
RISC-V BASED TRIPLE MODULAR REDUNDANT CPU DESIGN
FOR SPACE APPLICATIONS

by
EMİR CAN YAMAN

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of

the requirements for the degree of Master of Science

Sabancı University
December 2022

EMİR CAN YAMAN 2022 ©

All Rights Reserved

ABSTRACT

RISC-V BASED TRIPLE MODULAR REDUNDANT CPU DESIGN FOR
SPACE APPLICATIONS

EMİR CAN YAMAN

Electronics Engineering, M.S. Thesis, December 2022

Thesis Supervisor: Prof. Yusuf Leblebici

Keywords: TMR, RISC-V, Spacecraft, SEU, Processor, Word voter

Fault-tolerant processors are essential for spacecraft because of the high-radiation
environment of space. While the required reliability can be achieved by using spe-
cialized radiation-hardened processors, the cost is prohibitive. With the advent of
CubeSats, low-cost spacecraft started to increasingly rely on non-radiation-hardened
commercial-off-the-shelf components. Triple-modular redundancy can be applied
to existing processor designs to increase reliability without using costly radiation-
hardened ASIC processes or FPGAs. In this thesis, we demonstrate a conceptual
fault-tolerant RISC-V processor by applying coarse-grain TMR to the open-source
PicoRV32 core. To implement coarse-grain TMR, we attached word voters to the
memory bus without modifying the internal structure of the processors. Using word
voters increases error detection capability by revealing multi-module errors which
can be masked by conventional bit-by-bit voters. Moreover, we propose a TMR con-
troller module that can relay fault conditions to software and reset the CPUs. The
module can help software to facilitate fault recovery procedures. Finally, we com-
pare the synthesis results of our demonstration system with similar applications that
use finer-grain TMR implementation. Our preliminary experiments show that the
proposed coarse-grain TMR architecture can be used to protect ready-made IP cores
with less development effort, which can be useful for low-cost space applications.

iv

ÖZET

UZAY UYGULAMALARI İÇIN RISC-V TABANLI ÜÇLÜ MODÜLER
YEDEKLİ CPU TASARIMI

EMİR CAN YAMAN

Elektronik Mühendisliği Yüksek Lisans Tezi, Aralık 2022

Tez Danışmanı: Prof. Dr. Yusuf Leblebici

Anahtar Kelimeler: TMR, RISC-V, Uzay aracı, SEU, İşlemci, Word oylayıcı

Uzaydaki yüksek radyasyon seviyesi nedeniyle arızaya dayanıklı işlemciler uzay
araçları için elzemdir. Gerekli güvenilirlik seviyesi radyasyona dayanıklı özel işlem-
ciler tarafından sağlanabilir, ancak bu işlemcilerin maliyeti yüksektir. Küp uyduların
yaygınlaşması ile birlikte, düşük maliyetli uzay araçlarında ticari kullanıma hazır
komponentlerin kullanımı artmıştır. Hazır işlemci tasarımları, üçlü modüler yedek-
leme sayesinde radyasyona dayanıklı ASIC prosesleri ve FPGA’ler gibi maliyetli
unsurlar kullanılmadan daha güvenilir hale getirilebilir. Bu tezde, açık kaynaklı
PicoRV32 çekirdeğine kaba taneli TMR uygulayarak hataya dayanıklı konsept bir
RISC-V işlemci tasarımı sunulmaktadır. Kaba taneli TMR uygulamasını gerçek-
leştirmek için, word oylayıcılar işlemcinin iç yapısında değişiklik yapılmadan bellek
anayoluna bağlanmıştır. Geleneksel bit-by-bit oylayıcılar yernine word oylayıcıların
kullanılması, birden çok modülde aynı anda gerçekleşebilecek hataları ortaya çıkar-
tarak hata tanılama kapasitesini arttırmaktadır. Bunların yanında, yazılımın oluşan
hatalardan haberdar olmasını sağlayan ve işlemcileri yeniden başlatabilen bir TMR
kontrol modülü tasarlanmıştır. Bu modül yazılımın hata kurtarma prosedürlerini
başlatmasına yardımcı olabilir. Son olarak sistemin sentez çıktıları, ince taneli TMR
kullanan benzer uygulamalarla karşılaştırılmıştır. Ön sonuçlar, tasarlanan kaba
taneli TMR mimarisinin, hazır IP bloklarının daha düşük geliştirme eforu sarf edil-
erek korunmasında kullanılabileceğini göstermektedir. Bu tasarımlar düşük bütçeli
uzay uygulamaları için faydalı olabilir.

v

ACKNOWLEDGEMENTS

I want to thank my advisors Dr. Yusuf Leblebici and Dr. Erdinç Öztürk for their
academic guidance, and my family and friends for supporting me throughout my
work.

I also want to especially thank Gizem Kerem who has always been with me and
shared all my feelings.

vi

To my family & friends

vii

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATONS . xiii

1. Introduction . 1
1.1. Reliable Computing in Space Applications . 1
1.2. Thesis Organization . 6

2. Radiation Effects on Circuits . 7
2.1. Cumulative Effects . 7

2.1.1. Total Ionizing Dose . 7
2.1.2. Displacement Damage Dose . 8

2.2. Single-Event Effects . 8
2.2.1. Destructive Single-Event Effects . 9
2.2.2. Non-destructive Single Event Effects . 9

2.3. Mitigation of Radiation Effects . 10

3. Redundant Systems . 12
3.1. Types of Redundancy . 12

3.1.1. Hardware Redundancy . 12
3.1.2. Information Redundancy . 13
3.1.3. Time Redundancy . 13
3.1.4. Software Redundancy . 14

3.2. N-Modular Redundancy . 14
3.2.1. Granularity . 16

3.3. Voters . 17
3.3.1. Majority Voter . 18
3.3.2. Word Voter . 19

viii

4. RISC-V . 21
4.1. Instruction Set . 21
4.2. PicoRV32 . 22

4.2.1. PicoRV32 Core . 24
4.2.2. Memory Interface . 25
4.2.3. Pico Co-Processor Interface . 26
4.2.4. Compiler . 27

5. System Design . 28
5.1. CPU Design. 28

5.1.1. Native Memory Interface . 29
5.2. Word Voter Design . 29
5.3. TMR Controller . 32

6. Synthesis and Benchmarks . 34
6.1. Environment Setup . 34
6.2. Simulation . 35
6.3. Area and Performance . 36
6.4. Reliability Expectations . 38

7. Conclusion . 40
7.1. Future Work . 40

BIBLIOGRAPHY. 42

ix

LIST OF TABLES

Table 3.1. A 3-bit example where conventional voters can mask actual
errors. 20

Table 4.1. Structures of the RISC-V base instruction formats. 22
Table 4.2. RISC-V Instruction Set Architecture base and extensions 23
Table 4.3. Instruction timings of the basic PicoRV32 processor. 25

Table 5.1. Truth table for the error output. 30

Table 6.1. Tools used for system simulation and synthesis 34
Table 6.2. Comparison of the Vivado synthesis and implementation tim-

ings for reference simplex and TMR systems. 36
Table 6.3. Comparison of the Vivado synthesis and implementation area

for reference simplex and TMR systems. 36
Table 6.4. Redundant Processor designs that use different TMR architec-

tures. 37
Table 6.5. Comparison of TMR area overhead with results. 37
Table 6.6. Comparison of area and speed results. 37

x

LIST OF FIGURES

Figure 1.1. Saturn Launch Vehicle Digital Computer was one of the first
digital spacecraft computers that use TMR. 2

Figure 1.2. Martian helicopter Ingenuity mainly uses COTS parts. 3
Figure 1.3. AAC Clyde Space’s KRYTEN-M3 satellite on-board computer

uses COTS parts and achieves fault-tolerance using a combination of
the listed measures. 4

Figure 1.4. SKY90-PD stack topology diagram.. 5

Figure 2.1. Ionizing radiation cause trapped charges inside the silicon. 8
Figure 2.2. A charged particle ionizes the material around it while passing

through a transistor. 9

Figure 3.1. Lockstep computing is an example of hardware-based time
redundancy. 14

Figure 3.2. Simplex, triplex (TMR), and 5-MR systems were compared
for system reliability.. 16

Figure 3.3. Examples of hardware redundancy applied at different granu-
larity levels. 17

Figure 3.4. Triplicated voters prevent single point of failure. 18
Figure 3.5. Majority voters can be realized using a variety of gates. 19
Figure 3.6. Probability of correct and corrupt outputs of NMR bit and

word voters compared. 20

Figure 4.1. Block diagram of the eFabless RAVEN SoC, based on the
PicoRV32. 24

Figure 4.2. Signals of the PicoRV32 native memory interface. 26
Figure 4.3. Signals of the PicoRV32 Pico Co-Processor Interface.. 27

Figure 5.1. Core-level TMR architecture of the system. 29
Figure 5.2. Block diagram of the word voter. 31
Figure 5.3. Gate-level diagram of the word match circuit. 32

xi

Figure 5.4. Software can initiate fault recovery routine without interrupt-
ing critical tasks. 33

Figure 6.1. Screenshot of error injection and recovery of the TMR system
during simulation. 35

xii

LIST OF ABBREVIATIONS

ALU: Arithmetic Logic Unit
AMBA: Advanced Microcontroller Bus Architecture
ASIC: Application-Specific Integrated Circuit
AXI: Advanced eXtensible Interface
CISC: Complex Instruction Set Computer
COTS: Commercial Off-The-Shelf
CPU: Central Processing Unit
DRAM: Dynamic Random Access Memory
DUT: Device Under Test
ECC: Error Correction Code
ESA: European Space Agency
FPGA: Field Programmable Gate Array
FRAM: Ferroelectric Random Access Memory
GPL: General Public License
HDL: Hardware Description Language
IP: Intellectual Property
ISA: Instruction Set Architecture
LVDC: Launch Vehicle Digital Computer
MIPS: Million Instructions per Second
MRAM: Magnetoresistive Random Access Memory
PCPI: Pico Co-Processor Interface
PDK: Process Design Kit
RAM: Random Access Memory
RISC: Reduced Instruction Set Computer
RTL: Register-Transfer Level
SEE: Single-Event Effect
SEL: Single-Effect Latchup
SET: Single-Event Transient
SEU: Single-Event Upset
SOI: Silicon-on-Insulator

xiii

SOS: Silicon-on-Sapphire
SPARC: Scalable Processor ARChitecture
SRAM: Static Random Access Memory
TID: Total Ionizing Dose
TMR: Triple-Modular Redundancy

xiv

1. Introduction

Fault-tolerant systems are designed to continue operating correctly if some part
of the system becomes faulty. Fault-tolerant systems are especially important for
“mission-critical” and “life-critical” devices such as avionics and medical devices.
They are also crucial for devices that are designed to operate in harsh environments
where error detection and mitigation are imperative to keep the device in working
condition during the mission lifetime. The space environment is one of the harsh
environments where fault-tolerant electronics are a must because of the high doses
of radiation and energetic particles.

Triple Modular Redundancy (TMR) is one of the commonly used methods to protect
logic circuits from errors. In TMR, circuit blocks are triplicated and their results
are compared against each other. In case of a difference, the outlier block can be
ignored and the output remains error-free. This principle can be applied to logic
systems at different granularity levels.

In this thesis, a concept study of implementing TMR to an open-source RISC-V CPU
is showcased. Without modifying the internal design, TMR logic is implemented as
a wrapper around 3 identical processor cores. The advantages and disadvantages of
implementing TMR at this granularity level are investigated. Different concepts for
error mitigation and recovery besides the standard TMR approach are also discussed.
In addition, the feasibility of using the implemented system as a co-processor in
spacecraft systems is investigated.

1.1 Reliable Computing in Space Applications

Beginning in the 1960s, early digital computers started to be used in the control
and data handling systems of spacecraft. The first digital computer to be used

1

in space was the Gemini Guidance Computer (Tomayko, 1988). As reliability has
the utmost importance in spacecraft systems, especially manned ones, spacecraft
computers are started to evolve in that direction. Since the early digital computers
are simple and less advanced, they are less affected by the radiation environment
of space. Still, some of the critical computer systems such as the Saturn Launch
Vehicle Digital Computer used triple modular redundancy for guaranteed reliability
(Tomayko, 1988).

Figure 1.1 Saturn Launch Vehicle Digital Computer was one of the first digital
spacecraft computers that use TMR. Voter diagram taken from the original Saturn

LVDC manual (International Business Machines Corporation, 1964).

As spacecraft computers become more advanced and the technology nodes for inte-
grated circuits started to get smaller, their radiation sensitivity increased. Many of
the high-budget government missions started to use specialized radiation-hardened
processors. These processors usually use special processes and packaging technolo-
gies such as silicon-on-sapphire (SOS). While radiation-hardened processors are cer-
tified and guaranteed to work reliably in high flux environments such as deep space,
they are usually several generations behind their modern counterparts and they cost
orders of magnitude higher than the equivalent non-hardened ones. For example,
a radiation-hardened processor RAD750 from BAE Systems, first launched in 2005
can clock up to 200 MHz and performs around 400 MIPS (BAE Systems, 2008). A
consumer processor from the era, Intel Pentium M 740 can clock up to 1.7 GHz and
performs approximately 7400 MIPS (Sun, 2006).

Several projects existed during the 2000s, aiming to build a new generation of space-
capable microprocessors, such as ESA’s Next Generation Multipurpose Micropro-
cessor project. The project resulted in the LEON series of processors based on Sun
Microsystems’ open-source SPARC architecture and capable of various configura-
tions (Andersson, Gaisler & Weigand, 2010). Today, Cobham Gaisler continues to
develop LEON processors in addition to the NOEL-V project which is based on
RISC-V architecture and uses the same fault tolerance measures as LEON. LEON

2

microprocessors are usually built using radiation-hardened processes or radiation-
tolerant FPGAs (Cobham Gaisler AB, 2021).

Besides the process-based measures, radiation-resistant versions of the LEON and
NOEL-V processors use triple modular redundant flip-flops and ECC-protected reg-
isters (Andersson et al., 2010). Non-fault-tolerant versions of the LEON and NOEL-
V processors are also available open-source with a GPL license. As of today, many
successful spacecraft have used LEON microprocessors (European Space Agency,
2013).

Figure 1.2 Martian helicopter Ingenuity mainly uses COTS parts. Such as a
Qualcomm Snapdragon 801 mobile phone SoC for image processing (Tzanetos,

Aung, Balaram, Grip, Karras, Canham, Kubiak, Anderson, Merewether, Starch,
Pauken, Cappucci, Chase, Golombek, Toupet, Smart, Dawson, Ramirez, Lam,

Stern, Chahat, Ravich, Hogg, Pipenberg, Keennon & Williford, 2022).

In the last decade, decreasing the cost of space access paved the way for soaring num-
bers of commercial and academic small spacecraft projects (Camps, 2019). These
spacecraft are often designed using COTS hardware due to budgetary reasons. As
the COTS hardware does not have the inherent radiation resistance required by
spacecraft, a different approach is needed. Some of the methods currently used by
COTS-based fault-tolerant CubeSat hardware are listed below:

• Using flash-based non-volatile FPGAs instead of SRAM-based FPGAs which
are more susceptible to SEEs.

3

• Scrubbing on SRAM-based FPGAs.

• TMR and other fault-tolerant design methods on FPGA logic.

• Hardware and software error correction on volatile and non-volatile memory.

• Using inherently radiation-resistant memory technologies such as MRAM and
FRAM instead of DRAM, SRAM, and flash.

• Multiple layers of software and hardware watchdogs.

• Board-level current-limiting against SELs.

Figure 1.3 AAC Clyde Space’s KRYTEN-M3 satellite on-board computer uses
COTS parts and achieves fault-tolerance using a combination of the listed

measures (AAC Clyde Space, 2020).

Currently, there are several RISC-V-based microprocessor designs claiming fault
tolerance, such as Klessydra (Barbirotta, Cheikh, Mastrandrea, Menichelli, Vigli
& Olivieri, 2021), DuckCore (Li, Zhang & Bao, 2022), and NOEL-V (Andersson,
2020). Although realizing such designs using FPGAs is possible, with the increas-
ing availability and decreasing cost of low-volume ASIC production, some academic
and commercial institutions might also be interested in realizing fault-tolerant mi-
croprocessor designs in ASICs. PULP project from ETH Zurich and the Univer-
sity of Bologna have already started working on such modular redundant RISC-
V-based ASIC designs (Milanovic, Rogenmoser & Egimann, 2022; Rogenmoser &
Jiang, 2022).

4

Although low-volume ASIC production is usually not available in cutting-edge nodes,
radiation-tolerant designs are already better off using several generations behind SOI
nodes due to their lower susceptibility to SEEs. Google and SkyWater Technology
recently announced that they are releasing the open-source PDK (process design
kit) for SKY90-FD process. SKY90-FD is a 90 nm fully depleted silicon on insula-
tor process which is especially suited for radiation tolerant applications (Google &
Skywater, 2022).

Figure 1.4 SKY90-PD stack topology diagram (Euphrosine & Mahintorabi, 2014).

Looking ahead to these developments, it can be beneficial to visit the core-level
TMR approach applied to a simple non-redundant RISC-V core. The design might
prove useful as a co-processor or a housekeeper in an FPGA or ASIC design.

1.2 Thesis Organization

5

The thesis starts by introducing the problem and the objective. Chapters 2, 3, and
4 explain the key concepts such as radiation effects on circuits, modular redundancy,
and RISC-V instruction set architecture respectively. The system designed to study
the concept is explained in detail in chapter 5. In chapter 6, the synthesis and
benchmark results of the conceptual system are evaluated. Finally, the conclusion
and possible future work are discussed in the last chapter.

6

2. Radiation Effects on Circuits

The performance and survivability of devices operating in radiation environments
such as in space, aircraft, and particle accelerators are threatened by the effects of
radiation and energetic particles on microelectronics. Radiation affects the func-
tionality of the microelectronics mainly by disrupting the normal operation of the
transistors and memory cells in various ways. The impact of radiation on electronic
circuits can be classified as cumulative and single-event effects (George, 2019).

2.1 Cumulative Effects

Cumulative effects arise from the gradual buildup of charges (TID) and crystal
lattice defects (DDD) caused by the ionized particles. Mitigation of the cumulative
effects is usually done at the process or part levels, such as by using wide-bandgap
materials and careful layout design (George, 2019).

2.1.1 Total Ionizing Dose

In MOS structures, passing ionizing radiation can create free electron-hole pairs.
While these free electrons can be quickly dissipated by the switching electric fields
thanks to their high mobility, holes can be trapped in the gate oxide. This accu-
mulation results in a gradual lowering of the threshold voltage, eventually causing
NMOS devices to stuck on and PMOS devices to stuck closed (George, 2019).

7

Figure 2.1 Total ionizing dose cause trapped charges inside the silicon (Lee, Lee,
Kim, Hwang & Cho, 2021).

2.1.2 Displacement Damage Dose

When passing through a semiconductor device, even the non-ionizing high-energy
particles can knock some of the atoms out of their crystal lattice structure and
cause dislocations. These dislocations disrupt the electronic band structure of the
semiconductor material. These kinds of defects lower the gain of the amplifier-type
structures, eventually causing performance degradation in linear circuits (George,
2019).

2.2 Single-Event Effects

Single-event effects (SEE) are caused by a single passing particle, which in turn
ionizes the material along its track and can cause various disruptive and destructive
effects. Mitigation of SEEs can be done at various stages including circuit and
software levels. Examples of SEE mitigation strategies are presented in section 2.3.

8

Figure 2.2 A charged particle ionizes the material around it while passing through
a transistor. This can cause tunneling of the charges to unwanted regions (Payne,

2014).

2.2.1 Destructive Single-Event Effects

Some of the single-event effects can be energetic enough to create an ionized track
across two opposite polarity regions of the device. This can create a short circuit
with a positive feedback loop that cannot be broken until the destruction of the
device or a power cycle. Single event latch-up (SEL), single event burnout (SEB),
and single event gate or dielectric rupture (SEGR/SEDR). These events can make
the device nonoperational or cause latent performance problems (George, 2019).

2.2.2 Non-destructive Single Event Effects

Non-destructive single-event effects are caused by ionizing radiation or particles that
momentarily disrupts the operation of semiconductor devices. These effects can
cause a bit-flip in memory devices (single-event upset) or a transient signal (single-
event transient) that can travel across the circuit causing momentary incorrect logic
states (George, 2019).

Single-event upset (SEU) is one of the most commonly occurring recoverable radia-

9

tion effects in microelectronic circuits (George, 2019). SEUs mainly affect memory
cells which are commonly occurring structures in integrated circuits. After an SEU
occurs, the circuit continues to operate, but since the stored data is changed, the
device outputs incorrect results. SEUs are also known as “soft errors” since their
effect can be masked or corrected via error correction and redundancy.

The charge injected into a node via an ionizing particle can cause a voltage spike.
This voltage spike is known as a single-event transient (SET). While single-event
transients do not cause errors by themself, they can propagate through connected
nodes. SETs can damage sensitive circuitry and be captured as upsets when cap-
tured by sequential circuits (George, 2019). SETs propagation speed is directly
proportional to the clock speed of the circuit. Thus, it is one of the leading fac-
tors that limit the operating speed of radiation-resistant circuits (Dodd, Shaneyfelt,
Schwank & Felix, 2010).

2.3 Mitigation of Radiation Effects

Mitigation of the cumulative radiation effects is mainly done by using an appropriate
process such as Silicon-on-Insulator (SOI) or by specialized layout techniques such
as the placement of guard rings. Mitigation of destructive SEEs can be also done
using a robust process technology (eg. larger nodes). Higher-level methods are
also used frequently to protect a circuit from single-event latch-up events. For
example, some of the space-qualified CubeSat hardware uses external circuitry to
detect current spikes caused by an SEL event. Such external hardware can be placed
at the power rails of a COTS integrated circuit to act as a resettable fuse and protect
the IC in an event of SEL before it is destroyed (Kafi, Maeda, Kim, Masui & Cho,
2017). Protection methods frequently used for COTS-based spacecraft hardware are
discussed in chapter 1.

Mitigation of non-destructive single-event effects (SEU, SEL) is getting more im-
portant as the popularity of using COTS hardware in spacecraft increases due to
cost reasons. One of the most frequently used methods for SEU mitigation is error
detection and correction. Since SEU mainly affects memory, different error correc-
tion schemes applied in hardware or software can overcome the effects of radiation
on memory devices. Such error correction code (ECC) memory devices are widely
used by industrial products in addition to radiation-tolerant hardware. While the

10

ECC can solve the majority of the memory-related soft errors, CPUs have many
internal SRAM-based structures such as registers and other sequential logic. An
effective way to protect other sequential logic from single-event effects is modular
redundancy. Modular redundancy-based protection methods are discussed in chap-
ter 3.

11

3. Redundant Systems

Redundancy can be described as having excess resources than necessary to use them
in case of failure. Critical systems, such as spacecraft, often use different forms of
redundancy to increase reliability.

3.1 Types of Redundancy

Redundancy can be classified under four different forms: hardware, software, infor-
mation, and time (Koren & Krishna, 2007). These redundancy techniques are often
used in conjunction with each other to further improve reliability. Although this
work examines them from the processor’s point of view, redundancy is a general
concept and it can be applied to many different systems.

3.1.1 Hardware Redundancy

To implement hardware redundancy, additional hardware is used in the system to
detect or mitigate the effects of an erroneous unit. Hardware redundancy can be
static or dynamic. One of the most common forms of static hardware redundancy
is triple modular redundancy, where hardware units are triplicated and compared
against each other to detect and override the failed unit. In dynamic hardware
redundancy, duplicated units are spare and they are only activated when a unit
fails. Combining static and dynamic hardware redundancy is also possible and it is
called hybrid hardware redundancy (Koren & Krishna, 2007). Avionics and auto-
motive systems commonly use hardware reliability techniques where high reliability
is required and extra overhead is acceptable.

12

3.1.2 Information Redundancy

Information redundancy is one of the most commonly used redundancy forms. Error-
correcting codes (ECC) are the best-known redundancy method where extra bits of
information are used to detect and correct the bulk data. It is used in everyday
computers to wired and wireless communication systems. It is usually the first line
of defense against bit flips since it can be easily implemented in hardware or software
with comparatively low overhead. Almost every mission-critical system and many
industrial computer systems use ECC memory. Flash-based non-volatile memory
components even require ECC to work in normal conditions since the amount of
data is so vast and the construction of the flash cells is too error-prone.

3.1.3 Time Redundancy

Since most of the failures are transient by their nature, they are unlikely to affect
the same part of the system in a small timeframe. Time redundancy can be used
to increase reliability by executing the same instructions or transmitting the same
data multiple times. Time redundancy is easy to implement in software and it does
not require extra hardware. However, it has a large performance penalty. Time
redundancy can be used with other forms of redundancy to increase performance
and reliability. Lockstep CPUs are one of the best examples where hardware and
time redundancy are used together to increase reliability and performance at the
expense of some hardware overhead. Lockstep CPUs execute the same program in
two identical cores using a shifted or delayed clock. Since execution happens at
slightly different times, it is unlikely to be affected by transient failures. Execution
results are then compared at the output to catch transient faults.

13

Figure 3.1 Lockstep computing is an example of hardware-based time redundancy.

3.1.4 Software Redundancy

Systems can be protected against software failures using software redundancy. Soft-
ware faults, such as bugs, can be mitigated using two different versions of the soft-
ware developed by a different team using different architectures (Koren & Krishna,
2007). A simpler and less accurate version of the main software can also be used as a
backup or as a reference to check the main software. Software redundancy methods
can also be used in conjunction with other forms of redundancy.

3.2 N-Modular Redundancy

N-Modular redundancy is a form of hardware redundancy where an M-of-N system
consists of N modules and requires at least M modules to operate correctly. Triple
modular redundancy (TMR) is a form of N modular redundancy. In TMR, three
separate systems run independently with the same input, and the outputs of the
three systems are compared against each other using a voting circuit. In case of a
failure in one of the three systems, the other two still produce the correct output, and

14

the voting circuitry can mask the failing system, outputting the correct result. After
that, the failing system can be isolated permanently or can be recovered depending
on the system design. This ability gives TMR systems the ability to silently correct
a single error without any disruption to the system. After a system is permanently
disabled due to a recurring failure, the TMR system can only work in a reduced
redundancy mode, where another failure can be detected but not corrected. More
reliable systems can be constructed using more than three redundant systems but
because of the size, power, and cost limits, TMR is the most commonly used form of
modular redundancy. Early practical examples of TMR computer systems are used
in the Saturn launch vehicle starting in 1961 (Kuehn, 1969).

Although the main goal of building modular redundant systems is to make the
system more reliable than the simplex counterpart, it is possible to make a system
less reliable by introducing modular redundancy as seen from figure 3.2. Since
the module reliability is often much larger than 0.5 we can see that N-modular
redundancy makes the system more reliable. However, poorly designed N-modular
redundant systems are prone to common mode failures affecting all the modules.
For a processor system, common mode failure can be the clock or the voting logic.

The general formula for the reliability of an N-modular redundant system can be
expressed using equation 3.1 where qqor is the probability of a common failure.

(3.1) Rcor
M_of_N (t) = (1− qqor)

N∑
i=M

(
N

i

)
Ri(t)[1−R(t)]N−i

If we only consider the voter as the only source of a common failure, equation 3.1
becomes equation 3.2 for a TMR system where Rvoter is the reliability of the voting
logic.

(3.2) RT MR(t) = Rvoter(t)
3∑

i=2

(
3
i

)
Ri(t)[1−R(t)]3−i

3.2.1 Granularity

15

Figure 3.2 Simplex, triplex (TMR), and 5-MR systems were compared for system
reliability (Koren & Krishna, 2007).

Modular redundancy can be applied with different granularity. Coarse-grain mod-
ular redundancy is applied at IP or module level by applying voters at the output.
Finer-grain redundancy can be applied on logic or flip-flop level by applying inter-
mediate voting at multiple stages. While finer grain modular redundancy has low
overhead and simple to apply, fine-grain modular redundancy can be more robust
and flexible. Optimizing these parameters by using medium-grain redundancy is also
possible (Kretzschmar, Astarloa, Lázaro, Garay & Del Ser, 2012). Some examples
of modular redundancy at different granularites are given in figure 3.3. This work a
coarse-grain triple modular redundancy at the processor level, where the complete
CPU is triplicated without modification.

16

Figure 3.3 Examples of hardware redundancy applied at different granularity
levels. Figure a is taken from Furuta, Kobayashi & Onodera (2010).

3.3 Voters

Voters are the devices that receive inputs from redundant modules and generate a
representation of the output. Voters can be exact or approximate depending on the
application. For simple modular redundant systems, where each module is the exact
copy of each other, bit-by-bit or word voters can be used. Approximate voters are
useful for complicated systems where modules can generate slightly different outputs
(Balen, González, Oliveira, Schvittz, Added, Macchione, Aguiar, Guazzelli, Medina

17

& Butzen, 2021).

Voter circuits create a common failure point for redundant systems. This weakness
can be remedied using different approaches. The simplest approach is to increase
voter reliability by design. Since the voter circuit is generally much simpler than
the rest of the system, their reliability is higher. Special logic gates, which are more
durable to SEU by design, can be used to construct voter circuitry.

Replicating the voters with the rest of the system is another approach. Although this
approach increases the complexity, it is commonly used on mission-critical systems
where complexity and cost are insignificant.

Figure 3.4 Triplicated voters prevent single point of failure.

Another way to increase voter reliability is self-checking voters. Self-checking voters
significantly increase the system’s reliability without as much overhead as replicating
voters (Afzaal & Lee, 2018; Cazeaux, Rossi & Metra, 2004).

3.3.1 Majority Voter

The majority function is a function that evaluates whether more than half of the
inputs are true or false. In Boolean algebra, the majority function is represented
using equation 3.3. The majority voter is a logic block that realizes the majority
function using logic gates. The majority voter is one of the fundamental blocks used
in modular redundant systems. The majority voter circuits can be implemented
using different logic blocks (Balasubramanian & Mastorakis, 2016).

As voters have critical importance for the reliability of the system, voting circuitry
can be optimized for speed, area, and SEU immunity using specialized logic blocks.
The advantages and disadvantages of different majority voter designs are explored
by Aguiar, Wrobel, Autran, Leroux, Saigné, Pouget & Touboul (2020).

18

(a) Conventional AND OR type majority
voter.

(b) Conventional NAND type majority
voter.

(c) XOR type Ban-Naviner majority
voter.

(d) XNOR type Ban-Naviner majority
voter.

Figure 3.5 Majority voters can be realized using a variety of gates. Each has a
different area, power, speed, and radiation tolerance (Balasubramanian &

Mastorakis, 2016).

(3.3) ⟨p1, · · · ,pn⟩ = Majority(p1, · · · ,pn) =
⌊

1
2 + (∑n

i=1 pi)−1/2
n

⌋

3.3.2 Word Voter

Using a bit-by-bit majority voter on a wide memory bus has some disadvantages.
Since the majority voter compares each bit of the bus individually, it can mask
some errors even when the data integrity of the bus is actually compromised. This
can cause errors to hide longer and delay the corrective action, decreasing overall
system reliability. An example situation where word voter can reveal hidden errors
is represented in table 3.1.

Mitra & McCluskey (2000) came up with the word voter to solve this problem. Word
voter design adds additional circuitry to conventional voters for generating an error

19

Module Fault-free Output Faulty Output 1 Faulty Output 2 Faulty Output 3
A 0 0 0 0 0 1 0 0 1 1 0 0
B 0 0 0 0 0 0 0 1 0 0 0 1
C 0 0 0 0 0 0 0 0 0 0 1 0

Bit-by-bit
Voter 0 0 0 0 0 0 0 0 0 0 0 0

Word
Voter 0 0 0 0 0 0 No majority No majotiy

Table 3.1 A 3-bit example where conventional voters can mask actual errors.

signal when the bus integrity fails even by a single bit. Although this adds some
logic overhead, it is shown that using word voters instead of conventional bit-by-
bit voter significantly increases the data integrity (Ló, Kastensmidt & Beck, 2014).
Properties of the word voters are explored more deeply in section 5.2.

Figure 3.6 Probability of correct and corrupt outputs of NMR bit and word voters
compared (Ló et al., 2014).

20

4. RISC-V

RISC-V is an open-source instruction set architecture designed using RISC (Reduced
instruction set computer) principles. RISC-V instruction set is free and provided
under open-source licenses. Started development in 2010 at the University of Cal-
ifornia Berkeley, RISC-V ISA gained broad support from many industry partners
(RISC-V International, 2022). It started appearing in commercial products, aside
from many open-source and academic projects.

RISC-V ISA consists of a base instruction set and instruction set extensions, provid-
ing modular design for a wide range of applications from embedded microcontrollers
to out-of-order superscalar processors. RISC-V ISA also supports custom instruc-
tion set extensions for hardware acceleration at the instruction level for specialized
applications.

As RISC-V is open-source, extensible, and commonly used in industry and academia,
in this work an open-source RISC-V compatible processor core is used to demon-
strate TMR functionality.

4.1 Instruction Set

RISC-V is a RISC (Reduced Instruction Set Computer) type of ISA, which aims to
reduce the complexity and the number of available instructions. Unlike the CISC
(Complex Instruction Set Computer) architecture, a reduced instruction set allows
simpler hardware and code but requires more instructions to perform complex oper-
ations. This disadvantage can be offset by using higher clock speeds and pipelining.

RISC-V instruction set consists of a base ISA and optional extensions (Waterman,
Lee, Patterson & Asanović, 2011). The general structure of a RISC-V instruction
can be seen in table 4.1. As of the writing of this work, some of the extensions are

21

Format Bit
31 25 24 20 19 15 14 12 11 7 6 0

Register funct7 rs2 rs1 funct3 rd opcode
31 20 19 15 14 12 11 7 6 0

Immediate imm [11:0] rs1 funct3 rd opcode
31 12 11 7 6 0

Upper immediate imm [31:12] rd opcode
31 25 24 20 19 15 14 12 11 7 6 0

Store imm [11:5] rs2 rs1 funct3 imm [4:0] opcode
31 30 25 24 20 19 15 14 12 11 8 7 6 0

Branch [12] imm [10:5] rs2 rs1 funct3 imm [4:1] [11] opcode
31 30 21 20 19 12 11 7 6 0

Jump [20] imm [10:1] [11] imm [19:12] rd opcode

Table 4.1 Structures of the RISC-V base instruction formats. Where opcode field
specifies the format, funct field specifies the operation type, and rd, rs1, and rs2

specify the target and destination registers (Waterman & Asanović, 2019).

still open and subject to improvements. These instruction sets with their current
status can be seen in table 4.2.

4.2 PicoRV32

PicoRV32 is an open-source CPU core developed by Claire Xenia Wolf and YosysHQ
(YosysHQ, 2019). PicoRV32 supports the RISC-V RV32IMC instruction set. It is a
simple in-order size-optimized design that can be used as an auxiliary CPU in FPGA
and ASIC applications. PicoRV32 also supports a co-processor interface and can use
a native, AXI-Lite, or Wishbone memory interface. Some of the key capabilities of
the PicoRV32 are listed below.

• Configurable with RV32I, RV32IC, RV32IM, RV32IMC or RV32E instruction
set support.

• Built-in optional custom interrupt controller.

• Selectable native, AXI4-Lite master or Wishbone master memory interface.

• Optional Co-Processor interface.

• Single-port or dual-port register file implementation.

• Configurable trace output.

• Optional barrel shifter.

• Optional look-ahead memory interface.

22

Name Description Status
Base

RVMO Weak Memory Ordering Ratified
RV32I 32-bit Base Integer Instruction Set Ratified
RV32E 32-bit Embedded Base Integer Instruction Set (16 registers) Open
RV64I 64-bit Embedded Base Integer Instruction Set Ratified
RV128I 128-bit Embedded Base Integer Instruction Set Open

Extension
M Integer Multiplication and Division Ratified
A Atomic Instructions Ratified
F Single-Precision Floating-Point Ratified
D Double-Precision Floating-Point Ratified

Zicsr Control and Status Register (CSR) Ratified
Zifencei Instruction-Fence Fetch Ratified

G Short for IMAFDZicsr_Zifencei -
Q Quad-Precision Floating-Point Ratified
L Decimal Floating-Point Open
C Compressed Instructions Ratified
B Bit Manipulation Ratified
J Extension for Dynamically Translated Instructions Open
T Extension of Transactional Memory Open
P Packed-SIMD Instructions Open
V Vector Operations Frozen
K Extension for Scalar Cryptography Ratified
N User-Level Interrupts Open
S Supervisor-level Instructions Ratified

Zam Misaligned Atomics Open
Ztso Total Store Ordering Frozen

Table 4.2 RISC-V Instruction Set Architecture base and extensions (Waterman &
Asanović, 2019; Waterman, Asanović & Hauser, 2021).

23

PicoRV32 is designed to be simple and area-optimized, not performance. It is capa-
ble of achieving high clock speeds, allowing it to be used within high-speed systems
as a controller without crossing clock domains.

In this thesis, the PicoRV32 core is used to build a TMR system to demonstrate
a fault-tolerant CPU for spacecraft use. PicoRV32 is selected among other similar
RISC-V CPUs because of its simple, proven design. PicoRV32 is validated and
optimized to work on many FPGA architectures (YosysHQ, 2019). PicoRV32 is
also made ASIC-proven thanks to the eFabless Raven SoC, which is using X-FAB’s
XH018 0.18 micron process (eFabless, 2018,1).

Figure 4.1 Block diagram of eFabless RAVEN SoC, based on the PicoRV32
(eFabless, 2018).

4.2.1 PicoRV32 Core

PicoRV32 is a size-optimized non-pipelined RISC-V RV32IMC core. The core is
extensively configurable. Some of the configurable options include instruction set
extensions from RV32E to RV32IMC, interrupt support, barrel shifter, dual-port

24

Instruction Cycles-per-Instruction
(Single Port)

Cycles-per-Instruction
(Dual Port)

Direct jump (jal) 3 3
Indirect jump (jalr) 6 6
ALU (imm + reg) 3 3
ALU (reg + reg) 4 3
Branch (not taken) 4 3
Branch (taken) 6 5
Memory load 5 5
Memory store 6 5
Shift operations 4-15 4-14

Table 4.3 Instruction timings of the basic PicoRV32 processor (YosysHQ, 2019).

registers, and many more. PicoRV32’s multiplication and division support is im-
plemented using an internal co-processor and not by the integrated ALU. The co-
processor interface is explained in detail in section 4.2.3. The instruction timings
representing the performance of the core are given in table 4.3.

PicoRV32 supports interrupts. However, the interrupt handling does not follow
RISC-V ISA specifications. Interrupt handling uses a small number of custom in-
structions and 4 additional registers.

4.2.2 Memory Interface

PicoRV32 features a simple native memory interface that can transfer one word per
cycle. PicoRV32 also supports AXI-Lite and Wishbone master interfaces optionally.
An adapter module that can convert native memory signals to AXI-Lite is provided.

In addition to the main native memory interface, PicoRV32 includes an optional
look-ahead memory interface. Look-ahead memory interface has the same basic
signals as the native memory interface and it provides information about the next
memory cycle. Systems with dual-port RAM can benefit from this look-ahead in-
terface by decreasing memory latency.

25

Figure 4.2 Signals of the PicoRV32 native memory interface.

4.2.3 Pico Co-Processor Interface

PicoRV32 implements an optional co-processor interface. Unsupported instructions
are presented to this interface when encountered by the CPU. An external co-
processor core can decode this instruction and then load the result to the pcpi_rd
register when processing finishes. This makes adding custom instructions and ac-
celerating them with external logic extremely easy.

When the PicoRV32 is configured to have M instruction extensions, RISC-V mul-
tiplication and division instructions are processed by separate multiplication and
division accelerator cores that are connected to the PCPI internally.

26

Figure 4.3 Signals of the PicoRV32 Pico Co-Processor Interface.

4.2.4 Compiler

PicoRV32 can use the standard RISC-V GNU toolchain that supports RV32I[M][C]
instruction sets. However, since the PicoRV32 uses custom instructions for interrupt
handling. These instructions are defined under the PicoRV32 repository using GNU
assembler macros.

27

5. System Design

A concept system that implements triple modular redundancy measures discussed
in the previous chapters is implemented. While the system does not necessarily
designed to be practical and usable, it is designed to show how a triple redundant
system can be developed based on an existing RISC-V processor.

5.1 CPU Design

PicoRV32 CPU in RV32IMC configuration is used in the system which supports
hardware multiply-divide and compressed instructions. Interrupt support is also
enabled. In this configuration, PicoRV32 is suitable for general-purpose housekeep-
ing applications.

While PicoRV32 can implement AMBA AXI-Lite and Wishbone bus interfaces, a
simple native memory interface is used in this design for ease of implementation. For
larger and more complex applications where lots of addressable peripheral devices
are used, a standard bus interface can be used. Trace output is also enabled for
debugging.

Three of the identically specified PicoRV32 cores are placed in the design. Output
signals of the bus interface are grouped together and fed to voters. This grouping
is done according to the functionality of signals. Each functional group has its own
voter. This is done to have more insight into the offending part of the faulty CPU
during testing and evaluation. All of the output signals can be also fed into a single
voter to decrease area.

Separate register files are included in each CPU module. Implementing a common
register file for all CPUs is possible but it should be protected by an appropriate
error correction scheme for preserving fault tolerance. Improving error tolerance

28

further by also applying ECC to separate register files is also possible and used by
many fault-tolerant CPUs.

Figure 5.1 Core-level TMR architecture of the system.

5.1.1 Native Memory Interface

PicoRV32 has a simple native memory interface which is explained in detail in section
4.2.2. For the demonstration system, a simple direct access memory model is used.
The same memory model is converted to block RAM primitives automatically during
FPGA synthesis. Look ahead and external PCPI interfaces are not used.

In the demonstration system, the memory does not have error correction capability.
For a real fault-tolerant system, the memory would certainly include some error
correction capability.

5.2 Word Voter Design

The system uses word voters to implement TMR architecture. Designed word vot-
ers have parametric word width. Word voters consist of 3 comparators that can
compare two equal-length vectors. The width of the comparators is also defined

29

parametrically. Each bit of the two input vectors is compared individually in the
comparators. The comparison result of each bit then AND’ed together. The com-
parator outputs high, if the two input vectors match, otherwise it outputs low. A
mux selects channel A if channels A and C match, otherwise it selects channel B.
Channel C is solely used as a comparison reference and never routed to the output.
If all three channels differ, the MUX still selects B, although it does not represent a
valid output.

Faulty Module Error Output Output Status
- 0 0 0 Valid
A 1 0 0 Valid
B 0 1 0 Valid
C 0 0 1 Valid

Multiple modules Other combinations Invalid

Table 5.1 Truth table for the error output.

Error generation logic generates a 3-bit output. All-low error output shows fault-free
operation. Each bit of the error output corresponds to a faulty module. Multiple
high bits in the error signal indicates multiple module failure. In that case, output
and error signals are invalid and cannot be trusted. The truth table for the possible
values and states is included in table 5.1.

30

Figure 5.2 Block diagram of the word voter.

Injecting errors into one of the input signals is also possible with the optional error
injection input. Inject input is a 3-bit vector. Each bit injects a single-bit error to
the corresponding input signal. Error injection logic is disabled by default and can
be enabled for simulation and testing.

The RTL level comparators are designed using XNOR and AND gates. It is possible
to synthesize the comparators using more optimized logic.

31

Figure 5.3 Gate-level diagram of the word match circuit.

5.3 TMR Controller

A TMR controller module is proposed for tracking the redundancy status of the
system with software. The TMR controller module will be connected to the na-
tive memory bus as an addressable peripheral. Software running on the CPU can
interface the module using registers.

The software can read the error status of each voter, and optionally inject errors to
the voters for testing using the TMR controller’s registers. TMR controller can also
reset the CPUs, disable a specific core, or generate interrupts in case of an error.

By responding to the interrupt, the software can be aware that the CPU is working
in the reduced redundancy mode (when 1 of the 3 modules fails). A specialized piece
of code can wait for critical tasks to finish then it can reset the CPU using the TMR
controller, trying to clear the faulty module. If the offending module repeatedly
fails, the software can disable the module completely using the TMR controller.

32

The TMR controller module is a useful interface between software and the TMR
system as it allows the software to be fault-aware. Software fault awareness can be
very beneficial, especially for critical real-time software, as the software can reset
the system to clear the error without hampering the critical software processes.

Figure 5.4 Software can initiate fault recovery routine without interrupting critical
tasks.

33

6. Synthesis and Benchmarks

To investigate the feasibility of the RISC-V-based TMR approach, the concept de-
sign is simulated and synthesized. Simulation results of the TMR system are com-
pared with the simplex system for functional verification. Synthesis results are used
to understand the area and performance penalty compared to other approaches.

6.1 Environment Setup

PicoRV32’s open-source GitHub repository includes all the source code written in
Verilog HDL. The repository also includes scripts for simulation, validation, and
synthesis using a variety of tools. Table 6.1 lists the specifications and versions of
the tools used in this study. For TMR implementation, a new repository is cre-
ated by forking the latest PicoRV32 repository. Voters and other support circuitry
are implemented using SystemVerilog HDL. Wrappers and their corresponding test-
benches are created to integrate three identically configured PicoRV32 cores into a
single module, that is compatible with the original PicoRV32 design.

Tool Purpose Version
Icarus Verilog Behavioral simulation 12.0
GNU Make Simulation automation 4.2.1
Xilinx Vivado FPGA synthesis v2020.2 (64-bit)

FPGA
FPGA target device
for synthesis

Xilinx Artix 7
XC7A100T-1CSG324C

Table 6.1 Tools used for system simulation and synthesis

34

6.2 Simulation

PicoRV32 repository includes Verilog testbenches for simulating the design. The
testbenches can simulate the PicoRV32 with different configurations at the RTL
level. The test system uses a makefile so that firmware that will run during the is
also compiled before the testbench runs and automatically loaded by the simulation
tool during the test. The makefile can run the simulation using Icarus Verilog or
Verilator. The makefile also allows setting different configurations to PicoRV32 from
the command line. For the TMR design, a new SystemVerilog testbench is created
based on the existing ones. The TMR testbench is designed with the ability to inject
errors into voters at the desired time and it can show the error status of each voter.
Using this testbench, the design is verified functionally including the TMR logic.
Icarus Verilog is used to run the simulations. The simulation results of the TMR
system are compared with the original simplex system to verify that the design is
functionally identical.

Figure 6.1 Screenshot of error injection and recovery of the TMR system during
simulation.

35

6.3 Area and Performance

Both simplex and TMR system is synthesized using Yosys and Xilinx Vivado to
understand the burden of TMR for area and performance. The following results are
obtained. The results are also compared with other TMR implementations. Note
that the granularity of applied modular redundancy is different for some designs.

Design
Synthesis Implementation

Maximum
Clock

Worst Negative
Slack

Maximum
Clock

Worst Negative
Slack

Simplex 100 MHz 0.739 ns 100 MHz 0.488 ns
TMR 77 MHz 0.734 ns 77 MHz 0.131 ns

Table 6.2 Comparison of the Vivado synthesis and implementation timings for
reference simplex and TMR systems.

Design
Synthesis Implementation

LUT Register LUT Register
Simplex 2135 1155 2151 1155
TMR 7031 3687 6812 3609

Table 6.3 Comparison of the Vivado synthesis and implementation area for
reference simplex and TMR systems.

These results show that the application of TMR in this granularity level increased
the area more than 3 times and decreased the maximum achievable clock speed.
This is expected since the application of TMR at this level basically triplicates the
whole circuitry and adds additional voter logic. The goal of this approach is to
make the design triple-modular-redundant without modifying the internal logic to
simplify development.

Many of the similar TMR processor implementations uses finer grained TMR ap-
proach than ours. Several designs uses tools to automate module triplication and
voter insertion (Wilson & Wirthlin, 2019,2) while some of them manually modi-
fied the CPU architecture (Ramos, Toral, Reviriego & Maestro, 2019; Santos, Luza,
Zeferino, Dilillo & Melo, 2020). Properties and tools used for the similar TMR
implementations are presented in table 6.4.

In table 6.5 and 6.6, speed and area results of the PicoRV32-TMR design compared
with other TMR processor designs. Wilson & Wirthlin (2021) use a Xilinx Artix 7

36

Work TMR Implementation Processors Type

1 Fine-grain TMR using SpyDrNet MicroBlaze, PicoRV32,
Kronos, Taiga, VexRiscv

2 Fine-grain TMR using BL-TMR Taiga
3 Custom hybrid TMR architecture Custom RISC-V RV32IM
4 ALU based TMR Rocket RISC-V

5 TMR ALU and Hamming protected
fetch unit and register file Custom RISC-V RV32I

6 Fine-grain TMR using
Mentor Precision Hi-Rel Rocket RISC-V

7 Coarse-grain and fine-grain
distrubuted TMR using Cadence Rocket RISC-V

8 Distrubuted TMR using Synplify VexRiscv

Table 6.4 Redundant Processor designs that use different TMR architectures. 1:
Wilson & Wirthlin (2021), 2: Wilson & Wirthlin (2019), 3: Shukla & Ray (2022),

4: Ramos et al. (2019), 5: Shukla & Ray (2022), 6: Aranda, Wessman, Santos,
Sanchez-Macian, Andersson, Weigand & Maestro (2020), 7: de Oliveira, Tambara,

Benevenuti, Benites, Added, Aguiar, Medina, Silveira & Kastensmidt (2020), 8:
Minnella (2018)

Design Simplex TMR Ratio
LUT FF LUT FF LUT FF

MicroBlaze 2122 2019 8619 6057 4.05× 3×
PicoRV32 985 586 4089 1758 4.15× 3×
Kronos 1612 913 6663 2739 4.13× 3×
Taiga 2896 1626 11532 4878 3.98× 3×
VexRiscv 3095 2789 12363 8367 4× 3×
PicoRV32-TMR
(This work) 2151 1155 6812 3609 3.17× 3.12×

Table 6.5 Comparison of TMR area overhead with results from Wilson & Wirthlin
(2021).

Design Area Frequency
[MHz]LUT FF

Non-hardened RV32I 1613 1024 74
TMR RV32I 2387 1024 66
Hamming RV32I 1854 1216 54
TMR and Hamming RV32I 2784 1216 49
PicoRV32-TMR simplex
(This work) 2135 1155 100

PicoRV32-TMR
(This work) 7031 3687 77

Table 6.6 Comparison of area and speed results from Santos et al. (2020).

37

XC7A200T and Santos et al. (2020) use a Xilinx ZYNQ ZC7020 as target FPGAs.
For our results, a Xilinx Artix 7 XC7A100T FPGA is used. These devices use the
exact same FPGA logic architecture thus results are directly comparable.

From the table 6.5, we can see that a finer-grain TMR architecture has more over-
head than our coarse-grain TMR implementation. Our implementation has only a
slight overhead of 0.17× in addition to the triplicated logic. Finer-grain implementa-
tion used by Wilson & Wirthlin (2021) have almost 1× of overhead which is caused
by multiple levels of voters used between combinational logic blocks of the proces-
sors. Note that PicoRV32 based system implemented by Wilson & Wirthlin (2021)
have a lower area than our PicoRV32 implementation since our implementation uses
a fully-featured RV32IMC class PicoRV32 instead of a RV32I.

In table 6.6, we compared our speed and area results with Santos et al. (2020)
which implements a custom RV32I class RISC-V CPU using a hybrid TMR and
ECC based hardening. From the results, we can see that Santos et al. (2020)’s
custom non-hardened RV32I CPU is roughly comparable in area and speed to our
PicoRV32 configuration. Since Santos et al. (2020) only applies TMR to ALU of
the CPU, its overhead is smaller than our whole processor TMR implementation.

6.4 Reliability Expectations

There are multiple approaches to test the reliability of a fault-tolerant system. We
can categorize these methods as:

• Simulation based fault injection.

• FPGA based fault injection.

• Physical irradiation.

or combination of these three.

Simulation based fault injection can be implemented on the RTL or the post-
synthesis netlist. In order to inject error during the simulation, an fault injection
logic must be designed and integrated into the DUT. This has significant drawbacks
since DUT itself must be modified to accept error signals into the registers. In
practice, only the most error-prone portion of the circuit can be designed with in
mind to fault injection in order to minimize intrusion. For example, a error-tolerant

38

CPU can be designed to have a register file with fault injection logic for testing since
most SEU affects the registers. This still require modification to the actual logic,
which can change the actual behavior of the system. Also, simulation based fault
injection is usually limited for testing of SEU effects. Some of the simulation tools
such as Modelsim and Verilator can be scripted to inject faults to flip-flops during
simulation (Kooli & Di Natale, 2014; Na & Lee, 2011). Some environments that can
modify the HDL code automatically during simulation to inject faults are also exist
for advanced applications (Kooli & Di Natale, 2014).

FPGA emulation is also a widely used method to test redundant systems (Wilson
& Wirthlin, 2021). Xilinx Software Error Mitigation IP module can be integrated
into the FPGA design to inject faults at the FPGA configuration memory. While,
this approach is useful for many FPGA based designs, it is insufficient since it
can only inject faults at the configuration memory. Faults effecting the flip-flops
and registers cannot be tested using the Xilinx SEM IP. Seperate logic must be
implemented to test these building blocks in FPGA. Since FPGA based designs
and ASIC designs have wildly different building blocks, their response to faults are
different. Becasue of this FPGA based fault injection results may not be very useful
for ASIC implementations.

Physical irradiation is the gold standard for testing the fault-tolerant circuits. Neu-
tron radiation or heavy-ion bombardment from cyclotrons can be used to simulate
actual space radiation environment (de Oliveira et al., 2020; Wilson, Larsen, Wil-
son, Thurlow & Wirthlin, 2021; Wilson & Wirthlin, 2019). Both ASIC and FPGA
based designs can be tested using this method. Since it creates a real radiation
environment, systems response to all kinds of single event effects can be observed.
The main disadvantage of this method is cost. It is also not practical for testing
during design phase.

For this work, no reliability testing is made. The purpose of the designed system is to
show implementation stages of a coarse-grain word voter based TMR architecure to a
ready-made RISC-V processor. The reliability estimations will be tightly dependent
to used IP, FPGA architecture and ASIC design flow. This work also conceptualize
a TMR controller module that can be used to create software recovery routines
without disrupting the real-time tasks of the processor.

39

7. Conclusion

As seen from the results of the conceptual system, a coarse-grain processor-level
triple-modular redundant processor can be useful for space applications. The main
benefit of using coarse-grain TMR is that the CPU core itself does not need to be
modified. This approach is especially useful when one needs to add redundancy
to an existing system with little development effort. This is usually the case with
commercial CPU IP cores such as ARM as they provide black box IP. Small satel-
lite projects are often required to use non-fault-tolerant general-purpose processors
because of cost reasons. Providing redundancy to general-purpose processor IPs us-
ing the demonstrated method can be valuable for low-cost spacecraft projects. The
TMR-capable PicoRV32 system completely preserves the characteristics of the orig-
inal PicoRV32 processor. The simple, customizable, and size-optimized design of
the PicoRV32 can prove useful for applications such as co-processors, housekeeping,
or watchdog-type applications.

Using word voters instead of classical bit-by-bit majority voters provides additional
error detection capability. A conceptual TMR controller is developed to track the
error status of the cores, generate interrupts, and reset the CPU in order to clear
the non-permanent errors. As the optional TMR controller is implemented as an
additional peripheral, it allows running software to behave according to the fault
status. Legacy software written for the non-redundant design can also run with-
out modification since the processor-level TMR approach does not necessitate any
architectural modifications.

7.1 Future Work

Circuit layout plays a significant role in the reliability of the circuit. Careful layout
planning should minimize the multi-bit upsets. For our work, each CPU core should

40

be placed on the die such that an energetic particle cannot cross the two modules at
the same time. Using distributed versus clustered logic layouts should also be stud-
ied. The distributed layout is where the place & route tool optimizes the placement
of gates from all modules in order to enhance timing. The distributed layout may
cause the placement of logic blocks from different CPU cores in the same vicinity.
This can increase the multi-bit error rate.

The addition of other types of redundancy is also essential for a practical spacecraft
application. Implementation of ECC for the memory and register file causes very
little overhead compared to TMR and greatly enhances reliability as seen from San-
tos et al. (2020). The inclusion of inherently radiation-resistant memory technology
is also possible. MRAM and FRAM technologies are resistant to radiation by design
and they can be licensed as IPs from different vendors. Usage of MRAM and FRAM
is getting increasingly common for space applications (AAC Clyde Space, 2020).

41

BIBLIOGRAPHY

AAC Clyde Space (2020). Command & Data Handling, KRYTEN-
M3. https://www.aac-clyde.space/wp-content/uploads/2021/10/AAC
_DataSheet_Kryten.pdf.

Afzaal, U. & Lee, J.-A. (2018). A self-checking tmr voter for increased reliability
consensus voting in fpgas. IEEE Transactions on Nuclear Science, 65 (5),
1133–1139.

Aguiar, Y. Q., Wrobel, F., Autran, J. L., Leroux, P., Saigné, F., Pouget, V., &
Touboul, A. D. (2020). Design exploration of majority voter architectures
based on the signal probability for tmr strategy optimization in space appli-
cations. Microelectronics Reliability, 114.

Andersson, J. (2020). Development of a noel-v risc-v soc targeting space applica-
tions. In 2020 50th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks Workshops (DSN-W), (pp. 66–67).

Andersson, J., Gaisler, J., & Weigand, R. (2010). Next generation multipurpose
microprocessor. In European Space Agency, (Special Publication) ESA SP,
volume 682 SP.

Aranda, L., Wessman, N.-J., Santos, L., Sanchez-Macian, A., Andersson, J.,
Weigand, R., & Maestro, J. (2020). Analysis of the critical bits of a risc-v
processor implemented in an sram-based fpga for space applications. Elec-
tronics, 9, 175.

BAE Systems (2008). RAD750 radiation-hardened PowerPC microprocessor. Man-
assas, Virginia.

Balasubramanian, P. & Mastorakis, N. (2016). Power, delay and area comparisons
of majority voters relevant to tmr architectures.

Balen, T. R., González, C. J., Oliveira, I. F. V., Schvittz, R. B., Added, N., Mac-
chione, E. L. A., Aguiar, V. A. P., Guazzelli, M. A., Medina, N. H., & Butzen,
P. F. (2021). Reliability evaluation of voters for fault tolerant approximate
systems. In 2021 IEEE 22nd Latin American Test Symposium (LATS), (pp.
1–6).

Barbirotta, M., Cheikh, A., Mastrandrea, A., Menichelli, F., Vigli, F., & Olivieri, M.
(2021). A fault tolerant soft-core obtained from an interleaved-multi- threading
risc- v microprocessor design. In 2021 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), (pp.
1–4).

Camps, A. (2019). Nanosatellites and Applications to Commercial and Scientific
Missions.

Cazeaux, J., Rossi, D., & Metra, C. (2004). New high speed cmos self-checking
voter. In Proceedings. 10th IEEE International On-Line Testing Symposium,
(pp. 58–63).

Cobham Gaisler AB (2021). LEON3FT Fault-tolerant processor. https://www
.gaisler.com/index.php/products/processors.

de Oliveira, B., Tambara, L. A., Benevenuti, F., Benites, L. A. C., Added, N.,
Aguiar, V. A. P., Medina, N. H., Silveira, M. A. G., & Kastensmidt, F. L.
(2020). Evaluating soft core risc-v processor in sram-based fpga under radia-

42

https://www.aac-clyde.space/wp-content/uploads/2021/10/AAC_DataSheet_Kryten.pdf
https://www.aac-clyde.space/wp-content/uploads/2021/10/AAC_DataSheet_Kryten.pdf
https://www.gaisler.com/index.php/products/processors
https://www.gaisler.com/index.php/products/processors

tion effects. IEEE Transactions on Nuclear Science, 67 (7), 1503–1510.
Dodd, P. E., Shaneyfelt, M. R., Schwank, J. R., & Felix, J. A. (2010). Current and

future challenges in radiation effects on CMOS electronics. In IEEE Transac-
tions on Nuclear Science, volume 57.

eFabless (2018). Raven. https://platform.efabless.com/design_catalog/asic
_platform/116.

eFabless (2019). Raven: An ASIC implementation of the PicoSoC PicoRV32.
https://github.com/efabless/raven-picorv32.

Euphrosine, J. & Mahintorabi, E. (2014). SkyWater and Google expand open source
program to new 90nm technology. https://opensource.googleblog.com/
2022/07/SkyWater-and-Google-expand-open-source-program-to-new
-90nm-technology.html.

European Space Agency (2013). LEON’s first flights. https://www.esa.int/
Enabling_Support/Space_Engineering_Technology/LEON_s_first
_flights.

Furuta, J., Kobayashi, K., & Onodera, H. (2010). An area/delay efficient dual-
modular flip-flop with higher seu/set immunity. IEICE Transactions, 93-C,
340–346.

George, J. S. (2019). An overview of radiation effects in electronics. In AIP Con-
ference Proceedings, volume 2160.

Google & Skywater (2022). SkyWater SKY90FD Open Source PDK. https://
github.com/google/sky90fd-pdk#sky90fd-process-node.

International Business Machines Corporation (1964). Laboratory Maintenance In-
structions, Saturn V Launch Vehicle Digital Computer, Volume I. National
Aeronautics and Space Administration.

Kafi, A., Maeda, G., Kim, S., Masui, H., & Cho, M. (2017). Design and imple-
mentation of single event latch-up measurement and self- recovery system for
birds cubesat.

Kooli, M. & Di Natale, G. (2014). A survey on simulation-based fault injection tools
for complex systems. In 2014 9th IEEE International Conference on Design
Technology of Integrated Systems in Nanoscale Era (DTIS), (pp. 1–6).

Koren, I. & Krishna, C. (2007). Fault-Tolerant Systems. Elsevier Science.
Kretzschmar, U., Astarloa, A., Lázaro, J., Garay, M., & Del Ser, J. (2012). Robust-

ness of different tmr granularities in shared wishbone architectures on sram
fpga. In 2012 International Conference on Reconfigurable Computing and FP-
GAs, (pp. 1–6).

Kuehn, R. E. (1969). Computer redundancy: Design, performance, and future.
IEEE Transactions on Reliability, R-18 (1), 3–11.

Lee, M., Lee, N., Kim, J., Hwang, Y., & Cho, S. (2021). Modeling and simulation-
based layout optimization for tolerance to tid effect on n-mosfet. Electronics,
10 (8).

Li, J., Zhang, S., & Bao, C. (2022). Duckcore: A fault-tolerant processor core
architecture based on the risc-v isa. Electronics, 11 (1).

Ló, T. B., Kastensmidt, F. L., & Beck, A. C. S. (2014). Towards an adaptable
bit-width nmr voter for multiple error masking. In 2014 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Sys-
tems (DFT), (pp. 258–263).

Milanovic, L., Rogenmoser, M., & Egimann, M. (2022). Cerberus. http://asic

43

https://platform.efabless.com/design_catalog/asic_platform/116
https://platform.efabless.com/design_catalog/asic_platform/116
https://github.com/efabless/raven-picorv32
https://opensource.googleblog.com/2022/07/SkyWater-and-Google-expand-open-source-program-to-new-90nm-technology.html
https://opensource.googleblog.com/2022/07/SkyWater-and-Google-expand-open-source-program-to-new-90nm-technology.html
https://opensource.googleblog.com/2022/07/SkyWater-and-Google-expand-open-source-program-to-new-90nm-technology.html
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/LEON_s_first_flights
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/LEON_s_first_flights
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/LEON_s_first_flights
https://github.com/google/sky90fd-pdk#sky90fd-process-node
https://github.com/google/sky90fd-pdk#sky90fd-process-node
http://asic.ethz.ch/2022/Cerberus.html
http://asic.ethz.ch/2022/Cerberus.html
http://asic.ethz.ch/2022/Cerberus.html

.ethz.ch/2022/Cerberus.html.
Minnella, F. (2018). Protection and characterization of an open source soft core

against radiation effects. Presented 09 Apr 2018.
Mitra, S. & McCluskey, E. (2000). Word-voter: a new voter design for triple modular

redundant systems. In Proceedings 18th IEEE VLSI Test Symposium, (pp.
465–470).

Na, J. & Lee, D. (2011). Simulated fault injection using simulator modification
technique. ETRI Journal, 33 (1), 50–59.

Payne, D. (2014). Modelling and Analysis of Single Event Effects
(SEE). https://semiwiki.com/x-subscriber/silvaco/3646-modeling
-and-analysis-of-single-event-effects-see/.

Ramos, A., Toral, R. G., Reviriego, P., & Maestro, J. A. (2019). An alu protection
methodology for soft processors on sram-based fpgas. IEEE Transactions on
Computers, 68 (9), 1404–1410.

RISC-V International (2022). Hisory of RISC-V. https://riscv.org/about/
history/.

Rogenmoser, M. & Jiang, Z. (2022). Trikarenos. http://asic.ethz.ch/2022/
Trikarenos.html.

Santos, D. A., Luza, L. M., Zeferino, C. A., Dilillo, L., & Melo, D. R. (2020). A
low-cost fault-tolerant risc-v processor for space systems. In 2020 15th Design
Technology of Integrated Systems in Nanoscale Era (DTIS), (pp. 1–5).

Shukla, S. & Ray, K. C. (2022). A low-overhead reconfigurable risc-v quad-core
processor architecture for fault-tolerant applications. IEEE Access, 10, 44136–
44146.

Sun, C. (2006). Intel Pentium M 740 1.73ghz Socket 479 Proces-
sor Review. https://web.archive.org/web/20131029201847/http://www
.pcstats.com/articleview.cfm?articleid=2008&page=4.

Tomayko, J. E. (1988). Computers in Spaceflight: the NASA Experience. In Ency-
clopedia of Computer Science and Technology, volume 18.

Tzanetos, T., Aung, M., Balaram, J., Grip, H. F., Karras, J. T., Canham, T. K.,
Kubiak, G., Anderson, J., Merewether, G., Starch, M., Pauken, M., Cappucci,
S., Chase, M., Golombek, M., Toupet, O., Smart, M. C., Dawson, S., Ramirez,
E. B., Lam, J., Stern, R., Chahat, N., Ravich, J., Hogg, R., Pipenberg, B.,
Keennon, M., & Williford, K. H. (2022). Ingenuity mars helicopter: From
technology demonstration to extraterrestrial scout. In 2022 IEEE Aerospace
Conference (AERO), (pp. 01–19).

Waterman, A. & Asanović, K. (2019). The RISC-V Instruction Set Manual Volume
I: Unprivileged ISA.

Waterman, A., Asanović, K., & Hauser, J. (2021). The RISC-V Instruction Set
Manual Volume II: Privileged Architecture.

Waterman, A., Lee, Y., Patterson, D. A., & Asanović, K. (2011). The risc-v instruc-
tion set manual, volume i: Base user-level isa. Technical Report UCB/EECS-
2011-62, Electrical Engineering and Computer Sciences, University of Califor-
nia at Berkeley, Berkeley, California.

Wilson, A. E., Larsen, S., Wilson, C., Thurlow, C., & Wirthlin, M. (2021). Neutron
radiation testing of a tmr vexriscv soft processor on sram-based fpgas. IEEE
Transactions on Nuclear Science, 68 (5), 1054–1060.

Wilson, A. E. & Wirthlin, M. (2019). Neutron radiation testing of fault tolerant risc-

44

http://asic.ethz.ch/2022/Cerberus.html
http://asic.ethz.ch/2022/Cerberus.html
http://asic.ethz.ch/2022/Cerberus.html
http://asic.ethz.ch/2022/Cerberus.html
https://semiwiki.com/x-subscriber/silvaco/3646-modeling-and-analysis-of-single-event-effects-see/
https://semiwiki.com/x-subscriber/silvaco/3646-modeling-and-analysis-of-single-event-effects-see/
https://riscv.org/about/history/
https://riscv.org/about/history/
http://asic.ethz.ch/2022/Trikarenos.html
http://asic.ethz.ch/2022/Trikarenos.html
https://web.archive.org/web/20131029201847/http://www.pcstats.com/articleview.cfm?articleid=2008&page=4
https://web.archive.org/web/20131029201847/http://www.pcstats.com/articleview.cfm?articleid=2008&page=4

v soft processor on xilinx sram-based fpgas. In 2019 IEEE Space Computing
Conference (SCC), (pp. 25–32).

Wilson, A. E. & Wirthlin, M. (2021). Fault injection of tmr open source risc-
v processors using dynamic partial reconfiguration on sram-based fpgas. In
2021 IEEE Space Computing Conference (SCC), (pp. 1–8).

YosysHQ (2019). PicoRV32 - A Size-Optimized RISC-V CPU. https://github
.com/YosysHQ/picorv32.

45

https://github.com/YosysHQ/picorv32
https://github.com/YosysHQ/picorv32

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATONS
	Introduction
	Reliable Computing in Space Applications
	Thesis Organization

	Radiation Effects on Circuits
	Cumulative Effects
	Total Ionizing Dose
	Displacement Damage Dose

	Single-Event Effects
	Destructive Single-Event Effects
	Non-destructive Single Event Effects

	Mitigation of Radiation Effects

	Redundant Systems
	Types of Redundancy
	Hardware Redundancy
	Information Redundancy
	Time Redundancy
	Software Redundancy

	N-Modular Redundancy
	Granularity

	Voters
	Majority Voter
	Word Voter

	RISC-V
	Instruction Set
	PicoRV32
	PicoRV32 Core
	Memory Interface
	Pico Co-Processor Interface
	Compiler

	System Design
	CPU Design
	Native Memory Interface

	Word Voter Design
	TMR Controller

	Synthesis and Benchmarks
	Environment Setup
	Simulation
	Area and Performance
	Reliability Expectations

	Conclusion
	Future Work

	BIBLIOGRAPHY

