, the UGV and UAV do not act as a

single body in this one. As with the majority of heterogeneous robot systems, the

UAV utilizes wide-angle environmental detection. The algorithm that is running

on the central computer uses a picture of the map views to segment the ground

from the obstacles. After segmentation, a second algorithm, the map planning

algorithm, runs on the central computer to find the optimal shortest route while

avoiding these detected static obstacles. After completing these calculations, the

established route is transmitted to the UGV. During these sub-steps, the authors

focused on improving map analysis and obtaining higher recognition accuracies

through the application of preprocessing techniques. In addition, based on their

theories, the SURF algorithm and image segmentation techniques have high ro-

bustness in map planning. Moreover, simulation and physical setup experiments

are performed as the final step. When comparing the desired system to this pa-

per, it can be concluded that the ideas in this project are so similar to the desired

one. However, significant differences remain, such as types of ground vehicles and

mapping techniques.

The general structure and usage purpose of robot collaboration in this paper [4]

are so similar to paper [1], titled ”UAV-UGV Autonomous Cooperation: UAV As-

sists UGV to Climb a Cliff by Attaching a Tether,” with the exception of hardware

and control algorithms. At the beginning of the paper, the authors discuss the

significance of collaboration between fully autonomous mobile robots on unknown

and difficult planet surfaces, such as Mars. The system consists of three differ-

ent mobile robots named ARDEA, LRU1, and LR2, a solar panel station named

Lander, and a number of payload containers. Since the system is presented in
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Italy in 2021 as part of the ARCHES project, the missions are specified by the

competition rule. According to these rules, each robot has specific tasks, and in

order to preserve relative positioning, communication, and mapping skills during

these tasks, it is becoming essential to implement methods that conflict with the

candidate system’s expectations. There are two general missions that must be

completed in order to succeed in the competition. Both missions cover automated

task planning, high-level mission control, spectral rock analysis, radio-based local-

ization, and collaborative multi-robot 6D SLAM in Moon-analogue (with another

propulsion system different than propellers since there exist no atmosphere at

Moon) and Mars-like scenarios. According to the scenario, ARDEA is used for

autonomous, rapid mapping and exploration. The ground vehicles are segmented

and detected thanks to the onboard dual-core Intel computer, which serves as the

main computer. LRU1 and LRU2 ground vehicles have individual control algo-

rithms, and unlike previous swarm robot papers, they are not required to move in

unison because they have distinct missions. Using onboard stereo cameras, both

of the ground vehicles determine the depth of their surroundings. The depth of in-

formation also facilitates the creation of 3D models and makes SLAM’s job easier.

In addition, after candidate map detection and optimal route determination, when

necessary, the flying robot ARDEA lands on LRU1. Finally, it is possible to say

that the used multi-robot 6D Simultaneous Localization and Mapping (SLAM)

allows robots to localize themselves with respect to each other and build a shared

dense 3D model of their environment for autonomous exploration, mission plan-

ning, and coordination of joint actions and that the structure of the entire system

is dependent on these techniques.

Using observations from a flying robot, this paper [5] presents a solution to the

problem of planning a path for an unmapped ground robot through unknown

terrain. The system structure is explained using a scenario involving search and

rescue operations. To avoid time-consuming active exploration of the environment,

the flying robot selects regions to map in a manner that optimizes the overall re-

sponse time of the system, which is the sum of the air and ground robots’ mission

execution time. In this method, terrain classes are estimated across the terrain
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map, and elevation data is added to regions where the active exploration algorithm

has chosen to perform the 3D reconstruction. This terrain data is used to estimate

feasible and efficient ground robot routes. After separating the surface grid by

grid, the algorithm for path planning begins to run. The algorithm used for path

planning distinguishes this article from its predecessors. As is common knowledge,

there are various types of path-planning algorithms, which are distinguished as de-

terministic and probabilistic. In the majority of missions, probabilistic algorithms

such as RRT and RRT* are utilized because they require less memory and require

less time to calculate the route. However, D*, a deterministic algorithm, is exe-

cuted in this article. Following the calculation of the terrain surface structure and

region depths, the map is segmented and divided into grids. Using these grids, or

cubes in a 3D environment, the algorithm attempts to calculate the shortest route

between the current location of the ground vehicle and the target location. At the

end of the paper, the proposed techniques are demonstrated in both simulation

and outdoor environments, and their performances and capabilities are discussed.

2.2 Vision-based Navigation of UAV-UGV Col-

laborative Systems in GNSS-denied Environ-

ments

The navigation system and its accompanying subsystems comprise the majority

of an autonomous UAV. The navigation system estimates the pose of the UAV in

terms of its locations (x, y, and z) and orientations (ϕ, θ, ψ) using data gathered

from a variety of sensors. Other supporting systems do pertinent functions, such

as obstacle detection and static object detection or dynamic object tracking, or

obstacle avoidance.

Advanced navigation systems are one of the touchstones of increasing autonomy

levels day by day. Monoculars and stereotypes of cameras and computer vision
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algorithms are the most important equipment for navigational operations, espe-

cially in GNSS-denied environments. At this stage, It is important to divide the

navigation systems into three major subsystems which are pose estimation, ob-

stacle avoidance, and visual servoing where the obstacle avoidance system detects

and relays the location of impediments in the path of the UAV, visual servoing

system manages and transmits movement commands to the controller to maintain

the stability and follow the route, and finally, pose estimation is responsible to the

assessment of the location and attitude of the robot in 2D and 3D representations.

In literature, there exist some important studies regarding the subject.

This paper [6] uses a stereo-vision system based on multiple unmanned aerial

vehicles to aid in the global path planning of an unmanned ground vehicle in GPS-

denied environments. Similar to previous endeavors, aerial vehicles are expanding

their field of vision. The unique aspect of this strategy is the use of multiple

UAVs, and the proposed technique provides the opportunity to move these vehicles

along a baseline. The authors explain how a multi-UAV system can be used to

overcome the limitations of a single-UAV system with a fixed baseline. Thus,

it is asserted that the performance of the innovative system is not significantly

affected by altitude. In addition, estimations of relative position and altitude,

multi-agent formation control, and image processing methods are considered for

the implementation of a prototype system. Due to the utilization of multiple

UAVs, the size of the detected area grows automatically. The flying robots are

using computer vision techniques to detect ground vehicles. Since the relative

positions and orientations between the UAVs and UGV are determined using a

marker on the UGV and the laboratory’s motion capture facility, it is now possible

to detect depth using stereo-vision techniques, unless the flying robots are at

significantly different altitudes. In contrast, for the majority of the experiment,

the motion capture system is only used to create a ground map. Stereo depth

recognition is performed by aerial vehicles that recognize their relative positions

in relation to one another based on the detected marker position of the UGV on

their display screen. With the aid of detected depths, the obstacles along the
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UGV’s trajectory line can be identified. No probabilistic or deterministic path-

planning algorithm is used in the experiment. The ground vehicle only follows

paths that are free of obstructions. Therefore, the system is not dependent on

GPS. The performance of the proposed system is then demonstrated in a controlled

laboratory environment with a motion capture facility. The experimental results

illustrate the performance of the implemented system for a variety of UAV baseline

conditions.

In this paper[7], the authors present a comprehensive design and implementation

for a micro aerial vehicle (MAV) that is capable of 3D autonomous navigation and

obstacle avoidance in cluttered and realistic unknown environments without GPS

and other external sensors or markers. To accomplish these autonomous missions,

modularized components, such as visual-inertial odometry (VIO), 3D occupancy

mapping, and motion planning, are developed for the MAV. The proposed system

is designed to operate in real time on a small embedded computer. Simulation and

actual flight experiments demonstrate its durability. In this method, the aerial ve-

hicle is equipped with a stereo camera, and the UAV utilizes stereo-camera-based

state estimation methods. Nonetheless, an inertial sensor is added to this visual

method to increase its applicability and robustness, as the state may deviate signif-

icantly during aggressive maneuvers if only visual information is used. In addition,

the UAV’s powerful onboard computer processor, Nvidia Jetson TX2, processes

collected data without sending it to a centralized computer on the ground, and the

system continues on its route based on the analysis of movable areas. The robot

creates an occupancy grid map using a laser and stereo camera before moving on

to the following suitable regions by following SLAM procedures. On the other

hand, this paper contains a number of significant contributions that distinguish

it from other techniques of a similar nature. For instance, the state estimation

based on visual-inertial sensor fusion is designed to function with off-board camera-

integrated visual odometry data, thereby reducing computational complexity. It is

demonstrated that a lightweight velocity-based fault-detection method can with-

stand difficult environments with sparse features. The paper also discusses the

implementation of the proposed method on a real quadrotor capable of navigating
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complex 3D environments and tracking moving references. The paper concludes

with a discussion of a micro aerial vehicle system that can autonomously navi-

gate in GPS-deficient and obstacle-filled environments while avoiding obstacles.

In order to achieve this, vision-based localization techniques are employed, and

the proposed system is evaluated using both simulation and actual flight data.

This paper [8] presents a method for 6D localization of mobile robots in the ab-

sence of GPS using a 3D laser scanner. Commonly, 6D localization using laser

scanners involves the extraction and association of features or the comparison of

whole scans (frequently offline) utilizing the ICP algorithm or its variants. In

some unstructured, non-urbanized, rugged terrain environments, however, feature

extraction does not appear to be sufficiently reliable. PSD is a method presented

by the authors for mobile robot localization in GPS-denied applications in such

environments (Point-to-Surfel Distance). They consider each laser scanner mea-

surement as an observation and use PSD to correct the position and orientation of

the robot, as opposed to the laser scanner-based localization methods of previous

articles. The robot’s localization is based on a specific terrain representation in a

2.5-dimensional surfel map. There is no collaborative work in this system, so the

ground vehicle travels independently around the map using data from the lidar

and onboard cameras. The proposed system is evaluated in both indoor and out-

door environments, and Gaussian mixture maps are used to compare the extended

Kalman filter and single laser scanner measurement techniques. The results are

then presented at the conclusion of the paper.

2.2.1 Self Localization and Mapping

Self-localization is the process of determining the location of a robot within its

environment based on sensory inputs, and it is essential to compensate for posi-

tion errors caused by external noises. In addition to reducing the effectiveness of

subsequent trajectory and mapping operations, positional errors can put the robot

in danger.
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Metric and topological approaches are the two main sections that distinguish map-

ping methods from one another. The occupancy/certainty grid was the first to

provide the most prevalent metric method. Each cell on the occupancy grid rep-

resents an area of the immediate surroundings. Each cell in the grid is assigned a

certainty value that indicates the probability that it contains an obstacle. Topo-

logical networks represent the environment in the topological approach. This is

achieved by identifying and connecting the environment’s distinct locations and

pathways.

These processes are the most fundamental for a robot to navigate itself autonomously.

In studies conducted over the past few years, it has been demonstrated that these

processes can be carried out concurrently using advanced sensing systems and al-

gorithms. The following published studies are excellent examples of the processes:

This study’s [9] objectives are to operate aerial and ground robots cooperatively

and to fuse complementary point cloud data. In addition, this paper presents a

framework for autonomous cooperation between UGVs and UAVs for the collection

of 3D geometric data in a dynamic, cluttered environment. First, an unmanned

aerial vehicle (UAV) is deployed and 3D terrain data is collected using images to

gain a general understanding of the target location. Using the gradient-based 3D

model generated by the UAV, the UGV’s path planning and stationary scanning

locations are then estimated. The working structure of the entire system is com-

prised of various steps. Initially, the UAV is used to generate a rough 3D map of

the construction site. Using the captured image, the mapping algorithm generates

a point cloud that divides the job site into cells (1m by 1m) and computes the

gradient between each cell’s neighbors. Then the 2D gradient map and occupancy

map are generated to determine the site’s optimal movable area. Then the entire

candidate scan location cells are analyzed by simulating the line of sight and count-

ing points in areas to determine their coverage size. Sending these locations to a

ground vehicle is the subsequent step in simulating optimal areas. The ground ve-

hicle has four 2D line laser scanners and a standard camera for collecting 3D map

data. One of the horizontally mounted 2D laser scanners estimates the robot’s

location and pose in a 2D plane, while a regular digital camera captures the RGB
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data of the scene. The ground vehicle performs the 3D mapping operation while

collecting point cloud data. The UGV then continues to move in accordance with

the gradient of the potential field and converges on the subsequent scan location.

When the UGV reaches the final location to be scanned, it begins to register each

point cloud to a single coordinate system using localization data. The horizontal

lidar is used to calculate the localization data. The SLAM algorithm uses the

laser-scan data from the horizontal lidar to estimate the position and orientation

of the ground vehicle GRoMI in the horizontal plane. This study employs the

Hector SLAM algorithm to perform laser-scan matching between current lidar

scans and progressively constructed maps in order to estimate robot postures and

planar maps of the environment. Finally, the project’s physical experiment is con-

ducted on the Georgia Tech campus, and encouraging results are obtained at the

conclusion of the construction site experiment.

This article [10] demonstrates a direct application of point clouds for UGV path

planning. It enables skipping the usual discretization of space and utilizing all

available data. This paper presents algorithms for point cloud-based terrain eval-

uation and global path planning using rapidly exploring random trees (RRT). Ex-

periments utilize publicly available datasets of UAV-generated point cloud maps.

The article provides a quantitative evaluation of the performance of planning on

a point cloud map on a central processing unit, as well as practical implemen-

tation details. Similar to the previous paper, the movable areas are analyzed by

first creating a map that resembles a 2.5D map (elevation map that defines height

using different colors). After creating a point cloud map of the terrain with a

UAV, the algorithm calculates the optimal route using RRT. The ground vehicle

then follows the proposed route. The methods presented in the paper are also

implemented in a physical environment. Except for the path planning algorithm

and a few hardware components, the concept and working principles are identical

to the previous article.
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2.2.2 SLAM in UAV-UGV Collaboration

SLAM is an important process for providing a trajectory in an unknown envi-

ronment by utilizing various types of depth recognition and localization sensors,

as well as mapping the environment. The majority of studies are incorporating

SLAM algorithms into the controller of ground vehicles in order to construct 3D

maps and better analyze the environment. The proposed method, it is first ex-

tracted the map of an unknown environment and then sends ground vehicles to

the desired location using the optimal path planning algorithm. Therefore, the

SLAM may not appear to be so important; however, being aware of recent ad-

vancements in this area may help to generate new ideas and enhance the system.

The abstracts of the following articles describe the most recent developments in

the study.

Cooperative robots must perform collaborative semantic mapping to maintain a

comprehensive contextual understanding of their surroundings. The majority of

current research focuses on either single-robot semantic mapping or collaborative

geometry mapping. In this paper, [11], a novel hierarchical collaborative proba-

bilistic semantic mapping framework with a distributed formulation of the problem

is proposed. The primary contribution of this work is the mathematical modeling

and derivation of the probability decomposition of the overall collaborative se-

mantic mapping problem. At the level of a single robot, a semantic point cloud is

generated using a heterogeneous sensor fusion model, and a semantic point cloud

is obtained at the level of a single robot. Since the voxel correspondence is un-

known at the level of collaborative robots, an Expectation-Maximization approach

is proposed to estimate the hidden data association, with the Bayesian rule applied

to update semantic and occupancy probability. The experimental results demon-

strate the high quality of the global semantic map, demonstrating the precision

and utility of the 3D semantic map fusion algorithm for actual missions.

The problem of real-time robot exploration and map building (active SLAM) is

examined in this article [12]. A fully autonomous robot uses a single stereo-vision
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camera to navigate, localize itself, define its surroundings, and avoid any poten-

tial obstacles in order to maximize the mapped region by following the optimal

route. A modified version of the so-called cognitive-based adaptive optimization

algorithm is presented so that the robot can successfully complete its tasks in real-

time and avoid becoming trapped in a local minimum. Using properly equipped

robots, the method’s efficacy and performance were evaluated in a variety of sim-

ulation environments as well as in real, unexplored areas.

This article [13] is one of the most representative studies for fully autonomous

long-range exploration robots. In addition, one of the earliest efforts to enable

large-scale and long-term autonomy with the Boston Dynamics Spot robot is pro-

vided. Motivated by the exploration of extreme environments, specifically those

involved in the DARPA Subterranean Challenge, this paper pushes the state of the

art in enabling legged robotic systems to complete complex real-world missions in

relevant scenarios. The authors discuss the behaviors and capabilities that result

from the integration of NeBula (Networked Belief-aware Perceptual Autonomy)

with next-generation mobility systems, as well as the hardware and software chal-

lenges and solutions in mobility, perception, autonomy, and, to a lesser extent,

wireless networking, along with lessons learned and future directions. Then they

demonstrate the effectiveness of the proposed solutions on actual physical systems.

This research endeavor is revolutionary. Even though the used equipment is sim-

ilar to that of previous SLAM projects, when the system is combined with the

capabilities of Boston Dynamics’ Spot robot, one of the most accurate results is

achieved. In the study, the user can remotely interfere with the system if desired.

Using visual data, the localization and orientation processes are carried out. Due

to the lidar sensor, a 3D model of the environment is gathered in real-time, and the

system detects the environment and applies segmentation. The robot then moves

to the next available location. And the entirety of these processes are performed as

sub-steps of the SLAM algorithm. Moreover, the proposed solution contributed to

the first-place finish in the 2020 DARPA Subterranean Challenge, Urban Circuit.
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2.2.3 Path Planning

Path planning is one of the most crucial challenges for autonomous mobile robots.

Following perception, robots locate themselves based on the obstacles they can

see in their environment. During these steps, local path planning is performed to

prevent collisions with dynamic and static obstacles. After locating themselves

based on environmental objects, the global path planning algorithm is activated

and the robot attempts to reach the desired location. This cycle can be observed

in the majority of mobile robot applications, but especially in those that use

map-based localization techniques such as Markov Localization, where the map

is known beforehand, or SLAM, where the robot has no prior knowledge of its

environment and global map.

Figure 2.2: See-Think-Act Cycle

On the other hand, since the path planning problem is based on optimization

problems, which have been a popular area of research since the middle of the

1960s, many deterministic and probabilistic algorithms have been developed, but

only a few have reached an efficiency level sufficient for application in robotic

systems. Deterministic algorithms (Hart, Nilsson, Rafael, 1968; Nilsson, 1980) and

probabilistic algorithms (Kavraki et al., 1996; LaValle, 1998; LaValle & Kuffner,

1999; 2001) are the two most common techniques [14]. However, prior to 2001,

all research focused solely on locating the shortest path between two points on a

2-dimensional image without elaborating on how the map is generated. In 2001,
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the term ”image-based path planning algorithm” was added to the lexicon with

the publication of a paper in Japan [15]. The paper focuses on decreasing the

sum of moving distances of a manipulator’s degrees-of-freedom, and the most

efficient path planning algorithm of the time, A*, was used to find the shortest

path between two points detected by a camera located on the head of the end-

effector. Although the application was based on a fairly simple concept, namely

dividing the working terrain into grids and locating the shortest path using the

grid lines, it is regarded as a cornerstone of terrain analysis-based path planning

algorithms that are still in use today.

Numerous path-planning algorithms exist in the literature, and these algorithms

can be divided into probabilistic and deterministic techniques, as described in

earlier sections. Although they are completely different in terms of computational

power, processing time, and fundamental logic, they use the same or similar image

characteristics as references. Literature classifies algorithms as grid-based search,

interval-based search, artificial potential field-based, and sampling-based. How-

ever, the majority of image-based algorithms are founded on geometric principles.

Visibility Roadmap, for instance, is a graph of intervisible locations, typically for a

set of points and obstacles in the Euclidean plane. Each image corner represents a

point location, and each image edge represents a visible connection between them.

The Voronoi diagram is another node merging technique, but it differs from the

Visibility Roadmap technique in that it uses the detected feature point offsets to

establish the connection between nodes. It is a mathematical partition of a plane

into regions close to each object in a given set.

Figure 2.3: Visibility Roadmap (Left) and Voronoi Diagram (Right)
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Trapezoidal Decomposition is yet another path-finding technique. Due to the in-

ability to conduct a binary search, it is difficult to discern how to use a trapezoidal

decomposition for point location in this method. It can be obtained, however, by

firing vertical bullets upwards and downwards from each vertex of the original

subdivision. When bullets hit a boundary, they stop and create a new boundary

in the subdivision.

Figure 2.4: Trapezoidal Decomposition

There are numerous additional techniques, including triangulation refinement,

monotone subdivisions, slab decompositions, and cell decompositions, among oth-

ers. However, these three methods form the basis of the vast majority of proba-

bilistic and deterministic algorithms.

In the experimental setups established for the research, deterministic and proba-

bilistic algorithms are used to find paths, and the comparative analyses of these

algorithms and the proposed path planning algorithm are presented.

In the experimental setups established for conducted research, the deterministic

and probabilistic algorithms are employed to find paths and it is presented the

results of comparative analyses of these algorithms and the proposed path planning

algorithm.

2.2.3.1 Deterministic path planning Algorithms

Deterministic path planning algorithms are those that evaluate nearly all possi-

ble routes to determine the shortest route between two nodes. Using the nodes

or grids on the occupancy grid, provide optimal paths, but their computations
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are too time-consuming. Numerous deterministic path-planning algorithm exam-

ples exist. A* Dijkstra and the Visibility graph are the most popular. In the

experiments conducted within the scope of the thesis, the A* algorithm is cho-

sen as a representative of deterministic algorithms to compute the path in test

environments because it produces the most optimal results compared to others.

a) A*

The A-star path-finding algorithm is arguably the best algorithm for finding the

shortest path between two nodes. In addition, it is a heuristic function-based

deterministic algorithm for proper path planning that calculates the value of the

heuristic function at each node in the work area. Checking too many adjacent

nodes is required to find the optimal solution with zero collision probability. Thus,

it requires a great deal of processing time and slows down the rate of work.

In addition, it is essential to note that A* chooses the path that minimizes the

defined cost function, such as;

f(n) = g(n) + h(n)

where the g(n) is the cost of the path from the initial point to node n), and h(n)

is the estimated cost of the path from node n to the destination node.

Figure 2.5: A* Steps

So, the A* star algorithm is one of the most popular deterministic algorithms

developed by Dijkstra, and it operates on the occupancy grid form of the map
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without utilizing the image’s object characteristics. Contrary to Dijkstra, A* does

not scan the entire image. Instead, it assigns nodes and the distance between them

to the desired point direction based on the selected cost function, and it attempts

to find the shortest path between the initial and desired locations by minimizing

the cost function.

b) A Dynamic Programming Method on Topographic Map

Path planning based on topographic maps is also known as Traversability analysis

and has been an active research field since the turn of the 21st century. In this

method, the terrain is divided into grids, and the algorithm connects grids with

close pixel values along the path between the initial and desired locations.

Figure 2.6: Dynamic Programming Method Steps

Instead of assigned nodes, the dynamic programming method operates on the basis

of the average pixel values in each grid. It attempts to choose the grids along the

path to the destination that has the closest value to the current grid value. In

addition, this algorithm is designed to find the optimal route in a rural setting by

selecting the slope with the least gradient.

2.2.3.2 Probabilistic Path Planning Algorithms

The working principles of probabilistic path planning algorithms rely on the ran-

dom placement of waypoints on a map. This method’s most important hyper-

parameter is the number of thrown nodes. The path’s shape and computation
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time vary based on the hyperparameter that the user specifies. Except for RRT*,

these algorithms do not guarantee to find the optimal path. Due to its structural

distinction, only RRT* can locate the shortest path between two nodes. Despite

this, RRT* performance may not be adequate for determining the optimal path

when the number of candidate waypoints is too small. Probabilistic path plan-

ning algorithms include Probabilistic Roadmap (PRM), Rapid-exploring Random

Tree (RRT), and RRT*, among others. Due to its quick response and simpler

structure, the probabilistic roadmap algorithm is selected for use in the conducted

experiments.

a) Probabilistic Roadmap Algorithm (PRM)

The probabilistic roadmap is an algorithm that constructs a graph from the initial

position to the target position in order to place a randomly generated point within

a specified map region. It generated a limited number of random points within

a specified area, and the path is drawn by connecting the points. There are also

numerous techniques for generating random points and connecting them. PRM

can be characterized as:

RPRM = γPRM
log(n)

n

1/d

(2.1)

γPRM >
µ(xfree)

ζd

1/d

2(1 +
1

d
)1/d (2.2)

where R is the radius; n is the number of nodes; d is the number of dimensions;

γ is a constant according to the selected cost function; µ is the total area; and

finally, the ζ is the volume of a unit sphere in the dimension being used.

The PRM is therefore one of the most prevalent probabilistic path-planning algo-

rithms with RRT. In both of these algorithms, the nodes that are used to create

trajectory are thrown randomly onto the map, and the algorithms attempt to find

the shortest path between the starting point and the destination point by avoiding

obstacles. As it is similar to A*, it was not necessary to apply computer vision
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Figure 2.7: PRM Steps

algorithms to the designed map in order to implement it, as these algorithms work

with the grid-based form of the map. In this form of the map, the detected black

regions are treated as obstacles, and the path-finding algorithms do not place any

nodes on top of these black regions. Consequently, the drawn path has no collisions

with obstacles.

2.3 Modeling and Control Approaches for UAV-

UGV Collaborative Systems

In UAV-UGV collaborative systems, air and ground vehicles continuously execute

their own autonomous control algorithms as they collaborate to solve a problem.

Because of this, separate controllers have been developed and implemented for

both ground and air vehicles.

In the study conducted for this thesis, an aircraft flies while avoiding dynamic and

static obstacles in an unknown environment, and after capturing surface images

with a stereo camera, a topographic map of the area containing the starting and

ending points is generated. On this map, the global path for the ground vehicle

is then created. While the ground vehicle follows this global path created by a

system with a broader field of view, the stereo camera constantly performs depth

analysis and dynamic obstacle avoidance operations. As shown in the following

block diagram, both ground and air vehicles require separate controllers, as the

tests are conducted in environments without a global motion tracking system.
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Figure 2.8: Block Diagram for UAV-UGV System

2.3.1 Control Approaches for UAV

UAVs can be divided into three primary categories: fixed wing, rotary wing, and

hybrid wing as mentioned in Figure 2.1. The rotary wing quadrotors can also be

distinguished by the number of their rotors. Within the scope of the experiments

conducted for this thesis, quadrotor UAVs were chosen for use. Due to their design

and four engines, quadrotors have greater capabilities than fixed-wing aircraft in

confined spaces. These four motors allow the robot to move with six degrees of

freedom (DoF). These six degrees of freedom include x, y, z, pitch, yaw, and roll

motions. The controllers that ensure the stability of these quadrotor movements

are referred to as low-level controllers. The modeling of a quadrotor which is

explained in section 4.2.1 is the first step of designing a controller.

When designing a low-level controller for a quadrotor, linear and nonlinear meth-

ods can be used. It has been demonstrated in the literature that linear methods

such as PID [16], H∞ [17], and LQR controller [18] enable the quadrotor to per-

form fundamental movements successfully. Nonlinear controllers, such as feedback

linearization [19], backstepping [20], sliding mode [21], adaptive [22], and model

predictive control [23], have been shown to produce superior results when the envi-

ronmental noise is increased or when the desired movement is made more complex.
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Figure 2.9: Block Diagram for UAV-UGV System

There exist some studies in the literature that compare the performances of the

linear [24] and nonlinear [25] control strategies on quadrotor control. The table

below shows the comparative performance analysis of the mentioned controller

design methods:

Figure 2.10: Controller Types and Performance Comparison

The given control techniques in the table above can be utilized alone or combined

with another technique to control the quadrotor. Especially, intelligent control

methods are preferred frequently to combine with linear and nonlinear techniques
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to increase controller performance. Model Predictive Control is another nonlin-

ear control approach whose effectiveness directly depends on the reference model

performance.

Nonlinear controllers control systems without subjecting them to a linearization

process, as opposed to linear controllers, also produce positive results in situ-

ations that fall outside the linearization process’s scope. Therefore, nonlinear

controllers are frequently preferred in industrial projects or problems involving

human-machine interaction because of their more conditional structure. They are

more complex than linear controllers, but they function more reliably.

During the experiments, the linear control techniques PID and LQR are preferred

to utilize because of their simple structure, and the suitable conditions of the

indoor test environment. Linear control methods are mathematical models that

control nonlinear systems, such as quadrotors, by linearizing them at specific equi-

librium points. Therefore, they can give satisfactory outputs for low-level control

processes.

a) PID Control

Proportional-Integral-Derivative (PID) is a linear control method that has the

widest place in the control literature. Decouples the error, which is the difference

between the desired signal and the feedback received, into 3 branches and mul-

tiplies it by the coefficients Kp, Ki, and Kd. It takes the integral of the error

from the multiplier with the Ki coefficient and the derivative of the error from the

multiplier with Kd. Thus, it makes clear how the system will react at different

time intervals and tries to control it. Moreover, these coefficients can also be used

in different combinations such as PI, PD, only P, and only I according to the needs

while developing the controller.

u(t) = KP e(t) +KI

∫ t

0

e(t)dt+KD
de(t)

dt
(2.3)
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Since the use of PID control is a simpler and faster method than other linear

control methods, it has been frequently used in stabilizing and hovering motion in

UAV control.

In addition, in some recent studies PID controllers have become better by using

them together with intelligent control methods such as Fuzzy Logic [26], Neural

Networks [27], Partial Swarm Optimization (PSO) [28], and Reinforcement Learn-

ing [29]. Moreover, there exist several studies in the literature which use adaptive

techniques [30] [31] to find optimum PID parameters for the flight smoother and

more precise. These intelligent techniques help to automatically tune the PID

parameters.

b) LQR Control

Linear-Quadratic Regulator (LQR) is an optimization technique that is widely

used in dynamic systems to operate them at around minimum cost by stitching

the following equation [32]. LQR controller is mostly utilized with Kalman Filter

to evaluate better the effect of environmental noises and missing parameters on

flight performance.

JLQR =

∫ ∞

0

(yi)
T (t)Qyi(t) + (ui)

T (t)Ruidt (2.4)

In the literature, the LQR controller is used to optimize trajectory, and develop

motor and propeller models for better performance in these papers [33][34] respec-

tively. Furthermore, in this study [35] LQR method is utilized with Lagrange’s

equation to regulate flight parameters and increase the reaction force of a quadro-

tor where the Lagrange equation can be expressed as the difference between kinetic

(T) and potential energies (V) like L = T − V .



Literature Review 34

2.3.2 UGV Modeling and Control

Although wheeled robots typically come to mind when the term UGV is mentioned,

UGV actually refers to all land-traveling unmanned robots. In the experiments

conducted for this thesis, a healthy path for wheeled UGVs is sought. Wheeled

ground vehicles can be classified as holonomic, nonholonomic, steering, differential

drive, articulated drive, and independent drive based on the type of wheels that

determine the heading angle of the vehicle, change direction, the number and

position of wheels connected to the engines, and the degree of wheel freedom.

Different types of holonomic UGVs are created based on the number and location

of their users. In the table below, you can see some driving types and important

features:

Figure 2.11: UGV Driving Types

Experiments conducted within the scope of the thesis made use of UGVs with skid

steering.
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The kinematic model is a mathematical description of the robot, and control

algorithms are derived from the motion equations obtained from these models.

Two-dimensional Cartesian coordinates may be used to represent the kinematic

model of a skid steering UGV. This demonstration assumes that the robot rolls

on its standard wheels without slipping. L represents the width of the robot, a

represents the distance between the center of the wheels and the center of the

mass, and 2r denotes the diameter of the wheels.

Figure 2.12: UGV in Cartesian Coordinate

When the slipping case is ignored, the UGV’s equation of motion can be repre-

sented as:

ẋc(t)cosθ(t)− ẏc(t)sinθ(t) = αθ̇(t) (2.5)

The equations can be represented as follows with pure rolling constraints:

ẋc(t)cosθ(t) + ẏc(t)sinθ(t) + Lθ̇(t) = rϕ̇r(t)

ẋc(t)cosθ(t) + ẏc(t)sinθ(t)− Lθ̇(t) = rϕ̇l(t)
(2.6)


vx(t)

vy(t)

θ̇(t)

 =


r/2 r/2

0 0

−r/L r/L


ωl(t)
ωr(t)

 (2.7)
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v(t) = r[ωr(t)+ωl(t)
2

]

θ̇(t) = r[ωr(t)−ωl(t)
L

]
(2.8)


ẋ(t)

ẏ(t)

θ̇(t)

 =


cos(θ) 0

sin(θ) 0

0 1


V
ω

 (2.9)

where x0, y0 are the initial x-coordinate of UGV, xt, yt are the target coordinates,

xc, yc are instantaneous x and y coordinates, vx(t), vy(t) are the longitudinal and

lateral velocities, θ is heading angle of the UGV, and finally, ωr(t), ωl(t), ω(t) are

right, left and resultant velocities of the UGV.

These kinematic equations permit remote control of the UGV. Trajectory control

and parking control are the most fundamental UGV control problems. In order

for the UGV to follow a trajectory decently, the difference between the trajectory

and the robot’s path must be constantly controlled, and the motors must receive

input to compensate for this error.

Even though skid steering UGVs are powered by four engines, the engines on the

same side receive the same inputs. Therefore, the vehicle operates similarly to

UGVs with differential drive but is more powerful than differential drive vehicles

due to a greater number of engines. In contrast, skid steering UGVs have two

inputs and three outputs (x, y position, and heading angle) and are therefore

underactuated.

In trajectory, the relation between the control inputs, where the u1 is v and u2 is

ω, and the equation of motion of the skid driving UGV can be expressed as:

ẍ = u̇1cosθ − u1u2sinθ

ÿ = u̇1sinθ + u1u2cosθ
(2.10)

From here it is easy to write:

u̇1 = ẍcosθ − ÿsinθ

u2 =
1
u1
(ÿcosθ − ẍsinθ)

(2.11)
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Reference trajectory and error between the reference and actual positions can be

expressed as: 
u1ref

u2ref

θref

 =


ẋrefcosθref + ẏrefsinθref

ÿref ẋref − ẍref ẏref )/(ẋ2ref ẏ2ref )

arctan(ẏref/ẋref )

 (2.12)

The tracking errors of x, yθ can be transformed to the pose of the actual robot by

the following equation: 
e1

e2

e3

 =


cosθ sinθ 0

−sinθ cosθ 0

0 0 1



ex

ey

eθ

 (2.13)

At this stage, since the norms of [ex ey eθ]
T is equal to [e1 e2 e3]

T , the trans-

formed errors are bounded when only the tracking errors are bounded. The relation

between the control inputs and the transformed trajectory errors can be expressed

as: u1
u2

 =

 −k1e1 + u1ref cose3

−u1ref sine3/e3 − kt2e3 + u2ref

 (2.14)

where kt1 and kt2 are positive control gains.

The only difference between the parking problem and the trajectory problem is

the reference inputs. In the parking problem, there are no continuous reference

x, y, θ values. Therefore, the case can be expressed by following the same steps but

making these reference signals equal to zero. In light of it, the parking problem

can be formalized as: u1p
u2p

 =

 −kp1e1p
−kp2e3p + e22psin(t)

 (2.15)

where the e1pande2p are the errors between the reference parking locations and

actual locations, and the e3p represents the difference between the desired heading

angle and the actual one.

The ground vehicle must therefore follow the waypoints displayed on the images
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transmitted by the UAV while avoiding both dynamic and static obstacles. In

areas that cannot be scanned by the UAV, such as under trees, the path should be

performed using onboard sensors on the UGV. The block diagram for this situation

is shown below.

Figure 2.13: UGV Control Block Diagram

After the waypoints have been transferred, various methods for UGV position

control can be implemented. One is to continuously follow the UGV from the air

throughout the journey with the UAV, and the other is to use a sensor, such as an

encoder, that provides position feedback to the UGV’s engines. In the experiments

conducted for the thesis, an encoder was used to control the motion of the UGV.

2.4 Image Stitching Techniques

Image stitching is a method of combining multiple images by utilizing the charac-

teristics or pixel intensities of the overlapping fields of the input images to generate

a panoramic image or increase its resolution.



Literature Review 39

Figure 2.14: Image Stitching Example

The input images must contain a sufficient number of common areas and detectable

features or pixel value differences. In the absence of these conditions, parallax

errors may occur. Wide-angle cameras, such as a fisheye camera, can be used

to overcome parallax errors in a confined area. However, because these cameras

attempt to capture larger areas in a single shot, the image resolution degrades

and the imaged objects become more curved. It is also possible to create blind

stitching by employing a feature-based alignment method; however, these methods

typically produce inaccurate results.

Figure 2.15: Parallax Error
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There are two primary methods for image stitching: the Direct Method, which

focuses on the pixel intensities of the overlapping section, and the Feature-based

Methods, which utilizes the features of the common fields of input images.

Figure 2.16: Stitching Method Classifications

The Direct Method operates on the basis of comparing the pixel intensities of the

two images. The evaluation of input images at the pixel level is the technique’s

most advantageous characteristic. Thus, it becomes possible to identify significant

similarities between the images. In contrast, the computation time of pixel-level

evaluation and the possibility of multiple identical pixel nodes make the technique

quite complex. In addition, the limited convergence range and restrictions on scale

and rotation are significant drawbacks of the technique.

Multiple methods, including SIFT, SURF, FAST, ORB, and Harris Corner, con-

stitute Feature-based Techniques. After extracting the overlapping fields, these

techniques all aim to stitch images by utilizing the common features in the over-

lapping fields. The method yields faster results than the Direct Method because

it detects the similarity of input images based on a few key feature points rather

than scanning all pixels. In addition, because of the size difference between fea-

tures and pixels, the use of common features on overlapping fields is more reliable

than pixel-level comparison [36]. In contrast, outputs from feature-based image

stitching techniques are unsuitable when input images have a single color or an

entirely flat background. In addition, the interpretation of loss data of input im-

ages in traditional feature-based techniques such as SIFT, SURF, FAST, and ORB
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is quite limited. Using methods of deep learning, a number of novel approaches

developed over the past decade attempt to satisfy this specification.

• SIFT: Scale-Invariant Feature Transform (SIFT) is an algorithm for computer vi-

sion that detects local features in RGB images based on the gradient value.

It works quickly and produces desirable results against light and noise. Due

to the fact that its efficiency decreases proportionally with pixel quality,

it cannot produce robust results in remote sensing images with low pixel

quality. In 1999, the technique was developed.

• SURF: Speeded Up Robust Features (SURF) is a stitching technique designed to ac-

celerate the feature-matching process. It accelerates the removal of detected

features by monitoring the quality of their pixels. Consequently, the SURF

method also increases the speed of the SIRF method. Moreover, the compu-

tational cost of SURF is less than that of SIFT because it does not compare

features of low-pixel-quality images. However, the evaluation of pixel qual-

ity generates additional computational load. It was first mentioned in a

publication in 2006.

• FAST: Features from the Accelerated Segment Test (FAST) method function by

referencing the corners. It provides faster results than all other feature-

based algorithms and does not degrade pixel quality. The only significant

drawback of the algorithm is its lack of orientation and rotation capabilities.

It was introduced in 2006 but is still in use today.

• ORB: ORB is a feature detection algorithm that aims to produce output images

faster than its alternative, SIFT. Although the ORB technique was developed

12 years after the SIFT method, it exhibits comparable light and image noise

performance. However, it compares input image features in less time and

with less computational memory.

• Harris: Harris is an algorithm for detecting corners that detect points by comparing

the difference in pixel intensity in a window-sized region. It is a well-known

method in computer vision applications and is also utilized in image stitching



Literature Review 42

operations by matching the same image corners. It identifies the corners with

high accuracy in overlapping fields of the input images. However, the case

may cause excessive processing time if the scanned area contains a large

number of corners, or it may fail if the overlapping area consists of a solid

color and flat structure.



Chapter 3

Terrain Analysis and Topographic

Map Building for Heterogeneous

Robot Systems

3.1 Depth Reconstruction Techniques for Ter-

rain Analysis

Depth estimation is a computer vision task designed to estimate depth from an im-

age or image pairs. This technique is highly favored in a variety of fields, including

autonomy and the space industry. There are various methods for deriving the

depth from stereo images. In addition, after providing a properly calibrated cam-

era and employing computer vision techniques and machine learning algorithms,

real-time detection is possible. Nonetheless, in order to interpret the results, it

is necessary to obtain the key concepts and major technical descriptions. It is

essential to understand the definitions and significance of stereo vision, depth

recognition, stereo and monocular images, and projection types.

Depth analysis can be successfully performed with various ultrasonic or infrared

sensors. However, access to these sensors and their outputs may not always be

43
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useful. Consequently, using camera images, image differences, and intrinsic and

extrinsic camera parameters, the distances of the image’s objects to the camera

can be estimated with Decisive accuracy. If the distance between the cameras,

known as the baseline, and the camera parameters are known, depth analysis of

an area can be decoded using two cameras from a fixed point. This technique is

known as stereo reconstruction.

Additionally, depth analysis can be performed using a single camera. This method

cannot perform depth analysis from a fixed point, unlike stereo vision. In order to

detect depth, it captures images from various locations and analyzes the images

and camera positions to identify common features. This technique is also known

as structure from motion.

In the following section, the performance of various machine learning classifiers on

the stereo depth reconstruction algorithm are discussed.

Figure 3.1: Terrain Depth Reconstruction with Stereo Vision
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3.1.1 Stereo Vision Technique for Depth Reconstruction

of Terrains

The estimation of depth is one of the most important techniques in the field of

3D representation. Stereo vision is also one of the most frequently used terms

for recognizing depth in real-time and offline applications. Charles Wheatstone

researched this term in 1838, despite the fact that it is commonly used today.

Several new terms, including stereopsis, which is short for the retinal disparity,

were added to the lexicon as a result of this study. After focusing on stereopsis,

he invented the stereoscope and stereoscopy grew in popularity among the public.

Due to its increasing popularity, more researchers have begun to investigate its

limitations and the relationships between single vision. Since the 19th century,

researchers have devoted time to this subject in order to make discoveries.

The first step in estimating depth from stereo imagery is to divide the images

into positive and negative patches. Due to the time-consuming nature of man-

ually aligning stereo images, this must be accomplished using vision techniques.

Therefore, both the right and left images should split at least 3x3 pixels of uniform

colors. The differences between the patches are based on their shapes, sizes, and

relative geometries. Then comes the matching operation. There are a number of

methods for matching stereo images, but they can be grouped into two primary

categories: area-based correlation methods and feature-based methods [37].

In the correlation phase, methods scan pixel by pixel to identify relationships

between the small rectangular areas of the first and second images. Feature-based

methods, on the other hand, seek to identify a certain class of feature in two images,

with the primary goal of matching images in less time and extracting higher-level

information from them. After matching pixels from two input images, all collected

results are stored in a map known as a disparity map. As it stores the horizontal

distance between two matching pixels and their coordinates as d(x, y), the map

can be described in greater detail. However, to provide a basic understanding, the

fundamental equations are provided below.
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xright = xleft − dleft(xleft, y)

xleft = xright − dright(xright, y)

xsearch = xref + sdref (xref , y)

when s = 1 and s = −1

y = yleft = yright

(3.1)

So the relations of dleft(x; y) and dright(x; y) can be seen above equations, it is

also possible to represent special conditions such as coordinate shifting with these

equations.

Figure 3.2: a) reference (left) image b) search(right) image c) superimposed
left and right view d) disparity map

As mentioned in previous parts, the depth can be calculated from the geometrical

approaches such as triangulation that comes from the stereo image pair.

Figure 3.3: Geometric Representation of Stereo Vision
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A similar schematic is already explained in Figure 3.2, and the mathematical

relations are also expressed below:

d = xL − xR = f((xP + l)zp − xp−l
zp

) = 2fl
zp

zp =
2fl
d

(3.2)

If the camera lens parameters are known, such as focal length f and baseline

distance T = 2l, it is possible to calculate depth. As evidenced by the preceding

definitions, the position and specifications of certain physical elements, such as

the lens properties of the camera and the position of the object, are essential

for depth calculations. In addition, it is essential to capture adequate light in

an appropriate environment while avoiding reflection, transparency, and mirror

surfaces. Consequently, the quality of images captured is directly impacted by

these conditions. On the other hand, using a physical setup is not the only way

to conduct this experiment; it is also possible to use a dataset.

3.1.2 Comparative Analysis of Hand-Crafted Feature-based

Approaches and Convolutional Neural Network (CNN)

Approach in Stereo Depth Reconstruction

There are a number of techniques for estimating depth from stereo image pairs.

In this section, the performance of various machine learning and deep learning

methods for terrain analysis is compared to determine the optimal method. A

dataset is utilized because the accuracy of the methods can only be determined

when the ground truth is known.

As previously described, stereo matching is typically performed using block-based

or feature-based methods. Small blocks or patches are matched on the left and

right images based on their similarity measurement for block-based matching.

There are fundamental similarity measurements, such as SAD or Sum of Absolute

Differences, that measure how similar these two patches are, i.e., the smaller the

value of SAD, the more similar the patches [38].
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Various machine learning algorithms are employed in the hand-crafted feature-

based method for the similarity measurement task. Specifically, binary classifi-

cation is required to determine whether two given blocks or patches are identical

or not, i.e. binary classification methods are used for measuring similarity. In

addition, deep learning techniques are used as feature extractors and classifiers to

compute depth based on similarity measurement.

3.1.2.1 Hand-Crafted Feature-based Approaches

a) Methods:

In this section, various machine learning classifier methods are used to calculate

disparity depth maps for stereo images. When two blocks or patches from the left

and right images are compared for similarity, classification occurs. A classification

method is essentially trained to determine whether these two patches from the

left and right images represent the same object or location. In order to achieve

the block-based stereo matching, machine learning classifiers are used to measure

similarity.

Since this is a classification issue, there are essentially two phases called training

and testing. In this case, the feature vectors x ∈ Rn and their corresponding labels

Y ∈ −1, 1are required to train the classifier models. First, positive and negative

pairs comprised of patches from the left and right images must be generated. For

the positive pair, the left image is traversed pixel-by-pixel from i1 = 0, j1 = 0

to i1 = width, j1 = height, the ground truth disparity value d is retrieved at

that i1, j1 position, and the position of the same location in the right image is

calculated by i2 = i1 + d and j2 = j1. Using the ground-truth disparity value,

identical patches on the left and right images are retrieved and coupled to positive

pairs.

To create a negative pair consisting of less similar patches, the sum of the absolute

differences between the patches is used to calculate their similarity. Since the

positive pair consists of very similar or identical patches, their sum of absolute
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differences should be small, whereas the negative pair’s sum of absolute differences

should be much larger. Consequently, a negative pair is generated by traversing

the right image at the same j2 location as the positive pair, creating patches by

sliding pixels in the same row j2, coupling this right patch with the left patch which

is identical to the positive pair, and comparing their similarity measurements by

calculating the sum of absolute differences. Then the right patch is chosen based

on its similarity value, which is significantly greater than the positive value when

paired with the left patch to form a negative pair. In addition, the pairs are

created using various block sizes, including 7, 11, and 15. However, it has been

determined that the best performance is achieved with a block size of 7, so this

block size is utilized for the remainder of the experiments.

The next step is to craft feature vectors, x as defined above, after creating the

positive and negative pairs. For each pair, a separate feature vector representing

the positive and negative features is required. Therefore, these vectors must be

distinguishable based on their respective labels Y ∈ [−1, 1], which represent a

positive or negative pair. To achieve this, the absolute differences between the

patches of the pairs are used to create a single patch, which is then flattened into

a vector. Since the positive pair consists of similar or identical patches, the feature

vector of the positive pair should contain smaller values, whereas the feature vector

of the negative pair should contain larger values because it consists of dissimilar

patches. It also investigated the possibility of using the histogram of oriented

gradients (HOG) feature descriptors to distinguish between positive and negative

pairs. There were too many positive examples for each patch, and there was

no correlation between the similarity of the HOG values and the disparity of the

patches in relation to the disparity of the ground truth. Therefore, it is determined

that the HOG feature descriptor would not serve the desired purpose (it is typically

used to identify specific objects in an image) and decided to continue generating

feature vectors using the absolute differences between each pair of patches.

During the training phase, once the feature vectors are created with the corre-

sponding labels, they are fed into the classifier in order to fit the data. In the

testing phase, the models predict the disparity for each pixel using the feature
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vectors for each pixel in the test images. From this, a new disparity map is gen-

erated, the results are compared to the disparity map based on the ground truth,

and a report on the model’s efficacy is generated. There are a number of hyper-

parameters that must be adjusted in order to alter the results of these tests. There

are ’block size’ and ’negative offset multiplier’ hyperparameters for the creation

of feature vectors (size of patches used in measuring similarity between a patch

on the left image and a patch on the right image) For testing purposes, there is

a ’number of disparities’ hyperparameter that specifies the maximum pixel shift

to search for similarities. It is essential to remember that each model has its own

hyperparameters. The majority of used models can be retrieved from the OpenCV

and Scikit-Learn libraries.

b) Dataset:

There are numerous datasets for stereo imagery, including Kitti, CVC, Middlebury,

and Flickr1024, among others. Their shared characteristic is that they consist of

various images taken from various angles, as well as the hyperparameters, position,

and specifications of cameras and used physical materials.

Middlebury 2001 stereo dataset containing piecewise planar scenes, close-shot im-

ages, and ground-truth disparity maps for 55 image pairs in 65 is preferred during

the process. Piece-wise planar scenes include six images per set and a ground-

truth disparity map for left and right images. Since the feature vectors that are

fed to classifiers are derived from the images, only six images are required to gen-

erate a massive dataset. When patches are 7x7 in width and height, there are

8836 feature vectors for an image with dimensions of 100 x 100. Consequently,

nearly 900k feature vectors were generated from these six images. In addition,

each ground-truth disparity map is scaled by an eightfold factor.

The dataset is divided into train and test sets, each of which contains four and

two images, respectively. Using the training images, train and validation features

with their corresponding labels are generated. Using the test images, test features
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and their corresponding labels are generated. The number of trains, validation

examples, and sample tests is listed in the table 3.4.

Figure 3.4: Dataset Details

c) Experimental Results:

Various machine learning and deep learning method performances are compared

in order to identify the optimal classifier. There are two distinct methods for

constructing training and testing datasets’ features. There is an additional method

used to generate feature vectors distinct from absolute differences between patches.

This is accomplished by directly flattening and concatenating the left and right

patches without applying any operation. Therefore, it is intended to determine

if these patches can be distinguished on their own. As anticipated, these types

of features are not particularly explanatory, so classifiers struggled to determine

whether the given vector represents a positive pair or a negative pair. It is possible

to view the utilized classifiers and their respective performance.

• Multinomial Naive Bayes

Training begins with the Multinomial Naive Bayes method. As this is a binary

classification task, there are only two classes to predict: positive or negative,

indicating that the feature vector is composed of positive patches (similar or the

same) or negative patches (dissimilar). Consequently, there are two parameters to

estimate using maximum a posterior probability θy. In addition, the parameters

are estimated using a modified version of maximum likelihood:

θ̂yi =
Nyi+α

Ny+αn
(3.3)
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Here α is set to 1 to avoid the error associated with zero-occurrence examples.

This classifier is not particularly effective. The reason for these outcomes is that

the Multinomial Naive Bayes algorithm considers the features as the count of

occurrences of that feature across the entire dataset. There is no Multinomial

assumption because the features in this dataset are computed as the absolute

difference between the positive and negative patches.

• Gaussian Naive Bayes

The second classifier to be trained in the Gaussian Naive Bayes classifier. In

contrast to the Multinomial assumption, here it is assumed that the features are

normally distributed, as explained below. Here, the parametersµ and σ parameters

are estimated.

θ̂yi =
Nyi+α

Ny+αn
(3.4)

Since the features range from 0 to 255, they are likely to be Gaussian distributed

across the entire dataset. Accordingly, this model achieves higher scores than the

Multinomial model, as shown in Figure 3.6.

MSE = 1588 demonstrates that when the model is applied to the stereo method

as a similarity measurement checker, it does not produce particularly good results.

To increase the scores and improve the disparity map, various stereo parameters,

such as the number of disparities, are utilized. However, the best MSE is obtained

by using a block size of 7 and a number of differences of 16.

• Decision Tree

A Decision Tree is trained with the same training set and has partitioned the

tree in a manner that allows it to generalize effectively. The Gini index measures

the impureness of the nodes. Entropy was also used as a measure of impurity,

but there was no significant performance difference, so experiments are conducted

using the Gini index. Furthermore, since the dataset created with a patch size of
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7 contains 49 features, maximum depth or maximum feature-like constraints are

not applied. After training, the tree’s depth is 20 and there are 231 leaf nodes.

The Decision Tree model performs better than the Multinomial Naive Bayes model

but similarly to the Gaussian Naive Bayes model. In contrast to these models,

however, Decision Tree generalizes better than the others. Consequently, this

model outperforms the others based on the disparity map perspective. As de-

picted in the figure below, the disparity map computed using the Decision Tree is

comparable to the ground truth and exhibits less MSE than other methods.

• Logistic Regression

Logistic regression is an additional linear classifier utilized in experiments to pre-

dict the dissimilarity between image patches. This probability for a given class A

is calculated as follows:

P (Y |X) = exp(ω0+ΣωiXi

1+exp(ω0+ΣωiXi)

ωt+1
0 ← ωt0 + η

∑
yj − P (Y j = 1|xj, ωt)

ωt+1
i ← ωti + η

∑
xjiy

j − P (Y j = 1|xj, ωt) for i = 1, ..., d

(3.5)

where η is the learning rate of the gradient descent algorithm.

• AdaBoost

AdaBoost (short for Adaptive Boosting) is an algorithm that combines multiple

weak classifiers to create a single robust classifier. AdaBoost is an iterative algo-

rithm that trains a single classifier type on a dataset. Throughout the evaluations,

AdaBoost Classifier accessed the scikit-learn library. The weak classifier chosen

for the AdaBoost ensemble is a one-depth decision tree. This signifies that, given

the 49 feature vectors from the patches of size 7, the Adaboost classifier selects
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the single feature vector that best distinguishes positive and negative pairs and

builds an ensemble based on the errors of the previous classifiers. The AdaBoost

classifier’s hyperparameters are the learning rate (lr) and the number of estimators

(ne). A higher learning rate correlates to a greater reduction in the contribution

of each weak classifier, whereas an increase in the number of estimators correlates

to an increase in the complexity of the classifier.

Given various sets of hyperparameters, the table below illustrates the performance

of the AdaBoost Classifier in distinguishing between positive and negative pairs.

Figure 3.5: AdaBoost Hyperparameters

The performances of the employed ML algorithms on the same dataset can be seen

in the tables below:

Figure 3.6: Comparative Performances of the Employed ML Algorithms

Figure 3.7: MSE of the Employed ML Algorithms

The performance differences between the algorithms can be seen better in the

figures below:
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Figure 3.8: a) Ground Truth, b)Naive Bayes c)Gaussian Naive Bayes
d)Logistic Regression e)Decision Tree e)AdaBoost

3.1.2.2 Convolutional Neural Network Approach

Up until this stage, every feature has been hand-crafted using absolute differences.

Although these characteristics appear to be discriminatory, they help distinguish

positive pairs from negative ones, whereas the computed disparity maps are less

promising. Consequently, following all of these studies and experiments, neural

network-based approaches are also utilized to allow the network to generate its

own features. Thus, the application of convolutional techniques to the stereo

vision problem is investigated. Fully Convolutional Neural Network (CNN) and

Densely Connected Convolutional Neural Network methods are used in the scope of

the experiments, with the results of the Densely Connected Convolutional Neural

Network presented below because they are more lucid.

• Densely Connected Convolutional Neural Network

The primary objective of this method is to use convolution layers to generate robust

features from stereo image pairs, which are then utilized within a cost function to

compute the disparity map. To achieve this, typically multiple convolution layers

are employed, and the resulting feature maps are then utilized within dense layers

[39] or fed directly into the cost function, such as cosine similarity [40].
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Similar to previous approaches, the first method expects a pair of patches as input,

computes the feature maps on these patches, feeds the computed feature maps into

a linear layer, and then outputs through a single neuron after applying Sigmoid

to indicate whether or not these patches are similar [39]. This method is trained

on the same dataset used to train other approaches. However, the model has not

made any progress during training. There is no specific reason why the model

did not acquire any knowledge. It is possible that the model described in the

paper was not properly implemented, or that some of the hyperparameters were

incorrectly configured. Consequently, it was unable to obtain meaningful results

using this method.

After these failures, the other approach described in [40] is thoroughly investigated.

Similar to the paper, the network is implemented with 5 consecutive convolution

layers, with the output of each layer connected to the subsequent layers, as a

DenseNet [41]. Convolution layers consist of various numbers of 3x3 kernel-sized

filters ranging from 64 to 256. In addition, TanH is used as an activation function

instead of ReLU because experiments [42] have demonstrated that TanH produces

superior results. The overall model structure is depicted in the figure below, which

is derived from [40].

Figure 3.9: Densely Connected Convolutional Neural Network from FC-
DCNN: A densely connected neural network for stereo estimation by Dominik

Hirner and Friedrich Fraundorfer

In addition, a post-processing method is defined for applying to the computed

disparity maps in order to remove noises and improve the accuracy of the maps.
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A median filter with a 5x5 kernel is applied to the computed disparity map to

eliminate the salt-and-pepper noises caused by undefined disparity points.

To evaluate the performance of this CNN model on different data, another dataset

containing images collected from the more recent Middlebury sets was created. In

contrast to the previous dataset, this one includes 13 training images, 2 validation

images, and 3 testing images. This dataset contains images with greater width

and height than the previous ones, which had a width of 659 pixels and a height

of 497 pixels. In addition, the lighting conditions of these images differ from those

of the preceding images; consequently, it is a bit difficult to find corresponding

features on the left and the images due to this light difference.

The model, a densely connected convolutional neural network, is trained multiple

times on datasets created with varying patch size and Oneg parameters, another

hyperparameter associated with negative patch locations. All training sessions

lasted nearly 50 epochs and ended after the validation loss was not reduced three

times. Since each model is only created and stored once, the training, validation,

and test data are identical for all models. Consequently, it makes sense to compare

the scores of the models.

On the same training set, pairs of patches measuring 7x7, 11x11, and 21x21 are

used to train the models. In addition, the values 20 and 4 are selected from the

aforementioned ranges for the Oneg value. After training with these parameters

according to the training procedure described above, mean squared error (MSE)

and 2 point-error (2-PE) scores on the validation set are computed as shown in

the table below. The 2-PE score is the proportion of misclassified pixels, where

the difference between each pixel in the computed disparity map and the ground

truth disparity map is greater than two-pixel values.
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Figure 3.10: Patch Size Effects on MSE and PE

This model was trained using the previous dataset, which was comprised of 7x7

patches; (O neg) was chosen based on the dissimilarity score. Additionally, the

model is trained for 46 epochs and terminated according to the same early stop-

ping criteria. As shown in the figure below, the computed disparity map is vastly

superior to those produced by the previous method. In addition, MSE is sig-

nificantly lower than all previous methods. Therefore, the convolutional neural

network approach outperforms hand-crafted feature-based approaches by a wide

margin.

Figure 3.11: CNN Performance on the Input Image where 2-PE=0.39,
MSE=14.53

These comparative analyses demonstrated that hand-crafted methods with ma-

chine learning classifiers and one of the most popular deep learning techniques,

CNN, produce outputs with varying efficiencies due to their structures and hy-

perparameter settings. The Densely Connected Convolutional Neural Network

method is used to compute the disparity map of the terrain images captured by

the UAV in the scope of the thesis experiments, as the results indicate that CNN

yields the most accurate and efficient results with the least amount of error.
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3.1.3 Structure from Motion Technique for Depth Recon-

struction of Terrains

Structure from motion is another technique for estimating the 3D structure of

a terrain or an object using 2D images captured by a monocular camera from

multiple angles or by multiple monocular cameras with known relative positions.

Due to the restriction between the baseline and the UAV height, stereo cameras

cannot be used to estimate the depth beyond a certain height during surface

depth analysis. Consequently, a depth analysis was conducted using the monocular

camera on the quadrotor, which was in motion using the structure from motion

technique.

Figure 3.12: Terrain Depth Reconstruction with Structure from Motion

The steps of Structure from Motion (SfM) closely resemble the stereo vision depth

reconstruction method. It also follows feature extraction and matching steps and

then finds fundamental and essential matrices respectively. This step also finds the

intrinsic and extrinsic parameters of the camera. Then relative camera or image

poses are estimated using an essential matrix. The triangulation procedure then
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proceeds according to the geometric epipolar structure. Bundle adjustment, which

is a technique for reconstructions, is the final step prior to obtaining the outputs.

The most distinguishing characteristic of this technique is that images are cap-

tured by moving the camera. That’s why, the operation is performed by taking

into account the camera location and orientation, and parameters. The most

important step in camera pose estimation is to determine the intrinsic and extrin-

sic parameters of the camera. These parameters are obtained by calibrating the

camera.

a) Camera Calibration

The cameras can be calibrated using two distinct methods, the first of which

involves using the projection matrix and estimating the intrinsic and extrinsic

parameters of the camera after applying the necessary filters and determining the

pixel coordinates and world coordinates, and the second of which involves using

the Caltech Camera Calibration Toolbox. In the following figure, it is possible to

see the geometric logic behind the camera calibration process visually. Camera

calibration is necessary for us since it provides to convert lengths that are in form

of pixel to metric information.

Figure 3.13: Camera Calibration Geometric Approach



Terrain Analysis and Topographic Map Building for Heterogeneous Robot
Systems 61

As can be seen in the figure above, there are three different coordinate systems that

are needed to deal with this. These coordinate systems are the World coordinate

system shown by [Xω;Yω;Zω]camera coordinate system that is represented by

[XC ;YC ;ZC ] and finally, the pixel coordinate frame which is more different than

other two systems since it is a 2-dimensional system, that seen by [u; v] In the

algebraic relation between them, there exists extra columns and rows to make it

matrix multiplications possible.

On the other hand, there are some internal and external parameters that affect the

performance and working principle of the calibration operation. These parameters

are represented inside the matrices which are called intrinsic and extrinsic param-

eter matrices. Consequently, the matrix is called a camera projection matrix.

As a first step of both of the operations, it is created a precise calibration rig

(3D calibration object), and taken pictures of 2 checkerboards stuck on the wall

perpendicular to each other. So, the obtained 3D checkerboard view is used to

associate a world coordinate system with the calibration rig and determine the

metric (in mm) world coordinates of all the corner points on the rig (both planes)

using simple geometry. After taking pictures of the calibration rig, it is adjusted

in an editor to get rid of its background since it may make noise and decrease the

efficiency of the operation. For the calibration rig, 2 pieces 10x7 square where one

edge of the square is 25mm, are used.

Figure 3.14: Pure Checkerboard
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After that, it is defined a reference frame to clarify the relationship between the

corners’ pixel coordinate values and world coordinate values. However, in order to

make this translation, it is also required to find camera coordinate system values

with intrinsic and extrinsic parameters. Then it is applied the Harris Corner

Detection Algorithm to detect the corners of both sides of used checkerboards.

Figure 3.15: Assigned Coordinates on Checkerboard

Here, it is also important to mention that is selected 6 different corners to create at

least 11 equations because of there are 11 DoF in intrinsic and extrinsic parameters

as the details are explained in the following section. The pixel coordinates of

the selected corners already can be seen in the figure above, but their real-world

coordinates of them, calculated based on the length of a one-unit square edge, are

given in the following table.

Figure 3.16: SfM

In order to see the relation between the coordinates of a physical object in the pixel

coordinate, it is necessary to find the intrinsic and extrinsic parameters. However,

it is also pretty important to know which of them should be found first when there
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is no clear information regarding any exact knowledge except world coordinates

and pixel coordinates. Before go more further, it is quite important to see the

general matrix relation between these coordinates.

p = K[R|T ]Pω
p = KPc

Pc = [R|T ]Pw

(3.6)

where K is intrinsic, R and T are extrinsic parameters matrices and they can be

expressed like;

γ


u

v

1

 =


α θ u0

0 β v0

0 0 1



Xc

Yc

Zc

 (3.7)

γ


u

v

1

 =


α −αcosθ u0

0 β/sinβ v0

0 0 1



Xc

Yc

Zc

 (3.8)

where θ is the skew angle, and α = kuf and β = kvf where ku and kv are sensor

scales for the pixel-size in both of the dimensions while f is focal length.

The focal length of the camera can also be used to make transformations between

the camera coordinate and pixel coordinates. However, in this question, since it

is known the pixel and real-world coordinates of selected corners, the focal length

can be found and go on to estimate other important parameters which are α, β, θ.

The results can be demonstrated by using simple relation between camera and

image coordinates;

u = f Xc

Zc
v = f Yc

Zc
(3.9)



Terrain Analysis and Topographic Map Building for Heterogeneous Robot
Systems 64

The extrinsic parameters of the camera can be represented in matrix form such as

the following; 
Xc

Yc

Zc

1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1




Xw

Yw

Zw

1

 (3.10)

where [r11...r33]3x3rotation matrix and matrix and [tx; ty; tz] is transition matrix.

When it is combined both of these parameter matrices in a single form, the fol-

lowing expression can be obtained:

γ


u

v

1

 =


α −αcosθ u0

0 β/sinβ v0

0 0 1



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz



Xw

Yw

Zw

1

 (3.11)

It is called the first two matrices as a single form matrix M, and then it is tried

to estimate these 11 unknown parameters, where it is required to have at least

6 corner points that give 12 equations. At that point how much the number of

equations is higher than the number of the unknown parameters, the solution

matrix becomes that much more accurate. Here, when the matrix M is written

into the equation:

γ


u

v

1

 =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 1



Xw

Yw

Zw

1

 (3.12)

M =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 1

 (3.13)

In this point, the values of the matrix M can be computed by using selected

corners’ world frame and pixel frame coordinates. During the process, the least
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square estimation method is used to estimate the calibration matrix. In light of

this purpose, the equation that should be followed can be seen below:

QM = 0

At that level, firstly, it is performed SVD then QR factorization is made.

Once it has determined M, it is possible to recover the intrinsic and extrinsic

parameters by remembering that:

M = K(R|T )


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

 =


αu 0 u0

0 αv v0

0 0 1



r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

 (3.14)


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

 =


αr11 + u0r31 αr12 + u0r32 αr13 + u0r33 αt1 + u0t3

αr21 + v0r31 αr22 + v0r32 αr23 + v0r33 αt2 + v0t3

r31 r32 r33 t3


(3.15)
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Then the camera matrix M can be represented by intrinsic and extrinsic parameters

such as:

M =


αrT1 − αcotθrT2 + u0r

T
3 αtx − αcotθty + u0tx

β
sinθ

rT2 + v0r
T
3

β
sinθ

ty + v0tz

rT3 tz

 (3.16)

where the expression in the first column consists 3 by 3 matrix depending on

various α values like:

ρ


αT1

αT2

αT3

 =


αrT1 − αcotθrT2 + u0r

T
3

β
sinθ

rT2 + v0r
T
3

rT3

 (3.17)

At the end of these operations, the matrix M is found as:

Other than that, it is quite possible to achieve to intrinsic and extrinsic parameters

of the camera. According to the matrix and the estimated values, the intrinsic

parameters can be found as:

Then the extrinsic parameters which are the rotation and the transition matrices

can be found as:

The error parameters became as:

error = 1.0e+ 3[0.50530.71961.51821.6097]
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Thanks to the calibrated camera, pixel values can be converted to metric values.

After that, unique features that are invariant under radiometric and geometric

changes in the images taken are extracted and can be detected from different

angles. Common features extracted from each input image using methods such

as SIFT key points, and panorama stitching, are matched with feature matching

operation.

Figure 3.17: SfM

b) Pose Recovery of a Calibrated Camera Through Essential Matrix

Using N-Point Algorithm

SfM differs from Stereo Vision in that it estimates the camera’s position during

processing. For camera pose estimation, the fundamental matrix and N-point

algorithm are used. It is difficult to mathematically represent relative pose es-

timation because it is non-convex and notoriously plagued by local minima and

ambiguous solutions. Uncalibrated and calibrated cameras are typically charac-

terized for this purpose by a fundamental matrix and an essential matrix, which

give the geometric relationship between selected features on input images.
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Initially, it is necessary to identify the points that correspond to the same loca-

tions of the objects in the images but have different coordinates due to camera

rotation and transitions. These parameters are also known as extrinsic parameters

of the camera, where the rotation matrix and transition matrix each contain three

unknowns for a total of six degrees of freedom. To solve these six unknowns, at

least six different equations must be derived from at least six different correspond-

ing points. However, sometimes in the literature the transition is taken in a pixel

frame and its degree of freedom is reduced to 2 due to the fact that the pixel frame

is used in 2D images. Due to the scale ambiguity of transition, calibrated cam-

eras have five degrees of freedom (DoF) for the relative pose, including three for

rotation and two for transition. With the exception of degenerate configurations,

5-point correspondences suffice to establish the relative pose. Given five-point

correspondences, the five-point methods employing essential matrix or rotation

matrix parametrization can efficiently determine the relative pose. The previously

mentioned solvers are referred to as minimal solvers. When point correspondences

contain outliers, minimal solvers are typically integrated into a hypothesize-and-

test framework, such as RANSAC, in order to identify the solution corresponding

to the maximal consensus set.

Figure 3.18: Geometric Relation
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As can be seen given Figure 3.18, P represents a unique reference point which can

be seen in all given camera positions O1, O2, and O3. In this stage, triangulation

is applied to Epipolar geometry. The pixel coordinates of the point P on images

captured from various angles are represented by Xi and the rotation and transition

between the camera locations are given as (Rij, Tij). After the scaling factor is

taken into account the pixel coordinates of the selected feature P give an equation

such as below:

λ2X2 = R12λ1X1 + T12

where the λ2, λ1, R,and T are unknowns and x1 and x2 are measurements. From

this Euclidean transformation, it is possible to find the rotation, transition, and

depth that reprojection error is minimized form with the following equation. This

step is also called Bundle adjustment.

In light of this knowledge, it is possible to represent the algebraic elimination of

depth:

XT
2 T̂RX1 = 0

where the essential matrix E is equal to T̂R. When the procedure followed up for

the input images given in Figure 3.17, the obtained results can be seen as follows:

Figure 3.19: SfM Result
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In addition, there is an additional technique known as multi-view stereo. This

technique has characteristics of both stereo vision and SfM, as it attempts to

create a 3D model from multiple images of an object or region. However, when

SfM estimates camera location and orientation in addition to camera parameters,

the multi-view stereo technique assumes that the intrinsic and extrinsic camera

parameters are known from the start and creates a 3D cloud model.

3.2 Aerial Image Stitching by Using Feature-based

Techniques

Aerial image stitching has been used to combine UAV image captures to enable

path planning over a larger area. Various feature-based techniques were evaluated

during the experiments.

Feature-based stitching techniques decode and match the similarities between the

two images. After this matching, the unmatched features are eliminated and

homography estimation is conducted. The target image’s orientation is changed

in order to merge with the reference image, and then the target image and reference

image are merged. This progress can be expressed as:

LPW = ||P (IA)− P (H(IB))|| (3.18)

where IA and IB represent the full reference and target images, function P () ex-

tracts an image patch from the image, and function H() is used for warping the

target image to align with reference image using estimated holography. There

are numerous studies aimed at enhancing the efficacy of functions P () and H().

In some studies, the images are scanned with patches of varying sizes, while in

others, only half of the reference and target images are scanned, as the overlap-

ping section is typically located in these regions. All of these methods, however,
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require a sufficient number of extracted image features in order to function prop-

erly. Therefore, it is crucial that images contain overlapping regions and distinct

features that can be distinguished from the primary subject matter. During the

experiments, images captured by an unmanned aerial vehicle (UAV) are stitched

using feature-based techniques, and the outputs are obtained successfully with the

exception of the following areas:

Figure 3.20: Feature-based Stitching Algorithm Output

In some instances, however, the feature-based stitching techniques do not function

properly. These techniques have not been able to produce satisfactory results when

the UAV is flying over a completely grassy area with a distinct background color,

or when there is a small overlapping area and insufficient image features match.
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Figure 3.21: Fail of Feature-based Stitching Algorithm

As shown in the figure below, the feature-based image stitching algorithm identified

the points of interest on the tree’s shadow. Although there is a way to pass through

large regions, the method matches the wrong features of the reference and target

images because it was unable to identify any clear reference pairs that are distinct

from the image’s main basis.

Figure 3.22: Assigned Key-points Representation
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3.2.1 Aerial Image Stitching with IMU Data of a UAV

Image stitching techniques are examined under two main headings: feature-based

methods and direct methods, as described in the preceding sections. In addition,

the majority of published research focuses on feature-based techniques and their

development. Regardless of the camera position, each of these techniques is ac-

complished by identifying unique key points in the image. It is crucial for image

pairs to share a common area for this reason. In instances where the background

is a single color, there is an insufficient number of unique reference key points, or

there is insufficient overlapped space between image pairs, these algorithms do not

function adequately and may produce inaccurate results.

In the experiments conducted for the thesis, a quadrotor equipped with an IMU

takes images of the surface. Thanks to the IMU and the marker at the takeoff

point, the quadrotor is able to record its position in real-time while taking images.

In the proposed method, the relative positions of the images captured using these

records were determined, and the images were then stitched. In this method, no

image features were extracted as in feature-based techniques, nor were the pixel

intensities of the images deciphered as in the direct method, nor was the similarity

between the images investigated. Therefore, the proposed technique should be

evaluated independently from these two primary topics.

Figure 3.23: Proposed Technique for Image Stitching
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The IMU data utilized by the proposed method includes position and attitude

information for the quadrotor’s x-y plan. The ultrasonic sensor located beneath the

UAV provides information regarding its altitude. In addition, the UAV is equipped

with a calibrated onboard camera, and both extrinsic and intrinsic parameters are

known. In light of this information, the stitching procedure is carried out as

follows:

Figure 3.24: UAV Captured Images for Image Stitching

As shown in the figure above, images were captured from multiple points, including

P0, P1, and P2, and the position of the UAV at the time the images were captured

was recorded. This data includes altitude, x-y position information, and yaw and

pitch axis changes.

a) Z-axis Data – Altitude:

The scale of the received images is determined by the height of the UAV at the time

the images were captured. Regardless of altitude, the UAV camera consistently

captures images with the same resolution. This causes the image’s objects to

expand or contract as the height changes. If the UAV heights are different at

Pk and Pk+1 moments, this effect can be eliminated by changing the height and

multiplying the intrinsic parameters of the image captured at a low altitude.
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Figure 3.25: IMU Altitude Data Usage in Image Stitching

b) X-Y axes Data – XY Plane Position:

The distance between the waypoints where images are captured determines how

far and in which direction the received images are Decoupled. This displacement

amount is also multiplied by the camera’s parameters and is measured in pixels.

For this undertaking: Pxt
Pyt

 = K
[
R|T

]xPk+1
− xPk

yPk+1
− yPk

 (3.19)

where Pxt and Pyt represents the amount of the target image’s offset.

Figure 3.26: IMU X-Y Position Data Usage in Image Stitching
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c) Yaw Axis Motion Effect:

The change in the yaw axis corresponds to the angle of the UAV’s heading. There-

fore, when the UAV turns in a different direction, the images it captures also rotate

accordingly. If there is a difference in the yaw axis when capturing images at P k

and P (k+1) points, the target image must be rotated on the z-axis by the same

amount.

Figure 3.27: Yaw Axis Motion Effect on Image Stitching

d) Pitch Axis Motion Effect:

In some instances, the quadrotor may capture images while in motion. Therefore,

when the gimbal is not in use, the image view lacks perspective. The diagram below

depicts the differences in perspective of the same object in the same location when

viewed from different pitch angles.

Figure 3.28: Pitch Axis Motion Effect on Image Stitching
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In instances where the pitch angle is greater than zero, the captured images un-

dergo a skew perspective transformation prior to processing. The resulting cor-

rected image is used for stitching.

The images captured at the points P0, P1, and P0 depicted in Figure 3.24 are

stitched by following these steps in succession. The figure below shows the output

of the proposed stitching technique:

Figure 3.29: Result of Proposed Image Stitching Technique

Finally, Figure 3.30 shows the obtained result when the proposed method is ap-

plied to the images where the feature-based method stitched successfully as well.

Moreover, as shown in Figure 3.30, the results obtained are promising, except

for the parallax error caused by people walking into the frame while images are

being taken. In addition, the edges of the images become smoother, which im-

proves the image quality. Furthermore, Figure 3.31 shows the performance of the

proposed stitching technique on the image pairs which couldn’t be stitched by

the feature-based technique. In cases where the feature-based technique failed,

it is possible to observe that the proposed technique yields healthy results. The

obtained results indicate that IMU data can be used to stitch images and may

produce higher-quality results than feature-based techniques.
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Figure 3.30: Result of Proposed Image Stitching Technique with Parallax
Error

Figure 3.31: Result of Proposed Image Stitching Technique



Chapter 4

Image Based Motion and Path

Planning for Heterogeneous

Robot Systems Using Stereo

Vision

4.1 Image-based Path Planning Algorithm Us-

ing a UAV Equipped with Stereo Vision

In this section, a novel image-based path planning algorithm [43] developed us-

ing computer vision techniques is described, along with its comparative analysis

with well-known deterministic and probabilistic algorithms, namely A* and Prob-

abilistic Road Map algorithm (PRM). The depth of the terrain has a substantial

effect on the calculated path safety. In a two-dimensional image, craters and hills

on the surface cannot be distinguished. The proposed method makes use of a

UAV-created disparity map of the terrain. Several computer vision techniques,

including edge, line, and corner detection methods, as well as the stereo depth re-

construction technique, are applied to the captured images, and the disparity map

is used to determine the trajectory’s candidate waypoints. The initial and desired

79
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points are detected automatically using the estimation of marker pose and circle

detection techniques with the ArUco marker. After presenting the mathematical

model and vision techniques, the developed algorithm is compared to well-known

algorithms on various virtual scenes generated by the V-REP simulation program

and a physical setup generated in a laboratory. The outcomes are encouraging

and demonstrate the efficacy of the proposed algorithm.

Existing algorithms cannot provide an exact high-efficiency solution to the spec-

ified problem. Therefore, the primary motivation for this section is that there is

no algorithm that finds the shortest and safest path in a shorter amount of time

for a mobile robot on the ground by considering the features of the image form of

the map and the depth of the terrain.

The primary objective is also to implement the concept using computer vision

techniques alone. Since depth analysis is performed in this context using stereo

vision, the terrain is displayed from multiple angles, and the detection rate of pits

or hills that cannot be seen from a single angle is also increased.

In addition, one of the primary goals of developing a path planning algorithm

based on computer vision and basic geometric rules is to ensure that the devel-

oped algorithm finds the path more quickly than deterministic and more logically

(straighter) than probabilistic algorithms. The V-rep simulation environment has

been used to create the virtual scenes that are studied in accordance with these

objectives.

Figure 4.1: Virtual Scene 1 (V-rep)
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Figure 4.2: Virtual Scene 2 (V-rep)

Figure 4.3: Virtual Scene 3 (V-rep)

In addition to these three simulation-based scenes, the developed novel algorithm

and a selection of well-known pre-existing path planning algorithms are tested on

a laboratory-created real scene. A DJI Tello quadrotor autonomously captures

and transmits images of the actual scene to the base computer.
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Figure 4.4: Actual Scene (CVR Lab)

4.1.1 Employed Computer Vision Techniques and Results

The developed algorithm utilized the following computer vision (feature extrac-

tion) techniques, and calculated the path accordingly.

a) Edge Detection

Edges appear at the boundary between two distinct image regions. These algo-

rithms use a number of mathematical techniques to find edges, which are curves

in a digital image where the image brightness abruptly changes or, more formally,

contains discontinuities. One of the first order derivative edge detection filters

Canny (1st order) is employed as a pre-processing step in this context due to the

excessively noisy results produced by the corner and line detection methods. This

filter was specifically chosen due to its smoothing property.

During the process, since it is faced with highly noisy results from the corner

and line detection algorithms, it is implemented first and second derivative edge

detection filters which are Prewitt (1st order), Sobel (1st order), and Laplacian of

Gaussian (2nd order) as a pre-processing step.
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Figure 4.5: Edge Detection Filters

These filters are specially selected since they have smoothing effects as well. The

changes of the outcoming results on corner detection algorithm such as following:

Figure 4.6: Corner Detection Algorithm Outputs: Left Top Image: Without
Applying Any Filter, Right Top Image: After Applied Prewitt, Left Down

Image: After Applied Sobel, Right Down Image: After Applied LoG

b) Corner Detection

The corner detection algorithms follow similar steps until the completion of the H

matrix computation, which is a matrix whose elements are computed by different

combinations of image gradients. The eigenvalues of H matrix and the f value,

which can be computed as f = det(H)/trace(H), are used in comparison with
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predefined thresholds. The FAST corner detection technique is one of the quickest

feature extraction techniques, such as the difference of Gaussians (DoG) employed

by the SIFT, SUSAN, and Harris detectors. In its operating principle, a 16-pixel

circle, also known as the Bresenham circle, is utilized to classify the candidate

point p that remains in the circle’s center. Each pixel in the circle is labeled with

an integer from 1 to 16 in a clockwise direction, and the corner point is identified by

comparing the pixels of the two points. In this study, the FAST feature technique

is favored because it produces corners with less noise than the other techniques.

In the scope of the project, it is applied three different corner detection algorithms

which are Harris that is the most popular algorithm in this field, Kanade-Tomasi

Technique which is also called Minimum Eigenvalue Algorithm, and lastly the

FAST Features Method. These algorithms follow similar steps till the end of

the H matrix computation that is a matrix whose elements compute by different

combinations of image gradients as can be seen below:

H =

 ∑
I2x

∑
IxIy∑

IxIy
∑
I2y

 (4.1)

where the Ix and Iy are the image gradients of a window along x and y directions,

respectively. When these algorithms are applied to test scene 1, the outcoming

results becomes as follows:

Figure 4.7: Corner Detection Algorithm Outputs-After Found the Best
Threshold Values: Left Image: FAST Features, Middle Image: Harris Corner
Detection, Right Image: Kanade-Tomasi Algorithm (MinEigenValue Theorem)
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c) Line Detection

The line detection algorithm is one of the most crucial steps of the proposed

method, as it clarifies the obstacle’s borders. Despite the fact that the corners of

the obstacles were identified in earlier steps, they provide no information regarding

the boundary locations and directions. It is important to merge the corner points

according to a rule in order to give them meaning. Due to the presence of several

noisy corners in the input images, it is challenging to identify the right matches

that define the obstacle edges. In this stage, the Hough line detector is therefore

employed by specifying particular conditions for the head and tail nodes of the

lines. In the implementation, nodes are assigned a distance condition, and the

whole nodes inside the circular area whose radius smaller than the defined reference

distance are merged.

Figure 4.8: Hough Line Detection Algorithm Outputs

As can be seen figure above, the drawn lines clarified the obstacle boundaries suc-

cessfully, although the features of the UGV are also included as an obstacle. At

this point, it is possible to say that the image is segmented as terrain that the

robot can move and obstacles that the robot should stay far away from. Thereby,

at the end of the day, the line merging algorithm is used as also object recognition

(without assigning the names of the obstacles on top of them) and image segmen-

tation algorithms since the boundaries of the obstacles are defined and split from

the region where the UGV can move.
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d) Marker Detection

The ArUco marker is a synthetic square marker composed of a wide black border

and an inner binary matrix that determines its identifier (id). The black border

facilitates its fast detection in the image and the binary codification allows its

identification and the application of error detection and correction techniques.

The marker size determines the size of the internal matrix. For instance, a marker

size of 4x4 is composed of 16 bits.

Figure 4.9: The Used Marker in the Virtual and Real Setups

In the developed algorithm, a marker is placed on top of the UGV to automatically

detect the initial point without manual intervention. Since this technique provides

both the position and orientation of the object, ArUco marker is chosen. Figure

4.10, depicts the initial point locations for all test scenes, which were determined

using the marker mounted to the UGV. In these figures, the centroid of the de-

tected marker is shown by a red dot, and the beginning point, which is denoted

by a small blue square, is automatically found based on the red dot.
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Figure 4.10: ArUco Marker Pose Estimation of UGV in All Test Scenes Left
Top Image: Scene-1(V-rep), Right Top Image: Scene-2(V-rep), Left Down Im-

age: Scene-3(V-rep), Right Down Image: Scene-4 (Real Setup)

e) Circle Detection

The Hough circle detection technique is used to locate the target point, which is

likewise denoted by a circle in the scene similar to the usage goal of the marker

detection method. The Circle Hough Transform (CHT) is a fundamental feature

extraction technique used in digital image processing to detect incomplete circles

in images. The candidates for circles are generated by “voting” in the Hough

parameter space and then selecting local maxima from an accumulator matrix. A

circle can be characterized in a two-dimensional space as (x − a)2 + (y − b)2 =

r2, where (a, b) is the circle’s center and r is its radius. In 3D space, the circle

parameters can be identified via the intersection of several conic surfaces created

by 2D circle points. This procedure consists of two steps. First, the radius is fixed,

and then the optimal center of circles in a 2D parameter space is determined. In

the second step, the ideal radius in one-dimensional parameter space is computed.
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Since the algorithm can recognize another circular shape and assign it as a target

point, the maximum/minimum radius of circle and sensitivity value are defined as

hyperparameters:

Rmax = 40 Rmin = 10 Sensitivity = 0.9

The figure below illustrates the acquired outcomes.

Figure 4.11: Circle Detection (Desired Point Detection) Left Top Image:
Scene-1(V-rep), Right Top Image: Scene-2(V-rep), Left Down Image: Scene-

3(V-rep), Right Down Image: Scene-4 (Real Setup)

f) Stereo Depth Reconstruction

The terrain’s depth information is one of the pillars of the created path-planning

algorithm. The stereo vision algorithm makes it possible to assess the trajectory’s

slope and choose a direction with a gentle gradient. The initial stage in deter-

mining depth from stereo vision is breaking the images into positive and negative

patches by dividing the right and left images into patches. After the patches are
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separated according to their shapes, sizes, and relative geometries, the matching

operation initiates. There are various ways for matching stereo images, however

they can be grouped primarily into two main categories: area-based correlation

techniques and feature-based techniques. In the correlation method, the right and

left images are scanned pixel by pixel to identify relationships between the small

rectangular portions. In contrast, feature-based approaches strive to detect a cer-

tain class of feature between two images. After matching pixels from two input

images, all detected features are stored in a map known as a disparity map. If the

camera lens parameters are known, such as focal length f and baseline distance T

= 2l, the depth can be calculated from the disparity map. As can be seen in the

following equations, the position and specifications of the stereo camera system,

such as the properties of camera lens and the distance of the camera pairs, are

essential for calculating depth. Additionally, it is vital to capture adequate light

in an appropriate environment while avoiding reflection, transparency, and mirror

surfaces for high-quality results.

d = XL − xR = f(xp+l
zp

)− (xp−l
zp

) = 2fl
zp

⇒ zp =
2fl
d

(4.2)

The hyperparameters of the stereo depth estimation algorithm have a significant

impact on the output. These hyperparameters are referred as ω, which defines

the color map pixel value interval, and the window size utilized for pixel scanning.

High values of the window size affect the disparity map quality negatively, but

the processing time decreases. During the experiments, the shadow effect on the

results was minimized by comparing the two input images with different window

widths. Figure 4.12 shows the disparity maps of the test scenes and the associated

hyperparameter values. As seen in Figure 4.12, when the same hyperparameters

are used, the disparity map of the actual scene does not seem as good as those

of the other scenes. There are two primary causes for this problem. The first is

the image pairs that have been used: Since the autonomous UAV that is used to

capture images of the actual environment has a monocular onboard camera, the
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right and left images are taken after moving the UAV along an axis. The transition

of the UAV is taken as a baseline and the disparity map is generated under this

condition. However, since the image pairs in the stereo vision technique should be

aligned in the same direction, the unanticipated axis shifts that occur during the

transition of the UAV negatively influence the quality of the captured image pairs

and disparity map. The second reason is the impact on the environment. Due

to the fact that the surface of the terrain reflects the indoor lighting, a distinct

group of artificial colors appeared on the image. Despite the fact that the depth

estimate algorithm did not produce a satisfactory result in a real-world scenario,

the generated path planning algorithm operates without any issue since it takes

into account the corner spots discovered from the disparity maps.

Figure 4.12: Disparity Maps of All Test Scenes ω = 50,WindowSize = 10
Left Top Image: Scene-1(V-rep), Right Top Image: Scene-2(V-rep), Left Down

Image: Scene-3(V-rep), Right Down Image: Scene-4 (Real Setup)
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g) Line Intersection Algorithm

The line intersection method is the most essential aspect of the developed path

planning algorithm. After locating the corner points that come from the terrain

image and the disparity map, the best corner points should be identified as way-

points for use in building a trajectory by connecting them with straight lines. It

is also necessary to prevent any intersections with other lines that are drawn by

the Hough line detection method to detect the obstacle edges in the terrain. In

accordance with this approach, a line-drawing method is developed along with

a condition to avoid line intersection scenarios by utilizing simple geometrical

and analytical data. In Figure 4.13, a line intersection scenario is depicted. In

this diagram, the black line indicates the shortest path between the initial and

final positions when the line intersection requirement is deactivated. In addition,

point P1 represents a point on the trajectory, point P2 indicates a location on one

of the edge lines that intersects with the trajectory, and point P3 represents the

intersection point. Under these conditions, when the angles between the horizontal

axis and the blue and black lines are referred to as θ1 and θ2, respectively, the line

equations become:

L1 = P1 + λ1

cosθ1
sinθ1

 , L2 = P2 + λ2

cosθ2
sinθ2

 (4.3)

The intersection point P3 can be incorporated into the equations of L1 and L2:

P3 = P1 + λ1P3

cosθ1
sinθ1

 , P3 = P2 + λ2P3

cosθ2
sinθ2

 (4.4)

These equations can be solved simultaneously as:

P1 + λ1P3

cosθ1
sinθ1

 = P2 + λ2P3

cosθ2
sinθ2

 (4.5)
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Assuming the matrix is invertible, the equation can be expressed as follows:

λ1P3

λ2P3

 =

cosθ1 −cosθ2
sinθ1 −sinθ2

−1

(P1 − P2) (4.6)

The coordinates of the intersection point can be determined by substituting one of

the λ values found in preceding step into one of the line equations specified in the

first step. In this stage, the λ values act an important role in the selection of the

candidate way-points since their values between 0 and 1, refer to the intersection

of the lines.

Figure 4.13: Line Intersection Case in Scene 1
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4.2 System Identification of a Quadrotor Using

Onboard Vision System

System identification is a method that uses the input and output signals of the

system to construct mathematical model of dynamical systems. This method can

find the mathematical model where the input and output data fit in the most

appropriate way thanks to the linear and nonlinear models it contains. Moreover,

during this process, it can take into account different numbers of input and output

data, so it can also give satisfactory results on models with highly nonlinear and

complex structure, such as quadrotor.

Thanks to system identification, modeling of Black-box systems can be performed,

unknown parameters of grey-box systems can be estimated, or the controller de-

signed for a dynamic system can be optimized. In the experiments carried out

within the scope of this thesis, a black-box model was made using the onboard vi-

sion system, IMU data and motor speeds of the DJI Tello quadrotor and a separate

grey-box model was made using the known system parameters. The position and

attitude responses of the obtained models were compared using the same inputs

to evaluate the consistency of the onboard vision system.

Figure 4.14: Marker



Image Based Motion and Path Planning for Heterogeneous Robot Systems Using
Stereo Vision 94

4.2.1 Quadrotor Modeling

Quadrotors are highly nonlinear and underactuated systems since although there

are just 4 control inputs which are speeds of motors, they are able to move 6

degrees of freedom which are 3 translational and 3 rotational axes. Due to the

complex structure when they move up on just the vertical axis without changing

other position states, their attitude states change since it is not possible to control 6

degrees of freedom with only 4 control inputs which are u(1), resulting in the thrust

of the four rotors; u(2), roll angle change so the difference of thrust between the

motors on the x-axis; u(3), thrust angle change so the difference of thrust between

the motors on the y axis; and lastly u(4), the difference between the clockwise and

counterclockwise rotors.

As mentioned in the previous paragraphs, the quadrotors are highly nonlinear sys-

tems and many various external and structural disturbances affect the dynamics of

the system such as aero-elastic effects, internal dynamics of the engines, and flex-

ibility of the wings. Since the disturbances make the equations hard to solve and

they are generally neglected by assuming as external noises that can be compen-

sated by the designed controller. However, since the system is still pretty complex

and highly nonlinear even after neglecting disturbances, sometimes some other

order reduction operations can be preferred by designers because of 12 different

states which are wanted to control which are x-y-z positions, orientation vector

(roll-pitch-yaw), rotational speeds (p, q, r), and linear accelerations. Hence, it is

necessary to make some assumptions to arrive at the systemic equations such as

the following:

• The quadrotor structure is rigid and symmetrical according to the center of

mass.

• The thrust and drag of each motor are proportional to the square of the motor

velocity.

• The propellers are rigid and blade flexibility is neglected.

• External disturbances are neglected.
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As noticed the equation of motion of the quadrotors occurs from various sub-

analyses. Translational kinematics is the first of them. It is necessary to define a

rotation matrix to transform variables between global and local coordinate axes,

and the matrix can be computed as follows:

xb = Rb
GX

G = R(ϕ)R(θ)R(ψ)XG

R(ψ) =


cψ sψ 0

−sψ cψ 0

0 0 1

 R(θ) =


cθ 0 −sθ

0 1 0

sθ 0 cθ

 R(ϕ) =


1 0 0

0 cϕ sϕ

0 −sϕ cϕ



Rb
G =


cψcθ sψcθ −sθ

cψsϕsθ − cθsψ sψsϕsθ cθsϕ

cϕcψsθ sψcϕsθ cθcϕ


XG = RG

b x
b = R(ϕ)TR(θ)TR(ψ)Txb = (Rb

G)
Txb

RG
b =


cψcθ cψsπsθ − cϕsψ cϕcψsθ + sϕsψ

cθsψ sψsϕsθ + cϕcψ sψcϕsθ − sϕcψ

−sϕ sϕcθ cθcϕ


(4.7)

whereXG, Y G, ZG are the global North, East, and Down position of the quadrotor;

xb, yb, zb are the local North, East and Down positions of the quadrotor in the body

frame; ϕ, θ, ψ are roll, pitch, and yaw angle; and p, q, r are roll, pitch and yaw rates

respectively.

Furthermore, the rotational kinematics, which represents the angular rates be-

tween body frame and Euler angles that are defined in the middle of coordinate

frames, are important as much as the transitional kinematics since the calculations

of p, q, r states come from here:
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ω =


p

q

r

 = R(ϕ)R(θ)


0

0

ψ̇

+R(θ)


0

θ̇

0

+


ϕ̇

0

0

 = S


ϕ̇

θ̇

ψ̇



S−1 =


1 sϕtθ cϕtθ

0 cψ sϕ

0 sϕ
cθ

cϕ
cθ


ϕ̇

θ̇

ψ̇

 =


1 sϕtθ cϕtθ

0 cψ sϕ

0 sϕ
cθ

cϕ
cθ



p

q

r



(4.8)

After all these kinematics computational analyses, the motion equations of the

motors are important to go one more step ahead. The quadrotors are a member

of the electro-mechanical systems family and have four rotors whose two-diagonal

turn CCW and the others in opposite directions. Hence, there is a relationship

between the force and torque created by the motors. Therefore, it is necessary to

find the relation between these two terms in terms of current and voltage.

τ = Kt(I − Io)

V = IRm +Kvω

Pm = (τ+KtIo)(RtIoRm+τRm+KtKvω)
K2

τ

(4.9)

where τ is motor torque, Kτ is torque constant, I, I0, V, Rm are the input current,

current without load, voltage that feeds motor, and resistance of the motors re-

spectively. Also, Kv, ωandPm represent the back EMF coefficient, angular velocity

of motor and motor power.

For simplification, the motor resistance and no-load current assumed as zero and

the relation between power and torque can be represented as equation below:

Rm ≈ Io ≈ 0

Pm = Kvτω
Kt

(4.10)

Herein, it is quite important to clarify that all these calculations are referring to
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optimum usage style, which is hover position, of the quadrotor; since the power

consumption and the performance of the motors are directly and easily affected

according to the ordered high performance required missions. From these equa-

tions, it is easier to describe the equation which gives the relation between motor

speed and resultant force of thrust where Ph, T, Vh, ρ, AandKT represent power

to hover, thrust force to hover, velocity at hover, air density area swept by the

propellers and thrust coefficient respectively.

Ph = Tvh

T = 2ρAv2h

τ = KτT

Pm = Kvτω
Kt

= KvKτTω
Kt

(4.11)

Ph =
T 2

√
2ρA

T = [(KvKτ
√
2ρA

Kt
)ω]2

T = KTω
2

(4.12)

where m is the mass of the quadrotor, g is gravity acceleration, Fg is a gravity

force in the global frame, Fd is the drag force, FG
T and F b

T are total thrust force

in the global frame and body frame, RG
b is rotation matrix of the body to the

global frame, Fi is thrust force of each motor, and finally, Kdx, Kdy, Kdy are the

drag coefficients according to coordinate axes.

Furthermore, in order to achieve the equation of motion of a quadrotor, it is nec-

essary to derive transitional and rotational dynamics equations as well. The cal-

culations up until this part were standard for almost all different types of systems.

However, the dynamics equations are directly bonded to the physical specifica-

tions of the systems. There are some new notations that are used during these

computational analyzes such as the following:



Image Based Motion and Path Planning for Heterogeneous Robot Systems Using
Stereo Vision 98

mẌG = Fg − FG
T − Fd

ẌG =


ẌG

Ÿ G

Z̈G

 Fg =


0

0

mg



Fd =


Kdx 0 0

0 Kdy 0

0 0 Kdz



ẊG

˙Y G

ŻG


(4.13)

FG
T = RG

b F
b
T F b

T =
∑4

i=1 Fi

FG
T = RG

b

∑4
i=1 Fi =


0

0

Kτ

∑4
i=1 ω

2

 (4.14)

where Jb, Jm, Jr, Jx, Jy, Jz are moment of inertia of quadrotor, motor, rotor, quadro-

tor body in xb, yb, andzb respectively. Furthermore, τg is gyroscopic effect torques,

R is propeller radius, and l is length of motor arm.

After derivation of the transitional dynamics, the rotational dynamics which is the

rotational equation of motion which represents the motion between the center of

the quadrotor and not the center of the global frame different than the previous

computations. The calculation steps of the rotational dynamics are relatively

harder than the other operations since this equation is comprised of three terms

including aerodynamic effects and motor torques. In order to try to achieve the

result, it is required to take into account the gyroscopic effects and rolling, pitching,

and yawing torques. Also, the drag force should be taken into account as well, but

the force can be neglected sometimes for simplicity.

Jbω̇ = τm − τg − ωJbω

Jb =


Jx 0 0

0 Jy 0

0 0 Jz

 ω̇ =


ϕ̈

θ̈

ψ̈

 (ωJbω) =


θ̇ψ̇(Jx − Jy)

ϕ̇ψ̇(Jx − Jz)

θ̇ϕ̇(Jy − Jz)

 (4.15)
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Jmω̇ = τm − τψ ω̇ = 0

τψ = 1
2
RρCDA(ωR)

2 = Kdω
2

τm =


τϕ

τθ

τψ

 =


lKt(ω

2
4 − ω2

2)

lKt(ω
2
1 − ω2

3)

Kd(ω
2
1 − ω2

2 + ω2
3 − ω2

4)



τg =


θ̇

−ϕ̇

0

 Jr∑4
i=1(−1)i+1ωi =


Jr (̇θ)(ω1 − ω2 + ω3 − ω4)

−Jr (̇ϕ)(ω1 − ω2 + ω3 − ω4)

0



(4.16)

By solving these equations in a line, it is possible to achieve the equation of motion

of the quadrotor such as following:


ẊG

Ẏ G

ŻG

 =


cψcθ cψsπsθ − cϕsψ cϕcψsθ + sϕsψ

cθsψ sψsϕsθ + cϕcψ sψcϕsθ − sϕcψ

−sϕ sϕcθ cθcϕ



ẋb

ẏb

żb


ϕ̇

θ̇

ψ̇

 =


1 sϕtθ cϕtθ

0 cψ sϕ

0 sϕ
cθ

cϕ
cθ



p

q

r


(4.17)



ẌG

Ÿ G

Z̈G

ϕ̈

θ̈

ψ̈


=



1
m
[−(cϕcψsθ + sϕsψ)F b

T −KdxẊ
G]

1
m
[−(cϕsψsθ − sϕcψ)F b

T −KdyẎ
G]

1
m
[−(cϕcθ)F b

T −KdzŻ
G] + g

1
Jx
[(Jy − Jz)qr − Jrq(ω1 − ω2 + ω3 − ω4) + lKT (ω

2
4 − ω2

2)]

1
Jy
[(Jx − Jz)pr − Jrp(ω1 − ω2 + ω3 − ω4) + lKT (ω

2
1 − ω2

3)]

1
Jz
[(Jx − Jy)pq −Kd(ω

2
1 − ω2

2 + ω2
3 − ω2

4)]


(4.18)

From here, it is possible to write the matrix in terms of the control inputs such as

below:
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ẍ = U1

m
(cϕsθcψ + sϕsψ)

ÿ = U1

m
(cϕsθsψ − sϕsψ)

z̈ = U1

m
cϕcθ − g

ϕ̈ = U2

Jx
+ θ̇ψ̇ Jy−Jz

Jx
− Jr

Jx
θ̇(ω1 − ω2 + ω3 − ω4)

θ̈ = U3

Jy
+ ϕ̇ψ̇ Jz−Jx

Jy
− Jr

Jy
ϕ̇(ω1 − ω2 + ω3 − ω4)

ψ̈ = U4

Jz
+ ϕ̇θ̇ Jx−Jy

Jz

(4.19)

This formulation is used to create the system model in Simulink after implementing

the DJI Tello specifications.

4.2.2 System Identification Process

System identification methods can be used in various missions such as dynamic

model and parameter identification, model validation, control system design, online/real-

time system identification, and fault detection. During these processes, various

nonlinear and linear models can be used according to different purposes, and

amount of the pre-knowledge about the system. The model selection depends on

the dynamics of the system and application purposes, and the requirements may

differ according to a related method.

In the experiments conducted for the thesis, it was determined whether a vision-

based system consisting of a single camera and a marker could be used for quadro-

tor control. During operations, system identification was used to estimate the

controller parameters designed for a grey-box model and to obtain a black-box

model of the quadrotor using data derived from vision sensors.

In the black-box system model, the position data obtained from the vision system

and the attitude data obtained from the onboard IMU sensor were used as the

output. As an input, a test was taken by giving the motor speeds that can be

obtained instantaneously from the experimental setup, and another identification

test was conducted using the control inputs found with the motor speeds. The
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relationship between the control inputs and the motor speeds can be decoded as

follows:

U1 = k(ω2
1 + ω2

2 + ω2
3 + ω2

4)

U2 = lk(−ω2
2 + ω2

4)

U3 = lk(−ω2
1 + ω2

3)

U4 = b(−ω2
1 + ω2

2 − ω2
3 + ω2

4)

(4.20)

where U1 is thrust force, U2 is roll force, U3 is pitch force and U4 is yaw moment.

In addition to the angular velocities of the motors, the length of the rotor arm

(l), thrust (k) and drag (b) coefficients are also included. In the figures below, the

performance of the black-box transfer function (TF) models obtained by using the

motor speeds and control inputs, respectively, for position control is compared. As

Figure 4.15: Effects of ω and U Usage on Estimated Black Box TF Models

can be understood from the results demonstrated in Figure 4.15, the results ob-

tained when using motor speeds as input appear to be much more consistent than

the results obtained when using control inputs (U) as input. When the linear TF

model was extracted with System identification, thrust and drag coefficient effects

did not appear, on the contrary, the values diverged. However, the coefficients of
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thrust and drag have significant effects on quadrotor control. The following sec-

tion explains how these coefficients are calculated and their effects on quadrotor

control.

a) Thrust Coefficient (k):

In order for the quadrotor to move, it is necessary to apply a force against grav-

ity. This force, which is necessary for take-off, is also created by pushing the

air remaining under the propellers downward. This force, which is necessary for

movement, is called the thrust force.

Thrust coefficient (k) is the ratio between the square of the engine speed and the

thrust force. Thrust force (T ) is the force exerted by quadrotor propellers against

gravity during movement. Although both the T mentioned here and the U1 used

in the control input equations represent the thrust force, the T is a constant value

which calculated from system parameters and motor velocities in hover position,

and U1 is a variable which change according to motor velocities during different

quadrotor motions. Since all four motors operate at the same speed and maintain

stability against gravity, the hover position is chosen to determine k using the

equations below.

In order to find the thrust coefficient, it is necessary to calculate the thrust Force.

The thrust force can be determined using an experimental setup comprising a

bending sensor, a propeller, and an autopilot. Since the equation of motion is

quite clear when the quadrotor is in hover position, it is also possible to calculate

the thrust coefficient mathematically. First, information regarding the quadrotor’s

engine speeds and propeller diameter is required when it is in the hover position.

Since the system identification experiments were carried out in an indoor environ-

ment, the DJI Tello Quadrotor was used during the experiments. Under normal

circumstances, the motors of the DJI Tello hover at a speed of 20,000 rpm. This

information can be used to determine the angular velocity and the linear velocity

v.
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D = 0.084m

ω = 20000(2π)
60

= 2.0944e+ 03rad/s
(4.21)

where D is propeller diameter of DJI Tello, and ω is angular velocity of the quadro-

tor in hover position. From momentum theory, the thrust force T can be computed

as following equation:

T = π
4
D2ρv∆v (4.22)

where v is linear velocity of the propeller, ∆v is velocity of air accelerated by

propeller, and ρ is air density that is equal to 1.225kg/m3. From the general

assumptions, the air velocity can be represented by ∆v = 2v. From here, the

thrust force can be found as:

T = π
2
D2ρv2 = πD4ρω2

8
= 105.0588N (4.23)

The thrust coefficient can be computed by using the angular velocity and the

thrust force at the hover position:

T = kω2

k = T
ω2 = 2.3950e− 05

(4.24)

where k is the thrust coefficient of DJI Tello quadrotor.

b) Drag Coefficient (b):

The thrust force that makes the quadrotor move is formed by pushing air particles

under the propellers. The air particles present throughout the quadrotor trajectory

also apply a force in the opposite direction to the movement of the UAV, depending

on factors such as engine speed, propeller characteristics, air density. This force

is called drag force which is also called as air resistance.
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Figure 4.16: Thrust Force and Drag Force Representations on Quadrotor
Motion

Similar to thrust force, drag force is contingent upon air density, propeller char-

acteristics, and engine rotation speed. Although there is a substantial operational

distinction between thrust force and drag force, the only difference between them

mathematically is that they are multiplied by different coefficients. A test bench

is required to determine the drag coefficient, but this value can also be converged

or estimated using analytical methods. During drag coefficient estimation, sys-

tem identification methods can be used. In addition, since the parameters used

in calculating thrust and drag force are common, it is also possible to establish a

relationship between thrust and drag coefficients in nominal conditions. Publica-

tions comparing thrust and drag coefficients using different test benchmarks and

the ratio of drag and thrust coefficients on quadrotors roughly similar to DJI Tello

can be used to achieve convergence on the drag coefficient.

For a more exact result, it is necessary to perform an analytical calculation taking

into account the moment of inertia of rotors and propellers with angular accelera-

tion such as made in this source [44]. During the experiments, the mathematical

operations in this source were followed and the drag coefficient was calculated as

b=6.8429e-07 which is not the best but works for the assumed case.

There are various publications that say that since this coefficient is quite small,

it can be neglected in the calculations. In the experiments performed, it was

found that the omission of the drag coefficient did not have any negative effect
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on position, roll, and pitch control. However, as can be seen in U4 equation, drag

coefficient is used to calculate yaw moment.

Therefore, if this coefficient is ignored, even if the quadrotor reaches the desired

position and remains in hover, the movement along the yaw axis may not stop

and the quadrotor may continue to rotate around itself. The outcomes of the

experiments conducted within the scope of the topic support this assertion:

Figure 4.17: Quadrotor Motion when Drag Coefficient Neglected

Figure 4.18: Quadrotor Motion with Drag Coefficient

These coefficients are multiplied by the motor speeds to find control inputs in

designing of gray-box model. To compare the performance of the grey-box and

black-box models, a case scenario has been developed. In this case scenario, the

grey-box model is sent to the location where the quadrotor is sent in the physical
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setup. Consequently, LQR and PID controllers have been designed for simulated

grey-box model to follow the purpose. At the end of the processing, identical

desired position and attitude values were used to compare the outputs of the

controller with the best performance in position control for the grey-box model,

and the outputs of the identified black-box model.

4.2.3 Controller Design

Previous research has demonstrated that nonlinear control methods in quadro-

tor control can produce positive outcomes in more complex situations [45], [46]

However, these highly nonlinear systems can be successfully controlled by linear

control methods by linearizing under certain constraints.

In order to control the created grey-box system in a simulation environment, PID

and LQR linear controllers have been developed. In the experiments, state space

and transfer function models were created using the system id, and unknown

parameters in a grey-box system were estimated. Using the state space model,

the Q and R values for the LQR controller were also determined. In addition,

the same system was also controlled by a multi-PID controller, and the resulting

position outputs were compared.

4.2.3.1 State Space Model with LQR Controller

The system identification methods can be utilized in estimating the missing pa-

rameters of system or controller with various approaches. The techniques can

be categorized based on the amount of known data. In the cases, where only a

portion of data known, the online estimation techniques can be utilized. RLS (Re-

cursive Least Squares) and Gradient Descent are suitable techniques to estimate

controller parameters online. During these processes, the RLS gives better results

in parameter estimation because of its forgetting factor. However, Gradient De-

scent performs better to decrease the error to desired level. There are also another

types of models such as Model Reference Adaptive Control (MRAC), which cares
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more about the performance than parameter estimation during tracking or regu-

lating operations. All of these approaches are suitable when estimating parameters

online where the full dataset is not available. At this stage, state space matrices

based on n4sid have been obtained in conducted experiments since all the data is

known.

Continuous− timeIdentifiedState− SpaceModel :

dx/dt = Ax(t) +Bu(t) +Ke(t)

y(t) = Cx(t) +Du(t) + e(t)

A =


−0.0027 −0.0027 0.0032 −0.0012

−0.0120 −0.0424 0.0044 −0.0145

−0.0395 0.0983 −0.0356 −0.0207

0.0729 0.0877 0.0012 −0.0459



B =


0.0049 0.0136 −0.0028 −0.0119

−0.0075 −0.1944 −0.0092 0.2046

0.0757 0.2486 −0.0450 −0.2956

0.0074 −0.3258 −0.0222 0.3404

 1.0e− 03

C =



−17.1058 −6.7275 0.0356 1.1458

−17.8818 −9.9087 0.0276 1.8673

−15.5999 −2.2727 −1.3994 3.7613

−2.0327 −7.3782 1.5360 −2.1738

−5.1228 1.4499 7.2792 6.8291

29.5386 −24.5856 −0.1792 8.3781


D =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



(4.25)

K =


−0.8215 −0.5575 −0.4535 −0.1623 −0.1158 0.5741

0.5335 0.3024 0.4688 −0.1113 0.1689 −0.6258

0.8459 0.5837 −0.0456 0.6862 0.8491 −0.6359

−1.6117 −1.1064 −0.3796 −0.7931 0.1458 1.5603

 (4.26)

The Q and R parameters are required for the LQR controller in addition to the
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states. The Q and R matrices used in these calculations are known as perfor-

mance matrices, and their ratio provides a balance between the controller’s energy

consumption and the system’s performance. The matrix Q is referred to as the

performance effort coefficient, and it is set to a high value when the performance

of the system is crucial and there is no concern regarding the controller’s energy

consumption. However, in other situations where energy consumption is at least

as important as system performance, the coefficients R and Q should be chosen in

close proximity to one another, somewhere between 0 and 1.

Figure 4.19: LQR Control

At this point, it is possible to summarize the effects of the Q and R coefficients

on state variables as follows:

• If larger R values are chosen, K (the feedback gain found during LQR formula-

tion) becomes smaller and the state variables approach zero more slowly.

• If lower R values are chosen, K increases and the state variables approach zero

more quickly.

• If larger Q values are chosen, K increases and the state variables approach zero

more quickly.

• If lower Q values are chosen, K decreases and the state variables converge on

zero more slowly. For these purposes, the Q and R parameters were altered mul-

tiple times until Q=1 and R=0.001 were ascertained and the desired outcome was

attained. Using the States and Q and R parameters, the feedback gain can be

calculated using the following Matlab command:

[KfSE] = dlqry(A,B,C,D,Q,R) (4.27)
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where Kf is feedback gain which is multiplying with states. It is also possible to

update the reference gain with the expression below:

Kr = (BTSB +R)−1BT [I − (A−BKf )
T ]−1CTQ (4.28)

From these equations, the feedback and reference gains are obtained as:

Kf =


0.1253 0.8652 −0.1758 −0.2332

1.0345 3.1941 −0.4993 1.0630

0.0866 −0.2424 0.0787 0.2472

−1.2509 −3.9412 0.6282 −1.0028



Kr =


−4.1648 −3.2998 −0.3656 −3.2558 −4.0667 0.8079

4.4267 3.3237 −1.9621 5.8107 5.0416 −3.4641

−3.8868 −2.7508 3.7504 −7.1213 −5.0524 5.3398

3.6251 2.7271 −1.4225 4.5664 4.0777 −2.6834

 1.0e+ 04

(4.29)

The position response of the quadrotor with these gains becomes as in the figures

below:

Figure 4.20: LQR Control Position Response
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4.2.3.2 Transfer Function Model with Multi-PID Controller

PID control is a control method that attempts to reset the difference between the

plant’s reference values and actual values. In order to control the highly nonlinear

quadrotor system, it is necessary to design separate controllers for position and

attitude control. Despite the fact that separate controllers are designed for po-

sition and attitude control, these parameters are interdependent. To change the

position of the quadrotor, different torques must be applied to the motors. This

condition causes the quadrotor to remain trained on the pitch and roll axes for

a period of time, allowing it to move forward-backwards or right-left. According

to this fundamental motion relationship, the attitude control parameters that are

attempted to be stabilized affect the position of the quadrotor. For this reason, it

is also crucial for the position control of the quadrotor that these parameters reach

the reference level much more quickly. To create a healthier control diagram, the

block that controls position may be placed in the outer loop, while the block that

controls attitude and altitude may be placed in the inner loop.

Figure 4.21: PID Control Block Diagram

The relationship between control inputs and rotor speeds was deciphered under

the heading ”System identification Process.” This formulation permits the deter-

mination of control inputs only when the instantaneous engine speeds are known.

However, when the motor speeds are unknown, the control inputs must be calcu-

lated using error dynamics and system parameters.
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PID controllers are the most prevalent linear controllers where error dynamics and

control issues intersect. In the experiments, 6 different PID controllers were used,

to control each position and attitude error. The equations formed in this context

are as follows. U1, which represents thrust force, is found with x, y and z position

errors, while attitude parameter errors are used to calculate control inputs U2, U3

and U4:

U1 = (g +Kz,D(zd − z) +Kz,P (zd − z))m/(CϕCθ)

U2 = (Kϕ,D(ϕd − ϕ) +Kϕ,P (ϕd − ϕ))Ixx
U3 = (Kθ,D(θd − θ) +Kθ,P (θd − θ))Iyy
U4 = (Kψ,D(ψd − ψ) +Kψ,P (ψd − ψ))Izz

(4.30)

Moreover, the position parameters x and y are controlled by second PID block that

connects outer loop. The mathematical expression can be represented as follows:

Ẍ = (Kx,P +Kx,I/s)(xd − x)

Ÿ = (Ky,P +Ky,I/s)(yd − y)
(4.31)

After determining the control inputs, the engine speeds can be calculated using

the following equations:

ω1 =
√

U1

4k
+ U3

2kl
+ U4

4b

ω2 =
√

U1

4k
− U2

2kl
− U4

4b

ω3 =
√

U1

4k
− U3

2kl
+ U4

4b

ω4 =
√

U1

4k
+ U2

2kl
− U4

4b

(4.32)

The PID parameters used during the experiments were tuned with the Simulink

auto Tuner. The position outputs obtained with the PID and the LQR controller

mentioned in the previous section are shared below:
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Figure 4.22: Comparison of LQR and PID Controller Performances on Posi-
tion Control

When comparing the position response performance of LQR and PID controllers,

it has been observed that the designed PID controller provides faster and more

robust results. Therefore, in the subsequent section, the outputs of the simulation

system, which is controlled by the PID controller, are used to compare the system’s

performance with that obtained by the black box system identification technique.

4.2.4 Onboard Vision System Performance on Position and

Attitude Control of DJI Tello Quadrotor

In the experiments conducted in scope of the thesis, the attitude data is taken

from IMU sensor, the position data is gathered from the onboard vision system

and a marker on ground, as well as the instant motor velocities are stored thanks

to SDK of utilized quadrotor. During these operations, a total of 49939 lines of

input-output data were collected with a sample time of 0.001 over a duration of 50

seconds. The collected data were divided into 80% estimation and 20% validation

data for use during the system identification process.
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Then using these data, linearized models of the highly nonlinear quadrotor sys-

tem were sought. In order to implement the PID controller, that uses the error

dynamics of the system, in the system identification toolbox, the transfer function

model has been developed, while the state space model has been developed for the

LQR controller, which uses the state space matrices to control a system.

Figure 4.23: Toolbox Data Separation and Transfer Functions and State Space
Models

In light of the decision made in the preceding section to compare simulation perfor-

mance under the control of the PID controller, the black-box system identification

transfer function model is chosen for use in the Simulink diagram.
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Figure 4.24: During Flight Data Gathering

In the case scenario, it is assumed that the quadrotor intends to hover at the

desired location, which remains 1 meter away in the x, y, and z directions. Us-

ing a 3D-printed component and a mirror for the quadrotor’s onboard camera’s

forward-facing position, data is collected for surveillance of the marker on the

ground. The attitude data measured by the quadrotor’s onboard IMU sensor.

During the motion, the instantaneous motor speeds were measured as the quadro-

tor moved towards the desired position, and position and orientation data were

obtained using the Aruco marker method and the onboard IMU sensor. As an

output of the collected data, the position and attitude data were entered into the

system identification toolbox. In the preceding section, it was demonstrated that

the black-box system identification method produced divergent position responses

when attempting to decode a linear model between control input and output.

That’s why, in order to obtain the TF model, direct motor speeds were used as

input during the black-box system identification procedure.

There are 24 transfer functions installed between 4 inputs and 6 outputs in the

resulting model. To compare the performance of the black-box system estimated
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by system identification to that of the grey-box system designed in a simulation

environment, identical inputs were given to both models.

Figure 4.25: Grey-box and Black-box Model Comparison with Same Input
Signals

The position and attitude responses of these two models, as well as the actual setup

outputs, have been added to the graphs. The obtained results are as follows:
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Figure 4.26: Comparison of Position and Attitude Responses

The obtained outputs demonstrated that the vision system, which consisted of a

single camera and a marker, produced comparable position control results to the

grey-box system. Similarly, the estimated attitude responses derived from IMU

data became comparable to the simulated attitude responses. Thus, it has been

demonstrated that the installed vision-based control system produces consistent

quadrotor motion control results.
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4.3 Vision-based Autonomous Landing of a UAV

on a UGV in GNSS-denied Cases

UAV landing on a desired platform is an enticing research field, particularly in

the last few decades. Numerous studies have been conducted on landing on static

and dynamic platforms. Within the scope of this thesis, a quadrotor system has

been developed that autonomously takes off from a ground vehicle, performs the

mapping process, and then returns to the ground vehicle using only onboard sens-

ing and computing operations. No prior knowledge of the location or speed of

the target platform on the ground vehicle is required for this operation. A motion

tracking system that observes the movements of UAVs and UGVs from the outside

is also unnecessary for the task at hand. Importantly, the UGV’s marker must be

detected in order to initiate the landing procedure.

After detecting the marker on the UAV ground vehicle, the system begins to wait

for the optimal landing time. The UAV follows the UGV’s movement based on

a cost function created between energy consumption and performance, and lands

vertically on the UGV when it reaches the appropriate level of stabilization. If

the battery level falls below a certain threshold, the UGV attempts to land on

it even if it is in motion. During this procedure, UAV motion control algorithms

and estimated UGV states were utilized, as well as quadrotor state estimation,

landing platform detection and landing platform state estimation, tragic planning,

and UAV control steps.

The states of UAVs are estimated using the onboard IMU and onboard vision sys-

tem. This procedure determined the orientation of the UAV based on its position,

velocity, and UGV.

After completing the mapping process, the UAV returns to the area from which it

took off and searches for the marker located on the hovering UGV. This marker

was previously introduced to the UAV during system identification procedures, and

the Aruco Marker method was utilized for pose estimation. For this reason, after
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detecting the UAV marker, it tries to capture stability, which is the appropriate

moment for landing.

If the UGV is in motion, the quadrotor follows it from a predetermined height.

The tracking process is determined by the distance between the detected marker’s

center and the center of the UAV camera’s field of view. The process of tracking

is determined by the distance between the center of the detected marker and the

center of the UAV camera’s field of view. This difference represents the position

error, which is corrected by the UAV. Thus, he will pursue the UGV.

Figure 4.27: Vision-based Motion Control of the UAV According to Moving
UGV

e =

xcmarker

ycmarker

−
xcUAVcamera

ycUAVcamera

 (4.33)

Since landing on a moving platform is a more hazardous action, stabilization for

landing is prioritized in the UGV’s cost function. This procedure is repeated

until the UGV is stable or the UAV’s battery level falls below a predetermined

threshold. When the UAV’s battery level falls below the predetermined threshold,

landing operations on the moving platform commence. During this procedure,

state estimation is performed using the non-holonomic Kalman Filter for UGV.
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Figure 4.28: Vision-based Landing on Moving UGV

During the prediction, the Kalman filter predicts the UGV states according to

following equation:

ẋ(t) = f(x(t), u(t)) + ω(t) (4.34)

where x(t) and u(t) are the states and input of the system where the ω(t) is process

noise. The function f(x, u) is the dynamical model of the moving platform. From

the equation,the relation between the position coordinates and the inputs can be

expressed as follows:

ṗx = ẋ(t) = v(t)cosθ(t)

ṗy = ẏ(t) = v(t)sinθ(t)

ṗz = ż(t) = 0

θ̇(t) = ω(t) = u1

v̇(t) = u2

(4.35)

where px, py, pz are the position coordinates of the UAV in world frame, θ is heading

angle, and v(t) is tangential velocity of the UAV where u1 and u2 represent the

control inputs.

After state prediction, the phase correction is another important step of Kalman

Filter which can be represented by the following equation:

ˆ̇x(t) = f(x̂(t), u(t)) +K(t)(z(t)− h(x̂(t)) (4.36)

where the matrix K(t) is the Kalman gain, f() is a kinematic constant velocity

model, h() is observation modeal and z() is the measurements vector. In brief,

the Kalman filter estimated the UGV’s pose. In cases where the UAV misses
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the view of the landing marker, the UAV continues on its trajectory based on its

last position and observation records from the Kalman Filter until it locates the

marker. When the UAV detects the marker once more, the landing procedure

begins.

The figures below show the autonomous landing process builds into V-rep simu-

lation program. It is possible to see the position and velocity changes of the UAV

in x, y, and z axes.

Figure 4.29: Vision-based Tracking and Landing Processes on V-rep Simula-
tion Scene

Figure 4.30: x-y-z Position of UAV and UGV



Chapter 5

Experimental Results

5.1 Experimental Setup

During the indoor and outdoor experiments conducted as part of the thesis, one

UGV and two distinct quadrotors were utilized. These configurations are primarily

comprised of controllers, autopilots, onboard surveillance systems, and communi-

cation modules.

5.1.1 Unmanned Aerial Vehicle Layout

UAV tests were conducted both indoors and outdoors as part of the scope of

the thesis. For outdoor test environments, an autonomous quadrotor has been

developed that can withstand environmental conditions, observe the terrain with

an onboard stereo camera, and store images in its own memory, which can be

transmitted to the base station in real-time if necessary.

Since this quadrotor was designed to operate in an indoor environment, the DJI

Tello Quadrotor model, which was purchased in the laboratory for experimentation

and has a monocular camera and control system access, was utilized. The common

purpose of these two quadrotors is to perform terrain analysis in order to find the

121
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safest path to the ground vehicle, detect the marker on the ground vehicle, and

provide motion control in accordance with the detected marker.

a) Built Quadrotor

Figure 5.1: Built Quadrotor Setups-number1 on the left and number2 on the
right

Two distinct quadrotors were constructed for use in the experiments, and then

tests were conducted with the quadrotor numbered one in the figure because it

flew more steadily. The built-in Quadrotors are primarily composed of an autopi-

lot, controller, communication module, and stereo camera module, in addition to

the essential flight equipment such as an ESC and engine. In addition to the design

difference between these two models, the engines and propellers also vary signifi-

cantly. The number one quadrotor uses the 10000kw-30A brushless motor, while

the number two quadrotor prefers the 480kw-28A motor. Consequently, when the

same lipo battery is utilized, quadrotor number two flies for a longer duration. In

addition, the number one quadrotor had two blades-propellers, while the number

two quadrotor had three blades-propellers. This distinction allowed the number

two quadrotor to fly more quietly and steadily, while the number one quadrotor

was capable of more aggressive maneuvering.

Autopilots play a crucial role in providing low-level control of robots in which they

are implemented. Autopilots are distinguished from flight controllers by the fact

that they have an interface for assigning waypoints and the ability to autonomously
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follow those waypoints. While selecting an autopilot for the experiments, various

autopilots including Pixhawk, APM, DJI Naza, and Navio 2 were tested. These

autopilots, excluding the DJI Naza, share the capacity to collaborate with an ex-

ternal controller, such as the Raspberry pi. DJI Naza blackbox is a controller, so

it does not provide access to the control algorithm and is used in conjunction with

the included GPS and IMU sensors. Due to its simple operation, this autopilot

was utilized during stabilization tests after the quadrotor chassis was constructed.

The only difference between Pixhawk and APM is the price and a few pins. Dec.

Thanks to different frameworks, these autopilots can be used to control a vari-

ety of flying robots or ground vehicles. They function as a low-level controller

of the robot and are equipped with an internal IMU and external sensors. The

GPS they carry allows them to autonomously follow the assigned waypoints. For

more complex vision-based autonomous missions, however, they require an exter-

nal controller, such as a Raspberry Pi. These controllers, unlike the DJI Naza,

are compatible with the Raspberry pi. The Navio 2 is one of the most convenient

autopilots compatible with the Raspberry pi. Navio can be mounted directly on

the Raspberry Pi card using its pins, and Pixhawk is capable of performing all

autopilot functions for quadrotor, fixed-wing, and rover-style robots. Moreover,

Autopilots cannot independently perform complex autonomous operations. There-

fore, the systems must be equipped with three distinct onboard computers. In the

experiments conducted for the thesis, a Raspberry Pi was used as an onboard

computer for unmanned aerial vehicles.

Figure 5.2: Setups of Navio 2 and Pixhawk Autopilots
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A motion tracking system that follows the UAV-UGV collaboration process from

the outside was not utilized in the experiments. A motion tracking system is a

system that performs relative pose detection with high precision in indoor en-

vironments, but is unsuitable for outdoor environments. Therefore, the process

of estimating the relative positions of the UAV and UGV was conducted using

onboard cameras and the Aruco marker method. The UAV is equipped with a

stereo camera system consisting of two 5-megapixel, 160-degree fish-eye raspberry

cameras connected to the stereo pi development card. Using these cameras to

capture 1080p images, terrain depth reconstruction was performed. Concurrently,

the marker on the UGV was identified using one of the captured images, and the

autonomous landing and tracking processes were carried out accordingly.

Figure 5.3: Stereo Onboard Camera

When performing depth analysis with a stereo camera, the relationship between

the baseline distance and the flight altitude imposes certain restrictions. Due

to this, depth analysis cannot be conducted safely with a stereo camera above

a certain height. It has also been used with a 4k monocular camera to capture

images from greater heights and to calculate depth using the structure from motion

method.

The built-in quadrotor can transmit images in real-time up to 400 meters to a

Jeson nano card or computer serving as a ground station. In the interim, real-

time wifi image transfer over the network in an indoor environment made for Thu
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24-30 frames per second (fbs) or the resolution of an image with the transfer speed

may be decreased based on the distance. In such instances, the quadrotor stores

the images in its internal memory, and jetson nano processes the images after

landing.

b) Indoor Quadrotor: DJI Tello

DJI Tello is a commercial drone designed for indoor use with a high level of stabi-

lization. Its SDK (software development kit) makes it possible for users to design

a new controller and adapt it to Matlab and Python. However, Tello does not per-

mit access to and manipulation of its primary flight controller, which is responsible

for low-level control. It connects to the computer through Wi-Fi and has three

ports with the same IP address. The first port provides communication between

the drone and the user, allowing the user to send commands to the UAV. The

second port shares sensor information and the current state of the UAV, including

barometer values, ToF (Time of Flight) sensor values, battery percentage, and

Wi-Fi signal strength. During computer vision-based controller processes, all of

them function simultaneously.

The Tello, on the other hand, is an easily controlled quadrotor. It has a 100-meter

range and a flight time of only 13 minutes. The maximum permitted height is 30

meters. Due to the ToF camera and integrated IMU, it is therefore better suited

for use in indoor environments, but can struggle to operate in outdoor environ-

ments with minimal disturbances. The ToF camera, also known as the flash lidar

sensor, is one of the quadrotor’s most sophisticated components. Object scanning,

measuring distance, indoor navigation, obstacle avoidance, gesture recognition,

tracking objects, measuring volumes, reactive altimeters, 3D photography, and

augmented reality are a few of the possible applications. DJI Tello uses it primar-

ily for stabilization, but it can also be used for other missions, such as autonomous

landing and object tracking.
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The front-facing onboard camera of the DJI Tello is 5 megapixels and has a 720p

resolution. In order to conduct indoor tests involving autonomous tracking, land-

ing, and pose estimation with a marker and onboard camera, a 3D component was

designed and attached to the quadrotor in order to reflect the camera’s view onto

the ground using a mirror.

Figure 5.4: DJI Tello Quadrotor with the 3D Printed Mirror Accessory

5.1.2 Unmanned Ground Vehicle Layout

A rover with a gear ratio of 75:1 between each skid steering 4 wheels and the engine

shaft, whose control algorithms are very similar to differential drive, was favored as

a land vehicle in the experiments. Jetson Nano development card was utilized to

capture and process UGV images captured by UAV. Jetson nano is one of the most

powerful onboard development cards available, with 2GB and 4GB capacities and

a 5V input pin designed to run AI algorithms for image processing operations such

as image segmentation and classification, and object detection. The Raspberry pi

UAV on the UAV transmits captured images to the Jetson Nano on the UGV via

the wifi-network to which it is connected. Using the images it receives, Jetson Nano

calculates the UGV’s global path and transfers this information to the raspberry

card that controls the engines.

Jetson nano was assisted by a Raspberry Pi for UGV motion control. This com-

ponent is connected to the raspberry pi and controls the Xbox 360 Kinect stereo
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camera motion used on the UGV. For depth detection, the Kinect camera and

UGV view are used for dynamic obstacle avoidance. For this procedure, a simpler

controller and stereo cameras may also be preferred.

The UGV was equipped with 7.2V brushed motors. When the wheels are in

contact with a flat surface, these motors require 6.6A of current. This current

requirement can increase to 14A when there is a load on them or when moving in

a rough terrain. RoboClaw motor driver is used to drive such high-current motors

for this reason. RoboClaw motor driver is a motor driver that can drive two 15A

DC motors simultaneously and has receiver connection pins. This driver is also

compatible with onboard controllers including Raspberry Pi, Arduino, and Jetson.

Figure 5.5: UGV Layout

5.1.3 Test Environments

Throughout the experiments, tests were conducted in both simulated and real envi-

ronments. Both matlab and vrep simulation programs were utilized in simulation-

based tests. When designing the Quadrotor’s low-level controller, MATLAB was

used.
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Figure 5.6: Matlab Capture during a Test

Virtual Robot Experimentation Platform, also known as V-Rep, is a three-dimensional

simulation program that includes a variety of mobile and stationary robot plat-

forms, in addition to numerous assistant objects that can be used to construct test

scenes.This program is one of the most popular simulations due to its compatibility

with Python, Matlab, and C++, which are frequently used for robot programming.

On the other hand, the fact that 3D solid models designed in programs such as

Solidworks Catia can be implemented in simulation with high resolution is one of

the reasons why this simulation program is preferred.

The 3D model of the ground vehicle and the sensors used in the actual setup

was applied to the simulation in the v-rep experiments conducted for the thesis.

After a quadrotor scanned the unknown environment, the ground vehicle was

allowed to travel from the starting point to the destination. The simulation shows

the quadrotor taking pictures of the surface, scanning the test area, and then

autonomously landing on the marker on the ground vehicle.
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Figure 5.7: V-rep Test Scene View 1

Figure 5.8: V-rep Test Scene View 2
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Figure 5.9: Utilized UAV and UGV in V-rep Test Scene

During the experiments, tests were also conducted in authentic indoor and out-

door settings. During these tests, outdoor environment flights were performed by

scanning a 9000m2 area at an altitude of 6 to 10 meters. At an altitude of 1.5 to

2 meters, a 6m2 area was scanned in an indoor environment.

Figure 5.10: Outdoor and Indoor Actual Test Environments
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5.2 Results and Discussion

5.2.1 Results of Image-based Path Planning Algorithms

on Topographic Map

The proposed path planning algorithm and the well-known probabilistic and de-

terministic algorithms which are PRM and A*, are implemented to the V-rep

based simulation environment and the actual environment established in labora-

tory. During the experiment the hyperparameters of stereo depth reconstruction

method are never changed and selected as ω = 50, WindowSize = 10. Similarly,

the sensitivity value of the circle detection algorithm has not been changed as well

as the thresholds of the radius; and the same marker used top of the UGV for

pose estimation. Throughout all of these experiments, a Lenovo E490 ThinkPad

with 16GB of RAM is used as a work-station. The initial and end points of the

drawn lines by Hough line detection method, are indicated with red cross signs.

Similarly, the corners detected on disparity map are represented with red aster-

isks, and the corners found from the original image are showed with green plus

signs on the figures below, after made the elimination according to pixel values as

explained in the section 4.1.1. The acquired results indicate that the A* approach

requires either longer processing time or stronger computational capacity, but the

PRM algorithm does not always provide the optimal path since it employs random

points, despite the fact that it locates the paths in a shorter amount of time. The

computing time and energy demand of the PRM algorithm are proportional to the

number of thrown way-points. In addition, neither of these two well-known path

planning algorithms take the depth information of the ground into account. They

exclusively utilize information derived from the occupancy grid form of terrain

image. Therefore, it is not possible to identify hills or pits that are not visible in

a single top view of image.
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5.2.1.1 Scene 1 (A*, PRM, Dynamic Prog. Method, Proposed Method)

Figure 5.11: Found Paths in the Scene-1 (V-rep: 759x763) Left Top Image:A*,
Right Top Image: PRM, Left Down Image: Dynamic Programming-based Al-

gorithm, Right Down Image: Proposed Algorithm

Figure 5.12: Computation Time for Paths in Scene 1
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5.2.1.2 Scene 2 (A*, PRM, Dynamic Prog. Method, Proposed Method)

Figure 5.13: Found Paths in the Scene-2 (V-rep: 808x814) Left Top Image:A*,
Right Top Image: PRM, Left Down Image: Dynamic Programming-based Al-

gorithm, Right Down Image: Proposed Algorithm

Figure 5.14: Computation Time for Paths in Scene 2
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5.2.1.3 Scene 3 (A*, PRM, Dynamic Prog. Method, Proposed Method)

Figure 5.15: Found Paths in the Scene-3 ((V-rep: 808x814) Left Top Im-
age:A*, Right Top Image: PRM, Left Down Image: Dynamic Programming-

based Algorithm, Right Down Image: Proposed Algorithm

Figure 5.16: Computation Time for Paths in Scene 3
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5.2.1.4 Scene 4 (A*, PRM, Dynamic Prog. Method, Proposed Method)

Figure 5.17: Found Paths in the Scene-4 (Real scene: 1500x1500) Left Top
Image:A*, Right Top Image: PRM, Left Down Image: Dynamic Programming-

based Algorithm, Right Down Image: Proposed Algorithm

Figure 5.18: Computation Time for Paths in Scene 4



Chapter 6

Conclusion and Future Works

6.1 Summary and Contributions

In this thesis, a novel path-planning algorithm is designed using only computer

vision techniques, and its performance is compared to that of well-known prob-

abilistic and deterministic path-planning algorithms. Since path planning is one

of the most important steps for autonomous mobile robot applications, over four

decades have been spent developing various techniques in this area. However, as a

result of recent advancements in computer vision and machine learning techniques,

it is now possible to improve existing path planning algorithms or create new gen-

eration techniques that function more efficiently. In this context, an image-based

path planning algorithm employing a stereo-vision-obtained terrain depth map is

developed. The developed algorithm is also based on other fundamental computer

vision techniques, including edge, line, corner, and circle detection algorithms, as

well as pose estimation techniques using the Aruco Marker Method. After ex-

plaining the mathematical and vision-based background, the developed algorithm

is compared to well-established algorithms on different virtual scenes generated by

the V-rep simulation program and real physical setups generated in a laboratory

setting. Then the outcomes are discussed and the contributions of the developed

algorithm are highlighted.

136
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On the other hand, because the image stitching algorithms found in the literature

are based on pixel intensity or feature-based methods, their outputs are ineffective

in some instances. In image pairs where the background is exactly the same

color, where there is insufficient overlap, or where key feature detection is not

possible, direct and feature-based stitching algorithms cannot produce positive

results. IMU data are utilized by the image stitching algorithm developed and

presented in the scope of the thesis. Even though the example in the case scenario

utilizes images captured by a UAV, the proposed technique is applicable to any

camera equipped with an IMU sensor. The results obtained with the proposed

technique demonstrated that the Decoupling between the stitched image pairs is

of higher quality, as is the stitching accuracy.

Experiments conducted within the scope of this thesis place a significant emphasis

on in-depth analysis. This analysis was deciphered using both the stereo depth

reconstruction method and the structure from motion technique, and their respec-

tive performances were compared. The stereo depth reconstruction method is a

technique for analyzing depth using two cameras from a fixed location. Different

machine learning classifiers have been tested and their results have been compared

so that this technique can be implemented with the highest level of efficiency. De-

spite all of this, in the stereo depth reconstruction method, the distance between

the cameras, known as the baseline, and the distance between the target object and

the camera is limited, and this method does not produce a healthy result beyond

a certain distance. Decoupling. Decoupling. After the features were extracted

and a three-dimensional point cloud was obtained, the images captured with the

moving monocular camera using the structure from motion technique were then

combined to create a three-dimensional point cloud.

Vision-based motion control is another significant aspect of the research conducted

for the thesis. The question of how healthy UAV control can be achieved with the

aid of a simple onboard camera and a marker placed on the UAV was investi-

gated. During this process, the position data obtained from system identification

techniques system vision Blackbox was subsequently obtained with this model by

utilizing one of the same specific quadrotor indoor model characteristics as a white
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box to compare the model’s performance. Due to the consistency of the results,

it has been demonstrated that the tested onboard vision system can be used for

UAV motion control.

In addition, only static obstacles or an instantaneous view of dynamic obstacles

on the terrain are considered by all of the analyzed path planning algorithms.

Consequently, none of these algorithms provide a sufficient result for avoiding

dynamic obstacles. This problem can be categorized as a local path planning

problem, and various types of distance measurement sensors are typically used to

make decisions in local path planning problems. However, optical flow, one of the

computer vision techniques, can also be used to solve this issue.

6.2 Future Work

The research conducted under the headings vision-based motion control and ter-

rain analysis continue with segmentation and dynamic obstacle avoidance algo-

rithms. Using the Mask-RCNN and U-Net methods, the bumps in images cap-

tured from the actual test environment are separated into their respective classes,

and a dataset is generated. It is hoped that the algorithm trained with this dataset

will be able to label bumps in images captured by UAVs in rough environments

and that the generated path will be based on this information.

On the other hand, estimating the motion of objects moving on the terrain us-

ing the optical flow algorithm and UAV-captured images is also among the most

important future work.
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