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Bitcoin is the pioneering financial distributed ledger system, which captivated researchers 

with its innovative public blockchain structure. Examinations of this public blockchain 

resulted in many proposals for improvement in terms of anonymity and privacy. 

Generally used methods include mixing protocols, ring signatures, zero-knowledge 

proofs, homomorphic commitments, and off-chain storage systems. On the other hand, 

differential privacy is a privacy notion coming up with mechanisms that enable running 

statistical queries without leaking any private information. To the best of our knowledge, 

in the literature, there is no study examining Bitcoin’s public blockchain in terms of 

differential privacy. However, public blockchain structure can benefit from differential 

privacy mechanisms for improved privacy, by hiding actual values, and preserving 

checkability of the integrity of the blockchain. In this dissertation, first, we provide a 

theoretical examination of differential privacy in Bitcoin public blockchain. We examine 

the current Bitcoin blockchain structure using the differential privacy formulation. Then, 

we present feasibility of utilization of two differential privacy mechanisms to be applied 

to the blockchain of Bitcoin: (i) noise addition to the transaction amounts, and (ii) user 

graph perturbation. Moreover, we implement noise addition to the transaction amounts 

by using a public software library. We compare four differential privacy mechanisms 

using varying parameter values in order to determine the feasible ones. As another 

contribution of this dissertation, we propose a blockchain-based differentially-private 

federated smart utility metering framework. We utilize noise addition approach to hide 

the actual utility consumptions while providing fair settlement among the clients and the 

utility providers. To sum up, in this dissertation we show that noise addition and graph 
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perturbation methods decrease the fraction of the cases violating differential privacy. 

Therefore, they can be used for improving privacy in financial distributed ledger 

applications.  
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Bitcoin, yenilikçi ve açık blok zinciri yapısıyla araştırmacıları büyüleyen öncü 

finansal dağıtık defter sistemidir. Bu açık dağıtık defterin incelemesi ile anonimlik ve 

mahremiyet açısından karıştırma protokolleri, halka imzalar, sıfır bilgi kanıtları, 

homomorfik taahhütler ve zincir dışı depolama sistemlerini kullanan pek çok 

iyileştirme önerisi yapılmıştır. Diğer yandan diferansiyel mahremiyet, mahrem bilgi 

sızdırmadan istatistiksel sorgulamaların yapılmasını sağlayan mekanizmalar ile 

ortaya çıkan bir gizlilik kavramıdır. Bildiğimiz kadarıyla literatürde diferansiyel 

mahremiyet açısından Bitcoin'in açık defterini inceleyen bir çalışma yoktur. Bununla 

birlikte, açık blok zinciri yapısı, gerçek değerleri gizleyecek ve dağıtık defter 

bütünlüğünün kontrol edilebilirliğini koruyacak diferansiyel mahremiyet 

mekanizmalarından yararlanabilir. Bu tezde öncelikle, Bitcoin açık blok zinciri için 

diferansiyel mahremiyetin teorik bir incelemesi sunulmaktadır. Diferansiyel gizlilik 

formülasyonu kullanılarak mevcut Bitcoin blok zinciri yapısı incelenmektedir. 

Ardından, Bitcoin blok zincirinde uygulamak için iki farklı gizlilik mekanizmasının 

fizibilitesi sunulmaktadır: (i) işlem miktarlarına gürültü eklenmesi, ve (ii) kullanıcı 

grafiğinin pertürbasyonu. Ayrıca, bir açık yazılım kütüphanesi kullanılarak işlem 

miktarlarına gürültü ekleme uygulanmıştır. Uygulanabilir mekanizmalar ile 

parametreleri tespit edebilmek için değişken parametre değerleri için dört farklı 

gizlilik mekanizmasının karşılaştırması yapılmıştır. Bu tezin diğer bir katkısı olarak 

blok zinciri tabanlı diferansiyel mahremiyeti sağlayan federe bir akıllı hizmet ölçüm 

çerçevesi önerilmektedir. Müşteriler ve hizmet sağlayıcılar arasında adil bir çözüm 

sunarken gerçek hizmet tüketimini gizlemek için gürültü ekleme yaklaşımı 
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kullanılmaktadır. Özetle bu tezde, gürültü ekleme ve kullanıcı grafiğinin 

pertürbasyonu yöntemlerinin diferansiyel mahremiyeti ihlal eden vaka oranını 

azalttığı gösterilmektedir. Dolayısıyla finansal dağıtık defter uygulamalarında 

mahremiyeti geliştirmek için kullanılabilecekleri önerilmektedir.
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1. INTRODUCTION 

 

 

 

Payments, money transfers and commerce are widely preferred to be made on the Internet 

for a long while, especially in the last decade, as with many other things in this digital 

age. This preference comes from the speed, which is provided by the digitalization and 

needed in busy daily life, as well as increasing global connectivity with the rise of digital 

businesses and social networks. Commerce on the Internet is done assured that financial 

institutions and banks serve as trusted authorities. This model can be called trust-based; 

buyers and merchants may not trust each other; however, they trust well-known banks 

and banks act as trust entities managing transactions and keeping records. However, there 

are some disadvantages with this trust-based model (Nakamoto, 2008). First, financial 

institutions act as mediators between merchants and buyers, and there exists a cost for 

mediation. This limits the minimum practical transaction size. Second, there is a 

possibility of reversal of transactions. Transactions can be reversed by banks if there is a 

dispute between the trading parties, e.g., the buyer transfers the money, but the seller does 

not send goods or provide services to the buyer. However, this possibility of reversal 

compels that merchants get information about their customers. On the contrary, merchants 

do not have to get extra information about their customers like billing address, name, etc. 

when transactions are irreversible. In addition, irreversible transactions protect merchants 

from chargeback fraud, i.e., if a dishonest buyer says that he did not make the purchase. 

If dishonest merchants are considered, using escrow services may be a method for 

protecting buyers in the case of irreversible transactions. Finally, especially international 

transactions in the regular banking, e.g., money transfers, are slow due to procedural 

delays. 

An electronic payment system, which is not based on trust, can be realized using 

cryptographic mechanisms. Digital cash concept, which utilizes cryptography, was first 

introduced by Chaum (1983) in 1982 and evolved from trust-based model to decentralized 

networks in the subsequent decades. In a decentralized system, where there is not any 
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trusted authority, parties, also called peers, transact directly with each other forming a 

Peer-to-Peer (P2P) network. This kind of digital cash systems, which use virtual assets 

and utilize cryptography, are also called cryptocurrency. Bitcoin (Nakamoto, 2008) which 

is introduced by Satoshi Nakamoto in 2008, is the first digital currency with a 

decentralized ledger. Although a huge number of alternative proposals emerged following 

the ideas of Bitcoin, Bitcoin is still the most widely accepted and used one. There can be 

found a total number of 8958 cryptocurrencies listed in CoinMarketCap web site 

(https://coinmarketcap.com) with $856 billion total market cap, where the number of 

circulating bitcoins exceeded 19.2 million, and the total Bitcoin market cap exceeded 

$330 billion, resulting Bitcoin dominance over 38% as of December 2022. 

Bitcoin is defined as “an innovative payment network and a new kind of money” in 

Bitcoin website (https://bitcoin.org). Essentially, it is an open source P2P money. In 

Bitcoin, transactions are recorded in a publicly distributed ledger, which is called 

blockchain. The base unit of account is bitcoin, and the lowest-valued unit is satoshi. 

There is no central authority or a bank, managing and verifying transactions. These 

operations and issuing of bitcoins are performed collectively by the network, which 

consists of communicating nodes (peers) running Bitcoin software. Blockchain structure 

provides a single and shared history for all users, which also provides integrity. Issuing 

bitcoins is achieved through mining process. Mining is the activity of adding transaction 

records to the blockchain. Users spend their computing power to verify and record 

payments; in return, they earn bitcoins, which are created as the result of this payment 

processing work as a reward. Bitcoins can also be exchanged for other currencies or used 

for buying products and services. Transactions are computationally impractical to reverse, 

and these non-reversible transactions protect sellers from fraud.  

Besides, although Bitcoin has emerged to be used in the financial sector, its blockchain 

structure, which is a distributed ledger, and its P2P network attracted the academic 

community, as well. This attraction resulted in numerous studies on blockchain taking 

place in the literature (Monrat et al., 2019; Bhutta et al., 2021; Abbas & Sung-Bong, 2019; 

Dave et al., 2019). Smart metering is one of the areas that blockchain is utilized. Smart 

metering is utility metering becoming intelligent in the digital new world. Smart meters 

transmit utility consumptions at the end of every predefined measurement period during 

a billing period. Clients utilizing smart meters can observe their up-to-date consumptions, 

and have more frequent and transparent information about their utility consumptions. 

https://coinmarketcap.com/


3  

With the help of smart metering, manual measurement reading of utility consumption 

process is automated. Smart metering also has advantages like efficient management, 

control, and operation of utility and allowing integration of utility trading platforms or 

renewable energy sources (Aklilu & Ding, 2022). Smart metering systems can utilize 

blockchain infrastructures with the motivations like securing consumption data (Bokhari 

et al., 2019), increasing transparency, trust, and democracy among all the entities, 

monitoring more efficiently, having a fault-tolerant network, preventing unauthorized 

modifications to data (Mollah et al., 2020). 

On the other hand, differential privacy, which was proposed in 2006 (Dwork et al., 2006), 

is a privacy notion that is related to the distinguishability of the presence/absence of an 

element in a dataset via query functions. A mechanism is differentially private if this 

distinguishability is below some threshold. There are methods for providing differential 

privacy, and these methods can be used for improving privacy. Perturbing data with added 

noise is a way of providing differential privacy, and this method is used for sharing private 

data for analysis purposes instead of sharing real data. For instance, in order to ensure 

differential privacy, data from a health database is shared with researchers under certain 

rules, e.g., a certain number of queries are allowed, and the actual data is perturbed with 

the addition of noise. This approach provides global differential privacy since the addition 

of the noise is done after the data aggregation. Differential privacy can be achieved 

locally, as well. In this approach, noise is added before data is aggregated to a database. 

This local approach is utilized by Apple for collecting data from devices as given in 

Differential Privacy Overview, (https://www.apple.com/privacy/docs/Differential_Priva-

cy_Overview.pdf) and by Google for collecting data from Chrome web browsers (Bittau 

et al., 2017). There is a trade-off between privacy and data utility. Adding more noise 

improves privacy, but it also decreases data utility. This trade-off is formally controlled 

using a parameter called epsilon (ε). As ε gets smaller, the amount of noise increases, 

resulting in improved privacy and decreased utility. There are many studies utilizing 

differential privacy approaches in different areas, some examples include messaging, 

health, scheduling for ridesharing, artificial intelligence, deep learning, and software 

defect prediction (Dazar et al., 2018; Dankar & Emam, 2012; Tong et al., 2017; Zhu & 

Yu, 2019; Chen et al., 2019; Abadi et al., 2016). 
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1.1 Motivation 

 

 

To use Bitcoin, users are not required to provide real names. Instead, pseudonyms are 

used, so it is explicitly seen that some entities transact with each other, but the real 

identities stay hidden like in stock exchange operations. However, since all transactions 

are publicly available, activities of the users can be tracked and linked. Therefore, profile 

of the users can be extracted, and the user identities can be revealed by linking one of the 

transactions to off-network information, as clearly shown in the previous studies that 

analyze anonymity and privacy in Bitcoin. Therefore, users cannot stay completely 

anonymous, and user privacy is not provided since amount values, sender and receiver 

user addresses are explicitly visible in the blockchain. This shortcoming, which 

introduces the possibility of tracing, results in, for example, spending history of a user 

becoming available and accessible to all other people, or cash flow of merchants 

becoming exposed to their competitors. For instance, with the knowledge that someone 

shopped online for 0.000381 BTC from a well-known e-commerce site, Bitcoin addresses 

that made a 0.000381 BTC valued shopping can be found by querying the Bitcoin address 

of the site and the transaction amounts equal to 0.000381 from the blockchain. 

Consequently, room for research came up for anonymity and privacy improvement in 

Bitcoin, and many academic papers have been published (Kus-Khalilov & Levi, 2018; 

Conti et al., 2018; Amarasinghe et al., 2019; Venkatakrishnan et al., 2017; Zhu et al., 

2020). In these studies, generally used methods for anonymity and privacy improvement 

include mixing protocols, ring signatures, zero-knowledge proof, homomorphic 

commitments, and off-chain storage systems. Some of these studies are implemented, for 

example, Monero (https://www.getmonero.org) using ring signatures, and Zcash 

(https://z.cash) using zero-knowledge proofs are two of the prominent privacy improving 

cryptocurrencies.  

While researchers are exploring new ways to improve anonymity and privacy in 

blockchain-based cryptocurrencies, taking extra measures for improving anonymity and 

privacy complicates checking the integrity of the system. This complication is due to the 

use of public Bitcoin addresses and transaction amounts to check the integrity of the 

system. For instance, when the transaction amounts are hidden using a cryptographic 

approach, the total number of coins in the system cannot be counted, and if someone 
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breaks the system, he can issue coins without being detected. Similarly, when the links 

between transactions are broken using cryptography, the flow of bitcoins cannot be 

tracked. Considering these, we hypothesize that the Bitcoin blockchain may benefit from 

differential privacy, which will not affect the checkability of the integrity of the system. 

Hiding actual transaction amounts by adding noise can be a way of applying differential 

privacy. Our motivation for this approach also arises from the fact that perturbing actual 

data with noise makes anonymization and privacy breaches by direct queries impossible. 

For instance, in the previously mentioned scenario with 0.000381 BTC valued shopping 

from a well-known e-commerce site, if some noises are added to the transaction amounts 

while adding them to the blockchain, a value of 0.000381 would be updated as 0.000383 

or 0.000377. Therefore, the detection of these shoppers would be prevented by direct 

queries. Moreover, there would be no guarantee that the closest value to 0.000381 

corresponds to the related transaction. To the best of our knowledge, in the literature, 

there is no study examining Bitcoin’s public blockchain in terms of differential privacy. 

However, public blockchain structure can benefit from differential privacy mechanisms 

for improved privacy, by hiding actual values, and preserving checkability of the integrity 

of the blockchain.  

On the other hand, despite the benefits of smart metering, privacy concerns are raised 

when utility metering becomes smart. Illegal activities to a house can be planned by 

estimating the routine of the household living in that house, or a utility can use 

consumption values of its clients unethically, e.g., selling consumption data to businesses 

that do targeted advertisements (Hassan et al., 2019). When smart metering is used with 

blockchain, even though blockchain comes with its advantages, there are again privacy 

concerns since data kept in distributed ledgers which may remain public. Therefore, we 

focus our study on combining smart metering with blockchain and differential privacy 

mechanisms to improve privacy. There are many studies combining smart metering with 

blockchain (Mollah et al., 2020; Andoni et al., 2019; Guo et al., 2022), or smart metering 

with differential privacy (Farokhi, 2020; Hassan et al., 2020a; Marks et al., 2021). 

However, there are few studies combining smart metering with both blockchain and 

differential privacy. Although utilization of differential privacy and blockchain with 

smart metering is investigated in (Hassan et al., 2020b), many issues were remained 

abstract, e.g., noise addition is done for hiding actual consumption values, however 

reconciliation process for billing according to actual consumption values is not 
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considered. (Gai et al., 2019) improved privacy by adding dummy accounts to hide 

distribution and trends of utility consumptions instead of adding noise. They state that 

adding noise would not hide distribution and trends, however it is worth examining in 

terms of differential privacy theoretically to confirm these arguments. 

 

 

 

1.2 Contributions 

 

 

In this dissertation, first, we provide a theoretical examination of differential privacy in 

Bitcoin public blockchain. We examine the current Bitcoin blockchain structure using the 

differential privacy formulation. Then, we present feasibility of utilization of two 

differential privacy mechanisms to be applied to the blockchain of Bitcoin: (𝑖) noise 

addition to the transaction amounts, and (𝑖𝑖) user graph perturbation. Moreover, we 

implement noise addition to the transaction amounts by using a public software library. 

We compare four differential privacy mechanisms using varying parameter values in 

order to determine the feasible ones. 

As another contribution of this dissertation, utilization of differential privacy in smart 

utility metering is investigated. In addition to differential privacy, we leverage blockchain 

for achieving federation of smart homes and different utility providers, i.e., electricity, 

water and gas. As a result, we propose a blockchain-based differentially-private federated 

smart utility metering framework which hides actual consumptions with added noise 

while providing fair settlement among the clients and the utility providers. 

We summarize the main contributions of this dissertation as follows: 

• We provide a theoretical examination of Bitcoin public blockchain from 

differential privacy perspective, 

• We investigate and apply noise addition and user graph perturbation methods for 

improving differential privacy in Bitcoin public blockchain, 

• We propose a blockchain-based differentially-private federated smart utility 

framework by utilizing noise addition approach. 

 

At the time of this writing, two articles have been published out of this dissertation. In 

our first article (Kus-Khalilov & Levi, 2018), we presented a comprehensive survey and 
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detailed investigation of anonymity and privacy in Bitcoin-like digital cash systems. We 

use writings from this article specifically in Section 2.1, 2.2, 2.3, and 3.1. Our second 

article (Kus & Levi, 2022) investigated and applied differential privacy in Bitcoin public 

blockchain. We use writings from this article specifically in Section 2.1, 3.2, and 4. 

 

 

1.3 Organization 

 

 

The organization of this dissertation is as follows: The related background information is 

given in Section 2, including briefings on anonymity and privacy, Bitcoin and 

blockchain, smart utility metering, and anonymity and privacy issues of Bitcoin, 

blockchain and smart utility metering. In Section 3, we review the literature on 

anonymity and privacy in Bitcoin-like digital cash systems and application of 

differential privacy to financial distributed ledger applications. Section 4 provides 

investigation and application of differential privacy in Bitcoin. Here, we theoretically 

examine Bitcoin from differential privacy perspective. Then, we present feasibility of 

two differential privacy improving mechanisms; (𝑖) utilization of noise addition to 

Bitcoin transaction amounts, and (𝑖𝑖) user graph perturbation in Bitcoin. In this section, 

we also provide an empirical study on noise addition to Bitcoin transaction amounts. In 

Section 5, we propose a blockchain-based differentially-private federated smart utility 

metering framework. We provide requirements, design, information leakage and 

differential privacy analysis, and future research ideas for the framework. Finally, 

Section 6 concludes this dissertation. 
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2. BACKGROUND 

 

 

 

The background information for this study is given in the following five subsections; the 

first two subsections give information about anonymity, privacy, Bitcoin and blockchain. 

Then, anonymity and privacy in Bitcoin and blockchain are explained in the third 

subsection. The last two subsections provide brief information about smart utility 

metering and privacy in smart utility metering. 

 

 

2.1 Anonymity and Privacy 

 

 

Anonymity and privacy are two concepts for which telling the difference may be difficult 

as Bradbury (Bradbury, 2014) mentioned, where privacy is hiding the context, and 

anonymity means hiding the owner of it. In daily life, generally, user privacy is sought 

more than anonymity, since personal data needs to be protected for proper usage. For 

instance, ownership information of a personal e-mail account can be known by everyone, 

but the content is restricted, protected and can be accessed by only the account owner 

using a password. Privacy is also essential in most systems and applications (Eckoff & 

Wagner, 2017; Xiao & Xiao, 2013; Ferrag et al., 2017). On the other side, anonymity is 

maybe the most important property that the criminals seek. The actions of criminals 

become usually public, but the actor aims his identity to remain unknown. With 

anonymity, holding someone accountable for an action becomes impossible (Davenport, 

2002). However, there are some cases where anonymity is desired in daily life too. An 

example may be the applications, which are practiced in companies occasionally for the 

workplace evaluation. In these applications, personal opinions on a topic are gathered 

without identity information at an out-of-sight place. Then, the opinions are consolidated 
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and announced publicly. Another well-known example is voting in free elections (secret 

ballot). 

For anonymity, the objective is being unidentifiable and untraceable (Kelly et al., 2012). 

Ensuring true anonymity is difficult. Many applications claiming to be anonymous occur 

to have flaws, which leaks identity information. Mixing services (Chaum, 1981), which 

are also called mixing networks (mixnets) or laundry services, are used for preventing 

tracing activities of messages through a network by including a sequence of 

intermediaries or a pool structure. However, they cause computation and communication 

overheads (Chaum et al.., 2016) or may be unreliable. Also, anonymization services, 

which use onion routing (Reed et al., 1998), are widely employed for hiding identity by 

addressing the issue of IP tracking. Even The Onion Router (TOR) (Dingledine et al., 

2004), which is one of the most successful anonymity networks, is known to have flaws 

(Bradbury, 2014; Erdin et al., 2015). Besides, these kinds of mixing services may be 

blocked by some websites or applications, so they are not always utilizable. Hong et al. 

(2018) proposed a de-mixing algorithm for Bitcoin mixing services, as well.  

One of the most dominant factors that prevent true anonymity is meta-data. In systems 

that consist of electronic transactions, meta-data of the transactions, e.g. log data, may 

lead to identities when handled with an analytical and holistic approach. For instance, IP 

addresses or timing of transactions are the data which can be utilized. One well-known 

example for this case is AOL releasing an “anonymized” search history for researchers, 

which then caused unexpected and undesirable results as researchers could find out the 

identity of individuals. One disclosed identity was Thelma Arnold divulged with her 

research history which shows her personal interests (Bradbury, 2014). 

Anonymity and privacy usually come with a price. On the one hand, in general, systems 

which aim to provide anonymity and privacy require more resources in space, time or 

computational power, since extra work is done. One the other hand, the users need to pay 

more to become anonymous and private. For instance, the mobile applications that bring 

drivers and passengers together, i.e., Uber and similar applications following it, provide 

cheap riding service compared to taxicabs. However, users need to reveal their identities 

to use these applications, since the driver and the passenger rate each other about the ride 

and each ride is logged. This requirement causes the loss of anonymity and privacy which 

is provided in a regular and more expensive taxicab service, which may have negative 

consequences. 
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Dwork et al. (2006) introduced ε-indistinguishability as a new notion of privacy leakage 

in 2006. A mechanism is defined as ε-indistinguishable if for all databases 𝐷1 and 

𝐷2 differing in a single row and for all responses to a query function, the probability of 

obtaining response 𝑟 for the database 𝐷1 is within a (1+ε) multiplicative factor of the 

probability of obtaining the same response, 𝑟, when the database is 𝐷2. Dwork et al. stated 

that ε-indistinguishability is obtained by adding noise to real data according to the Laplace 

distribution as P[𝑥] ∝  𝑒−𝜀 |𝑥|/𝑆(𝑓) where 𝑆(𝑓) is the sensitivity of function f: 𝐷𝑛 

→ℝ𝑑 . 𝑆(𝑓) is the smallest number such that for all 𝐷1, 𝐷2 ∈ 𝐷𝑛 which differ in a single 

row, ǁ𝑓(𝐷1) − 𝑓(𝐷2)ǁ1  ≤  𝑆(𝑓). More noise means more privacy. However, as the 

amount of noise increases, data utility for analysis decreases, so there is a trade-off 

between privacy and utility. ε determines the amount of privacy loss, the smaller ε is the 

better privacy and ε is a parameter chosen by the policy. Dwork et al. also called ε as 

leakage. Differential privacy was defined by Dwork (Dwork, 2006) as a new measure in 

the same year and the formulation of differential privacy is given as follows. A function 

𝑓 is ε-differential private if Formula 2.1 holds for all datasets 𝐷1 and 𝐷2 which differ in 

at most a single row and for all subsets 𝑆 ⊆ Range(𝑓) where 𝑃 denotes probability. 

𝑃[𝑓(𝐷1) ∊ 𝑆] ≤  𝑒𝑥𝑝(𝜀)  𝑃[𝑓(𝐷2) 𝑆]                                    (2.1) 

For noise calculation, although the Laplace distribution was the first mechanism 

proposed, the Gaussian (Dwork & Roth, 2014), the Geometric (Ghosh et al., 2009), and 

the Uniform (Geng & Viswanath, 2013) distributions can be also used for numeric data 

as an alternative, and the Exponential distribution can be used for non-numeric data 

(Dwork & Roth, 2014). Differential privacy can be applied to graphs, as well. Graph 

perturbation (Torra & Salas, 2019) is the noise graph addition to real graph structure and 

used for obtaining differentially private graphs (Sala et al., 2011; Jorgensen et al., 2016). 

 

 

2.2 Bitcoin and Blockchain 

 

 

Bitcoin is a distributed, P2P digital currency where no central authority exists. Bitcoin is 

the unit of the currency, and it is shortened as BTC. Satoshi is the smallest unit of 

the currency, and it is equal to a one hundred millionth of a single bitcoin (0.00000001 

BTC). Bitcoins can be transferred from one address to another address. A transaction is a 
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transfer of bitcoins and/or satoshis. Transaction management and issuance of bitcoins are 

performed jointly by the peers in the network. 

Bitcoin uses public key cryptography. The address of a user is the hash of the public key 

of the user. The user can spend his bitcoins by using his private key to sign in a 

transaction. As a matter of fact, a bitcoin is a chain of digital signatures. A user can pass 

a bitcoin to another user by digitally signing hash of the previous transaction by his private 

key and includes the public key of the new owner in the transaction. New owner verifies 

signatures to verify the chain of ownership.  

 

 

2.2.1 Blockchain 

 

 

The blockchain is the general ledger of Bitcoin; it is the public record of all transactions, 

which are shared between all users and used to verify transactions. Blockchain consists 

of blocks. A block contains and confirms a part of new waiting transactions. Confirmation 

means a transaction getting processed by the network and being added to the blockchain. 

Transactions at each block are hashed, paired and hashed again until a single hash is 

obtained, which is the Merkle root (Merkle, 1988). Merkle root is stored in block header. 

Each block also includes hash of previous block header, which results in a chain of blocks. 

The basic structure of blockchain is given in Figure 2.1.  
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Figure 2.1: Simplified version of blockchain 
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2.2.2 Transactions 

 

 

Each transaction has at least one input and one output that include address and amount 

information. In the input, a user can use bitcoins, which was received as an output in one 

or more transactions previously. As a result, flow of bitcoins between transactions also 

forms a chain structure. An output, which is not spent by an input, stays as Unspent 

Transaction Output (UTXO) until it is spent. The sum of all UTXOs assigned to a user 

determines the balance of the user. For example, if we say that one has 10 bitcoins, this 

means that he has 10 bitcoins waiting in one or more UTXOs assigned to him. An example 

illustration of this chain structure is shown in Figure 2.2. The difference of sum of outputs 

and sum of inputs in a transaction corresponds to the transaction fee. Transaction fees of 

all transactions in a block are earned by the miner, i.e., the user who generated that block. 

The conditions, which allow the transfer of bitcoins that are held in an output of a 

transaction to an input of another transaction, are specified by a script, written in a simple 

non-Turing-complete scripting language. In Figure 2.3, an output segment of a transaction 

and the corresponding input segment are shown in more detail. The output of transaction 

𝑛 goes to the input of transaction 𝑛 + 1. The one who can satisfy the conditions of pubkey 

script in the output segment of former transaction gets ownership of bitcoins in the 

specified amount. The data parameters, which satisfy the conditionals in the pubkey 

script, are provided in the signature script in the input of the latter transaction to spend 

these bitcoins. For example, if Alice sends bitcoins to Bob in transaction 𝑛, in the output 

of transaction 𝑛, Alice indicates Bob; i.e. in order to assign these bitcoins, she mentions 

Bob’s public key in pubkey script segment. When Bob wants to spend these bitcoins in 

transaction 𝑛 + 1, Bob has to represent himself in the input, therefore he uses his 

signature (private key) in the signature script. Elliptic Curve Digital Signature 

Algorithm (ECDSA) (Johnson et al., 2001) is used with the secp256k1 curve for digital 

signatures.  
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Figure 2.2: A sample flow of bitcoins from transactions to transactions 
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Figure 2.3: Output and input segments of two related transactions from Bitcoin 

Developer Guide (https://bitcoin.org/en/developer-guide) 

 

 

2.2.3 Change Addresses 

 

 

When a user wishes to spend an output of a transaction which is owned by him, he has to 

use all of it. This is an important difference between Bitcoin transactions and regular bank 

transactions. For example, in a regular bank account, if a user has 50 dollars in his 

account, he can use just 20 of it in a payment. However, in Bitcoin, if a user has 10 BTC 

as a UTXO assigned to him, he has to use all of this 10 BTC in a transaction. If the 

payment amount, which is indicated in one output of the transaction, is less than the 
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amount in a UTXO, the user should state a second output address belonging to him to get 

back the change, if he does not want to give the remaining amount as the transaction fee. 

As the change address, the user can use an old address or generate a new address to use. 

It is suggested to use a new address at each transaction to reduce traceability and improve 

anonymity. 

 

 

2.2.4 Mining and Incentive 

 

 

Bitcoin transactions are broadcast to the network. Since the transactions are public, nodes 

running Bitcoin software checks their validity. Then in the mining process, they form a 

new block that contains new transactions. This new block is added to the latest copy of 

the blockchain and broadcasted to other nodes. The process of adding a block is called 

mining since each block comes with a reward. In each block generation, new bitcoins are 

issued and assigned to the creator of the block. Block generation reward halves at every 

210 thousand blocks. It was 50 BTC at the beginning, then decreased to 25 BTC, then 

decreased to 12.5, and it is 6.25 BTC since May 2020. Block generation reward is 

implemented by putting a new, special transaction as the first transaction in the block 

where the payee is the creator of the block. This first transaction in the block is called 

coinbase transaction. There is a race in this mining process to get the reward. The mining 

process also acts as an incentive for nodes to support the network and puts new bitcoins 

into circulation.  

Creator of a block is also rewarded with the transaction fees of the block. A transaction 

has a transaction fee if the output value of a transaction is greater than its input value. 

Payers include fees in order to get their transactions processed quicker; miners may select 

to process transactions with fees. Maximum numbers of bitcoins are determined to be 21 

million. Therefore, after that number is reached, the only incentive to mine will be the 

transaction fees. These incentives increase the possibility of the nodes behaving honestly.  

The longest blockchain is recognized as the actual and the latest blockchain. All miner 

nodes work for generating another block to add to this latest copy. Transactions receive a 

confirmation when they are included in a block, and a transaction is confirmed again each 

time another block is added to the blockchain after the block of the transaction. 
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It should be noted that UTXO of a coinbase transaction cannot be used as an input, which 

means cannot be spent, for at least 100 blocks. This is for guaranteeing that a block reward 

is not spent until the permanence of the block in the blockchain becomes absolute. This 

rule is required due to the possibility of having of blockchain forks.  

 

 

2.2.5 Proof-of-Work (PoW) 

 

 

In a block header, a nonce value is included, which is used as the proof-of-work (PoW) 

for creating the block. PoW is a system to prevent Denial-of-Service (DoS) attacks and 

other system misuses. This system requires a user to show that he performed some work 

and spent some effort, i.e., processing time, to complete a task. However, the proof can 

be easily verified. A PoW is like a puzzle, takes some time and effort to solve, but it can 

be verified easily. Bitcoin uses a PoW algorithm named Hashcash (Back, 2016). In 

Hashcash, a hash value, which begins with a specific number of zeroes, is required. Since 

this is a specific requirement and cannot be obtained directly, it shows that the user spends 

some effort and time. Hashcash can be implemented by incrementing a nonce value until 

it provides the requirement of a specific number of zeroes at the beginning of its hash. An 

example of the Hashcash implementation is given in Figure 2.4.  
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Figure 2.4: Hashcash example 
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In this example, the required number of zeroes is determined as four in hexadecimal. 

Nonce value is added to the end of the block data. This nonce value, starting from zero, 

is incremented until the hash begins with four zeroes. It takes 1,307 tries to obtain a valid 

hash value.  

In this scheme, average work required is exponential in the number of required zero bits, 

but it can be verified by computing a single hash value. For instance, if the required 

number of zeroes is 20 and SHA-256 is used as the hash function, out of 2256 possible 

hash values, there are 2236 hash values that satisfy this criterion. The possibility of 

randomly selecting a number that will have 20 zeroes as the beginning of the hash is 1 in 

220. Thus, one has to try 220/2 = 219 values on the average to find such a hash value.  

While miners compete for adding a block to the blockchain, they actually race for finding 

a PoW for a block of transactions. By always accepting the longest chain as the actual 

and the most recent blockchain, the greatest PoW computation is guaranteed. This means 

if the majority of nodes in the network are honest, then the chain formed by these honest 

nodes is the longest and beat any other alternative, competing chains. For example, to 

modify a past block, finding PoW of the block and the blocks after that block must be 

achieved again. Also, the work and the chain of the honest nodes must be outperformed, 

i.e., a longer chain must be obtained. The probability of an attacker to be successful 

decreases exponentially as the successive blocks are added. 

The number of zero bits determining the PoW difficulty is named as difficulty target. 

Improvements in the hardware speed and changes in the number of running nodes in the 

network affect the generation rate of blocks. Therefore, there is a need for difficulty 

retargeting and the difficulty target is adjusted according to the block generation rate 

(average number of blocks per hour), i.e., if blocks get generated too fast, the difficulty 

increases by increasing the required number of zeroes. The average number of blocks per 

hour is determined to be 6, so creating a block should take 10 minutes on average. In 

order to achieve this, every 2,016 blocks, the network calculates the number of seconds 

to generate these 2,016 blocks by using timestamps at block headers. This value is 

expected to be 1,209,600 seconds, corresponding to two weeks. If it took less than two 

weeks to generate these 2,016 blocks, then the difficulty target is increased proportionally, 

and if it took more than two weeks, then the difficulty target is decreased proportionally. 
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2.2.6 Double-Spending  

 

 

The most known problem for digital currencies is the double-spending problem, in which 

a malicious user tries to spend to two different payees with the same money. To prevent 

double-spending, it must be ensured that a digital coin is not spent twice by its owner. 

Before Bitcoin, this problem is solved by using a central authority which approves 

transactions. However, in Bitcoin, if someone tries to spend the same bitcoin twice, 

blockchain acts as the single source of verification, and the network does not accept to 

add the second transaction to the blockchain. This is achieved by nodes following 

consensus rules. These are the rules that nodes in the network follow to maintain 

consensus, i.e., to reach an agreement on having same blocks in their blockchain. These 

rules are also called validation rules since transactions and blocks are validated according 

to these rules, and a block violating the consensus rules is rejected. Examples of Bitcoin 

consensus rules are as follows; (𝑖) signatures must be correct for the bitcoins being spent 

in transactions and (𝑖𝑖) the maximum number of bitcoins that can be created in a block is 

limited (6.25 BTC as of May 2020). 

The PoW (PoW) scheme in the mining process is used by Bitcoin to reach consensus on 

the blockchain and presents a solution to the Byzantine Generals Problem (Lamport et al., 

1982). Miners can include different transactions in their blocks while racing for adding a 

new block to the blockchain; therefore, it is possible that two miners come up with two 

different new blocks at the same time and broadcast to the rest of the network. This results 

in a forked blockchain and obligates the network to reach a consensus on which block to 

add to the blockchain. In this case, miners save both blockchains but select one of them 

and try to find a new block to add that chain. Meanwhile, if a miner receives a new block 

from the network for one of the chains, he discards the shorter chain and continues 

working for adding a new block to the longer chain. So, the blockchain provides the 

structure as a single history of the order in which transactions were processed and assures 

the integrity of the system without a central authority. This is achieved by recording 

information of all transactions which are impossible to forge but at the same time quickly 

verifiable. In order to add a block to the blockchain, a hash (SHA-256) of a block of items 
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(transactions) with their timestamp value is taken which proves the existence of data at 

that time, and the order between transactions is established. While taking the hash, the 

hash of all previous blocks is also included as a chain, so each block (and its timestamp) 

supports the integrity of the previous blocks. Thus, modification of a block requires 

modification of all the blocks coming afterward. This modification requirement requires 

a huge amount of processing power due to the PoW structure. To change a transaction 

which happened 60 minutes (6 blocks) ago, e.g., to remove information that spending 

some bitcoins for double-spending, one has to change the record for that transaction and 

solve a new PoW problem for that block (find a new nonce). Then he has to construct an 

alternative chain which goes forward, by solving a new PoW problem for each block and 

surpass the actual chain by forming a longer chain. This can be achieved if and only if the 

malicious user has more computing power than the sum of all other miners’ powers and 

this is known as a majority attack; otherwise, he cannot surpass the actual chain. It is 

suggested to wait for 6 confirmations for a high-value bitcoin transfer, which means that 

5 additional blocks should be added after the block that contains the transaction as stated 

in Bitcoin web site (https://bitcoin.org/en/you-need-to-know). 

 

 

2.2.7 P2P Network  

 

 

Peers connect to each other over an unencrypted TCP channel. When a peer first wishes 

to enter the network, some DNS servers, which are called DNS seeds, are queried. These 

DNS seeds are hardcoded in Bitcoin clients to find active peers. The response includes IP 

addresses of the peers that accept new incoming connections. To connect a peer, a version 

message is sent, including version number, block, and the current time of the sender peer. 

Receiver peer replies this message with its version message. Then both nodes send verack 

message to acknowledge that the connection has been established. After a peer enters the 

network, peer discovery is based on an address propagation mechanism, where peers can 

request IP addresses from each other with getaddr messages, and send their IP address 

lists to other peers with addr messages. Each address has a timestamp which shows its 

freshness. Peers can have a total of 125 connections, where 8 of them are outgoing 

connections, and 117 of them are incoming connections, except peers behind NAT or 

firewall; they can have only outgoing connections and cannot accept incoming 

https://bitcoin.org/en/glossary/block
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connections. Each peer stores a list of IP addresses of their connections. When a new 

block is generated by a miner, it is broadcasted by the miner to its peers. Receiving peers 

validate the block and then forward to their peers. When a peer forms a transaction, then 

it sends this message to its connected peers. A transaction is sent to a peer by first sending 

an inv message. If the receiver peer replies with a getdata response, then the transaction 

is sent using tx message. The transaction continues to be propagated between peers in the 

same manner if it is a valid transaction. A reputation-based protocol exists, where each 

peer keeps a penalty score for every connection and increases these penalty scores for the 

connections that send faulty messages. The peer bans a connection for 24 hours when its 

penalty score reaches a threshold. 

 

 

2.2.8 Summary of the Process  

 

 

As a summary, the process can be defined as follows: 

• New transactions are broadcast to all nodes. 

• Each miner node collects new transactions into a block.  

• Each miner node works on finding a PoW for its block. 

• When a miner finds a PoW, it broadcasts the blockchain with the added block to 

all nodes. 

• Other miner nodes accept the addition only if the block and all transactions in the 

block are valid.  

• Other miner nodes show their acceptance by working on creating the next block 

in the chain, using the hash of the accepted block as the previous hash. 

• Miner nodes consider the longest chain and keep working on extending it. 

• If two miner nodes broadcast different versions of the blockchain with a valid new 

block addition at the same time, miners work on the first one they received, but 

also keep the other chain for the possibility of it becoming longer. 

• When a PoW is found for the next block, and one chain becomes longer, nodes 

that were working on the other chain discard that chain and switch to the longer 

one. 
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A brief technical background on Bitcoin is given herein. Unquestionably, the whole 

technical structure of Bitcoin is much deeper, more detailed information can be found 

given in Bitcoin Developer Guides (https://bitcoin.org/en/developer-guide). 

 

 

2.3 Anonymity and Privacy in Bitcoin and Blockchain 

 

 

In the traditional banking model, information about the parties in transactions are 

limitedly shared and secured by the trusted third parties, however the banks, which are 

trusted third parties, know everything about their customers. In Bitcoin, everything is 

transparent; all transactions are publicly announced. The only thing done for anonymity 

is to keep public keys anonymous, using pseudonyms for the addresses. Everyone can 

monitor that users transfer bitcoins to each other, but the real names are not provided, 

only the pseudonyms are used. It is similar to the stock exchange operations in that sense. 

Since pseudonyms are used in Bitcoin transactions, the general impression can be as 

Bitcoin provides anonymity. However, as mentioned explicitly in Bitcoin website 

(https://bitcoin.org/en/you-need-to-know), it is not anonymous, and it is remarked as 

“probably the most transparent payment network in the World” 

(https://bitcoin.org/en/protect-your-privacy). All transactions are kept public where 

payers and payees are specified with their pseudonyms, which means all transactions of 

a Bitcoin address (pseudonym) can be seen. Blockchain does not keep balances, just the 

transactions; however, balance of an address can be calculated after obtaining all 

transactions related to this address. Nevertheless, since no other information about the 

users is stored, real identity of a user is not known, unless there is a need for revealing it, 

e. g., in order to receive services or goods or law enforcement. Even so, the real identity 

is not revealed to everyone unless the service provider announces publicly. So, it can be 

said that Bitcoin users cannot stay completely anonymous, but can be considered as 

pseudonymous. 

Except revealing identity to receive service or goods to merchant and/or payment 

processor, identity and address can be linked while trading bitcoins on exchange since 

exchanges may be subject to money laundering regulations. In this case, customers need 

to prove their identity to the exchange. 
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It can be said that provided level of privacy is determined by the behavior of a user while 

using Bitcoin. Some security countermeasures are suggested by Bitcoin 

(https://bitcoin.org/en/protect-your-privacy), e.g., generating and using a new key pair (a 

new address) for each transaction. Because when a new key pair is generated, it cannot 

be linked to previous transactions of the user and therefore the number of bitcoins the 

user has cannot be learned. Another recommendation is to use separate wallets for 

different purposes. Wallet refers to the programs or files that are used for managing 

transactions and creating and managing Bitcoin addresses, public-private key pairs as 

stated in Bitcoin Developer Guide (https://bitcoin.org/en/developer-guide). Transactions 

at different wallets cannot be linked and can stay isolated. Also, the first thing that has to 

be done for privacy is to be careful about not to disclose addresses. However, it should 

be noted that there might be cases where the address is disclosed, e.g. for receiving public 

donations, or for proving a payment is made in order to receive a good. Similarly, 

information about transactions, like amount, should not be disclosed since they may help 

to find addresses related to them. Hosted wallet services know the addresses of the users 

who use them, because data of wallets are stored in servers owned by the wallet services. 

Additional information to use these wallet services, such as e-mail address or phone 

number, can help these services to link this information to identity.  

Bitcoin also warns its users to take some issues into consideration of which users may not 

be aware. For instance, it should be known that IP address of a Bitcoin address can be 

logged by connecting to active nodes in the network and listening for transaction relays. 

Similarly, the Internet service provider (ISP) can intercept transaction messages that a 

user sends and figure out the addresses owned by him. IP addresses do not directly reveal 

identity, but they can be used to find it. IP addresses can be hidden by using 

anonymization services like TOR. There are also mixing services, which mix transactions 

of users by receiving and sending back the same amount using independent addresses and 

make impossible to trace activities of users. However, these services require trust to the 

service since the users actually transfer bitcoins to the service. Moreover, these services 

can log requests of users. Another reason which limits the usage of mixing services is that 

these services are inefficient for hiding large transactions, although they are effective 

while hiding small amounts.  

Bitcoin’s blockchain was designed to be public, and it does not provide privacy per se. 

We just briefly mention some important blockchain privacy studies here. Enigma 
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(Zysking, 2015) is a P2P network in which different parties can jointly store data and run 

computations, at the same time keeping the data private. The computational model of 

Enigma is based on Secure Multiparty Computations (SMC). Data is split between nodes 

and data queries are computed distributed. Blockchain serves as an unalterable log of 

events and manages identities and access control. A privacy respecting approach for 

blockchain-based sharing economy applications, which leverages a zero-knowledge 

scheme, was proposed (Xu et al., 2017). There are also recent studies on privacy in 

blockchains of smart contracts. Ethereum (Buterin, 2014; Wood, 2014) is the first smart 

contract blockchain platform. All transactions in Ethereum were public, as in Bitcoin. 

However, Ethereum platform enables setting up private and permissioned blockchains to 

improve privacy. For instance, Quorum (https://quorum.com) supports both public and 

private transactions. Details of private transactions are revealed only to those party of the 

transactions. Symmetric encryption and hash functions are used to keep data private. A 

distinct private state database is stored at each node additional to the common public state 

database. Private contract code in a private transaction can only be executed by the nodes 

that are party to that transaction. Privacy is obtained in Hyperledger Fabric 

(https://hyperledger-fabric.readthedocs.io), another smart contract platform, similar to 

Quorum; by using hash functions and symmetric encryption. 

 

 

2.4 Smart Utility Metering 

 

 

Utilities are the organizations supplying the community with electricity, gas, or water. 

Traditional utility services are centralized and work in a subscription basis; houses that 

would like to utilize utilities apply to the utility providers and become subscribers. Utility 

meters are devices that are used for measuring utility usages. These meters have parts that 

show current consumption records. Utility providers obtain these meter records regularly 

and bill the utility users. In traditional utility systems, obtaining meter records are done 

manually; personnels of the utility providers visit the subscribers, check their meters, and 

record the readings. Therefore, this operation requires labor and is prone to human errors, 

since readings are gathered and transferred manually. Moreover, although households 

may check the meters and read the numbers in the meters, it is difficult to convert current 
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consumption numbers to payment amounts at any time in order to anticipate and control 

their bills at that billing period. 

Smart utility metering is conversion of traditional utility metering systems to intelligent 

systems. Smart utility metering is also called smart metering or smart grid. Smart 

metering systems are realized by advanced metering infrastructures (AMI). AMI consists 

of several enhanced technologies such as smart meters (SM), home area networks (HAN), 

wide area networks (WAN) or neighbored networks (Kabalci, 2016). In smart metering 

systems, the consumption and other related billing parameters are measured in predefined 

intervals. The measured data are transmitted to utility companies over wireline or wireless 

networks. Therefore, smart metering systems do not require labor work and there are no 

room for human error. Smart metering also enables household to view their current 

consumptions and billing amounts via smart devices. 

 

 

2.5 Privacy in Smart Utility Metering 

 

 

Smart utility metering raises privacy concerns since real-time consumptions of houses are 

transmitted to utility centers. Transmission of real-time consumption data leaks 

information about household, such as number of people at the house, their sleeping and 

eating routines, since usage patterns from smart meter data can be extracted using 

statistical methods (Molina-Markham et al., 2010). For instance, if the consumption 

values transmitted to the utility providers are zero in a period, the utility provider can 

conclude that there is no one at the house at that period. This information can be used for 

malicious activities such as theft. Frequent transmission of consumption values to utilities 

also allows utilities to utilize consumption data to raise the prices according to the 

consumption, if dynamic pricing is used (Hassan et al., 2019). Privacy concerns using 

blockchains on smart metering are addressed by European Commission Joint Research 

Centre Smart Electricity Systems and Interoperability (https://ses.jrc.ec.europa.eu/node/ 

31976), as well. Privacy improvement mechanisms can be added to smart metering to 

improve privacy, such as securing measurements by encryption. However, differential 

privacy has several advantages over encryption in smart utility metering scenario. 

Encryption requires high computational capacity and cooperation between all smart 
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meters to exchange distributed keys. Moreover, failure of even a single smart meter may 

cause faults in the whole network (Barbosa et al., 2016). Compared to encryption and 

other cryptographical methods, differential privacy is simple to implement and light-

weight. Moreover, the level of privacy can be tuned (Gough et al., 2021).  
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3. RELATED WORK 

 

 

 

In this section, we give related work on anonymity and privacy in Bitcoin-like digital cash 

systems and application of differential privacy to financial distributed ledger applications 

in the following subsections. 

 

 

3.1 Survey on Anonymity and Privacy in Bitcoin-like Digital Cash Systems 

 

 

We present a brief survey on the studies, related to anonymity and privacy issues in 

Bitcoin in this subsection. There are studies that survey the literature related to anonymity 

and privacy of the Bitcoin blockchain and Bitcoin-like cryptocurrencies (Schaffner, 2017; 

ShenTu & Yu, 2015a; Herrera-Joancomartí, 2015; Bonneau et al., 2015; Narayanan et al., 

2016; Tschorsch & Scheuermann, 2016; Maurer, 2016; Conti et al., 2018; Fabian et al., 

2018; Genkin et al., 2018; Alsalami & Zhang, 2019; Feng et. Al, 2019; Averin et al., 

2020; Zaghloul et al., 2020; Zhu et al., 2020; Bergman & Rajput, 2021; Peng et al., 2021; 

Ghesmati et al., 2022). We classify studies related to anonymity and privacy issues in 

Bitcoin according to methods and outcomes. For instance, Ethereum (Buterin, 2014; 

Wood, 2014), which is the second widely used digital currency utilizing smart contracts, 

is not covered in our analysis and taxonomies since it does not focus on improving 

anonymity and privacy. Transactions in Ethereum are public (Tikhomirov, 2017) as in 

Bitcoin. Nevertheless, proposals for improving anonymity and privacy in Bitcoin can also 

be evaluated and used for improving anonymity and privacy in Ethereum or similar cash 

systems. For instance, Zero Knowledge Succinct Non-interactive ARguments of 

Knowledge (ZK-SNARKs) (Ben-Sasson et al., 2013a), which are a special kind of 

Succinct Non-interactive ARgument of Knowledge (SNARK) (Ben-Sasson et al., 2013b), 

was integrated to Ethereum as of September 2017 (Wilcox, 2017). 
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We divide the studies related to anonymity and privacy in Bitcoin and similar digital cash 

systems in two main categories: (𝑖) the studies that analyze the anonymity and privacy in 

Bitcoin, and (𝑖𝑖) the studies that propose improvements for anonymity and/or user privacy 

as an extension or alternative to Bitcoin. We detail these two categories in the following 

subsections. 

 

Figure 3.1: Taxonomy of methods of analyzing anonymity and privacy in Bitcoin and 

the outcomes 

 

 

 

3.1.1 Taxonomy of Studies on Anonymity and Privacy Analysis 

 

 

We classify methods of analyzing anonymity and privacy in Bitcoin that are described 

and used in the literature as given in Figure 3.1. Essentially, analyzing anonymity and 

privacy is done through spending effort to achieve deanonymization and extract 

information that would impair privacy of users. Therefore, methods in the literature serve 

these purposes. For a method, while some studies may use the method, some studies may 

only mention the method but do not use it; therefore, for each method, studies that 

mentioned or applied the method are given respectively. Resulting outcomes are given in 

the bottom part of the figure. Outcomes are actually potential aims to be achieved after 

analyses. There are five outcomes of analyzing anonymity and privacy in Bitcoin. Each 

outcome is described in detail in the following. 

• Discovering Bitcoin Addresses: Possible Bitcoin address of a person or an entity 
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is discovered starting from an identity information, such as name and surname of 

a person, or name of a company.  

• Discovering Identities: Possible identity information, such as name and surname 

of a person or company name is obtained starting from a Bitcoin address. 

• Mapping Bitcoin Addresses to IP Addresses: Bitcoin addresses are mapped to 

possible IP addresses where the transactions are generated. 

• Linking Bitcoin Addresses: Bitcoin users are suggested to use new Bitcoin address 

each time they receive a new payment in the Bitcoin website 

(https://bitcoin.org/en/protect-your-privacy). Therefore, a user can have more 

than one Bitcoin address. Addresses expected to belong to the same user are linked 

together in this outcome. 

• Mapping Bitcoin Addresses to Geo-Locations: Information about the physical 

location of a user is obtained starting from Bitcoin address. 

Transition can happen between these outcomes. For instance, a Bitcoin address belonging 

to a person can be discovered, and then this address can be linked to his other Bitcoin 

addresses. Similarly, a Bitcoin address can be mapped to the IP address, and then this IP 

address can be used to discover identity or geo-location of the user that owns the Bitcoin 

address. 

We describe each method in more detail, and give the related studies for each method in 

the following.  

• Transacting: By transacting with other users, e.g., purchasing of goods and 

services, Bitcoin address of the other end is learned. A buyer must know Bitcoin 

address of a seller in order to make a payment to the seller, so a seller must share 

his Bitcoin address if he wants to receive payments. Therefore, one can act as a 

buyer and learn Bitcoin addresses of parties that he would like to know, assuming 

that these parties are involved in sales activities. Transacting method means 

actively participating in the network and may also include using marked coins or 

operating a money laundry service as Reid & Harrigan (2012) stated. Meiklejohn 

et al. (2013) used transacting method and named it as re-identification attack. 

Transacting can also be used to understand the mode of operation of mixing 

services, i.e., anonymization services as done by Möser et al. (2013) and Wu et 
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al. (2021).  

• Utilizing Off-network Information: Publicly available off-network data sources, 

which are obtained externally (out of Bitcoin network and blockchain), can be 

used to discover identities belonging to Bitcoin addresses, or vice versa. Donation 

websites that include information related to Bitcoin addresses to prevent service 

abuses can be given as an example of these data sources. Also, users can 

voluntarily disclose Bitcoin addresses in forums. In addition, large and highly 

active entities are publicly recognized on the website blockchain.com. Off-

network information from this website can also be used to obtain IP address 

belonging to a Bitcoin address that initiates the transaction.  Reid & Harrigan 

(2012), Ron & Shamir (2013), Ortega (2013), Meiklejohn et al. (2013), Fleder et 

al. (2015), Spagnuolo et al. (2014), Baumann et al. (2014), Biryukov et al. (2014), 

Lischke & Fabian (2016), and Jawahari et al. (2020) used this approach. 

• Utilizing Network: By analyzing Bitcoin network traffic or using network 

infrastructure, information about transactions can be obtained. Utilizing 

anomalously relayed transactions, utilizing entry nodes, utilizing first relayer 

information and setting address cookie for user fingerprinting are the analysis 

methods which utilize the Bitcoin network.  

o Utilizing Anomalously Relayed Transactions: Sending of a message by a 

peer to other peers is also called relay. By analyzing Bitcoin network 

traffic and transaction message relays, abnormal relay patterns can be 

defined, such as a transaction being relayed by a single person or a 

transaction being rerelayed (relayed more than once) by at least one user. 

Transactions matching these patterns can be used to map Bitcoin addresses 

to IP addresses. Koshy et al. (2014) proposed this method, inspired by the 

idea of using P2P network information which was introduced by 

Kaminsky at his blog (https://dankaminsky.com/2011/08/05/bo2k11). 

o Utilizing First Relayer Information: When connected to every node in the 

Bitcoin network, it can be assumed that the first node to inform of a 

transaction is the source, i.e., the owner of it. P2P network and relays were 

introduced as another source of data for deanonymization firstly by 

Kaminsky, where he proposed utilizing first relayer information. This 
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method was also mentioned and accepted by Ortega (2013) Fanti & 

Viswanath (2017), Neudecker & Hartenstein (2017), and Biryukov & 

Tikhomirov (2019a; 2019b) used this method.  

o Utilizing Underlying Network Graph: Bitcoin clients can be identified by 

utilizing underlying P2P network graph. Biryukov et al. (2014) introduced 

utilizing entry nodes method. Entry nodes are the nodes that a Bitcoin 

client connects to. Fanti and Viswanath (2017), and Feld et al. (2014) used 

this method.  

o Setting Address Cookie: Different transactions and Bitcoin addresses of 

the same user and IP addresses can be linked by setting an address cookie 

on the user’s computer. The user can be fingerprinted simply by checking 

this address cookie. This method does not require blockchain analysis and 

is based on Bitcoin’s peer discovery mechanism. Since Bitcoin peers get 

addresses from other peers, a unique combination of fake addresses, which 

would behave as a fingerprint, can be sent to a peer to fingerprint him. The 

peer stores these addresses. The next time he connects, his address 

database can be queried, and the user is identified if the fingerprint 

addresses (in the address cookie) are present. This method was proposed 

by Biryukov & Pustogarov (2015) to correlate the same user across 

different sessions.  

• Analyzing Blockchain Data: Since entire transaction history is publicly available 

in the blockchain, flow of bitcoins between Bitcoin addresses is traceable. 

Blockchain data can be gathered using APIs of Bitcoin clients. Bitcoin Core 

(https://bitcoin.org/en/bitcoin-core), which is the official Bitcoin client, and 

blockchain.info are the two well-known and widely used clients. Reid & Harrigan 

(2012) were first to analyze blockchain for anonymity and privacy of Bitcoin. 

They introduced two network structures, transaction and user networks, which are 

also used and utilized in subsequent studies extensively. The flow of bitcoins 

between transactions over time is shown in the transaction network and flow of 

bitcoins between users over time is depicted in the user network. Constructing 

transaction network from blockchain is straightforward; transactions are 

represented as nodes and flow of bitcoins are represented as directed edges with 
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amount and timestamp information. An output of a source node becomes input to 

a target node.  

 

t1

t2

t3

t4
23/05/2017 09:05:07

10/05/2017 11:46:47

02/02/2017 23:10:40

30/04/2017 16:55:34

0.5 BTC

0.2 BTC

0.3 BTC 1 BTC

 

Figure 3.2: Example sub-network of transactions 

 

Figure 3.2 shows an example sub-network of transactions. 𝒕𝟏 has one input and 

two outputs. It was performed on 2nd February 2017, and one of its outputs 

transferred 0.5 BTC. 𝒕𝟐 is a transaction with two inputs and one output. It was 

performed on 30th April 2017, and the output transferred 0.3 BTC. 𝒕𝟑 is a 

transaction with one input and one output. It was performed on 10th May 2017, 

and the output transferred 0.2 BTC. Finally, 𝒕𝟒 is a transaction with three inputs 

and one output. It was performed on the 23th May 2017. All inputs come from the 

outputs of 𝒕𝟏, 𝒕𝟐, and 𝒕𝟑, which are mentioned above. The output of 𝒕𝟒 is 1 BTC; 

equal to the sum of its inputs. 

In the user network, users are represented as nodes whilst directed edges, which 

have also amount and timestamp information, represent flow of bitcoins between 

them. A source node represents a payer, whereas a target node represents a payee. 

A user node includes Bitcoin addresses (hash of the public key) of the 

corresponding user. User network cannot be derived from the blockchain directly; 

it needs extra work. At first, the graph can be constructed by representing each 

address with a node as shown in Figure 3.3. In this figure, each square represents 

a Bitcoin address, and directed edges are the transfer of bitcoins between 

addresses. 
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Figure 3.3: Formation of user network, representing each address with a node 

 

  However, a user may have multiple addresses, since it is suggested to generate a 

new private-public key pair for each transaction. Reid & Harrigan tried to cluster 

nodes, which belong to the same user, using this fact. It is not possible to obtain a 

perfect and true user network, since real owners of Bitcoin addresses are 

unknown; in this way Bitcoin provides anonymity to some extent. Nevertheless, 

different Bitcoin addresses that are expected to belong to the same user can be 

linked by (𝒊) utilizing multi-input transactions, (𝒊𝒊) utilizing change addresses and 

(𝒊𝒊𝒊) behavior-based clustering. Figure 3.4 shows clustering of addresses in Figure 

3.3 into users. Each circle represents a user and contains addresses owned by that 

user. Directed edges represent transfer of bitcoins between users. 

 

a1

 

Figure 3.4: Formation of user network, clustering addresses to users 

 

 

o Utilizing Multi-input Transactions: Different addresses can be linked to a 

single user utilizing multi-input transactions. A multi-input transaction 

occurs when a user performs a payment using more than one address by 

combining these addresses in a transaction. This may happen, for example, 

when the payment amount is greater than each of the balances in the user’s 

addresses. This fact is also indicated by Nakamoto (2008); multi-input 

transactions reveal that their inputs are owned by the same user and if the 
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owner of an address that is used in one of these inputs is revealed, then it 

can be figured out that the other transactions, using other input addresses, 

belong to the same user. This linking can be simply made by analyzing 

transactions in the blockchain. Reid and Harrigan (2012) were first to use 

this heuristic. Most of the studies that analyze blockchain data adopted this 

heuristic. Ron & Shamir (2013), Androulaki et al. (2013), Ober et al. 

(2013), Ortega (2013), Meiklejohn et al. (2013), Fleder et al. (2015), 

Spagnuolo et al. (2014), Baumann et al. (2014), Lischke & Fabian (2016), 

Dupont & Squicciarini (2015), Zhao & Guan (2015), Nick (2015), and 

Jourdan et al. (2018) are the other researchers utilizing this heuristic.  

o Utilizing Change Addresses: Change addresses are the addresses 

generated by Bitcoin to allow users to take their changes. If a transaction 

has two outputs and one of them is an old address, and the other is a new 

address, then it can be assumed that the new address is the change address 

and belongs to the user who owns the input address of the transaction, or 

similar heuristics can be used. Transactions in the blockchain can be 

analyzed to find out change addresses that are expected to belong to the 

users who are input to transactions, and these addresses can be linked. 

Androulaki et al. (2013) were first to use this heuristic. Ortega (2013), 

Meiklejohn et al. (2013), Möser et al. (2013), Spagnuolo et al. (2014), 

Zhao and Guan (2015), Nick (2015), and Neudecker & Hartenstein (2017) 

are some of the other researchers utilizing this heuristic. Zhao et al. (2022) 

improved the heuristic for change address for better identification when 

there are multiple outputs by considering transaction fees and amounts. 

o Using Behavior-based Clustering: Clustering is assigning each object in a 

set of objects to a group (cluster) such that objects in the same cluster are 

more similar to each other than to those in other clusters. Behavior-based 

clustering is clustering by evaluating behaviors of objects. Behavior-based 

clustering techniques can be used to extract data about the users, like 

linking Bitcoin addresses that are expected to belong to the same user. 

Several attributes can be determined and data can be retrieved from the 

blockchain for the analysis. In addition, by analyzing spending habits of 

the users, possible information about the physical locations of the users 
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can be determined. By analyzing the times of day at which a user has made 

transactions, an informed guess can be made as to that user’s time zone of 

residence. Reid & Harrigan (2012) mentioned that Bitcoin addresses that 

are used at similar times over an extended time period may be owned by 

the same user, therefore clustering can be done using this heuristic. 

Androulaki et al. (2013) were first to use behavior-based clustering. 

Ortega (2013), Ron & Shamir (2013), Dupont & Squicciarini (2015), 

Bistarelli et al. (2021), and Xueshuo et al. (2021) also used this heuristic. 

These described methods can be used in combination to obtain further information. 

 

 

3.1.2 Taxonomy of Studies with Anonymity and Privacy Improvements 

 

 

We classify methods of improving anonymity and privacy in Bitcoin-like digital cash 

systems that are used in the literature as given in Figure 3.5. In this figure, we included a 

hierarchic numbering to serve as an index. For each method, studies that applied the 

method is given. Resulting outcomes are given in the bottom of the figure. The outcomes 

and the methods are explained in detail in the following subsections. The number of the 

studies that have proposals against network analysis is quite a few compared to the 

number of the studies that have proposals against network analysis, and a detailed 

taxonomy cannot be provided for the studies on against network analysis. Therefore, for 

the sake of readability and clarity, these studies are not included in Figure 3.5, although 

they are described. 

 

Outcomes in the taxonomy of studies on anonymity and privacy analysis in Bitcoin, 

which were described in Section 3.1.1, and the methods in the taxonomy of studies with 

anonymity and privacy improvements, which are described in this section, are related to 

each other as given in Table 3.1. To be more specific, Table 3.1 includes the improvement 

methods that address outcomes of the analyses. 
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Figure 3.5: Taxonomy of anonymity and privacy improvements against blockchain 

analysis 
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Table 3.1: Relationship of outcomes of analyses and improvement methods 

Outcome of Analyses 

Improvement Methods 

that Address the 

Outcomes 

Discovering Bitcoin 

Addresses 

Cannot be addressed by 

the methods 

Discovering Identities 
Cannot be addressed by 

the methods 

Mapping Bitcoin 

Addresses to IP 

Addresses 

All methods against 

network analysis 

Linking Bitcoin 

Addresses 

All methods against 

blockchain analysis 

except Homomorphic 

Commitments 

Mapping Bitcoin 

Addresses to Geo-

locations 

Cannot be addressed by 

the methods 

 

Discovering Bitcoin addresses is done by transacting or utilizing off-network 

information. There is no measure that can be taken against transacting, if the receiver 

would like to receive bitcoins, then he has to provide his Bitcoin address to the sender. 

There is no improvement method against utilization of off-network information as well; 

the measure that can be taken is not sharing any information that will relate identity to 

Bitcoin addresses in the off-network. 

Discovering identities is done by utilizing off-network information, therefore this 

outcome cannot be addressed by the improvement methods against blockchain analysis 

or network analysis. Any information that will relate Bitcoin addresses to identity 

information should not be shared in the off-network to prevent discovery of identities. 

Mapping Bitcoin addresses to IP addresses is done by utilizing the network. Therefore, it 

can be addressed by the methods against network analysis. 

Linking Bitcoin addresses is performed by analyzing blockchain data or setting address 

cookie by utilizing the network. This outcome can be addressed by all methods against 

blockchain analysis except homomorphic commitments and the methods against network 

analysis. Homomorphic commitments only hide amount information in transactions. 

Therefore, relationships of Bitcoin addresses between transactions remain explicit, and 

they cannot address this outcome.  
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Mapping Bitcoin addresses to geo-locations is done by analyzing blockchain data and 

behavior-based clustering. Times of day that a user makes transactions are used in this 

type of analysis, and this information cannot be hidden. Therefore, this outcome cannot 

be addressed by any improvement method. 

We detail outcomes and methods in the following. There are four main outcomes of the 

anonymity and privacy improvement methods. These outcomes are (𝑖) breaking links 

between input-output addresses in a transaction, (𝑖𝑖) breaking links between transactions, 

(𝑖𝑖𝑖) hiding amounts and (𝑖𝑣) hiding IP addresses. Details are given in the following. 

• Breaking links between input-output addresses in a transaction: Links between 

inputs and outputs of a transaction are broken, and inputs and outputs cannot be 

linked. In other words, input-output address links are obfuscated. For an input 

address in a transaction, one cannot determine the addresses that are output in that 

transaction, or for an output address in a transaction, one cannot determine the 

addresses that are input to that transaction. 

• Breaking links between transactions: Two transactions are linked if an output of 

one of them becomes input to the other. Breaking links between transactions is 

removing links by adding link obscuring mechanisms in the middle. For a given 

input of a transaction, the output of another transaction, which becomes the source 

to that input, cannot be detected if links are broken between two transactions. 

Similarly, for a given output of a transaction, the input of another transaction, 

which becomes the destination to that output cannot be detected. 

• Hiding amount: For improving privacy, amount values in transactions are hidden. 

However, this outcome prevents checking the integrity of the system as a whole, 

for instance, one cannot count the total number of coins in the system since the 

amounts are hidden. As a result, if someone can break the system, he can issue 

coins without being detected. 

• Hiding IP addresses: IP address of a Bitcoin user is hidden. This results in 

preventing linking of Bitcoin addresses to IP addresses. This outcome is not 

included in Fig. 10 since it is the outcome of the methods against network analysis. 

We did not include the methods against network analysis in the figure either, for 

the sake of readability and clarity. 
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Proposals that improve anonymity and privacy in Bitcoin and Bitcoin-like digital cash 

systems can be divided into two main categories. The first category is the group of 

proposals against deanonymization by network analysis, and the second category is the 

group of proposals against deanonymization by blockchain analysis. 

The outcome of the methods used for preventing network analysis is hiding IP addresses. 

Methods against blockchain analysis do not prevent against network analysis, therefore 

they are suggested to be used in conjunction with the methods against network analysis. 

TOR (Dingledine et al., 2004) is the most popular tool used for achieving anonymity, i.e., 

hiding real IP address, while using the Internet. It is a distributed overlay network (Lua 

et al., 2005). Data is encrypted multiple times at the beginning according to the three TOR 

nodes that the user selects. While traveling in the network, data is routed through a path 

over that nodes, where decryption of one layer is done at each node, like peeling the layers 

of an onion, until it reaches its destination. TOR design is based on Chaum’s mixnets 

(Chaum, 1981). It is common among Bitcoin users preferring to use Bitcoin over TOR in 

order to hide IP addresses. Anoncoin (https://bitcointalk.org/index.php?topic=1481693.0 

) is another coin that has built-in support of TOR. 

The Invisible Internet Project (I2P) (www.geti2p.net) is another onion routing tool that 

creates a hidden network within the Internet. There are Bitcoin clients that are developed 

to allow running Bitcoin with I2P as stated in Bitcoin Forum 

(https://bitcointalk.org/index.php?topic=151181) and Bitcoin exchanges that can be used 

with I2P (https://bitcointalk.org/index.php?topic=6025.0). Besides supporting TOR, 

Anoncoin is designed to be a fully I2P darknet coin. 

Transaction Remote Release (TRR) (ShenTu & Yu, 2015b) is a new anonymization 

technology designed for Bitcoin. TRR is inspired by TOR. Its design goal is to defeat 

attacks that exist while using Bitcoin over TOR. TOR encrypts all blockchain data. 

However, TRR only encrypts and transmits new transactions since it is designed 

specifically for Bitcoin. As a result, the performance and throughput of nodes are 

improved. The need for modifying Bitcoin protocol is the weakness of TRR.  

Proposals against deanonymization by blockchain analysis can also be examined in two 

broad categories. The first category is the proposals that are backwards compatible, in 

which no modification is required to the Bitcoin protocol; thus, the proposed approach 

can be deployed immediately. The deployment of such a proposal does not affect the 
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soundness of the previous transactions and the blockchain that exist until the deployment. 

The second category includes the proposals that are not backwards compatible. These 

proposals are either developed for Bitcoin, but needs modification to the Bitcoin protocol 

to run, or proposed as an alternative to Bitcoin, i.e., to run independently. These two main 

categories for improvement proposals are divided into subcategories according to the 

approaches, protocols, and methods used as shown in Figure 3.5 and these are explained 

in the following.  

Mixing is the main approach that is adopted by the proposals that are backwards 

compatible. Mixing can be achieved by obfuscating inputs and outputs of a transaction. 

Maxwell introduced this idea to the Bitcoin community with his CoinJoin proposal in 

2013 in Bitcoin Forum (https://bitcointalk.org/index.php?topic=279249.0). In CoinJoin, 

which is a transaction formation style to improve privacy, users make joint payments by 

forming transactions together. Although most of the studies that analyze blockchain data 

assumed that inputs of a multi-input transaction belong to the same user, Maxwell stressed 

that it is not a requirement and the opposite is very possible. In CoinJoin, Bitcoin users 

individually and separately sign a transaction, where they agree on a set of input and a set 

of output addresses. Then they merge their signatures. As a result, obfuscation is achieved 

by shuffling the addresses. A transaction formed in this way cannot be distinguished from 

a transaction that is formed conventionally. Visualization of a sample CoinJoin 

transaction with three users is given in Figure 3.6. Each user provides an input to a 

transaction, and each user receives an output; however, which output is owned by which 

user is not known for an outsider, i.e., the ones that do not participate the transaction. The 

transaction acts as a black box. To increase anonymity, it is important to determine a 

uniform amount and provide inputs accordingly. This hardens for an outside party to 

distinguish input and output relations and the anonymity set size becomes the number of 

parties in the transaction. 

 

 

Figure 3.6: A sample CoinJoin transaction 
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CoinJoin can be implemented in both centralized and decentralized ways, as Maxwell 

described four alternatives. Although CoinJoin has remained in a forum post, and it was 

not turned into a paper, it has been widely accepted, and many proposals that are inspired 

by it came after.  

Centralized Mixing (1.1): Mixing is performed by a central mixing server. Users that 

would like to mix their coins share their input and output address information and the 

mixing server break links between these addresses. A centralized mixing service can be 

implemented in two ways, according to the address shuffling, i.e., relation of input and 

output addresses, being visible to the mixing service or not. 

In the explicit address shuffling (1.1.1), the relation of input and output addresses is 

explicit to the mixing server. The mixing server can link input and output addresses of 

the users. Therefore, users cannot stay anonymous against the mixing server, although 

other parties cannot trace the flow of coins after the mixing. The outcomes of this methods 

are breaking links between input-output addresses or breaking links between transactions, 

depending on the number of transactions done to perform mixing. If mixing is done within 

a single transaction, the outcome becomes breaking links between input-output addresses. 

Several transactions can also be used to perform mixing, i.e., mixing server can transfer 

user’s assets from user’s input address to an address that belongs to the server and then 

can send to output address of the user from another address that belongs to the server. If 

several transactions are used, then the outcome becomes breaking links between 

transactions. CoinJoin can be implemented in this way, such that centralized mixing by 

explicit address shuffling is performed, as stated before. Möser et al. (2013) provided 

examination of several centralized mixing services. Mixcoin (Bonneau et al., 2014), 

which was published as a refereed paper, is a centralized mixing approach where mixing 

service gets to know input and output addresses of the users.  

In the hidden address shuffling (1.1.2), the relation of input and output addresses is hidden 

from the mixing server. The mixing server cannot link input and output addresses. Hidden 

address shuffling is done using either blind signatures or fair exchange protocols. 

• Blind Signatures (1.1.2.1): The idea of blind signature came from Chaum (1983). In a 

blind signature scheme, the content of a message is blinded by the message owner 

using a blinding factor before it is signed. This is required when the signer should not 

know the content of the message. The signed message can be later verified against the 
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signer’s public key. The owner can unblind the message, i.e., remove the blinding 

factor. CoinJoin can be implemented using blind signatures, such that centralized 

mixing by hidden address shuffling is performed, as stated before. Blindcoin (Valenta 

& Rowan, 2015), which was proposed as an improved version of Mixcoin, hides output 

address from the mixing server by utilizing a blind signature scheme (Fuchsbauer, 

2009), as a result, the input and output address linking is not explicit to the mixer. The 

outcome becomes breaking links between input-output addresses in a transaction. 

Another blind mixing scheme based on an Elliptic Curve Cryptography (ECC) blind 

digital signature algorithm was proposed by ShenTu & Yu (2015b). Fei et al. (2020) 

proposed an anonymous Bitcoin mixing scheme based on semi-trusted supervisor 

using group blind signature. 

• Fair Exchange Protocol (1.1.2.2): A fair exchange protocol ensures that either all 

participating parties get the exchanged item or all of them get nothing (Schunter, 

2005). TumbleBit (Heilman et al., 2017) is a scheme that allows anonymous payments 

through a mixing server, where no trust to the server is required. TumbleBit was built 

on blindly signed contracts (Heilman et al., 2016), which was not backwards 

compatible with Bitcoin. The link between input and output Bitcoin addresses are 

broken by performing multiple transactions; therefore, the outcome becomes breaking 

links between transactions. Another fair exchange protocol that guarantees strong 

fairness while preserving the anonymity of the consumer and the merchant was 

provided by Jayasinghe et al. (Jayasinghe et al, 2014].  

In the decentralized mixing (1.2), no third party, i.e. a central mixing server, is required. 

Mixing is performed collectively by the participating users. Decentralized mixing can be 

done by either explicit address shuffling or hidden address shuffling. 

In the decentralized mixing with explicit address shuffling (1.2.1), relation of input and 

output addresses is learned by the participating users; there is not any mechanism to hide. 

CoinJoin can be implemented in this manner. Cloak coin (https://www.cloakcoin.com) is 

another example of decentralized mixing with explicit address shuffling. In Cloak coin, 

users cloak transactions of other users by providing inputs and outputs and earn a reward 

in return. However, a cloaked user learns input-output address pairs of the cloaking users. 

Since mixing is done in a single transaction, the outcome is breaking links between input-

output addresses in a transaction. 
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In decentralized mixing with hidden address shuffling (1.2.2), the relation of input and 

output addresses is hidden from other participating users in the mixing. This can be done 

using various cryptographic protocols discussed below. 

• Blind Signatures (1.2.2.1): As mentioned before, Maxwell’s CoinJoin can be 

implemented in a decentralized way by using blind signatures resulting in breaking 

links between input-output addresses in a transaction. Another study that uses blind 

signatures focused on secure and joint Bitcoin trading (Wu et al., 2017) using partially 

blind fuzzy signatures, in case of a Bitcoin account is owned by multiple people.  

• Decryption Mixnets (1.2.2.2): Decryption mixnets were introduced by Chaum (1981). 

In these structures, a set of inputs pass through a set of mix nodes, where each mix 

node shuffles the inputs and applies encryption and decryption. CoinParty (Ziegeldorf 

et al., 2015; Ziegeldorg et al., 2018) is a mixing protocol designed using combination 

of decryption mixnets with threshold signatures (Bleumer, 2005). CoinShuffle 

(Ruffing, 2014) was proposed as another decentralized mixing protocol which was 

inspired by CoinJoin and the accountable anonymous group messaging protocol 

Dissent (Corrigan-Gibbs & Ford, 2010). A general approach for pseudonym mixing, 

based on CoinShuffle, was proposed and a specific design for Bitcoin, which was 

called BitNym, was given in detail by Florian et al. (2015). Privacy-enhancing 

overlays (Meiklejohn & Orlandi, 2015) is another study that explained how mixing 

can be achieved by utilizing decryption mixnet approach. Coutu (2014) proposed a 

decentralized synchronous N-to-N mixing model in his master thesis. SecureCoin 

(Ibrahim, 2017) is another study which is fully compatible with Bitcoin.  

• Dining Cryptographers Network (1.2.2.3): Dining Cryptographers Network (DC-net) 

is a method proposed by Chaum (1988). For a DC-net consisting of two users, the 

users share a key 𝒌. When one of the users wishes to anonymously publish a message 

𝒎, where |𝒎|  =  |𝒌|, he publishes 𝑴1 = 𝒎  𝒌, where  denotes the exclusive or 

(XOR) operation (bitwise addition modulo 2), and the other user publishes 𝑴2 = 𝒌. 

Then the message 𝒎 can be computed as 𝑴1  𝑴2 by an observer, however the 

observer cannot identify the sender. Golle & Juels (2004) detail the extension of this 

protocol to multiple users. DiceMix (Ruffing et al., 2017), which was built on the 

original DC-net protocol, was proposed as a general decentralized mixing protocol, 
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providing sender anonymity, by the authors of CoinShuffle. Moreover, built on 

CoinJoin and DiceMix, CoinShuffle++ was introduced in the same study.  

• Fair Exchange Protocol (1.2.2.4): Two-party decentralized mixing via a fair exchange 

protocol can be performed using scripting functionalities of Bitcoin. Barber et al. 

proposed a Fair Exchange Protocol (Barber et al., 2012), which can be used as a two-

party mixing protocol. A cut and choose protocol (Crépeau, 2005), and scripting 

features of Bitcoin were utilized in the approach which were explained in the study 

briefly. XIM (Bissias et al., 2014) is another two-party mixing protocol which also 

allows users to find partners to mix with anonymously. The fair exchange protocol of 

Barber et al. was utilized in this study; however, the authors state that SMCs of 

Andrychowicz et al. (Andrychowicz et al., 2014) can also be used. CoinSwap proposed 

in Bitcoin Forum (https://bitcointalk.org/index.php?topic=321228) is also a two-party 

mixing protocol proposed by Maxwell. Fair exchange was achieved by utilizing a 

special transaction type, called hashlock transactions. The study of Wijaya et al. (2016) 

can also be considered as a fair exchange protocol. This protocol requires 5 middlemen 

in addition to a payer and a payee, totaling 7 participants. Since several transactions 

are used in a fair exchange protocol, the outcome is breaking links between 

transactions.  

• Network of Transactions (1.2.2.5): Coutu (2014) introduced the network of 

transactions approach, where a network of transactions consists of a number of small 

two-party switchboxes that are combined in a structured network with the purpose of 

performing permutation of the addresses. The output of a switchbox is only known the 

participants of the switchbox since they determine the input and output mapping. This 

approach is similar to decryption mixnets, however, encryption and decryption 

operations are not performed. As the outcome, links between input-output addresses 

in a transaction are broken. CoinLayering (Lu et al., 2022) was proposed as a coin 

mixing scheme for large scale Bitcoin transactions, based on a User-Mix-Supervisor 

system model. 

• Secure Multiparty Computation (1.2.2.6): SMC allows a group of users to compute 

the value of a public function using their private data, while they keep their inputs 

private. SMC was introduced by Yao (1982). Using SMC for shuffling addresses was 

first proposed in bitcointalk forum by a member named hashcoin 
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(https://bitcointalk.org/index.php?topic=12751.msg315793#msg315793). In this 

proposal, address shuffling is done using a permutation function in SMC, and links 

between input-output addresses in a transaction are broken. Andrychowicz et al. 

(2014) proposed SMC on Bitcoin based on the coin-tossing protocol of Blum (1982). 

SecureCoin (Ibrahim, 2017) utilized secret sharing schemes and SMC in the first 

aggregation phase, in which each user deposits to a temporary aggregation address 

before the address shuffling. The use of a set of mixing peers was proposed in 

CoinParty. CoinParty employs a threshold variant of the ECDSA scheme realized 

using Damgard et al.’s (2019) protocol for general SMC protocol. 

• Zero Knowledge Proofs (1.2.2.7): The concept of zero knowledge protocols was 

introduced by Goldwasser et al. (1989). A zero knowledge proof allows one to prove 

that a statement is true without giving any other information than the statement is true. 

Zero Knowledge Contingent Payments (ZKCP) (Campanelli et al., 2017) utilizes 

hashlock transactions and zero knowledge proofs. Another zero knowledge contingent 

payment protocol was provided by Banasik et al. (2016). In zero knowledge protocols, 

mixing is achieved in multiple transactions, therefore links between transactions are 

broken. 

There exist several improvement proposals that require modification, some of them are 

designed to be used with Bitcoin, whereas some of them are inspired by Bitcoin and 

designed to be similar to Bitcoin but completely independent, proposed as an alternative 

Bitcoin-like digital cash system. These are classified as Not Backwards Compatible / 

Proposed as an Alternative. 

Hidden Address Shuffling (2.1): In the hidden address shuffling (2.1), sender and/or 

receiver Bitcoin address(es) is/are shuffled with other Bitcoin addresses. Moreover, 

which output address corresponds to which input address remains hidden. The aim is to 

break traceability of bitcoin flows. Methods in this approach are using blind signatures, 

ring signatures and composite signatures. 

• Blind Signatures (2.1.1): Ladd (2012) introduced a new method of forming 

transactions where blind signatures are used with cut and choose. Modification to 

the scripting functionalities of Bitcoin, like the addition of a new opcode and a 

new signature type is required. Blindly Signed Contracts (Heilman et al., 2016), 

which is the study done prior to TumbleBit, uses blind signatures and smart 
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contracts to implement a fair exchange protocol. There is a need for adding an 

opcode that supports elliptic curves with efficient bilinear pairings; thus, 

modification is required. Darkcoin, which was a privacy-centric cryptographic 

currency based on Bitcoin, uses a decentralized implementation of CoinJoin, 

which is called DarkSend. In DarkSend, transactions are merged together into a 

larger anonymous transaction, resulting breaking links between inputs and outputs 

addresses in the transaction. Darkcoin was later turned into Dash 

(https://www.dash.org).  In Dash, a chaining approach is adopted to increase 

anonymity. (Yi & Lam, 2019) proposed a blind signature scheme that allows 

generating a blind signature compatible with the standard ECDSA to achieve 

bitcoin transaction anonymity. 

 

• Ring Signatures (2.1.2): A ring signature is a special type of a group signature, 

where there is not any group manager. This signature type was introduced by 

Rivest et al. (2001). Any member of the group can sign using the ring signature, 

and the signing member cannot be identified by the ring signature. CryptoNote 

(Saberhagen, 2013) uses one-time ring signature which is a type of group 

signature and based on traceable ring signature of Fujisaki & Suzuki (2007). In 

CryptoNote, for sender privacy, the address of the sender is grouped with other 

addresses using ring signatures. As the result, links are broken between input and 

output addresses in a transaction. Bytecoin (https://bytecoin.org) is the first 

cryptocurrency that used CryptoNote as a base. DigitalNote 

(https://digitalnote.org), Aeon (https://www.aeon.cash), and Monero 

(https://www.getmonero.org) are other cryptocurrencies that were implemented 

using the CryptoNote framework. One of the cryptographic structures that 

Maxwell’s Confidential Transactions (CT) explained in Elements website 

(https://elementsproject.org/features/confidential-transactions/investigation) use 

is Borromean ring signatures (Maxwell & Poelstra, 2015). To further improve the 

privacy provided by Monero, hiding amounts of transactions using a new type of 

ring signature; multi-layered linkable spontaneous anonymous group signature 

was proposed. This proposal leveraged Maxwell’s approach of CT, which was 

combined with ring signatures, resulting Ring CT (Noether & Mackenzie, 2016) 

hiding sender and receiver, as well as hiding amount information. Usage of 

Franklin and Zhang’s unique ring signature protocol (Franklin & Zhang, 2012) 
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was examined by Mercer (2016) to improve privacy in Bitcoin. Liu et al. (2018) 

utilized ring signatures, as well.  

• Composite Signatures (2.1.3): Composite signatures are extension of aggregate 

signatures (Boneh et al., 2003). A composite signature combines a number of 

individual signatures, where there is not any order among them. It allows adding 

more signatures at any time and it is computationally hard to obtain individual 

signatures from the composite signature. Saxena et al. (2014) used composite 

signatures to enhance anonymity in Bitcoin-like cryptocurrencies.  

In the ownership shuffling approach (2.2), the ownerships of coins are shuffled. This is 

achieved by breaking coin and ownership connection, at the same time storing which user 

owns how many coins. Then, a user can prove that he owns a certain amount of coins and 

spend them. In this way, the ownerships of the coins are shuffled, and coins cannot be 

tied to users. Ownership shuffling can be achieved utilizing zero knowledge proofs. 

• Zero knowledge proofs (Transaction breaker & Not hiding amounts) (2.2.1): 

Zerocoin (Miers et al., 2013), which was one of the first proposals for improving 

anonymity in Bitcoin, utilizes zero knowledge proofs. It breaks links between 

transactions without adding trusted parties. In Zerocoin, bitcoins can be converted 

to zerocoins and then spending any zerocoin can be achieved by showing the 

validity of a zerocoin by proving that it belongs to a public list of valid coins. 

Pinocchio Coin (Danezis et al., 2013) was proposed as a variant of Zerocoin and 

suggested using elliptic curves and bilinear pairings. Pinocchio (Parno et al., 

2013), which is a pairing-based proof system, was utilized in Pinocchio Coin.  

• Zero knowledge proofs (Transaction breaker & Hiding amounts) (2.2.2): EZC 

(Androulaki & Karame, 2014), an extension of Zerocoin, was proposed to hide 

transaction amounts and address balances which Zerocoin cannot achieve since 

Zerocoin requires zerocoins to be converted back to bitcoins in order to spend 

them. EZC achieves this by allowing construction of multi-valued zerocoins with 

values only known the parties in a transaction and spending zerocoins without 

converting them back to bitcoins. Zerocoin was turned into Zerocash protocol 

(Ben-Sasson et al., 2014), which is more efficient than Zerocoin. In Zerocash, ZK-

SNARKs (Ben-Sasson et al., 2013a) are used to hide inputs, outputs and amount 

information of a transaction. Zcash (https://z.cash) is the full-fledged ledger based 
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digital currency which is the implementation of Zerocash protocol. In Z-Channel 

(Zhang et al., 2019), Zerocash is improved to support 

multisignature and time lock functionalities resulting in improved scalability and 

reduced confirmation time for Zerocash payments. Komodo 

(https://komodoplatform.com) is another protocol that uses zero knowledge 

proofs of Zcash for hiding sender, receiver and amount information. CoinWitness, 

which is detailed in Bicoin Forum (https://bitcointalk.org/index.php?topic= 

277389.0), is another proposal by Maxwell that used ZK-SNARKs to construct 

compact proofs. Hawk (Kosba et al., 2016) was proposed as a decentralized smart 

contract system utilizing zero knowledge proofs. CT are also built using zero 

knowledge proofs. In compact CT (Lukianov, 2015), a short Non-Interactive 

Zero-Knowledge Proof (NIZKP) is used. Zether (Bünz et al., 2020) was proposed 

as a fully-decentralized, confidential payment mechanism that is compatible with 

Ethereum and other smart contract platforms. Zether keeps the account balances 

encrypted and deposit, transfer and withdrawal of funds to/from accounts are done 

through cryptographic proofs. In Zether, Σ-Bullets, an improvement of the 

Bulletproofs (Bünz et al., 2018), are used. 

In data encrypting approach (2.3), privacy is preserved by encrypting data. Homomorphic 

commitments (2.3.1) are used for encryption. Homomorphic commitments allow 

committing a value without revealing it to the other parties by utilizing homomorphic 

encryption technique. A homomorphic encryption scheme allows performing 

computations on ciphertext where the decryption of result gives a value that is equal to 

the result of operations performed on plain text (Yi et al., 2014). This technique was first 

proposed by Back in Bitcoin Forum (https://bitcointalk.org/index.php?topic=305791.0). 

CT utilized cryptographic technique of additively homomorphic commitments for 

Bitcoin, inspired by Back’s proposal that is detailed in Bitcoin Forum 

(https://bitcointalk.org/index.php?topic=305791.0). Pedersen commitments are the basic 

structure that CT is based on. CT are used in Elements project by Blockstream 

(https://blockstream.com/elements). Elements project includes the usage of side chains, 

which are extensions to existing blockchains, in order to add new features like smart 

contracts and CT in order to improve privacy and functionality. Lukianov (2015) 

proposed a compact version of CT using elliptic point commitments (Boudot, 2000). As 

in Maxwell’s original proposal, homomorphic commitments are used to hide transaction 
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amounts and ensure that the sum of the transaction inputs matches the sum of its outputs. 

Ring CT (Noether & Mackenzie, 2016) are the combination of Maxwell’s approach of 

CT with ring signatures. Ring CT are included in Monero (https://www.getmonero.org), 

resulting combination of outputs of both methods, i.e., hiding amounts and input-output 

address links. Wang et al. (2020) proposed a framework to hide the amounts by 

employing the Paillier cryptosystem for encryption and decryption. 

In data disintegrating approach (2.4), data is disintegrated and stored in blockchain 

partially. Data that is not stored in blockchain remains off-chain. For instance, the 

blockchain may store some transactions, and remaining transactions may stay between 

only sender and receiver. Another example is using blockchain for storing only hash of 

the transactions. Thus, we name the method used in this approach as off-chain storage. 

Data that will be kept off-chain is up to the design and the additional methods used. 

• Off-chain storage (2.4.1): In this approach, all transaction data are not stored in 

blockchain, but some data are stored off-chain. Utilizing off-chain storage results 

in improved scalability, broken links between transactions and hidden amounts. 

Maxwell’s Maxwell proposed CoinWitness in Bitcoin Forum 

(https://bitcointalk.org/index.php?topic=277389.0) using ZK-SNARKs (Ben-

Sasson et al., 2013a) to construct proofs of correctness which shows a side chain 

payment is valid. In Hawk (Kosba et al., 2016), transactions are not stored with 

full financial data in the blockchain. Cash flows and transaction amounts are 

hidden in the private contracts; therefore, hidden from the public view. In another 

proposal, tonych, a user in Bitcoin Forum (https://bitcointalk.org/index.php?topic 

=1574508.0), showed that all transaction data can be hidden by just using hashing, 

and no other cryptographic structures. In this approach, only hash of inputs and 

outputs are stored in blockchain. Obyte (https://obyte.org) is the first coin that 

implemented this approach. Another off-chain scheme, which uses micropayment 

channel networks was provided by Heilman et al. (2016). In this scheme, some 

transactions are not recorded in blockchain and stay only between sender and 

receiver upon establishing a pairwise micropayment channel after forming an 

escrow transaction. Quantum Bitcoin (Jogenfors, 2016) is a proposal of a Bitcoin-

like currency that runs on a quantum computer and based on no-cloning theorem 

(Wootters & Zurek, 1982) of quantum mechanics. In Quantum Bitcoin, local 

transactions that are only between sender and receiver are used and no-cloning 
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theorem acts as a copy-protection mechanism to prevent double-spending. 

Eberhardt & Tai (2018) proposed ZoKrates, a processing model which employs 

non-interactive zero knowledge proofs to off-chain computations. ZeroCross was 

proposed (Li et al., 2022) as a sidechain-based privacy-preserving cross-chain 

solution for Monero. Erdin et al. (2021) proposed an off-chain solution where 

retailers create a private payment channel network among them to serve their 

business needs. 

 

3.2 Application of Differential Privacy to Financial Distributed Ledger 

Applications 

 

 

Bitcoin is the first financial distributed ledger application. Generally used methods for 

anonymity and privacy improvement in Bitcoin-like systems rely on mostly 

cryptographic protocols. However, the Bitcoin blockchain may benefit from differential 

privacy, which is not only light-weight but also easy to understand and implement 

compared to cryptographic protocols. Hiding actual transaction amounts by adding noise 

can be a way of applying differential privacy. Perturbing actual data with noise makes 

anonymization and privacy breaches by direct queries to the blockchain impossible. 

 

To the best of our knowledge, there is no study on the examination of Bitcoin in terms of 

differential privacy in the literature. There are studies combining differential privacy and 

blockchain mostly in general areas. Privacy-preserving solutions for general blockchain 

structure were studied in (Bernabe, 2019), and differential privacy was mentioned as a 

potential solution very briefly. Differential privacy was used in (Duan et al., 2019) while 

aggregating crowd data via blockchain by a service provider before sharing it with a data 

consumer. Differentially private machine learning models via blockchain were studied in 

(Chen et al., 2018; Hynes et al., 2018). Differential privacy was used in (Yang et al., 

2018) to obfuscate the results of statistical queries in a differentially private blockchain-

based data-sharing model.  

The utilization of differential privacy in financial blockchain-based systems for 

improving anonymity and privacy has recently begun to be considered. Digital currency 

and international money transfers are considered areas as future applications of 

differential privacy in blockchain (Hassan et al., 2020c). Correspondingly, inspired by 
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Monero, an approach for a cryptocurrency utilizing differential privacy was introduced 

in Zcash Foundations Github page (https://github.com/ZcashFoundation/GrantProposals-

2018Q2/issues/36) as a proposal to Zcash Foundation, and granted; however, there is no 

follow-up study that details and verifies the approach as of this writing. The addition of 

noise to transaction amounts in the Ethereum blockchain and analysis according to the 

Eigen centrality measure was done in (Kumar, 2020). The implementation was done in R 

using relevant network packages, and January 2019 blockchain transaction data (1551 

transactions) obtained from the Etherscan website (https://etherscan.io) was used in the 

study. A graph structure was formed using these transactions, and the most central nodes 

were detected before and after adding Gaussian noise to transaction amounts respectively. 

It was shown that the central nodes changed when the noises were added. The motivation 

for using centrality comes from the idea that more central nodes are at higher risk of being 

attacked, therefore, preserving privacy for these nodes is important. In this model, the 

noise addition is done by dedicated and distributed servers before publishing the 

transactions online. The actual transaction amounts can be accessed through these servers 

by authenticated users. The Gaussian parameters were determined trial and error, ε was 

determined as 0.9, and the delta (δ) was determined as 0.4. This study did not examine 

other differential privacy mechanisms, nor gave the results for different Gaussian 

parameter values.  

In (Hassan et al., 2020b), four variants of differential privacy mechanisms (Laplace, 

Gaussian, Uniform, and Geometric) were tested in decentralized blockchain-based smart 

metering. In this system, smart meters act as blockchain nodes sending their real-time 

data plus noises generated via differential privacy mechanisms to grid utility databases. 

The grid energy data (Muratori, 2018) was modified accordingly to carry out an 

experiment for 24-hour usage. The evaluation was carried out on 144 data values ranging 

between 200 and 1900. For the implementation, Python libraries NumPy v1.14 and 

pandas v1.0.3 libraries were used. The Laplace, the Gaussian, and the Geometric 

mechanisms were compared using different ε values (ε = 0.01, 0.05, 0.1, 0.3, 0.7, and 1), 

and the same values are used for δ in the Uniform mechanism. The evaluation was done 

according to Mean Absolute Error (MAE). MAE is calculated by summing absolute 

differences between the noisy values and the original readings, and taking the mean. 

Graphs, showing the original and protected readings, were generated at the stated ε and δ 

values for the mechanisms. The results showed that the mechanisms provide high privacy 
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by adding a large amount of noise when ε or δ is low (ε, δ = 0.01), and the privacy reduces 

gradually as ε or δ increases. Among these four mechanisms, the Geometric and the 

Laplace are found to be performing better at lower ε values by adding a sharp amount of 

noise, resulting in higher MAEs. Specifically, the Geometric mechanism is found to be 

more suitable for protecting high peak values (e.g., high usage), and the Laplace 

mechanism is found to be more suitable for protecting low peak values (e.g., low usage) 

at ε = 0.01.  It was stated that an adequate amount of noise is added when ε, δ = 0.01 and 

0.05, to protect privacy, and ε, δ = 0.01 were declared as the most suitable privacy 

parameters. The MAE values for ε, δ > 0.05 were not provided in the study. 

Blockchain structure is utilized for managing smart metering data, as well. (Mollah et al., 

2019; Andoni et al., 2019; Farokhi, 2020; Hassan et al, 2020a; Marks et al., 2021; Aklilu 

& Ding, 2021) surveyed the related literature. We researched the literature on smart 

metering with privacy and blockchain keywords. Specifically, we focused on differential 

privacy than the general privacy notion. We categorize the related work into four 

categories as presented in Table 3.2. 

In C1, extensive amount of literature is presented on smart metering using encryption, so 

that only the utility service provider knows the actual consumption values of subscribed 

smart homes. Some example studies are (Saputo & Akkaya, 2012; Li et al., 2010; Ruj & 

Nayak, 2013) utilizing homomorphic encryption. One can find many studies in the 

literature in this category. 

C2 includes studies that use blockchain infrastructure in smart metering scenario. 

Distributed ledger structures can be examined in this category. As the sample studies; 

(Bürer et al., 2019) provided use cases, (Dorri et al., 2019; Eisele et al., 2020; Aitzhan & 

Svetinovic, 2018; Knirsch et al., 2018; Eberhardt et al., 2020) studied on utilization of 

blockchain in energy trading. (Abdo & Zeadally, 2020) included mutiple utilities in their 

blockchain-based utility market solution. (Firoozjaei et al., 2020) proposed a hybrid 

blockchain solution for energy transactions with subnetworks. (Wang et al., 2019) 

combined blockchain with homomorphic encryption to protect metering data during the 

aggregation process.  
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Table 3.2: Categorization of the studies on smart metering, privacy, and blockchain 

Category 

Code 
Definition 

C1 
Provides a solution on smart metering with 

improved privacy (other than differential privacy) 

C2 
Provides a solution on smart metering using 

blockchain 

C3 
Provides a solution on smart metering with 

differential privacy 

C4 
Provides a solution on smart metering using 

blockchain with differential privacy 

 

C3 includes studies that use differential privacy in smart metering scenario without 

blockchain utilization. (Zhao et al., 2014) studied differential privacy in the Battery-based 

Load Hiding (BLH) problem. (Backes & Maiser, 2013; Liu et al., 2021; Hossain et al., 

2021; Kserawi et al., 2022) studied achieving differential privacy with rechargeable 

batteries. (Acs & Castelluccia, 2012; Bao & Lu, 2015; Barbosa et al., 2016; Eibl & Engel, 

2017; Ni et al., 2017; Hassan et al., 2019; Zheng et al., 2021; Gough et al., 2022) are some 

of the other studies in this category. 

Studies in C4 utilizes both blockchain and differential privacy. The number of studies in 

this category is lower compared to the other categories. (Gai et al., 2019) brought together 

blockchain and differential privacy with energy trading. (Hassan et al., 2020d) proposed 

differentially private auction for blockchain based microgrids energy trading. (Fotiou et 

al., 2021) proposed a privacy-preserving statistics marketplace using local differential 

privacy and blockchain. They utilized randomized responses (Erlingsson et al., 2014). 

(Hassan et al., 2020b) and (Guan et al., 2018) are the other prominent studies in this 

category.  
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4. INVESTIGATION AND APPLICATION OF DIFFERENTIAL PRIVACY 

IN BITCOIN 

 

 

 

One can infer that Bitcoin does not provide differential privacy by a pragmatic approach 

since the presence of a Bitcoin address is explicit in the public Bitcoin blockchain. 

Although real names are not paired with Bitcoin addresses, addresses can be related to 

user identities using off-network information. Another argument supporting Bitcoin is not 

differentially private is the explicitness of transaction amounts and whether a transaction 

occurred between two specific addresses in the public blockchain. It is worth examining 

Bitcoin in terms of differential privacy theoretically to confirm these arguments. 

The formulation of differential privacy, given as Formula 2.1, has to be checked to 

examine Bitcoin in terms of differential privacy theoretically, and finding a 

counterexample to 2.1 suffices to detect a violation of differential privacy. In the case of 

Bitcoin, a set of transactions in the blockchain can be considered as a dataset. In the 

following subsections, we check the formula for four functions querying; (𝑖) transactions 

between two specific addresses, (𝑖𝑖) transactions above a specific amount, (𝑖𝑖𝑖) 

transactions for a specific transaction amount, (𝑖𝑣) transactions with a specific amount 

between two specific addresses, as given in Figure 4.1. These functions are chosen in the 

analysis since they can be used for exploiting information from the public blockchain for 

detecting addresses and deanonymizing users. We present our theoretical examination in 

Section 4.1. 
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Figure 4.1: Examined cases for the investigation of current Bitcoin implementation from 

the differential privacy perspective 

 

After examining the current Bitcoin implementation, we investigate the effects of applying 

differential privacy mechanisms as shown in Figure 4.2. We present our solutions in Section 

4.2 and 4.3. 
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Figure 4.2: Examined cases for the investigation of Bitcoin from the differential privacy 

perspective with the application of differential privacy mechanisms 

 

After examining theoretically, we demonstrate a practical utilization of a differential 

privacy approach in Bitcoin in an empirical way in Section 4.4. We add noise to the 

Bitcoin transaction amounts by applying the Laplace, the Gaussian, the Geometric, and 

the Uniform mechanisms for the noise generation at different ε values, and evaluate the 

results. In Section 4.5, we summarize our research and observations for investigation and 

application of differential privacy in Bitcoin. 
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4.1 Theoretical Examination of Bitcoin from Differential Privacy Perspective 

 

 

We provide theoretical examination of Bitcoin from differential privacy perspective for 

four query functions in the following subsections. 

 

  

4.1.1 Queries for Transactions Between Two Specific Addresses 

 

 

Assume that one wishes to learn whether a transaction occurred between two specific 

Bitcoin addresses. Let 𝐴1 and 𝐴2 denote the addresses and 𝐹 be a function that gives the 

average transaction amount between 𝐴1 and 𝐴2. Let 𝐷1 consists of 𝑛 + 1 transactions and 

𝐷2 consists of 𝑛 transactions which are exactly the same as the first 𝑛 transactions of 𝐷1, 

which makes 𝐷1 and 𝐷2 differ in a single row. The range of 𝐹 is between 0 and 21  106 

BTCs (the maximum number of bitcoins that will ever exist) theoretically. The sensitivity 

of this function is 21  106 divided by the number of transactions in the blockchain. To 

cover all possible datasets, two cases must be considered; (𝑖) the (𝑛 + 1)𝑠𝑡 transaction is 

not a transaction between 𝐴1 and 𝐴2, (𝑖𝑖) the (𝑛 + 1)𝑠𝑡 transaction is a transaction 

between 𝐴1 and 𝐴2. The two cases for 𝐷1 and 𝐷2 can be visualized as in Figure 4.3. The 

(𝑛 + 1)𝑠𝑡 transaction states, relations between 𝐹(𝐷1) and 𝐹(𝐷2), differential privacy 

provision or violation statuses in these cases are given in Table 4.1, where ax+1 denotes 

the (𝑛 + 1)𝑠𝑡 transaction amount. 

In the first case, 𝐹(𝐷1) equals 𝐹(𝐷2), and the differential privacy formula given in 2.1 is 

true for all subsets and 𝜀 values. For the second case, 𝐹(𝐷1) equals 𝐹(𝐷2) plus some value 

that comes from the (𝑛 + 1)𝑠𝑡 transaction. The minimum amount that can be transferred 

in a Bitcoin transaction is 0.00000546. Let 𝑆 be [𝐹(𝐷2) +

(0.00000546 (𝑛 + 1)⁄ ), 21 𝑥 106]. The Formula 2.1 turns into Formula 4.1 with these 

values. 
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𝑃 [𝐹(𝐷1) ∊ [𝐹(𝐷2) + (
0.00000546

𝑛 + 1
), 21  106]] ≤   

exp(𝜀)  𝑃 [𝐹(𝐷2) ∊  [𝐹(𝐷2) + (
0.00000546

𝑛+1
), 21  106]]   (4.1) 

 

In this formula, 𝑃[𝐹(𝐷1) ∊ [𝐹(𝐷2) + (0.00000546 (𝑛 + 1)⁄ ), 21  106]] equals 1, 

𝑃[𝐹(𝐷2) ∊ [𝐹(𝐷2) + (0.00000546 (𝑛 + 1)⁄ ), 21  106]] equals 0, and Formula 4.1 

turns into 4.2.  

1 ≤  exp(𝜀)  0                                                 (4.2) 

Since Formula 4.2 is false for all 𝜀 values, this is a violation of differential privacy. This 

means that there is no differential privacy for a transaction between two Bitcoin addresses 

in 1 2 ⁄  of the cases considered. 

 
(a) 

 
(b) 

Figure 4.3: Two transaction datasets that differ in a single transaction; (a) The (𝑛 + 1)𝑠𝑡 

transaction is not a transaction between 𝐴1 and 𝐴2; (b) The (𝑛 + 1)𝑠𝑡 transaction is a 

transaction between 𝐴1 and 𝐴2 

 

 

 

 



57  

Table 4.1: Cases considered in differential privacy evaluation of the queries for 

transactions between two specific addresses 
 

Case 
(𝑛 + 1)𝑠𝑡 

Transaction 
𝐹(𝐷1) and 𝐹(𝐷2) 

Differential 

Privacy 

𝑖  𝐴1 ↛ 𝐴2 𝐹(𝐷1) = 𝐹(𝐷2)  

𝑖𝑖 𝐴1 → 𝐴2  F(D1) = F(D2) + ax+1/(𝑛 + 1) X 

 

 

4.1.2 Queries for Transactions Above a Specific Amount 

 

 

As a second examination, assume that one wishes to learn whether a transaction with an 

amount above 𝑎 BTCs occurred. Let 𝐹 be a function that gives the number of transactions 

having an amount above 𝑎 BTCs in the blockchain. The sensitivity of this function is 1, 

since adding a single row to any dataset will change the output by at most 1. Let 𝐷1 

consists of 𝑛 + 1 transactions and 𝐷2 consists of 𝑛 transactions that are exactly the same 

as the first 𝑛 transactions of 𝐷1. To cover all possible datasets, two cases must be 

considered; (𝑖) the (𝑛 + 1)𝑠𝑡 transaction amount is not above 𝑎 BTCs, (𝑖𝑖) the (𝑛 + 1)𝑠𝑡 

transaction amount is above 𝑎 BTCs. The two cases for 𝐷1 and 𝐷2 can be visualized as in 

Fig. 4.4. The (𝑛 + 1)𝑠𝑡 transaction states, relations between 𝐹(𝐷1) equals 𝐹(𝐷2); 

differential privacy provision or violation statuses in these cases are given in Table 4.2. 

In the first case, 𝐹(𝐷1) equals 𝐹(𝐷2), and the differential privacy formula given in 2.1 is 

true for all subsets and ε values. For the second case, 𝐹(𝐷1) equals 𝐹(𝐷2) + 1. Consider 

the case when 𝐹(𝐷2) equals 0, i.e., there is no transaction with an amount above 𝑎. In this 

case, 𝐹(𝐷1) equals 1. The range of 𝐹 is [0, 𝑛 + 1] for 𝐷1 and [0, 𝑛] for 𝐷2. Let 𝑆 be [1, 

𝑛]. 𝐹 is ε-differential private if the following holds. 

𝑃[𝐹(𝐷1) ∊ [1, 𝑛]]  ≤ exp(𝜀)  𝑃[𝐹(𝐷2) ∊ [1, 𝑛]]                     (4.3) 

Since 𝐹(𝐷1) equals 1, 𝑃[𝐹(𝐷1) ∊ [1, 𝑛]] equals 1, and since 𝐹(𝐷2) equals 0, 

𝑃[𝐹(𝐷2) ∊ [1, 𝑛]] equals 0, Formula 4.3 turns into 4.4, which is false for all 𝜀 values, 

showing a violation of differential privacy. This means that differential privacy is violated 

for transactions having an amount above a specific value in 1 2 ⁄ of the cases considered.  

1 ≤  exp(𝜀)  0                                                   (4.4) 
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(a) 

 

(b) 

Figure 4.4: Two transaction datasets that differ in a single transaction; (a) The (𝑛 + 1)𝑠𝑡 

transaction amount is not above 𝑎 BTCs; (b) The (𝑛 + 1)𝑠𝑡 transaction amount is above 

𝑎 BTCs 

Table 4.2: Cases considered in differential privacy evaluation of the queries for 

transactions above a specific amount 

Case 
(𝑛 + 1)𝑠𝑡 

Transaction 
𝐹(𝐷1) and 𝐹(𝐷2) 

Differential 

Privacy 

𝑖 Amount ≤ 𝑎 𝐹(𝐷1) = 𝐹(𝐷2)  

𝑖𝑖 Amount > a 𝐹(𝐷1) = 𝐹(𝐷2) + 1 X 

 

 

 

4.1.3 Queries for a Specific Amount 

 

 

A question that comes to mind might be “What happens if blockchain was sought for 

transactions with a specific amount?”. Pragmatically, it can be said that transactions 

transferring a specific amount and related Bitcoin addresses can be detected easily from 

the public blockchain structure. However, a theoretical examination is required to confirm 
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these arguments. Therefore, as the last examination, we evaluate this query theoretically 

in terms of differential privacy. Assume that one wishes to learn whether there is a 

transaction with an amount equal to 𝑎 BTCs. Let 𝐹 be a function that gives the number 

of transactions that have an amount equal to 𝑎 BTCs in the blockchain. The sensitivity of 

this function is 1, as well. Let 𝐷1 consists of 𝑛 + 1 transactions and 𝐷2 consists of 𝑛 

transactions that are exactly the same as the first 𝑛 transactions of 𝐷1. Again, to cover all 

possible datasets, two cases must be considered; (𝑖) the (𝑛 + 1)𝑠𝑡 transaction amount is 

not equal to 𝑎 BTCs, (𝑖𝑖) the (𝑛 + 1)𝑠𝑡 transaction amount equals 𝑎 BTCs. The two cases 

for 𝐷1 and 𝐷2 can be visualized as in Figure 4.5. The (𝑛 + 1)𝑠𝑡 transaction states, relations 

between 𝐹(𝐷1) and 𝐹(𝐷2), differential privacy provision or violation statuses in these 

cases are given in Table 4.3. 

 

 

(a) 

 

(b) 

Figure 4.5: Two transaction datasets that differ in a single transaction; (a) 

The (n + 1)st transaction amount is not equal to 𝑎 BTCs; (b) The (n + 1)st transaction 

amount equals 𝑎 BTCs 

In the first case, 𝐹(𝐷1) equals 𝐹(𝐷2), and the differential privacy formula given in 2.1 is 

true for all subsets and ε values. In the second case, 𝐹(𝐷1) equals 𝐹(𝐷2) + 1. Consider 

the case when 𝐹(𝐷2) equals 0, i.e., no transaction amount is equal to 𝑎 BTCs. In this 

case, 𝐹(𝐷1) equals 1. The range of 𝐹 is [0, 𝑛 + 1] for 𝐷1 and [0, 𝑛] for 𝐷2. For 𝑆 is [1, 
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𝑛], there is a violation of differential privacy as shown in the previous query. Again, this 

means that there is no differential privacy for a specific transaction amount 1
2 ⁄ of the 

cases considered. 

Table 4.3: Cases considered in differential privacy evaluation of the queries for a 

specific amount 

Case 
(𝑛 + 1)𝑠𝑡 

Transaction 
𝐹(𝐷1) and 𝐹(𝐷2) 

Differential 

Privacy 

𝑖 Amount ≠ 𝑎  𝐹(𝐷1) = 𝐹(𝐷2)  

𝑖𝑖 Amount = 𝑎 𝐹(𝐷1) = 𝐹(𝐷2) + 1 X 

 

 

4.1.4 Queries for Transactions with a Specific Amount Between Two Addresses 

 

 

Assume that one wishes to learn whether a transaction with an amount 𝑎 occurred 

between two specific Bitcoin addresses. Let 𝐴1 and 𝐴2 denote the addresses and 𝐹 be a 

function that gives the number of transactions between 𝐴1 and 𝐴2 that have an amount 

equal to 𝑎 BTCs. This query function is basically the combination of the query functions 

examined in Section 4.1.1 and Section 4.1.3. Let 𝐷1 consists of 𝑛 + 1 transactions and 𝐷2 

consists of 𝑛 transactions which are exactly the same as the first 𝑛 transactions of 𝐷1, 

which makes 𝐷1 and 𝐷2 differ in a single row. To cover all possible datasets, four cases 

must be considered; (𝑖) the (𝑛 + 1)𝑠𝑡 transaction is a transaction between 𝐴1and 𝐴2, the 

amount is not equal to 𝑎 BTCs, (𝑖𝑖) the (𝑛 + 1)𝑠𝑡 transaction is not a transaction between 

𝐴1and 𝐴2, the amount is equal to 𝑎 BTCs, (𝑖𝑖𝑖) the (𝑛 + 1)𝑠𝑡  transaction is not a 

transaction between 𝐴1and 𝐴2, the amount is not equal to 𝑎 BTCs, (𝑖𝑣) the 

(𝑛 + 1)𝑠𝑡 transaction is a transaction between 𝐴1and 𝐴2, the amount is equal to 𝑎 BTCs. 

The (𝑛 + 1)𝑠𝑡 transaction states, relations between 𝐷1 and 𝐷2, differential privacy 

provision or violation statuses in these cases are given in Table 4.4.  
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Table 4.4: Cases considered in differential privacy evaluation of the queries for 

transactions with a specific amount between two specific addresses 

Case 
(𝑛 + 1)𝑠𝑡 

Transaction 
𝐷1 and 𝐷2 

Differential 

Privacy 

𝑖 
 𝐴1 → 𝐴2 

Amount ≠ 𝑎 
𝐹(𝐷1) = 𝐹(𝐷2)  

𝑖𝑖 
 𝐴1 ↛ 𝐴2 

Amount = 𝑎 
𝐹(𝐷1) = 𝐹(𝐷2)  

𝑖𝑖𝑖 
 𝐴1 ↛ 𝐴2 

Amount ≠ 𝑎 
𝐹(𝐷1) = 𝐹(𝐷2)  

𝑖𝑣 
 𝐴1 → 𝐴2 

Amount = 𝑎 
𝐹(𝐷1) = 𝐹(𝐷2) + 1 X 

 

In the first three cases, 𝐹(𝐷1) equals 𝐹(𝐷2) since the (𝑛 + 1)𝑠𝑡  transaction is not a 

transaction between 𝐴1 and 𝐴2 that have an amount equal to 𝑎 BTCs. As a result, the 

differential privacy formula given in 2.1 is true for all subsets and 𝜀 values for these cases. 

In the fourth case, 𝐹(𝐷1) equals 𝐹(𝐷2) + 1. Consider the case when 𝐹(𝐷2) equals 0, i.e., 

this means that there is no transaction between 𝐴1 and 𝐴2 with an amount 𝑎. In this 

case, 𝐹(𝐷1) equals 1. The range of 𝐹 is [0, 𝑛 + 1] for 𝐷1 and [0, 𝑛]  for 𝐷2. For 𝑆 is [1, 

𝑛], there is a violation of differential privacy according to the differential privacy 

formulation. This means that there is no differential privacy for transactions between two 

specific Bitcoin addresses with a specific amount in 1 4 ⁄  of the cases considered. 

 

 

4.2 Feasibility of the Utilization of Noise Addition to Bitcoin Transaction Amounts 

 

 

One way of utilizing differential privacy for improving privacy in Bitcoin may be the 

addition of Laplace noise to the transaction amounts while including transactions in the 

blockchain, as a local differential privacy application. This change clearly requires a 

modification of the Bitcoin transaction verification mechanism, as well. However, this 

study focuses on the examination of applying differential privacy mechanisms and results 

in terms of satisfying differential privacy; we leave the actual implementation of such a 

verification mechanism, and examination of the utility of noise added transaction amounts 

as a future study. In the following subsections, we examine the effect of noise addition 

on differential privacy for the four query functions, which were examined in Section 4.1. 
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4.2.1 Effect of Noise Addition on Queries for Transactions Between Two Specific 

Addresses 

 

 

Consider the function in Section 4.1.1 provided as an example, where the existence of a 

transaction between two specific Bitcoin addresses, 𝐴1 and 𝐴2, is sought, and 𝐹 is a 

function that gives the average transaction amount between 𝐴1 and 𝐴2. 𝐷1 consists of 𝑛 +

1 transactions and 𝐷2 consists of 𝑛 transactions which are exactly the same as the first 

𝑛 transactions of 𝐷1. Assume that the blockchain stores transactions with noise values 

generated according to the Laplace mechanism added to the transaction amounts. 

Moreover, assume that noise values are added accordingly so that the minimum and the 

maximum Bitcoin transaction amounts do not change, stay as 0.00000546 and 21  106 

BTCs respectively. 

The noise values that will be added can be calculated using the noise distribution function 

and the sensitivity of the query function. Again, the range of 𝐹 is between 0 and 21  106 

BTCs since even in the nonexistence of at least one transaction between 𝐴1 and 

𝐴2, the average transaction amount is still 0. To cover all possible datasets, again, two 

cases must be considered; (𝑖) the (𝑛 + 1)𝑠𝑡 transaction is not a transaction between 𝐴1 

and 𝐴2, (𝑖𝑖) the (𝑛 + 1)𝑠𝑡 transaction is a transaction between 𝐴1 and 𝐴2. The two cases 

for 𝐷1 and 𝐷2 after the noise addition can be visualized as in Figure 4.6. These cases and 

the corresponding (𝑛 + 1)𝑠𝑡 transaction states, relations between 𝐹(𝐷1) and 𝐹(𝐷2), 

differential privacy provision or violation statuses after the noise addition are given in 

Table 4.5, where ax+1 denotes the (𝑛 + 1)𝑠𝑡 transaction amount. 

In the first case, 𝐹(𝐷1) equals 𝐹(𝐷2) after the noise addition, and the differential privacy 

formula given in 2.1 is true for all subsets and 𝜀 values. For the second case, again, 𝐹(𝐷1) 

equals 𝐹(𝐷2) plus some value that comes from the noise added (𝑛 + 1)𝑠𝑡  transaction. 

The minimum amount that can be transferred in a Bitcoin transaction is still 0.00000546. 

For 𝑆 is [𝐹(𝐷2) + (0.00000546 (𝑛 + 1)⁄ ), 21  106], a violation of differential privacy 

can be shown as in Section 4.1.1 in 1 2 ⁄ of the cases considered for this query. Thinking 

pragmatically, it can be inferred that adding noise to transaction amounts does not hide 

the existence of a transaction between two specific addresses at any level, as well. 
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(a) 

 
(b) 

Figure 4.6: Two transaction datasets that differ in a single transaction after the noise 

addition; (a) The (𝑛 + 1)𝑠𝑡 transaction is not a transaction between 𝐴1 and 𝐴2; (b) 

The (𝑛 + 1)𝑠𝑡  transaction is a transaction between 𝐴1 and 𝐴2 

Table 4.5: Cases considered in differential privacy evaluation of the queries for 

transactions between two specific addresses with noise addition 
 

Case 
(𝑛 + 1)𝑠𝑡 

Transaction 

𝐹(𝐷1) and 𝐹(𝐷2) 

After Noise 

Differential 

Privacy 

After Noise 

𝑖  𝐴1 ↛ 𝐴2 𝐹(𝐷1) = 𝐹(𝐷2)  

𝑖𝑖  𝐴1 → 𝐴2  F(D1) = F(D2) + ax+1/(𝑛 + 1) X 

 

4.2.2 Effect of Noise Addition on Queries for Transactions Above a Specific Amount 

 

 

Consider the function in Section 4.1.2, where one wishes to learn whether a transaction 

with an amount above 𝑎 BTCs occurred and 𝐹 is a function that gives the number of 

transactions greater than 𝑎 BTCs in the blockchain. Again, let 𝐷1 consists of 𝑛 + 1 

transactions, and 𝐷2 consists of 𝑛 transactions which are exactly the same as the first 

𝑛 transactions of 𝐷1. To cover all possible datasets, two cases must be considered again; 

(𝑖) the (𝑛 + 1)𝑠𝑡 transaction amount is not above 𝑎 BTCs, (𝑖𝑖) the (𝑛 + 1)𝑠𝑡 transaction 

amount is above 𝑎 BTCs. The two cases for 𝐷1 and 𝐷2 after the noise addition can be 
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visualized as in Figure 4.7. These cases and the corresponding (𝑛 + 1)𝑠𝑡 transaction 

states, relations between 𝐹(𝐷1) and 𝐹(𝐷2), differential privacy provision or violation 

statuses after the noise addition are given in Table 4.6.  

Table 4.6: Cases considered in differential privacy evaluation of the queries for 

transactions above a specific amount with noise addition 

Case 

(𝑛 + 1)𝑠𝑡 

Transaction 

Before 

Noise 

(𝑛 + 1)𝑠𝑡 

Transaction 

After Noise 

𝐹(𝐷1) and 𝐹(𝐷2) 

After Noise 

Differential Privacy 

After Noise 

𝑖 Amount ≤ 𝑎 
Amount ≤ 𝑎 𝐹(𝐷1) = 𝐹(𝐷2)  

Amount > 𝑎 𝐹(𝐷1) = 𝐹(𝐷2) + 1 X 

𝑖𝑖 Amount > 𝑎 
Amount ≤ 𝑎 𝐹(𝐷1) = 𝐹(𝐷2)  

Amount > 𝑎 𝐹(𝐷1) = 𝐹(𝐷2) +1 X 

 

(a) 

 

(b) 

Figure 4.7: Two transaction datasets that differ in a single transaction after the noise 

addition; (a) The (𝑛 + 1)𝑠𝑡 transaction amount is not above 𝑎 BTCs; (b) 

The (𝑛 + 1)𝑠𝑡  transaction amount is above 𝑎 BTCs 
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In the first case, there are two possible outcomes. 𝐹(𝐷1) may be equal to 𝐹(𝐷2) after the 

noise addition if the amount remains not above 𝑎. In this situation, the differential privacy 

formula given in 2.1 is true for all subsets and ε values. If the amount gets greater than 𝑎, 

𝐹(𝐷1) gets equal to 𝐹(𝐷2) + 1. For the second case, there are two possible outcomes, as 

well. 𝐹(𝐷1) may be equal to 𝐹(𝐷2) if a negative noise is added to the (𝑛 +

1)𝑠𝑡  transaction, which results in a transaction amount below 𝑎 BTCs and true for the 

differential privacy formula given in 2.1 for all subsets and 𝜀 values. Alternatively, 𝐹(𝐷1) 

may be equal to 𝐹(𝐷2) + 1, if a positive noise is added to the (𝑛 + 1)𝑠𝑡  transaction, which 

results in a violation of differential privacy as shown in Section 4.1.2. The differential 

privacy is violated for this query in 2 4 ⁄ of the cases considered. 

 

 

4.2.3 Effect of Noise Addition on Queries for Transactions for a Specific Amount 

 

 

Consider the function in Section 4.1.3, where one wishes to learn whether a transaction 

with an amount equal to 𝑎 BTCs occurred and 𝐹 is a function that gives the number of 

transactions with the amount 𝑎 in the blockchain. Let 𝐷1 and 𝐷2 be two neighbor datasets 

that consist of exactly the same 𝑛 transactions and  𝐷1 has an additional (𝑛 + 1)𝑠𝑡 

transaction. For this query function, two cases must be considered to cover all possible 

datasets; (𝑖) the (𝑛 + 1)𝑠𝑡 transaction amount is not equal to 𝑎 BTCs, (𝑖𝑖) the (𝑛 + 1)𝑠𝑡 

transaction amount is equal to 𝑎 BTCs. The two cases for 𝐷1 and 𝐷2 after the noise 

addition can be visualized as in Figure 4.8. These cases and the corresponding (𝑛 + 1)𝑠𝑡 

transaction states, relations between 𝐹(𝐷1) and 𝐹(𝐷2), differential privacy provision or 

violation statuses after the noise addition are given in Table 4.7. 

Table 4.7: Cases considered in differential privacy evaluation of the queries for 

transactions with a specific amount with noise addition 

Case 

(𝑛 + 1)𝑠𝑡 

Transaction 

Before Noise 

(𝑛 + 1)𝑠𝑡 

Transaction 

After Noise 

𝐹(𝐷1) and 𝐹(𝐷2) 

After Noise 

Differential Privacy 

After Noise 

𝑖 Amount ≠ 𝑎 
Amount ≠ 𝑎 𝐹(𝐷1) = 𝐹(𝐷2)  

Amount = 𝑎 𝐹(𝐷1) = 𝐹(𝐷2) + 1 X 

𝑖𝑖 Amount = 𝑎 Amount ≠ 𝑎 𝐹(𝐷1) = 𝐹(𝐷2)  
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(a) 

 

(b) 

Figure 4.8: Two transaction datasets that differ in a single transaction after the noise 

addition; (a) The (𝑛 + 1)𝑠𝑡 transaction amount is not equal to 𝑎 BTCs; (b) 

The (𝑛 + 1)𝑠𝑡  transaction amount is equal to 𝑎 BTCs 

 

In the first case, two outcomes can occur after the noise addition; (𝑖. 𝑖)(𝑛 + 1)𝑠𝑡 

transaction amount gets a value different from 𝑎 BTCs, (𝑖. 𝑖𝑖) (𝑛 + 1)𝑠𝑡  transaction 

amount gets equal to 𝑎 BTCs. In case (𝑖. 𝑖), the numbers of transactions having an amount 

equal to 𝑎 BTCs are equal for 𝐷1 and 𝐷2, and 𝐹(𝐷1) is equal to 𝐹(𝐷2), therefore, 

differential privacy is provided. In case (𝑖. 𝑖𝑖), 𝐹(𝐷1) equals 𝐹(𝐷2) + 1. Consider the case 

when 𝐹(𝐷2) equals 0, i.e., no transaction amount is equal to 𝑎 BTCs after the noise 

addition. In this case, 𝐹(𝐷1) is equal to 1. The range of 𝐹 is [0, 𝑛 + 1] for 𝐷1 and [0, 𝑛] 

for 𝐷2. For 𝑆 is [1, 𝑛], the violation of differential privacy can be shown as in Section 

4.1.3. In the second case, when Laplace noise values are added to the amounts in these 

datasets, (𝑛 + 1)𝑠𝑡  transaction of 𝐷1 has no longer an amount equal to 𝑎. Remaining 𝑛 

transactions are the same for 𝐷1 and 𝐷2, and when the noise values are added to the 
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amounts, these 𝑛 transactions again be the same. As a result, 𝐹(𝐷1) equals 𝐹(𝐷2), and 

the differential privacy formula given in 2.1 is true for all subsets and 𝜀 values. For case 

(𝑖), ½ of the cases violates differential privacy, and for case (𝑖𝑖), there is no differential 

privacy violation. For this query, the weighted average of the differential privacy violation 

becomes  
1

2


1

2
+

1

2
 0 = 1

4 ⁄ . 

 

 

4.2.4 Effect of Noise Addition on Queries for Transactions with a Specific Amount 

Between Two Specific Addresses 

 

 

Consider the function in Section 4.1.4, where one wishes to learn whether a transaction 

with an amount equal to 𝑎 BTCs occurred between two specific Bitcoin addresses. Let 

 𝐴1 and 𝐴2 denote the addresses and 𝐹 be a function that gives the number of transactions 

between 𝐴1 and 𝐴2 that have an amount equal to 𝑎 BTCs. Let 𝐷1 and 𝐷2 be two neighbor 

datasets that consist of exactly the same 𝑛 transactions and  𝐷1 has an additional 

(𝑛 + 1)𝑠𝑡 transaction. For this query function, four cases must be considered to cover all 

possible datasets; (𝑖) the (𝑛 + 1)𝑠𝑡  transaction is a transaction between 𝐴1and 𝐴2,   the 

amount is not equal to 𝑎 BTCs, (𝑖𝑖) the (𝑛 + 1)𝑠𝑡 transaction is not a transaction between 

𝐴1and 𝐴2, the amount is equal to 𝑎 BTCs, (𝑖𝑖𝑖) the (𝑛 + 1)𝑠𝑡 transaction is not a 

transaction between 𝐴1and 𝐴2, the amount is not equal to 𝑎 BTCs, (𝑖𝑣) the (𝑛 + 1)𝑠𝑡 

transaction is a transaction between 𝐴1and 𝐴2, the amount is equal to 𝑎 BTCs. These 

cases and the corresponding (𝑛 + 1)𝑠𝑡 transaction states, relations between 𝐹(𝐷1) and 

𝐹(𝐷2), differential privacy provision or violation statuses after the noise addition are 

given in Table 4.8.  

The range of 𝐹 is [0, 𝑛 + 1] for 𝐷1 and [0, 𝑛] for 𝐷2. When 𝐹(𝐷1) equals 𝐹(𝐷2) + 1, the 

violation of differential privacy can be shown by considering the case when 𝐹(𝐷2) equals 

0, and 𝐹(𝐷1) is equal to 1 for 𝑆 is [1, 𝑛]. When 𝐹(𝐷1) equals 𝐹(𝐷2), the differential 

privacy formula given in 2.1 is true for all subsets and 𝜀 values. For case (𝑖), ½ of the 

cases violates differential privacy, and for cases (𝑖𝑖 − 𝑖𝑣), there is no differential privacy 

violation. For this query, the weighted average of the differential privacy violation 

becomes  
1

4


1

2
+

1

4
 0 +

1

4
 0 +

1

4
 0 = 1

8 ⁄ . 
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Table 4.8: Cases considered in differential privacy evaluation of the queries for 

transactions with a specific amount between two specific addresses with noise addition 

Case 

(𝑛 + 1)𝑠𝑡 

Transaction 

Before Noise 

(𝑛 + 1)𝑠𝑡 

Transaction 

After Noise 

𝐹(𝐷1) and 𝐹(𝐷2) 

After Noise 

Differential Privacy 

After Noise 

𝑖 
 𝐴1 → 𝐴2 

Amount ≠ 𝑎 

 𝐴1 → 𝐴2 

Amount ≠ 𝑎 
𝐹(𝐷1) = 𝐹(𝐷2)  

 𝐴1 → 𝐴2 

Amount = 𝑎 
𝐹(𝐷1) = 𝐹(𝐷2) + 1 X 

𝑖𝑖 
 𝐴1 ↛ 𝐴2 

Amount = 𝑎 

 𝐴1 ↛ 𝐴2 

Amount ≠ 𝑎 
𝐹(𝐷1) = 𝐹(𝐷2)  

𝑖𝑖𝑖 
 𝐴1 ↛ 𝐴2 

Amount ≠ 𝑎 

 𝐴1 ↛ 𝐴2 

Amount ≠ 𝑎 
𝐹(𝐷1) = 𝐹(𝐷2)  

 𝐴1 ↛ 𝐴2 

Amount = 𝑎 
𝐹(𝐷1) = 𝐹(𝐷2)  

𝑖𝑣 
 𝐴1 → 𝐴2 

Amount = 𝑎 

 𝐴1 → 𝐴2 

Amount ≠ 𝑎 
𝐹(𝐷1) = 𝐹(𝐷2)  

 

 

4.3 Feasibility of the Utilization of User Graph Perturbation in Bitcoin 

 

 

Another potential way of provisioning differential privacy in Bitcoin is the perturbation 

of the user graph. In the user graph, also named the user network, the flow of bitcoins 

between users over time is depicted as a directed graph. Nodes represent users, namely 

Bitcoin addresses, and directed edges represent the flow of bitcoins between users. An 

example of the user graph is given in Figure 4.9. 

 

Figure 4.9: A sample Bitcoin user graph 

 

Graph perturbation can be applied as adding dummy edges, i.e., dummy transactions, 

between users or deleting some existing edges, i.e., actual transactions. This change also 

requires a change of the Bitcoin transaction verification mechanism. Again, our focus in 
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this paper is on the examination of applying differential privacy mechanisms and the 

corresponding results; we leave the design of such a verification mechanism, and 

examination of the utility of perturbed transaction graph as future work. In the following 

subsections, we examine the effect of graph perturbation on differential privacy for the 

four query functions, which were examined in Section 4.1 and Section 4.2. 

 

 

4.3.1 Effect of Graph Perturbation on Queries for Transactions Between Two Specific 

Addresses 

 

 

Consider the query function that was given in Section 4.1.1, i.e., one wishes to learn 

whether a transaction occurred between two specific Bitcoin addresses, 𝐴1 and 𝐴2. Let 

𝐷1 and 𝐷2 be two neighbor datasets that consist of exactly the same 𝑛 transactions and 

𝐷1 has an additional (𝑛 + 1)𝑠𝑡 transaction. Example graphs for 𝐷1 and 𝐷2 are given in 

Fig. 11. 

 

(a) 

 

(b) 

Figure 4.10: (a) 𝐷1 consists of 𝑛 + 1 transactions that 𝑛 of them are exactly the same 

with the 𝑛 transactions of 𝐷2 and an (𝑛 + 1)𝑠𝑡  transaction which is between 𝐴1 and 𝐴2; 

(b) 𝐷2 is a dataset that has exactly the same 𝑛 transactions of 𝐷1 
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Let 𝐹 be a function that gives the average transaction amount between 𝐴1 and 𝐴2. For this 

query function, two cases must be considered to cover all possible datasets; (𝑖) (𝑛 + 1)𝑠𝑡 

transaction is between  𝐴1 and 𝐴2, (𝑖𝑖) (𝑛 + 1)𝑠𝑡 transaction is not between 𝐴1 and 𝐴2. 

In the first case, when graph perturbation is applied to these datasets, the following two 

cases can occur: 

• In 𝐷1, the graph perturbation deletes the (𝑛 + 1)𝑠𝑡  transaction. Between 𝐴1 and 

𝐴2, no or some dummy transactions may be added. In any case, 𝐹(𝐷1) equals 

𝐹(𝐷2), and the differential privacy formula given in 2.1 is true for all subsets and 

𝜀 values. 

• In 𝐷1, the graph perturbation does not delete the (𝑛 + 1)𝑠𝑡  transaction. Between 

𝐴1 and 𝐴2, no or some dummy transactions may be added. In any case, 𝐹(𝐷1) 

equals 𝐹(𝐷2) + 1. When 𝐹(𝐷2) equals 0, for 𝑆 is [1, 𝑛], there is a violation of 

differential privacy.   

In the second case, when graph perturbation is applied to 𝐷1 and 𝐷2, since  (𝑛 + 1)𝑠𝑡 

transaction is not between 𝐴1 and 𝐴2, in the end, 𝐹(𝐷1) equals 𝐹(𝐷2). As a result, the 

differential privacy formula given in 2.1 is true for all subsets and 𝜀 values. 

For case (𝑖), ½ of the cases violates differential privacy, and for case (𝑖𝑖), there is no 

differential privacy violation. For this query, the weighted average of the differential 

privacy violation becomes  
1

2


1

2
+

1

2
 0 = 1

4 ⁄ . 

 

 

4.3.2 Effect of Graph Perturbation on Queries for Transactions for a Specific Amount 

 

 

Consider the query function given in Section 4.1.3, i.e., one wishes to learn whether a 

transaction with an amount equal to 𝑎 BTCs occurred. Function 𝐹 gives the number of 

transactions with an amount 𝑎 in the blockchain. Let 𝐷1 and 𝐷2 be two neighbor datasets 

as described earlier. For this query function, two cases that must be considered to cover 

all possible datasets are as follows; (𝑖) (𝑛 + 1)𝑠𝑡  transaction amount is 𝑎 BTCs, (𝑖𝑖) 

(𝑛 + 1)𝑠𝑡 transaction amount is not 𝑎 BTCs. In the first case, when the graph perturbation 

is applied to these datasets, the following two cases can occur: 
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• In 𝐷1, the graph perturbation deletes the (𝑛 + 1)𝑠𝑡 transaction. No or some 

dummy transactions with an amount equal to 𝑎 BTCs may be added. In any 

case, 𝐹(𝐷1) equals 𝐹(𝐷2), and the differential privacy formula given in 2.1 is true 

for all subsets and 𝜀 values. 

• In 𝐷1, the graph perturbation does not delete the (𝑛 + 1)𝑠𝑡  transaction. No or some 

dummy transactions with an amount equal to 𝑎 BTCs may be added. In any case, 

𝐹(𝐷1) equals 𝐹(𝐷2) + 1. When 𝐹(𝐷2) equals 0, for 𝑆 is [1, 𝑛], there is a violation 

of differential privacy. 

In the second case, when graph perturbation is applied to 𝐷1 and 𝐷2, since  (𝑛 + 1)𝑠𝑡 

transaction is not equal to 𝑎 BTCs, in the end, 𝐹(𝐷1) equals 𝐹(𝐷2). As a result, the 

differential privacy formula given in 2.1 is true for all subsets and 𝜀 values. 

For case (𝑖), ½ of the cases violates differential privacy, and for case (𝑖𝑖), there is no 

differential privacy violation. For this query, the weighted average of the differential 

privacy violation becomes  
1

2


1

2
+

1

2
 0 = 1

4 ⁄ , as well. 

 

 

4.3.3 Effect of Graph Perturbation on Queries for Transactions with a Specific 

Amount Between Two Specific Addresses 

 

 

Consider the query function given in Section 4.1.4, i.e., one wishes to learn whether a 

transaction with an amount equal to 𝑎 BTCs occurred between two specific Bitcoin 

addresses. Let  𝐴1 and 𝐴2 denote the addresses and 𝐹 be a function that gives the number 

of transactions between 𝐴1 and 𝐴2 that has an amount equal to 𝑎 BTCs. Let 𝐷1 and 𝐷2 be 

two neighbor datasets as described earlier. For this query function, four cases that must 

be considered to cover all possible datasets are as follows; (𝑖) the (𝑛 + 1)𝑠𝑡 transaction 

is a transaction between 𝐴1and 𝐴2,   the amount is not equal to 𝑎 BTCs, (𝑖𝑖) the 

(𝑛 + 1)𝑠𝑡 transaction is not a transaction between 𝐴1and 𝐴2, the amount is equal to 𝑎 

BTCs, (𝑖𝑖𝑖) the (𝑛 + 1)𝑠𝑡 transaction is not a transaction between 𝐴1and 𝐴2, the amount 

is not equal to 𝑎 BTCs, (𝑖𝑣) the(𝑛 + 1)𝑠𝑡 transaction is a transaction between 𝐴1and 𝐴2, 

the amount is equal to 𝑎 BTCs.  
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In the first three cases, since (𝑛 + 1)𝑠𝑡 transaction is not a transaction between 𝐴1and 

𝐴2 with an amount equal to 𝑎 BTCs, in any case, 𝐹(𝐷1) equals 𝐹(𝐷2) after the graph 

perturbation. As a result, the differential privacy formula given in 2.1 is true for all subsets 

and 𝜀 values. 

In the fourth case, the following two cases can occur: 

• In 𝐷1, the graph perturbation deletes the (𝑛 + 1)𝑠𝑡 transaction. No or some 

dummy transactions with an amount equal to 𝑎 BTCs may be added. In any case, 

𝐹(𝐷1) equals 𝐹(𝐷2), and the differential privacy formula given in 2.1 is true for 

all subsets and 𝜀 values. 

• In 𝐷1, the graph perturbation does not delete the (𝑛 + 1)𝑠𝑡  transaction. No or some 

dummy transactions with an amount equal to 𝑎 BTCs may be added. In any case, 

𝐹(𝐷1) equals 𝐹(𝐷2) + 1. When 𝐹(𝐷2) equals 0, for 𝑆 is [1, 𝑛], there is a violation 

of differential privacy. 

For cases (𝑖 − 𝑖𝑖𝑖), there is no differential privacy violation. For case (𝑖𝑣), ½ of the cases 

violates differential privacy. As a result, the weighted average of the differential privacy 

violation for this query becomes 
1

4
 0 +

1

4
 0 +  

1

4
 0 +

1

4
 

1

2
= 1

8 ⁄ . 

 

 

4.3.4 Effect of Graph Perturbation on Queries for Transactions Above a Specific 

Amount 

 

 

Consider the query function that was given in Section 4.1.2, i.e., one wishes to learn 

whether a transaction with an amount above 𝑎 BTCs occurred. 𝐹 is a function that gives 

the number of transactions greater than 𝑎 BTCs in the blockchain. 𝐷1 and 𝐷2 are two 

neighbor datasets as described in the previous query function. Again, two cases must be 

considered to cover all possible datasets; (𝑖) (𝑛 + 1)𝑠𝑡 transaction is above 𝑎 BTCs, (𝑖𝑖) 

(𝑛 + 1)𝑠𝑡 transaction is not above 𝑎 BTCs. In the first case, when graph perturbation is 

applied to these datasets, the following two cases can occur: 

• In 𝐷1, the graph perturbation deletes the (𝑛 + 1)𝑠𝑡 transaction. No or some 

dummy transactions above 𝑎 BTCs may be added. In any case, 𝐹(𝐷1) equals 
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𝐹(𝐷2), and the differential privacy formula given in 2.1 is true for all subsets and 

𝜀 values. 

• In 𝐷1, the graph perturbation does not delete the (𝑛 + 1)𝑠𝑡  transaction. No or some 

dummy transactions above 𝑎 BTCs may be added. In any case, 𝐹(𝐷1) equals 

𝐹(𝐷2) + 1. When 𝐹(𝐷2) equals 0, for 𝑆 is [1, 𝑛], there is a violation of differential 

privacy. 

In the second case, when graph perturbation is applied to 𝐷1 and 𝐷2, since  (𝑛 + 1)𝑠𝑡 

transaction is not above 𝑎 BTCs, in the end, 𝐹(𝐷1) equals 𝐹(𝐷2). As a result, the 

differential privacy formula given in 2.1 is true for all subsets and 𝜀 values. 

Again, for case (𝑖), ½ of the cases violates differential privacy, and for case (𝑖𝑖), there is 

no differential privacy violation. For this query, the weighted average of the differential 

privacy violation becomes  
1

2


1

2
+

1

2
 0 = 1

4 ⁄ . 

 

 

4.4 An Empirical Study on Noise Addition to Transaction Amounts 

 

 

We demonstrate a practical utilization of a noise addition to Bitcoin transaction amounts 

in an empirical way in this section. We add noise by applying the Laplace, the Gaussian, 

the Geometric, and the Uniform mechanisms for the noise generation at different ε values, 

and evaluate the results. 

There are several differential privacy libraries to use. SmartNoise (https://smartnoise.org; 

https://github.com/opendp/smartnoise-core), which is a joint study of Microsoft and 

Harvard School of Engineering and Applied Sciences, Google’s differential privacy 

library (https://github.com/google/differential-privacy), and Diffprivlib 

(https://diffprivlib.readthedocs.io; Holohan et al., 2019), the IBM Differential Privacy 

Library, are the prominent alternatives. The comparison of these libraries according to 

the variety of differential privacy mechanisms they provide is given in Table 4.9. We used 

SmartNoise v0.2.2 and this library offers the Laplace, the Gaussian, and the Geometric 

mechanisms. We used Google library v0.0.1 and it provides the Laplace and the Gaussian 

mechanisms. We used IBM library DiffPrivlib v0.4 and this library is the one affording 

the greatest number of mechanisms for numerical values. The library provides the 
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Laplace, the Gaussian, the Geometric, and the Uniform mechanisms for noise generation 

in order to achieve a differentially private model. Moreover, according to our evaluation, 

the documentation of DiffPrivlib is more comprehensible and the usage of the 

mechanisms is more straightforward, compared to the alternatives. As a result, we 

selected DiffPrivlib with Python support for our experiments.  

Table 4.9: The comparison of the differential privacy libraries 

Mechanism 
SmartNoise 

v0.2.2 

Google 

v0.0.1 

IBM DiffPrivlib 

v0.4 

Laplace + + + 

Gaussian + + + 

Geometric + − + 

Uniform − − + 

 

 

The referenced publication and the parameter details of the mechanisms provided by 

Diffprivlib are summarized in Table 4.10. Regarding the mechanism parameters, ε can 

have 1 as the maximum value for the Gaussian mechanism, whereas ε can have higher 

values than 1 for the Laplace, and the Geometric mechanisms. The Uniform mechanism 

only uses δ instead of ε, and δ can have a maximum of 0.5. The mechanisms also have a 

parameter for the sensitivity, which is not stated in the table. We use 1 for the sensitivity 

parameter for all runs since three out of four query functions that we analyzed in Sections 

4.1 and 4.2 have sensitivity equal to 1. There are some points to be considered while 

adding noise to the Bitcoin transaction amounts. The minimum amount of bitcoin that can 

be sent in a transaction is 546 satoshis, which is equivalent to 0.00000546 BTC. Besides, 

we assume that the maximum amount of bitcoin that can be sent in a transaction at a 

certain time is equal to the total amount of bitcoins mined until that time. As of April 

2021, we take this maximum value as 18,670,000 from blockchain.com website 

(https://www.blockchain.com/explorer/charts/total-bitcoins). Therefore, the minimum 

value that a noise added amount can get is 0.00000546 BTC, and the maximum value that 

a noise added amount can get is 18,670,000 BTC, and the noise values must be added 

accordingly. Diffprivlib offers folded versions of the Laplace and the Geometric 

mechanisms. In the folded versions, values outside a predefined range are folded back 

toward the domain around the closest point within the domain. Since the noisy values 

must be between 0.00000546 BTC and 18,670,000 BTC in our problem, rather than using 

the Laplace and the Geometric classes, we used the LaplaceFolded and GeometricFolded 
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classes. We set the lower and the upper bounds as 0.00000546 and 18,670,000 

respectively in these methods. Although Laplace and LaplaceFolded can be used with real 

numbers, Geometric and GeometricFolded require an integer input. Therefore, while 

using GeometricFolded, if an amount is not an integer, we multiplied it with 108 to make 

it an integer value, then applied the randomise method to obtain the noisy value and then 

divided the output by 108. Since a folded version for the Gaussian mechanism is not 

provided in the library, the noise addition trial is done until the noisy value falls within 

the lower and the upper bounds. Another point to consider is that a noise-added value can 

have a decimal fraction of up to 8 digits since satoshi is the smallest unit of the currency, 

which is equal to one hundred millionth of a single bitcoin (0.00000001 BTC). 

Accordingly, outputs of the randomization methods are rounded to 8 decimal places. We 

utilized the Python NumPy libraries in our implementation. 

Table 4.10: The details of the mechanisms provided by Diffprivlib 

Mechanism 
Reference 

in the documentation 
Parameters 

Input 

Type 

Laplace (Dwork et al., 2006) 

ε: float. Must be in [0, ∞]. 

δ: float. Must be in [0, 1], 

default: 0.0. 

integer 

Gaussian 
(Dwork & Roth, 

2014) 

ε: float. Must be in (0, 1]. 

δ: float. Must be in (0, 1]. 
integer 

Geometric (Ghosh et al., 2009) ε: float. Must be in (0, ∞]. float 

Uniform (Geng et al., 2019) δ: float. Must be in (0, 0.5]. integer 

 

We used a published dataset including Bitcoin network transactional metadata (Shafiq, 

2019). We carried out our experiments by adding noises to in_btc fields in this dataset, 

which are the input amounts of the transactions. We used randomly selected transaction 

data from 01.01.2014 and 02.01.2014.  

In our experiments, first, we analyzed the effect of the dataset size on the behavior of the 

mechanisms.  To this end, while applying the mechanisms, we changed the dataset size 

to 100, 1,000, and 10,000 respectively. For the evaluation, we used mean absolute error 

(MAE) values, calculated by summing the absolute differences between the noisy amount 

values and the actual values, and taking the mean. For the ε parameter of the Laplace, the 

Gaussian, and the Geometric mechanisms, we used 0.01, 0.05, 0.1, 0.5, and 1. For the δ 

parameter of the Uniform mechanism, we used 0.01, 0.05, 0.1, and 0.5 since this 

parameter can have a maximum of 0.5. Although ε can have a value greater than 1 in the 
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Laplace and the Geometric mechanisms, our tests showed that the amount of noise 

generated is insignificant when this value is greater than 1. As a result, we did not include 

the results for the greater ε values. We used 1 for δ in the Gaussian mechanism in all runs. 

The results are given in Figures 4.11-4.13. In the figures, there are no bars for the Uniform 

mechanism when ε is 1 since it cannot be greater than 0.5. 

 

Figure 4.11: Mean absolute errors for varying ε, δ values when the dataset size is 10,000 

 

 

 
 

Figure 4.12: Mean absolute errors for varying ε, δ values when the dataset size is 1,000 
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Figure 4.13: Mean absolute errors for varying ε, δ values when the dataset size is 100 

Figures 4.11-4.13 show that changing the dataset size does not make a significant 

difference in the MAE values. Apart from the dataset size, the figures show that the MAEs 

decrease as the ε (or δ) value increases. This outcome is expected since privacy reduces 

as ε (or δ) increases, and the amount of noise reduces consequently. Moreover, changing 

the dataset size does not make a difference in the order of the mechanisms. The Laplace 

mechanism results in the highest MAEs for all dataset sizes and all ε values. The Gaussian 

is the second by adding approximately the half amount of noise compared to the Laplace. 

The Uniform is the third in the MAE ranking by adding approximately a quarter amount 

of noise compared to the Laplace mechanism. The Geometric mechanism results in the 

lowest MAEs, which are significantly lower compared to the other mechanisms. While 

comparing the mechanisms for the same ε value, it can be said that a higher MAE is better 

since a higher MAE means that the total amount of noise is higher, resulting in higher 

privacy protection, as in (Hassan et al., 2020b). Accordingly, the Laplace mechanism is 

the best for hiding transaction amounts by adding a larger amount of noise.  The Gaussian 

comes next, and the Uniform follows the Gaussian. It is expected that the noisy and the 

actual amounts are close when the Geometric mechanism is used due to the low noise 

amounts.  

We also visualize 100 actual transaction amounts belonging to 01.01.2014 from the 

dataset and the corresponding noisy values according to the mechanisms for ε equal to 

0.01, 0.05, 0.1, 0.5, and 1 and δ equal to 0.01, 0.05, 0.1, and 0.5 in Figures 4.14-4.18. The 

average of the actual amounts is 1.409928611, the maximum is 14.96900006, and the 
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minimum is 0.001. From the figures, it is observed that the noisy values deviate a lot from 

the actual amounts in the Laplace, the Gaussian, and the Uniform mechanisms when ε or 

δ is smaller than 0.5. The fluctuation of the Laplace mechanism is significant when 

compared to the other mechanisms. The noisy values in the Geometric mechanism seem 

to be very close to the actual amounts for all ε values.   In these figures, it can be seen that 

mostly positive amounts of noise are added, i.e., the actual amounts are lower than the 

noisy amounts mostly. This situation is due to that Bitcoin transaction amounts do not 

allow so much negative amount of noise since there is a minimum threshold of 

0.00000546 BTC, which is the minimum transaction amount. Therefore, the mechanisms 

continue to generate noise until the noisy amount falls between the minimum and the 

maximum limits. Especially for the lower ε or δ values, i.e. greater noise amounts, the 

final noisy value tends to be a greater value than the actual value since the maximum 

limit, which is assumed as 18,670,000 in this study, is quite large. 

 

Figure 4.14: The actual transaction amounts along with the noisy amounts when ε or δ is 

0.01 
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Figure 4.15: The actual transaction along with the noisy amounts when ε or δ is 0.05 

 

Figure 4.16: The actual transaction along with the noisy amounts when ε or δ is 0.1 

 

 

Figure 4.17: The actual transaction along with the noisy amounts when ε or δ is 0.5 
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Figure 4.18: The actual transaction along with the noisy amounts when ε or δ is 1 

 

 

One of our aims while considering differential privacy for improving anonymity and 

privacy in Bitcoin has been preventing privacy breaches via direct queries. In the 

previously mentioned scenario with 0.000381 BTC valued shopping from a well-known 

e-commerce site, the transactions with the noisy amounts near 0.000381 in the blockchain 

may be considered as the candidates while attempting to detect the corresponding 

transaction. Similarly, an observer may think of using the rank information of the 

transaction with 0.000381 amount value when all transactions in the dataset are sorted by 

amounts. The transaction with the same rank or the transactions having ranks close in the 

noise added dataset may be considered as the candidate transactions corresponding to the 

transaction sought. In order to examine the differential privacy mechanisms from this 

aspect, we examined the change in the ranks of specific transactions before and after 

adding noise. The amount of change shows the performance of the mechanism at hiding 

the actual rank, and a higher change in the rank makes it difficult for an observer to detect 

a transaction related to a specific transaction amount.  

In our dataset with 100 amount values, we first checked the ranks of the noisy values 

corresponding to 14.96900006, which is the maximum of the actual amounts, for varying 

mechanisms and ε (or δ) values. The average ranks and standard deviations for 25 runs of 

noise addition are given in Table 4.11. When the average ranks rounded to the closest 

integer, we observed that the mechanisms are unable to hide the rank when ε is 1 for all 

mechanisms using ε. The rank of the noisy value does not change for all ε values in the 

Geometric mechanism. The Laplace mechanism hides the actual rank in 4 5 ⁄  of the cases, 
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the Gaussian mechanism hides the actual rank in 3
5 ⁄  of the cases, and the Uniform 

mechanism hides the actual rank in 3 4 ⁄  of the cases. The average ranks and the standard 

deviation values decrease as ε (or δ) increases. 

Table 4.11: The average ranks and the standard deviations of the noisy values 

corresponding to 14.96900006 which is the 1st in the actual amounts in descending order 

 ε or δ 

 0.01 0.05 0.1 0.5 1 

Mechanism 
Avg 

Rank 

Std 

Dev 

Avg 

Rank 

Std 

Dev 

Avg 

Rank 

Std 

Dev 

Avg 

Rank 

Std 

Dev 

Avg 

Rank 

Std 

Dev 

Laplace (ε) 46.72 30.7 43.44 30.96 28.08 23.4 2.4 1.9 1.36 0.48 

Gaussian (ε) 54.72 30.35 26.36 25.54 7.4 12 1.48 0.5 1.36 0.48 

Geometric (ε) 1 0 1 0 1 0 1 0 1 0 

Uniform (δ) 36.36 26.6 4.88 5.54 1.8 1.02 1.48 0.5 N/A N/A 

 

Then, we checked the ranks of the noisy values corresponding to 0.001, which is the 

minimum of the actual amounts, for varying mechanisms and ε values. The average ranks 

and standard deviations for 25 runs of noise addition are given in Table 4.12. Unlike the 

previous example, the Laplace and the Gaussian mechanisms hide the actual rank even 

when ε is 1. Again, the ranks of the noisy values do not change for all ε values in the 

Geometric mechanism. It can be seen that the Laplace and the Gaussian mechanisms hide 

the actual rank in all five ε values, and the Uniform mechanism hides the actual rank in 

all four δ values. No correlation can be observed in the average ranks or the standard 

deviations; the confusion arising from the noise addition is empirically shown. 

Table 4.12: The average ranks and the standard deviations of the noisy values 

corresponding to 0.001, which is the 1st in the actual amounts in ascending order 

 ε or δ 

 0.01 0.05 0.1 0.5 1 

Mechanism 
Avg 

Rank 

Std 

Dev 

Avg 

Rank 

Std 

Dev 

Avg 

Rank 

Std 

Dev 

Avg 

Rank 

Std 

Dev 

Avg 

Rank 

Std 

Dev 

Laplace (ε) 41.76 26.27 44.44 26.89 55.8 30.23 50.28 24.72 40.44 21.24 

Gaussian (ε) 50.64 30 46.52 29.24 39.28 27.02 37.96 20.57 30.24 19.49 

Geometric (ε) 1 0 1 0 1 0 1 0 1 0 

Uniform (δ) 47.88 29.7 53.23 26.78 37.4 28.76 37.88 27.06 N/A N/A 

 

Finally, we checked the ranks of the noisy values corresponding to the randomly selected 

0.41510257 value, which is the 59th in the actual amounts in ascending order, for varying 
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mechanisms and ε (or δ) values. The average ranks and standard deviations for 25 runs of 

noise addition are given in Table 4.13. The rank of the noisy value stays the same for all 

ε values in the Geometric mechanism. The Laplace and the Gaussian mechanisms are 

successful at hiding the actual rank in all ε values, and the Uniform mechanism 

successfully hides the actual rank in all δ values. As in the previous example, no 

correlation can be observed in the average ranks or the standard deviations, and the 

confusion arising from the noise addition is empirically shown. 

Table 4.13: The average ranks and the standard deviations of the noisy values 

corresponding to 0.41510257, which is the 59th in the actual amounts in ascending order 

 ε or δ 

 0.01 0.05 0.1 0.5 1 

Mechanism 
Avg 

Rank 

Std 

Dev 

Avg 

Rank 

Std 

Dev 

Avg 

Rank 

Std 

Dev 

Avg 

Rank 

Std 

Dev 

Avg 

Rank 

Std 

Dev 

Laplace (ε) 56.24 23.51 59.92 25.59 47.72 33.33 44.32 27.98 31.88 16.18 

Gaussian (ε) 50.24 26.56 40.04 27.81 44.92 27.98 35.84 19.4 34.88 21.8 

Geometric (ε) 59 0 59 0 59 0 59 0 59 0 

Uniform (δ) 51.84 25.32 50.56 27.87 48.16 20.58 48 22.46 N/A N/A 

 

 

In order to generalize this approach to the whole dataset, we define a new metric called 

mean ranking offset. The mean ranking offset (MRO) over a dataset is calculated by 

taking the average of the absolute differences between the ranks of the actual values in 

the dataset in ascending order and the ranks of the noisy values in ascending order. As the 

MRO increases, the distances between the ranks of the noisy values and the actual values 

increase. Therefore, MRO is an indicator of how successful a mechanism is at hiding the 

actual ranks. We calculated the MRO values over our dataset with 100 transaction 

amounts for all mechanisms and ε, δ values that we evaluated in the previous analyses. 

The results are given in Table 4.14 and visualized in Figure 4.19. The largest MRO values 

are provided by the Laplace mechanism, for all ε (or δ) values considered. It is observed 

that the mean rank offset values for the Geometric mechanism are very close to 0 and the 

ineffectiveness of the mechanism compared to the other mechanisms can be clearly seen. 

For ε, δ = 0.01, the Uniform mechanism follows the Laplace, and the Gaussian 

mechanism comes after the Uniform. For ε, δ = 0.05, 0.1, and 0.5, the Uniform and the 

Gaussian change their order, the Gaussian follows the Laplace and the Uniform comes 

after the Gaussian. δ cannot be 1, therefore MRO is not calculated for the Uniform 

mechanism in this value. It is observed that as ε or δ increases, MRO values tend to 

decrease. 
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Table 4.14: Mean ranking offsets for varying mechanisms and ε/δ values 

 

 ε or δ 

Mechanism 0.01 0.05 0.1 0.5 1 

Laplace (ε) 35.29 35.07 31.8 27.6 22.06 

Gaussian (ε) 31.43 27.76 29.11 23.78 14.38 

Geometric (ε) 0.1 0.1 0.06 0.02 0.1 

Uniform (δ) 33.07 25.78 25.01 17.84 N/A 

 

Figure 4.19: Mean ranking offsets for varying mechanisms and ε/δ values 

 

 

4.5 Summary and Discussion 

 

 

In this section, we summarize our research and observations for investigation and 

application of differential privacy in Bitcoin. In this study, firstly, the current 

implementation of Bitcoin is examined for four query functions in terms of differential 

privacy using the differential privacy formulation. Then, the feasibility of utilizing the 

noise addition and the graph perturbation mechanisms in Bitcoin is examined for these 

functions, as well. All possible cases for neighbor datasets are evaluated and the violations 

are detected. The fractions of the cases violating differential privacy are given in Table 

4.15. The discussed functions query the average transaction amount between two specific 

addresses, the number of transactions having an amount above 𝑎 BTCs, and the number 

of transactions having an amount equal to 𝑎 BTCs, respectively. The selection of these 

functions was done by considering what an observer would like to learn and get insight 

from the public blockchain. Interactions between users and the amount values are some 

meaningful information to use with off-network information. 
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Table 4.15: The fraction of the cases violating differential privacy 

 

Query Function 
Current 

implementation 

Noise 

addition 

Graph 

perturbation 

1 
Average transaction amount 

between 𝐴1 and 𝐴2 
1

2 ⁄  1
2 ⁄  1

4 ⁄  

2 

Number of transactions 

having an amount above 𝑎 

BTCs 

1
2 ⁄  2

4 ⁄  1
4 ⁄  

3 

Number of transactions 

having an amount equal to 𝑎 

BTCs 

1
2 ⁄  1

4 ⁄  1
4 ⁄  

4 

Number of transactions 

between 𝐴1 and 𝐴2 that have 

an amount equal to 𝑎 BTCs 

1
4 ⁄  1

8 ⁄  1
8 ⁄  

 

The current implementation of Bitcoin violates differential privacy in 1
2 ⁄  of the cases 

considered for the first three queries and 1 4 ⁄ of the cases considered for the fourth query. 

The application of noise addition does not change the fraction of the cases violating 

differential privacy for the first and the second functions, which query the average 

transaction amount between two specific addresses, and the number of transactions 

having an amount above 𝑎 BTCs, respectively. However, the noise addition decreases the 

fraction of the cases violating differential privacy to 1
4 ⁄  for the third function, which 

queries the number of transactions having an amount equal to 𝑎 BTCs. The noise addition 

decreases the fraction of the cases violating differential privacy to 1
8 ⁄  for the fourth 

function, which queries the number of transactions between two specific addresses with 

an amount equal to 𝑎 BTCs. 

The graph perturbation decreases the fraction of the cases violating differential privacy to 

1
4 ⁄  for the first three functions. The fraction of the cases violating differential privacy is 

decreased to 1 8 ⁄  for the fourth function, similar to the noise addition. It can be concluded 

that both mechanisms can be used to improve anonymity and privacy, whereas the graph 

perturbation seems to be a better option for the first and the second functions. In these 

experiments, we covered all possible cases regardless of the amount and exact method of 

noise addition and perturbation. However, the amount of noise can be calculated using 
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𝑆(𝑓), the sensitivity of a function. For the commonly used Laplace noise mechanism, 

adding noise with scale 𝑆(𝑓)/𝜀 preserves ε-differential privacy.  

Moreover, we demonstrated the utilization of the noise addition to transaction amounts 

by using the IBM differential privacy library. In our experiments, we examined the 

Laplace, the Gaussian, the Geometric, and the Uniform mechanisms for generating noise 

to add to the transaction amount values in a dataset for varying ε and δ values (ε = 0.01, 

0.05, 0.1, 0.5, 1, and δ = 0.01, 0.05, 0.1, 0.5). The evaluations are done using MAE values. 

The results show that the MAEs decrease as ε (or δ) increases, as expected. We observed 

that the effect of changing the dataset size, to 100, 1000, and 10,000, does not make a 

significant difference in the MAE values. The dataset size change also does not make a 

difference in the order of the mechanisms. We hypothesize that the higher MAE is better 

since a higher MAE results in higher privacy protection. The Laplace mechanism results 

in the highest MAEs for all dataset sizes and all ε values. The Gaussian follows the 

Laplace, and the Uniform results in the third-highest MAEs. The Geometric mechanism 

is not found effective due to very low MAEs. The behaviors of the mechanisms, in terms 

of variation, are also noticed when the noisy values generated by the mechanisms for 

varying ε and δ values are visualized along with the actual amounts for 100 transactions.  

We also carried out experiments to analyze the effect of the noise addition on detecting a 

transaction with a specific amount. We introduced the mean ranking offset (MRO) metric, 

which gives the average rank change over a dataset after the noise addition when the 

transactions are sorted by amounts. In our evaluation for a dataset with 100 transactions, 

the Laplace mechanism provided the largest MRO values for all ε or δ values considered. 

The Gaussian showed a better performance compared to the Uniform in most of the cases 

and followed the Laplace. The Geometric is ineffective according to the MRO metric, as 

well. It is observed that the MRO values tend to decrease as ε or δ increases. Moreover, 

for the maximum and the minimum values in the dataset, we evaluated the mechanisms 

according to the fraction of the ε or δ values hiding the actual rank. The results are 

presented in Table 4.16. It can be seen that the rank of the actual minimum value is 

successfully hidden for all mechanisms except the Geometric. For hiding the rank of the 

actual maximum value, there is no mechanism that hides the actual rank for all ε or δ 

values. However, Laplace performs the best. The Gaussian follows the Laplace, and the 

Uniform comes after the Gaussian. The Geometric is unsuccessful at hiding both ranks 

for all mechanisms and ε, δ values. 
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Table 4.16: The fraction of the ε or δ values hiding the actual rank of the maximum and 

the minimum values in the dataset 

 

Mechanism Maximum Minimum 

Laplace 4
5 ⁄  5

5 ⁄  

Gaussian 3
5 ⁄  5

5 ⁄  

Geometric 0
5 ⁄  0

5 ⁄  

Uniform 3
4 ⁄  4

4 ⁄  

As the overall result of our experiments, within the mechanisms and the parameters we 

examined, the Laplace mechanism can be opted for successfully hiding the transaction 

amounts and ranks with ε equal or less than 0.5. However, in the previously mentioned 

related study (Hassan et al., 2020b), the most suitable values for ε and δ are determined 

as 0.01 for generating an adequate amount of noise. This may be due to the range of the 

values. The values in the mentioned study range between 200 and 1900, whereas the 

values used in this study are between 0.001 and 14.96900006 which exemplify the real 

Bitcoin transaction amounts. Another difference is that the Geometric mechanism is 

found to be successful for adequate noise generation in the mentioned study, whereas our 

experiments show the opposite by finding this mechanism ineffective. 

While attaching the perturbation mechanism to the blockchain, it should be considered 

that the perturbation should not require a central party since the blockchain is managed 

collectively by the peers. A reasonable way of perturbation may be triggering and 

executing the perturbation algorithm automatically while publishing transactions, 

resulting in perturbed transaction data being added to the blockchain via dedicated and 

distributed servers as in (Kumar, 2020).  

Another important point to consider is that the focus of this study was on the examination 

of applying differential privacy mechanisms and results in terms of satisfying differential 

privacy. In order to use these differential privacy mechanisms, the verification mechanism 

must be modified accordingly, and perturbed amounts or transaction graph must be 

examined in terms of utility. There may be concerns on the effect of the perturbation on 

the usability of data since hash values used in verification would change, however, these 

concerns can be addressed with the methods that come from the notion of modifiable 
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blockchains (Politou et al., 2019; Lee at al, 2019) emerged from the erasing requirements 

imposed by the GDPR's “right to be forgotten” provision. 

Further research topics include the modification of the verification mechanism 

accordingly, and examining the effect of the perturbation on the degradation of utility. 

Moreover, applying these differential privacy mechanisms to other blockchain-based 

cryptocurrencies may be investigated, as well.   
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5. BLOCKCHAIN-BASED DIFFERENTIALLY-PRIVATE FEDERATED 

SMART UTILITY METERING 

 

 

 

In this section, utilization of differential privacy in smart utility metering is investigated.  

In addition to differential privacy, we leverage blockchain for achieving federation of 

smart homes and different utility providers, i.e., electricity, water and gas. As a result, we 

propose a blockchain-based differentially-private federated smart utility metering 

framework. We detail key requirements and framework design in the first two 

subsections. Then, we present information leakage and differential privacy analysis in the 

next subsection. Finally, we state future research ideas in the last subsection. 

 

 

5.1 Key Requirements 

Key requirements of the proposed framework are determined as follows. 

1. Multi-utility: The framework is federal. Multiple utilities take part in a 

federated utility infrastructure. 

2. Smart metering: Smart metering, with authorized utility services and non-

repudiated measurements, is applied.  

3. Differentially-private: Noise values are added to the smart metering 

measurement values to achieve differential privacy. 

4. Blockchain-based: Noisy consumption measurement values and aggregate 

noise values are kept in blockchain ledgers. 

5. Financial settlement: It is guaranteed that the utility providers bill subscribers 

as much as they consumed.  
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5.2 Framework Design 

 

 

In the proposed blockchain-based differentially-private federated smart utility metering 

framework, smart homes are connected via a decentralized blockchain network. All these 

smart meters are also connected to the utility service providers; i.e., smart meters for 

electricity are connected to the electricity utility provider, smart meters for water are 

connected to the water utility provider, and smart meters for gas are connected to the gas 

utility provider.  

Smart meters regularly transmit their consumption measurement values to the utility 

service providers with a predefined measurement period. Utility service providers collect 

these values from all smart homes and put these values with some other details in a list 

awaiting validation. All smart homes can reach this list and the smart home selected as 

the validator put these values in a block. After the verification process, the block is added 

to the blockchain ledger and disseminated. Instead of three ledgers for three utilities, we 

use a single ledger as in (Williams, 2018). Utility type can be added as a field in the ledger 

records. 

We hide the actual consumption measurement values by adding differentially private 

noise before transmitting them to the utility service providers. Each house has a tamper-

proof data storage to keep the noise values. Our aim is to provide that the total amount 

that must be paid to all utilities without adding any noise becomes equal to the total 

amount that must be paid when noise is added. One method of providing this is to add 

noise to these three utilities in a related way. Aggregate noise values are transmitted to 

the utility providers in a predefined billing period. Aggregate noise values are stored in a 

separate reconciliation blockchain since they are used for reconciliation among the utility 

service providers. At the end of each billing period, there is a reconciliation process 

among the utility providers. This infrastructure is visualized in Figure 5.1 for three smart 

homes. 
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Figure 5.1: Proposed framework design 
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5.2.1 Entities 

 

The entities in the framework are utility service providers, clients (smart homes), and an 

authority. Their roles are given in the following. 

Utility service provider: This entity is an organization supplying utility and verified by 

the authority. It is also a blockchain node. The framework proposed in this study has three 

utility service providers; electricity, water, and gas. 

• It receives noisy consumption measurement values at the end of each 

measurement period. It puts these values to the noisy values pool. 

• It receives aggregate noise values from smart homes at the end of each billing 

period. It puts these aggregate noise values to the aggregate noise pool. 

• It takes part in the reconciliation process between the utility service providers at 

the end of each billing period.  

• It participates in block construction process for aggregate noise blockchain. If it 

is selected as the block creator, it creates a new block from the aggregate noise 

pool and adds to the blockchain. The created block is disseminated to all utility 

service providers.  

 

Client (Smart home): This entity is the subscriber to the utility services, verified by the 

authority. It is also a blockchain node. 

• It transmits the noise added consumption values to the service providers with a 

predefined measurement period. 𝑛𝑐𝑒𝑖𝑗, 𝑛𝑐𝑤𝑖𝑗, 𝑛𝑐𝑔𝑖𝑗 are the noisy consumption 

measurement values, for electricity, water, and gas respectively, reported for the 

𝑗th measurement period of a billing period for the 𝑖th smart home. 𝑐𝑒𝑖𝑗, 𝑐𝑤𝑖𝑗, 𝑐𝑔𝑖𝑗 

are the actual consumption measurement values and 𝑛𝑒𝑖𝑗, 𝑛𝑤𝑖𝑗, 𝑛𝑔𝑖𝑗 are the noise 

values that are added for electricity, water, and gas respectively, for the 𝑗th 

measurement period of a billing period for the 𝑖th smart home. Then, 𝑛𝑐𝑒𝑖𝑗, 

𝑛𝑐𝑤𝑖𝑗, 𝑛𝑐𝑔𝑖𝑗 are calculated using Equations 5.1, 5.2, and 5.3. 
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𝑛𝑐𝑒𝑖𝑗 = 𝑐𝑒𝑖𝑗 +  𝑛𝑒𝑖𝑗                                              (5.1) 

𝑛𝑐𝑤𝑖𝑗 = 𝑐𝑤𝑖𝑗 +  𝑛𝑤𝑖𝑗                                            (5.2) 

𝑛𝑐𝑔𝑖𝑗 = 𝑐𝑔𝑖𝑗 +  𝑛𝑔𝑖𝑗                                             (5.3) 

 

• It has a tamper-proof data storage that stores aggregate noise values for that 

billing period. It adds the noise values for that measurement period to the current 

aggregate noise values. If 𝑎𝑛𝑒𝑖(𝑗−1), 𝑎𝑛𝑤𝑖(𝑗−1), and 𝑎𝑛𝑔𝑖(𝑗−1) are the latest 

aggregate noise values, i.e., for the (𝑗 − 1)th measurement period of a billing 

period for the 𝑖th smart home, then, the aggregate noise values at the end of the 

𝑗th measurement period are calculated using Equations 5.4, 5.5, and 5.6. 

𝑎𝑛𝑒𝑖𝑗 = 𝑎𝑛𝑒𝑖(𝑗−1) +  𝑛𝑒𝑖𝑗                                   (5.4) 

𝑎𝑛𝑤𝑖𝑗 = 𝑎𝑛𝑤𝑖(𝑗−1) +  𝑛𝑤𝑖𝑗                                 (5.5) 

𝑎𝑛𝑔𝑖𝑗 = 𝑎𝑛𝑔𝑖(𝑗−1) +  𝑛𝑔𝑖𝑗                                  (5.6) 

 

• It participates in block construction process for noisy consumption blockchain. If 

it is selected as the block creator, it creates a new block from the noisy 

consumption pool and adds to the blockchain. The created block is disseminated 

to all smart homes.  

• It transmits aggregate noise values to utility service providers at the end of each 

billing period. 

 

Authority: This entity authorizes utility service providers and registers new smart homes 

after ensuring their legitimacy. It allows joining to both blockchain ledgers. It can reach 

to both blockchain ledgers and check the integrity of the framework. 

 

 

5.2.2 Data Structures 

 

The framework has two blockchain ledgers. One of them is between the smart homes, 

and the other one is between the utility service providers. These blockchain networks are 

private, smart homes and utilities can be added by an authority after they prove their 

legitimacy. In these networks, every blockchain node can participate in the consensus. 
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Instead of PoW, which depends on computational power and consumes resources, Proof-

of-Stake (PoS) (Nguyen et al., 2019) consensus mechanism can be used.  

 

In summary, the proposed framework has the following data structures: 

• A blockchain ledger keeping noise added consumption measurement values of 

the smart homes: 

o It has a corresponding pool that keeps noisy consumption measurement 

values that await validation. 

o Each record consists of smart home identifier, utility type, consumption 

value, billing period, and measurement period. 

• A blockchain ledger used for the reconciliation between utility service providers 

keeping aggregate noise values: 

o It has a corresponding pool that keeps aggregate noise values that await 

validation. 

o Each record consists of smart home identifier, utility type, aggregate noise 

value, and billing period. 

• Tamper-proof data storages at smart homes that keep noise values. 

 

 

5.2.3 Noise Addition 

 

For hiding actual consumption measurement values, we apply a similar approach to non-

random data obfuscation (Guan et al., 2018). In a measurement period, for a smart home, 

if the electricity consumption value is 𝑐𝑒, the water consumption value is 𝑐𝑤, and the gas 

consumption value is 𝑐𝑔, and the electricity rate is 𝑟𝑒, the water rate is 𝑟𝑤, and the gas rate 

is 𝑟𝑔, then the total amount that will be paid to the utilities becomes 𝑟𝑒 × 𝑐𝑒 +  𝑟𝑤 × 𝑐𝑤 +

 𝑟𝑔 × 𝑐𝑔. If the noise values added for that measurement period are 𝑛𝑒, 𝑛𝑤, and 𝑛𝑔, then 

the noisy consumption values that are transmitted to the utilities become 𝑐𝑒 + 𝑛𝑒, 𝑐𝑤 +

𝑛𝑤, and 𝑐𝑔 + 𝑛𝑔. In this case, total amount that will be paid becomes 𝑟𝑒 × (𝑐𝑒 + 𝑛𝑒) + 

𝑟𝑒 × (𝑐𝑤 + 𝑛𝑤) + 𝑟𝑒 × (𝑐𝑔 + 𝑛𝑔). We provide that the total amount that must be paid to 

all utilities without adding any noise becomes equal to the total amount that must be paid 

when noise is added, by adding noise to two of the utility measurements randomly, and 



94  

adding noise to the remaining utility measurement in a way that will compensate the other 

two noise values. Therefore, Equation 5.7 must be hold. 

𝑟𝑒 × 𝑐𝑒 + 𝑟𝑤 × 𝑐𝑤 +  𝑟𝑔 × 𝑐𝑔 = 𝑟𝑒 × (𝑐𝑒 + 𝑛𝑒) + 𝑟𝑒 × (𝑐𝑤 + 𝑛𝑤) + 𝑟𝑒 × (𝑐𝑔 + 𝑛𝑔)  

(5.7) 

 

Equation 5.7 can be simplified to Equation 5.8. 

𝑟𝑒 × 𝑛𝑒 +  𝑟𝑤 × 𝑛𝑤 +  𝑟𝑔 × 𝑛𝑔 = 0                                          (5.8) 

For example, if the utilities that will receive noise values randomly are selected as the 

electricity and the water, then the noise that will be added to the gas consumption value, 

𝑛𝑔, becomes equal to −
(𝑛𝑒×𝑟𝑒+ 𝑛𝑤×𝑟𝑤)

𝑟𝑔
. 

Noise values can be either positive or negative. Besides, noisy consumption values can 

be negative. 

 

5.2.4 Reconciliation and Billing 

 

 

At the end of each billing period, two reconciliation processes must be executed between 

clients (smart homes) and utility service providers, and between utility service providers. 

For reconciliation and billing between clients and utility service providers, Algorithm 1 

is run at the end of each billing period. 𝑆𝐻 is the list of smart homes. 𝐸 denotes the 

electricity utility provider, 𝑊 denotes the water utility provider, and 𝐺 denotes the gas 

utility provider. Each smart home transmits aggregate noise values which are kept in the 

tamper-proof data storage to the corresponding utility service providers. Actual aggregate 

consumption values for each smart home is calculated by subtracting aggregate noise 

values from aggregate consumption values kept in utility service providers, which are 

noise added values. Then, bill amounts for each smart home are calculated by multiplying 

actual aggregate amounts by the rates of the utility services. 𝑏𝑒, 𝑏𝑤, 𝑏𝑔 keeps bill 

amounts of smart homes for electricity, water, and gas, respectively. 
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Algorithm 1 Algorithm for Reconciliation Between Smart Homes and Utility Service 

Providers and Billing 

Input: 𝑺𝑯, 𝒂𝒏𝒆, 𝒂𝒏𝒘, 𝒂𝒏𝒈, 𝒂𝒄𝒆, 𝒂𝒄𝒘, 𝒂𝒄𝒈, 𝒓𝒆, 𝒓𝒘, 𝒓𝒈 

Output: 𝒃𝒆, 𝒃𝒘, 𝒃𝒈 

1: for (𝑒𝑎𝑐ℎ 𝑠 𝑖𝑛 𝑆𝐻) do 

2: transmit(𝑎𝑛𝑒[𝑠], E) 

3:              transmit(𝑎𝑛𝑤[𝑠], W) 

4: transmit(𝑎𝑛𝑔[𝑠], S) 

5: 𝑎𝑐𝑒[s] ← 𝑎𝑐𝑒[𝑠] – 𝑎𝑛𝑒[𝑠] 

6: 𝑎𝑐𝑤[s] ← 𝑎𝑐𝑤[𝑠] – 𝑎𝑛𝑤[s] 

7: 𝑎𝑐𝑔[s] ← 𝑎𝑐𝑔[𝑠] – 𝑎𝑛𝑔[𝑠] 

8: 𝑏𝑒[s] ← 𝑎𝑐𝑒 × 𝑟𝑒 

9: 𝑏𝑤[s] ← 𝑎𝑐𝑤 × 𝑟𝑤 

10: 𝑏𝑔[s] ← 𝑎𝑐𝑔 × 𝑟𝑔 

11: end for 

12: return (𝑏𝑒, 𝑏𝑤, 𝑏𝑔); 

 

For the reconciliation between utility service providers, Algorithm 2 is run at the end of 

each billing period. 

 

Algorithm 2 Algorithm for Reconciliation Between Utility Service Providers 

Input: 𝑼 

1: for (𝑒𝑎𝑐ℎ 𝑢 𝑖𝑛 𝑈) do 

2: if 𝑢. 𝑣𝑎𝑙𝑢𝑒 < 0 

3:             𝑁.add(𝑢) 

4: else if 𝑢. 𝑣𝑎𝑙𝑢𝑒 > 0 

5: 𝑃.add(𝑢) 

6: end if else 

7: end for 

8: for (𝑒𝑎𝑐ℎ 𝑝 𝑖𝑛 𝑃) do 

9: for (𝑒𝑎𝑐ℎ 𝑛 𝑖𝑛 𝑁) do 

10: if 𝑝. 𝑣𝑎𝑙𝑢𝑒 ≤ |𝑛. 𝑣𝑎𝑙𝑢𝑒| 

11: 𝑝. 𝑣𝑎𝑙𝑢𝑒 ← 0 

12: 𝑛. 𝑣𝑎𝑙𝑢𝑒 ← −(|𝑛. 𝑣𝑎𝑙𝑢𝑒| −  𝑝. 𝑣𝑎𝑙𝑢𝑒) 
13: transfer(𝑝, 𝑛) 

14: break; 

15: else if  

16: 𝑛. 𝑣𝑎𝑙𝑢𝑒 ← 0 

17: 𝑝. 𝑣𝑎𝑙𝑢𝑒 ← 𝑝. 𝑣𝑎𝑙𝑢𝑒 − |𝑛. 𝑣𝑎𝑙𝑢𝑒| 
18: transfer(𝑝, 𝑛) 

19: end if else 

20: end for 

21: end for 
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transfer is the function that makes payment. U denotes the utility list. Each utility has 

value which is the sum of aggregate noises for all smart homes multiplied by the utility 

rate. At the end of the first for each loop, P consists of utilities that have positive value 

for the sum of aggregate noises multiplied by the utility rate. Similarly, at the end of the 

first for each loop, N consists of utilities that have negative value for the sum of aggregate 

noises multiplied by the utility rate. In the second for each loop, reconciliation is done by 

transferring corresponding amounts from utilities that in P to utilities that are in N. At the 

end of the algorithm, each value in lists P and N becomes equal to 0. 

For instance, if the sum of aggregate noise values for electricity multiplied by the 

electricity utility rate is 200, and the sum of aggregate noise values for water multiplied 

by the water utility rate is 100, then the sum of aggregate noise values for gas multiplied 

by the gas utility rate becomes -300. In this case, the amounts in the electricity and the 

water utilities must be transferred to the gas utility for the reconciliation, and Algorithm 

2 provides this. 

 

 

 

5.3 Information Leakage and Differential Privacy Analysis 

 

 

In this subsection, we analyze the framework in terms of information leakage and 

differential privacy. Without adding noise and the blockchain ledgers, who consumes 

which utility and how much information are known by the utility service providers. 

Without adding noise, but with utilizing the blockchain ledger, this information is public 

to all clients (smart homes). With this data leak, presence or absence of the household, 

number of people at the house, daily routines of the household can be inferred. Simply, if 

the measurement values are zero for a period, i.e., there is not any consumption at a smart 

home, then there is no human being at the house in that period. The framework prevents 

this data leak by adding noise to the actual consumption measurements. Consider that 

there is no one at a house during a measurement period, and the actual smart meter 

measurements are equal to zero. Since noise values are added to the measurement values 

before they are transmitted to the utility service providers, no one can infer that there is 

no one at the house.  
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In order to examine information leakage, transmitted and immobile data of the framework 

can be considered. The framework has the following as the transmitted data: 

• From smart homes to the utility service providers: 

o Noise added measurement values at the end of each measurement period 

o Aggregate noise values at the end of each billing period 

• Between smart homes: 

o Validated block for the smart home consumptions ledger 

• Between utility service providers: 

o Validated block for the reconciliation between utility service providers 

ledger 

The framework has the following as the immobile data: 

• Aggregate noise values kept in tamper-proof data storage at each smart home. At 

the end of the billing period, these values are reset after the reconciliation process. 

• Noisy consumption measurement values that await validation in the smart home 

consumption pool 

• Aggregate noise values that await validation in the pool  

• Noise added measurement values in the smart home consumptions ledger 

• Aggregate noise values kept in the ledger among the utility service providers  

The values transmitted include the noise added consumption measurement and 

aggregated noise values. Therefore, actual consumption measurement values can not be 

obtained using this data. However, one issue to consider is the amount of noise that will 

be added. If the amount of the noise is low, then the noise added consumption values 

become close to the actual amounts and this can reveal information about the household. 

Therefore, the amount of the noise should not be too low. Thus, the proposed framework 

does not aim having low MAE values. Noise values can be also negative. While having 

high MAE, even if the noisy measurement values are low, absence of the household is 

not leaked. 

In order to visualize this, assume that there are five measurement periods in a billing 

period, for the sake of simplicity. For a sample billing period, human presence, actual 

consumption values, noisy consumption values, noise values, and aggregate noise values 

are given in Table 5.1 for a simple smart home. Even though there is no human at the 

smart home in the measurement periods 4 and 5, assume that there is electricity 
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consumption due to the refrigerator. For the sake of simplicity, we assume that rates for 

the utilities are the same, i.e., the total of the noise values must be equal to 0 in a 

measurement period for a smart home. 

Table 5.1: Sample measurement periods and the noise addition 

 

Measurement 

Period 

Number 

Human 

Presence 

Actual 

Consumption 

Values 

(𝑐𝑒, 𝑐𝑤, 𝑐𝑔) 

Noisy 

Consumption 

Values 

(𝑛𝑐𝑒, 𝑛𝑐𝑤, 𝑛𝑐𝑔) 

Noise Values 

(𝑛𝑒, 𝑛𝑤, 𝑛𝑔) 

Aggregate 

Noise 

Values 

(𝑎𝑛𝑒, 

𝑎𝑛𝑤, 𝑎𝑛𝑔) 

1  6, 10, 4 3, 12, 5 -3, 2, 1 -3, 2, 1 

2  3, 4, 4 8, 7, -4 5, 3, -8 2, 5, -7 

3  6, 0, 0 4, -3, 5 -2, -3, 5 0, 2, -2 

4 X 2, 0, 0 -1, -4, 7 -3, -4, 7 -3, -2, 5 

5 X 2, 0, 0 4, -5, 3 2, -5, 3 -1, -7, 8 

TOTAL 19, 14, 8 18, 7, 16   

 

For the considered billing period, total actual consumption values are {19, 14, 8} for 

electricity, water, and gas, respectively. Total of the noise added consumption values are 

{18, 7, 16}. The difference between these series are the aggregate noise values which are 

{-1, -7, 8}. These aggregate noise values are transmitted only at the end of the billing 

period. Although there is no human at the smart home in the measurement periods 4 and 

5, the noisy consumption values transmitted at the end of the measurement periods do not 

allow inferring human absence at the house. 

In order to examine the framework in terms of differential privacy theoretically, the 

formulation of differential privacy, given as Formula 2.1, has to be checked, and finding 

a counterexample to Formula 2.1 suffices to detect a violation of differential privacy. 

Assume that one wishes to find out whether there is anyone at a house or not. Let 𝐹 be a 

function that gives the number of periods that have measurement values equal to the 

minimum measurement values. Let 𝐷1 consists of measurement values for 𝑛 + 1 periods 

and 𝐷2 consists of measurement values of 𝑛 periods which are exactly the same as the 

first 𝑛 periods of 𝐷1, which makes 𝐷1 and 𝐷2 differ in a single row. The range of 𝐹 is 

[0, 𝑛 + 1] for 𝐷1 and [0, 𝑛] for 𝐷2. The sensitivity of this function is 1, since adding a 

single row to any dataset will change the output by at most 1. To cover all possible 

datasets, the following cases must be considered for the (𝑛 + 1)𝑠𝑡 period: (𝑖) There is no 
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one at the house, there is no consumption, therefore the measurement values are equal to 

the minimum values, (𝑖𝑖) There is at least one person at the house. However, presence of 

someone at the house does not mean that there is any utility consumption. Therefore, two 

subcases occur: (𝑖𝑖. 𝑖) There is no consumption, therefore the measurement values are 

equal to the minimum values, (𝑖𝑖. 𝑖𝑖) There is utility consumption, therefore the 

measurement values are greater than the minimum values. These cases and the 

corresponding (𝑛 + 1)𝑠𝑡 period measurement values, relations between 𝐹(𝐷1) and 

𝐹(𝐷2), differential privacy provision or violation statuses are given in Table 5.2.  

 

Table 5.2: Differential privacy analysis of the traditional smart metering scenario 
 

Case 
Human 

Presence 

(𝑛 + 1)𝑠𝑡 

Period 

Measurement 

Values 

𝐹(𝐷1) and 𝐹(𝐷2) 
Differential 

Privacy 

𝑖 X = Minimum values 
𝐹(𝐷1) ≠ 𝐹(𝐷2) 

 F(D1) = F(D2) +  1 
X 

𝑖𝑖. 𝑖  = Minimum values 
𝐹(𝐷1) ≠ 𝐹(𝐷2) 

 F(D1) = F(D2) +  1 
X 

𝑖𝑖. 𝑖𝑖  > Minimum values 𝐹(𝐷1) = 𝐹(𝐷2)  

 

Without noise addition, i.e,, when the actual measurement values are transmitted, 

differential privacy is not provided in the human absence. In the presence of a human, 

differential privacy is provided in 1 2 ⁄  of the cases considered. 

When noise is added to the measurement values to improve differential privacy, 

measurement values become different than the actual minimum measurement values. 

Moreover, even there are no consumption for two measurement periods, resulting actual 

minimum consumption measurement values, the noise added values differ for these two 

periods. Alternative cases of human absence or presence, the corresponding (𝑛 + 1)𝑠𝑡 

period measurement values, relations between 𝐹(𝐷1) and 𝐹(𝐷2), differential privacy 

provision or violation statuses after noise addition are given in Table 5.3.  
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Table 5.3: Differential privacy analysis of the proposed differentially-private smart 

metering framework 

 

Case 
Human 

Presence 

(𝑛 + 1)𝑠𝑡 

Period 

Relation of 

Measurement 

Values with 

Minimum 

Values 

Before Noise 

(𝑛 + 1)𝑠𝑡 

Period 

Relation of Noisy 

Measurement 

Values 

After Noise 

𝐹(𝐷1) and 𝐹(𝐷2) 

After Noise 

Differential 

Privacy 

After Noise 

𝑖 X 
= Minimum 

values 

≠ Minimum 

values 
𝐹(𝐷1) = 𝐹(𝐷2)  

𝑖𝑖. 𝑖  
= Minimum 

values 

≠ Minimum 

values 
𝐹(𝐷1) = 𝐹(𝐷2)  

𝑖𝑖. 𝑖𝑖. 𝑖  
> Minimum 

values 

≠ Minimum 

values 
𝐹(𝐷1) = 𝐹(𝐷2)  

𝑖𝑖. 𝑖𝑖. 𝑖𝑖𝑖 
> Minimum 

values 

= Minimum 

values 

𝐹(𝐷1) ≠ 𝐹(𝐷2) 

 F(D1) = F(D2) +  1 
X

 

Differential privacy is provided for all the cases considered. This shows that adding noise 

to actual consumption values hides human absence or presence. To sum up, we 

hypothesize that by adding an adequate amount of noise and executing corresponding 

reconciliation algorithms, a blockchain-based differentially-private federated smart utility 

framework can be achieved. 

 

 

5.4 Future Research Ideas 

 

 

Determination of the correct amount of noise, and choice of the most efficient differential 

privacy parameter ε can be investigated as a future work. Besides, in addition to 

obfuscation of utility consumption values, methods of improving anonymity of smart 

home identities can be studied, as well. Moreover, smart homes may have different 

privacy requirements, therefore, the proposed framework may be extended to provide 

different privacy levels to answer these different privacy requirements. 

Diversifying the noise addition algorithm may be another future research idea. One 

approach may be grouping smart homes and adding noise values to smart homes that are 

in the same group correlatively. In this case, the reconciliation and the billing algorithms 

must be modified accordingly, as well. If the reconciliation and the billing are not done 
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consecutively, i.e., the billing is done over noisy consumption values, and the 

reconciliation is done after a period of time, then the financial aspects must be considered. 

The tradeoff between privacy and the financial burden that the system outcomes, i.e., 

paying exactly as consumed versus paying lower or higher to be reconciled later, which 

brings up the interest issue, must be analyzed.  

The proposed framework can be tested using a machine learning model that predicts 

human absence or presence, size of household, or categorizes household as young or 

elder. The machine learning model can be run before adding noise and after adding noise 

for a dataset, and the results can be compared to test differential privacy improvement. 
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6. CONCLUSION  

 

 

 

In this dissertation, we investigate utilization of differential privacy in financial 

distributed ledgers. We start our examinations with Bitcoin, the cryptocurrency which 

brought about the emergence of blockchain, which is a distributed ledger infrastructure. 

In the related work, we present a survey, which analyzes state of the art anonymity and 

privacy studies in Bitcoin-like digital cash systems. We classified studies into two main 

categories; the studies that analyze anonymity and privacy and the studies that propose 

anonymity and privacy improvements. The first category focuses on revealing 

information by utilizing blockchain and network analysis, and deanonymization 

techniques. We examined the studies that take place in this category and provided a 

taxonomy. Examination of these studies clearly shows that Bitcoin requires anonymity 

and privacy improvements. As a result, numerous studies exist that include proposals for 

improving anonymity and privacy in Bitcoin-like digital cash systems. We examined 

these proposals as the second category and provided a taxonomy for them, as well. Many 

cryptographic protocols, like zero knowledge proofs, ring signatures, and homomorphic 

commitments, are utilized in these proposals. However, we have not encountered any 

studies utilizing differential privacy for improving anonymity in Bitcoin-like financial 

distributed ledgers. To remedy this absence, first, we present an examination of Bitcoin 

in terms of differential privacy. Our motivation arises from the fact that differential 

privacy approaches can be used for improving the privacy of the public Bitcoin 

blockchain. The differential privacy methods offer the prevention of anonymization and 

privacy breaches by direct queries and the preservation of checkability of the integrity of 

the blockchain. We first examine the current Bitcoin implementation using the differential 

privacy formulation. Then, we examine the application of noise addition to transaction 

amounts and user graph perturbation as differential privacy mechanisms. Furthermore, 

we demonstrate an empirical study for practical utilization of the noise addition approach 
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and compare four differential privacy mechanisms according to mean absolute error for 

varying ε and δ values. In addition, we introduce a new metric called mean ranking offset 

and use it for the comparison, as well. In Section 4.5, we summarize our observations. It 

is observed that the noise addition and the graph perturbation mechanisms decrease the 

fraction of the cases violating differential privacy, therefore they can be used for 

improving anonymity and privacy in Bitcoin. The noise addition method decreases the 

fraction of the cases violating differential privacy by half for the three query functions, 

whereas the graph perturbation method decreases the fraction of the cases violating 

differential privacy by half for all of the four query functions considered. When the 

differential privacy mechanisms are compared practically for the noise addition, it is 

demonstrated that the Geometric mechanism adds a marginal amount of noise for all 

considered ε values and this mechanism is ineffective at hiding the ranks of the amounts 

in the dataset. This allows an observer, searching for a transaction with a specific amount, 

to detect the transaction by finding the nearest noisy value even if the noises are added. 

Our experiments show that the Laplace mechanism outperforms other mechanisms with 

high MAE and MRO values, and it can be opted with ε equal or less than 0.5 for 

improving differential privacy in Bitcoin. Although the results that are obtained in this 

paper are promising, none of the proposed methods achieved perfect differential privacy.  

As another contribution of this dissertation, we propose a block-chain based 

differentially-private federated smart utility metering framework. We utilize noise 

addition approach for improving differential privacy. We detail key requirements, entities 

and roles, data structures, noise addition and reconciliation and billing algorithms of the 

proposed framework. We examine the framework in terms of information leakage and 

differential privacy. We theoretically show that differential privacy is provided, thus, 

noise addition approach can be used to improve privacy in blockchain-based smart utility 

metering scenario. 

As the further research topics, modification of the Bitcoin verification mechanism 

according to the perturbation of differential privacy improving mechanisms, and 

examining the effect of the perturbation on the degradation of utility can be counted. 

Applying these differential privacy mechanisms to other blockchain-based 

cryptocurrencies may be investigated, as well. For the proposed blockchain-based 

differentially-private smart utility metering framework, determination of the correct 

amount of noise, and choice of the most differential privacy parameter ε can be 

investigated. Methods of improving anonymity of smart home identities can be studied 
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as another future work. Moreover, the proposed blockchain-based differentially-private 

smart utility metering framework can be tested using a machine learning model that 

predicts human absence or presence, size of household, or categorizes household like 

young or elder. Besides, noise addition algorithm of the framework can be diversified. 

One approach may be grouping smart homes and adding noise values to smart homes that 

are in the same group correlatively. In this case, reconciliation and billing algorithms must 

be modified accordingly, as well. In addition, smart homes may have different privacy 

requirements, therefore, the proposed framework may be extended to provide different 

privacy levels to answer these different privacy requirements. 
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