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Battery is a critical component of electric vehicles (EVs) due to its limited useful 

economic life and high production cost. Hence, better recharging and discharging 

practices through coordinated and improved route planning decisions may be a remedy 

for maintaining good battery health and avoiding fast degradation. In this study, we 

investigate the effect of considering the battery degradation-related cost on the route and 

charge planning of commercial EVs within the context of the Electric Traveling Salesman 

Problem with Time Windows (ETSPTW) and Electric Vehicle Routing Problem with 

Time Windows (EVRPTW). First, we extend the mathematical programming formulation 

of the ETSPTW, where the objective function minimizes the costs associated with battery 

degradation and energy consumption. Next, we develop a Variable Neighborhood Search 

(VNS) based matheuristic enhanced with an exact solver employed for the post-

optimization of heuristic solutions. Our matheuristic also includes a new mechanism 

designed specific to our problem. Then, we perform computational experiments using 

benchmark instances from the literature, and our results demonstrate that the proposed 

matheuristic achieves good quality solutions within reasonable computational time. We 

also extend the mathematical model of the EVRPTW by considering the battery 

degradation and conduct a computational study by solving small-size instances from the 
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literature on a commercial solver. Our results in both problem settings show that 

incorporating battery degradation in the problem may yield significant changes in the 

route plans. On the one hand, it offers a potential for substantial reduction in operational 

costs compared to the solutions obtained by minimizing energy consumption only. On the 

other hand, it leads to more frequent recharges en route, which brings in additional 

operational hurdles.  
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Batarya, kısıtlı kullanım ömrü ve yüksek ürettim maliyetlerinden dolayı elektrikli 

araçların (EA) en önemli bileşenlerinden biridir. Bu sebeple eş güdümlü ve gelişmiş rota 

planlamaları ile beraber uygulanacak iyileştirilmiş şarj ve deşarj uygulamaları batarya 

sağlığını korumak ve bataryanın hızlı yıpranmasını önlemek için bir çözüm olabilir. Bu 

çalışmada Zaman Pencereli Elektrikli Gezgin Satıcı Problemi (ZPEGSP) ve Zaman 

Pencereli Elektrikli Araç Rotalama Problemi (ZPEARP) kapsamında batarya 

yıpranmasına ilişkin maliyetlerin ticari EA’ların rota ve şarj planlamaları sırasında 

dikkate alınmasının etkisini inceliyoruz. İlk olarak ZPEGSP’nin matematiksel 

programlama formülasyonunu amaç fonksiyonunun batarya yıpranması ve enerji 

tüketimiyle ilişkilendirilen maliyetleri en küçükleyeceği şekilde genişletiyoruz. Daha 

sonrasında, sezgisel sonuçların son optimizasyonu için kullanılan kesin çözücüyle 

geliştirilmiş Değişken Komşuluk Arama (DKA) tabanlı bir mat-sezgisel geliştiriyoruz. 

Mat-sezgiselimiz problemimize özgü tasarlanan bir mekanizma da içermektedir. 

Akabinde, literatürdeki problem örneklerini kullanarak sayısal deneyler 

gerçekleştiriyoruz ve elde ettiğimiz sonuçlar önerdiğimiz mat-sezgiselin iyi kalitede 

çözümlere makul çalışma süreleri içerisinde ulaştığını gösterir. Ayrıca, batarya 

yıpranmasını dikkate alarak ZPEARP’nin matematiksel modelini de genişletiyoruz ve 

literatürdeki küçük boyutlu örnekleri bu model ile çözerek bir deney gerçekleştiriyoruz. 

İki problem ortamında da elde ettiğimiz sonuçlar, batarya yıpranmasını probleme dahil 
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etmenin rota planlamalarında dikkate değer değişikliklere sebep olabileceğini gösterir. 

Bir yandan sadece enerji sarfiyatının en küçüklendiği durumda elde edilen çözümlere 

kıyasla işletme maliyetlerinde önemli bir azalma imkanı sunar. Diğer yandan, rota 

boyunca daha sık şarj yapılmasına yol açar ve bu da ek operasyonel engeller getirir. 
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1. INTRODUCTION 

 

 

 

Transportation sector is responsible for about 25% of overall CO2 emissions which is one 

of the most widespread greenhouse gases (GHG). Road transportation accounts for 75% 

of this transportation related emission (International Energy Agency, 2020). More 

specifically, with the substantial surge in e-commerce activities through B2C and C2C 

channels, last mile deliveries performed by logistics companies have excessively 

increased in the last decade, and this trend is expected to continue in the future 

(McKinsey, 2016). However, last mile delivery is one of the most unsustainable 

operations covered by logistics service providers (LSPs) (Jiang et al., 2019). Hence, many 

governments started to take initiatives and set regulations, such as monetary incentives 

for electric vehicle (EV) purchases and issuing directives to increase the number of 

recharging infrastructures and improve electrical networks, to mitigate the adverse 

environmental effects of transportation activities. 

The initiatives taken by governments have led companies and government agencies to 

consider alternative fuel vehicles (AFVs), such as biodiesel-, LNG-, CNG-, electric- and 

hydrogen-powered vehicles, as substitutes for internal combustion engine vehicles 

(ICEVs) (Keskin and Çatay, 2018). Furthermore, battery electric vehicles (BEVs), hybrid 

electric vehicles (HEVs) and fuel cell electric vehicles (FCEVs) are generic types of EVs 

(Çatay and Keskin, 2017). In this thesis, we only deal with commercial BEVs, and will 

refer to them as EVs. 

EVs have been one of the most attention-grabbing alternatives among such AFVs due to 

their certain advantages over ICEVs: (i) they do not create GHG in inner-city; (ii) the 

zero-emission objective can be reached if the energy used for recharging comes fully from 

renewable energy sources; (iii) their noise in traffic is negligible; (iv) fewer maintenance 
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activities are needed; and (v) they are more efficient at low speeds (Schiffer et al., 2016; 

Pelletier et al., 2016). These advantages indicate that EV usage in urban logistics is more 

favorable than ICEV usage. On the other hand, EVs have significant drawbacks compared 

to ICEVs: (i) their driving range is strictly limited; (ii) the recharging time of batteries is 

excessively long; and (iii) public charging stations are not widely available in inner cities 

and rural locations. 

One of the most important aspects of last mile problems is the route optimization of 

delivery vehicles, i.e. the vehicle routing problem (VRP) (Deutsch and Golany, 2018). 

The LSPs are in the phase of renewing their fleets by acquiring EVs to use these vehicles 

in the last mile deliveries. On the other hand, EVs have significantly fewer components 

than ICEVs (Wolff et al., 2020), and the battery constitutes the major component in the 

total cost of ownership. (Fries et al., 2017). For this reason, battery utilization should be 

accounted for during making not only strategic but also operational decisions. However, 

this makes the routing problem even more complex. 

In this study, we deal with the electric traveling salesman problem with time windows 

(ETSPTW) and electric VRP with time windows (EVRPTW). We aim to examine the 

influence of battery degradation (wear) cost on both route and charge plans of EVs that 

are operated by logistics companies. To the best of our knowledge, this constitutes the 

first study that attempts to make routing and charge planning decisions simultaneously in 

the presence of time windows restrictions for the large-size problem instances by taking 

into account the cost associated with battery degradation. Hence, the contributions of this 

study are threefold: (i) we extend the mathematical models of the ETSPTW and 

EVRPTW by incorporating the impact of battery degradation in the objective function 

and constraint set, and refer to these problems as ETSPTW and battery degradation 

(ETSPTW-BD) and EVRPTW and battery degradation (EVRPTW-BD), respectively; (ii) 

we propose a variable neighborhood search (VNS)-based matheuristic approach that 

benefits from an exact solver to enhance the charging-related decisions; and (iii) we 

demonstrate the impact of battery degradation on route planning decisions and costs. 

The remainder of this thesis is organized as follows: Chapter 2 reviews the related 

literature. We provide the technical background on battery degradation and a formulation 

for battery wear cost in Chapter 3. We present mathematical formulation of the ETSPTW-

BD in Chapter 4. We propose a matheuristic approach, called MatHeur, to solve the 
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ETSPTW-BD in Chapter 5. Chapter 6 presents the computational study to validate the 

performance of MatHeur and provide managerial insights by using benchmark instances 

from the literature. In Chapter 7, we introduce the EVRPTW-BD, formulate its 

mathematical model, and solve small-size instances from the literature by using a 

commercial solver. Finally, Chapter 8 provides concluding remarks and directions for 

future research.
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2. LITERATURE REVIEW 

 

 

 

The TSP and VRP are two of the oldest combinatorial optimization problems that have 

been studied the most in the Operations Research (OR) literature. This chapter reviews 

the TSP and VRP literature by focusing on the utilization of AFVs, EVs in particular, in 

the delivery operations and examine the studies where the battery degradation is 

considered in strategic-tactical and operational decision-making.  

AFVs have been considered within the context of the TSP by Doppstadt et al. (2016) who 

introduced the hybrid electric vehicle TSP (HEVTSP) and extended it to the HEVTSP 

with time windows (HEVTSPTW) in Doppstadt et al. (2020). In these studies, they 

defined several arcs between each pair of nodes, where each arc corresponds to the trip 

using a different driving mode such as pure combustion and pure electric modes. Roberti 

and Wen (2016) introduced the ETSPTW using an EV for delivery operations in an urban 

area. They presented the mathematical model of the problem and developed a heuristic 

algorithm to solve it. The ETSPTW includes one extra limitation that recharging visits 

might take a longer time when compared to the refueling of other types of AFVs.  

Küçükoğlu et al. (2019) considered different charging rates at each customer location for 

recharging the battery in the scope of ETSPTW.  

Erdoğan and Miller-Hooks (2012) introduced Green VRP (GVRP) which considers a fleet 

of AFVs. Since the AFVs have a limited driving range, they may need to refuel along 

their routes, and this adds further complexity to the problem. The EVPRPTW was 

proposed by Schneider et al. (2014), which is a special case of GVRP where the fleet 

consists of EVs. After this study, EVRP literature has been enriched on several aspects as 

follows: Keskin and Çatay (2016) extended the EVRPTW by allowing partial recharges 
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and designed an adaptive large neighborhood search algorithm (ALNS) to solve the 

problem. The effect of different charging technologies on the route plans was also 

investigated in the literature. (Felipe et al., 2014; Keskin and Çatay, 2018). Furthermore, 

Montoya et al. (2017) introduced nonlinear charging functions into the problem. The 

location routing problem (LRP) was extended by locating charging stations (Schiffer and 

Walther, 2017) and battery swapping stations (Yang and Sun, 2015; Hof et al., 2017) 

besides the routing decisions. Time-dependent travel times (Lu et al., 2020; Wang et al., 

2020), waiting times at recharging stations (Keskin et al., 2019, Keskin et al. 2021) and 

electricity prices (Lin et al., 2021) were also considered in the EVRPTW literature. 

Energy consumption in EVs is influenced by internal and external factors, and the effect 

of road gradient and travel speed (Goeke and Schneider, 2015), ambient temperature 

(Rastani et al., 2019) and load of the vehicle (Kancharla and Ramaduari, 2020; Rastani 

and Çatay, 2021) on the route plans of EVs were also investigated. Flexible time windows 

(Taş, 2021) and alternative delivery locations (Sadati et al., 2022) were also studied in the 

literature. The reader may refer to Erdelić and Carić (2019) and Küçükoğlu et al. (2021) 

for other EVRP variants and solution procedures developed to solve it. 

The literature generally has looked upon strategic-tactical decisions regarding EVs in 

terms of fixed costs of EV purchases, battery replacements and capacity loss of the 

batteries in the long run. Feng and Figliozzi (2013) took into account the purchase cost of 

EVs and battery replacements in a multi-period setting. However, the influence of the 

fleet composition on the routes was not considered in their study. Goeke and Schneider 

(2015) also considered battery replacement cost in the objective function of their 

mathematical model. Nonetheless, no battery degradation mechanism was incorporated 

into the model. Schiffer et al. (2021) established integrated planning to achieve both 

strategic and operational decisions for EV fleets. Although they considered battery 

degradation in terms of capacity loss, their resulting routes were not affected by this 

degradation mechanism. Xu et al. (2021) devised an on-demand charging strategy by 

considering battery degradation during they decide on the fleet size of a carsharing service 

provider. Even if their consideration of battery degradation has effects on tactical and 

operational decisions, this study does not contain any routing perspective. Zhang et al. 

(2021) demonstrated that a significant decrease in the lifecycle cost of the electric bus 

fleet and an increase in the battery lifetime of buses is attainable if battery aging is 

considered during charging and discharging cycles. However, finding the routes of these 
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buses was not discussed in this study. Guo et al. (2022) considered the battery degradation 

in the context of location routing problem (LRP). Even if the LRP literature has well-

known problem instances, they did not test and benchmark their algorithm by using these 

instances. Furthermore, their problem instances do not include time window restrictions 

which are highly observed in the industrial applications and make harder to solve the 

EVRP. Moreover, they did not give any insight into changes in the routes. 

In the context of operational decisions, battery degradation has been mostly considered 

in deciding the charge schedule of the EVs. Sassi et al. (2014) set bounds to the energy 

level in the battery during the routing of the EVs based on the assumption that batteries 

degrade faster at the extreme state of charge (SOC) values. Nevertheless, they neither 

utilized a sophisticated degradation mechanism in their model nor analyzed how much 

the resulting routes are sensitive to that bounds. This limit was included as a constraint in 

their model and has no effect on the objective function. Barco et al. (2017) followed a 

phase-by-phase structure and considered battery degradation in the rerouting of the 

charging stations. However, they assumed that routes are given as priori, and thus dealt 

with the assignment of routes to the vehicles at first. Then, they considered the battery 

degradation cost for determining the charge schedules. Rohrbeck et al. (2018) included 

the option of replacing the aged battery in their multi-period model for locating the 

charging stations. Nonetheless, they did not consider the routing decisions. Pelletier et al. 

(2018) formulated a detailed battery degradation cost structure and integrated it into their 

mathematical model for the charge scheduling of the electric freight vehicles (EFVs). 

However, they utilized a set of fixed routes, which are known in advance, as an input 

parameter. Hence, they did not observe the changes in the routes as a result of battery 

degradation cost and were only concerned to find the charge schedules of the EFVs. Wang 

et al. (2020) considered battery degradation in terms of capacity loss while determining 

the schedules of electric bus fleets. Besides the fact that they utilized a sequential 

approach, nevertheless, they also do not make any routing decisions. Zang et al. (2022) 

designed a column generation algorithm to solve the EVRPTW with nonlinear battery 

degradation costs. However, their algorithm is limited to solving only small-size 

instances, and they did not propose a solution methodology to solve large-size instances. 

Furthermore, they took the battery unit price much higher than the one in real life. 

Moreover, they found solutions without respecting the minimum number of vehicles of 

the problem instances. Finally, they compared cost savings within the results of their three 
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proposed mathematical models without considering the distance minimum routes 

available in the literature. In conclusion, the existing studies remain limited to observing 

the relationship between changes in the routes and recharging frequencies when battery 

degradation is considered. 
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3. BATTERY DEGRADATION 

 

 

 

Battery is a power source that transforms stored chemical energy into electrical energy 

through some chemical reactions. Furthermore, a rechargeable battery is a type of battery 

that can be reused many times through discharge and recharge cycles. They have a vast 

area of usage from smartphones to automobiles. In today’s world, a huge amount of 

investment is made to improve battery technology. In this study, we consider EVs 

equipped with lithium-ion battery packs, which we will refer to as battery throughout the 

thesis. 

Vehicle batteries are consumer goods whose performance decreases as they age like all 

rechargeable batteries. They provide a limited useful economic life of about 2000 cycles, 

which is expected to double in the near future (Pelletier et al, 2016). Cycle and calendar 

aging are two main concepts to explain battery degradation. The former represents the 

deterioration of the battery during its discharge and recharge cycles, whereas the latter 

corresponds to the deterioration when the battery is not utilized, i.e. while being stored 

(Pelletier et al., 2017). 

Cycle aging is subject to many factors such as temperature, depth of discharge (DOD) 

and recharging/discharging rates (Pelletier et al., 2017). DOD refers to the ratio of 

recharged/discharged amount of energy divided by the battery capacity. On the other 

hand, calendar aging mainly depends on the temperature of the environment where the 

battery is stored, time for storage and stored SOC level when the battery is not operated 

(Barré et al., 2013). SOC corresponds to the amount of charge that the battery currently 

has divided by its capacity. 

Barré et al. (2013) and Pelletier et al. (2017) examined a wide range of studies in which 

battery degradation is modeled. Among them, we focus on the discrete model devised by 
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Han et al. (2014), which can be easily implemented within the mathematical formulation 

of the routing problem. According to this study, battery manufacturers specify the life 

span of their batteries as the achievable cycle count (ACC) for different DOD values 

where the battery is discharged from fully charged. ACC-DOD graph illustrated in Figure 

3.1 shows that the battery life shortens as the amount of energy discharged increases.  

 

Figure 3.1. ACC-DOD Graph for a Lithium-Ion Battery (Han et al., 2014) 

The battery degradation also depends on the initial SOC level in the battery before 

discharging. Han et al. (2014) distributed the battery price into each unit of energy 

charged or discharged by considering the initial SOC level of the battery before charging 

or discharging in their formulation and refer this to as unit wear cost. This formulation 

can also be extended such that the wear cost function is obtained for a finite number of 

equal-length SOC intervals as in Equation (3.1). Let 𝐷 = {1, … , 𝑛𝑑} denote the set of 

SOC intervals in which each interval 𝑑 ∈ 𝐷 has a lower and upper SOC bounds of 𝐿𝐵𝑑 

and 𝑈𝐵𝑑, respectively. Each SOC interval has the same length of 𝐿 = 𝐿𝐵𝑑
− 𝑈𝐵𝑑 in 

percentages. The wear cost 𝑊(𝐿𝐵𝑑) is incurred per kWh charged or discharged within 

the interval [𝐿𝐵𝑑, 𝑈𝐵𝑑]. The energy amount within each SOC interval in terms of kWh 

is represented by 𝛥𝑞. 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑃𝑟𝑖𝑐𝑒 = 2. 𝐴𝐶𝐶(𝐷𝑂𝐷) ∑ 𝑊(𝐿𝐵𝑑)𝛥𝑞
𝑑∈𝐷

𝐿𝐵𝑑≥1−𝐷𝑂𝐷

 𝐷𝑂𝐷 ∈ {𝐿, 2𝐿, … ,1.0} (3.1) 

For example, if we utilize 25% DOD intervals, i.e. 𝐿 = 0.25, then we form the set of 

equations for 4 discrete intervals as shown in Equation set (3.2). In this equation set, 𝛥𝑞 
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corresponds to an energy amount equal to 25% of the battery capacity. By applying the 

function illustrated in Figure 3.1, the 𝐴𝐶𝐶 values are found as 2089, 1204, 872 and 694 

for 25%, 50%, 75% and 100% 𝐷𝑂𝐷 values, respectively. Battery price can be calculated 

by multiplying the battery capacity with a unit cost of $150/kWh (see Nykvist et al., 

2019). In this way, battery wear cost for each SOC interval, i.e. 𝑊(𝐿𝐵𝑑), can be 

determined. 

𝑊(0.75) =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑃𝑟𝑖𝑐𝑒

𝐴𝐶𝐶(0.25). 2. 𝛥𝑞
 

𝑊(0.50) + 𝑊(0.75) =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑃𝑟𝑖𝑐𝑒

𝐴𝐶𝐶(0.50). 2. 𝛥𝑞
 

𝑊(0.25) + 𝑊(0.50) + 𝑊(0.75) =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑃𝑟𝑖𝑐𝑒

𝐴𝐶𝐶(0.75). 2. 𝛥𝑞
 

𝑊(0.00) + 𝑊(0.25) + 𝑊(0.50) + 𝑊(0.75) =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑃𝑟𝑖𝑐𝑒

𝐴𝐶𝐶(1.00). 2. 𝛥𝑞
 

(3.2) 

Since the 𝐴𝐶𝐶(𝐷𝑂𝐷) function decreases with DOD, the wear cost function is increasing 

when the open form of Equation (3.1) is considered. This means that operating a battery 

in higher SOCs is more harmful to its state of health (SOH). For instance, consider two 

EVs EV1 and EV2 such that their batteries are currently at 40% and 20% SOC levels, 

respectively. Suppose that a journey that requires 20% DOD must be undertaken by one 

of them. Both EVs can feasibly complete the journey. Figure 3.2 summarizes the example 

in which changes in the SOC of the EVs are represented with solid lines whereas dashed 

lines show the battery wear costs (WC) formed resulting from this trip. If EV1 is used, 

then its SOC will reduce to 20% at the end of its journey. Otherwise, EV2 is used, and its 

battery will be empty at the end of its journey. On the other hand, the wear cost  𝑊(. ) is 

an increasing function of the initial SOC level. If the unit costs found by Equation set 

(3.2) are considered, EV2 will incur 8.8% less wear cost than that of EV1 even though 

the same amount of energy is consumed. 

EVs are expected to return to the depot with empty or near-empty batteries with the 

increasing wear cost structure. Hence, this cost structure also alleviates the effect of 

calendar aging since storing the battery with higher SOC values is more detrimental to its 

SOH.  
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Figure 3.2. Example of change in SOC levels and battery wear costs of two EVs that 

incurred the same DOD 

Note that the battery wear cost function might not always be monotonically increasing, 

and other general formulations may be used to represent it. However, we assume a 

monotonically increasing battery wear cost with respect to the initial SOC value to benefit 

from this characteristic in formulating the mathematical models of the routing problems 

that we address.  
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4. THE ELECTRIC TRAVELING SALESMAN PROBLEM WITH 

TIME WINDOWS BY CONSIDERING BATTERY 

DEGRADATION 

 

 

 

The electric traveling salesman problem (ETSP) is an extension of the TSP where an EV 

is employed to perform logistics operations instead of an ICEV. Roberti and Wen (2016) 

introduced the ETSPTW, provided its mathematical model and proposed a VNS 

algorithm to solve it. In this chapter, we describe the ETSPTW-BD and provide the 

mathematical model of the problem. 

 Problem Description 

We address the ETSPTW by following the modeling convention and notation in 

Schneider et al. (2014) and Roberti and Wen (2016) for ease of understanding. The 

ETSPTW deals with determining the minimum cost tour of an EV that serves all 

customers by respecting their time windows. The EV can recharge its battery at any 

charging station en route and with any amount of energy. A single recharging visit is 

allowed between two consecutive customers which is a more realistic approach when the 

industrial practice is considered. Without loss of generality, we assume that the battery of 

the EV is utilized between its 10% and 90% of its capacity and the recharging time is 

linearly proportional to the amount of energy transferred. In addition, we take into account 

the cost associated with the degradation of the battery. Battery degradation is not a static 

measure and varies according to the SOC and DOD values as explained in Chapter 3. In 

this chapter, we adopt the modeling approach of Pelletier et al. (2018) who devised 

constraints and parameters for several distinct wear cost functions to incorporate the effect 

of battery degradation on the charge schedule of EVs. 



  13 

 

Figure 4.1 depicts an example that illustrates how an optimal tour can change when the 

battery degradation cost is taken into account. The example is based on an instance that 

we utilized in our experimental study (namely, ‘c206c5-s4’) and involves five customers 

and four charging stations. The depot, customers and charging stations are represented 

with a triangle, circles, and charger icons, respectively. Since the depot is also a charging 

station, we place a charger icon next to the depot to avoid any confusion. The percentage 

values along the tour indicate the battery SOC when the EV departs from the depot at the 

beginning of its trip or from a station after having recharged, and when it arrives at a 

customer, station, or the depot at the end of its trip. Figure 4.1(a) shows the optimal 

solution for the distance (energy cost) minimization objective where the customers are 

visited in the sequence of 1−2−3−4−5 whereas Figure 4.1(b) illustrates the optimal 

sequence of 1−2−4−3−5 when the objective function minimizes the total cost of energy 

and battery degradation. We show how the vehicle routes and station visits change in the 

presence of battery degradation: the EV is recharged three times in Figure 4.1(a) while 

the number of recharges is four in Figure 4.1(b), and a reduction of 4.6% in the energy 

plus battery degradation cost is achieved. 

 

(a) Optimal tour without considering wear cost (Total Cost=1006.4) 

 

(b) Optimal tour with considering wear cost (Total Cost=960.0) 

Figure 4.1. An illustrative example 
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 Mathematical Model 

The notation of the problem is as follows: Let 𝑉 = {1, … , 𝑛} be the set of customers and 

𝐹 denote the set of charging stations. Nodes 0 and 𝑛 + 1 represent the depot where each 

vehicle departs from node 0 and returns to node 𝑛 + 1 at the end of its tour. Then, we 

define 𝑉0 = 𝑉 ∪ {0}, 𝑉𝑛+1 = 𝑉 ∪ {𝑛 + 1} and 𝑉0,𝑛+1 = 𝑉 ∪ {0, 𝑛 + 1}. Since the vehicle 

can visit a charging station more than once, we create an augmented set of stations 𝐹′ 

which includes copies of charging stations in 𝐹 and define 𝐹0
′ = 𝐹′ ∪ {0}, 𝑉′ = 𝑉 ∪ 𝐹′, 

𝑉0
′ = 𝑉′ ∪ {0}, 𝑉𝑛+1

′ = 𝑉′ ∪ {𝑛 + 1} and 𝑉0,𝑛+1
′ = 𝑉0

′ ∪ {𝑛 + 1}. Now, the problem can 

be defined on a complete directed graph 𝐺 = (𝑉0,𝑛+1
′ , 𝐴) in which 𝐴 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈

𝑉0,𝑛+1
′ , 𝑖 ≠ 𝑗} is the set of arcs. 

Each customer 𝑖 ∈ 𝑉 is associated with a service time of 𝑠𝑖 and service time window 

[𝑒𝑖, 𝑙𝑖]. The distance (travel time) from node i to node j is denoted by 𝑑𝑖𝑗 (𝑡𝑖𝑗). 𝑄 is the 

operational capacity of the battery while 𝑔 and ℎ represent battery recharge and discharge 

rates per unit of time, respectively. The maximum tour duration is denoted by 𝑙0. The unit 

energy cost is denoted by 𝑐. 

The decision variables 𝜏𝑖 and 𝑦𝑖 keep track of the service starting time and battery SOC 

upon arrival at a node 𝑖 ∈ 𝑉0,𝑛+1
′ , respectively. The decision variables 𝑌𝑖 denotes the 

battery SOC on departure from station 𝑖 ∈ 𝐹0
′. If the arc (𝑖, 𝑗) traversed, the decision 

variable 𝑥𝑖𝑗 takes value 1. To represent the battery degradation in our model, we divided 

related decision variables and the constraints into two as ones correspond to overnight 

charging at the depot and ones correspond to recharging at stations. Thus, the decision 

variables 𝑠𝑜𝑐𝑖
𝑑and 𝑠𝑜𝑐0

𝑑 keep track of how much the portion of SOC interval 𝑑 ∈ 𝐷 is 

utilized during charging at a station and the depot, respectively. The binary decision 

variables 𝑢𝑖
𝑑 and 𝑢0

𝑑 take value of 1 when the SOC interval 𝑑 ∈ 𝐷 is used to charge the 

vehicle at a charging station and the depot, respectively. Finally, since our wear cost 

function is non-decreasing, the EV returns to the depot with all its operational battery 

capacity consumed if it has been recharged at least once en route. 

The notation regarding the mathematical model of the ETSPTW-BD is shown in Table 

4.1. In what follows, the 0-1 mixed integer linear programming model of the problem is 

formulated. 
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Table 4.1. Mathematical notation of ETSPTW-BD 

Sets  

𝑉 Set of customers 

𝑉0 Set of customers and departure depot 

𝑉𝑛+1 Set of customers and arrival depot 

𝑉0,𝑛+1 Set of customers, departure and arrival depots 

𝐹 Set of charging stations 

𝐷 Set of SOC intervals 

𝐹′ Set of charging stations with their copies 

𝐹0
′ Set of charging stations with their copies and departure depot 

𝑉′ Set of customers and charging stations with their copies 

𝑉0
′ Set of customers, departure depot and charging stations with their copies 

𝑉𝑛+1
′  Set of customers, arrival depot and charging stations with their copies 

𝑉0,𝑛+1
′  Set of customers, depots and charging stations with their copies 

Parameters 

𝑑𝑖𝑗 Distance between node 𝑖 and 𝑗 

𝑡𝑖𝑗 Travel time from node 𝑖 to node 𝑗 

𝑠𝑖 Service time of customer 𝑖 

[𝑒𝑖, 𝑙𝑖] Time window of customer 𝑖 

𝑙0 Maximum tour duration 

𝑄 Operational battery capacity  

𝑔 Recharging rate 

ℎ Total energy consumed to traverse arc (𝑖, 𝑗) 

𝑐 Unit energy cost 

𝑊𝑑 Wear cost per unit energy charged or discharged within the SOC interval 𝑑 

𝐿 Length of SOC intervals 

𝑈𝐵𝑑 Upper SOC bound of interval 𝑑 

𝐿𝐵𝑑 Lower SOC bound of interval 𝑑 

Decision variables 

𝜏𝑖 Service starting time at customer  𝑖 ∈ 𝑉0,𝑛+1
′  

𝑦𝑖 Battery SOC of the EV upon arrival at node  𝑖 ∈ 𝑉0,𝑛+1
′  

𝑌𝑖 Battery SOC of the EV during the departure from node 𝑖 ∈ 𝐹0
′ 

𝑥𝑖𝑗  1 if the EV traverses arc (𝑖, 𝑗); 0 othervise 

𝑠𝑜𝑐𝑖
𝑑 Portion of SOC interval d ∈ D utilized during the recharging at station 𝑖 ∈ 𝐹′ 

𝑠𝑜𝑐0
𝑑 Portion of SOC interval d ∈ D utilized during the overnight recharging at the depot 

𝑢𝑖
𝑑 1 if interval d ∈ D utilized during the recharging at station 𝑖 ∈ 𝐹′; 0 otherwise 

𝑢0
𝑑 1 if interval d ∈ D utilized during the overnight recharging at the depot; 0 otherwise 

 

Min 𝑐 [∑(𝑌𝑖 −

𝑖∈𝐹′

𝑦𝑖) + (𝑌0 − 𝑦𝑛+1)] + 𝑄 ∑ [𝑊𝑑𝑠𝑜𝑐0
𝑑 + ∑ 𝑊𝑑𝑠𝑜𝑐𝑖

𝑑

𝑖∈𝐹′

]

𝑑∈𝐷

 

 

(4. 1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
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∑ 𝑥𝑖𝑗

𝑗∈𝑉𝑛+1
′

𝑖≠𝑗

= 1 ∀𝑖 ∈ 𝑉0 (4. 2) 

∑ 𝑥𝑖𝑗

𝑗∈𝑉𝑛+1

𝑖≠𝑗

≤ 1 ∀𝑖 ∈ 𝐹′ (4. 3) 

∑ 𝑥𝑖𝑗 −

𝑖∈𝑉0
′

𝑖≠𝑗

∑ 𝑥𝑗𝑖

𝑖∈𝑉𝑛+1
′

𝑖≠𝑗

= 0 ∀𝑗 ∈ 𝑉′ (4. 4) 

𝜏𝑖 + (𝑡𝑖𝑗 + 𝑠𝑖)𝑥𝑖𝑗 − 𝑙0(1 − 𝑥𝑖𝑗) ≤ 𝜏𝑗 ∀𝑖 ∈ 𝑉0, ∀𝑗 ∈ 𝑉𝑛+1
′ , 𝑖 ≠ 𝑗 (4. 5) 

𝜏𝑖 + 𝑡𝑖𝑗𝑥𝑖𝑗 + 𝑔(𝑌𝑖 − 𝑦𝑖) − (𝑙0 + 𝑔. 𝑄) (1 − 𝑥𝑖𝑗) ≤ 𝜏𝑗 ∀𝑖 ∈ 𝐹′, ∀𝑗 ∈ 𝑉𝑛+1, 𝑖 ≠ 𝑗 (4. 6) 

𝑒𝑗 ≤ 𝜏𝑗 ≤ 𝑙𝑗  ∀𝑗 ∈ 𝑉0,𝑛+1
′  (4. 7) 

0 ≤ 𝑦𝑗 ≤ 𝑦𝑖 − (ℎ ∙ 𝑑𝑖𝑗)𝑥𝑖𝑗 + 𝑄(1 − 𝑥𝑖𝑗) ∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝑉𝑛+1
′ , 𝑖 ≠ 𝑗 (4. 8) 

0 ≤ 𝑦𝑗 ≤ 𝑌𝑖 − (ℎ ∙ 𝑑𝑖𝑗)𝑥𝑖𝑗  + 𝑄(1 − 𝑥𝑖𝑗) ∀𝑖 ∈ 𝐹0
′, ∀𝑗 ∈ 𝑉𝑛+1 , 𝑖 ≠ 𝑗 (4. 9) 

𝑦𝑖 ≤ 𝑌𝑖 ≤ 𝑄 ∀𝑖 ∈ 𝐹0
′ (4. 10) 

𝑄 ∑ 𝑠𝑜𝑐𝑖
𝑑

𝑑∈𝐷

= 𝑌𝑖 − 𝑦𝑖  ∀𝑖 ∈ 𝐹′ (4. 11) 

𝑄 ∑ 𝑠𝑜𝑐0
𝑑

𝑑∈𝐷

= 𝑌0 − 𝑦𝑛+1  (4. 12) 

0 ≤ 𝑠𝑜𝑐𝑖
𝑑 ≤ 𝐿. 𝑢𝑖

𝑑 ∀𝑖 ∈ 𝐹′, ∀𝑑 ∈ 𝐷  (4. 13) 

0 ≤ 𝑠𝑜𝑐0
𝑑 ≤ 𝐿. 𝑢0

𝑑 ∀𝑑 ∈ 𝐷 (4. 14) 

𝑄. 𝑠𝑜𝑐𝑖
𝑑 ≤ 𝑄. 𝑈𝐵𝑑 −  𝑦𝑖 + 𝑄(1 − 𝑢𝑖

𝑑) ∀𝑖 ∈ 𝐹′, ∀𝑑 ∈ 𝐷 (4. 15) 

𝑄. 𝑠𝑜𝑐0
𝑑 ≤ 𝑄. 𝑈𝐵𝑑 −  𝑦𝑛+1 + 𝑄(1 − 𝑢0

𝑑) ∀𝑑 ∈ 𝐷 (4. 16) 

𝑥𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝑉0
′, ∀𝑗 ∈ 𝑉𝑛+1

′ , 𝑖 ≠ 𝑗 (4. 17) 

𝑢𝑖
𝑑 ∈ {0,1} ∀𝑖 ∈ 𝐹′, ∀𝑑 ∈ 𝐷 (4. 18) 
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𝑢0
𝑑 ∈ {0,1} ∀𝑑 ∈ 𝐷 (4. 19) 

The objective function (4.1) minimizes the total cost of energy consumption and battery 

degradation. The first two terms of the objective function correspond to total energy 

consumption from recharging at the stations and the depot, respectively. The battery 

degradation cost resulting from charging activities at the depot and stations are 

represented with the following two terms. Constraints (4.2) guarantee that the tour starts 

from the depot and each customer is visited exactly once. Constraints (4.3) ensure that 

each station can be visited at most once. The flow conservation constraints are represented 

by constraints (4.4). Constraints (4.5) and (4.6) set service start times at customers and 

stations, respectively, and constraints (4.7) respect the service time windows of the 

customers. Constraints (4.8) and (4.9) keep track of the battery SOC upon arrival at a 

customer and departure from a station/depot, respectively, whereas constraints (4.10) set 

the bounds for the SOC. Constraints (4.11) and (4.12) distribute the total amount of 

energy recharged at the stations and the depot overnight to related SOC intervals, 

respectively. Constraints (4.13) and (4.14) set bounds to the utilization of SOC intervals 

for the recharging at the stations and the depot, respectively. Constraints (4.15) and (4.16) 

make sure that the SOC interval takes a positive value if the battery SOC upon arrival at 

the station/depot is less than the upper bound of the corresponding SOC interval. Since 

we employ a non-decreasing wear cost function, the model will use lower SOC intervals 

due to the minimization objective function. Finally, constraints (4.17)–(4.19) define the 

binary decision variables. Note that regardless of the common assumption in the literature, 

we did not set the EV’s initial battery level during departure from the depot to full capacity 

since the high level of battery SOCs result in more battery degradation when a non-

decreasing wear cost function is considered. 
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5. SOLUTION METHODOLOGY 

 

 

 

We develop an algorithm, MatHeur, which is a VNS-based matheuristic enhanced with a 

post-optimization method to solve the ETSPTW-BD. 

VNS is a metaheuristic method utilized to solve combinatorial optimization problems. 

The method was developed by Mladenović and Hansen (1997), and it basically consists 

of two phases which are the local search and perturbation (shaking). The local optimum 

solutions are obtained with the application of local search while the same local optimum 

solution is avoided by implementing the shaking where neighborhood sizes are 

systematically enlarged in both phases (Hansen et al., 2010). Since then, various forms of 

VNS algorithms have been employed to solve different TSP variants such as TSPTW  (da 

Silva and Urrutia, 2010; Mladenović et al., 2012), ETSPTW (Roberti and Wen, 2016) and 

HEVTSPTW (Doppstadt et al., 2020). The method has also been successfully 

implemented to solve the VRP and its extensions, e.g. EVRPTW (Schneider et al., 2014), 

VRP with intermediate stops (Schneider et al., 2015), electric LRP (Hof et al., 2017; 

Almouhanna et al. 2020), multi-depot GVRP (Sadati and Çatay, 2021) and EVRP (Zhu 

et al., 2020), EVRPTW with time-dependent energy prices (Lin et al., 2021), time-

dependent EVRPTW (Lu et al., 2020; Wang et al., 2020) and EVRP with flexible 

deliveries (Sadati et al., 2022). 

The MatHeur starts with the construction of a TSP tour with a pseudo-random insertion 

algorithm. Then, this solution 𝒙 is set to the best TSPTW tour 𝒙∗ and shaking is applied 

to 𝒙∗. Next, the cyclic local search is implemented. If the solution obtained after the local 

search phase produces less cost than 𝒙∗, then 𝒙 is assigned to 𝒙∗, and the counters for 

shaking operators 𝑘 and non-improving iterations 𝑛𝑜𝑛𝐼𝑚𝑝𝐼𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 are reset to 1 and 

0, respectively. Also, an ETSPTW-BD solution 𝒚 is obtained from the local optimum 𝒙∗ 
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by solving the mathematical model of the fixed-tour vehicle-charging problem (FTVCP) 

by considering battery degradation; and if the solution 𝒚 is feasible and has a better 

objective function value than the previous ones, 𝒚 is set to 𝒚∗. Otherwise, i.e. if 𝒙∗ is not 

improved, 𝑘 and 𝑛𝑜𝑛𝐼𝑚𝑝𝐼𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 are increased by one, and the shaking is performed 

on the solution 𝒙∗ with a larger neighborhood except the case when 𝑘 reaches its 

maximum and reset to 1. This procedure is repeated until the limits for the number of 

iterations (#𝐼𝑡𝑒𝑟) and of non-improving iterations (#𝑁𝑜𝑛𝐼𝑚𝑝𝐼𝑡𝑒𝑟) are exceeded. We 

propose a mechanism called Slack which ensures sufficient time for recharges after 

customer visits in the construction and local search phases. We also utilize a parameter 

named CL Size to restrict the search space during the phases of construction and local 

search. The definitions of Slack and CL Size are provided in the following section. We 

elaborate the phases of the MatHeur in the following subsections. The pseudocode of the 

algorithm is provided in Algorithm 5.1 

Algorithm 5.1: MatHeur 

 𝒚∗ ← 𝑛𝑢𝑙𝑙 // Best ETSPTW-BD solution  

𝒚 ← 𝑛𝑢𝑙𝑙 // Cuurent ETSPTW-BD solution 

 𝑖𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 ← 0, n𝑜𝑛𝐼𝑚𝑝𝐼𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 ← 0 

 Set of shaking neighborhood structures 𝑆𝑘 {𝑘 = 1, … , 𝑘𝑚𝑎𝑥}  

 𝑘 ← 1 

1 

2 

𝒙 ← Construct the initial tour 

𝒙∗ ← 𝒙 // Best TSPTW solution 

3 while (𝑖𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 < #𝐼𝑡𝑒𝑟)&(𝑛𝑜𝑛𝐼𝑚𝑝𝐼𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 < #𝑁𝑜𝑛𝐼𝑚𝑝𝐼𝑡𝑒𝑟) 

4 Select a random solution 𝒙 from the kth neighborhood 𝑆𝑘(𝒙∗) of 𝒙∗ // Shaking 

5 𝒊𝒕𝒆𝒓𝑪𝒐𝒖𝒏𝒕 + + 

6 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ(𝒙, 𝒙∗) 

7 if (𝑐𝑜𝑠𝑡(𝒙) < 𝑐𝑜𝑠𝑡(𝒙∗)) 

8 𝒙∗ ← 𝒙 

9 𝑘 ← 1 

10 𝑛𝑜𝑛𝐼𝑚𝑝𝐼𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 ← 0 

11 𝒚 ← 𝐹𝑇𝑉𝐶𝑃(𝒙∗) // Create an ETSPTW-BD solution 

12 else if (𝑘 = 𝑘𝑚𝑎𝑥) 

13 𝑘 ← 1 

14 𝑛𝑜𝑛𝐼𝑚𝑝𝐼𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 + + 

15 else  

16 𝑘 + + 

17 𝑛𝑜𝑛𝐼𝑚𝑝𝐼𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 + + 

18 end if 

19 if (𝑐𝑜𝑠𝑡(𝒚) < 𝑐𝑜𝑠𝑡(𝒚∗)) 

20 𝒚∗ ← 𝒚 

21 end if 

22 end while 

23 return 𝒚∗ 
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 Initial Tour Construction 

The initial tour is obtained using an insertion heuristic. First, the farthest customer from 

the depot is inserted into the tour. Then, unassigned customers are sorted in a list in 

ascending order of their late arrival times. One of the first four customers in the list is 

randomly selected. Next, the cheapest insertion is performed by calculating the insertion 

costs of the selected customer to all possible positions in the tour. If an insertion results 

in time-window violations for the inserted and its successor nodes, a penalty cost is added 

to the insertion cost by multiplying a sufficiently large number with the sum of each 

violated time unit. This procedure is repeated until no customer remains unassigned, and 

a customer sequence is obtained. 

Since the EVs have limited driving ranges, recharges take place along the tour. However, 

recharges take a significant amount of time when compared to the refueling time of 

ICEVs. Hence, we design a new mechanism to be used in the construction and local 

search phases of MatHeur and refer it to as Slack. We propose reserving a certain  amount 

of time with respect to the maximum tour duration for each customer during determining 

the sequence by considering possible recharges after customer visits. Thus, a customer is 

visited before its late arrival time by also respecting this period. For example, let the EV 

must serve all the customers between 08:00-18:00 which makes the horizon of the day 10 

hours. If a customer must be served before 12:00 and Slack is 1%, 0.1 hours, i.e. 6 

minutes, is reduced from the customer’s service time window. In this way, we ensure the 

customer is visited before 11:54 by considering potential recharging visits that might take 

place after this trip. Thus, we attempt to provide a sufficient amount of time for recharging 

between consecutive customer visits and to arrive at the next customers on time by 

departing from the customers a little bit earlier than required. We show the benefit of the 

proposed mechanism in Section 6.2. 

We also adapt a parameter, called candidate list size (CL Size), to MatHeur which limits 

the number of candidate positions that a customer can be located in the tour during the 

construction and local search phases. A position for a customer node is only evaluated if 

its total distance to the predecessor and successor nodes in the new position is below some 

certain threshold. Basically, the solution space becomes narrower, and the computational 

effort is only made in the promising regions in the neighborhood. For instance, let this 

parameter be 50, then the evaluation is made only if the insertion cost of a customer is 
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below the insertion cost of the 50th best customer for that position. If this parameter is 1, 

then only the best insertion can be applied, and no restrictions are available with the 

parameter value of 𝑛 which is the number of customers in the problem instance. We also 

demonstrate the impact of this parameter in Section 6.2. 

 Shaking 

A random tour is obtained using shaking operators during the shaking phase of the 

MatHeur. The only shaking neighborhood operator in the MatHeur is λ-Move which 

moves randomly selected λ customers to random positions in the tour without seeking 

time windows feasibility. We also considered λ-Exchange, which swaps the position of 

randomly selected λ customer pairs, as a shaking neighborhood. However, our 

preliminary results showed that λ-Exchange increases the runtime of the algorithm 

significantly without providing much benefit in the solution quality. 

Algorithm 5.2: 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ(𝒙, 𝒙∗) 

 Set of LS neighborhood structures 𝐼𝑚 (𝑚 = 1, … , 𝑚𝑚𝑎𝑥)  

 𝑚 ← 1 

1 𝒙′ ← 𝒙 // Incumbent solution 

2 while (𝑚 ≤ 𝑚𝑚𝑎𝑥) 

3 Apply 𝐼𝑚 on 𝒙 

4 if (𝑐𝑜𝑠𝑡(𝒙) < 𝑐𝑜𝑠𝑡(𝒙∗)) 

5 break 

6 else if (𝑐𝑜𝑠𝑡(𝒙) < 𝑐𝑜𝑠𝑡(𝒙′))  

7 𝒙′ ← 𝒙 

8 𝑚 ← 1  

9 else 

10 𝑚 + +  

11 end if 

12 end while 

 Local Search 

The random solution obtained after the shaking phase is improved by applying local 

search (LS). The LS phase of MatHeur has the following neighborhood structures: Move, 

Exchange and 2-Opt. A customer is selected and located to a new position in the tour with 

the Move operator. The positions of two customers are replaced in the Exchange operator. 

2- Opt selects two arcs in the tour and reverses the order of customers that are positioned 

between these two arcs. We apply the LS in a cyclic manner, i.e. the algorithm returns to 

the first LS operator (Move), if the solution improves with one of the LS operators. The 
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first-improvement scheme is employed in all operators. Note that evaluations during the 

LS are only made for the options that satisfy the time window compatibility of the 

customer nodes. As in the construction phase, the penalty cost for time windows 

violations is also considered during the evaluations. The LS is expected to generate good 

feasible solutions for inserting the charge stations without requiring any repair mechanism 

since we incur high penalty costs and implement Slack. The pseudocode of the LS is given 

in Algorithm 5.2. 

 Fixed-Tour Vehicle-Charging Problem (FTVCP) 

We make recharging-related decisions in the tour by employing a post-optimization 

technique. The model described in Section 4.2 can be utilized by fixing the 𝑥𝑖𝑗 variables 

according to the fixed sequence of customers obtained after the LS phase. However, this 

approach is computationally burdensome, and a more efficient method, the fixed-route 

vehicle-charging problem (FRVCP), was presented in the literature. This problem is 

introduced by Montoya et al. (2017) based on Suzuki (2014), and basically decides the 

stations to be visited and energy amounts at customer and station nodes on a fixed 

sequence of customers. Hence, we extend the mathematical model of the FRVCP by 

considering battery degradation and solve it on CPLEX for each local optimum solution 

generated by the LS phase of MatHeur. Since our problem is an extension of the TSP, we 

refer to this problem as the fixed-tour vehicle-charging problem (FTVCP). 

We followed the notation used in Keskin and Çatay (2018) originated from Bruglieri et 

al. (2016), and the formulation has some certain notation differences with respect to the 

model presented in Section 4.2. Let �̅� = { 𝑐1, 𝑐2, … , 𝑐𝑛} be the ordered set of customers 

visited by the EV where 𝑐𝑖 corresponds to the customer in the 𝑖𝑡ℎ position of the fixed 

tour. We define �̅�0 = {0} ∪  �̅� and �̅�𝑛+1 = �̅� ∪ {n + 1} so that the sequence has the 

departure and arrival depots, respectively. If station 𝑗 ∈ 𝐹 is visited after the departure 

from customer 𝑐𝑖 on the tour, 𝑥𝑖𝑗 takes the value of 1. The decision variable 𝜃𝑖,𝑖+1 keeps 

track of the amount of energy transferred if a recharging visit occurs between customers 

𝑐𝑖 and  𝑐𝑖+1 on the tour. The binary decision variable 𝑢𝑖,𝑖+1
𝑑  takes the value of 1 if the EV 

is recharged during its trip from customer 𝑐𝑖 to customer 𝑐𝑖+1, and the decision variables 

𝜃𝑖,𝑖+1 and 𝑠𝑜𝑐𝑖,𝑖+1
𝑑  keep track of the amount of energy transferred and how much portion 

of SOC interval 𝑑 ∈ 𝐷 is utilized during this recharging visit, respectively.  
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𝑀𝑖𝑛 ∑ 𝑐. 𝜃𝑖,𝑖+1

𝑖∈�̅�0

+ 𝑐(𝑦0 − 𝑦𝑛+1) + 𝑄 ∑ [𝑊𝑑𝑠𝑜𝑐0
𝑑 + ∑ 𝑊𝑑𝑠𝑜𝑐𝑖,𝑖+1

𝑑

𝑖∈�̅�0

]

𝑑∈𝐷

 (5. 1) 
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

∑ 𝑥𝑖𝑗

𝑗∈𝐹

≤ 1 
∀𝑖 ∈ �̅�0 (5. 2) 

𝜏𝑖 + 𝑠𝑖 + 𝑡𝑖,𝑖+1 (1 − ∑ 𝑥𝑖𝑗

𝑗∈𝐹

) + ∑(𝑡𝑖𝑗 + 𝑡𝑗,𝑖+1)𝑥𝑖𝑗

𝑗∈𝐹

+ 𝑔. 𝜃𝑖,𝑖+1 ≤ 𝜏𝑖+1 

∀𝑖 ∈ �̅�0 (5. 3) 

𝑒𝑖 ≤ 𝜏𝑖 ≤ 𝑙𝑖 ∀𝑖 ∈ �̅�𝑛+1 (5. 4) 

𝑦𝑖 − ℎ [𝑑𝑖,𝑖+1 (1 − ∑ 𝑥𝑖𝑗

𝑗∈𝐹

) + ∑(𝑑𝑖𝑗 + 𝑑𝑗,𝑖+1

𝑗∈𝐹

)𝑥𝑖𝑗] + 𝜃𝑖,𝑖+1

= 𝑦𝑖+1 

∀𝑖 ∈ �̅�0 (5. 5) 

𝑦𝑖 − ℎ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗

𝑗∈𝐹

≥ 0 ∀𝑖 ∈ �̅�0 (5. 6) 

𝜃𝑖,𝑖+1 ≤ 𝑄 ∑ 𝑥𝑖𝑗

𝑗∈𝐹

 ∀𝑖 ∈ �̅�0 (5. 7) 

𝜃𝑖,𝑖+1 ≤ 𝑄 − (𝑦𝑖 − ℎ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗

𝑗∈𝐹

) ∀𝑖 ∈ �̅�0 (5. 8) 

𝑄 ∑ 𝑠𝑜𝑐𝑖,𝑖+1
𝑑 = 𝜃𝑖,𝑖+1

𝑑∈𝐷

 ∀𝑖 ∈ �̅�0 (5. 9) 

𝑄 ∑ 𝑠𝑜𝑐0
𝑑 = 𝑦0 − 𝑦𝑛+1

𝑑∈𝐷

  (5. 10) 

0 ≤ 𝑠𝑜𝑐𝑖,𝑖+1
𝑑 ≤ 𝐿. 𝑢𝑖,𝑖+1

𝑑  ∀𝑖 ∈ �̅�0, ∀𝑑 ∈ 𝐷 (5. 11) 

0 ≤ 𝑠𝑜𝑐0
𝑑 ≤ 𝐿. 𝑢0

𝑑 ∀𝑑 ∈ 𝐷 (5. 12) 
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𝑄. 𝑠𝑜𝑐𝑖,𝑖+1
𝑑 ≤ 𝑄. 𝑈𝐵𝑑 − (𝑦𝑖 − ℎ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗

𝑗∈𝐹

) + 𝑄(1 − 𝑢𝑖,𝑖+1
𝑑 ) 

∀𝑖 ∈ �̅�0, ∀𝑑 ∈ 𝐷 (5. 13) 

𝑄. 𝑠𝑜𝑐0
𝑑 ≤ 𝑄. 𝑈𝐵𝑑 − 𝑦𝑛+1 + 𝑄(1 − 𝑢0

𝑑) ∀𝑑 ∈ 𝐷 (5. 14) 

𝑥𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ �̅�0, ∀𝑗 ∈ 𝐹 (5. 15) 

𝑢𝑖,𝑖+1
𝑑 ∈ {0,1} ∀𝑖 ∈ �̅�0, ∀𝑑 ∈ 𝐷 (5. 16) 

𝑢0
𝑑 ∈ {0,1} ∀𝑑 ∈ 𝐷 (5. 17) 

The objective function (5.1) minimizes the total cost of the tour where the first two terms 

represent the energy cost and the last two corresponds to the battery degradation cost. 

Constraints (5.2) guarantee that at most one recharging visit occurs between two 

consecutive customers. Time windows feasibility of customer and depot nodes are 

satisfied with constraints (5.3) and (5.4). Constraints (5.5) keep track of the battery SOC 

upon arrival at the customer and depot nodes. If a recharging visit takes place between 

two consecutive customers, constraints (5.6) ensure that the SOC when the EV departs 

from the preceding customer is sufficient to reach the charging station. If a charging 

station is visited between customers 𝑐𝑖 and 𝑐𝑖+1, then constraints (5.7) guarantee that the 

amount of energy transferred is positive and constraints (5.8) limit the amount with an 

upper bound. The total amount of energy transferred at charging stations and at the depot 

overnight are distributed to the SOC intervals by constraints (5.9) and (5.10), respectively. 

Constraints (5.11) and (5.12) set upper and lower bounds on SOC intervals for recharges 

at the station and depot, respectively. Constraints (5.13) and (5.14) ensure that the SOC 

intervals take positive values only when the battery SOC of the EV upon its arrival at the 

charging stations or depot is less than the upper bound of the related SOC interval. Binary 

decision variables are defined by constraints (5.15)-(5.17). 

We also apply the pre-processing procedures proposed by Keskin and Çatay (2018) and 

reduce the size of set 𝐹 without dangering not achieving the optimal solution. Hence, the 

number of decision variables decreases, and the computational time required to solve the 

problem shortens significantly. 
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6. EXPERIMENTAL STUDY 

 

 

 

This section first introduces the experimental setting. Then, we present the parameter 

tuning of MatHeur and validate its performance. Next, the effect of battery degradation 

on route and charge plans is demonstrated with computational studies. Finally, we provide 

sensitivity analyses regarding the problem parameters and a trade-off analysis with a 

multi-start version of MatHeur. We performed our experimental study on a Windows 10 

OS computer equipped with an Intel i7-8700 3.20 GHz CPU and 32 GB RAM. MatHeur 

and the models presented in Sections 4.2 and 5.4 were coded in Java, and the models were 

solved using CPLEX 12.9.0 in the default mode. 

 Experimental Setting 

To investigate the impact of the battery wear cost on the route and charging schedules, 

we conduct experimental tests using small- and large-size instances. Our small-size data 

includes a subset of small-size EVRPTW instances that were generated by Schneider et 

al. (2014) where a single EV is employed in the optimal or best-known distance minimum 

solutions in 13 instances. The details about this dataset are presented in the Section 7.2.1. 

We also benefit from the small-size ETSPTW instances that were generated by Roberti 

and Wen (2016) based on the TSPTW instances of Gendreau et al. (1998). These instances 

consist of 20 customers, and the time window widths are 120-, 140-, 160-, 180- and 200-

time units. There are 5 instances associated with each time-window width and two 

versions of each instance exist involving 5 and 10 charging stations. Hence, the dataset 

includes 5×5×2=50 small-size instances in total. 

Our large-size instances are based on the large-size ETSPTW instances that were 

generated by Roberti and Wen (2016) using the TSPTW instances of Ohlmann and 
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Thomas (2007). This dataset is mainly classified into two groups each involving 5 and 10 

charging stations. Then, each subgroup involves 15 instances involving 150-customers 

and 10 instances involving 200-customers. Hence, the dataset includes 2×(15+10)=50 

large-size instances in total. Time window widths in these instances vary from 120 to 160-

time units in 150-customer instances and from 120 to 140-time units in 200-customer 

instances. In the nomenclature of the instances generated by Roberti and Wen (2016), the 

numbers beside ‘n’, ‘w’ and ‘s’ represent the number of customers, time windows width 

and the number of charging stations, respectively, while the number after the dot shows 

the version of the data. 

The unit penalty cost applied for time windows violations found during the construction 

and local search phases is set to 100. We set 𝑛𝑑 = 4 and 𝐿 = 1/4 = 0.25 following the 

base case scenario of Pelletier et al. (2018). Hence, the upper and lower bounds of SOC 

intervals are 𝐿𝐵𝑑 = {0, 0.25, 0.5, 0.75} and 𝑈𝐵𝑑 = {0.25, 0.5, 0.75, 1}. They considered 

battery unit cost as $410/kWh and calculated battery wear cost for these four intervals as 

0.48, 0.52, 0.58 and $0.79/kWh, respectively. As we explained in Chapter 3, battery unit 

cost can be assumed as $150/kWh and so wear costs for these four intervals become 0.17, 

0.19, 0.21 and $0.29/kWh, respectively. What is more, both Schneider et al. (2014) and 

Roberti and Wen (2016) assumed that the EV travels one unit of distance in one unit of 

time by consuming one unit of energy. So, we set the unit energy cost 𝑐 = 1 to be able to 

compare our results with those reported in the literature. However, the average industrial 

electricity price was $0.0681/kWh in 2019 in the U.S (EIA, 2020). Thus, we adapted the 

wear costs calculated above to our problem by keeping the ratio between the unit energy 

cost parameter and the unit electricity price. So, our 𝑊𝑑 = {2.56, 2.78, 3.10, 4.22}. 

The distances provided in the Roberti and Wen (2016) dataset are rounded to integer 

values and do not satisfy the triangle property. In the original TSPTW data, the Euclidean 

distances were first rounded down to the nearest integer values. Then, some adjustments 

were made so that triangle inequality holds. However, this approach reduces distance 

measures once more time, does not guarantee the triangle inequality and results in 

overestimating the results. Fleming et al. (2013) demonstrated the negative effects of 

triangular inequality violations on the VRP. Furthermore, Roberti and Wen (2016) located 

four and nine charging stations in addition to the depot for each TSPTW instance. They 

calculated the distances between the customers and charging stations as the Euclidean 
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distance and rounded them to the nearest integer. Hence, the distance measures between 

customers and the distance measures between a customer and a charging station were not 

given in a consistent manner, and the triangle inequality still does not hold in their data. 

In addition, different tours might yield the same optimal or best-known objective function 

value (OFV) in the problem since the distance matrix consists of integer values. Hence, 

differentiating the optimal or best-known tour might not be possible since multiple 

solutions can have the same OFV, and this impairs our solution approach that employs 

good TSPTW tours to obtain solutions that take into account the wear cost. We provide 

examples of different ETSPTW tours having the same OFV in Table 6.1. The 

nomenclature of the problem instances is depicted under column ‘Instance’. ‘TD’ 

indicates the total distance covered in the optimal tours. The sequence of nodes visited is 

reported under column ‘Tour’. Node 0 is the depot and the charging station, nodes 1-20 

are customers and nodes 21-24 are the charging stations. We also observed that the 

number of different tours that yield the same OFV increases as the problem size grows. 

As a result, we decided to calculate the distances by using the Euclidean distance formula 

in two decimal places. Since we eliminate the overestimation, the total distance of the 

TSPTW tours is significantly increased. To be able to cover increased distances, we 

extend the length of planning horizon and late arrival time values of each customer node 

in the datasets by a certain rate. Since our algorithm finds the best-known solutions 

(BKSs) in the TSPTW setting, which we will demonstrate it in the following section, we 

find the rates for increasing the late arrival times by proportioning the BKSs obtained 

with the integer and two-decimal distance measures. We provide the rates in Appendix 

A. Finally, we utilized the same coordinates for charging station locations and the same 

parameter values of 𝑔, ℎ and 𝑄 as presented in Roberti and Wen (2016) without altering 

them. We only assume as 𝑄 is the operational battery capacity. 

Table 6.1. Examples of tours having the same total distance 

Instance TD Tour 

n20w120s5.1 271 
0,6,16,9,19,17,18,12,10,11,5,1,15,2,21,7,4,13,20,24,3,8,14,21,0 

0,6,16,9,19,17,22,18,12,10,11,5,1,15,2,21,7,4,13,20,24,3,8,14,21,0 

n20w120s5.2 225 
0,1,14,18,4,8,21,19,16,11,15,23,5,7,3,20,17,12,9,10,23,6,2,13,0 

0,1,14,18,4,8,21,19,16,11,15,23,5,7,3,20,17,12,10,9,23,6,2,13,0 

n20w120s5.5 249 

0,19,13,11,7,16,18,3,8,21,17,2,5,14,10,4,24,6,9,15,12,22,1,20,0 

0,19,13,11,7,16,18,3,8,21,17,2,5,14,10,4,24,9,6,15,12,22,1,20,0 

0,19,13,11,7,16,18,3,8,21,17,2,5,10,14,4,24,9,6,15,12,22,1,20,0 

0,19,13,11,7,16,18,3,8,21,17,2,5,10,14,4,24,6,9,15,12,22,1,20,0 
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 Parameter Tuning 

The MatHeur utilizes 5 parameters which are shaking level (λ), Slack, #NonImpIter, #Iter 

and CL Size. To tune these parameters, we selected a subset consisting of five 150- and 

five 200-customers instances as follows: n150w120s5.2, n150w140s5.1, n150w140s5.4, 

n150w160s5.2, n150w160s5.3, n200w120s5.1, n200w120s5.4, n200w120s5.5, 

n200w140s5.3 and n200w140s5.4. The parameters are sequentially tuned from λ to CL 

Size. We set the initial values of λ, Slack, #NonImpIter, #Iter and CL Size to 6, 0%, 3𝑛, 

3𝑛 and 𝑛, respectively. To tune each parameter, we performed 25 runs per problem 

instance and calculated the average percentage deviation from the average of the best 

solutions obtained (Δ%). The value with the smallest Δ% was selected. This procedure 

was repeated until all parameters had been tuned. If more than one value provides the 

same Δ%, we favored the smaller value. The values tested and their corresponding Δ% 

are presented in Table 6.2. The selected values are shown in bold. 

Table 6.2. Parameter tuning 

  Values 

Parameter (Δ%) 

λ 6 8 10 12 14 16 

 (0.10) (0.29) (0.13) (0.44) (0.00) (0.16) 

Slack 0% 0.5% 1% 1.5% 2% 
- 

 (1.05) (0.48) (0.00) (0.33) (0.50) 

#NonImpIter 0.25n 0.375n 0.5n 0.75n n 
- 

 (0.51) (0.13) (0.00) (0.00) (0.00) 

#Iter n 2n 3n 4n 5n 
- 

 (0.43) (0.36) (0.13) (0.00) (0.00) 

CL Size 0.05n 0.1n 0.15n 0.25n 0.5n n 

  (0.16) (0.08) (0.00) (0.08) (0.18) (0.37) 

 Performance Validation 

We validate the performance of MatHeur in several problem settings. We performed 25 

runs for each problem instance, and the best solution found by MatHeur is considered in 

the comparisons. 

6.3.1. Validation on the TSPTW 

We test the performance of MatHeur on the large-size TSPTW problem instances of 

Ohlmann and Thomas (2007). Since the problem does not include EVs, we set Slack to 
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0% and did not solve the FTVCP throughout the execution of MatHeur. Our algorithm 

finds the BKSs in all instances, which are reported in Da Silva and Urrutia (2010), even 

if the distance measures are integer as explained in Section 6.1.  

6.3.2. Validation on the ETSPTW 

We also demonstrate the effectiveness of MatHeur in the ETSPTW setting. We compare 

the solution quality and the run time of Matheur with CPLEX in small-size problem 

instances with 20 customers. The model presented in Section 4.2 is modified by including 

the distance minimization objective and not considering battery degradation constraints 

and solved with CPLEX. We did not restrict the algorithm and set #NonImpIter and CL 

Size to 4n and n, respectively since the problem sizes are small. Furthermore, each local 

optimum solution obtained after any LS operator is sent to the FTVCP in which the 

objective is distance minimization. The results are shown in Table 6.3. The runtimes 

required are in seconds and show the average execution time of 25 runs in the case of 

MatHeur which is reported under ‘MatHeur’. Both CPLEX and MatHeur find the optimal 

solutions. We obtained the same solution quality with less average computational time.  

6.3.3. Validation on the ETSPTW-BD 

The performance of MatHeur is validated in the original problem, i.e., ETSPTW-BD, as 

well. The solutions achieved by CPLEX and MatHeur are compared in problem instances 

with 20 customers. The model presented in Section 4.2 is solved with CPLEX. The 

parameters of #NonImpIter and CL Size are set to their upper bounds during the execution 

of MatHeur since the problem sizes are small. Furthermore, the FTVCP is solved for the 

local optimal solutions obtained after each LS operator. Table 6.4 presents the results. 

Column ‘CPLEX’ reports the OFVs of the solutions obtained with CPLEX. Note that 

CPLEX was able to provide an upper bound in only 13 out of 50 instances at the end of 

the 2-hour time limit. So, we only report the solutions for these instances. The best 

solution found by MatHeur and its average runtime in seconds are presented in the 

columns ‘MatHeur’ and ‘t (s)’, respectively. The last column shows the percentage 

difference between the costs found with CPLEX and MatHeur where a positive value 

indicates improvement. MatHeur finds better results in all instances within remarkably 

shorter computation times. 
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Table 6.3. Comparison of ETSPTW results for 20-customer problems 

  Runtime    Runtime 

Instance TD CPLEX MatHeur  Instance TD CPLEX MatHeur 

n20w120s5.1 274.48 3.6 0.5  n20w120s10.1 273.37 2.6 0.7 

n20w120s5.2* 228.02 386.2 0.6  n20w120s10.2 223.84 302.7 0.6 

n20w120s5.3* 297.10 6.5 0.3  n20w120s10.3* 295.47 9.1 0.2 

n20w120s5.4 307.17 91.5 0.2  n20w120s10.4 299.80 17.4 0.5 

n20w120s5.5 254.63 2.3 0.3  n20w120s10.5 248.52 2.0 0.3 

n20w140s5.1 188.20 17.7 0.2  n20w140s10.1 185.56 9.0 0.2 

n20w140s5.2 274.47 153.9 0.3  n20w140s10.2 258.74 104.1 0.3 

n20w140s5.3 244.16 30.7 0.1  n20w140s10.3 244.13 23.3 0.2 

n20w140s5.4* 254.85 536.4 0.6  n20w140s10.4* 244.28 39.7 0.5 

n20w140s5.5* 223.60 2.5 0.3  n20w140s10.5* 221.04 4.1 0.3 

n20w160s5.1 245.12 9.7 0.3  n20w160s10.1 245.12 19.7 0.4 

n20w160s5.2 224.22 17.7 0.4  n20w160s10.2 214.56 13.2 0.6 

n20w160s5.3 213.11 1.3 0.3  n20w160s10.3 213.11 2.3 0.3 

n20w160s5.4 213.43 30.2 0.3  n20w160s10.4 213.43 45.0 0.3 

n20w160s5.5* 251.41 41.0 0.6  n20w160s10.5* 243.11 27.1 0.5 

n20w180s5.1 266.88 63.1 0.2  n20w180s10.1 260.07 35.1 0.2 

n20w180s5.2 281.35 106.2 0.4  n20w180s10.2 279.89 72.2 0.4 

n20w180s5.3 275.27 33.9 0.3  n20w180s10.3 274.95 106.7 0.3 

n20w180s5.4 208.51 41.8 0.3  n20w180s10.4 205.50 97.8 0.3 

n20w180s5.5 205.78 930.4 0.4  n20w180s10.5 203.74 1568.4 0.4 

n20w200s5.1 238.35 469.8 0.2  n20w200s10.1 238.35 67.9 0.2 

n20w200s5.2 220.52 69.1 0.3  n20w200s10.2 216.41 37.7 0.3 

n20w200s5.3 250.73 73.0 0.3  n20w200s10.3 250.27 93.5 0.3 

n20w200s5.4 299.22 413.1 0.4  n20w200s10.4 298.11 398.8 0.5 

n20w200s5.5 243.68 60.1 0.5  n20w200s10.5 236.60 90.2 0.5 

Average 247.37 143.67 0.35    243.52 127.58 0.38 
* Achieved by MatHeur during the parameter tuning with Slack = 0 

We also test MatHeur in smaller instances to validate its actual performance in the 

ETSPTW-BD setting. The dataset of Schneider et al. (2014) is classified into three groups, 

each involving 5, 10 and 15 customers, and includes 3×12=36 instances in total. Among 

these instances, we selected 13 instances in which a single EV is employed in the optimal 

EVRPTW solutions reported in the literature. The settings of CPLEX and MatHeur are 

the same as in solving the 20-customer instances. We present the results in Table 6.5. The 

values following ‘c’ and ‘s’ along the instances indicate the number of customers and 

charging stations in the corresponding instance, respectively. The computational time 

required by CPLEX and the average runtime of MatHeur are presented in seconds under 

columns ‘t (s)’, respectively. The optimality of the solutions which are obtained using the 
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entire runtime of 7200 seconds by CPLEX are not guaranteed. MatHeur finds the same 

solutions obtained by CPLEX in all 5- and 10-customer instances and achieves better 

results in 15-customer instances which are indicated in bold. MatHeur requires less 

computational time on average to obtain better solution quality. Consequently, we believe 

that the performance of MatHeur is validated with these results. 

Table 6.4. Comparison of ETSPTW-BD results for 20-customer problems 

Instance CPLEX MatHeur t (s) %Imp 

n20w120s5.1 1034.75 1021.63 0.81 1.27 

n20w120s5.2 953.90 875.39 0.53 8.23 

n20w120s5.5 1395.54 975.21 0.45 30.12 

n20w140s5.2 1206.84 1067.26 0.43 11.57 

n20w140s5.3 987.54 909.55 0.15 7.90 

n20w140s5.4 1254.21 1024.95 0.29 18.28 

n20w160s5.3 1087.94 838.45 0.34 22.93 

n20w160s5.4 894.95 798.92 0.52 10.73 

n20w160s5.5 1127.29 991.81 0.74 12.02 

n20w120s10.1 1058.80 1006.83 0.84 4.91 

n20w120s10.5 964.52 938.98 0.55 2.65 

n20w140s10.1 892.11 697.28 0.42 21.84 

n20w140s10.3 1034.07 895.38 0.16 13.41 

Average 1068.65 926.28 0.48 12.76 

Table 6.5. Comparison of ETSPTW-BD results for small-size single-EV problems of 

Schneider et al. (2014) 

 CPLEX  MatHeur 

Instance Cost t (s)   Cost t (s) 

c103c5-s2 656.58 0.17  656.58 0.04 

c206c5-s4 960.03 0.23  960.03 0.05 

c208c5-s3 626.90 0.25  626.90 0.05 

r202c5-s3 517.30 0.64  517.30 0.04 

r203c5-s4 696.69 0.53  696.69 0.04 

rc204c5-s4* 713.66 2.52  713.66 0.04 

rc208c5-s3 656.67 0.97  656.67 0.03 

c202c10-s5 1157.38 5.43  1157.38 0.07 

r201c10-s4 942.12 32.29  942.12 0.08 

r203c10-s5 871.55 7200.00  871.55 0.08 

rc201c10-s4 1635.78 0.7  1635.78 0.07 

r209c15-s5 1366.20 7200.00  1232.64 0.28 

rc204c15-s7 1700.47 7200.00   1475.92 0.43 

Average 961.64 1664.90   934.09 0.10 
*Initial tour is randomly constructed to obtain the optimal solution 
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 Effect of Battery Degradation 

In this section, we investigate the effect of battery degradation on route plans and costs 

by comparing ETSPTW and ETSPTW-BD results obtained with MatHeur. 25 runs were 

performed for each instance of the modified benchmark dataset of Roberti and Wen 

(2016), and the best achieved solution and average runtimes are reported. Note that the 

cost calculations of ETSPTW solutions are made by assuming that the EVs depart from 

the depot as fully charged since this is a common practice in the industry. 

Table 6.6. Effect of battery degradation on small-size instances with 5-stations 

 ETSPTW  ETSPTW-BD  

Instance Cost t (s) #R   Cost t (s) #R %Δ 

n20w120s5.1 1114.28 0.54 4  1021.63 0.81 6 8.31 

n20w120s5.2 933.63 0.63 3  875.39 0.53 5 6.24 

n20w120s5.3 1205.80 0.29 3  1190.44 0.41 5 1.27 

n20w120s5.4 1239.07 0.23 4  1175.12 0.42 6 5.16 

n20w120s5.5 1008.12 0.25 3  975.21 0.45 5 3.26 

n20w140s5.1 760.94 0.20 3  710.51 0.19 5 6.63 

n20w140s5.2 1130.90 0.27 2  1067.26 0.43 7 5.63 

n20w140s5.3 972.20 0.13 3  909.55 0.15 6 6.44 

n20w140s5.4 1047.96 0.64 3  1024.95 0.29 4 2.20 

n20w140s5.5 906.18 0.34 3  868.65 0.26 6 4.14 

n20w160s5.1 977.65 0.31 3  924.46 0.56 5 5.44 

n20w160s5.2 878.69 0.45 4  848.71 0.39 4 3.41 

n20w160s5.3 887.50 0.28 3  838.45 0.34 4 5.53 

n20w160s5.4 862.54 0.30 3  798.92 0.52 5 7.38 

n20w160s5.5 1043.10 0.60 3  991.81 0.74 4 4.92 

n20w180s5.1 1077.01 0.25 3  1000.49 0.45 6 7.10 

n20w180s5.2 1108.33 0.37 3  1065.46 0.57 5 3.87 

n20w180s5.3 1108.57 0.26 3  1059.81 0.44 5 4.40 

n20w180s5.4 823.09 0.32 3  788.39 0.55 4 4.22 

n20w180s5.5 831.34 0.43 3  798.85 0.75 4 3.91 

n20w200s5.1 935.90 0.22 3  924.49 0.45 4 1.22 

n20w200s5.2 879.79 0.26 4  839.75 0.47 5 4.55 

n20w200s5.3 994.31 0.33 4  953.70 0.43 4 4.08 

n20w200s5.4 1239.10 0.42 3  1130.32 0.55 5 8.78 

n20w200s5.5 969.71 0.47 4   926.50 0.65 6 4.46 

Average 997.43 0.35 3.20   948.35 0.47 5.00 4.90 

6.4.1. Results for Small-Size Instances 

In this subsection, we make comparisons over the problem instances with 20-customers. 

We run MatHeur by setting #NonImpIter and CL Size to 4n and n, respectively since the 
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problem sizes are small. Furthermore, local optimum solutions obtained after each LS 

operator are sent to the FTVCP phase. Table 6.6 and Table 6.7 show the results obtained 

for the instances with 5- and 10-stations, respectively. In these tables ‘Cost’ refers to the 

total cost of energy consumption plus battery degradation costs of the best tour obtained 

through runs. We should note that in the cost calculation under ‘ETSPTW’ we considered 

the optimal solutions presented in Section 6.3.2, and the corresponding total cost is the 

realized cost with battery degradation effect. Column ‘#R’ indicates the number of 

recharges along tours. ‘%Δ’ reports the percentage difference between the cost of the best 

solutions obtained with MatHeur in the context of the ETSPTW and ETSPTW-BD. 

Table 6.7. Effect of battery degradation on small-size instances with 10-stations 

 ETSPTW  ETSPTW-BD  

Instance Cost t (s) #R   Cost t (s) #R %Δ 

n20w120s10.1 1131.02 0.66 3  1006.83 0.84 7 10.98 

n20w120s10.2 894.67 0.63 3  843.69 0.76 5 5.70 

n20w120s10.3 1195.92 0.24 3  1171.81 0.44 6 2.02 

n20w120s10.4 1208.16 0.53 3  1139.19 0.42 6 5.71 

n20w120s10.5 982.46 0.33 3  938.98 0.55 6 4.43 

n20w140s10.1 742.03 0.21 4  697.28 0.42 5 6.03 

n20w140s10.2 1035.52 0.32 3  1034.69 0.45 4 0.08 

n20w140s10.3 955.22 0.16 4  895.38 0.16 8 6.26 

n20w140s10.4 998.63 0.53 3  974.70 0.32 6 2.40 

n20w140s10.5 924.44 0.33 3  850.57 0.34 7 7.99 

n20w160s10.1 977.65 0.43 3  914.81 0.69 6 6.43 

n20w160s10.2 880.95 0.60 3  828.46 0.59 4 5.96 

n20w160s10.3 887.50 0.31 3  815.40 0.37 6 8.12 

n20w160s10.4 862.54 0.32 3  798.26 0.54 5 7.45 

n20w160s10.5 999.96 0.50 3  958.17 1.01 6 4.18 

n20w180s10.1 1029.07 0.24 3  967.15 0.58 7 6.02 

n20w180s10.2 1127.32 0.39 3  1051.89 0.54 6 6.69 

n20w180s10.3 1136.74 0.27 4  1046.90 0.56 6 7.90 

n20w180s10.4 803.08 0.31 3  768.38 0.73 4 4.32 

n20w180s10.5 817.87 0.41 3  780.34 1.06 6 4.59 

n20w200s10.1 935.90 0.24 3  897.41 0.72 7 4.11 

n20w200s10.2 863.16 0.25 4  815.74 0.53 5 5.49 

n20w200s10.3 975.16 0.33 4  928.44 0.77 6 4.79 

n20w200s10.4 1228.18 0.46 5  1107.15 0.72 7 9.85 

n20w200s10.5 971.62 0.50 3   909.83 1.11 7 6.36 

Average 982.59 0.38 3.28   925.66 0.61 5.92 5.75 

Significant amounts of cost savings are obtained in all problem instances when battery 

degradation is taken into account. The average cost savings are 4.90% and 5.75% in the 
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instances with 5- and 10-stations, respectively, while it can reach up to 10.98%. The cost-

saving becomes higher as the number of existing recharging facilities increases. The 

results also show that incorporating battery degradation leads to more frequent recharges 

en route. The average increases in the number of recharging visits are 56% and 80% in 

the instances with 5- and 10-stations, respectively. This is an expected result due to the 

non-decreasing wear cost function where lower SOC intervals are more preferable. 

Hence, the recharge frequency, amount of energy transferred and sequence of customers 

are determined based on the trade-off between energy consumption (distance) and wear 

costs. Even though the computational times are not long, the runtimes rise by 34% and 

61% in the instances with 5- and 10-stations, respectively when the battery degradation 

is considered. 

Table 6.8. Effect of battery degradation on large-size instances with 5-stations 

 ETSPTW  ETSPTW-BD  

Instance Cost t (s) #R   Cost t (s) #R %Δ 

n150w120s5.1 3163.53 28.36 7  2946.55 31.00 12 6.86 

n150w120s5.2 2629.22 21.92 6  2519.96 39.12 9 4.16 

n150w120s5.3 3186.59 18.24 8  3176.46 19.44 8 0.32 

n150w120s5.4 2791.63 23.28 7  2704.49 29.20 9 3.12 

n150w120s5.5 2892.34 21.56 9  2763.56 40.84 13 4.45 

n150w140s5.1 3048.80 30.44 8  2917.76 41.00 11 4.30 

n150w140s5.2 3100.06 21.96 8  2986.75 37.64 12 3.66 

n150w140s5.3 2547.36 23.28 7  2434.18 39.56 11 4.44 

n150w140s5.4 2758.18 17.32 8  2630.78 25.40 13 4.62 

n150w140s5.5 2622.80 30.80 7  2545.28 38.16 11 2.96 

n150w160s5.1 3026.75 22.68 7  2819.10 27.84 10 6.86 

n150w160s5.2 2920.03 31.48 7  2832.41 41.20 11 3.00 

n150w160s5.3 2418.35 18.32 7  2376.24 25.84 10 1.74 

n150w160s5.4 2785.13 23.40 7  2700.12 25.48 10 3.05 

n150w160s5.5 2781.62 27.28 7  2629.97 43.44 12 5.45 

n200w120s5.1 2997.13 53.28 6  2882.18 94.40 8 3.84 

n200w120s5.2 3059.62 62.24 9  2894.23 72.08 12 5.41 

n200w120s5.3 3429.22 62.24 8  3282.02 78.64 12 4.29 

n200w120s5.4 3391.19 62.00 7  3234.27 65.76 11 4.63 

n200w120s5.5 3278.67 53.48 7  3135.87 71.36 10 4.36 

n200w140s5.1 3299.12 85.92 7  3146.56 102.96 10 4.62 

n200w140s5.2 3243.97 73.48 8  3121.76 96.44 12 3.77 

n200w140s5.3 2988.91 53.48 8  2852.66 63.40 11 4.56 

n200w140s5.4 3120.22 83.88 8  2977.19 107.20 10 4.58 

n200w140s5.5 3304.51 54.76 8   3204.75 73.68 11 3.02 

Average 2991.40 40.20 7.44   2868.60 53.24 10.76 4.08 
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6.4.2. Results for Large-Size Instances 

We compare the solutions obtained for 150- and 200-customer instances in this 

subsection. The algorithm is executed with the parameter values found in Section 6.2. 

Since the problem sizes are large, the tours found in the earlier phases of MatHeur are not 

good candidates for inserting the charge stations. Hence, the FTVCP is not solved for the 

solutions found within the first 𝑛/5 iterations of MatHeur. The results for the instances 

with 5 and 10 charging stations are presented in Table 6.8 and Table 6.9, respectively. 

We should note that the objective of the ETSPTW is simply the minimization of energy 

consumption, and the cost of the tour is calculated by considering the battery wear cost. 

Table 6.9. Effect of battery degradation on large-size instances with 10-stations 

 ETSPTW  ETSPTW-BD  

Instance Cost t (s) #R   Cost t (s) #R %Δ 

n150w120s10.1 3066.87 28.56 7  2882.64 34.68 14 6.01 

n150w120s10.2 2619.78 21.88 6  2472.51 39.00 11 5.62 

n150w120s10.3 3173.32 18.96 8  3156.89 21.16 11 0.52 

n150w120s10.4 2809.94 23.04 6  2632.86 30.40 13 6.30 

n150w120s10.5 2844.28 20.92 8  2635.41 41.12 15 7.34 

n150w140s10.1 3049.03 29.88 8  2845.26 41.24 14 6.68 

n150w140s10.2 3096.72 22.00 7  2917.03 37.72 13 5.80 

n150w140s10.3 2544.59 23.76 8  2403.06 50.88 12 5.56 

n150w140s10.4 2747.57 17.32 8  2580.90 23.00 16 6.07 

n150w140s10.5 2580.34 30.76 7  2474.20 37.96 14 4.11 

n150w160s10.1 2929.22 21.96 7  2749.64 36.04 14 6.13 

n150w160s10.2 2849.93 31.64 7  2739.07 41.24 10 3.89 

n150w160s10.3 2412.05 18.56 7  2317.31 26.84 11 3.93 

n150w160s10.4 2808.89 23.44 7  2648.12 25.00 15 5.72 

n150w160s10.5 2678.73 27.08 8  2564.83 46.96 10 4.25 

n200w120s10.1 3032.07 52.52 6  2822.28 94.00 10 6.92 

n200w120s10.2 2998.27 62.24 9  2831.05 73.56 14 5.58 

n200w120s10.3 3371.26 62.36 8  3184.87 79.24 13 5.53 

n200w120s10.4 3344.27 62.00 8  3126.69 64.04 14 6.51 

n200w120s10.5 3207.94 53.52 8  3052.36 58.08 15 4.85 

n200w140s10.1 3290.84 86.00 7  3094.30 102.36 13 5.97 

n200w140s10.2 3211.71 71.48 7  3057.77 99.80 12 4.79 

n200w140s10.3 2930.87 53.52 9  2811.51 66.44 12 4.07 

n200w140s10.4 3162.53 83.84 8  2960.55 112.64 12 6.39 

n200w140s10.5 3377.51 54.84 7   3164.25 75.96 12 6.31 

Average 2965.54 40.08 7.44   2805.01 54.37 12.80 5.39 

As in Section 6.4.1, the total cost is improved when battery wear is considered in all 
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problem instances. In the instances with 5-stations, the average cost improvement is 

4.08% and the savings can be as large as 6.86%. In the instances with 10-stations, the 

total cost can be reduced by 5.39% on average and cost improvement may rise to 7.34%.  

Furthermore, the availability of charging stations contributes more when the battery 

degradation is concerned. When the number of charging stations is increased from 5 to 

10, the average cost decreases by 0.86% in the ETSPTW setting whereas this rate is 1.31% 

in the ETSPTW-BD setting. The consideration of battery wear costs increases the 

recharging frequency along the tour, where the number of recharges increases by 44% 

and 72% on average in the instances with 5- and 10-stations, respectively. Although the 

length of the tours becomes longer because of the more detours and changes in the 

customer sequences, better recharging plans result in less battery degradation cost and 

hence cause saving in total operational cost. On the other hand, incorporating the battery 

degradation brings additional complexity to the problem, and the computational times 

required to obtain a solution increase by 32% and 35% in the instances with 5- and 10-

stations, respectively. 

 Trade-off Analysis 

In this section, we perform sensitivity analyses based on the parameters of the problem 

instances, and a trade-off analysis by devising a multi-start version of MatHeur. The 

sensitivity analyses are only performed on the instances which are used during the 

parameter tuning, and the comparisons are based on the best results achieved.  

6.5.1. The Effect of Battery Capacity 

We observed in Section 6.4 that recharging frequencies along the tours significantly 

increase when the battery degradation is considered. Therefore, we increase the battery 

sizes of the EVs in each problem instance by 25% and 50%, separately to examine the 

impact of increased battery capacities on the solutions. We compare the solutions 

obtained for these 2 new cases with the ones presented in Section 6.4.2. Table 6.10 

summarizes the results with respect to the percentage change in total operational cost and 

the difference in the number of recharges en route. A negative value under ‘ΔCost(%)’ 

and ‘Δ#R’ indicate a cost-saving and a decrease in the number of recharging visits, 

respectively whereas ‘-‘ means no change. As the battery capacity increases, the need for 

recharging en route decreases, and this results in fewer detours, a decrease in the route 
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length and less energy consumption. Hence, the total operational cost is also reduced.   

Table 6.10. Comparisons of results with respect to increased battery capacities 

 25%  50% 

Instance ΔCost (%) Δ#R   ΔCost (%) Δ#R 

n150w120s5.2 -1.96 -  -2.87 - 

n150w140s5.1 -2.02 -2  -3.17 -3 

n150w140s5.4 -1.96 -1  -2.86 -2 

n150w160s5.2 -4.84 -3  -7.00 -3 

n150w160s5.3 -3.58 -3  -5.03 -3 

n200w120s5.1 -2.11 -  -3.28 - 

n200w120s5.4 -1.98 -2  -3.53 -3 

n200w120s5.5 -1.49 -1  -2.40 -1 

n200w140s5.3 -1.67 -  -2.84 -2 

n200w140s5.4 -1.63 -   -2.67 -2 

Average -2.32 -1.20   -3.57 -1.90 

6.5.2. The Effect of Time Windows 

We repeat our experiments by extending the time windows of customer nodes by keeping 

the the length of planning horizon the same to explore the effects of time windows on the 

route and recharging plans made while considering battery degradation. We obtain the 

results by increasing the late arrival times of customer nodes by 50% of their time window 

width and without imposing any time windows restriction within the planning horizon, 

separately. Table 6.11 presents the comparative results. A positive value under ‘Δ#R’ 

indicate an increase in the number of recharging visits. 

Table 6.11. Comparisons of results obtained with respect to extended time windows 

 50%  No TW 

Instance ΔCost (%) Δ#R  ΔCost (%) Δ#R 

n150w120s5.2 -2.58 1  -28.89 -3 

n150w140s5.1 -7.23 -  -38.09 -5 

n150w140s5.4 -3.07 -1  -31.19 -5 

n150w160s5.2 -11.28 -2  -35.44 -5 

n150w160s5.3 -2.78 -  -22.14 -3 

n200w120s5.1 -7.39 -  -27.12 -1 

n200w120s5.4 -8.26 -1  -35.92 -5 

n200w120s5.5 -7.62 -1  -33.34 -5 

n200w140s5.3 -6.68 -1  -27.75 -5 

n200w140s5.4 -7.65 1   -32.17 -3 

Average -6.45 -0.4   -31.21 -4.0 
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The saving in the operational cost increases as the time window restrictions are relaxed 

since the options for consecutive visits of closer customers in the route increase. The 

number of recharges along the tour significantly decreases when no time windows 

constraints are imposed whereas it reduces by only 3.85% even if the time windows are 

extended by 50%. As observed in Sections 6.4.1 and 6.4.2, the number of recharges en 

route significantly increased when battery degradation is considered, and this finding still 

holds with looser time windows.  

6.5.3. Multi-Start Solution Strategy 

In our experiments, we observed that the deviations between the best and average results 

found by MatHeur can be large in some instances. Thus, we designed a multi-start version 

of MatHeur to investigate the trade-off between the solution quality and run time. In the 

multi-start version, a new tour is constructed after #NonImpIter is reached if #Iter is not 

exceeded. #Iter is set to 5n instead of 4n while the remaining parameters remain 

unchanged. The number of runs performed for each problem instance is limited to 10. 

The phase of solving the FTVCP is not performed during the first 𝑛/5 iterations. 

We compare the results obtained with the single- and multi-start versions of MatHeur in 

Table 6.12. We grouped the instances according to the time windows width and the 

number of charging stations. Hence, we obtained 10 separate subsets with 5 instances in 

each. Table 6.12 report the results for the subsets whereas the detailed results can be found 

in Appendix B. The group of instances is given under column ‘Subset’. ‘Best’ reports the 

average of the best results found in 5 instances of the subset whereas ‘Avg’ stands for the 

average of the average solutions. ‘%Dev’ shows the percentage deviation of the average 

OFV from the best OFV. 

Although the best solutions achieved by the two versions are similar, the convergence of 

the algorithm improves with the multi-start version even if it remains at a high level in 

some instances due to Slack. On the other hand, the total runtime increases by 31% when 

the number of runs for the versions is considered which are 25 and 10 in the single- and 

multi-start versions, respectively. 
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Table 6.12. Comparison of single- and multi-start strategies 

 Single-start  Multi-start 

Subset Best Avg %Dev t (s)   Best Avg %Dev t (s) 

n150w120s5 2822.20 2865.78 1.58 31.92  2809.50 2848.00 1.33 112.92 

n150w140s5 2702.95 2763.33 2.21 36.35  2697.92 2722.83 0.94 122.40 

n150w160s5 2671.57 2750.81 2.91 32.76  2679.78 2715.51 1.31 103.26 

n200w120s5 3085.71 3161.36 2.51 76.45  3078.36 3118.28 1.32 260.76 

n200w140s5 3060.58 3189.13 4.24 88.74  3077.54 3128.80 1.68 273.62 

n150w120s10 2756.06 2794.98 1.45 33.27  2732.63 2766.41 1.18 119.18 

n150w140s10 2644.09 2702.22 2.16 38.16  2641.43 2662.10 0.78 126.16 

n150w160s10 2603.79 2695.55 3.45 35.22  2611.18 2665.19 2.02 112.68 

n200w120s10 3003.45 3077.94 2.52 73.78  3000.66 3034.52 1.14 249.32 

n200w140s10 3017.68 3138.69 4.05 91.44   3031.50 3078.32 1.55 281.26 

Average 2836.81 2913.98 2.71 53.81   2836.05 2874.00 1.33 176.16 
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7. THE ELECTRIC VEHICLE ROUTING PROBLEM WITH TIME 

WINDOWS BY CONSIDERING BATTERY DEGRADATION 

 

 

 

In this chapter, we address the EVRPTW in which customers’ demands are met by a 

homogenous fleet of EVs within specified time windows by considering service times. 

Furthermore, partial recharging is allowed, and its duration is assumed to be linearly 

proportional to the amount of energy transferred during the recharging by assuming that 

the EV is operated between 10% to 90% of its battery capacity which is a practical action 

taken by LSPs (Pelletier et al., 2017). In addition, there is a one-to-one relationship 

between energy consumed and distance traveled. Finally, only one recharging visit is 

permitted between two consecutive customers since it is highly observed in urban 

logistics operations. As in Chapter 4, we still utilize the modeling approach of Pelletier et 

al. (2018) to represent the influence of battery wear on the route and charge schedules of 

EVs and consider a non-decreasing wear cost function. 

 Mathemaical Model 

For the sake of completeness and ease of understanding, we provide the whole 

mathematical notation. We follow the notation used in Rastani et al. (2019) and Bruglieri 

et al. (2016). Let  𝑉 = {1, … , 𝑛} denote the set of customers, K denote the set of EVs, and 

F denote the set of charging stations. Each vehicle departs from node 0 and returns to 

node 𝑛 + 1 at the end of its trip where both nodes denote the same depot. We define 𝑉0 =

𝑉 ∪ {0}, 𝑉𝑛+1 = 𝑉 ∪ {𝑛 + 1} and 𝑉0,𝑛+1 = 𝑉 ∪ {0, 𝑛 + 1}. Now, the problem can be 

defined on a complete directed graph 𝐺 = (𝑁, 𝐴) in which 𝐴 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗} is 

the set of arcs and 𝑁 = 𝑉0,𝑛+1 ∪ 𝐹 is the set of all nodes on the network.  

Each customer 𝑖 ∈ 𝑉 has a demand of 𝑞𝑖, service time of 𝑠𝑖, and time window of [𝑒𝑖, 𝑙𝑖]. 
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Since the fleet is homogenous, all EVs have the same load capacity of 𝐶 and operational 

battery capacity of 𝑄. At a charging station, one unit of energy is charged in 𝑔 time units. 

The direct distance from customer 𝑖 to customer 𝑗 is denoted by 𝑑𝑖𝑗 while �̂�𝑖𝑗𝑠 = 𝑑𝑖𝑠 +

𝑑𝑠𝑗 − 𝑑𝑖𝑗 corresponds to the additional distance if the vehicle is recharged at station 𝑠 en 

route. Likewise, 𝑡𝑖𝑗 denotes the direct travel time from customer 𝑖 to customer 𝑗, and 

�̂�𝑖𝑗𝑠 = 𝑡𝑖𝑠 + 𝑡𝑠𝑗 − 𝑡𝑖𝑗 is the additional travel time if there is a recharging visit in between 

customers 𝑖 and 𝑗 at station 𝑠. However, �̂�𝑖𝑗𝑠 does not involve the recharging time at 

station 𝑠. In addition, the energy is consumed by the rate of ℎ𝑑 for each unit of distance. 

Hence, the total energy needed to directly move from customer 𝑖 to customer 𝑗 is 

calculated as ℎ𝑖𝑗 = ℎ𝑑𝑑𝑖𝑗 which is a linear function of the distance. If a recharging visit 

takes place at station 𝑠 during the move between customer 𝑖 and customer 𝑗, the 

calculation of additional energy consumption is as follows: ℎ̂𝑖𝑗𝑠 = ℎ𝑖𝑠 + ℎ𝑠𝑗 − ℎ𝑖𝑗. The 

set 𝐷 and parameters 𝐿𝐵𝑑, 𝑈𝐵𝑑, 𝐿 and 𝑊𝑑 are already defined in Sections 3 and 4.2.  

The decision variables 𝑦𝑖
𝑘 keep track of the battery SOC of the vehicle 𝑘 when it arrives 

at customer/depot 𝑖 ∈ 𝑉0,𝑛+1. On the other side, decision variables 𝑦𝑖𝑗𝑠
𝑘  and 𝑌𝑖𝑗𝑠

𝑘  take 

values when there is a recharging visit at station 𝑠 ∈ 𝐹 on route (𝑖, 𝑠, 𝑗), 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 

and represents the battery SOC at arrival to and departure from the charging station 𝑠, 

respectively. The decision variable 𝜏𝑖 represents the service starting time at any node 𝑖 ∈

𝑁. The binary decision variable 𝑥𝑖𝑗
𝑘  is 1 if the arc (𝑖, 𝑗) is traversed by the vehicle 𝑘, 𝑖 ∈

𝑉0, 𝑗 ∈ 𝑉𝑛+1 and 0 otherwise. The binary decision variable 𝑧𝑖𝑗𝑠
𝑘  takes value 1 when the 

vehicle 𝑘 travels from node 𝑖 ∈ 𝑉0 to node 𝑗 ∈ 𝑉𝑛+1 via station 𝑠 ∈ 𝐹 and 0 otherwise. 

The  decision variables and the constraints are categorized into two as ones that belong to 

stations and ones that belong to the depot for overnight recharging to better express the 

battery degradation characteristics as follows: The decision variables 𝑠𝑜𝑐𝑖𝑗𝑑
𝑘  and 𝑠𝑜𝑐𝑑

𝑘 

keep track of how much the portion of SOC interval 𝑑 ∈ 𝐷 is utilized during the 

recharging at a station and the depot, respectively. The binary decision variables 𝑢𝑖𝑗𝑑
𝑘  and 

𝑢𝑑
𝑘 take value 1 if the SOC interval 𝑑 ∈ 𝐷 is used to charge the vehicle 𝑘 ∈ 𝐾 at a charging 

station and at the depot, respectively; and 0 otherwise. Remember since only one 

recharging visit is allowed between two consecutive customers there is no need for the 

indication of a charging station index in these decision variables. Furthermore, the vehicle 

is assumed to be initially charged with the amount of the difference between the battery 
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SOC when it departs from the depot and arrives at the depot since that much energy is 

consumed during the route. Finally, the EV will have consumed its whole operational 

battery capacity when it returns to the depot due to the non-decreasing wear cost function 

if it has been recharged at least once en route. 

The mathematical notation associated with the EVRPTW-BD formulation is presented in 

Table 7.1. In what follows, the 0-1 mixed-integer linear programming model of the 

problem is formulated. 

Table 7.1. Mathematical notation of EVRPTW-BD 

Sets  

𝑉 Set of customers 

𝑉0 Set of customers and departure depot 

𝑉𝑛+1 Set of customers and arrival depot 

𝑉0,𝑛+1 Set of customers, departure and arrival depots 

𝐹 Set of charging stations 

𝑁 Set of customers, stations and depots 

𝐾 Set of vehicles 

𝐷 Set of SOC intervals 

Parameters 

𝑑𝑖𝑗 Distance between node 𝑖 and 𝑗 

�̂�𝑖𝑗𝑠 Additional distance of visiting station 𝑠 between customers 𝑖 and 𝑗, �̂�𝑖𝑗𝑠 = 𝑑𝑖𝑠 +

𝑑𝑠𝑗 − 𝑑𝑖𝑗  

𝑡𝑖𝑗 Travel time from node 𝑖 to node 𝑗 

�̂�𝑖𝑗𝑠 Additional travel time of visiting station 𝑠 between customers 𝑖 and 𝑗, �̂�𝑖𝑗𝑠 = 𝑡𝑖𝑠 +

𝑡𝑠𝑗 − 𝑡𝑖𝑗 

𝑞𝑖 Demand of customer 𝑖 

𝑟𝑖 Service time of customer 𝑖 

[𝑒𝑖, 𝑙𝑖] Time window of customer 𝑖 

𝑙0 Length of the planning horizion 

𝐶 Load capacity  

𝑄 Operational battery capacity  

𝑔 Recharging rate 

ℎ𝑖𝑗 Total energy consumed to traverse arc (𝑖, 𝑗) 

ℎ̂𝑖𝑗𝑠 Additional consumption if the vehicle is recharged in station 𝑠 while traveling from 

customer 𝑖 to customer 𝑗, ℎ̂𝑖𝑗𝑠 = ℎ𝑖𝑠 + ℎ𝑠𝑗 − ℎ𝑖𝑗 

𝑐 Unit energy cost 

𝑊𝑑 Wear cost per unit energy charged or discharged within the SOC interval 𝑑 

𝐿 Length of SOC intervals 

𝑈𝐵𝑑 Upper SOC bound of interval 𝑑 

𝐿𝐵𝑑 Lower SOC bound of interval 𝑑 

Decision variables 

𝜏𝑖 Service starting time at customer 𝑖 ∈  𝑉 

𝑦𝑖
𝑘 Battery SOC of vehicle 𝑘 ∈  𝐾  upon arrival at (departure from) customer (depot) 𝑖 ∈
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𝑉0,𝑛+1 

𝑦𝑖𝑗𝑠
𝑘  Battery SOC of vehicle 𝑘 ∈  𝐾  upon arrival at station 𝑠 ∈ 𝐹 on route (𝑖, 𝑠, 𝑗), 𝑖 ∈

𝑉0, 𝑗 ∈ 𝑉𝑛+1 

𝑌𝑖𝑗𝑠
𝑘  Battery SOC of vehicle 𝑘 ∈  𝐾  at the departure from station 𝑠 ∈ 𝐹 on route (𝑖, 𝑠, 𝑗), 

𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1 
𝑠𝑜𝑐𝑖𝑗𝑑

𝑘  Portion of SOC interval d ∈ D used during the charging of vehicle k ∈ K at station 𝑠 ∈
𝐹 on route (𝑖, 𝑠, 𝑗), 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1 

𝑠𝑜𝑐𝑑
𝑘 Portion of SOC interval d ∈ D used during the overnight charging of vehicle k ∈ K at 

the depot 

𝑥𝑖𝑗
𝑘  1 if vehicle 𝑘 ∈  𝐾 travels from node 𝑖 ∈ 𝑉0 to node 𝑗 ∈ 𝑉𝑛+1; 0 otherwise 

𝑧𝑖𝑗𝑠
𝑘  1 if vehicle 𝑘 ∈  𝐾 traverses arc (𝑖, 𝑗), 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, through station 𝑠 ∈ 𝐹; 0 

otherwise 

𝑢𝑖𝑗𝑑
𝑘  1 if interval d ∈ D is used to charge vehicle k ∈ K at station 𝑠 ∈ 𝐹 on route (𝑖, 𝑠, 𝑗), 

𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1; 0 otherwise 

𝑢𝑑
𝑘 1 if interval d ∈ D is used to charge vehicle k ∈ K at the depot; 0 otherwise 

Min 𝑐 (∑ ∑ ∑ ∑(𝑌𝑖𝑗𝑠
𝑘 −  𝑦𝑖𝑗𝑠

𝑘 )

k∈Ks∈Fj∈𝑉𝑛+1i∈𝑉0

) + 𝑐 (∑ 𝑦0
𝑘 − 𝑦𝑛+1

𝑘

k∈K

)    

(7.1.1) 

 

+𝑄 (∑ ∑ ∑ ∑ 𝑊𝑑𝑠𝑜𝑐𝑖𝑗𝑑
𝑘

d∈Dk∈Kj∈𝑉𝑛+1i∈𝑉0

) + 𝑄 (∑ ∑ 𝑊𝑑𝑠𝑜𝑐𝑑
𝑘

k∈𝐾d∈D

)   
(7.1.2) 

Subject to 

𝑦0
𝑘 = 𝑄 ∀𝑘 ∈ 𝐾 (7.2) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾𝑗∈𝑉𝑛+1

𝑖≠𝑗

= 1 ∀𝑖 ∈ 𝑉 (7.3) 

∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝑉0

𝑖≠𝑗

− ∑ 𝑥𝑗𝑖
𝑘

𝑖∈𝑉𝑛+1

𝑖≠𝑗

= 0 ∀𝑗 ∈ 𝑉, ∀𝑘 ∈ 𝐾 (7.4) 

∑ 𝑧𝑖𝑗𝑠
𝑘

𝑠∈𝐹

≤ 𝑥𝑖𝑗
𝑘  ∀𝑖 ∈ 𝑉0, ∀𝑗 ∈ 𝑉𝑛+1, ∀𝑘 ∈

𝐾, 𝑖 ≠ 𝑗  

(7.5) 

𝜏𝑖 + (𝑡𝑖𝑗 + 𝑟𝑖)𝑥𝑖𝑗
𝑘 + ∑(�̂�𝑖𝑗𝑠𝑧𝑖𝑗𝑠

𝑘 + 𝑔(𝑌𝑖𝑗𝑠
𝑘 − 𝑦𝑖𝑗𝑠

𝑘 ))

𝑠∈𝐹

− 𝑙0(1 − 𝑥𝑖𝑗
𝑘 ) ≤ 𝜏𝑗  

∀𝑖 ∈ 𝑉0, ∀𝑗 ∈ 𝑉𝑛+1, ∀𝑘 ∈

𝐾, 𝑖 ≠ 𝑗  

(7.6) 

𝑒𝑗 ≤ 𝜏𝑗 ≤ 𝑙𝑗  ∀𝑗 ∈ 𝑁 (7.7) 
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∑ ∑ 𝑞𝑖𝑥𝑖𝑗
𝑘

𝑗∈𝑉𝑛+1𝑖∈𝑉

≤ 𝐶 ∀𝑘 ∈ 𝐾 (7.8) 

0 ≤ 𝑦𝑗
𝑘 ≤ 𝑦𝑖

𝑘 − ℎ𝑖𝑗𝑥𝑖𝑗
𝑘 + 𝑄(1 − 𝑥𝑖𝑗

𝑘 + ∑ 𝑧𝑖𝑗𝑠
𝑘

𝑠∈𝐹

) ∀𝑖 ∈ 𝑉0, ∀𝑗 ∈ 𝑉𝑛+1, ∀𝑘 ∈

𝐾, 𝑖 ≠ 𝑗  

(7.9) 

𝑦𝑗
𝑘 ≤ ∑(𝑌𝑖𝑗𝑠

𝑘 − ℎ𝑠𝑗𝑧𝑖𝑗𝑠
𝑘 )

𝑠∈𝐹

+ 𝑄 (1 − ∑ 𝑧𝑖𝑗𝑠
𝑘

𝑠∈𝐹

)

+ 𝑄(1 − 𝑥𝑖𝑗
𝑘 ) 

∀𝑖 ∈ 𝑉0, ∀𝑗 ∈ 𝑉𝑛+1, ∀𝑘 ∈

𝐾, 𝑖 ≠ 𝑗  

(7.10) 

0 ≤ 𝑦𝑖𝑗𝑠
𝑘 ≤ 𝑦𝑖

𝑘 − ℎ𝑖𝑠𝑧𝑖𝑗𝑠
𝑘 + 𝑄(1 − 𝑥𝑖𝑗

𝑘 ) ∀𝑖 ∈ 𝑉0, ∀𝑗 ∈ 𝑉𝑛+1, ∀𝑠 ∈

𝐹, ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗  

(7.11) 

𝑦𝑖𝑗𝑠
𝑘 ≤ 𝑌𝑖𝑗𝑠

𝑘 ≤ 𝑄𝑧𝑖𝑗𝑠
𝑘  ∀𝑖 ∈ 𝑉0, ∀𝑗 ∈ 𝑉𝑛+1, ∀𝑠 ∈

𝐹, ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗  

(7.12) 

𝑄 ∑ 𝑠𝑜𝑐𝑖𝑗𝑑
𝑘

𝑑∈D

= ∑(𝑌𝑖𝑗𝑠
𝑘 − 𝑦𝑖𝑗𝑠

𝑘 )

𝑠∈F

 ∀𝑖 ∈ 𝑉0, ∀𝑗 ∈ 𝑉𝑛+1, ∀𝑘 ∈

𝐾, 𝑖 ≠ 𝑗  

(7.13) 

𝑄 ∑ 𝑠𝑜𝑐𝑑
𝑘

𝑑∈D

= 𝑦0
𝑘 − 𝑦𝑛+1

𝑘  ∀𝑘 ∈ 𝐾 (7.14) 

0 ≤ 𝑠𝑜𝑐𝑖𝑗𝑑
𝑘 ≤ 𝐿. 𝑢𝑖𝑗𝑑

𝑘  ∀𝑖 ∈ 𝑉0, ∀𝑗 ∈ 𝑉𝑛+1, ∀𝑑 ∈

𝐷, ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗  

(7.15) 

0 ≤ 𝑠𝑜𝑐𝑑
𝑘 ≤ 𝐿. 𝑢𝑑

𝑘 ∀𝑑 ∈ 𝐷, ∀𝑘 ∈ 𝐾 (7.16) 

𝑄. 𝑠𝑜𝑐𝑖𝑗𝑑
𝑘 ≤ 𝑄. 𝑈𝐵𝑑 − ∑ 𝑦𝑖𝑗𝑠

𝑘

𝑠∈F

+ 𝑄(1 − 𝑢𝑖𝑗𝑑
𝑘 ) ∀𝑖 ∈ 𝑉0, ∀𝑗 ∈ 𝑉𝑛+1, ∀𝑑 ∈

𝐷, ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗  

(7.17) 

𝑄. 𝑠𝑜𝑐𝑑
𝑘 ≤  𝑄. 𝑈𝐵𝑑 − 𝑦𝑛+1

𝑘 + 𝑄(1 − 𝑢𝑑
𝑘)  ∀𝑑 ∈ 𝐷, ∀𝑘 ∈ 𝐾 (7.18) 

𝑥𝑖𝑗
𝑘 ∈ {0,1} ∀𝑖 ∈ 𝑉0, ∀𝑗 ∈ 𝑉𝑛+1, ∀𝑘 ∈ 𝐾  (7.19) 

𝑧𝑖𝑗𝑠
𝑘 ∈ {0,1} ∀𝑖 ∈ 𝑉0, ∀𝑗 ∈ 𝑉𝑛+1, ∀𝑠 ∈

𝐹, ∀𝑘 ∈ 𝐾  

(7.20) 

𝑢𝑑
𝑘 ∈ {0,1} ∀𝑑 ∈ 𝐷, ∀𝑘 ∈ 𝐾 (7.21) 
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𝑢𝑖𝑗𝑑
𝑘 ∈ {0,1} ∀𝑖 ∈ 𝑉0, ∀𝑗 ∈

𝑉𝑛+1, ∀𝑑 ∀𝐷, ∀𝑘 ∈  𝐾  

(7.22) 

The objective function (7.1.1) of the model minimizes the total energy and battery 

degradation costs. The expression (7.1.1) corresponds to total energy consumption by 

considering the energy amount that is transferred at charging stations and the depot, 

respectively whereas the expression (7.1.1)  represents the battery degradation costs 

incurred during the recharges at charging stations and the depot, respectively. The initial 

battery SOC of the EVs during their departure is set to full by constraints (7.2). 

Constraints (7.3) ensure connectivity between customers.  Constraints (7.4) enforce that 

each customer is visited only once. Constraints (7.5) make sure that recharging the battery 

en route is only possible if there is a trip from customer 𝑖 to 𝑗. The time feasibility of arcs 

emanating from the customers and the depot is guaranteed by constraints (7.6). 

Constraints (7.7) ensure that each customer is served in its time window. By the way, 

Constraints (7.6)–(7.7) eliminate the sub-tours. Constraints (7.8) guarantee the load of the 

vehicles can not exceed the cargo capacity during the trip. Constraints (7.9)–(7.11) keep 

track of the battery SOC at each node and ensure that it never falls below zero. Constraints 

(7.9) establish this relation when the vehicle directly travels from customer 𝑖 to customer 

𝑗 without recharging en route. On the other side, constraints (7.10)–(7.11) provide the 

battery SOC consistency if the vehicle recharges itself when moving from customer 𝑖 to 

customer 𝑗: constraints (7.10) set the battery SOC during the arrival at customer 𝑗 whereas 

constraints (7.11) determine the SOC level during the arrival at a station. Constraints 

(7.12) make sure that the battery SOC during the departure from a station remains in a 

certain interval, i.e. it can not be larger than the amount during its arrival at the station 

and exceed the battery capacity. Constraints (7.13)–(7.14) equalize the difference 

between the energy levels when arriving at a charging station (the depot) and departing 

from that charging station (the depot) to the sum of energy charged over all SOC intervals. 

Constraints (7.15)–(7.16) set limits on the utilization of SOC intervals for the recharges 

at stations and the depot, respectively. These constraints ensure that an SOC interval is 

nonnegative and can not exceed its length. Constraints (7.17)–(7.18) make sure that SOC 

intervals can take a positive value if the battery SOC during the arrival at the station and 

the depot is less than the upper bound of the corresponding SOC interval; and enforce 

that SOC intervals take the value 0 if the upper bound of the related SOC interval is 
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already lower than the battery SOC of the vehicle during its arrival at the station and the 

depot, respectively. These constraints are a must since the wear cost function is non-

decreasing, i.e. the solution found by solving the model tends to fill lower SOC intervals 

that are cheaper. Finally, constraints (7.19)–(7.22) define the binary decision variables. 

 Experimental Study 

7.2.1. Experimental Design 

We conduct experimental tests on the EVRPTW benchmark instances devised by 

Schneider et al. (2014). 36 small and 56 large data instances exist in this dataset. Since 

large problems are intractable, we practice on small-size instances. There are three subsets 

within this dataset, which have 5, 10 and 15 customers, respectively: each with 12 distinct 

problems. In addition, customers are characterized with respect to the initial letter(s) of 

the problem. Customers are either clustered (C) or randomly scattered (R) or both 

clustered and randomly (RC) scattered on a map. These three subsets are also divided into 

two subsets which are observable through the 3-digit number in the nomenclatures as the 

ones starting with 1 and 2, respectively. This further branching yields different time 

window lengths and capacities for the battery and cargo load. In the nomenclature of the 

problem instances, finally, the number beside ‘s’ corresponds to the number of charging 

stations available in this dataset. For example, the instance ‘c101c5-s3’ contains 5 

clustered customers and 3 charging stations. 

We set ℎ𝑑 to 1, i.e. traveling one unit of distance requires one unit of energy, and 𝑐 to 1. 

The parameters related to battery degradation are the same as explained in Section 6.1. 

We performed our experiments using three different scenarios. In Scenario 1, we 

considered the optimal (or best-known) solutions reported in Keskin and Çatay (2016) 

and Rastani et al. (2019) and calculated the corresponding total cost by taking into account 

battery wear cost. In Scenario 2, we solved the model presented in Section 7.1.  Finally, 

in Scenario 3, we repeated Scenario 2 by relaxing constraint (7.2) which enforces the EV 

to depart from the depot fully charged. In other words, the initial energy level of the 

battery becomes a decision variable. We aim not only to investigate the possible benefits 

of considering wear cost besides the energy cost but also to measure its additional 

complexity in terms of computational time. We obtained the solutions by using IBM 

ILOG CPLEX version 12.9.0 on a Windows 10 OS computer with an Intel i7-8700 3.20 
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GHz CPU and 32 GB RAM. CPLEX was run in the default mode with a computing time 

limit of 10 hours. 

7.2.2. Numerical Results 

We could solve all 5-customer problem instances at optimality. That’s why, we did not 

report any optimality gap for these solutions. The results are provided in Table 7.2. The 

nomenclature of the problem instances is shown under the first column. The columns 

‘EC’, ‘WC’ and ‘TC’ refer to the energy cost, wear cost and total cost of the route, 

respectively. The number of recharges en route is reported under column ‘#R’ and column 

‘t (sec)’ shows the computational time required for each scenario in seconds. The last two 

columns evaluate the percentage cost differences between scenarios 1-2 and 1-3, 

respectively, and a positive value indicates cost saving. Noting that ‘EC’ also reports the 

total distance traveled, we show the increase in route lengths in italic. We indicated 

improvements in total costs in bold. 5 out of 12 and 6 out of 12 routes become longer in 

the second and third scenarios, respectively because of more frequent recharging visits. 

This increase in the frequency of recharging is simply due to the non-decreasing wear 

cost function where utilizing lower SOC intervals is preferable since wear cost increases 

in the higher SOC intervals. Hence, the battery is recharged as much as needed more 

frequently. An average of 5.2% improvement in total cost is obtainable by considering 

the improvement from the third scenario. Hence, this demonstrates that optimizing 

overnight charging at the depot can bring additional cost savings. Finally, run times did 

not increase significantly. 

We presented the solutions for 10-customer instances in Table 7.3. We could not find the 

optimal solution for two problem instances in 10 hours in scenarios 2 and 3. An inferior 

upper bound is provided by CPLEX in one of the problem instances in scenario 2 due to 

the complexity of the problem. We should note that the solutions in the first scenario are 

already feasible solutions for the second and the third scenarios as well. Route plans 

change in 5 and 9 out of 12 problem instances for the second and third scenarios, 

respectively. The average improvement in total cost is 3.4% while the third setting again 

contributes more significantly. Besides not being able to find the optimal solutions in two 

instances, the run times increased dramatically. 

We reported the solutions for 15-customer instances in Table 7.4. CPLEX used the entire 

time allocated for each problem instance in the second and third scenarios, and the 
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optimality of the solutions was not guaranteed. Hence, we only provide the statistics for 

optimality gaps. In addition, CPLEX could not find even a feasible solution in one of the 

problem instances in both the second and third scenarios. As indicated with negative 

percentage deviations in the last two columns, inferior upper bounds are provided by 

CPLEX in some of the problem instances for the second and third scenarios. Excluding 

these instances, we observe that the total cost can be reduced by 5.7% on average and the 

savings can be as large as 9.9%. These results reveal the potential benefits of considering 

the battery wear explicitly when making the routing decisions.



  49 

 

Table 7.2. Results for 5-customer instances 

 Scenario 1  Scenario 2  Scenario 3    

Instance EC WC TC #R   EC WC TC #R t (sec)   EC WC TC #R t (sec)   %Δ1-2 %Δ1-3 

c101c5-s3 257.8 807.1 1064.9 3  257.8 807.1 1064.9 3 0.3  257.8 736.6 994.3 3 0.4  0.0 6.6 

c103c5-s2 175.4 530.2 705.6 3  176.1 514.7 690.8 4 0.11  176.1 480.5 656.6 4 0.2  2.1 6.9 

c206c5-s4 242.6 763.9 1006.4 3  252.1 739.5 991.6 4 0.4  249.8 710.2 960.0 4 0.2  1.5 4.6 

c208c5-s3 164.3 499.1 663.5 2  164.3 499.1 663.5 2 0.3  164.3 462.6 626.9 2 0.3  0.0 5.5 

r104c5-s3 136.7 440.7 577.4 1  137.0 427.0 564.0 1 0.5  137.2 389.3 526.5 2 0.4  2.3 8.8 

r105c5-s3 156.1 486.4 642.4 2  156.1 486.4 642.4 2 0.3  156.3 447.3 603.6 3 0.2  0.0 6.1 

r202c5-s3 128.9 388.9 517.8 2  128.9 388.9 517.8 2 0.8  128.9 388.4 517.3 2 0.6  0.0 0.1 

r203c5-s4 179.1 534.3 713.4 3  179.1 534.3 713.4 3 0.5  179.1 517.6 696.7 3 0.5  0.0 2.3 

rc105c5-s4 233.8 751.4 985.2 3  233.8 745.1 978.9 4 0.2  247.5 667.1 914.7 5 0.3  0.6 7.2 

rc108c5-s4 253.9 766.1 1020.0 3  253.9 766.1 1020.0 3 0.6  253.9 710.7 964.6 3 0.3  0.0 5.4 

rc204c5-s4 185.2 558.9 744.1 2  185.4 537.6 723.0 3 3.7  185.4 528.2 713.7 3 2.5  2.8 4.1 

rc208c5-s3 168.0 525.6 693.6 2   168.0 525.6 693.6 2 1.3   168.0 488.7 656.7 2 1.0   0.0 5.3 

Average 190.1 587.7 777.8 2.4   191.0 580.9 772.0 2.8 0.7   192.0 543.9 736.0 3.0 0.6   0.8 5.2 
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Table 7.3. Results for 10-customer instances 

 Scenario 1  Scenario 2  Scenario 3    

Instance EC WC TC #R   EC WC TC #R t (min)   EC WC TC #R t (min)   %Δ1-2 %Δ1-3 

c101c10-s5 388.3 1208.5 1596.7 5  389.8 1186.9 1576.6 5 < 1  388.6 1105.8 1494.5 6 8  1.3 6.4 

c104c10-s4 273.9 842.2 1116.2 3  276.1 841.3 1117.4 4 600  276.1 795.1 1071.2 4 600  -0.1 4.0 

c202c10-s5 304.1 884.6 1188.6 5  304.4 879.0 1183.4 6 < 1  304.4 852.9 1157.3 6 < 1  0.4 2.6 

c205c10-s3 228.3 691.8 920.1 2  228.9 685.9 914.8 3 < 1  232.6 652.1 884.7 4 3  0.6 3.8 

r102c10-s4 249.2 812.1 1061.3 3  249.2 812.1 1061.3 3 < 1  249.2 770.3 1019.4 3 < 1  0.0 3.9 

r103c10-s3 206.3 639.1 845.4 3  206.3 639.1 845.4 3 86  210.9 593.1 804.0 4 50  0.0 4.9 

r201c10-s4 241.5 733.5 975.1 5  241.5 733.5 975.1 5 < 1  241.6 700.5 942.1 6 < 1  0.0 3.4 

r203c10-s5 222.6 650.4 873.1 4  222.6 650.4 873.1 4 600  222.6 648.9 871.5 4 600  0.0 0.2 

rc102c10-s4 423.5 1300.8 1724.4 3  423.5 1300.8 1724.4 3 < 1  423.5 1245.8 1669.3 3 < 1  0.0 3.2 

rc108c10-s4 347.9 1054.7 1402.6 3  347.9 1054.7 1402.6 3 49  352.1 1002.7 1354.8 4 183  0.0 3.4 

rc201c10-s4 412.9 1256.9 1669.8 6  413.5 1237.9 1651.4 7 < 1  413.5 1222.3 1635.8 7 < 1  1.1 2.0 

rc205c10-s4 326.0 1001.5 1327.4 3   326.0 1001.5 1327.4 3 25   333.0 961.8 1294.8 4 110   0.0 2.5 

Average 302.0 923.0 1225.0 3.8   302.5 918.6 1221.1 4.1 272.0   304.0 879.3 1183.3 4.6 222.0   0.3 3.4 
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Table 7.4. Results for 15-customer instances 

 Scenario 1  Scenario 2  Scenario 3    

Instance EC WC TC #R   EC WC TC #R Gap   EC WC TC #R Gap   %Δ1-2 %Δ1-3 

c103c15-s5 348.5 1065.8 1414.3 5  447.9 1357.4 1805.3 6 57.3  350.4 999.7 1350.1 6 100.0  -27.6 4.5 

c106c15-s3 275.1 885.4 1160.5 2  275.1 885.4 1160.5 2 44.6  339.9 960.8 1300.7 4 100.0  0.0 -12.1 

c202c15-s5 383.6 1133.5 1517.1 5  425.5 1281.0 1706.4 6 69.9  391.7 1111.8 1503.5 6 100.0  -12.5 0.9 

c208c15-s4 300.6 923.3 1223.8 3  301.8 921.7 1223.6 3 58.0  301.8 873.8 1175.6 3 100.0  0.0 3.9 

r102c15-s8 412.8 1291.3 1704.1 6  421.3 1287.6 1708.9 6 33.8  413.3 1184.8 1598.1 7 97.0  -0.3 6.2 

r105c15-s6 336.2 1046.7 1382.8 4  337.4 1033.6 1371.0 5 55.5  337.4 947.7 1285.0 5 64.1  0.9 7.1 

r202c15-s6 507.3 1507.2 2014.6 10  No solution  No solution   
 

r209c15-s5 313.2 930.7 1244.0 6  325.9 955.7 1281.6 7 84.3  358.0 1060.0 1418.0 7 100.0  -3.0 -14.0 

rc103c15-s5 397.7 1255.1 1652.8 4  399.4 1231.7 1631.1 5 37.1  400.2 1089.7 1489.9 6 100.0  1.3 9.9 

rc108c15-s5 370.3 1183.8 1554.0 4  378.5 1162.6 1541.1 4 50.0  370.4 1073.8 1444.1 5 100.0  0.8 7.1 

rc202c15-s5 394.4 1222.0 1616.4 6  401.6 1212.5 1614.1 7 68.1  466.2 1331.9 1798.1 7 100.0  0.1 -11.2 

rc204c15-s7 382.2 1094.4 1476.6 7   431.5 1216.7 1648.2 8 84.3   464.8 1271.2 1736.0 10 100.0   -11.6 -17.6 

Average 368.5 1128.3 1496.7 5.2   376.9 1140.5 1517.4 5.4 58.4   381.3 1082.3 1463.6 6.0 96.5   -4.7 -1.4 
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8. CONCLUSION 

 

 

 

In this thesis, the influence of battery degradation on the route and charge schedules of 

the EVs was investigated within the contexts of the ETSPTW and EVRPTW. In Chapter 

4, we extended the ETSPTW by incorporating battery wear cost and proposed a 

mathematical model. 

In Chapter 5, we developed a matheuristic algorithm, MatHeur, which is a VNS-based 

method enhanced with an exact solver employed for making recharge-related decisions. 

We extended the mathematical model of the FRVCP by considering battery degradation, 

and solving it on CPLEX requires a reasonably short runtime. We also developed a new 

mechanism, Slack, that is considered during the construction and local search stages for 

the insertion of charging stations in the next phase. 

The performance of MatHeur was validated using benchmark instances from the literature 

in Chapter 6. MatHeur outperformed CPLEX in terms of solution quality and 

computational time in the small-size instances. Since no benchmark results are provided 

in the literature regarding our problem, we made comparisons among the solutions 

obtained with MatHeur by aiming the minimization of distance and of operational costs 

including battery wear cost, respectively. Our results revealed that an average of 5% cost-

saving is attainable when battery degradation is considered while making routing and 

charging decisions. Furthermore, we obtained the tours that have more frequent stops for 

recharging en route. Thus, we demonstrated the utility of considering battery degradation 

during the route and charge planning. We also analyzed how much our solutions are 

sensitive with respect to battery size of the EV and time windows restrictions, and we 

observed that (i) the tours with fewer stops for recharging and less operational costs are 

obtained as the battery capacity increases; and (ii) the recharge frequency does not change 
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significantly in the presence of time windows whereas the cost of the tour reduces as the 

time window restrictions relax. Finally, we demonstrated that the multi-start version of 

MatHeur reaches better convergence while the runtime increases significantly. 

In Chapter 7, we solved the mathematical model of the EVRPTW-BD for the small-size 

instances from the literature. The results showed that the EVs may travel longer distances 

due to more frequent recharging, hence, consume more energy. However, the increased 

energy cost is offset in the total operational costs since the wear cost is considerably 

higher compared to the energy cost. Moreover, optimizing overnight charging at the depot 

can bring additional cost savings as opposed to full charge, which is a common 

assumption in the literature and practice in the sector. Although our experiments involved 

only small-size instances, we observed excessive computational times in some instances, 

which could not be solved to optimality. 

Future research may focus on developing solution approaches that provide high-quality 

solutions for large-size problems of the EVRPTW-BD with reasonable computational 

effort. Moreover, integrating non-increasing and custom wear cost functions into 

mathematical models might also be another future research direction. Finally, the impact 

of charging speed, such as normal, fast and super-fast, on the battery wear can be 

investigated and integrated into our problem.  
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Appendix A. Data Modification 

Integer distances in a distance matrix mainly result in the violation of triangular inequality 

and overestimation of the results. Therefore, we calculate the Euclidean distances in two 

decimals. However, the tour lengths are increased with the elimination of overestimation. 

Hence, we extend the length of the planning horizon and late arrival time of customer 

nodes in the problem instances.  

Table A.1. Extension of late arrival times in the small-size problem instances 

Instance Integer BKS 2-Decimal BF %Δ Increase in TW 

n20w120.1 267 280.74 5.15 6% 

n20w120.2 218 225.92 3.63 4% 

n20w120.3 303 310.25 2.39 3% 

n20w120.4 300 309.33 3.11 4% 

n20w120.5 240 246.61 2.75 3% 

n20w140.1 176 184.94 5.08 6% 

n20w140.2 272 280.31 3.06 4% 

n20w140.3 236 241.97 2.53 3% 

n20w140.4 255 258.54 1.39 2% 

n20w140.5 225 228.52 1.56 2% 

n20w160.1 241 250.82 4.07 5% 

n20w160.2 201 207.77 3.37 4% 

n20w160.3 201 206.62 2.80 3% 

n20w160.4 203 209.21 3.06 4% 

n20w160.5 245 252.93 3.24 4% 

n20w180.1 253 260.47 2.95 3% 

n20w180.2 265 273.93 3.37 4% 

n20w180.3 271 278.87 2.90 3% 

n20w180.4 201 218.22 8.57 9% 

n20w180.5 193 199.04 3.13 4% 

n20w200.1 233 239.74 2.89 3% 

n20w200.2 203 208.25 2.59 3% 

n20w200.3 249 257.04 3.23 4% 

n20w200.4 293 297.85 1.66 2% 

n20w200.5 227 231.59 2.02 3% 

Table A.1 and Table A.2 report the increase in the TSPTW tour lengths when the 

Euclidean distances are truncated in two decimal places instead of rounded down to the 

nearest integer. The first column shows the nomenclature of the instances. The column 

under ‘Integer BKS’ shows the length of the TSPTW tour of the optimal or the BKS in 

the literature. We report the length of our best-found (BF) TSPTW tour under column ‘2-

Decimal BF’ when the Euclidean distances have two decimal places. The increase rate in 
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the length of the tours is reported under column ‘%Δ’. In the last column, we round up 

the values reported under ‘%Δ’. 

Table A.2. Extension of late arrival times in the large-size problem instances 

Instance Integer BKS 2-Decimal BF %Δ Increase in TW 

n150w120.1 734 786.51 7.15 8% 

n150w120.2 677 727.89 7.52 8% 

n150w120.3 747 787.96 5.48 6% 

n150w120.4 763 812.89 6.54 7% 

n150w120.5 689 734.42 6.59 7% 

n150w140.1 762 811.4 6.48 7% 

n150w140.2 755 807.72 6.98 7% 

n150w140.3 613 670.93 9.45 10% 

n150w140.4 676 717.49 6.14 7% 

n150w140.5 663 709.88 7.07 8% 

n150w160.1 706 752.93 6.65 7% 

n150w160.2 711 756.38 6.38 7% 

n150w160.3 608 659.79 8.52 9% 

n150w160.4 672 712.69 6.06 7% 

n150w160.5 658 705.56 7.23 8% 

n200w120.1 799 918.05 14.90 15% 

n200w120.2 721 774.13 7.37 8% 

n200w120.3 880 939.96 6.81 7% 

n200w120.4 777 836.96 7.72 8% 

n200w120.5 841 905.15 7.63 8% 

n200w140.1 834 904.68 8.47 9% 

n200w140.2 760 819.19 7.79 8% 

n200w140.3 758 821.27 8.35 9% 

n200w140.4 816 903.21 10.69 11% 

n200w140.5 822 882.23 7.33 8% 

The late arrival time of each node in the problem instances increased by a fixed amount 

which is calculated by multiplying the length of the planning horizon in the instance with 

the increase rate reported under the last column.  
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Appendix B. Comparison of Single- and Multi-Start Approaches  

In this appendix, we present the detailed comparative results obtained by single- and 

multi-start version of MatHeur. Table B.1 and Table B.2 display the results for the 

instances with 5- and 10-stations, respectively. 

Table B.1. Comparison of single- and multi-start results on large-size instances with 5-

station 

 Single-start  Multi-start 

Instance Best Avg %Dev t (s)   Best Avg %Dev t (s) 

n150w120s5.1 2946.55 3026.92 2.73 31.00  2965.17 3016.66 1.74 123.60 

n150w120s5.2 2519.96 2580.61 2.41 39.12  2525.89 2548.67 0.90 139.00 

n150w120s5.3 3176.46 3180.66 0.13 19.44  3083.72 3157.64 2.40 81.10 

n150w120s5.4 2704.49 2740.96 1.35 29.20  2695.91 2729.14 1.23 83.40 

n150w120s5.5 2763.56 2799.74 1.31 40.84  2776.84 2787.87 0.40 137.50 

n150w140s5.1 2917.76 2958.63 1.40 41.00  2917.76 2928.39 0.36 122.70 

n150w140s5.2 2986.75 3093.56 3.58 37.64  2984.41 3018.23 1.13 133.70 

n150w140s5.3 2434.18 2481.00 1.92 39.56  2423.65 2452.80 1.20 124.70 

n150w140s5.4 2630.78 2674.19 1.65 25.40  2630.39 2633.44 0.12 97.20 

n150w140s5.5 2545.28 2609.29 2.51 38.16  2533.40 2581.29 1.89 133.70 

n150w160s5.1 2819.10 2897.34 2.78 27.84  2804.85 2851.14 1.65 90.60 

n150w160s5.2 2832.41 2954.21 4.30 41.20  2832.56 2878.97 1.64 117.10 

n150w160s5.3 2376.24 2399.40 0.97 25.84  2368.67 2378.95 0.43 93.80 

n150w160s5.4 2700.12 2786.16 3.19 25.48  2772.13 2797.98 0.93 85.10 

n150w160s5.5 2629.97 2716.95 3.31 43.44  2620.69 2670.50 1.90 129.70 

n200w120s5.1 2882.18 3048.46 5.77 94.40  2863.59 2942.53 2.76 284.30 

n200w120s5.2 2894.23 2951.86 1.99 72.08  2892.44 2922.91 1.05 232.00 

n200w120s5.3 3282.02 3351.77 2.13 78.64  3275.83 3314.14 1.17 265.70 

n200w120s5.4 3234.27 3276.80 1.32 65.76  3224.07 3252.10 0.87 248.00 

n200w120s5.5 3135.87 3177.92 1.34 71.36  3135.87 3159.71 0.76 273.80 

n200w140s5.1 3146.56 3274.68 4.07 102.96  3154.12 3215.69 1.95 319.00 

n200w140s5.2 3121.76 3257.40 4.34 96.44  3138.26 3170.65 1.03 290.10 

n200w140s5.3 2852.66 3025.34 6.05 63.40  2899.02 2945.99 1.62 214.30 

n200w140s5.4 2977.19 3108.29 4.40 107.20  2977.19 3056.00 2.65 288.20 

n200w140s5.5 3204.75 3279.94 2.35 73.68   3219.15 3255.69 1.14 256.50 

Average 2868.60 2946.08 2.69 53.24   2868.62 2906.68 1.32 174.59 

  



  57 

 

Table B.2. Comparison of single- and multi-start results on large-size instances with 10-

station 

 Single-start  Multi-start 

Instance Cost Avg %Dev t (s)   Cost Avg %Dev t (s) 

n150w120s10.1 2882.64 2944.86 2.16 34.68  2882.27 2931.32 1.70 135.00 

n150w120s10.2 2472.51 2518.49 1.86 39.00  2479.22 2490.36 0.45 140.70 

n150w120s10.3 3156.89 3160.53 0.12 21.16  3033.24 3105.52 2.38 87.90 

n150w120s10.4 2632.86 2670.27 1.42 30.40  2632.59 2646.87 0.54 86.00 

n150w120s10.5 2635.41 2680.74 1.72 41.12  2635.83 2657.99 0.84 146.30 

n150w140s10.1 2845.26 2902.06 2.00 41.24  2845.26 2869.20 0.84 123.80 

n150w140s10.2 2917.03 3023.11 3.64 37.72  2913.75 2941.71 0.96 127.40 

n150w140s10.3 2403.06 2441.31 1.59 50.88  2393.46 2417.40 1.00 162.70 

n150w140s10.4 2580.90 2612.30 1.22 23.00  2580.90 2581.16 0.01 85.90 

n150w140s10.5 2474.20 2532.33 2.35 37.96  2473.78 2501.02 1.10 131.00 

n150w160s10.1 2749.64 2831.48 2.98 36.04  2735.39 2781.25 1.68 125.70 

n150w160s10.2 2739.07 2896.63 5.75 41.24  2724.41 2830.14 3.88 124.20 

n150w160s10.3 2317.31 2339.08 0.94 26.84  2317.49 2327.10 0.41 95.70 

n150w160s10.4 2648.12 2740.29 3.48 25.00  2704.92 2768.50 2.35 84.80 

n150w160s10.5 2564.83 2670.26 4.11 46.96  2573.72 2618.95 1.76 133.00 

n200w120s10.1 2822.28 2978.23 5.53 94.00  2809.53 2873.27 2.27 285.10 

n200w120s10.2 2831.05 2884.23 1.88 73.56  2829.45 2853.99 0.87 236.00 

n200w120s10.3 3184.87 3283.37 3.09 79.24  3184.87 3235.03 1.57 271.10 

n200w120s10.4 3126.69 3165.90 1.25 64.04  3127.11 3148.50 0.68 240.30 

n200w120s10.5 3052.36 3077.98 0.84 58.08  3052.36 3061.83 0.31 214.10 

n200w140s10.1 3094.30 3240.56 4.73 102.36  3097.50 3158.51 1.97 314.10 

n200w140s10.2 3057.77 3165.09 3.51 99.80  3062.16 3096.14 1.11 303.50 

n200w140s10.3 2811.51 2984.60 6.16 66.44  2866.95 2904.45 1.31 233.80 

n200w140s10.4 2960.55 3071.69 3.75 112.64  2960.55 3026.64 2.23 295.30 

n200w140s10.5 3164.25 3231.49 2.13 75.96   3170.32 3205.88 1.12 259.60 

Average 2805.01 2881.88 2.73 54.37   2803.48 2841.31 1.33 177.72 
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