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ABSTRACT

SUMONET: DEEP SEQUENTIAL PREDICTION OF SUMOYLATION SITES

BERKE DILEKOGLU

COMPUTER SCIENCE ENGINEERING MSc. THESIS, FEB 2022

Thesis Supervisor: Dr. Oznur Tastan

Keywords: Deep sequential learning, SUMOylation, Post-translational
Modifications, CNNs, Transformers

SUMOylation is a reversible post-translational protein modification in which SUMOs
(small ubiquitin-like modifiers) covalently attach to a specific lysine residue of the
target protein. This process is vital for many cellular events such as protein binding,
subcellular transport, DNA repair, and cellular signaling. Aberrant SUMOylation is
linked with several diseases, including Alzheimer’s, cancer, and diabetes. Therefore,
accurate identification of SUMOylation sites is essential to understanding cellular
processes and pathologies that arise with their disruption. In this thesis, we present
three deep neural architectures, SUMOnets, that take the peptide sequence cen-
tered on the candidate SUMOlylation site as input and predict whether the lysine
could be SUMOylated. Each of these models, SUMOnet-1, -2 and -3, relies on
di�erent compositions of deep sequential learning architectural units, such as Bidi-
rectional Gated Recurrent Units(biGRUs) and convolutional layers. We evaluate
these models on the benchmark dataset with three di�erent input peptide represen-
tations of the input sequence. SUMOnet-3 achieves 75.8% AUPR and 87% AUC
scores, corresponding to approximately 5% improvement over the closest state-of-
the-art SUMOylation predictor. We also create a challenging subset of the test data
based on the absence and presence of known SUMOylation motifs. Even though the
performances of all methods degrade in these cases, SUMOnet-3 remains the best
predictor in these challenging cases, and the current methods’ predictive abilities
decrease significantly. The SUMOnet-3 framework is available as an open source
project and a Python library at https://github.com/berkedilekoglu/SUMOnet.
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ÖZET

SUMONET:SUMOLANMA BÖLGELERININ DERIN SIRALI Ö�RENME ILE
TAHMINI

BERKE D�LEKO�LU

B�LG�SAYAR B�L�M� MÜHEND�SL��� YÜKSEK L�SANS TEZ�, �UBAT 2022

Tez Danı�manı: Dr. Öznur Ta�tan

Anahtar Kelimeler: Makine Ö�renmesi, SUMOylation, PTM

SUMOlanma, SUMO’ların (küçük ubikuitin benzeri de�i�tiriciler) hedef proteinin
spesifik bir lizin aminoasidine kovalent olarak ba�landı�ı, tersine çevrilebilir protein
çeviri sonrası modifikasyonudur. SUMOlanma, hücre içi ta�ıma, DNA onarımı ve
hücresel sinyalle�me gibi birçok hücresel olay için önemlidir. SUMOlanma sürecin-
deki bozukluklar, Alzeimer, kanser ve diyabet dahil olmak üzere çe�itli hastalıklarla
ba�lantılıdır. Bu nedenle, SUMOlanma bölgelerinin do�ru tanımlanması, hücresel
süreçleri ve onların aksaması sonucu ortaya çıkan patolojileri anlamak için elzemdir.
Bu tezde, peptit dizisini girdi olarak alıp, bu bölgenin SUMOlanıp, SUMOlanmaya-
ca�ını tahmin eden üç derin ö�renme mimari, SUMOnets, sunuyoruz. SUMOnet-1,
-2 ve -3 adını verdi�imiz modellerin her biri biGRU’lar ve CNN’ler gibi derin sıralı
ö�renme mimari birimlerinin farklı bile�imine dayanır. Girdi peptid dizilerin farklı
gösterimleri ile bu modelleri e�itip, kıyaslama verisinde de�erlendirdik. SUMOnet-3
%75,8 AUPR ve %87 AUC sonucu ile en iyi tahmin edici oldu ve bu performans
de�erleri literatürdeki, en iyi SUMOla�ma tahmini araçlarından yakla�ık %5’lik iy-
ile�meye denk geliyor. Ayrıca bilinen SUMOlanma motiflerinin var olup olmadı�ına
göre olu�turulan, zor sınama kümesinde, ayrıca bir de�erlendirme yaptık. Bu
kümede tüm yöntemlerin performansı dü�erken, SUMOnet-3 hala bu zorlu durum-
larda en iyi tahmin edici olarak performans gösterdi ve literatürdeki di�er yöntem-
lerin performansı ise ciddi olarak dü�ü� gösterdi. SUMOnet-3 açık kaynak projesi ve
bir Python kütüphanesi olarak https://github.com/berkedilekoglu/SUMOnet.

adresinde mevcuttur.
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1. INTRODUCTION

Protein post-translational modifications (PTMs) are chemical alterations that oc-
cur during or after protein synthesis. These changes are often mediated by enzymes
and may involve adding functional chemical groups covalently to one or more amino
acids on the protein, proteolytic cleavage of regulatory subunits, or degradation of
the whole protein. Most proteins undergo post-translational modification (PTMs)
throughout their lifetimes (Walsh, Garneau-Tsodikova & Gatto Jr, 2005). Almost
all cellular functions are regulated by PTMs that dynamically respond to extracel-
lular and intracellular stimuli (Bode & Dong, 2004). PTMs modulate the modified
proteins’ functions through altering their targets’ structure, subcellular locations
and/or their interactions with other proteins, lipids, or nucleic acids(Walsh et al.,
2005). Therefore, understanding PTMs are critical for a fundamental understanding
of cell biology.

SUMOylation is one of the most critical PTM, in which small ubiquitin like mod-
ifiers (SUMOs) covalently attach to specific lysine (K) residues of target proteins
in a reversible manner (Celen & Sahin, 2020). SUMO proteins are ubiquitously
expressed in eukaryotes and are highly conserved, indicating their functional impor-
tance Geiss-Friedlander & Melchior (2007). SUMO was initially characterized for its
role in binding nuclear proteins (Mahajan, Delphin, Guan, Gerace & Melchior, 1997;
Matunis, Coutavas & Blobel, 1996), later its wide range of activities are discovered
in transcription regulation, chromatin remodeling, DNA repair, and the control of
cell cycle progression (Celen & Sahin, 2020; Flotho & Melchior, 2013; Jackson &
Durocher, 2013). Due to its critical role in the regulation of cell cycle and cellular
responses to stress conditions, alteration in SUMOylation has been also associated
with pathogenesis. Relevant examples include neurodegeneration diseases such as
Alzheimer’s (Lee, Sakurai, Matsuzaki, Arancio & Fraser, 2013), cancer (Seeler &
Dejean, 2017), and several autoimmune diseases such as type I diabetes (Zhang,
Chen, Zhou, Yang & Wang, 2017).

SUMO covalently attaches to its target through a series of reactions facilitated by
SUMO-activating enzymes 1 (E1), SUMO-conjugating enzyme E2 (Ubc9), and var-
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ious SUMO E3 ligases. SUMO-specific proteases cleave the bond between SUMO
and its substrate to reverse the SUMOlylation process (Geiss-Friedlander & Mel-
chior, 2007). Mass spectrometry (MS)-based proteomics studies allow the iden-
tification of SUMOylated proteins (Filosa, Barabino & Bachi, 2013; Golebiowski,
Matic, Tatham, Cole, Yin, Nakamura, Cox, Barton, Mann & Hay, 2009; Vertegaal,
Andersen, Ogg, Hay, Mann & Lamond, 2006) and SUMOylation sites (Hendriks,
D’souza, Yang, Verlaan-de Vries, Mann & Vertegaal, 2014; Tammsalu, Matic, Jaf-
fray, Ibrahim, Tatham & Hay, 2015) in a high-throughput fashion. However, the
transient nature of SUMOylation and the small fraction of the SUMOylated protein
sets a limitation to uncovering all SUMOylated proteins.

To assist experimental e�orts, identifying whether a protein is SUMOylated or not
has also been formulated as a computational problem and several methods have been
proposed to tackle this problem. Early methods made use of common sequence mo-
tifs that are commonly observed around the SUMOylation accepting lysine residue.
Later approaches provide more sophisticated techniques, including machine learning
approaches, as reviewed in Sec. 2.2.

Although several SUMOylation predictors are widely adapted, they do not yield high
prediction performance - especially on challenging cases, for example SUMOylation
sites that lack a known SUMO motif or non-SUMOylation sites that include those
motifs. Also, the comparisons of many of these methods do not follow machine
learning standards; they are not trained on the same data. Finally, many tools fail
to provide working open source implementations. In this work, we aim to provide
a state-of-the-art SUMOylation predictor that, given a peptide sequence, would
predict whether the lysine residue centered on the peptide could be SUMOylated
or not. Our method is based on a deep sequential learning approach that shows
significant progress in Natural language processing tasks (NLP). We evaluate this
tool rigorously with other tools on a recently available benchmark SUMOylation
dataset.

The brief summary of contributions of this thesis in bioinformatics are as follows:

• We developed three deep learning architectures, SUMOnet-1, -2 and -3, for
SUMOylation prediction, which outperform existing methods on a benchmark
dataset. The performance di�erence is especially pronounced in hard cases.
These architectures utilize fundamental sequential data processing units, such
as a convolutional layer, GRUs, and LSTMs.

• We experimented with three di�erent representations of the input protein se-
quences. We evaluate each SUMOnet and compare machine learning methods
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with these three di�erent encoding techniques.

• We evaluated the proposed SUMOnets with other state-of-the-art machine
learning methods such as gradient boosted trees or logistic regression and
other SUMOlyation predictors on a benchmark dataset rigorously.

• We provide the best performing architecture, SUMOnet-3, as an open source
tool on GitHub (https://github.com/berkedilekoglu/SUMOnet) and as a
Python library that can be easily installed via pypi ’pip install sumonet==0.1’.

The remainder of this thesis is organized as follows:

• Chapter 2 provides a review of related work in the literature. We review
computational methods that are used to classify SUMOylation sites.

• Chapter 3 presents the encoding methods and the representation of amino acid
sequences in a vector space are described. Secondly, we mention about scaling
algorithm that is used in our experiments. Finally, SUMOnet components are
briefly reviewed.

• Chapter 4 first presents the dataset used in building and evaluating SUMOnets.
Secondly, we present the overview of three sequential models SUMOnet-1, -2,
and -3 input. Lastly, we provide the details of hyperparameter tuning and the
evaluation setup.

• Chapter 5 presents the predictive performance results of experiments con-
ducted with the novel architecture we develop in this study. We also present
the performance of our proposed model on hard test samples, which are based
on the presence and absence of the SUMOlylation motifs.

• In Chapter 6, we present the Python library sumonet. sumonet is an open-
source project and a module that includes the pre-trained SUMOnet-3 ar-
chitecture and necessary pre-processing steps for replicating our experiments.
A detailed explanation of the library and each module can be found in this
chapter.

• In Chapter 7, we highlight the main findings of our experiments and compare
our results with the literature . We finally present possible future direction to
expand the work presented herein.
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2. LITERATURE REVIEW

This chapter summarizes the related work on SUMOylation prediction. Many
SUMOylation site prediction algortihms rely on the known SUMOylation motifs
or alignments of experimentally validated SUMOylation sites. A set of approaches
relies on the similarity of the candidate sequence to the other SUMOYlated se-
quences. The final category casts the problem as a classification task. In this
chapter we review the available SUMOylation prediction tools.

2.1 Cluster Based Scoring Methods

Early studies reported that the SUMOylated sites follow a sequence motif, which is of
the form: Â–K–X–E (Â: a hydrophobic amino acid: A, I, L, M, P, F, V or W; X: any
amino acid) (Denison, Rudner, Gerber, Bakalarski, Moazed & Gygi, 2005; Sampson,
Wang & Matunis, 2001). Initially, SUMOylation sites was determined based on
motif match around the candidate sequence. However, classifying all candidates
with motifs as SUMOylated yields high false positive results because most of the
protein sites which include consensus sequence are not SUMOylated. Similarly,
since there exist SUMOylation sites that do not match this motif, these techniques
also miss true positives. Thus, relying solely on motifs yields both low recall and
precision, which we show in the Chapter 5.

2.1.1 Motif extraction and scoring algorithms

Positive SUMOylation sites may contain di�erent motifs (Beauclair et al., 2015; Ren,
Gao, Jin, Zhu, Wang, Shaw, Wen, Yao & Xue, 2009; Xue, Zhou, Fu, Xu & Yao,
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2006; Zhao, Xie, Zheng, Jiang, Liu, Mu, Liu, Zhao, Xue & Ren, 2014). Motif based
SUMOylation site prediction methods extract sequence motifs in SUMOylation data.
Then, a clustering strategy is combined with a scoring algorithm to predict whether
the given sequence is SUMOylated or not. Below, we explain the most commonly
used motif extraction algorithm MotifX (Schwartz & Gygi, 2005) and the scoring
algorithm Group-based phosphorylation site prediction and scoring (GPS) (Zhou,
Xue, Chen & Yao, 2004). Originally, MotifX and GPS algorithms are used to
predict phosphorylation sites, due to similarity of the problem, they are adapted for
SUMOylation prediction task (Xue et al., 2006).

MotifX (Schwartz & Gygi, 2005) is a an statistical method that identifies sequence
motifs from protein phosphorylation datasets. The algorithm first asses the signifi-
cance of the each residue/position pair and then builds motifs by finding successive
significant residue/position pairs. To calculate the significant residue/position pairs,
the probability of observing and amino acid more is accessed based on the random
background. The method uses two peptide data sets. The first one is the phospho-
rylated peptide datasets, on this one the observed frequencies of each residues are
extracted. The second one is a peptide data set that is used for background proba-
bility calculation. In each dataset six residues flanking upstream and downstream of
the phosphorylation site are considered. In the ensuing step, position specific weight
matrices are calculated on each dataset, where each matrix contains information on
the frequency of amino acids at each position around the phosphosite. Using the
these two matrices, the binomial probability matrix is calculated as follows:

(2.1) P (m,cxj ,pxj) =
mÿ

i=cxj

A
m

i

B

pxj
i(1≠pxj)m≠i

m represents the number of protein sequences in the dataset, the frequency of residue
x at position j in the dataset is represented by cxj , and pxj represents fractional
percentage of residue x at position j in the current background matrix. After cal-
culation of binomial probabilities of possible residues, most significant motifs are
selected according to the user defined threshold 10≠16. The score of each motif is
determined by the summation of negative log probabilities for each residue/position
of the motif. Finally, the given peptide sequence is predicted as the phosphorylation
site, if a significant motif is found in it.

Group-based phosphorylation site prediction and scoring (GPS 1.0) algo-
rithm (Zhou et al., 2004) uses amino acid substitution matrix to calculate similarity
between known phosphorylation sites and a given peptide sequence. The algorithm
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three upstream and three downstream amino acids around the phosphosite. Their
method is based on that if a given peptide sequence di�er from a known phos-
phorylated peptide in one residue and the pair of di�erent amino acids has similar
biochemical properties site, there is a high probability that the given sequence is
also phosphorylated by the same kinase. To asses the biochemical similarity of the
di�ering amino acid pair, they use BLOSUM62 substitution matrix (Heniko� &
Heniko�, 1992).

The similarity between P1 and P2 is calculated by Equation 2.2

(2.2) S(P1,P2) =
ÿ

1ÆiÆ7
Score(P1[i],P2[i])

P1 and P2 are the two peptide sequences with length 7. Score(P1[i],P2[i]) is cal-
culated with respect to BLOSUM62 substitution matrix and negative values are
converted to 0. After calculating the similarity score, they transform it to the dis-
tance metric by calculating: D(P1,P2) = 1/S(P1,P2). Thus, since the similarity
between two sequences get closer to 0, the distance between them will near to Œ.

The peptide sequences are then clustered using a graph method. The peptide se-
quences form the nodes of the undirected weighted graph, the edge weights are the
distances between the corresponding peptides in the connecting nodes. The clusters
are determined by using Markov Cluster Algorithm (Dongen, 2000). Group-based
phosphorylation scoring algorithm (GPS) measures the similarity between given pep-
tide sequence and clusters to determine potential phosphorylation sites. The algo-
rithm decides whether the given peptide sequence is a phosphorylated or not with
respect to user defined threshold.

GPS 2.0 algorithm (Xue, Ren, Gao, Jin, Wen & Yao, 2008) is an improved version
of GPS 1.0. Only 11% of the kinase groups were divided into di�erent clusters by
using graph partitioning in GPS 1.0. Therefore, this strategy was removed in GPS
2.0. In addition to that, matrix mutation method is used to improve prediction
performance in the new version.

In the MaM algorithm, value from BLOSUM62 matrix is randomly chosen and
added +1 or -1 with respect to Sn as can be seen in algorithm 2. This process
continues until the sensitivity decreases. The Sn is calculated for each instance by
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Algorithm 1 Group-based phosphorylation scoring algorithm
for Each cluster Ci in C do

for Each peptide Pj in Ci do

Calculate S(Seq,Pj)

end for

Si = [qj S(Seq,Pj)]/Ci

end for

S(Seq) = maxj Si

Return S(Seq)

Algorithm 2 Matrix mutation algorithm
Initialization of substitution matrix with BLOSUM62
time Ω 0
for time Æ10000 do
for R doandomly pick element from substitution matrix

Add +1 or -1 to that element

Calculate Sn score of leave-one-out with the mutated matrix

if Sn increase then
Keep the mutation

else
Continue

end if
Calculate time

end for

Return mutated matrix
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leave-one-out cross validation, which takes an instance as test data and all other
samples as training data. In GPS 2.0, firstly the peptide sequence is taken with
PSP(7,7), 7 upstream and 7 downstream amino acids, and then the similarity score
between a given peptide sequence and all known sites are calculated by Equation 2.2
without using clusters. Finally, algorithm makes a prediction with respect to the
threshold value. This modifications decrease computational time and improve the
robustness of prediction method.

GPS 3.0 algorithm (Xue, Liu, Gao, Jin, Wen, Yao & Ren, 2010) is an enhanced
version of GPS 2.0. The fundamental hypothesis in GPS algorithm is that, similar
peptide sequences have similar biochemical features. In GPS 3.0, four components -
k-means clustering, peptide selection (PS), weight training (WT) - matrix mutation
(MaM) are used to improve prediction performance.

K-means clustering is used to cluster training data into several groups. K is selected
as 3 because of the high computational time. The clustering strategy is based on
similarity measurement by Equation 2.3.

(2.3) s(P1,P2) = # Conserved Substitutions
# All Substitutions

The similarity score Score(a,b) > 0, which is calculated by Equation 2.2, is a con-
served substitution. PSP(7,7) is used to measure similarity between peptide se-
quences. Firstly, randomly chosen three positive sites are made as centroids of
di�erent clusters. Secondly, the similarity between each positive site, which was
not chosen as centroid, and centroids is measured. Therefore, a peptide site can be
put into the most similar cluster. Finally, the centroids are updated with respect to
highest average similarity. The second and final steps are repeated until the member
of the clusters are not changed anymore.

Peptide selection (PS) is a process that concerns to choose the best PSP(m,n) pep-
tide sequences with m upstream and n downstream amino acid neighbors for each
cluster. The combination of PSP(m,n) with m = 1 to 30 and n = 1 to 30 is experi-
mented by using leave-one-out cross validation for each cluster with respect to the
highest Sn.

Weight training (WT) is a method that gives a weight to the amino acid pairs in the
calculation of similarity score between peptide sequences. The initial weight for each
position is determined as 1 and Sn is calculated by leave-one-out cross validation
with 80% Sp.
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(2.4) S(P1,P2) =
ÿ

≠mÆiÆn

wiScore(P1[i],P2[i])

In Equation 2.4, wi represents weights for position i and it is randomly chosen for
each position as +1 or -1. Sn is re-calculated by leave-one-out cross validation, if
the Sn is increased, manipulation is applied.

Matrix mutation MaM is applied with the same way as in GPS 2.0 as we previously
described in algorithm 2.

2.1.2 Scoring based SUMOylation site prediction methods

In this section, we briefly explain methods that use canonical consensus motifs and
scoring algorithms to predict SUMOylation sites. Apart from using the MotifX
algorithm to extract the SUMO motifs, some studies used the motifs mentioned
in the literature, and some studies decided on the motifs according to the motif
frequency in their data.

SUMOsp (Xue et al., 2006) is one of the early studies that uses computational
motif discovery method MotifX (Schwartz & Gygi, 2005) and group based scoring
(GPS) algorithm (Zhou et al., 2004) for SUMOylation site prediction. They used
motif based algorithm MotifX, GPS algorithm as they found using two algorithms
together yielded better results. A potential SUMOylation peptide PSP(n) is de-
termined as a lysine residue, which consists of n residues upstream and n residues
downstream. They used n = 7 for their experiments. Secondly, they used GPS al-
gorithm to cluster SUMOylation site dataset and they decided whether the given
sequence was SUMOylated or not by using a threshold they determined. They also
experiment on motif based prediction strategy. However, SUMOylation prediction
based on motif discovery causes missing a high number of true positives. 23% of the
sumoylation sites in SUMOsp dataset do not follow the consensus canonical motifs
Â–K–X–E or Â–K–X–E/D. Therefore, MotifX is used to extract other motifs that
can improve prediction performance. MotifX extract several motifs IKXEP, VKXE,
IKXE, LKXE and KXE (X can be any amino acid) which have high confidence
score for positive SUMOylation sites. SUMOsp tool shows results for both GPS
and MotifX algorithms on given peptide sequence. Moreover, they suggested to use
combination of two methods. For instance, if a motif is found by MotifX in a given
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peptide that the GPS algorithm predicts as positive, the probability of this given
peptide being positive increases.

SUMOsp2 (Ren et al., 2009) is an improved version of SUMOsp (Xue et al., 2006),
which used GPS and MotifX algorithms to predict SUMOylation sites. SUMOsp2
eliminated MotifX method and used improved version of GPS. GPS algorithm was
improved by eliminating a clustering strategy and using matrix mutation (MaM)
technique on substitution matrix BLOSUM62.

Clustering strategy is based on the partitioning of similar SUMOylation sites in
GPS algorithm (Zhou et al., 2004). In SUMOsp2, firstly known SUMOylation sites
are directly clustered in two group consensus and non-consensus. The first cluster
consists of peptide sequences that follows Â–K–X–E (Â: a hydrophobic amino acid:
A, I, L, M, P, F, or V; X: any amino acid) motif, while non-consensus cluster
includes other non-canonical sites. Moreover, while consensus group consists of
peptides PSP(3,3), non-consensus group contains peptides PSP(3,5). After that
step, enhanced version of GPS algorithm is used on both clusters separately.

GPS 2.0 algorithm, which mutate BLOSUM62 matrix (Heniko� & Heniko�, 1992)
for measuring optimal similarity between peptide sequences by mutation (MaM)
(Xue et al., 2008) is used in SUMOsp2. BLOSUM62 matrix calculates similarity
between residues ’*’ and others as -4. This similarity score is taken into account as
0 after MaM is applied. Also, 2 is used to get a new substitution matrix. The given
peptide sequence is predicted as SUMOylated or not by using a threshold and its
similarity score, which is calculated by Equation 2.2 in SUMOsp2.

GPS-SUMO (Zhao et al., 2014) predicts both SUMOlyation sites and SUMO inter-
action motifs (SIMs), which are binding motifs through which SUMO proteins can
interact with other proteins non-covalently. It is a developed version of SUMOsp2
(Ren et al., 2009), which used modified GPS 3.0 algorithm for SUMOylation site pre-
diction. GPS 3.0 algorithm is used k-means clustering for finding clusters in training
data, peptide selection method to find the best length for peptide sequences in each
cluster, matrix mutation to find a more suitable substitution matrix for the problem
and weight training for optimizing the measurement of the similarity scores between
peptide sequences as we mentioned before. The particle swarm optimization (Eber-
hart & Kennedy, 1995) method is used in the GPS 4.0, which is the latest version of
group based scoring algorithm in the literature, to decrease the computational time
in GPS 3.0. Also, more accurate prediction results were taken when particle swarm
optimization is used to find weights in weight training part and final substitution
matrix after using matrix mutation method.
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JASSA (Beauclair et al., 2015) group experimentally validated SUMOylation sites
in clusters based on the presence of the consensus motif and its inverted form; then
predict, SUMOylation sites using a scoring system based on the position-specific
frequencies of amino acids calculated specifically for each of these groups.

Name Motif Nb %
Consensus direct Strong consensus [�1]-[K]-[x]-[–] 498 56.8

Consensus [�2]-[K]-[x]-[–] 591 67.4
Weak consensus [�3]-[K]-[x]-[–] 598 68.2
PDSM [�2]-[K]-[x]-[–]-[x]2-[S]-[P] 32 3.6
NDSM [�2]-[K]-[x]-[–]-[x]-[–]2/6 231 26.3
HCSM [�4]3-[K]-[x]-[E] 105 12.0
SC-SUMO [P/G]-[x](0≠3)-[I/V]-[K]-[x]-[E]-[x](0≠3)-[P/G] 110 12.5
Minimal SC-SUMO [I/V]-[K]-[x]-[E]-[x](0≠3)-[P] 178 20.3
SUMO-acetyl switch [�2]-[K]-[x]-[–]-[P] 130 24.8
pSuM [�2]-[K]-[x]-[pS]-[P] 1 0.1

Consensus inverted Strong consensus [–]-[x]-[K]-[�1] 30 3.4
Consensus [–]-[x]-[K]-[�2] 77 8.8
Weak consensus [–]-[x]-[K]-[�3] 80 9.1

Non-Consensus 229 26.1

Table 2.1 Frequency of motifs on known SUMOylation sites in the JASSA dataset. Nb
represents number and % represents percentage. �1 = I, L, V; �2 = A, F, I, L, M, P,V,
W; �3 = A, F, G, I, L, M, P, V, W, Y. – = D, E; pS/T = phosphorylated serine/threonine.

Clustering strategy is based on motif discovery on known SUMOylation sites
in dataset. They directly searched motifs from literature in their dataset
and frequency of those each motif can be seen on Table 2.1. A motif
search in the dataset showed that 68.2 % of the DB follows the direct con-
sensus Â–K–X–– motif (Â: a hydrophobic amino acid: A, F, G, I, L, M,
P, V or Y; X: any amino acid; –= D or E). Also, since �1 µ �2 µ �3,
strong consensus motifs(Melchior, 2000; Rodriguez,Dargemont&Hay, 2001) µ
consensus motifs µ weak consensus motifs. Among known SUMOylation sites, 3.6%
are PDSM (Hietakangas, Anckar, Blomster, Fujimoto, Palvimo, Nakai & Sistonen,
2006) and 12.0% are HCSM (Matic, Schimmel, Hendriks, van Santen, van de Ri-
jke, van Dam, Gnad, Mann & Vertegaal, 2010). [x]i represents there are i subse-
quent amino acid x in that position in PDSM and HCSM. Moreover, among known
SUMOylation sites, 26.3% are NDSM (Yang, Galanis, Witty & Sharrocks, 2006),
12.5% are SC-SUMO (Benson, Li, Kieckhafer, Dudek, Whorton, Sunahara, Iñiguez-
Lluhí & Martens, 2007), 20.3% are Minimal SC-SUMO (Subramanian, Benson &
Iñiguez-Lluhí, 2003), 24.8% are SUMO-acetyl switch (Stankovic-Valentin, Deltour,
Seeler, Pinte, Vergoten, Guérardel, Dejean & Leprince, 2007), 0.1% are pSuM (Pi-
card, Caron, Bilodeau, Sanchez, Mascle, Aubry & Tremblay, 2012). [x](i≠j) repre-
sents there are at least i at most j subsequent amino acid x in that position. 80 sites
on the dataset follows the inverted consensus motif (Ivanov, Peng, Yurchenko, Yap,
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Negorev, Schultz, Psulkowski, Fredericks, White, Maul, Sadofsky, Zhou & Rauscher,
2007; Matic et al., 2010) that is 9.1% of data. The remaining 26.1% does not follow
any motif on the Table 2.1.

According to the motif extraction results, the entire dataset is clustered into 3
di�erent group the consensus motif, its inverted form and all (all the sequences in
dataset).

Scoring strategy is a method to calculate score for the prediction of a given peptide
sequence. Two predictive scores PSd and PSi are calculated for a given peptide in
JASSA. However, their calculation strategy is changed with respect to the selected
cluster approach. Since either All or Directed cluster is chose, Equation 2.5 is used
to calculate predictive scores.

(2.5) PS =

Y
_]

_[

PSd = f≠1(aa≠1) x f0(K0) x f+2(aa+2) x 100

PSi = f≠1(aa+1) x f0(K0) x f+2(aa≠2) x 100

(2.6) PS =

Y
_]

_[

PSd = f+1(aa≠1) x f0(K0) x f≠2(aa+2) x 100

PSi = f+1(aa+1) x f0(K0) x f≠2(aa≠2) x 100

Equation 2.6 is used when the Inverted cluster is selected. fp(aaq) is the frequency at
position p of the amino acid on the given sequence at the position q of the selected
cluster. Importantly, f0(K0) = 1 and if a residue cannot be found on cluster its
frequency is taken as 0.0001. The highest score among PSd and PSi is a prediction
score for a given peptide sequence. SUMOylation sites are predicted with respect
to the two cut-o� values, which were determined by decision tree.

2.2 Machine Learning Methods

In this section, we review SUMOylation predictors that cast the problem as a binary
classification task.

pSumo-CD (Jia et al., 2016) is a SUMOylation site prediction method which uses
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conditional probability of amino acid pairs for vectorization and covariance discrim-
inant (CD) algorithm (Chou & Maggiora, 1998) for prediction. They used 21-mer
peptide sequences with 10 upstream and 10 downstream of the candidate site. Since
CD algorithm can handle class imbalance, the entire 755 positive samples, 9944
negative samples were used in their experiments.

(2.7) P (K) = P +(K)≠P ≠(K)

The feature vectors of each sequence is created with respect to the Equation 2.7.
P +(K) indicates a conditional probability matrix of a sequence which is calculated
among positive classes. Therefore, 20x1 dimensional matrix is constructed with
excluding ’K’ lysine amino acid in sequence. For each position, a conditional proba-
bility Pi(Ai|Ai≠1) represents that the probability of an amino acid Ai and its closest
right neighbor Ai≠1 being together. After the calculation of this matrix for both
classes positive and negative, we can find P (K) to encode each sequence.

(2.8) Sgn(”) = argmin{F(P,P”)},(” = + or - )

Hence, a given peptide sequence P can be predicted as SUMOylation site or not
by the calculation of class specific Sgn using Equation 2.8. CD algorithm is used
for minimization of F(P,P”), which uses Mahalanobis distance (Mahalanobis, 1936)
between peptide sequences and the covariance matrix of a class ”.

C-iSUMO (López, Dehzangi, Reddy & Sharma, 2020) uses an Adaboost classifier
(Freund & Schapire, 1999) that relies on features derived from structural properties
such as accessible surface area of protein site and backbone torsion angles between
residues. The data in the experiments was highly imbalanced with 780 SUMOylation
sites and 21353 non-SUMOylation sites. In C-iSUMO, the length of the each positive
and negative residue was taken as 31 with 15 upstream and 15 downstream amino
acids.

Accessible surface area (ASA) is a feature that provides an information for 3D struc-
ture of a protein sequence. SPIDER2 algorithm (Yang, He�ernan, Paliwal, Lyons,
Dehzangi, Sharma, Wang, Sattar & Zhou, 2017), which is a pre-trained deep learn-
ing model with a sequential, physicochemical, and evolutionary features of protein,
was used to extract ASA of each amino acid to take structural features of peptide
sequences.
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Backbone torsion angles provide a local structural information between neighboring
amino acids. The backbone torsion angles Ï and � are continues features for a given
amino acid. SPIDER2 algorithm is also used to find these features. Besides Ï and
�, SPIDER2 algorithm extract two other angles ◊ which is formed between calcium
atoms and · which represents the rotation around calcium bond.

NearMiss method (Yen & Lee, 2006) is an under-sampling strategy for the highly
imbalanced training data. Samples in majority class are extracted from the train-
ing data with respect to the average distance between minority class. Thus, the
sensitivity of the C-iSUMO was increased.

AdaBoost (Freund & Schapire, 1999) is a machine learning method that uses an
ensemble technique to predict SUMOylation sites by C-iSUMO. AdaBoost trains
weak classifiers sequentially by using bootstrap sampling to get strong classifier.
Initially, a weak classifier is trained with random weights and error rate is measured.
The weights of the incorrectly classified samples (hard examples) are increased to
take more attention on them for the new classifier. Thus, each new weak classifier
learns to correct the errors of its predecessor.

SUMO-Forest (Qian, Ye, Zhang & Zhang, 2020) extracts dipeptides from protein
sequences by using bi-gram and k-skip-bi-gram with k=1,2 approaches. Thus, each
protein site is vectorized by finding probability for each dipeptide which is calcu-
lated with respect to their frequency. Extraction of bi-grams from the sequences
for vectorization is commonly used technique in natural language processing and
bioinformatics. For instance bi-grams of a protein sequence VKPEI are VK, KP,
PE and EI and 1-skip-bi-gram sequences are VP, KE and PI.

The peptide sequence is taken as 21. The ratio between positive sites and negative
sites is 1:9 in their dataset. To handle with the imbalanced dataset, class weights are
used in the training phase to give more penalty for mis-classifications of the minority
class. They use an ensemble technique, Cascade Forest (Zhou & Feng, 2017), to
predict SUMOylation sites. There are two consequtive phase in the Cascade Forest
model. The first phase is uses the same strategy with AdaBoost (Freund & Schapire,
1999) classifier. In the second phase, assembling phase, the weighted average of
the results of weak classifiers are calculated. Weights are found by using genetic
algorithm for each M weak classifier.

Ensemble and Transfer Learning method (He, Wang, Gao, Wang, Yu, Xu &
Zhao, 2019) is used to predict SUMOylation sites by using deep learning architec-
tures. To the best of our knowledge, the only deep learning model that was used in
SUMOylation prediction was provided by (He et al., 2019). They built an ensemble
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architecture by using deep learning models. Each model receives a separate amino
acid feature to combine all information learned. In addition to that, they transfer
weights of a model which is trained on similar domain to the SUMOylation site
prediction problem. The dataset in their experiments is imbalanced with a 1:13
positive/negative ratio and each peptide sequence consists of 21 upstream and 21
downstream amino acids. They divide the imbalanced data into N bins that in-
cludes equal number of randomly chosen positive and negative samples. Therefore,
they train the network N times (by using each bin). Physico-chemical properties
of amino acids and one-hot encoding are used for the representation of peptide
sequences in vector space. Physico-chemical properties are extracted by AAindex
database, which cluster them into 6 groups – and turn properties, — propensity,
composition, hydrophobicity, physicochemical propensities, and other properties.

Their proposed neural network architecture contains 7 sub-networks, each of them
is for di�erent encoding representations. The final layer of each sub-network has two
neurons with Softmax activation function to predict probability of peptide sequence.
Firstly, all networks are trained separately for learning di�erent features of amino
acids. Then, sub-networks combined with final 2 neurons to construct a strong
classifier. The training strategy for the final network is that they freeze weights of
sub-networks and train only last 2 neurons. Thus, their proposed deep architecture
is trained with 7 weak neural nets. They also used transfer learning strategy with
a similar domain ubiquitination, which is another type of PTM like SUMOylation,
sites prediction. Firstly, the model is trained on ubiquitination site dataset and then
same model is tuned on SUMOylation site data.
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3. BACKGROUND

In this chapter, we present the background information on the pre-processing steps
and our model components.

3.0.1 One-hot Encoding

One-hot encoding is a widely used scheme for converting categorical data into nu-
merical vectors, where a new binary columns is created indicating the presence of
the categories. We have 21 di�erent categories which consist of 20 amino acids and
an additional category ’X’ to represent unknown amino acids. As an example, the
one-hot representation of lysine is a vector of length 21 where all entries are 0, except
the one representing the amino acid type ’K’, which is 1.

3.0.2 BLOSUM62 Encoding

BLOSUM62 matrix is a substitution matrix mostly used for aligning protein
sequences and represents amino acids replacibility with each other(Heniko� &
Heniko�, 1992) BLOSUM62 matrix entries are calculated based on the frequencies
of amino acid substitutions observed when a related group of protein are aligned
(Heniko� & Heniko�, 1992). The BLOSUM62 value for a particular pair of amino
acid is the log-odds ratio that estimates the biological probability of a substitution
to occur relative to that substitution being merely by chance. Figure 3.1 represents
BLOSUM62 values for each pair of 20 amino acid. The number 62 signifies how di-
vergent the sequences that are used to construct the alignment. The BLOSSUM62
matrix is calculated over protein sequences such that every pair of sequences is at
least 62% identical when two proteins were pairwise aligned. In BLOSSUM62 encod-
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C S T P A G N D E Q H R K M I L V F Y W
C 9 - - - - - - - - - - - - - - - - - - -
S -1 4 - - - - - - - - - - - - - - - - - -
T -1 1 5 - - - - - - - - - - - - - - - - -
P -3 -1 -1 7 - - - - - - - - - - - - - - - -
A 0 1 0 -1 4 - - - - - - - - - - - - - - -
G -3 0 -2 -2 0 6 - - - - - - - - - - - - - -
N -3 1 0 -2 -2 0 6 - - - - - - - - - - - - -
D -3 0 -1 -1 -2 -1 1 6 - - - - - - - - - - - -
E -4 0 -1 -1 -1 -2 0 2 5 - - - - - - - - - - -
Q -3 0 -1 -1 -1 -2 0 0 2 5 - - - - - - - - - -
H -3 -1 -2 -2 -2 -2 1 -1 0 0 8 - - - - - - - - -
R -3 -1 -1 -2 -1 -2 0 -2 0 1 0 5 - - - - - - - -
K -3 0 -1 -1 -1 -2 0 -1 1 1 -1 2 5 - - - - - - -
M -1 -1 -1 -2 -1 -3 -2 -3 -2 0 -2 -1 -1 5 - - - - - -
I -1 -2 -1 -3 -1 -4 -3 -3 -3 -3 -3 -3 -3 1 4 - - - - -
L -1 -2 -1 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2 2 2 4 - - - -
V -1 -2 0 -2 0 -3 -3 -3 -2 -2 -3 -3 -2 1 3 1 4 - - -
F -2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -3 0 0 0 -1 6 - -
Y -2 -2 -2 -3 -2 -3 -2 -3 -2 -1 2 -2 -2 -1 -1 -1 -1 3 7 -
W -2 -3 -2 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2 -3 1 2 11

Figure 3.1 BLOSUM62 matrix

ing scheme, we represent each type of amino acid with its row in the BLOSSUM62
matrix.

3.0.3 NLF Encoding

NLF encoding technique was provided by (Nanni & Lumini, 2011) to represent the
physicochemical properties of amino acids. Firstly, they used the principal compo-
nent analysis to de-correlate peptide data and then feature factors are determined
by using non-linear Fisher’s transform. Figure 3.2 represents feature vectors in the
NLF matrix.

3.1 Min-Max Scaling

In this section, we present the scaling method that we used on our encoded vectors
BLOSUM62 and NLF. We used min-max scaling technique as a pre-processing step
to represent features in between 0 and 1.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
A 0.42 -2.07 -0.67 0.01 -1.1 -0.32 -0.2 0.09 -0.2 0.09 -0.11 0.15 0.01 0.06 0.02 0.16 0.07 -0.03
R 1.65 1.4 -0.01 -0.88 -0.08 -0.07 0.6 -0.53 -0.1 0.01 0.09 -0.07 0.09 0.08 0.03 0.09 0.03 -0.02
N 1.68 0.3 -0.49 0.15 0.09 0.59 -0.06 0.02 0.14 0.0 -0.14 -0.09 0.08 -0.14 -0.11 -0.01 0.01 0.01
D 0.81 0.13 1.36 0.63 -0.15 -0.1 -0.45 -0.31 -0.1 0.03 0.15 0.02 0.16 0.12 -0.07 -0.11 -0.01 -0.05
C -2.7 -0.32 1.19 1.37 0.04 -0.18 0.64 0.21 0.26 0.35 -0.02 -0.11 0.05 -0.04 -0.03 0.1 0.04 -0.04
Q 1.71 1.11 -0.08 0.15 0.11 0.45 0.11 0.08 0.02 0.25 -0.12 0.25 -0.2 0.16 -0.01 -0.07 0.02 0.03
E 1.56 0.48 0.87 -0.02 -0.07 0.13 -0.22 -0.15 -0.09 0.1 0.04 0.05 -0.12 -0.28 0.03 0.09 -0.06 0.02
G 1.32 -2.05 -0.6 0.31 0.61 -0.58 0.0 -0.3 0.44 -0.14 0.18 0.12 -0.12 0.01 0.06 0.0 -0.04 0.01
H 0.13 1.5 -1.22 0.52 -1.14 -0.45 0.13 0.04 0.1 -0.07 0.11 -0.13 -0.06 -0.07 -0.01 -0.16 -0.06 0.03
I -1.52 -0.45 -0.39 -0.36 -0.01 0.55 0.06 0.1 -0.02 0.08 0.1 0.12 0.18 0.01 0.12 -0.02 -0.2 -0.01
L -1.29 -1.21 -0.25 -0.96 0.18 0.06 -0.04 0.0 -0.09 0.26 0.18 -0.05 0.0 -0.11 0.01 -0.15 0.14 0.02
K 2.03 0.26 1.22 -0.98 -0.05 -0.32 0.1 0.73 0.11 -0.19 0.14 0.02 0.03 0.02 -0.05 0.01 -0.01 -0.02
M -1.72 0.85 -0.34 0.44 -0.01 0.8 -0.16 0.05 0.05 -0.3 0.29 0.06 -0.02 0.03 0.03 0.09 0.14 0.0
F -2.37 0.23 -0.09 -0.37 0.19 -0.04 0.03 -0.06 -0.14 -0.14 -0.1 0.03 -0.21 -0.04 -0.09 -0.03 -0.06 -0.18
P 1.41 0.27 -1.09 0.77 0.87 -0.33 -0.04 0.27 -0.43 0.06 0.1 -0.14 0.03 0.03 -0.01 0.04 -0.03 0.01
S 1.47 -1.11 -0.27 0.13 0.15 0.22 0.09 -0.05 0.05 -0.14 -0.3 0.01 0.16 -0.03 -0.01 -0.06 0.05 -0.06
T 0.3 -0.68 0.88 0.23 -0.1 0.23 0.03 -0.01 -0.14 -0.16 -0.15 -0.2 -0.12 0.05 0.21 -0.07 0.0 0.04
W -2.83 1.79 0.16 -0.14 0.42 -0.84 -0.13 -0.06 -0.04 -0.18 -0.32 0.26 0.15 -0.08 0.04 -0.01 0.06 0.12
Y -0.7 0.95 -0.36 -0.6 0.09 -0.06 -0.55 0.01 0.28 0.17 -0.12 -0.23 -0.02 0.13 0.05 0.08 -0.02 -0.02
V -1.33 -1.39 0.15 -0.4 -0.04 0.27 0.07 -0.12 -0.1 -0.06 -0.01 -0.09 -0.07 0.1 -0.2 0.02 -0.08 0.13

Figure 3.2 NLF matrix

(3.1) Xstd = X ≠Xmin

Xmax ≠Xmin

(3.2) Xscaled = Xstd ú (max≠min)+min

The mathematical formula of the min-max scaling process is represented with Equa-
tion 3.1 and Equation 3.2. The standard deviation is calculated for each sample and
for each feature with respect to the feature itself X, the maximum Xmax and the
minimum values Xmin among that feature column. The important point is that,
Xmax and Xmin should be calculated on the training data to avoid an information
leak from the test data.

3.2 Background on SUMOnet Components

In this section, we briefly explain activation functions and neural layers that are
used in our architectures.

3.2.1 Activation Functions
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Activation functions determines how the weighted sum of the input on a node is
transformed into an output node. It enables learning complex features. The activa-
tion functions should be di�erentiable because of the back-propagation algorithm.
Below we explain ReLU and softmax that we used in SUMOnets (Szandala, 2020).
We also briefly explain Sigmoid and Tanh activation functions, which are used in
the neural layers.

3.2.1.1 ReLU

Rectified Linear Unit (ReLU) is the most commonly used activation function es-
pecially in CNNs (LeCun, Boser, Denker, Henderson, Howard, Hubbard & Jackel,
1989). As can be seen in the Figure 3.3, ReLU provides value itself if value is greater
than or equal to 0 and if a value is less than zero the output is always zero.
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Figure 3.3 Visual representation of ReLU activation function.

(3.3) f(x) = max(0,x)

ReLU functions is shown in the Equation 3.3. Thus, the derivative of the ReLU
activation function can be calculated as max(0,1) for the back-propagation. The
derivative is 1 for values above 0, else it assigns 0.

3.2.1.2 Softmax
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General application area of the softmax activation function is the calculation of class
probabilities in output layer for classification problems. The mathematical formula
of the softmax activation function is as follows:

(3.4) softmax(zi) = ezi

qK
j=1 ezj

Here, K represents the number of inputs for the softmax function. It can be thought
as the number of categories for the classification problem, if the function is on the
output layer. Therefore, for the category i, the probability is calculated as on the
Equation 3.4 and sum of the output vector of softmax is always equal to 1.

3.2.1.3 Sigmoid

SUMOnets use the sigmoid activation function in gated recurrent units’ cells (Cho,
van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk & Bengio, 2014) . The
sigmoid function squeezes input between 0 and 1 as can be seen on the Figure 3.4;
thus, it can be thought as a normalization.
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Figure 3.4 Visual representation of Sigmoid activation function

(3.5) f(x) = 1
1+ ‘≠x

Sigmoid function is problematic because its derivative becomes smaller when the
output is very high or low and that causes vanishing gradient problem. Also, ex-
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ponential calculation of function brings complexity problem (Shatravin, Shashev &
Shidlovskiy, 2022).

3.2.1.4 Tanh

We used tanh activation function in the gated recurrent units (Cho et al., 2014).
Tanh is a hyperbolic tangent function as can be seen on Figure 3.5 and it is very
similar with the sigmoid function. However, when input of the function is large or
small, the output is always smooth and also it is zero centring.
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Figure 3.5 Visual representation of Tanh activation function.

(3.6) f(x) = ‘z ≠ ‘≠z

‘z + ‘≠z

On the Equation 3.6, the mathematical formulation of tanh function can be also
seen. The main advantage of the tanh function is that if an input value is near to
zero it is also mapped to near zero values. However, tanh activation function prone
to vanishing gradient as a drawback.

3.2.2 Pooling Layers

Pooling layers are used to decrease computational complexity and variance in neu-
ral network architectures (Gholamalinezhad & Khosravi, 2020). We used several
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pooling methods Average Pooling, Max Pooling, and Global Average Pooling in our
experiments. In this section, each pooling method will be explained with exam-
ples. Pooling layers are not trainable and reduce the input vector size. Therefore,
the number of trainable parameters are decreased and computational complexity of
the network is declined. Reducing the number of trainable parameters is also an
important characteristic to decrease over-fitting.

3.2.2.1 Average pooling
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Figure 3.6 The working process of the Average Pooling on a feature map with 2x2 pooling
kernel and stride 2.

Average Pooling layer is popular in computer vision area to smooth sharp features on
images, however, it is not widely used in NLP problems (Suárez-Paniagua & Segura-
Bedmar, 2018). The main disadvantage to use Average Pooling in NLP is that taking
average of the features misleads the network when the vector representation of some
sequences are padded. We discard this disadvantage because our peptides have same
length and thus, padding is not used in our experiments.

The working process of the Average Pooling layer depends on kernel size and stride
as can be seen on Figure 3.6. Kernel size and stride are hyper parameters which
should be tuned with respect to data and network structure. Kernel moves on the
feature vector by using stride parameter and it takes an average of values inside of
its kernel.

3.2.2.2 Max pooling
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Max Pooling layer uses a max function to take the maximum value and it is com-
monly used with CNN architecture (Suárez-Paniagua & Segura-Bedmar, 2018). The
main reason behind that CNN extract features from its input and maximum feature
values can give better understanding about the input vector.
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Figure 3.7 The working process of the Max Pooling on a feature map with 2x2 pooling
kernel and stride 2.

Max Pooling layer works in similar ways as Average Pooling layer in terms of stride
and its kernel size as can be seen on Figure 3.7. Kernel window moves according to
the stride and layer takes the maximum value inside that window.

3.2.2.3 Global average pooling
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Figure 3.8 The working process of the Global Average Pooling layer on a feature map

Global Average Pooling is a layer that calculates average of feature values inside its
input likes Average Pooling layer (Lin, Chen & Yan, 2013). The di�erence between
Global Average Pooling and Average Pooling is that the kernel size of the Global
Average Pooling layer is equal to its input vector size, however, the kernel size of
the Average Pooling layer is a hyper-parameter and it should be tuned. Therefore,

23



all values in the feature vector are averaged to give an output as can be seen on the
Figure 3.8.

3.2.3 Neural Layers

The layers, Embedding, FFNN, CNN, GRU, BiGRU, and Attention mechanism that
we used in each architecture SUMOnet -1, -2, and -3 will be explained in this section.

3.2.3.1 Embedding layer

As we mentioned earlier, one of the encoding techniques that we use is one-hot
encoding. Even one-hot encoding is a practical way to vectorize categorical data,
it creates 0s and 1s for each amino acid in peptide sequence. Therefore, memory
usage is ine�cient for long peptide sequences. Also, even amino acid positions are
determined, contextual information in peptide sequence cannot be represented well
by one-hot encoding.

Encoding techniques that have used amino acid features such as BLOSUM62
(Heniko� & Heniko�, 1992) and NLF (Nanni & Lumini, 2011) boost model per-
formance. Embedding layer in Keras (Chollet & others, 2015) is used to learn
feature representation for each amino acids. Thus, network can learn the vector
representation of peptide sequence.

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A C D E F G H I K L M N P Q R S T V W X Y
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E
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0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

a)

3
E E R

b)

3 14Conversion Step

Figure 3.9 a) is the one-hot representation of amino acid sequence EER. Embedding layer
firstly converts one-hot encoded peptide sequence to a vector like on b) that represents
positions of each amino acids.

We feed embedding layer with one-hot encoded peptide sequence. Firstly, layer
converts one-hot representation of each amino acid to position vector. In Figure 3.9,
conversion step for amino acid sequence EER is illustrated. Secondly, each amino
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acid is mapped to the new vector representation on embedding layer with respect
to the position vector. Initially, embedding layer is randomly initialized and its
size is determined by vocabulary size (number of unique amino acids in our case)
and vector dimension as a hyper-parameter. The layer is trainable, so, appropriate
vector representation can be learned in the training phase.

3.2.3.2 Feed forward neural network

A Feed forward neural networks (FFNNs) are based on single direction data move-
ment from input layer to the output layer (Ojha, Abraham & Snáöel, 2017). In other
words, output of each hidden layer feeds the next layer in the network. FFNNs con-
sist of one or more hidden layers between input and output layer and each hidden
layer contains one or more neurons. Also, an activation function is applied to the
each neuron for non-linearity, we use ReLU activation function for hidden layers and
softmax for output layer.

Figure 3.10 Visual representation of FFNN with 1 hidden layer.

The working process of the feed forward neural network is illustrated on the Fig-
ure 3.10. There are 21 features, which are represented with R21, of an input sample
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x, X is a peptide sequence in our case because each peptide consists of 21 amino
acids. These features are multiplied by the weights and biases are added to the
result of that multiplication.

(3.7) Y =
Ë
x1 x2 . . x20 x21

È
ú

S

WWWWWWWWWWWWU

w1,1 w1,2 w1,3
w2,1 w2,2 w2,3

. . .

. . .

w20,1 w20,2 w20,3
w21,1 w21,2 w21,3

T

XXXXXXXXXXXXV

+
Ë
b1 b2 b3

È

The number of nodes in the hidden layers are hyper-parameters. Suppose that we
determine the number of nodes in hidden layer on Figure 3.10 as 3. Therefore, we
can formulate mathematical operations in hidden layer as in Equation 3.7. The
first matrix represents a feature vector, in our case we have 21 features as described
above. The second matrix represents the weight matrix and each column represents
di�erent nodes. As can be seen on the Equation 3.7, the first dimension of the weight
matrix is determined with respect to the feature vector or the input matrix of that
hidden layer and the second dimension is a hyper parameter that represents the
number of nodes in the hidden layer. The third vector represents bias matrix. The
output vector of Equation 3.7 is Y =

Ë
y1 y2 y3

È
. Last but not least, the activation

function f is used on the output f(Y) for the non-linearity.

3.2.3.3 1-D Convolutional neural network (1-D CNN)

Peptide sequences that constitute our data is vectorized by 1-d encoding represen-
tations of amino acids. Therefore, each CNN in our architectures consists of 1-d
convolutional kernels.

1-D Convolutional Neural Network (1-D CNN) is a modified version of traditional
2-Dimensional CNN. 2-D CNNs are e�cient neural models especially when 2-D data
is used such as images and videos. 1D CNNs have several advantages when the data
is represented in 1-D feature space (Kiranyaz, Avci, Abdeljaber, Ince, Gabbouj &
Inman, 2021):

• Since 2-D representation of images is in NxN feature vectors, the computa-
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tional complexity of the convolution operation with KxK kernel is O(N2 úK2).
On the other hand, the computational complexity of 1-D CNN on 1-D data
O(N ú K) shows the significant complexity advantage of using 1-D CNNs in-
stead of using 2-D CNNs.

• Recent studies show that, 1-D CNNs consist of shallow (1-2 hidden CNN
layers) architectures in literature. Thus, the training time of 1-D CNNs is less
than the deeper architectures of 2-D CNNs and it is also easy to implement.

• 1-D CNNs can be run into standard computer systems even in CPU. However,
the deeper 2-D CNN architectures needs more GPU power.

• Because of the above reasons, 1-D CNNs are easy to use on real time systems
such as mobile/web services.
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Figure 3.11 The working process of 1-D convolutional neural network. Figure represents
the start and final positions of 1-D kernel on a peptide sequence. 1-d kernel has height =
3 and width = 21.

Figure 3.11 illustrates the working process of the 1-D CNNs on our data. The height
and the width of the kernel are hyper-parameters for 2-D CNNs, however, the width
of the kernel is automatically determined and equal to the encoding length in 1-D
CNNs. We show the one-hot vector representation of a peptide sequence in Fig-
ure 3.11, which has 1x21 vectors for each amino acids. Therefore, 1-D convolutional
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kernel automatically has Hx21 dimensions, H represents height, which is a hyper-
parameter, and 21 represents the width of the kernel. Also, in Figure 3.11, the
stride, which is a hyper-parameter, controls amount of movement over the amino
acids and it can be seen as 1. Hence, we can extract N-gram representations by
using N stride in 1-D CNNs.

3.2.3.4 Gated recurrent units

Gated recurrent units (GRUs) are the updated version of the Recurrent Neural Net-
work (RNN) to solve gradient vanishing problem (Cho et al., 2014). Some problems
in natural language processing requires understanding of each word to solve the
meaning of the entire sentence. Therefore, neural model needs to remember very
first word in the sentence. Words are amino acids and sentence is peptide in our
case. GRUs can learn to remember specific amino acids or forget them with its
update gate and reset gate.

(3.8) zt = ‡(Wz · [ht≠1,xt])

Update gate decides the amount of information that needs to be passed by the help
of sigmoid activation function. The calculation of the update state zt can be seen
on Equation 3.8. Sigmoid activation function outputs a value between 0 and 1. The
value 1 means that all the information will be passed and the value 0 means that
none of the information will be passed to the output. This gate avoids the gradient
vanishing problem by remembering all the necessary past information.

(3.9) rt = ‡(Wr · [ht≠1,xt])

Forget gate decides the amount of information that needs to be forgotten and the
forget state is also calculated like the update state as on Equation 3.9. The value 1
means that all the information will be forgotten and the value 0 means that none of
the information will be forgotten for the output. The usage of the output is di�erent
than the update state.
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(3.10) h̃t = tanh(W · [rt úht≠1,xt])

The usage of the output of forget gate is shown on the Equation 3.10. The previous
cell information is represented with ht≠1, hence, element wise multiplication with
the forget state determines how much of the past information will be removed. The
remaining information is added to the current information xt and new vector h̃t

(let’s say information state) is created by tanh activation function.

(3.11) ht = (1≠ zt)úht≠1 + zt ú h̃t

As a final step, network needs to calculate output vector ht for the current cell.
Therefore, update state is applied in this phase to give updated information. As can
be seen on the Equation 3.11, if update gate is near to 1 that means the information
state h̃t is important. Thus, 1≠zt is near to zero and helps to forget past information
ht≠1.

3.2.3.5 Bi-directional gated recurrent units

Bi-directional gated recurrent unites (BiGRUs) is the modified version of the basic
RNN structure. Advantages of the GRUs are mentioned early and the bi-directional
property brings in another advantage to GRUs. In NLP, some problems need to
analyze both future and previous features Xt≠1, Xt+1 to understand feature Xt.

Each hidden state h is a GRU cell and the forward layer evaluates the input from
the beginning to the end, while the backward layer takes it from end to beginning.
Therefore, output yt is calculated with considering both previous and upcoming
features. The output of a hidden state ht is calculated as we discussed in Gated
recurrent units Sec. 3.2.3.4.

3.2.3.6 Attention mechanism
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The Attention mechanism that we used in our architecture was firstly proposed
to increase the performance of the basic RNN encoder-decoder model (Cho, van
Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk & Bengio, 2014) in machine
translation problem. RNN encoder-decoder model used a fixed-length vector for
encoding an input sentence, thus, decoder can take a limited information about
input vector. This bottleneck is caused by encoding with fixed-length vectors, even if
the sentences get longer. The proposed method, which is called Bahdanau Attention
mechanism (Bahdanau, Cho & Bengio, 2015), is used between encoder and decoder
to assign weights to the encoded hidden states. The Attention mechanism can be
used di�erent tasks such as classification, even the mechanism was firstly proposed
for machine-translation task.

Bahdanau Attention mechanism is mathematically represented by three di�erent
vectors, alignment scores, the weights and the context vector.

(3.12) et,i = a(St≠1,hi)

Alignment score et,i is calculated by using a feed forward neural network with en-
coded hidden states hi and previous decoder output St≠1. Briefly a(.) can be rep-
resented by an activation function and the dot product of St≠1 and hi.

(3.13) –t,i = softmax(et,i)

Weights are calculated by softmax function to squeeze alignment scores between 0
and 1 as in Equation 3.13. The closer the weight towards 1 indicates that the state
at that position is more important and needs more attention.

(3.14) ct =
Tÿ

n=1
–t,ihi

Context vector is basically the summation of weighted states. After weight vector
is calculated, importance of the each hidden state can be found by element wise
multiplication. Then, the summation of weighted hidden state in each position i
–t,i úhi is given as an output of the Attention mechanism to the decoder.
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4. METHODOLOGY

We cast the SUMOylation prediction as a binary classification task in which the in-
put is the 21-mer peptide sequence, x, centered on a lysine residue and the class label
y œ ≠1,1. Here, the label 1 indicates the positive class where the site is SUMOy-
lated and -1 indicates the negative class. We propose three di�erent alternative
architectures SUMOnet-1, -2, and -3 and train these models in a supervised learn-
ing setup. We evaluate the performance of these models with three di�erent peptide
input representations.

Below, we first detail the dataset that we use in our experiments. Secondly, we
describe the encoding methods. In the ensuing steps, we present the components of
the SUMO-nets and the design process of our deep learning architectures SUMOnet-
1, -2, and -3, evaluation metrics and how we performed hyper-parameter tuning on
each model.

4.1 Dataset

We obtained the experimentally identified SUMOylation samples from the dbPTM
database (Huang, Lee, Kao, Ma, Lee, Lin, Chang & Huang, 2019). We chose this
data source for several reasons. It is comprehensive as it culls data from various
biological databases. It provides an up-to-date non-homologous benchmark dataset.
Although most prediction tools provide predictive performance results, there is a
lack of standard, they use di�erent datasets and most of them contain redundant
sequences. By using this benchmark data, we hope others will also be able to
compare our methods with theirs. We use the non-redundant benchmark dataset
provided (version 2, download on 12.01.2021). dbPTM database curates this data
with the CD-hit program (Li & Godzik, 2006) such that no sequence pair have
similarity more than 40% (Huang et al., 2019). This ensures that the test data do
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not include sequences very similar to sequences that the model have trained on and
to avoid optimistic test performance estimates.

(4.1) P = A≠10A≠9A≠8.......A≠2A≠1KA+1A+2.......A+8A+9A+10

The peptide sequences with the SUMOylated sites constitute the positive set in our
classification task. The 21-mer peptides that are also centered on a lysine residue
but is not reported to be a SUMOylation site constitute the negative examples. In
Equation 4.1, P represents a peptide sequence which is centered with lysine ’K’ and
Ai represents amino acid residues on the position i. The dataset contains 1,432
proteins and 5,191 SUMOylation positive examples and 16,066 negative examples
in total. This corresponds to a 1:3 ratio of positive-to negative class labels. We
randomly held out 10% of the examples using stratified sampling for class labels
and used it as test data to evaluate the models. The numbers for the train and test
data are summarized in tab:data.

We hypertuned model parameters on the training data using 5-fold cross-validation.
To further evaluate the models, we subset for the most challenging examples. For
this, we looked for negatively labeled examples that contains the SUMOylation
motifs and positive examples that are not SUMOylated. We also provide evaluation
results on this harder test cases.

Dataset Number of pos. Number of neg Pos:neg
ALL 5191 16066 1:3
Train 4672 14459 1:3
Test 519 1607 1:3

Table 4.1 The number of SUMOylation sites in dbPTM, positive (pos) and negative (neg)
examples in train and test folds along with the positive-to-negative examples ratio are
listed.

4.2 Peptide Encodings

To represent the input peptide sequence in a numerical vector space, we use three
di�erent encoding techniques: one-hot, BLOSUM62 (Heniko� & Heniko�, 1992) and
NLF (Nanni & Lumini, 2011). Vector representations of lysine ’K’ amino acid in
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each di�erent encoding illustrated in Figure 4.1.

One-Hot Representation

Blosum62 Representation

Nlf Representation

Figure 4.1 The three encodings are shown for the lysine ’K’ amino acid.

Assume V is the N dimensional vector representation of an amino acid: Equa-
tion 4.2.

(4.2) V = [v1,v2,v3, ...,vN≠2,vN≠1,vN ]

Peptide sequences consist of 21 amino acids in our experiments. Each 21-mer pep-
tites P can be represented with 21xN vectors by using Equation 4.2 as follows:

(4.3) P =

S

WWWWWWWWWWWWU

V1
V2
.

.

V20
V21

T

XXXXXXXXXXXXV

=

S

WWWWWWWWWWWWU

v1,1 v1,2 . . . v1,N≠1 v1,N

v2,1 v2,2 . . . v2,N≠1 v2,N

. . . . . . .

. . . . . . .

v20,1 v20,2 . . . v20,N≠1 v20,N

v21,1 v21,2 . . . v21,N≠1 v21,N

T

XXXXXXXXXXXXV

The dimension N of the vectors is depended on the encoding mechanism. They are
set as follows:

• One-hot encoding: Each candidate SUMOylation site is represented with
a 21-mer peptide sequence centered on the lysine residue; hence, the input
sequence is represented by a 21ú21 = 441 dimensional vector.

• BLOSUM62 encoding: We use the epitopepredict tool developed by (Far-
rell, 2021) to extract BLOSUM62 matrix for amino acids. The peptide se-
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quences are represented by a 21ú24 = 504 dimensional vectors as Equation 4.1
for N = 24.

• NLF encoding: We directly use NLF factors to encode peptide sequences
as input to the models. Each amino acid is represented by a vector of length
18. Hence, each protein sequence in our data is mapped to 21 ú 18 = 378 di-
mensional feature space as N = 18. Epitopepredict tool developed by (Farrell,
2021) is used for extracting NLF representation.

We treated the encoding scheme as an hyper-parameter and select the best perform-
ing one.

4.3 SUMOnets

We train novel deep learning architectures to classify SUMOylated and non-
SUMOylated input peptide sequences. Each SUMOnet artitechure is coupled with
the best performing encoding scheme for that specific architecture, which is de-
cided during the hyper parameter tuning process. Our architectures consist of
combinations of Convolutional layers (LeCun et al., 1989), Gated Recurrent Units
(GRU) (Cho et al., 2014), Bi-Directional Gated Recurrent Units (Graves, Jaitly &
Mohamed, 2013), Self-Attention mechanism (Vaswani, Shazeer, Parmar, Uszkoreit,
Jones, Gomez, Kaiser & Polosukhin, 2017) and Feed Forward Neural Network (Ojha
et al., 2017).

All CNN layers are 1-D CNNs in all the architectures designed. Pooling layers,
Average-Pooling, Max-Pooling and Global Average-Pooling are used to decrease
model complexity. We apply ReLu activation function after each CNN and FFNN
layers. GRU layers are activated by tanh and we estimate the target class prob-
abilities using Softmax. We optimize weights of our models with Adam optimizer
(Kingma & Ba, 2017) by minimizing cross-entropy loss. The three SUMO-net ar-
chitectures are visualized in Figure 4.2. We use Keras (Cholletet al. , 2015) to
implement our architectures.

4.3.1 SUMOnet-1
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Figure 4.2 Deep learning model architectures with 21-mer peptide sequence centered on
the lysine residue as input. a) SUMOnet-1 deep model architecture. b) SUMOnet-2 deep
model architecture. c) SUMOnet-3 is the architecture that provides the best prediction
results. Each architecture was selected with respect to mean of area under the curve of
the receiver operating characteristic curves after 5-fold cross-validation.

SUMOnet-1 is a deep neural architecture that uses one-hot encoded vectors as an
input. Each sequence is given into a trainable embedding layer to learn better vector
representations for input peptides. Then, CNN layer extract the information among
residues. The extracted features are averaged by using Average Pooling layer. The
next layer is BiGRU; thus, network processes features in forward and backward
directions. Max Pooling, FFNN and Self-Attention layers follows BiGRU for paying
attention to the most important features. Finally, FFNN connects extracted features
to the output layer.

After the hyper-parameter tuning, the embedding layer maps each amino acid to
the 32-dimensional vector space. 128 filter maps are used in CNN layer and size of
the each filter is 4. The number of memory units of BiGRU is determined as 32
for both forward and backward layers. FFNNs consist of 64 and 256 hidden units
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respectively.

4.3.2 SUMOnet-2

The best peptide encoding scheme that performed best with the SUMOnet-2 ar-
titechture was SUMOnet-2. Each input vector directly feeds to the CNN layer to
extract residue features, which is followed by two GRU layer. Therefore, the ex-
tracted features by CNN are learned as sequentially and the positional information
can be captured. Then, Self-Attention layer is used for attending to important fea-
tures by giving weights to each output state of GRU. In the end, FFNN follows the
Self-Attention as a final layer.

The hyper-parameters are set after the tuning process. CNN layer consists of 64
filters with kernel size of 3. We determined 32 units GRU layers and 128 hidden
units for FFNN layer after the tuning process.

4.3.3 SUMOnet-3

SUMOnet-3 is an architecture that uses BLOSUM62 encodings as input vectors.
Inputs are given to the CNN layer to capture features, which is followed by BiGRU,
thus, network processes the captured features sequentially in forward and backward
directions. Then, Global Average Pooling is used to calculate average of feature
values and to decrease the number of trainable parameters, hence, over-fitting is
reduced. Finally, three consecutive FFNN layers are used.

After the hyper-parameter tuning, the number of filters is determined as 128 with
kernel size 2 for CNN layer after the hyper-parameter tuning. BiGRU consists of
32 memory units each in forwards and backwards layers. There are 64, 128 and 128
hidden units in FFNN layers respectively.

4.4 Architecture Design and Hyper-parameter Tuning

36



We firstly explain the experimental setup for architecture design. Then, the design
process of each architecture is presented. Finally, after experimentally decided each
layer in SUMOnet-1, -2, and -3, we mention our tuning steps for hyper-parameters
of each model and hyper-parameters of training process.

4.4.1 Experimental Setup

We use the experimentally verified sumolyation sites from the dbPTM database
(Huang et al., 2019). After separate out 10% of the training data as test data, we
use stratified k-fold cross-validation method (Refaeilzadeh, Tang & Liu, 2009) to
randomly split our imbalanced training data for tuning and design part. Thus, class
distributions of training and validation data remain same. Moreover, the advantage
comes from randomness by dividing the training data only once is decreased with
k-fold cross-validation for evaluation of the models. We select k as 5 and area
under the curve of the receiver operating characteristic curves to evaluate design
and tuning results.

4.4.2 Architecture Design

Neural Units Fixed Units
FFNN 128
1-D CNN Filter Size = 120, Kernel Size = 2
RNN 64
LSTM 64
GRU 64
BiDirectional RNN/LSTM/GRU 64
Self-Attention -
Max-Pooling 2
Average-Pooling 2
Global max/average Pooling -
Dropout 0.3
Optimizer Adam
Batch Size 32
Epoch Number 1000 + Early stoppings

Table 4.2 The neural units that we experimented to get final architectures and their fixed
units. Kernel size and filter size for 1-D CNN. Number of cells for RNN, LSTM, GRU, and
their bi-directional versions. Kernel size for Max-Pooling and Average Pooling. - means
that there is no parameter to be tuned. Adam optimizer uses 0.001 learning rate.
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We design three di�erent architectures. Our experiments focus on several combi-
nations of well known neural networks FFNN (Bebis & Georgiopoulos, 1994), CNN
(LeCun et al., 1989), RNN (Quast, 2016), LSTM (Hochreiter & Schmidhuber, 1997),
GRU (Chung, Gulcehre, Cho & Bengio, 2014) and Self-Attention (Zhang, Goodfel-
low, Metaxas & Odena, 2019) with pooling methods Max-Pooling, Average-Pooling
and global versions of them from the review of (Gholamalinezhad & Khosravi,
2020). Further, we add dropout layer (Srivastava, Hinton, Krizhevsky, Sutskever
& Salakhutdinov, 2014) on di�erent part of the architecture to prevent over-fitting.

To design our architectures, we left the number of units of each network optimizer,
batch and epoch number fixed to be tuned later by considering the computational
complexity as can be seen on Table 4.2. We use FFNN with 128 units, CNN with
120 units of filter and kernel size of 2, 64 units for each RNN, LSTM, GRU, pooling
size of 2, Adam optimizer (Kingma & Ba, 2017), batch size of 32, 1000 as a number
of epoch with early stopping by patience 5 to avoid over-fitting and embedding size
of 100 for just architecture for one-hot encoded inputs. The starting point is the
most shallow architecture for each encoded input vector. After that, we deepen the
network by adding layers that improve the evaluation result one after the other.

4.4.3 Hyper-Parameter Tuning

We create a search space and tuning schedule for hyper-parameter tuning. Tuning
schedule consists of searching the best parameter layer by layer instead of searching
in all architectures. To do that, all parameters of each layer remain same as in
Table 4.2 except the layer that tuned. Thus, computational complexity can be
reduced for minimizing time to find best parameters for all architectures. We also
tune the hyper-parameters of XGBoost and Logistic Regression to get the best
prediction results.

We firstly tune hyper-parameters of XGBoost and Logistic Regression. The search
space for the XGBoost is 100, 200, 300, 400, 500, 600, 700, 800, 900, 100 for number
of estimators and 3, 4, 5, 6 for depth. The hyper parameter penalty is tuned for
Logistic Regression with l1 and l2 penalties. In addition to the penalty, we also
tune the parameter c for Logistic Regression starting from 0.0001 and we multiply
each c value with 10 in each search to the ending point 1000 as can be seen on the
Table 4.3.

Our search space for each SUMOnet architecture is also illustrated on Table 4.3.
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Tuning Object Search Space
SUMOnet Layers Dense Layer Unit 64, 128, 256

CNN Filter Size 32, 64, 128, 256
CNN Kernel Size 2, 3, 4
GRU Unit Number 16, 32, 64, 128
BiGRU Unit Number 16, 32, 64, 128
Dropout 0.2, 0.25, 0.3, 0.35, 0.4, 0.45
Embedding Layer 16, 32, 64, 128

Training Parameters Optimizer Adam, Nadam, Adadelta
Batch Size 16, 32, 64, 128, 256
Epoch Number 15, 25, 35, 45, 55

XGBoost Number of Estimators 100, 200, ..., 900, 1000
Depth 3, 4, 5, 6

Logistic Regression Penalty l1, l2
C 0.0001, 0.001, ..., 100, 1000

Table 4.3 The search space for tuning hyper-parameters of each SUMOnet architecture,
training components, XGBoost and Logistic Regression. We use default learning rates for
each optimizer.

It involves dense layer units 64,128,256 for feed forward neural network, number
of filters 32,64,128,256 and kernel size 2,3,4 for 1-D convolutional neural network,
number of units 16,32,64,128 for gated recurrent units, 0.2,0.25,0.3,0.35,0.4,0.45 for
dropout, and 16,32,64,128 for embedding layer. After tuning the hyper-parameters
of architectures we search the best optimizer, batch size and epoch numbers for
training of the models. Adam (Kingma & Ba, 2017), Nadam, Adadelta optimizers
(Ruder, 2017), batch sizes of 16,32,64,128,256 and epoch numbers of 15,25,35,45,55
are tried to finalize the tuning part.

After the hyper-parameter tuning, the best parameters for XGBoost are 500 esti-
mators and 6 for depth. The best parameters for Logistic Regression are l2 penalty
and 1 for parameter c. The final architecture description for each model, SUMOnet-
1, SUMOnet-2, and SUMOnet-3 is given in the Sec. 4.3.1, Sec. 4.3.2, Sec. 4.3.3
respectively.

4.5 Evaluation Metrics

We measure the performance of our models by using an independent test dataset that
the model had never seen until the evaluation process. Moreover, evaluation metrics
are selected with consideration of imbalanced behaviour of the test data to make a
more straight forward comparison between di�erent models. Matthews’ correlation
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coe�cient (MCC) is well known technique in bioinformatics to evaluate models on
imbalanced data (Boughorbel, Jarray & El-Anbari, 2017) and it is calculated as
follows:

(4.4) MCC = TP ◊TN ≠FP ◊FN
Ò

(TP +FP )(TP +FN)(TN +FP )(TN +FN)

The correctly predicted SUMOylation sites are represented as TP (true positive)
and TN (true negatives) are correctly predicted non-SUMOylation sites. The false
predictions as SUMOylation sites and non-SUMOylation sites are FP (false posi-
tive) and FN (false negative) respectively. In addition to MCC we use F1-score to
calculate the harmonic mean of precision and recall as follows:

(4.5) F1 = 2◊Recall ◊Precision

Recall +Precision

Further, we use area under the curve for receiver operating characteristics (AUC-
ROC) and area under the precision recall curve (AUPR) to evaluate model perfor-
mance for di�erent thresholds due to the misleading evaluation of accuracy metric
(Fawcett, 2006).

(4.6) Acc = TP +TN

TP +TN +FP +FN

Accuracy of the model would be high when the model favor the dominant class.
Because the accuracy score is calculated by looking at how often model classify cor-
rectly both positive and negative classes as can be seen on Equation 4.6. Therefore,
we investigate ROC and PR curves of the models and consider their auc scores as a
summary of the curves.
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5. RESULTS AND DISCUSSION

This chapter first describes the evaluation setup we use for comparing the perfor-
mance of SUMOnets with other predictors. We finally compare SUMOnets with the
state-of-the-art methods and with classical machine learning models, which we train
and motif-based classifiers.

5.1 Evaluation Setup

5.1.1 Compared Methods

In this section, we present the evaluation setup on our neural architectures
SUMOnet-1, -2, and -3. We compare SUMOnets with other models on a held-
out test set. We also conduct hyperparameter tuning on the training data. The
evaluation metrics, which are used for decisions are described in Sec. 4.5 and hyper-
parameter tuning steps are discussed in Sec. 4.4.3.

We compare SUMO-nets with three di�erent sets of algorithms:

• Motif-based rules: This simple baseline relies solely on the known SUMOy-
lation motifs. To understand what can be achieved by only using the known
sequence motifs, we use rule-based classifiers that would return positive and
negative labels based on the presence and absence of known SUMOlylation mo-
tifs, respectively. In this way, we obtain a representative level of achievement
based on known motif-based rules.

• Shallow learners: To assess if there is any merit in using deep learning mod-
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els for SUMOylation prediction, we compare SUMOnets with two machine
learning methods, Logistic Regression (McCullagh & Nelder, 1989) and gradi-
ent boosted decision trees that we build and train. For the latter, we use the
XGBoost implementation (Chen & Guestrin, 2016).

• SUMOylation Predictors in Literature: Finally, we compare SUMOnets
with the widely available SUMOylation prediction tools as comprehensively
as possible. The tools include GPS-SUMO (Zhao et al., 2014), pSumo-CD
(Jia et al., 2016), Jassa (Beauclair et al., 2015) and SUMO-Forest (Qian et al.,
2020). We attempted to expand our comparisons with other tools, but we
were hindered by two constraints: the lack of readily available implementations
and the lack of su�cient details in the descriptions to reproduce these tools
independently by ourselves.

Below we describe how we used each of the compared methods.

Rule-based Classifier: The comprehensive summary of di�erent motifs in liter-
ature is provided in (Beauclair et al., 2015). Each motif is scanned on the test
examples to obtain results. Since these classifiers will return only binary class and
no scores, only metrics that do not depend on the scores are calculated. We also
use an ensemble classifier that would predict the positive class if only a single motif
exists.

Shallow Learners: These models are trained with three di�erent encoding methods
on the training data. The models are trained with three di�erent encodings. Hyper-
parameters of logistic regression and XGBoost models are tuned on training data
using 5-fold cross-validation. The details of the hyperparameter tuning steps are
provided in Sec. 4.4.3.

SUMO-Forest: We train SUMOForest on the training data using their available
implementation at https://github.com/sandyye666/SUMOForest. The trained
model is run on the test data to obtain the predicted class labels and scores.

GPS-SUMO: The GPS-SUMO (Zhao et al., 2014) source code is not available.
Therefore, we use their webserver available at GPS-SUMO web server. The test
data is uploaded to the webserver to obtain UMOylation site predictions. The web
server provides predicted labels and the associated scores based on a predefined
threshold value of the high, medium, all, low, and none. We apply a medium
threshold to measure MCC and F1-Score according to the results by determining
predicted labels. To compare ROC and AUPR curves, we use the scores obtained
with the threshold setting all.
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Jassa: The source code is not available therefore, we used the Jassa webserver
at http://www.jassa.fr/. The server takes a single sequence as an input. To
overcome this issue, we used a Python script to submit test sequences one by one
and retrieved the predictions from the results page. Jassa server provides prediction
labels and their scores with respect to thresholds high and low for three di�erent
clustering methods, all, directed and inverted. We used the clustering method all
and applied both high and low thresholds separately to measure MCC and F1-
Score according to the results by the determination of predicted labels. To be able
to compare based on ROC and AUPR curves, we use the scores obtained when
applying the clustering method all.

pSumo-CD (Jia et al., 2016) is another widely used SUMOylation predictor. Since
the implementation is not available, we used http://www.jci-bioinfo.cn/pSumo

-CD for finding SUMOylation sites. We extracted predicted labels for our test dataset
by using their web server. For pSumo-CD, however, the server provides prediction
labels but not the prediction scores. Thus, for that method, we could only calculate
MCC and F1 metrics but not AUC or AUPR curves.

5.2 Prediction Performances

Name Motif F1-Score MCC
Consensus direct Strong consensus [�1]-[K]-[x]-[–] 0.308 0.336

Consensus [�2]-[K]-[x]-[–] 0.403 0.374
Weak consensus [�3]-[K]-[x]-[–] 0.418 0.373
PDSM [�2]-[K]-[x]-[–]-[x]2-[S]-[P] 0.015 0.076
NDSM [�2]-[K]-[x]-[–]-[x]-[–]2/6 0.158 0.237
HCSM [�4]3-[K]-[x]-[E] 0.071 0.160
SC-SUMO [P/G]-[x](0≠3)-[I/V]-[K]-[x]-[E]-[x](0≠3)-[P/G] 0.063 0.158
Minimal SC-SUMO [I/V]-[K]-[x]-[E]-[x](0≠3)-[P] 0.098 0.199
SUMO-acetyl switch [�2]-[K]-[x]-[–]-[P] 0.092 0.180
pSuM [�2]-[K]-[x]-[pS]-[P] 0.000 0.000

Consensus inverted Strong consensus [–]-[x]-[K]-[�1] 0.077 0.068
Consensus [–]-[x]-[K]-[�2] 0.151 0.108
Weak consensus [–]-[x]-[K]-[�3] 0.176 0.119

Non-Consensus Ensemble motif 0.469 0.359

Table 5.1 Evaluation results of motifs in Jassa (Beauclair et al., 2015) via rule-based
method on independent test set. The protein sequence is predicted as a SUMOylation
site if a corresponding motif exists. For Non-Consensus, the protein site is predicted as
SUMOylated if the protein sequence consists of at least one motif. �1 = I, L, V; �2 = A,
F, I, L, M, P,V, W; �3 = A, F, G, I, L, M, P, V, W, Y. – = D, E, pS/T = phosphorylated
serine/threonine.

Separately for each motif, its presence in a test sample is checked, and the sequence
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is predicted as a SUMOylation site if the test sequence bears the motif. In addition
to individual comparisons, the ensemble of all motifs was also evaluated by checking
whether a particular protein sequence includes any of the motifs. The maximum F1
score that can be achieved with a single motif is 0.418, which the consensus motif
classifier yields. The MCC motif score of this motif is also high, 0.373. The consensus
motif also achieves 0.403 F1 and 0.374 MCC scores. The prediction performance for
ensemble, weak consensus, consensus and strong consensus methods are far better
than other consensus direct and consensus inverted motifs. Most methods lead
to very small F1 scores and MCC scores (Table 5.1). Even when methods are
combined, their F1 scores and MCC scores remain at 0.469 and 0.359, respectively.
These results establish that the linear sequence motifs are not su�cient to predict
all the SUMOylated sites e�ectively.

We next evaluated the SUMO-nets with the other two sets of methods, the shallow
models and the available SUMOylation predictors.

Predictor Encoding F1-Score MCC AUC AUPR
XGBoost BLOSUM62 0.614 0.536 0.844 0.727
LogisticRegression BLOSUM62 0.591 0.509 0.827 0.696
GPS-SUMO - 0.428 0.157 0.707 0.569
Jassa-Low - 0.403 0.380 0.727 0.560
Jassa-High - 0.256 0.305 0.727 0.560
pSumo-CD - 0.332 0.215 - -
SUMO-Forest - 0.592 0.502 0.819 0.688
SUMOnet-1 One-Hot 0.640 0.544 0.859 0.742
SUMOnet-2 NLF 0.623 0.547 0.857 0.741
SUMOnet-3 BLOSUM62 0.658 0.569 0.870 0.758

Table 5.2 Comparison of the SUMOylation prediction methods on the whole test data.
Jassa predicts labels with respect to two di�erent thresholds, low and high. pSumo-CD
(Jia et al., 2016) gives the predicted labels without any score; therefore, ROC-AUC and
AUPR scores cannot be calculated. Encodings that give the best results are listed for the
implemented models. Since the services/codes provided by the models in the literature do
the encoding process automatically, we did not specify them.

Table 5.2 shows the evaluation metrics computed on the test data for all the models.
SUMO-Forest is the best predictor among the existing models in all evaluation
metrics. SUMO-Forest achieves 0.59 F1 score, which is approximately 14% higher
than Jassa , 17% higher than GPS-SUMO and 26% higher than pSumo-CD. SUMO-
Forest achieves 0.50 MCC score, which corresponds to 25-30% more than other tools
in literature. Some of the evaluation metrics for pSumo-CD could not be measured;
therefore, our interpretation is limited for this method. The ROC-AUC and AUPR
scores of SUMO-Forest are 0.82 and 0.69 respectively, which are approximately 11%
higher than that of GPS-SUMO’s. Thus, we conclude that SUMO-Forest performs
best among the compared available tools in the literature on these datasets.
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Figure 5.1 Receiver operating characteristic curve. False positive and true positive rates
are evaluated on our independent test data.
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Figure 5.2 Precision recall curve. Precision and recall scores are evaluated on our inde-
pendent test data.

As we mentioned in the discussion of the evaluation setup Sec. 5.1, we experimented
with Logistic Regression and XGBoost to predict SUMOylation sites to create strong
baselines in our evaluation. Of the three peptide encodings, both models provide
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the best performance with BLOSUM62 encoding. XGBoost produces about 2%
improvement in performance for all the evaluation metrics over Logistic Regression.
For the XGBoost classifier, the F1-Score and ROC-AUC are found to be 0.61, and
0.84, respectively, which are 2% higher than SUMO-Forest. The MCC and AUPR
scores are 0.54 and 0.72, respectively. This corresponds to 3% increase compared to
the best tool in the previous Comparison, SUMO-Forest. Thus, we conclude that
a SUMOylation predictor better than the existing models can be trained with an
XGBoost classifier.

Finally, we examine SUMOnet prediction performance (Table 5.2). All the three
SUMOnets yield better prediction performance than the other models with respect
ro the used evaluation metrics. Among the three architectures, SUMOnet-3 is the
one that achieves the best scores. The F1-Score of SUMOnet-3 is 0.66, which is
5% more than XGBoost classifier (Chen & Guestrin, 2016). MCC, ROC-AUC and
AUPR scores of SUMOnet-3 are 0.57, 0.87 and 0.76, respectively. These correspond
to approximately 3% improvement over the XGBoost classifier. We conclude that
we can attain the best predictor using SUMO-net3.

We also compare models using the Receiver operating characteristic (ROC) and
precision-recall (PR) curves. As shown in Figure 5.1 SUMOnet-3 is the best predic-
tor across the di�erent false positive rates. Similarly, it achieves the best precision
values across di�erent recall ranges (Figure 5.2)

5.3 Evaluation on Hard Test Examples

Predictor Encoding F1-Score MCC AUC AUPR
XGBoost BLOSUM62 0.438 0.0838 0.523 0.742
LogisticRegression BLOSUM62 0.410 0.0598 0.507 0.740
GPS-SUMO - 0.357 -0.491 0.321 0.605
Jassa-Low - 0.028 -0.364 0.240 0.564
Jassa-High - 0.000 -0.259 0.240 0.564
pSumo-CD - 0.194 -0.091 - -
SUMO-Forest - 0.460 0.101 0.533 0.762
SUMOnet-1 One-Hot 0.547 0.152 0.657 0.822
SUMOnet-2 NLF 0.479 0.118 0.601 0.787
SUMOnet-3 BLOSUM62 0.565 0.168 0.667 0.819

Table 5.3 Comparison of the SUMOylation prediction methods on the hard test examples.
Hard test examples are the subset of our test data set. We select positive samples which
have no motifs and negative samples which have any motif.
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As shown in Table 5.1, it is possible to achieve around a 0.4 F1 score based on
motifs. The SUMOylation sites that contain these motifs are easy to capture. Thus,
to evaluate di�erent methods, we subset the most challenging examples in the test
set based on the presence and absence of the SUMO motifs. The hard test examples
set includes sequences that lack any of the SUMO motifs but are positively labeled
and negatively labeled sequences that include SUMO motifs. These are the specific
examples where we expect the methods to have di�culty in the predictions.

The ROC curve in Figure 5.3 shows the comparison of various methods. As expected,
overall performance degrades for all methods; however, compared SUMOnet models
perform the best among all methods. Particularly, our final choice, SUMOnet-3 is
the best performer.

5.4 Ablation Study on SUMOnet-3

To asses the value that each component bring, we conduct an evaluation of
SUMOnet-3 where we add the components gradually and re-evaluate each model.
Each model is evaluated using 5-fold cross validation on the training data.

Method F1-Score MCC AUC AUPR
Dense[2] 0.538 0.492 0.831 0.697
Conv[120,2]_Dense[2] 0.584 0.507 0.837 0.709
Conv[120,2]_BiGRU[32]_Dense[2] 0.633 0.545 0.864 0.745
Conv[120,2]_BiGRU[32]_GlobalAv.Pool_Dense[2] 0.628 0.551 0.868 0.751
Conv[120,2]_BiGRU[32]_GlobalAv.Pool_Dense[128,128,128,2] 0.640 0.557 0.873 0.756

Table 5.4 Evaluation results of each model as we add components of SUMOnet-3 in the
artitechure. The table reports 5-fold cross validation average scores on the training data.
The BLOSUM62 encodings are used for input representation.

The starting point for the architecture construction is a single layer perceptron that
contains 2 hidden units. When the the CNN is added, we see an increase in all
evaluation metrics. The largest increase is observed when BiGRU is added after the
CNN with nearly 3% in ROC-AUC and 4% in AUPR. There is a small raise in all
scores after adding Global Average Pooling and three consecutive dense layers.

47



Figure 5.3 Receiver operating characteristic curve on hard test samples, which is a subset
of our independent test data. Hard test samples includes sequences that lack any of the
SUMO motifs but are positively labeled and negatively labeled sequences that include
SUMO motifs.

.5

Figure 5.4 Precision recall curve on hard test samples, which is a subset of our independent
test data. Hard test samples includes sequences that lack any of the SUMO motifs but
are positively labeled and negatively labeled sequences that include SUMO motifs.
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6. SUMONET: A PYTHON LIBRARY TO PREDICT

SUMOYLATION SITES

In this section, we present sumonet Python library for the prediction of SUMOy-
lation sites. The main motivation behind implementing sumonet is to support
SUMOylation research with a user-friendly and capable computational tool that is
freely accessible. We also want to facilitate the reproducibility of the experiments.
sumonet library supports the following experiments:

• The SUMOylation dataset can be used entirely, or it can be sampled randomly.

• Users can choose from the three encoding methods: one-hot, BLOSUM62, or
NLF encoding.

• SUMOnet-3 architecture is ready to use for training with randomly initialized
weights to train with a new dataset

• Our pre-trained SUMOnet-3 model is ready for making predictions on protein
sequences

• Libray reports F-1 Score, MCC, ROC, and AUPR evaluation metrics

• You can extract our train and test sequences to compare with your data

Using the above features, users can either reproduce our experiments with
SUMOnet3 or train new models with their own data.

The library can be used by cloning from GitHub https://github.com/

berkedilekoglu/SUMOnet or it can be installed by ’pip installsumonet==0.1’.
We also provide a tutorial in the GitHub repository for the training of end users.

6.1 Structure of the Library
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sumonet library consists of modules utils, model, and evaluation to provide data pro-
cessing, deep model training, and evaluation capabilities, respectively. This section
explains each module and the data directory in detail.

data

train

Sumoylation_neg_Train.fasta

Sumoylation_pos_Train.fasta

test

Sumoylation_neg_Test.fasta

Sumoylation_pos_Test.fasta

Figure 6.1 Directory tree of the data

The data directory consists of an up-to-date benchmark dataset obtained from
dbPTM (Huang et al., 2019). The data folder includes two subfolders which serve
as train and test directories, as can be seen on Figure 6.1. We provide positive
and negative samples that are used in our experiments for both training and test
processes. Thus, users can use these data to train their own models. Moreover, they
can use this information to exclude specific test examples that are already in our
training data for further experimentation.

6.1.1 Utils Module

The Utils module contains two classes to prepare data for training and testing.
These classes enable loading, encoding, and pre-processing of the data. There is
also a scaler directory, which consists of pre-trained min-max scaler ( Figure 6.1.1).
Min-max scaler is applied to our training data to avoid information leaks from test
data to training.

utils

encodings.py

load_data.py

scaler

minmax_scaler.gz

Figure 6.2 Directory tree of the utils module
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Encodings.py script contains an encoding class for the pre-processing of a given data
set. The user can give a 21-mer peptide sequence or a data path in Fasta format
to the class object; thus, one-hot, NLF, or BLOSUM62 vector representations are
taken as an output.

Load_data.py script is for loading dbPTM (Huang et al., 2019) data-set from the
data directory on Figure 6.1. Hence, our experiments can be replicated, or samples
can be compared for experimental purposes.

6.1.2 Evaluation Module

Figure 6.3 Directory tree of the evaluation module

evaluation

metrics.py

The evaluation module consists of a python script metrics.py, as can be seen on
Figure 6.1.2. The evaluation metrics F1-score, MCC, ROC, and AUPR are defined
and combined in a function for easy usage. Hence, the user can either use all or one
to evaluate the prediction results.

6.1.3 Model Module

Figure 6.4 Directory tree of the model module

model

architecture.py

pretrained

sumonet3.h5

The model module includes architecture.py script and a pre-trained directory,
which consists of a pre-trained model with the weights of SUMOnet-3. The archi-
tecture of SUMOnet-3 is provided by using a superclass of the Keras Model. Hence,
all of the functions in Keras models can be used for our architecture class.
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The pre-trained model weights can be used to reproduce our results or make predic-
tions on any test data. Also, SUMOnet-3 architecture can be used with randomly
initialized weights for training from scratch.
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7. CONCLUSION

Post-translational modification (PTM) is a chemical modification critical for the
regulation of cellular processes. SUMOylation is one of the major protein modifi-
cations in which small ubiquitin-like modifiers (SUMOs) covalently and reversibly
attach to specific lysine (K) residues of target proteins. The SUMOylation pro-
cess is conserved across eukaryotes, underlining its essentiality for the cell. Indeed,
SUMOylation has been reported to take several critical processes, such as cell cycle
regulation and DNA repairing, and its aberrations in SUMOylation is associated
with several diseases. Therefore, accurate identification of SUMOylation sites is
critical.

SUMO proteins bind to their targets in a site-specific way; thus, the sequence around
the SUMOYlated lysine residue contains the information to predict the sites. Based
on this, several SUMOylation predictors are developed that, given a lysine residue
and its surrounding sequence, would predict whether the lysine will be SUMOYlated
or not. However, most of these methods are not evaluated on a benchmark dataset.
In this work, we developed state-of-the-art SUMOylation predictors, SUMOnets,
that surpass the closest best SUMOylation predictor.

We present three di�erent deep learning architectures, SUMOnet-1, -2, and -3 to
predict SUMOylation sites accurately. Various neural units that are known to per-
form well in NLP tasks, such as CNN, GRU, and attention, are used to construct
these architectures. We experimented with three encoding schemes: one-hot, NLF,
and BLOSUM62 for peptide representation. We provide the most accurate deep
learning architectures for these encoding techniques.

When compared on an experimental benchmark dataset, the predictors surpass the
next best SUMOylation predictor by approximately 5% AUPR. Among the three
architectures, SUMO-net3 achieves the best performance across all metrics. When
the methods are compared on a challenging subset of the test data, the performance
improvement over the existing SUMOylation predictors becomes more evident.

For our evaluation experiments, we also build a rule-based prediction method on
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our independent test data. The rule-based classification is a method that uses
motifs to decide whether a protein sequence is SUMOylated or not. We show that
motifs only are not capable enough to predict SUMOylation sites. We also trained
XGBoost and Logistic regression models to form a strong baseline. We show that
it is possible to attain SUMOylation predictors better than the existing ones with
XGBoost and BLOSSUM62. SUMOnet-3 is the best SUMOylation site prediction
tool in all evaluation experiments. We provide SUMOnet-3 as an open-source project
in GitHub and a Python library that can be easily installed by pypi. The library
also provides means to reproduce our results for further evaluation.

The work can be extended in future directions. One immediate plan is to crawl up-to-
date SUMOylation sites from the newly published papers to construct an additional
dataset for SUMOnet-3. A second future work is to build a web-server for SUMOnet-
3 predictions. The peptide site can be submitted to the server and the predicted label
and the prediction score will be output. Thus, users can easily access the predictions
seamlessly. In this work, the input sequence is a 21-mer peptide sequence centered on
the candidate lysine residue. One future work involves inspecting whether having a
longer input peptide could improve the model performance. Our initial experiments
with protein sequence embedding methods with ProtVecAsgari & Mofrad (2015) did
not outperform the existing embedding methods we used. Therefore, we had stopped
exploring those directions. However, there has been progressing in protein sequence
embedding methods. It would be interesting to explore whether they can further
improve the prediction performance. Lastly, similar architectures could be useful
for other PTMs site predictions. Future work would be to assess these architectures
for other PTMs, such as ubiquitylation.

The work also has limitations. Currently, the model relies solely on sequence infor-
mation. Protein structural features, as well as conservation information, could help
improve the model. One limitation of current artitechure is that it lacks an expla-
nation module. It will be interesting to understand which sequence positions are
critical for the positions. Such interpratations may lead to the discovery of unknown
SUMOylation motifs that were not possible to capture with traditional methods.
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