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Abstract

During the last century, researchers studied integer partition theory extensively. We
are more interested in exploring partition identities among many aspects of integer par-
titions. In this thesis, we study a constructive method developed by Kursungoz to find
new identities on Rogers-Ramanujan type integer partitions and overpartitions. For
this aim, we give a reproof of two Rogers-Ramanujan identities using the constructive
method.

Combining two types of partitions, we introduced 2-colored Rogers-Ramanujan
partitions. By finding some functional equations and using the constructive method,
some identities have been found. Our results coincide with some extreme cases of
Rogers-Ramanujan-Gordon’s identities. A correspondence between colored partitions
and those overpartitions is provided.

Our second result is finding the missing cases of parity consideration on Rogers-
Ramanujan-Gordon’s identities due to Andrews’s suggestion in his seminal paper about
parity in partition identities. Four cases had proven by Sang, Shi, and Yee, we reproved
them using the said constructive method and then found and proved the remaining

cases by the same method.



PARCALANIS VE UST-PARCALANISLAR ICIN ROGERS-RAMANUJAN
GENELLESTIRMELERINDE URETEC FONKSIYON OLAN SERILERIN INSASI
VE BUNLARIN DOGRULAMA TARZI KANITLARI

Mohammad Zadeh Dabbagh
Matematik, Doktora Tezi, Temmuz 2022

Tez Danigmani: Do¢. Dr. Kagan Kursungoz

Anahtar Kelimeler: Tamsay1 Parcalaniglari, Parcalanig 6zdeslikleri, iist-parcalaniglar,

Renkli Parcalaniglar, g-serileri, Rogers-Ramanujan Tarz Parcalaniglar

OZet

Gegtigimiz ylizyilda aragtirmacilar tamsay1 parcalanig teorisini kapsaml bir bigcimde
caligmiglardir. Biz tamsay1 pargalanig 6zdeslikleri ile daha ¢ok ilgileniyoruz. Bu doktora
tezinde parcalamiglar ve tist-parcalamsglar i¢in Rogers-Ramanujan tarzi ozdesliklerin
kesfi ve kanitlanmasi i¢in Kurgsungoz tarafindan geligtirilen ingali bir metodu ¢alisiyoruz.
Bu amag dogrultusunda Rogers-Ramanujan 6zdesliklerini yeniden kanitliyoruz.

Iki tip parcalamsi birlestirerek iki renkli Rogers-Ramanujan parcalamslarini tammladik.
Baz1 fonksiyonel denklemleri bahsettigimiz insali yontem ile ¢ozerek bazi o6zdeglikler
bulduk. Bulduklarimiz tist-parcalaniglar i¢in Rogers-Ramanujan-Gordon 6zdesliklerinin
u¢ durumlari ile cakigmaktadir. Bu durumda renkli parcalaniglar ve bahsedilen tist-
parcalaniglar arasinda birebir bir egleme verilmigtir.

Ikinci sonucumuz ise Andrews'iin parcalams ozdesliklerinde teklik ve ¢iftligi in-
celedigi yeni ufuklar acan makalesinde 6nerdigi bir agik problemin kismi bir ¢oziimiiniin
eksik durumlarimin bulup kanitlanarak tamamlanmasidir. Bu problemin Sang, Shi
ve Yee'nin buldugu dort durumdaki ozdeglikleri bahsettigimiz insali metotla yeniden

kanitlayip kalan iki durumdaki 6zdeglikleri de bularak kanitladik.
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CHAPTER 1

Introduction

When we talk about a partition, it refers to breaking an object down into smaller
parts. It is the same for integer partitions, we want to study positive integers when we
decompose them into smaller positive integers. In fact, we are interested in classifying
all the ways that a positive integer n can be broken into other positive integers such

that the summation of them is n.

Definition 1.0.1 /2] A partition of a positive integer n is a finite non-increasing
sequence of positive integers Ay, --- A, such that 22:1 Ni = n. The \; are called the
parts of the partition.

As an example, consider n = 4, then all the possible partitions are:
4=34+1=2+2=2+14+1=14+1+1+1.

The number of all possible partitions of n is denoted by p(n). In 1918, Hardy and

Ramanujan found an asymptotic formula for p(n).

Theorem 1.0.1 (Hardy-Ramanugjan) (2] For positive integer n

VE
p(n) ~ T

Later in 1938, Rademacher found an exact formula for p(n) [16]. We can add
some restrictions or conditions on parts of all partitions of an integer. One may study
those partition types for other asymptotic or exact formulas. Studying different parti-

tion types also leads us to find partition identities, which will help us classify integer



partitions. In the majority of partition identities, there are two types of conditions,
first, the multiplicity conditions such as all parts being distinct; second, the divisibility
conditions, such as all parts being divisible by 2.

The first known partition identity was given by Euler [2].

Theorem 1.0.2 The number of partitions of a positive integer n into distinct parts is

equal to the number of partitions of n into odd parts.

For n = 6, all four partitions of 6 into distinct parts are:
6,5+1,4+2, 3+2+1,
and partitions into odd parts are:
o+1,3+3,3+1+1+1,1+1+1+1+1+1.

As we mentioned, partitions into distinct parts is a multiplicity condition, and it is
clear that the other side, parts being odd, is a divisibility condition.

The Rogers-Ramanujan identities are a milestone in integer partitions. These iden-
tities were first discovered and proved by Rogers in 1894 [2], later, in 1913, Ramanujan
rediscovered them without any proof [2], again, in 1919, Schur rediscovered and proved

them independently |2]. The first identity is as follows:

Theorem 1.0.3 (The first Rogers-Ramanugan identity) (2] The partitions of an inte-
ger n in which the difference between any two parts is at least 2 are equinumerous with

the partitions of n into parts congruent to 1 or 4 modulo 5.

For n = 9, there are 5 partitions in which the difference between parts is at least
2, as follows:

9,8+ 1, 742 6+3, 5+3+1,

and the number of partitions into parts congruent to 1 or 4 modulo 5 is again 5 and

they are
9,6+1+1+1,44+4+1,44+1+14+1+1+1, 1+---+1.

The second one is:



Theorem 1.0.4 (The second Rogers-Ramanujan identity) [2] The partitions of an in-
teger n in which the difference between any two parts is at least 2 and parts are greater
than 1 are equinumerous with the partitions of n into parts congruent to 2 or 3 modulo

d.

Again, let n = 9. Then there are 3 partitions in which the difference between parts

is at least 2 and parts greater than 1, as follows:
9, 7+2, 6+ 3,

and the number of partitions into parts congruent to 2 or 3 modulo 5 is again 3 and
they are
T+2,34+3+3, 3+2+2+2.

For our purposes, we write them in terms of generating functions. We can rewrite

the first identity as follows:

(% . ¢ @)oo
Ri(q) = ) ni(n)q" =
1 ; 1 (¢ Do

where R;(q) is the generating function for partitions of n in which the difference be-

tween any two parts is at least 2 and the second one as

(7" ¢* ¢° ¢°) oo
Ry(q) = ) ma(n)q" =
RZZ% (45 90)oo

where Ry(q) is the same as R;(q) with additional condition that parts are greater than
1, and
(a;q)n = (1 —a)(1—aq)-- (1 —ag" "),
(a1, a2, , ar; Qo = (a15@)n(a2; O -+ (A5 @)y
(a; q)oo = lim (a; Q)na
n—oo
(a; ¢)o =

are the g-Pochhammer symbols [2].
There are many generalization of the Rogers-Ramanujan identities, a very remark-

able generalization is given by Gordon in 1961.



Theorem 1.0.5 (The Rogers-Ramanujan-Gordon identities) [10] For 1 < a < k, let
Ago(n) be the number of partitions of n into parts that are not congruent to 0 or +a

modulo 2k 4+ 1. Let By 4(n) be the number of partitions m of n of the form
7Tl+7T2+"‘+7Tj,

where m; > w1, T — Tivg—1 > 2, and at most a — 1 of the 7; are equal to 1. Then for
alln >0,
Ak,a(n) = Bkﬂ(n).

In the study of integer partitions, we may go further and study other type of
partitions such as overpartitions, in which an overlined part can occur among other
parts |9]. Another one is colored partitions, in which parts may get different colors, we

talk about it later [3].

Definition 1.0.2 An overpartition of a positive integer n is a non-increasing sequence
of positive integers such that the summation of them is n and the first occurrence

(equivalently, the final occurrence) of any part can be overlined.

As an example, all overpartitions of 4 are,

4,4, 3+1,3+1,3+1,3+1,2+2, 2+2,

24+1+1, 24141, 241+1,2+1+1, 1+1+1+1, IT+14+1+1

The number of all possible partitions of n is denoted by p(n).
Note that in terms of generating functions, for partitions and overpartitions, we

have [2]

Pg) = 3 pn)g" = —

)

and [7]
Plo) = S pln)gr = S0

= (¢ @)oo
In the following chapters, we will talk about the constructive method, developed by
Kursungoz [13] and [14], that we have used to find new identities of Rogers-Ramanujan
type, then we will see colored partitions and some identities on them, after that, we

will go through overpartitions, we will complete the parity condition consideration for



Rogers-Ramanujan-Gordon identities for overpartitions; and finally, we will give some
open problems and ideas to generalize the results of this thesis.
The content of the thesis comes from parts of two articles, one of which is submitted

[19], and the other one is going to be submitted [15].



CHAPTER 2

The Constructive Method

2.1 Jacobi’s Triple Product Identity and the Con-
structive Method

In this chapter we will discuss the constructive method, developed by Kursungoz in
[13] and [14], to find new partition or overpartition identities of Rogers-Ramanujan
type, starting from the definition (in particular the multiplicity side), then using the
generating functions of them, we will find the divisibility side of the identities. For this
purpose, one of the important tools is using a transformation such as Jacobi’s triple

product identity.

Theorem 2.1.1 (Jacobi’s triple product) |2] For z # 0, |q| < 1,

n n2 mn mn — mn
> gt =T =A™ (L4 2 .
n=—00 n=0

By replacing q by q”% and then setting z = —q”é’i, we can easily get the following

form of Jacobi’s triple product identity,

Corollary 2.1.2 (9] For |q| < 1, integers t and i,

o0 o0

Z(_1)nq(2t+1)n(n+1)/2—in(1_q(2n+1)i) _ H (1_q(2t+1)(n+1)) (1_q(2t+1)n+i>(1_q(2t+1)(n+1)—i)_

In this method, first we enumerate a type of partitions with some special conditions
on parts, this gives us a family of generating functions and then we apply the following

steps to them:



step 1: We find functional equations relating the generating functions.

step 2: We guess the type of series we want as solutions. The inspiration is Andrews’
H and J functions [2], which appear in the proof of many partition identities, in
those proofs, the generating functions will be related to H and J functions. In

the constructive method, we are trying to build those generating functions.
step 3: We use the functional equations and construct the series.

step 4: We apply x = 1, because we want the partitions to be independent from the
length, and then we use the Jacobi’s triple product theorem to find a g¢-series

identity.

In the next section, we will provide a proof for Rogers-Ramanujan identities using
the constructive method and we will see all the steps in more details. In fact, we will

go over a proof of the Rogers-Ramanujan identities, and try to reverse engineer it.

2.2 Reproof of Rogers-Ramanujan Identities

Let ri(m,n) counts all Rogers-Ramanujan type partitions of n with m parts, and
ro(m,n) count all Rogers-Ramanujan type partitions when all parts are more than 1

of n with m parts. Then R;(z) and Ry(x) are the following double sums:

Ri(x) = Z Zri(m,n)xmq" 1 =1,2

m>0n>0

It is not hard to find the following relations between them.
Ry(z) — Ri(z) = zqRi(zq), (2.1)

Ry(z) = Ra(zq). (2.2)

A proof to these functional equations is given in Andrews’ book [2]. In fact, these
functional equations and some initial conditions, which will be given shortly, uniquely

determine the generating functions. We assume that each of them has the form

Ri(x) = Zan(:c)q”Ai + Bp(2)xPiqCig"P i =1,2 (2.3)

n>0

with the initial condition that R;(0) = 1 (for the empty partition of 0).

7



Our first goal is to find A;, B;, C; and D;. For this end, we construct the functional

equations using the equation (2.1]) in the following form

Z@n(l')(anQ _ anl) _|_ /Bn(x)(ngqCQanQ _ xquClan1>
n>0

=Y an(q)zqq™™ + Ba(xq)zqr™ ¢ g

n>0

in the last term, we substitute n by n — 1, then we use another assumption that

nAs (n—1)D1

an(2)(¢" — ™M) = Bu1(zq)zqz” g

and
Bu(x)(2P2q2q"P2 — 2P1q%1 ") = () 2qq™ M.

Note that these imply the functional equations (2.1)) and (2.2)), but not implied
by them. After some calculation and simplification we can write o, (x) in terms of
ao(zq®™) and B,(x) in terms of ag(xg***1), which are

xann(2n+1) qan1

. 2
an(z) = ag(zq™) (qF; ¢ )n(aF qCqF —CqnH; 2F—H)

and

$2n+1q(n+1)(2n+1)x—31 —C1,—nDy

7 “q
(@7 " )n(zF g% g g?F 1)

WhereE:Az—Al,F:BQ—Bl,G:CQ—Cl andH:DQ—Dl.

2n+1)

Bn(z) = —ao(zq

Now, we change the second finite product in both fractions into an infinite product,
and rename part of the equation as ap(z), then we have
2n n(2n+1) ,—nA;
- g q
an (@) = do(zq™")
n (q7; qF ) (xFqCqF -Gt 2F~H)

and

p2ntl n+1)(2n+1)x—Bl —-Ch

q' g “q
(¢%; q")n (2" g% g™ ?F 1 )o

—nDy

Bn(x) = —cp(zg®*h)
where
ao(zq”") = ao(z¢”) (z¢*") " ¢“¢" " " ).

Next, we use these a,, and 3, in the equation (2.2)) and again we shift n ton —1 in



the last term on the right hand side, so we have

2n n(2n+1) an

D _dolzq™) S
n>0 (q%; qP)p (¥ qC gt —Cgntl; g?F—H)

x2n+1q(n+1)(2n+1)xFqunH

(0% 4" )n (2" g™ *F oo

2n,,2n2+43n

— ap(zg™ )

< ontl rq
= ap(zq
nzm of )(qE; 4E) (2 F qC 2P —CnH, 2F—H)__

p2n—1 q2n2+n+1

~ 2n
- 040(37(] )(qE; qE)n(l,FquFqunH; q2F7H>oo

In this step, we want ay to be independent of x and after some simplification we

have
xq x2q2n+2
(IFquF_anH;q2F_H)oo (quanH;qQF—H)OO
_ xq2n+1an(1 _ xFqunH> B SUFqF+Gq(n_1)H(1 _ an>
(xFqunH; q2F—H)OO (:CFquF—anH; q2F—H)OO

Now, we need one more assumption to simplify the infinite products and make
them into rational functions, then by cross-multiplying, we then obtain an identity
between polynomials, and we can find F,F,G and H. This is also called similarity
of two terms involving infinite products [13]. The assumption that we need here is
2F — H|F —H,so F = %H for some integer ¢, in this part we choose the smallest
or the simplest solutions among infinitely many ones, if they do not work, we choose
other ones. Note that after rearranging monomials, there should be the same number

of positive monomials on each side. Here, for t = 0, we have F' = H, then

2.2 2n

rq—x°q°q™" = xqqn(E+2) _ xF+1qG+1qn(E+F) _ xFqG nkF F G n(E+F)

¢ txT q'q

we can rearrange it to

zq + IF+1qG+1qn(E+F) + xFqunF _ xqqn(E+2) + IFqun(E+F) a2

So, there are three terms on each side, because every monomial on the left hand
side must correspond to one monomial on the right hand side, this gives us 3! = 6

different linear systems of equations, such as

rq = xqqn(E—&-Q)’

pFHLGH(BHE) _ o F (G n(B+F)



and

quanF — x2q2q2n'

The idea is to identify the exponents of x, ¢ and ¢" to find unknown parameters E,
F, G and H. If our choice in the previous step works, one of them has a solution, in

this case the solution is
F=G=H=1 and E = —1.

We wanted ag to be constant with respect to x. Note that in , if we put x = 0,
in the right hand side, all terms will be eliminated except ap(0) and in the left hand
side, we have R;(0), the partitions of 0 which is 1 for the empty partition of 0, i.e.
ap(0) =1, so ag(zg®) = 1.

In this step, we apply x = 1, because £ was the term for the length of partitions,
but we want our generating function to be free of length, i.e. it works for any partition

of any length. Then we have

m(1) = - nzo(—l)”q 2 (1— ¢
and
Ral) = - S0 - )

now, we use corollary (2.1.2)), for i = 1 and ¢ = 2, then we have

Hf:o(l - q5(n+1))<1 - q5n+1)(1 - q5n+4)

(¢)o
which gives us the second Rogers-Ramanujan identity. Again, using corollary ([2.1.2)),

Ri(1) =

for i = 2 and t = 2, we have

H;:O:O(l _ q5(n+1))(1 o q5n+2)<1 _ q5n+3)

Rall) = (@)oo

which gives us the first one.

10



CHAPTER 3

2-Colored Rogers-Ramanujan Partition Identities

3.1 Introduction

There are different ways of coloring partitions, each introduced for different purposes.
Andrews |3 introduced the two colored partitions, later, together with Agarwal [1],
they defined partitions with N copies of N, another type is 4-colored partitions, also
known as 4 parameters partitions introduced by Boulet [6] and developed by Uncu [5].
We will give a definition for arbitrary number of colors in a partition given by Chern,

Fu and Tang [§],
Definition 3.1.1 A k-colored partition of n is the one that each part can get any of k
different colors.
As an example, the fourteen 2-colored partitions of 3 are
3,3,24+ 1,24+ 1,24+ 1,2+ 1,

T+l + 1,14+ 14+ 1,1+ 14+ L1141, 1+ 1+, 1 +1+ 1,1+ 41,1 +14+1

Combining Rogers-Ramanujan type partitions, defined in the second chapter, and

t-colored partitions, we define the following partition type,

Definition 3.1.2 A 2-colored Rogers-Ramanugjan partition of n consists of two sepa-
rate list of parts, each of the same color, and the difference between every two consec-
utive parts of the same color is at least two, moreover, parts in different colors do not

overlap.

11



As an example, the twelve 2-colored Rogers-Ramanujan partitions of 6 are

6,6,5+1,5+1,5+1,5+1,44+24+24+24+23+2+1,3+2+1.

By this definition, we have the following identity.

Theorem 3.1.1 Let Ri(n) denote the number of 2-colored Rogers-Ramanujan parti-

tions of n, then for |q| < 1,
2

Zrl(n)qn _ (_q)00<q27q 7q4;q4)oo.

n>0 (Q)OO

Lovejoy [12] proved analogues of Gordon’s theorem for overpartitions in the cases

i =1and i = k. Later Chen et. al 7] found the missing cases as follows,

Theorem 3.1.2 For k > a > 1, let Dy .(n) denote the number of overpartitions
of n of the form dy + dy + --- + ds, such that 1 can occur as a non-overlined part
at most a — 1 times, and d; — djyx,—1 > 1 if d; is overlined and d; — djyr—1 > 2
otherwise. For k > i > 1, let Ck;(n) denote the number of overpartitions of n whose
non-overlined parts are not congruent to 0,%xi modulo 2k and let Cy(n) denote the

number of overpartitions of n with parts not divisible by k. Then Cy;(n) = Dy ;(n).

In the following sections, we will go over the 2-colored Rogers-Ramanujan partition
type, accordingly, we will find two functional equations, and then constructively, we

will prove the theorem [3.1.1, we will also find two other partition identities. At the

end, a correspondence between our identities and the ones for overpartitions is given.

3.2 Colored Rogers-Ramanujan Partitions and the

Proof of Theorem [3.1.1]

According to 2-colored Rogers-Ramanujan partitions, the following definition is given.

Definition 3.2.1 For 1 < j < 2, let R;j(z) be the generating function of 2-colored

Rogers-Ramanuwjan partitions with smallest part greater than or equal to j.

With respect to these definitions, one can find the following functional equations
relating Ry (z) and Ry(x). We use this equation as the construction equation in our

method.

12



Theorem 3.2.1
Ri(z) — Ry(x) = mqRi(xq) + xqRy(xq). (3.1)

Proof 3.2.2 Let
Ri(x) =Y > mi(m,n)a™q" ; i=1,2

m>0 n>0

be the generating function for the types that have been mentioned above, where m is
referring to the number of parts in partitions.

Let  be a 2-Colored Rogers-Ramanujan partition of n with m parts. All 2-colored
Rogers-Ramanugjan partitions will be counted by r(m,n), and if the smallest part is
> 2, then it will be counted by ro(m,n). So, ri(m,n) —ro(m,n) will count the number
of partitions with the smallest part 1. If we remove 1 from all partitions, then we have

two cases:

(i) The smallest part is > 2 with different color than 1, so one can subtract 1 from

each part, the enumeration of these partitions is by r1(m — 1,n —m).

(i) The smallest part is > 3 with the same color as 1, if 1 is subtracted from each
part, the enumeration of these partitions is ro(m — 1,m — n), note that a part 2

s not possible here.
So,
ri(m,n) —ro(m,n) =riy(m—1,n—m) +ro(m —1,n —m).

Multiplying all terms by x™q™ and taking the summation over m and n for all terms,

m,n > 0 and both integers, we have

Z Z ri(m,n)z™q" — Z Z ro(m,n)z™q" =

m>0 n>0 m>0 n>0
E E ri(m—1,n—m)x™q" + E E ro(m —1,n —m)z™q".
m>0n>0 m>0n>0

By changing m — 1 to m and n —m to n — m + 1 on the right hand side of this

equation, we have

DO mlmm)a™gt = Y ra(myn)a™qt =

m>0n>0 m>0n>0

m+1_n+m+1 m+1_n+m+1
E E ri(m,n)z™ " q + E E ro(m,n)z™ g .
m>0 n>0 m>0 n>0

This will get us the functional equation (3.1]).

13



Theorem 3.2.3 Another relation between Ry(x) and Ry(x) is as follows, we use this

one as our check equation.

Ry(z) = Ry(zq) (3.2)

Proof 3.2.4 Equation (3.2) is clear, as shifting every part of Ry by 1 unit it will

change it to R,.

Using steps described in the second chapter, with straightforward but long compu-

tations which we skipped here, by

Ri(z) =) an(@)g™™ + Bu(@)a®q g, i=1,2

n>0
we can find «,, and [, in terms of «ap,
2n n(2n+1) ,—nAs —1:qF _F,G F-H nH. 2F—-H
o (z) = diog?™) T E( 4 G)nﬁ(ﬂj (A )oo
(¢%; qF)n(aFqCqr—HaqmH; g2~ H)

and

Ba(z) = — &O(xq2n+1)

x2n+1q(n+l)(2n+1)x—B2q—C'Q q—an (_ 17 qE)n+1 (_:CFquQF—anH; q2F_H)oo

(475 q7)n(@F g% g*F ) o

where

(xg*)FqCq" M q

~ 2n\ 2n
ao(zq™) = ap(zq )(_(xq2n)FquFfH;q2FfH)oo’

also,E:AQ—Al,F:Bg—Bl,G:CQ—Cl andH:Dg—Dl.

2F—H>OO

Then, by equation (3.2) and considering some assumptions for equations to be
consistent, we can find F, F', G and H, in thiscase F =G =H =1 and F = —1.
Putting them in the generating functions for R;(z), &y being constant with respect

to x, and applying x = 1, we have

= T e o
HZZO (—=1)mgtm X (;n)((q;i;l ;q;;;l(—qn+ ;@)oo (3.4)

and
= S T e 03
e

14



hey can be rewritten as follows,

3n+2

1 q
R _ 00 n n(2n+1 .
! oo n>0 1 +q¢" 1+ Q"H)
and
Ro(1) = 2T S ppgenn Ly
)oc n>0 1 +tqn LAgmH
So,
@) —1)" n(2n+1) —1)" n(2n+1) ,3n+2
() =2 (3 e -5 R
q)c >0 q >0 q
@) —1)" n(2n+1) -1 n—1,2n?
=Gy S - )
q) 1 q o1 q
—@) o —1)» 2n? (. n 1
(q)"o n>1 L+q"
n 2n — 00 n 2n
By Theorem (2.1.1)) for z = —1 and ¢?, for 2-colored Rogers-Ramanujan type

partitions defined in (3.2.1)) the following identity holds

Moreover, the coefficients in the Taylor series of Ry(1) coincides with the number

of partitions for 2-colored Rogers-Ramanujan partitions with parts more than 1,
1+2¢* +2¢° +2¢" + 4¢° +6¢° 4+ 8¢" + 10¢® + 14¢° + 18¢" + - -

We will come back to Rs(n) at the end of this chapter.

3.3 Correspondence with Overpartitions

There is a one-to-one correspondence between 2-colored Rogers-Ramanujan type par-
titions and previously defined overpartitions Dy 4(n) for k = a = 2.

Let 7 = (y1,-*+ ,¥i,Yis1, "+ ,Ym) be an arbitrary 2-colored partition of n, and
T = (21, , %, %41, "+ ,2m) be an arbitrary overpartition of n, both into m parts.
First of all, in both cases all parts are distinct. Secondly, for the case that there are t

number of consecutive parts, for the colored case, there are only two possibilities, they
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should be alternatively red and black, e.g. for three consecutive parts ¢, ¢+ 1 and 7+ 2,
the cases are

Jytyi+ 1,04+ 2k and j,0,04+ 1,0+ 2,k
where 7 < i — 1 and k£ > ¢+ 3. This means two consecutive parts can not be of the
same color. For the overpartition case, the first t — 1 parts should be overlined and

there are two possibilities for the last one, e.g. for three consecutive parts we have
goii+ 1,4+ 2,k and j,i,9+ 1,7+ 2,k

where j < i—1 and k > ¢+ 3. This implies the first and the second part in the sequence
should be overlined, so there are two possibilities for the last past in the sequence, it
can be overlined or non-overlined.

If yix1 —y; > 1, and z;41 — 2z; > 1, then there are four cases for both colored
cases and overpartition one, for colored partition, both can be of the same color or
both may have different colors, and for the overpartition, it is possible for each part
to be overlined or non-overlined, so in this case again, we have the same number of
cases, and the correspondence in this case is also clear. So, there exists a one-to-one
correspondence between them.

It is not hard to see another correspondence between Ds;(n) and the following

partition type.

Definition 3.3.1 Let R3(n) denote the number of 2-colored Rogers-Ramanujan parti-

tions which do not allow to have a red 1 in the partition.

With respect to this definition and the mentioned correspondence, we have the

following identity.
Theorem 3.3.1 For definition (3.3.1) and |q| < 1 the following identity holds

S ramg = Y da(myg = SO

= = (7)o

Here Dy ;(n) is again as in [7] for k =2 and a = 1.
Note that in the definition of R3(n), we can choose any of two colors. In fact, we

have

So, we have the following identity for Ra(n).
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Theorem 3.3.2 For |q| < 1,

Z rg(n)q" —9 (_Q)Oo(ql

n>0
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CHAPTER 4

Parity considerations in Rogers-Ramanujan-Gordon type overpartition, all

cases

4.1 Definitions

In 2010, Andrews [4] applied parity conditions on Rogers-Ramanujan-Gordon identi-
ties. He asked the extension to overpartition as an open problem. In 2021, Sang, Shi
and Yee [18] defined the following partition types, and discovered new identities with
respect to these parity restrictions for overpartitions. In the two following definitions,
1 f; refers to the number of parts for integer 4, if there is no confusion, we write f;, note

that f; =0 or 1.

Definition 4.1.1 (18] For k > a > 1, let Uy o(n) denote the number of overpartitions

of n of the form (1f1,1f1,2f5,2f2,++) such that
(i) fi <a—1+ fi
(it) fa-1 = fa=1;

(iii) fu+ fz=0 (mod?2);

(W) fi+ fi+fin <k—1+ fr7

As an example, all 7 overpartitions of Uy 4(6) are

5+1,3+3,3+3,3+1+1+1,3+1+1+1,2+2+1+1,2+2+1+1.

18



Definition 4.1.2 [18] Fork > a > 1, let Uy .(n) denote the number of overpartitions
of n of the form (1f1,1f1,2f5,2fa,++) such that

(i) fi <a—1+ fi
(ii) fa > fa;
(i1i) fa-1+ fa=g =0 (mod 2);
() fi+ fi+ fis1 <k =14 f7.
An example for this overpartition type will be all 10 overpartition of U474(6),
6, 4+2, 44141, 4+1+1, 3+3, 3+3, 2+2+2, 24242, 2424141, 24+2+1+1.

Note that with respect to the definition [4.1.2] we have the following lemma for the

fixed first index and difference one for the second index in U.
Lemma 4.1.1 [1§/ Fork>a>1, ifa=0 (mod2), then

Uk,a (n) = Uk,a—l (n)

The proof is straightforward, from conditions (i) and (iii) in the definition
and the assumption a = 0 (mod 2), we see that f; never reaches the upper bound,
a—1+ f7, this means f; < a—2+ f5, so both sides of the equality of this lemma count
the same number of overpartitions. To find the new identities, we need to separate
cases depending on the first index or the second one to be even or odd, so there will

be 6 different identities. The first one is for the case that both indices are even of U.

Theorem 4.1.2 Fork>a>1,

2 4k—2a 4k)

3 w (G @)@, g2 g ) o
u2k,2a(n>q = ( 3. 2) .
nZO q )q o0

The other case when the first index is even and the second index is odd for U is

the following.

Theorem 4.1.3 Fork>a>1,

2a+2 4k—2a—2 4I<:)

2 4k
—0*9)(¢*", g 4"
> U2k,2a+1(n)qnz( Ll 2. 2 =
= (0% ¢%) o

Q(_q2; q>oo(q2a7 q4l<:—2a7 q4l<:7 q4k)

(4% ¢%)o

o

+
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When both indices are odd, we have the following identity for U.

Theorem 4.1.4 Fork>a>1,

(—q; @)% (q2r1, g2+t g4he2, (4he2)
Z U1 2041 (n)q" = 5 i 7 ‘
= (4% ¢*)

The last case for U will be as follows.

Theorem 4.1.5 Fork>a>1,

(_q2.q)oo(q2a+1 q4k:—2a+1 q4k+2.q4k;+2)oo
Zu2k+172a(n)qn = : : 2. 2 7 ,
q(—q2; q>oo(q2a—17 q4k—2a+3’ q4k+2; q4k+2)oo

+

(0% ¢%)oo
For U with respect to (4.1.1]), we have two following identities, then first one is for

the case that both indices are even.
Theorem 4.1.6 Fork>a>1,

2. ,2)\2 2a
— n —454 )\47 54
E Usk 24(N)q :( )ao{ 2. 2
= (0% ¢%)os

4k—2 4k. Ak
“ " q*)

o0

And the next one is for the case that the first index is odd and the second index is

even.

Theorem 4.1.7 Fork > a > 1,

(_q2.q2)2 (q2a q4k+272a q4k+2.q4k+2)
Zﬂ%ﬂﬂa(”)qn: — 2. 2 ’ ’
= (0% ¢%)os

Note that for both theorems [4.1.7| and [4.1.7, we can have 2a — 1 instead of 2a for

the second index, with respect to the lemma 4.1.1]

In the following sections, we will give some functional equations that we will use for
our constructive method, then we will prove those equations. At the end we will reprove
the identities introduced by Chen, Shi and Yee, then the proofs of the remaining cases

will be given.

4.2 Functional Equations

As described in the second chapter, we need some functional equations relating the

generating functions of the overpartition types defined in the previous section to use
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for constructive method to find the divisibility part of our identities, to this pur-
pose, some functional equation are given in this section. For all proofs, let 7 be
an arbitrary overpartition on n with m parts, we denote the number of overpar-
titions of 7 in the first form by ry.(m,n), then Upa(n) = 37, ~o7Tha(m,n), also
Tra(m,n) denotes the number of overpartitions of 7 for the second definition, simi-
larly, Uy.q(n) = Y mns0 Tha(m,n).

Through all the proofs, note that 7 4(m,n) = 0 whenever m < 0 or n < 0.

Theorem 4.2.1 For k> a > 1, we have

U2k:,2a($) - U2k,2a—1($) = ($Q)2a_1U2k,2k—2a+l(xQ> + ($Q)2a+1U2k,2k—2a—1($Q)~ (4-1)

Proof 4.2.2 Consider 1oy 2,(m,n) — rag2.-1(m,n). Then all overpartitions counted
by Tok2a—1(m,n) are also counted by rop2q.(m,n), so with respect to the definition of

Usg.24(n), we have two cases,

(i) there is no overlined 1 in the overpartition, i.e. fr = 0, so with respect to the
first condition, there are exactly 2a — 1 of non-overlined 1°s in the overpartition,
now by the last condition, fo < 2k — 2a + f5, removing all 1’s and subtracting 1
from all remaining parts, f1 < (2k —2a+ 1) — 1+ f; and other conditions of the
second definition also hold, so we have overpartitions of n —m with m — 2a + 1

parts of the second type, Tog op—24+1(m — 2a + 1,n — m).

(i) there is an overlined 1 in the overpartition, i.e. f; =1, so we have ezxactly 2a non-
overlined 1’s and one overlined ones in the overpartition, note that by assumption
2a > 1, so by the last condition fo < 2k—2a—2+ f5, now by removing all 1’s,and
subtracting 1 from all remaining parts, fi < (2k —2a — 1) — 1 + f; and again
other conditions of the second definition also hold, so we have overpartitions of

n —m with m — 2a — 1 parts of the second type, Tok op—2a—1(m — 2a — 1,n —m).

So,
Tok,2a (M, ) =Tk 201 (M, M) = Tog 2k—2a+1(M—2a+1, n—m)+Top 2k—24—1(M—2a—1,n—m).

Multiplying all terms by x™q™ and taking the summation over m and n for all terms,
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m,n > 0 and both integers, we have

Z 7’2k,2a(m,”)xmqn— Z T2k,2a71<m,n)$mqn =

m,n>0 m,n>0
- m _n - m _n
E Tok2k—2a+1(Mm — 20+ 1,n — m)x™q" + E Tok2k—20—1(Mm — 2a — 1,n — m)z™q".
m,n>0 m,n>0

By substituting n by n+m, then m by m+2a—1 for the first term and n by n+m,
then m by m + 2a + 1 for the second term on the right hand side of this equation, we
have

Z T2k,2a<m7 n)$mqn— Z 7’2k,2a71(m,n)xmqn =

m,n>0 m,n>0

— m+2a—1 _n+m+2a—1 — m—+2a—1 _n+m+2a—1 __
E Tok2k—2a+1(1M, N)T q + E Tok 2k—2a—1 (M, )T q =

m,n>0 m,n>0

(xg)*" Z Tok2k—2a41(m, n)(2q)"q" + (vq)*** Z Tak 2k—20—1(M, 1) (2q)"q".

m,n>0 m,n>0

This gives us the equation (4.1)).

Next functional equation that we want to use in construction step will be as follows.
Theorem 4.2.3 For k> a > 1, we have
Uk 2a41(x) — Usp2a(x) = (xQ)ZaU%,Zkua(l'Q) + ($Q>2a+272k,2k72a72(xq)- (4.2)

The proof for Theorem (4.2.3)) is the same as proof of Theorem (4.2.1)), we only

need to replace 2a by 2a + 1, we will skip the rest. Now, we will introduce another

functional equation from U to U.
Theorem 4.2.4 For k> a > 1, we have
U2k,2a(x> - U2k,2a72(x) = (xQ)QaU2k,2k72a($Q) + (xQ)2a72U2k,2k72a+2(xQ)- (4.3)

Proof 4.2.5 Consider Usoq(7) — Usgoa_o(7), when 1 < 2a < 2k, in this case for

Tok,2a(M, M) — Tog2q—2(Mm,n), there are two cases

(i) fr =0, then fi = 2a, so by the fourth condition fo <k —2a — 1+ f5, removing
all 1’s and subtracting 1 from all remaining parts, we have f; < (k—2a) —1+ f1
and other conditions of the definition of Usy2,(n) also hold for the new partition,

and they will be counted by rog 2x—24(m — 2a,n — m).
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(i) fr =1, then fi = 2a + 1, same as before we have that fo < 2k —2a — 3 + f5,
removing all 1’s and subtracting 1 from all other parts, f1 < (2k—2a—2)—1+ f7,
and other conditions hold for the first type partition hold, so they will counted by

Tokok—2a_2(m — 2a + 2,n).
So,
Tok,2a (M, M) —Tog 2a—2(M, 1) = Top 2k—2a(M — 2a, 1 — M) + rog 2k—2042(M —2a+2,n—m).

Multiplying all terms by x™q" and taking the summation over m and n for all terms,

m,n > 0 and both integers, we have

Z Tok2qa(m, n)x™q" — Z Tok2a—2(m,n)z™q" =

m,n>0 m,n>0
m _n m _n
E Tok2k—24(m — 2a,n — m)ax™q" + g Tok 2k—2a—2(m — 2a + 2,n — m)x™q".
m,n>0 m,n>0

By substituting n by n + m, then m by m + 2a for the first term and n by n + m,

then m by m + 2a — 2 for the second term on the right hand side of this equation, we
have

Z Tok2qa(m, n)x™q" — Z Tok2a—2(m,n)z™q" =

m,n>0 m,n>0

m+2a  n+m-+2a m+2a—2 n+m—+2a—2
E Tk 2k—2a (1M, M) T q + E Tk 2k—2a—2 (M, M) T q

m,n>0 m,n>0

(zq)* Z Tokok—2a(m, 1) (2q)"q" + (vq)* 7 Z Tok,2k—2a—2(M, 1) (2q) " q".

m,n>0 m,n>0

This gives us the equation (4.3)).

We will use these three functional equations to find identities for U and U when
their first index is even. Next, we will prove three other functional equations using to

find identities for the odd case of U and U.

Theorem 4.2.6 For k> a > 1, we have

Usi124(7) — Usiy1.2a-1(7) = (2¢0)** Uski1.2k—2042(2q) + (20)**  Uspr1.0%—24(2).

(4.4)

Proof 4.2.7 Consider rogi1.24(m,n) — rogi1.2a—1(m, n), all overpartitions counted by
Tok+1,a—1(m,n) are already in the rogiq12,(m,n), so with respect to the definition of

Uset1.24(n), we can consider two cases,
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(1) there is no overlined 1 in the overpartition, i.e. fr = 0, so with respect to the
first condition, there are exactly 2a — 1 of non-overlined 1’s in the overpartition,
now by the last condition, fo < 2k—a+ 1+ f5, removing all 1’s and subtracting 1
from all remaining parts, f; < (2k —2a+2) — 1+ f; and other conditions of the
second definition also hold, so we have overpartitions of n —m with m — 2a + 1

parts of the second type, Togt1 2k—2a+2(m — 2a + 1,n —m).

(ii) there is an overlined 1 in the overpartition, i.e. f; =1, so we have exactly a non-
overlined 1’s and one overlined ones in the overpartition, note that by assumption
a > 1, so by the last condition fo < 2k —2a—1+ f5, now by removing all 1’s,and
subtracting 1 from all remaining parts, f1 < (2k — 2a) — 1 + fy and again other
conditions of the second definition also hold, so we have overpartitions of n —m

with m — 2a — 1 parts of the second type, Togt126—2a(m — 2a — 1,0 —m).

So,

T2k+1,2a(m, n) - T2k+1,2a—l(ma ”)

= Topt12k—2at2(m — 2a + 1,n —m) + Topp106-24(Mm — 2a — 1,n — m).

Multiplying all terms by x™q" and taking the summation over m and n for all terms,

m,n > 0 and both integers, we have

Z 7’2k+1,2a(m,n)$mqn - Z T2k+1,2a—1(m,n)$mqn =

m,n>0 m,n>0
Z Tokt1.2k—2a+2(Mm — 2a + 1,n —m)x™¢"+
m,n>0
Z Tok+1,2k—20(m — 2a — 1, n — m)x™q".
m,n>0
By substituting n by n+m, then m by m+2a—1 for the first term and n by n+m,
then m by m + 2a + 1 for the second term on the right hand side of this equation, we

have

Z T2k+1,2a(m,n)xmqn - Z 7'2k+1,2a71(m> n)wmqn =

m,n>0 m,n>0

= m+2a—1 _n+m—+2a—1 - m+2a+1 n+m-+2a+1
E Tok+1,2k—2a+2(M, N)T q + E Tok+1.2k—2a (M, )T q

m,n>0 m,n>0

(zg)* Z Tokt1.2k—2at2(m, n)(2q)"q" + (zq)*** Z Tok-+1,2k—24 (M, 1) (29)™ "

m,n>0 m,n>0

This gives us the equation (4.4)).
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The second one is similar.

Theorem 4.2.8 For k> a > 1, we have

Usiet12a+1(%) — Uzis1,20(%) = (2¢)* U1 26-2012(q) + (29)* Uk 1,25—24 (). (4.5)

The proof of Theorem (4.2.8)) is the same as Theorem (4.2.6]), we just need to replace
2a by 2a + 1, and at the end we need to use Lemma (4.1.1)) as follows

U2k+1,2k72a+1<IQ) = U2k+1,2k72a+2(mQ>

and
U2k+1,2k—2a—1(fq) = U2k+1,2k—2a(9€q)-

Lastly, we have the following functional equation from U to U,

Theorem 4.2.9 For k> a > 1, we have

U%+1,2a($) — Uzk+1,2a72(ﬂf) = <$Q)2GU2k+1,2kf2a+1(xQ) + ($Q>2a72U2k+1,2k72a+3(xQ)-

(4.6)

Proof 4.2.10 Consider ng+172a(x) — Uspi12a—2(x), when 1 < 2a < 2k, in this case

for Togt1.00(m, n) — TFopy1.24—2(m, n), there are two cases

(i) f1 = 1, then fi = 2a — 1, so according to the last condition in the definition,
fo < 2k — 2a + f5, removing all 1’s and subtracting 1 from all remaining parts,
the new partition satisfies in the conditions of the first definition for 2k and

2k — 2a + 1, '2k+1,2k—2a+1 (m — 2CL, n — m)

(i) f1 = 0, then fi = 2a — 2, so according to the last condition in the definition,

fo < 2k —2a+ 2+ f5, removing all 1°s and subtracting 1 from all remaining

parts, the new partition satisfies in the conditions of the first definition for 2k

and 2k — 2a + 3, rogr1.2k—24+3(Mm — 2a + 2,0 — m).

So,

Tok+1,2a(M, M) —Topt12a—2(M, ) =

Tok+1,2k—2a+1(M — 24,10 — M) + Tt 2k—2043(M — 2a + 2,1 — m).
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Multiplying all terms by x™q™ and taking the summation over m and n for all terms,
m,n > 0 and both integers, we have
Z Takt1,24(m, n)a™q" — Z Tokt1,2a—2(m,n)r"q" =
m,n>0 m,n>0

5 T2k+1,2k—2a+1(m —2a,n — m)ﬁﬁmqn + E 7“2k+1,2k;—2a+3(m —2a+2,n— m)xmqn-

m,n>0 m,n>0

By substituting n by n + m, then m by m + 2a for the first term and n by n + m,
then m by m + 2a — 2 for the second term on the right hand side of this equation, we
have

Z Tokt1,2a(m, n)x™q" — Z Tok+1,2a—2(m,n)x™q" =

m,n>0 m,n>0

m+2a n+m-+2a m+2a—2 n+m+2a—2
E Tokt1,2k—2a+1 (1M, )T q + E Tok+1,2k—2a+3(M, )T q

m,n>0 m,n>0

(zq)™ Z Poki1,2k— 2041 (1, 1) (£9)"q" + (2g)** 7 Z Tak+1,2k—20+3(M, 1) (2¢) ™ ¢"

m,n>0 m,n>0

This gives us the equation (4.6)).

4.3 Even cases

In this section, we will go through the results from Sang, Shi and Yee’s paper, we will

find identities for Usy 24, Usk 2041 and Uagg 24 = Usg 24—1 using our constructive method.

For this purpose, we will use the functional equations (4.1)), (4.2)) and (4.3)).

Then, as it has been discussed in the chapter 2 and used for other Rogers-Ramanujan
type partitions given in the chapters 2 and 3, we will use the following form of gener-
ating functions for U and U,

U2k,2a(x) — Z Oé;(flj’)(]QanAl + 52(1’)$2GB1 q2a01 q2anD1
n>0
for the even first index and the even second one,
Usp, o (.1') _ Z ag(x)q(2a+l)nA1 + ﬂrob(x)$(2a+1)31q(2a+1)01q(2a+1)nD1
n>0
for the even first index and the odd second one, and

Taanlz) = YTl 4 B, () Pg 2202
n>0
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Note that if the second index is odd, we can change it to even by Theorem (4.1.1]).
By functional equations (4.1)) and (4.2)), we have

e 2anAq o

ol (2)* " — ag(x)q = B,_1(zq)(zq

(2k—2a+2)(32+02)q(2k—2a+2)(n—1)D2(1+x2 2 —2By —2By— 2ng—2(n 1)D2)

(2a—1)nA; )2(1 1 (2k72a+2)32

xq qzr q

af(x)g@ A — ol (z)g* M = B, (xq) (vq) x5

Xq(2k—2a)(Bg+Cz)q(2k—2a)(n—1)D2 (1 + x2q2x—232q—QBQ—QCQq—Q(n—l)DQ)7

/36( ) 2a B4 2aC1 2anD1 Bo( ) (Qa—l)qu(Qa—l)C’1q(2a—1)nD1

=a, (IL‘C])(ZL‘C])Qa_lq(2k_2a+2)nA2 (1 + x2q2q—2nA2)
and

ﬁo<x>x(2a+1)31 (2a+1)Cy 2anD1
n

q q(2a+1 )nD1 56( ) 2aB1 2aCl

q

. (4.10)

(2k—2a)nA2(1 +x q2q

= a,(zq)(29)*"q

also, by functional equation (4.3)), we have

anle) = —B5_, (vq) (4.11)
(zq)2az(2h=20)B1¢(2k=20)(B1+C1) (2h=2a)(n=1)D1 (] 4 g=2¢=242B1 281421 2(n=1)D1 )

q(2a—2)nA2 (1 _ q2nA2)

(
% q q

. (l.q)Qaq@k 2a)nA1(1+x72q72q2nA1)
(@) = —ai(xq) 2(20-2)Bs ¢(20-2)0> g(2a=2)nDs (] — 72B2q2Coq2nDs)”

(4.12)

From the two first equations (4.7]) and ( - we have

2anA 2a—1)nA e
gendt —qlPend ap(z)) 2a-1,.(2k~20+2) By (2k—2a-+2)(B2+C2)
. , = Bn1(zq)(2q) q
_q2an 1 q(2a+1)n 1 O!,,OL(ZL')
% q(2k72a+2)(n71)D2(1 —|—xzqzx*w?q72327202q72(”’1)D2) 1
gqu—2B2q—2B2=2C2 g=2(n—1)Ds

and similarly, for the second pair, from equations (4.9)) and ( -, we have

anBl q2ac’1 q2anD1 _x(2a—1)Blq(2a—1)01q(2a—1)nD1 5181 (IE)
_:L.ZaBl q2a01 q2anD1 I(2a+1)Bl q(2a+1)6’1 q(2a+1)nD1 Bg ([E)
— 2a—1 (2k—2a+2)nA 2 2 —2nA 1
= an(zq)(zq)™ q *(L+27¢°qg ")
rqq 2nAs
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From this system, we need of(z) and 5<(z), so
($q>2a$(2k—2a)31 q(2k:—2a)(Bl +C1+(n—1)Dy)

an('r) = 'rez—l(xq) q(2a—2)nA2
(1 _'_ x—Qq—QxQBlq231+201+2(n—1)D1)
(1 _ q2nA2) ’
B (2) = —af () (vq)2aq@e—20nA1(] 4 =24~ 2g2n)
n n q x(2a72)Bgq(2a72)Cg+(2a72)nD2(1 _ x232q202q2nD2)7
. (xq)Qa—lx(Qk—2a+2)B2q(2k—2a+2)(Bg-‘,—Cg—i—(n—l)Dg)
oy, () = =B, (2q)
q(2a—2)nA1
" (1 + x2q2x72B2q7232720272(n71)D2)(1 + Iqx7232q72nA172Bgf20272(n71)D2)
(1 _ q2nA1)
and
/Be (I) o (I )(xq)Qaflq(QkuaJrZ)nAg(l + x2q2q72nAg)(1 + qu7231q72nA2720172nD1)
n\T) = —QnlTq 1(2a=2)B1 ¢(2a=2)(C1+nD1) (] — g:2B1¢2C1g2nD1)

. e ey . e — e .
By this recurrence, we can find o and 3, in terms of af, also @, and 3¢ in terms

of @y, then we can make some of finite products into infinite products, and we have

ap () =a5(2¢™") fu()
(_m2q4q—2(n—1)A1; q4+2A1)Oo(_x2q2x—232q—QBg—QC’Q—Z(n—l)DQ; gi4Ba+2D2)

—2A1. ,—2A
(q=241;q724),
—1,-1,.2B> 2nA1+2B2+2C2+2(n—1)Ds. ,—2—2A1+4B>—2D
(—JJ q 2B g2 2 2+2(n—1) 2 q 1 2 2)00

>< )
(33232 q232+202+2(n71)D2 : q4B272D2 )OO

B () =ao(z¢*" ") ga(2)
(_:C2q2q—2nA2; q4+2A2)oo(_x2q4$_2Bl q—4Bl—201—2(1’L—1)D1; q4—4B1+2D1)n

—2A5. 4,—2A
(q7242;¢7242),
(_l»*lq*leBl q2nA2+201+2nD1 ’ q7272A2+43172D1 )oo

2By 42C1+2nDy . 44B1—2D ’
(x 1g2C1+2nDy: 4B 1)00

X

an(x) =ap(zq*") fo ()
(_I2q4q—2(n—1)A2 qA2An) (—a2gPa 2B g~2B1—2C1=2(n=1)D1.

—2A5. ,—2A
(q=242;q=242),
—-1,.,-2,.2B1 ,2(n—1)As+2B1+2C1+2(n—1)D1. ,—2—2A5+4B1—2D
(—1‘ q 2a?Bg (n—1)A2 1 1+2(n—1) g 2 1 1)00

(SL‘2Bl q2Bl+201+2(n71)D1 ; q4Bl —2D1 )OO

4—4B1+2D
q 1+ 1)n

X

and

B,(x) =aG(xg*" ) g, (x)

2 —2nAj.
)

y (—$2q q 4+2A1>OO( 2.4,.—28>

—rqT q

—2A1. ,—2A
(q=24;¢724),
(_I_lq_2$232q2nA1+4B2+202+2(n_1)D2 7 q—2—2A1+4BQ—2D2 )Oo

2Bs 2Co+2nDy. 4,4Bs—2D
(]; 2¢ 2+2n. 2; g4B2 2)00

74B272CQ*2(H71)D2 . 474BQ+2D2>
) n

q q

X
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where

£() (1) gdan—2n+@h—a+2)ny

% q2n(2n+1)a—2n(n+1)+(n(n—1) (k—a+1)—n(n+1)(a+1))A1+(k—2a+1)(2n2 B2 +2nC2+n(n—1) D3)

)

Ja (33') :(_ 1)nx2(2n+1)a72n+(74an72a+2k+2n)31

% q(2n+1) (2n+2)a—2n(n+1)+(k—2a)n(n+1)A2+(k—2a+1)(2n(n+1) B1+2nC1+n(n—1)Dy)

Y

() =(— 1ygton—2nhtasn,

x q2n(2n+1)a72n2+(n(n71)(k7a)7n(n+1)a)A2+(k72a+1)(2n231 +2nC1+n(n—1)Dy)

Y

gé (ZC) :(_ 1)nx2(2n+1)a—2(n+1)+(2k—2a+2)nB2—(2a—2)Bg q(2n+1)(2n+2)a—2n2—4n—2

% q(k—Za)n(n—i—l)Al+(k—2a+l)(2n(n+1)Bg+2an)—(2a—2)Cg+((k—a)n(n—1)—(a—l)n(n+1))D2

(xQBQ (4n+2)Bg+202—2D2. 4BQ—2D2>
q ; 00

q
244 2A14+4n. 44+2A
(—a?gtq?tin; ght2dn)
1
—1,—1,28 4n+2)Bo+2C05—2Do—2n. 4—2—2A14+4B>—2D
(_x q €T 2q( n—+ ) o+ 2 2 n’q 1+ 2 2)00

ag(zq™) =ag(zg™™)

X

and

2B (4n+2)Bl +2C1—-2D1.
)

(I‘ 4B1—2D1)

q q
(—x2qiq2Az+in, git242)

1

—1,—2,2B1 ,—2A 4n+2)B1+2C1—2D1—2n. ,—2—2A2+4B1—2D '
(_x qcx lq 2+( n—+ ) 1+2C1 1 n’q 2+4B1 1)00

o (z¢*") =t (z¢™") =

X

For the check step we will use the check equations
Uaro(z) = Uggo(z) =0 (4.13)

which is a boundary condition. We want the equations to be consistent, in fact, this
check equation is a verification to the construction step, so we consider some assump-

tiOHS, as Al = AQ, Bl = BQ, D1 = D27 4Bl — 2D1 | 2B1 — 2D1 and 4+ 2A1 | 2, SO

— — / . . .
B, = 11—285 D; and A; = =2 for some integers s and s’, same as described in the second

S/
chapter, we choose the simplest ones, in this case s = 0 and s’ = 1, then by putting in

the check equation (4.13]), we have A; = —1 and B; = C; = D; = 1 for i = 1,2. So,

Usgon() = 37 (—1)rgnimt Dk (=2°¢*"*2 ¢%) oo (=245 ¢ ) oo (0" ¢*)n
’ g (% ®)n (2> ¢%) oo
% (x2knq—2an o anQQaq%Ln)
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and

7 (=221 ) oo (= 2¢% ¢*) oo (=" )
U2k,2a($) —_ (_1)n$2knqn(n+1)(2k+1)
nzz% (4% ¢*)n (2625 ¢%)oo
% <q72an (2n+3)aq2aq2an)

Now, we apply x = 1, so the generating functions is for any partition of any length.

q q o0 n 2n (n+1)k—2an (2n+1)2a
Uzzal) = Z (1-gq )
n>0
and
Usp2a(1 )— q q S Z Jrg2nnDk=2an(1 _ 4 (2n+1)2a
n>0
Then by using , for i =2a and t = , we have
U2k 9 (1) — (_Q? q)OO(q2a7 q4k—2a, q4k7 q4k)oo
’ (4% ¢%)oo
and
Toaa() = CLICN(@ 7 0%

(4% )0
These prove Theorems (4.1.2)) and (4.1.6)). For the remaining case, Usg, 24+1, We use
functional equations (4.2.1)) and (4.2.3) to find g () in terms of 8, ;(zq) and 3%(x) in

terms of @, (2q), then having @, and 3, in terms of ag, we can find our last identity

in this case.

ap(z) =ag(rq

2n+1)
(=)t g (a2 ) oo (— 2% ¢F) oo (=41 ¢F)n (1 + 2g”"H)

X
(4% ¢*)n(72¢*" 2 ¢%) o
and
0 () = — ao($q2n+2)
y (_1>nx2knq2kn2+2kn—n( 2q2n+2’q ) ( xq37q2)oo(_q2;q2>n(]- +xq2n+1)
(0% ¢*)n(22¢* 2 ¢%) oo
So, from
Usk.2at1(T Za —(2a+1)n "4 B0 (x)x 2a+1(2a+1)(n+1)
n>0
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we have

q q s Y1 242k a1 i e
Usk2a41(1) = Z g 42k (2a-+1) (1+ ¢ )1 - PEERE +1))
n>0

C_I q o Z 'n, 2k:n +2kn—(2a+2)n(1 . q(2n+1)(2a+2)>
n>0
q q oo Z n 2kn2+2kn 2an(1 o q(2n+1)2a)‘

n>0

Using ([2.1.2)) twice, once for i = 2a + 1 and t = L;l, and again for ¢ = 2a and

;= k=1

5, we have

202 k2072 gtk ) o (=07 @)oo (P, T, g gF)
2. 42 + 2. 2
(4% ¢%) o (% ¢*)

(—¢% @)l

[e.9]

U2k,2a+1 (1) =

This proves our last identity for even case, Theorem (4.1.3).

4.4 0Odd cases

Same as the even case, we want to find identities for Usg1,2q; Uskt1,20+1 and Uggi1.24 =

ngﬂ,ga,l. We use the functional equations (4.2.6]), (4.2.8) and (4.2.9).

Same as even case, by

U2k+1,2a (.Z') — Z az (x)q2anA1 + BZ (CC)I'2aBl q2aCl q2anD1
n>0

for the odd first index and the even second one,

Uskt1 2041 (2 Z al gettindr 4 B2(x)x (2a+1)B1 (20+1)C1 g (2a+1)n Dy

n>0

for the odd first index and the odd second one, and

Uspi124(7) = Z (1) 242 + B ()2 2*P2 2202 2Dz
n>0

Same as section ([4.3)), for odd a we use Lemma (4.1.1)) to make it even. By functional
equations (4.4) and ( ., we have

ot (x)qQanAl o 05701 (x)q(Za—l)nAl _ Bn_l(xq) (xq)Za—lx(2k—2a+2)Blq(2k—2a+2)(32+02) (4 14)
q(2k72a+2)(n71)D2 (1 _'_ x2q2x7232 q72327202 q72(n71)D2)’

0l (2)q 2 — o (1) = B, () (1q) 2 PR B g 2k 2042) (Bt ) (4.15)

q(2k_2a+2)(n_1)D2(1 +ZL‘2q2:L‘_2B2 —2B2—202q—2(n—1)D2)7

q
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ﬁe( ) 2a B 2a6’1 2anD1 /BO( ) 2a—1)B1q(2a—1)qu(2a—1)nD1 _

(4.16)
an(xq)(xq)Qaflq(%*?aH)nAz(1 + a2qPq A
and
ﬁg(x)x(2a+1)31q(2a+1)01q(2a+1 ynD1 66( ) 2aB; 2aB1q2anD1 _ an(l,q) (xq)Qaq(2k72a+2)nA2
(1 + 2%¢%q~242),
(4.17)
also, by functional equation (4.6]), we have
an<x>q(2a—2)m42(1 . q2nA2> =_p°_ 1(xq)( q) (2k—2a+1)B (4 18)
q2F20 D) (B4 O g (2h=2a)(n=1)D1 (1 | 5=2= 221 (2B14+2C1 2(n—1)D1y
and
Bn (x)x(Qa—Q)BQq(2a—2)6’2q(2a—2)nD2 (1 . :L,2qu202 q2nD2> _ _04701 (.27(]) ($q>2a (4 19)
q(2k—2a+1)nA1 (1 + x—Qq—2q2nA1) '

From the two first equations (4.14)) and ( -, we have

2anAi _ 4(2a—1)nA; o (x .
' 2anA ((]2 +1)nA 0 B (zq)(1 + 2?qPa =22 q 2B 7202 g =2(n=1)D2)
_q anAiq q a nAi Oé%(l')
(Iq)2a—1x(2k—2a+2)32q(2k3—2(l+2)(BQ+CQ+(7’L—1)D2) 1
xq
and from equations (4.16)) and (4.17), we have
x2aqu2a(C’+nD1) _x(Qa—l)Blq(2a—1)(C’1+nD1) ﬁ;‘(x) . (xq) ($q>2a_1
—y2aB1 q2a(01+nD1) x(2a+1)Bl q(2a+1)(C1+nD1) B,Z (l‘) n
(2k—2a+2)nAs 2 2 —2nAs 1
q (1+2°¢°¢ ")
g

From these systems, we need a?(x) and £°(z), in fact, with respect to equations
(4.18) and (4.19)), to make the recurrences work, we must take them o2(x) and 8°(z),

SO

2k—2a+1)By (2k—2a+1)(B1+C14(n—1)Dy)

q'
q(2a—2)nA2

ra)22
)<@

an () = =1 (xq
(1 + x—2q—2x2B1 q2B1+201+2(n—1)D1)
(1 _ q27‘LA2) )
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_ B ) (:Bq)Qaq(Qk—erl)nAl(l _I_a7—2q—2q2nA1)
Bn(x) - _a”('rq)x(2a—2)B2q(2a—2)02+(2a—2)nD2(1 _ x2B2q202q2nD2)’

2a—1,(2k—2a+2) By (2k—2a-+2)(Bz+Ca+(n—1)D2)

q'
q(2a—1)nA1
(1 + $2q2$_2B2q_2B2_202_2(n_1)D2)(1 + xq)

(1—¢*4)

— ) (zq)

Q%(ZE) = _/Bn—l(‘rq

and

Br(x) = —an(x )(xq)Q“‘lq(z’“‘Q“”)"AQ(l +a%¢? ) (1 + 2q)
n\T) = —an(xq 2 (2a=1)B1¢(2a=1)(C1+nD1) (1 — z2B12C1 g2nD1)

Same as the even case, by this recurrence, we can find of and (3, in terms of af,
also @, and (¢ in terms of @, then we can make some of finite products into infinite
products, and we have

(_:L.2q4q—2(n—1)A1 i q

) 4+2A1>OO
ap () =ag(xq™) fa(x) (12B2q2B2 202+ 2(n—1)Ds; (4Ba—2D2) _

(_$q7 q2>oo(_x2q2x—232q—2BQ—2CQ—2(TL—1)D2; q4—4BQ+2D2>n

(q7241; 7240, ’

(=2’ q

4+2A2)
_ 2n+1 oo
BZ(‘T) _OéO(xq " )ga(:):) (x231q201+2nD1; q4B1_2D1)oo

(—2q; ¢*) oo (—22q 2 ~?P1g q

(q=242;q7242),, ’

7431720172(7171)D1 . A4—4B1+42D, )
9 n

(nfl)AQ . 4+2A2)
Y o

an () =a(zq

Qn)f/< ) (_1/2(]4(]72 q
o\ L (:E2B1q2B1+QC’1+2(n—1)D1; q4B1—2D1)0o

2By 7231720172(7L71)D1. 474B1+2D1)
) n

(—2¢% ¢%)oo(—2?q?z P
(q=242; ¢242),

q

and
2 2 —2nA;. A4+2A;
TR S NN G o i L B
ﬁn(m) _QO(xq )ga(‘r) ($2B2q202+2nD2; q4B2_2D2)oo
(_:L.q27 qQ)OO(_x2q4$7232q7432720272(n71)D2; q47432+2D2)n
(2415 q724),
where

fa (ZL‘) :(_ 1)nx4an—3n+(2k—4a+4)n32 q2n(2n+1)a—n(3n+2)+(n(n—1)(2k—2a+2)— w (2a+1))Aq

q(zk_4a+4)(n232+n02+$)/32)
)
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ga(x) _(_ 1)nx2(2n+1)a7(3n+1)+(2k74a+4)nB17(2a71)B1q(2n+1)(2n+2)a7(n+l)(3n+l)

(k—2a+1)n(n+1)Ag+(2k—4a+4) (n(n+1)By +ncl)_(za_1)cl+((2k_2a+3)@-(mq)%)pl),

q

f(; (l’) :(_ 1)nl,4an—3n+(2k—4a+4)nB1 q2n(2n+1)a—n(3n+1)+(n(n—1)(k—a+1)—n(n+1)a)A2

q(kz—2a+2)(2n231 +2nC1+n(n—1)D1)
)

g(ll (l‘) :<_1)nxQ(2n—|—1)a—(3n+2)+(2k—4a+4)n32—(20,—2)32q(2n+1)(2n+2)a—(n+l)(3n—2)

q(k72a+1)n(n+1)A1 +(2k—4a+4)(n(n+1) Ba+nC2)—(2a—2)Ca+((k—2a+2)n(n—1)—(2a—2)n) D2

( 2B> 2B2+2C’2+2(n—1)D2+n(4B2—2D2). 4B2—2D2)
= cq v q o0

(_x2q2q—2(n—1)A1+n(4+2A1); q4+2A1 )oo (_xq2n+1; q2)oo

ag(xg™) = af(zq™)

and

(1.231 q231+201+2(n*1)D1+n(4BI*2D1) 43172D1)

omy _ — 2 4 oo
ao(rq™) = ao(xq™) (—22qtq 2= DAetn(at242). 41242 (—pq2nt2; g2)

The check equation U%yo(x) = 0 is again a boundary condition, and with the same
argument that we had for even case, we have A;, = —1 and B; = C; = D; = 1 for

i=1,2. So,

U?k—&-l,Qa(l') = Z(_1)nx(2k+1)nq2n(n+1)(k+1) (q—2an _ x2aq2aq2an)
n>0

(_x2q2n+2; q2)oo(_xq27 qz)oo(_q

(¢% @*)n (26> % ¢%) o0

—2n

1 G )n

and

U2k+1,2a+1 (.T) _ Z(_l)nx(2k+1)nq2n(n+1)(k+1) (q7(2a+1)n . x2a+1q(2a+1)(n+1))
n>0

(=222 ) oo (=245 ¢%) o (—q~

(% ®)n(2¢® 25 ¢?)

%)y,

Applying z = 1, we have
o (_q2. q2)2
Uskt124(1) = W Z(_l)nqn(n+1)(2k+l)—2an<1 . q(2n+1)2a)
© n>0

and

(=4 @) (_1)nqn(n+1)(2k+1)7(2a+1)n(1 .

U2k-+172a+1(1) = W (2n+1)(2a+1)).

q
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So, using Corollary (2.1.2)), for i = 2a + 1 and t = % for U, and i = 2a + 1 and

t:@ for U, we have

- (=02 )2 (%, g 2720 M2 g2
Uskt1,24(1) =
+1.20(1) (4% %)
and
CN2 (2041 o Ak—2a+1  Ak+2. Ak+2
—q;q 0o q ,q ,q yq [e’s)
Uzk41,2a+1(1) = ( S 2. 2 )
(4% 4?) s

These prove Theorems (4.1.4]) and (4.1.7)). Finally, for the last identity of this case,

Usk+1,24, Same as even case, we have

e ~ 0 n n n TL2 mn n2
an(x) :OéO(QZ(JQ )(_1) x(2k+1) q2l~c +2kn+

( x2q2n+2’q ) ( $q33q2)oo(_q2;q2)n71<1 +q2n)<1 _|_xq2n+1)
(4% ®)n(22¢*"%; ¢% ) o

and
po(x) = — o (xq2”+1)(_1>nx(2k+1)nq2kn2+2kn+n2
(- 22¢?+2: ¢ ) (—xq3;q2)oo(—q2;q2)n(1 +xq2n+1)
(0% @*)n(22¢°™+?; %) '
So, from
U2k+1,2a<x> — Z a?t(x>q72an _|_ /BTOZ( )x2aq2a(n+1)
n>0
we have
U2k+1,2a(1) — C] q o0 Z n 2Im +2Im+n2—2an(1 + q2n+1)(1 B q(2n+1)2a>
n>0

_ ((;2‘1 6;2‘1))00 (Z(_1)ankn2+2kn+n2+n—(2a+1)n(1 - q(2n+1)(2a+1))
) o0 n>0

+ qz n 2kn +2kn+n2+n— (2a71)n(1 . q(2n+1)(2a71)))

n>0

Using Corollary - twice, once for ¢ = 2a and t = 4’““ , and again for i = 2a+1

and t = 4’“%11, we will have

2a+1 ,4k—2a+1 ,4k+2 4k+2)

(—¢% @)oo(@®* . g ¢t g

N q(_q2; q)oo(q2“_1, q4k—2a+3’ q4k+2; q4k—|-2)Oo
(4% ¢%) oo

This proves our last identity for odd case, Theorem (4.1.5)).
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CHAPTER 5

Conclusion and future work

The constructive method is effective for some Rogers-Ramanujan type partition
identities other than the original identities, the ones that the partitions have multiplic-
ity conditions on two consecutive parts, such as Rogers-Ramanujan-Gordon’s identity
for overpartitions, because the multiplicity condition is on ¢ and ¢ + 1, but in Schur’s
identity [2], the multiplicity condition in on 4, i + 1 and i+ 2, so the exact method that
we used does not work for that. There is a possibility that the constructive method
works on other partition types by modifying the generating function, such as Schur’s
identity or Gollnitz-Gordon identities [11].

In this thesis, we construct identities for two other Rogers-Ramanujan types iden-
tities for overpartitions and colored partitions using this method. In fact, we finished
the parity consideration on Rogers-Ramanujan-Gordon’s identities for overpartitions
with respect to the some restrictions on parts defined by Chen, Sang and Yee, the most
important restriction they made was the second condition in the definitions and
(4.1.2)), where the existence of an overlined part has a significant role in finding the
new identities. Note that in the constructive method, we start with a definition for a
partition type and if we can not reach to the other side of the identity, we may change
the definition by adding new restrictions, then try the method for the new definition.

For future work, one idea is to remove some restrictions in the definitions
and , then find functional equations relating their generating functions and find
identities in a more general case. Another problem to think of can be considering
higher or even arbitrary congruence on parts instead of 2, e.g. three overpartition

types, Uy's when fy; + fg77 = 0 (mod 3) for i = 0,1,2. In the third chapter, we
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realized that 2-colored Rogers-Ramanujan type partitions are related to some special
case of overpartitions. We can generalize those colored partition identities for more
colors, for generalized case of Rogers-Ramanujan type partitions, i.e parts of each
color be of Rogers-Ramanujan-Gordon’s type partitions or for both. Another idea can
be considering the parity condition on the parts of each color.

In the process of our work, we used some some computer algebra software such
as Maxima, Mathematica and Maple, first to find the partitions with those given
conditions, and then to verify our final results. Other than those, we use them to
verify some parts on construction step. For future, one of our plans is to write and
develop programs in those software that generate partitions and overpartitions with
respect to the condition that we put on parts, in this way, we may guess the relation
between parts and then find new identities related to those partition or overpartition

types. It may help us to find new identities.
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