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ABSTRACT 
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Plate and shell structures are used in many industries, including marine, aerospace, 

automotive, energy, and petrochemical. The condition of these components is of great 

importance as they directly affect the health status of people and the environment. Therefore, 

implementing a reliable structural health monitoring (SHM) system is paramount to ensuring 

the structural integrity of these applications. Shape sensing is an important part of SHM that 

deals with the real-time reconstruction of structural displacements and stress fields using a 

network of strain gages. Shape sensing is an inverse problem, and the inverse finite element 

method is one of the best candidates to solve this problem in real-time. This dissertation aims 

to further evaluate the iFEM approach by comparing the efficiency and accuracy of the 

existing iFEM plate/shell elements. Additionally, an improved iFEM element is developed 

for better shape sensing of thick and moderately thick sandwich and multilayer composites. 

The capability of the iFEM method for shape sensing of thin-walled structures subjected to 

geometrically nonlinear deformations is investigated in this thesis as well. Finally, the 

potential of the iFEM method for shape sensing of structural components in the marine and 

aerospace industries is explored. The results of these investigations have been published in 

three journal papers and two conference proceedings, which are presented individually in 

four chapters of this study. 
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ÖZET 

 

Plaka ve kabuk yapılar, denizcilik, havacılık, otomotiv, enerji ve petrokimya dahil 

olmak üzere birçok endüstride kullanılmaktadır. Bu yapıların mekanik durumu, insanların ve 

çevrenin sağlık kondisyonunu doğrudan etkiledikleri için büyük önem taşımaktadır. Bu 

nedenle, güvenilir bir yapısal sağlık izleme (SHM) sisteminin uygulanması, bu yapıların 

yapısal bütünlüğünü sağlamak için çok önemlidir. Şekil algılama, birçok gerinim sensörü 

kullanarak yapısal yer değiştirmelerin ve gerilim alanlarının gerçek zamanlı yeniden 

yapılandırılmasıyla ilgilenen SHM'nin önemli bir alanıdır. Şekil algılama tersten algoritma 

ile çalışan bir yöntemdir ve ters sonlu elemanlar yöntemi (iFEM), bu problemi gerçek 

zamanlı olarak çözmek için en iyi yaklaşımlardan biridir. Bu tez, mevcut iFEM plaka/kabuk 

elemanlarının verimliliğini ve doğruluğunu karşılaştırarak iFEM yaklaşımını daha fazla 

değerlendirmeyi amaçlamaktadır. Ek olarak, kalın ve orta kalınlıkta sandviç ve çok katmanlı 

kompozitlerin daha iyi şekil algılaması için geliştirilmiş bir iFEM elemanı geliştirilmiştir. Bu 

tezde, geometrik olarak doğrusal olmayan deformasyonlara maruz kalan ince duvarlı 

yapıların şekil algılaması için iFEM yönteminin yeteneği de araştırılmıştır. Son olarak, 

denizcilik ve havacılık endüstrilerinde yapısal bileşenlerin şekil algılaması için iFEM 

yönteminin potansiyeli araştırılmaktadır. Bu araştırmaların sonuçları, bu çalışmanın dört 

bölümünde ayrı ayrı sunulan üç dergi makalesinde ve iki konferans bildirisinde 

yayınlanmıştır.  
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CHAPTER 1. General Introduction 

 

1.1. A Statement of Problem 

Plate and shell-like structures have a large share in the manufacturing of industrial 

technology, such as marine, aerospace, and automotive. These structural components are 

mainly exposed to harsh environmental and operational situations, which can cause damage 

to these components. When damage accumulates, catastrophic failure of the entire structure 

can occur, resulting in human casualties, environmental damage, and economic losses. 

Therefore, continuous monitoring is required to ensure the integrity of these structural 

components. Structural Health Monitoring (SHM) performs this task by integrating sensing 

systems into these types of structural components and collecting and processing the data to 

provide real-time information about their health state.  

Shape and stress sensing is a key SHM technology that deals with real-time 

reconstruction of structural displacements and stress fields using a network of strain gages. 

Shape sensing is an inverse problem. To solve this inverse problem, several mathematical 

algorithms have been developed and presented in the literature. Tikhonov and Arsenin [1] 

introduced a regularization term that ensures a safe degree of smoothing to solve this inverse 

problem. Most inverse methods use more or less the same regularization form. For example, 

Maniatty et al [2] used regularization techniques to solve inverse elastic and 

elastoviscoplastic problems. In addition, Schnur and Zabaras [3] computed the surface 

tractions of a body from a discrete number of sensors providing internal displacements at the 

sensor positions. They then minimized the difference between the computed and measured 

displacements by employing a spatial regularization to solve this inverse problem. The spatial 

regularization has the role of stabilizing of the minimization process. Maniatty and Zabaras 

[4] also tried to estimate the errors in solving an inverse problem using coupled the spatial 

regularization technique with a statistical approach discussed by Tarantola [5]. In addition to 

inverse methods using a type of Tikhonov regularization, a variety of shape recognition 

algorithms have been proposed to solve real-time reconstruction of displacements in beam 

and/or plate structures subjected to bending loads [6-13]. Most of the aforementioned inverse 

methods do not take into account the complexity of the boundary conditions and structural 



2 

 

topology. They are also dependent to sufficient and accurate loading and material information 

about the structure. Furthermore, due to their inherent assumptions many of these methods 

are not capable to adapted to dynamic loads and nonlinear displacements and are limited to 

static and/or quasi-static loads. Finally, most of these inverse methods require time-

consuming analysis and are therefore not suitable for real-time SHM systems. Considering 

all these drawbacks, they are generally not suitable for use in on-board SHM algorithms.  

The inverse finite element method (iFEM) is a state-of-the-art method originally 

introduced by Tessler and Spangler [14-15] for real-time shape sensing of plate and shell 

structures. The general mathematical concept of the iFEM method uses a least squares 

variational principle that attempts to minimize the errors between the analytical and 

corresponding experimental strain values. To calculate the required analytical strain values, 

the iFEM formulation is performed using first-order shear deformation theory (FSDT), 

including the membrane, bending curvatures, and transverse shear strain measures. However, 

the experimental strain values are obtained using a series of strain sensors located on board 

or embedded in the structures. It is worth noting that simulated strain data obtained using 

numerical analysis methods (e.g., FEM) can be used in place of experimental strain values 

when evaluating the shape sensing of complex geometries. The minimization process leads 

to a system of linear algebraic equations that can be solved to determine the unknown 

displacements in real-time. Once the displacement field is reconstructed, the strains 

throughout the field can be calculated using the strain-displacements relationships. Then, the 

three-dimensional stress state of the structure can be calculated using the full-field strains 

and the material properties of the structure. Finally, the three-dimensional stresses can be 

fitted to an equivalent stress using an appropriate failure criterion (e.g., von Mises yield 

criterion), allowing real-time damage predictions. 

1.2. Objectives of the Research 

The current Thesis has four main objectives as follows: 

1. To compare the accuracy and performance of shape and stress sensing between 

existing inverse elements for plates/shells in the literature (i.e., iMIN3, iQS4 and 

iCS8). In this review study, this objective is achieved by evaluating four benchmark 

problems consisting of a wing-shaped plate, a curved shell, a stiffened curved shell, 
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and a curved shell with a degraded part in the center. The last case aims to compare 

the accuracy of the detection of damages by iFEM elements. To the best of authors’ 

knowledge this is the first time in the literature that a comparative and review study 

investigates the shape and stress sensing and damage prediction performance of 

different iFEM inverse elements. These objectives are achieved in Abdollahzadeh et 

al. [16] as part of the research described in this thesis (Chapter 2). 

2. For deformation sensing of thick and moderately thick sandwich composite plate and 

shell structures numerically and experimentally using novel RZT-based iFEM 

elements (i.e., iRZT4). This study also investigates the performance of the new iFEM-

RZT element in reconstructing torsional deformations in multilayer structures. In 

addition, a polynomial smoothing method is coupled with the iFEM-RZT approach 

in this study to produce a continuous form of the experimental strain data over the 

entire region of the laminated structure. As far as the authors are aware, there is no 

study in the literature that considers these aspects. The results of this study were 

published in Abdollahzadeh et al. [17] as part of the research described in this thesis 

(Chapter 3). 

3. To numerical and experimental investigation of iFEM's ability to reconstruct large 

deformations of thin laminated plate and shell composite structures. In this context, 

geometrically nonlinear deformations of thin composite structures subjected to 

bending and/or post-buckling loads are evaluated using the inverse element iFEM-

iQS4. Also, a technique for pre-extrapolation of strains is applied to obtain a more 

uniform variation of strains over the whole area of the plate. The overall strategy of 

this study is in Abdollahzadeh et al [18]. which is presented in Chapter 4 of the 

dissertation. To the best of the authors' knowledge, this is the first time that thin 

laminated structures subjected to large deflections have been evaluated using the 

iFEM method. 

4. To Discuss numerical applications of the inverse finite element method for shape 

sensing of structural components in the marine, aerospace, and automotive industries. 

To this end, three-dimensional shape sensing of an aircraft fuselage and a 

representative ship hull structure are considered, and analyzed using the iFEM-iQS4 
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inverse shell element. The capability of iFEM analyzes in case of loss 

(damaged/broken) a set of strain data is also demonstrated in this study. To the best 

of the authors' knowledge, no previous iFEM study has been performed in this 

context. These objectives are achieved in Abdollahzadeh et al [19-20] as part of the 

research in this thesis (Chapter 5). 

1.3. Description of Remaining Chapters  

The remaining parts of this thesis is constituted by the following chapters: 

• Chapter 2: In this chapter, the existing inverse elements are compared in terms of 

their capability of full-field displacement and stress reconstruction and damage 

prediction. The general mathematical formulation of these inverse elements is briefly 

explained and the fundamental differences in the associated shape functions of these 

elements are thoroughly examined. 

• Chapter 3: This chapter presents advantages of a new four-node RZT based iFEM 

element for shape sensing of moderately thick sandwich plate/shell composites. The 

mathematical formulation of this element is described in detail. This evaluation is 

completed using two numerical examples. Consequently, one experimental example 

is done to validate the numerical analyses.  

• Chapter 4: This chapter describes the ability of iFEM to investigate thin laminated 

structures subjected to large deformations (geometrically nonlinear deformations). 

The mathematical formulation and numerical/experimental examples serve to 

elucidate the topic of interest. 

• Chapter 5: This chapter aims to discuss numerical applications of iFEM for shape 

sensing of structural components in the fields of marine and aerospace engineering. 

For this purpose, two complex geometries are considered to model the representative 

shape of an aircraft fuselage and a ship hull structure. In this chapter also the iFEM 

formulation is briefly discussed. 

• Chapter 6: This chapter summarizes the main findings, highlights the novelty and 

contribution of this research study to the field, discusses the gaps and suggests future 

work, and concludes with concluding remarks. 
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CHAPTER 2. A Comparative Study on Shape and Stress Sensing of 

Flat/Curved Shell Geometries Using C0-Continuous Family Of iFEM 

Elements 

 In this chapter, we methodologically compare accuracy and performance of C0-

continuous flat and curved inverse-shell elements (i.e., iMIN3, iQS4, and iCS8) for inverse 

finite element method (iFEM) in terms of shape, strain, and stress monitoring, and damage 

detection on the various plane and curved geometries subjected to different loading and 

constraint conditions. For this purpose, four different benchmark problems are proposed, 

namely, a tapered plate, a quarter of a cylindrical shell, a stiffened curved plate, and a curved 

plate with a degraded material region in stiffness, representing damage. The complexity of 

these test cases is increased systematically to reveal the advantages and shortcomings of the 

elements under different sensor density deployments. The reference displacement solutions 

and strain-sensor data used in the benchmark problems are established numerically utilizing 

direct finite element analysis. After performing shape-, strain-, and stress-sensing analyses, 

the reference solutions are compared with the reconstructed solutions of iMIN3, iQS4, and 

iCS8 models. For plane geometries with sparse sensor configurations, these three elements 

provide rather close reconstructed-displacement fields with slightly more accurate stress 

sensing using iCS8 than iMIN3/iQS4. It is demonstrated on the curved geometry that cross-

diagonal meshing of a quadrilateral element pattern (e.g., leading to four iMIN3 elements) 

improves the accuracy of the displacement reconstruction as compared to single-diagonal 

meshing strategy (e.g., two iMIN3 elements in a quad-shape element) utilizing iMIN3 

element. Nevertheless, regardless of any geometry, sensor density, and meshing strategy, 

iQS4 performs better shape and stress sensing than iMIN3. As the complexity of the problem 

is elevated, the predictive capabilities of the iCS8 element become obviously superior to that 

of flat inverse-shell elements (e.g., iMIN3 and iQS4) in terms of both shape sensing and 

damage detection. Comprehensively speaking, we envisage that the set of scrupulously 

selected test cases proposed herein can be reliable benchmarks for 

testing/validating/comparing for the features of newly developed inverse elements. 
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2.1. Introduction 

Thin shell structures with monolithic/stiffened curved and flat geometries are 

commonly utilized in diverse engineering applications including ships and marine platforms, 

aerospace vehicles, and civil structures, among others. These structures should be strong 

enough to bear not only their own weights but also extreme environmental loads such as high 

wind pressure, catastrophic ocean waves, and rainstorms without losing their structural 

integrity. These loads may result in material degradations due to the formation of cracks, 

voids, and stress intensification locations. In addition to the load-induced damages, the 

corrosive environmental conditions encourage the occurrence of additional failure modes 

including stress-corrosion cracking, fretting cracks, and thickness reductions due to material 

erosion. Structures operating under these conditions eventually experience sudden failures 

and ruptures in their primary components, hence being rendered useless. Besides, sudden 

damages lead to economic loss, environmental pollution, and even may cause human 

casualties. To prevent such events and predict these undesirable damages in real-time, a 

structural health monitoring (SHM) system with a reliable and robust displacement and stress 

monitoring capabilities should be installed in the structures aboard [21-23]. 

SHM is a multidisciplinary technology that can provide a real-time estimation of strain 

and stress fields, overall structural deformations, and damage positions through utilizing 

ensemble of sensors discretely located on/in the structure acquiring physical/mechanical 

information such as strain, temperatures, acceleration, pressure, etc. Over the last few 

decades, significant progress has been made in different forms of SHM technologies for 

various material and structural systems [24-25]. Damage detection of cracked shell structures 

[26-27]. SHM of simple and complex structural topologies made of isotropic materials (e.g., 

steel/aluminum structures [22-23, 28]) or orthotropic materials (e.g., multilayered composite 

and sandwich structures [29-30]) are studied under static and dynamic loading conditions. 

Particularly, damage, delamination, and fatigue in laminated composite and foam-core 

sandwich structures were identified using embedded fiber optic sensors [31-33]. 

Apart from the conventional SHM approaches, a significant amount of attention has 

been dedicated towards the real-time reconstruction of the structurally deformed shapes via 

strain sensors, i.e., a key technology for SHM systems, commonly referred to as 
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“displacement monitoring” or “shape sensing”. Mathematically speaking, shape sensing is 

an inverse problem. For the solution of this inverse problem, various mathematical 

formulations and algorithms have been proposed and investigated experimentally and/or 

numerically for beam/plate/shell structures. In general, these algorithms can be classified in 

the following two main categories: (1) modal/analytical/curve-fitting approaches [14-19], 

and (2) inverse finite element method (iFEM) [20-21]. Davis et al. [6] used analytical trial 

functions for shape and vibration mode sensing in order to regenerate static-beam response 

using fiber Bragg grating (FBG) sensor data. The main drawback of their approach is the 

requirement of excessive numbers of strain sensors and trial functions to model complex 

modal shapes. Kang et al. and Bogert et al. [7-8] evaluated the dynamic response of a beam- 

or plate-like structure through computing modal coordinates using strain-displacement 

relationship and discrete strain measurements obtained from surface-mounted FBG sensors. 

However, since the numbers of estimated mode shapes are restricted to the numbers of strain 

sensors, the accuracy of their approach may diminish for shape sensing under dynamically 

complex loading conditions, thus limiting the generality of this approach. Kim and Cho [11] 

analytically approximated the deflection of a beam using a high-order polynomial function 

whose weights were found through curve fitted experimental strains. Ko et al. [12] 

generalized Kim and Cho’s approach further and demonstrated its implantation to shape 

sensing of a wing-shaped beam model with airfoil cross-section subjected to bending 

deformations. However, the approaches [37-38] are bereft of predicting accurate torsional 

deformations due to the simplifications made in the kinematic relations utilized in the model. 

Chierichetti [39] introduced a non-linear numerical method called load confluence algorithm 

(LCA) which requires the numerical estimation of force before reconstructing the dynamic 

response of a beam. Nevertheless, since the LCA approach first reconstructs the loads, the 

statistical complexity of the loading condition may lead to undesirable errors in the prediction 

of the displacement field. Overall, the above-stated shape-sensing methods encounter 

difficulties in dealing with structures with complex geometries and boundary conditions, and 

hence cannot be easily generalized for shape sensing of any structures. 

Among these inverse-methods, the iFEM methodology has been demonstrated to be 

the most-general shape-sensing algorithm because of its mathematical attributes, i.e., the 

utilization of a least-squares variational principle based on experimental and numerical 
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strain-displacement relations [40-41]. In other words, this variational principle relies on the 

minimization of the squared norm errors between experimentally measured and numerically 

evaluated section strains. For a given structure, the experimental section strains can be 

calculated by using tri-axial surface strains obtained from strain rosettes that can be in the 

form of FBGs or conventional strain gauges.  The numerical counterparts of such section 

strains can also be readily established for an infinitesimally small domain, i.e., an inverse 

finite element. The minimization of the iFEM least-squares functional with respect to the 

unknown displacements enables one to cast the final set of equations in a matrix-vector form, 

which can be solved through imposing problem-specific constraint boundary conditions into 

the final equations. Such a solution first reveals the full-field structural displacements, 

leading to shape sensing in three-dimensional space. In the post-processing stage, the solution 

of the displacement field can be transformed into the strains via strain-displacement relations. 

Finally, the constitutive relations of a given material can be used to evaluate the individual 

stress components, leading to stress monitoring in the framework of iFEM methodology. To 

recapitulate, the potential advantages of iFEM algorithm can be stated concisely as; (1) the 

independence from the external loads, (2) the suitability for modeling the complex structural 

geometries with intricate constraints, (3) the utilization of only discrete strain measurements 

without needing material information, and (4) the applicability to real-time analysis [22-23].  

The iFEM methodology was first introduced for plate structures based on the kinematic 

relations of first-order shear-deformation theory (FSDT) [15]. Then, its original variational 

principle was adapted to the Timoshenko beam theory for shape sensing of beam structures 

[34], which is validated against experimental studies [35-37]. Subsequently, the FSDT-based 

iFEM formulation was extended to the utilization of the zigzag kinematics of refined zigzag 

theory (RZT) [38] for shape sensing of composite structures [39-41]. Since the iFEM 

formulation requires discretization of the structural domain with inverse elements, various 

inverse beam-, plate- and shell elements were developed. The FSDT-based iFEM elements 

available in literature includes a three-node triangular inverse-shell element (iMIN3) [42], a 

four-node quadrilateral inverse-shell element (iQS4) [43], and an eight-node curved 

quadrilateral inverse-shell element (iCS8) [44]. All these elements possess C0-continuous 

shape functions. In particular, both iMIN3 and iQS4 utilize the first-order anisoparametric 

shape functions developed for a triangle [45] and quadrilateral [46] finite elements, 
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respectively. Such anisoparametric functions were obtained through imposing Tessler-Dong 

[47] constant shear-edge conditions along the element boundaries. On the other hand, the 

iCS8 element employs the Lagrangian serendipity (isoparametric) shape functions of an 

eight-node quadrilateral element [48].  So far, the iMIN3 element was extensively scrutinized 

for numerical and experimental shape-sensing applications of plate structures with and 

without large deformations [49-50]. Besides, the iQS4 was numerically demonstrated to be 

a practical element in modeling and obtaining accurate sensor configurations for 

displacement monitoring of complex marine structures such as bulk carriers, chemical 

tankers, and offshore structures, among others [51-54]. As for the iCS8 element, its potential 

benefit for shape sensing of curved geometries with a low number of sensor measurements 

was demonstrated on curved marine structures [55]. Although iQS4 was demonstrated to be 

applicable accurately for shape sensing of slender composite structures [56], it is prudent to 

state that there exist other iFEM elements mainly implemented for thick sandwich structures, 

such as RZT-based inverse-plate/shell elements [39-40, 57]. 

To the best of author’s knowledge, none of the previous research on the iFEM includes 

an extensive comparison of the C0-continuous inverse-shell elements (i.e., iMIN3, iQS4, 

iCS8) in terms of their efficiency and accuracy for shape sensing of the various geometries 

with sparse and/or dense sensor deployments. Moreover, the original studies of these inverse-

shell elements [42-44] do not include any systematic investigation on the validation of 

elements through analyzing benchmark geometries ranging from simple to complex features 

with/without any material degradation. In this study, the aforementioned issues in the 

literature are addressed through performing various shape-sensing analyses of the plane, 

curved, monolithic, and stiffened engineering geometries with these three iFEM shell 

elements. Therefore, the original contribution of this study to the existing state-of-the-art 

includes not only the comparison of three inverse-shell elements but also provides benchmark 

solutions, which can be used for the development of application-specific new inverse-

element types. Since the fundamental kinematic relations of these three inverse elements are 

implemented based on FSDT, the iFEM weighted-least-squares functional of each element 

contains the contributions of the membrane, bending, and transverse-shear section strains, 

thereby allowing for a quantitative comparison among these three elements. To do so, the 

same geometry is discretized using the same number of elements, and also the same path of 
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sensor lines is followed with the same number of sensor measurements. In addition, different 

sparse sensor placement strategies are examined with the aim of achieving the most practical 

and economical number of sensors in the discretization domain. Overall, four different 

plane/curved geometries, e.g., flat, curved, stiffened curved, and curved with material 

degradation, having different loading and constraint condition are analyzed as the benchmark 

cases. For the last benchmark, an eye-shaped domain in the center of the curved plate is 

modeled as a material with degenerated (damaged) mechanical properties. With this problem, 

the damage detection capabilities of the C0-continuous inverse-shell elements are also 

explored based on the same damage-detection criterion [58-59], thus providing benchmark 

guidance on the selection of iFEM shell elements as a part of SHM. 

2.2. The iFEM Formulation based on FSDT 

The iMIN3, iQS4, and iCS8 inverse-shell elements are the three main iFEM 

discretization units used in the literature to perform shape sensing of plate-like structural 

components in engineering applications. The displacement definitions of all these elements 

are based on the kinematic relations of the FSDT. The iMIN3 is the first inverse-shell element 

introduced in the literature [42] and possesses a flat triangular geometry containing three-

nodes with six degrees of freedom (DOF) per each node as shown in Fig. 2-1(c). Although 

this inverse element has shown to be a good candidate to model structures with arbitrary 

shapes, the discretization of a complex geometry may require a higher number of elements 

as compared to quad-shaped inverse-elements, hence requiring utilization of more strain 

sensors. An alternative to the iMIN3 element, one may prefer to use a four-node quadrilateral 

inverse-shell element (iQS4) [43] for the discretization of complex geometry with a lower 

number of elements. Similar to the iMIN3 element, the iQS4 also has a flat geometry with 

each node containing six DOF, i.e., the positive translational and rotational directions 

depicted in Fig. 2-1(a). For modeling complex geometries, the main advantage of using both 

iMIN3 and iQS4 is associated with the inclusion of the drilling rotation, which prevents the 

singularity issues in case of discretizing a built-up structural geometry and enables a better 

shape-sensing capability for membrane deformations. Apart from these elements, an eight-

node inverse curved shell element, iCS8, was introduced to tackle shape sensing of curved 

structural members [44]. Unlike iMIN3 and iQS4, the in-plane geometry of this new element 



11 

 

is constructed using curvilinear coordinates of   and   as shown in Fig. 2-1(b), whereas the 

thickness coordinate,  , is rectangular to the in-plane coordinates along with the thickness 

of the element. 

 

Fig. 2-1. Geometries of (a) iQS4, (b) iCS8, and (c) iMIN3 inverse-shell elements with 

associated global and local coordinate systems as translational and rotational DOF. 

 

Each node of the iCS8 contains three translational DOF defined according to a global 

rectangular Cartesian coordinate system. Moreover, there are two local rotational DOFs 

employed to construct the kinematics relations suitable for FSDT. Furthermore, an artificial 

drilling rotation is included in the displacement relations to avoid singular solutions when 

modeling stiffened curved geometries. The main advantage of iCS8 can be attributed to its 

geometrically conforming nature to the structures with lower mesh density. Overall, the 

iMIN3 and iQS4 elements utilize second-order anisoparametric shape functions to interpolate 

the translational kinematic variables, whereas the iCS8 element use second-order 

(Lagrangian serendipity) isoparametric shape functions to approximate the displacement 

components. The detailed mathematical definitions corresponding to shape functions, 

displacement approximations, and displacement-strain relations about the inverse elements 

studied herein can be found in [42-44]. Once the displacement field of each individual 

element is determined, the strain components at any point of the plate/shell domain can be 

analytically calculated in terms of the nodal displacement vector,
eu , of an element as:  
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  ( ) ( )e e e e     =   ε γ ε u γ u B u B u  (1a) 

T
e e e e

n
 =  u u u u1 2  (1b) 

where the ε  and γ  vectors represent the in-plane and transverse-shear strains, respectively. 

In Eq. (1b), the subscript n  denotes the number of nodes of an individual element, e.g., 

iMIN3, iQS4, and iCS8. Moreover, the B  and B  matrices contain the derivative of the 

shape functions associated with the displacements corresponding to membrane-bending and 

transverse-shear deformations, respectively. Note that, for flat inverse-elements, coupled 

membrane-bending response can be easily described as the sum of the membrane and 

bending section strains as:  

( ) ( ) ( ) ( )e e e m b e ez z = + = + =ε u e u κ u B B u B u  (2) 

where the vectors ( )ee u  and ( )eκ u  represent the membrane strains and bending curvatures 

in the given order. The strain-displacement relation matrices, mB  and bB , corresponding to 

these individual section strains were explicitly provided for flat iMIN3 and iQS4 elements in 

[42-43]. Such decoupled form of strain definition (i.e., Eq. 2) may require cumbrous 

mathematical partitions for the iCS8. The explicit form of B  matrix for the curved iCS8 

element can be found in reference [44]. 

 

Fig. 2-2. Experimental strain data collected from the top and bottom surfaces of a 

plate structure. 

The main input of the iFEM methodology is the experimental strain measurements 

collected from the onboard strain sensors located at discrete positions of a given plate/shell-

like structure as shown in Fig. 2-2. Consider that the i

+ε  and i

−ε  experimental surface strains 

are collected from top ( z h= + ) and bottom ( z h= − ) thickness coordinates of different in-

plane positions, ( , ,... )i si n=x 1 2 . Herein, the ‘+’ and ‘-’ superscripts are used to denote top 

and bottom surfaces, respectively, and the sn  indicates the number of strain rosettes available 
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on either bounding surface. Using these in-situ surface strains, the experimental counterparts 

of the numerical strain data can be calculated as: 

( ) ( ) ( , ,..., )i i i i i i si n
h

  + − + − 
   + − =   

 
e κ ε ε ε ε

1 1
1 2

2 2
 (3) 

where the i

e  and i

κ  vectors represent the experimental counterparts of the membrane, 

( )ee u , and bending, ( )eκ u , section strains given in Eq. (2), respectively. Such experimental 

strains can be combined together to obtain a coupled membrane-bending section strain 

experimentally as: 

( , ,..., )i i i i i sz h i n      = +  + =ε e e 1 2  (4) 

where the i

ε  vector represents the experimental counterpart of the ( )eε u  strains measured 

at the positions of ix , i.e., continuous along with the thickness coordinates,

[ , ], [ , ]z h h  −  −1 1 . Experimental transverse shear strains, 
γ , cannot directly be 

obtained from the i

+ε  and i

−ε  measurements. Nevertheless, when performing shape sensing 

of slender structures, the contributions of transverse-shear strains to bending deformations 

can be safely omitted. Based on experimentally measured and the numerically calculated 

section strains, the weighted least-squares functional of iFEM methodology can be defined 

for shape-sensing simulations by using iMIN3, iQS4, and iCS8 elements as: 

( )( ) ( ) ( )e e e

V
w w dV

V

 

  = − + −u ε u ε γ u γ
2 21

 (5) 

where the V  parameter represents the volume of an individual inverse-shell element, w  and 

w  are the weighting coefficients associated with the in-plane and transverse-shear strains. 

These coefficients can be set to unity, w w = =1 ,  if both experimental measurements, 
ε  

and 
γ , exist within a given inverse element. Otherwise, they should be set to a small number 

compared to unity, such as w w 

−= = 410 , in case of a missing experimental section strain 

in the element domain. More details on the weighting coefficient selection strategies can be 

found in subsection 3.1. Minimizing the ( )e u  functional with respect to the unknown 
eu  
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displacements of an inverse element, the compact form of final equation set can be obtained 

as: 

( )e
e e e e e e

e


= − =  =



u
k u f k u f

u
0  (6) 

where the ek  and ef  are local analytical shape matrix and local experimental shape vector 

in the given order. The explicit forms of these quantities for iMIN3, iQS4, and iCS8 elements 

were provided in [42-44]. These local equations given in Eq. (6) can be transformed into a 

global Coordinate system by using an appropriate transformation matrix, eT , and then can 

be assembled for a given discretization composed of elN  number of the inverse element as: 

=KU F  (7a) 

( )
elN

e T e e

e=

 =  K T k T
1

, ( )
elN

e T e

e=

 =  F T f
1

, ( )
elN

e T e

e=

 =  U T u
1

 (7b) 

where the operator represents the classical finite element assembly process, and the K , 

U , and F  denote the global shape matrix, displacement vector, and experimental shape 

vector, respectively. The solution of the Eq. (7a) is suitable for the real-time monitoring 

process since the F  vector is the only parameter that requires an update during each strain-

data-acquisition in real-time. At the final step, the problem-specific displacement constraints 

can be imposed on the Eq. (7a), thus obtaining a reduced form of global equations that can 

be solved through an inversion/factorization process as: 

R R R R R R

−=  =K U F U K F1  (8) 

Hence, the overall deformed shape, can be reconstructed by combining the constraints 

conditions with the reduced displacement vector. Then total displacement, TU , and von 

Mises strain and stress, vm  and vm , can be readily calculated as: 

T X Y ZU U U U= + +2 2 2  (9a) 

( ) ( ) ( )vm      = − + − + −2 2 2
1 2 2 3 1 3

2

3
 (9b) 
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( ) ( ) ( )vm      = − + − + −2 2 2
1 2 2 3 1 3

1

2
 (9c) 

where the XU , YU , ZU  symbols represent the displacements along global axes, and the 1 , 

 2 ,  3  and  1 ,  2 ,  3  symbols indicate the principal strains and stresses, respectively. The 

accuracy of the individual iFEM elements studied herein is assessed by calculating the 

percent difference between the reconstructed structural responses and their reference solution 

(i.e., obtained from high-fidelity FEM analysis) as: 

Percent Difference (%) = iFEM FEM

FEM

 



−
100  (10) 

where the  parameter can correspond to either total displacement or von Mises strain/stress. 

2.3. Numerical Examples 

In this study, we have solved four scrupulously selected benchmark cases that enable 

one to be able to reveal the advantages and disadvantageous of the three inverse-shell 

elements under the same sensor configurations. All the study cases provided in this paper are 

selected in a smart way to cover almost all types of the practical in-plane, and out-of-plane 

structures (i.e., plates, and shells). these cases include a tapered (wing-shape), a curved, a 

stiffened curved, and an imperfect(damaged) curved structure. furthermore, the boundary 

conditions in each case are set in a way to experience various types of deformations including 

stretch, bending, and torsion to be reliably considered as benchmark cases. 

2.3.1. A Tapered Plate 

A tapered plate with the dimensions, discretization, and sensor configurations shown 

in Fig. 2-3 is analyzed based on three different iFEM elements. The plate has a thickness of 

10 [mm] and made of steel with the elastic modulus of 210 [GPa] and the Poisson’s ratio of 

0.3. The left edge of the plate is fully clamped against translational and rotational 

displacements and a body force of 63.765 [kN/m3] is applied on the plate domain. As depicted 

in Fig. 2-3(a), the edges of the domain of interest are composed of nine subdivisions, leading 

to 81 quad-shaped (iQS4/iCS8) elements. For constructing the tria-shaped (iMIN3) 

subdomains, the 81 quadrilateral elements were divided into two triangular elements with a 
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single diagonal as shown in Fig. 2-3(b). Given that the plate is made of an isotropic material, 

and its geometry is symmetric with respect to the reference mid-plane, the strains at the 

top/bottom surface of the same in-plane positions will possess the same absolute values when 

subjected to the pure bending/torsional loads. Hence, the sensor can be located at top surface 

of the plate only. Here, the sensor is placed along with the edgewise iFEM elements of the 

domain, resulting in 32 elements being instrumented with sensors (Fig. 2-3). Since the 

expected deformations of the plate are bending dominated, the normal strain along the x -

axis would vary significantly starting from the clamped region to the tip. Moreover, due to 

the tapered shape of the plate, there is an expected torsional deformation, which may cause 

different strain values and variations along the top and bottom edges of the plate. 

Furthermore, this torsional deformation also causes variations of the normal strain along the 

y -axis and the maximum values of such strain distribution are likely to be observed at the 

boundaries of the domain (i.e., clamped and tip region). As depicted in Fig. 2-3, we distribute 

the sensors at the boundaries along with both longitudinal and transverse coordinates of the 

domain. Otherwise stated, the sensor placement model conforms to the perimeter of the 

domain of the interest, thereby enabling one to monitor coupled bending-torsional 

deformations. 

 

Fig. 2-3. (a) Dimensions of the tapered plate with sensor placement model on 

iQS4/iCS8 mesh and (b) iMIN3 mesh. 

As described earlier in Eq.(5) of section 2, we need to define suitable weighting 

coefficients (i.e.,  and,  ) in order to preserve and guarantee the strain-interpolation 

continuity over the iFEM discretization. The weighting coefficient should be set to small 

values in case of using sensor-less elements. In order to the selection of these small constants, 

we pursued the following strategy. First, we defined the possible range of the small values 
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(i.e., 10-1 to 10-9) for each constant. Then we computed the result of the interested field (e.g., 

total displacement) by setting these constants to the mentioned values until their 

convergence. Finally, we chose the results of the nearest values to the reference FEM 

analysis. considering these strategies, the weighting coefficients associated with the 

transverse shear sections strains were set to 10-3. In addition, for the elements without any 

sensors, their weighting coefficients of the membrane-bending strains were assigned to 10-3. 

In the following first, a direct FEM analysis with a fine mesh consisted of 729 elements is 

performed to obtain accurate displacement results that can be used as a reference solution for 

the iFEM analysis. Moreover, the strain values obtained from the high-fidelity FEM analyses 

are used to simulate the experimental in-situ strain measurements at the center of the iFEM 

elements. Subsequently, three different iFEM analyses are performed by using the iCS8, 

iQS4, and iMIN3 elements. 

The iFEM results are compared in terms of displacements and stresses with respect to 

the direct FEM analysis as given in Figs. 2-4,2-5. Here, one can clearly observe from Fig. 2-

4 that all iFEM elements generate nearly the identical displacement contours 

indistinguishable from those of FEM throughout the plate domain.  However, the percent 

differences between iMIN3, iQS4, iCS8 and reference solutions for the maximum total 

displacements are approximately 5.42%, 0.21%, 0.53%, respectively. Therefore, the 

maximum displacement obtained from iQS4 and iCS8 are closer to the maximum reference 

displacements than the iMIN3. This observation can be attributed to two important 

physical/mathematical aspects: (1) the total number of sensors per total number of edgewise 

iFEM elements, and (2) shape function construction. As for the iMIN3 sensor placement 

model, fifty percent of the edgewise elements are populated with sensors while all edgewise 

elements in the iQS4 and iCS8 models possess one-to-one sensor placement. Referring to the 

shape function construction, anisoparametric shape functions of the iMIN3 element use the 

area-parametric coordinates of a triangle, whereas the iQS4 element’s anisoparametric shape 

functions utilize the bilinear isoparametric mapping functions. Since the area-parametric 

coordinates have a less accurate interpolation capability than the Lagrangian mapping 

functions, the displacement approximation achieved by iQS4 and iCS8 elements is superior 

to that of iMIN3. Although iQS4 and iCS8 have inherently different shape functions, they 

perform in the same manner in terms of displacement reconstruction on a flat plate. 
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Fig. 2-4. Contours of total displacement [mm] for the tapered plate. 

 

Fig. 2-5. Contours of von Mises stress [MPa] for the tapered plate. 

To compare the performance of these three iFEM elements further, we perform a 

posteriori calculation and obtain the von Mises stress distributions across the plate domain 

as shown in Fig. 2-5. Although all three elements produce similar variations of stress contours 

along the length of the tapered plate, the iCS8 element renders a better reconstruction of the 

von Mises stresses in the vicinity of the clamped region as compared to the flat elements. 

The percent differences between reference solutions and iFEM elements (iMIN3, iQS4, and 

iCS8) for the maximum von Mises stress are about 17.87%, 15.33%, and 11.66% in the given 

order. This quantitative assessment bespeaks the higher order accuracy of the iCS8 elements 

for stress sensing, which is associated with the fact that strain distribution in the iCS8 element 

is not uniform along with spatial coordinates and possesses a high-order polynomial with 

respect to the flat elements. This is further supported by the non-oscillatory and smooth stress 

contours obtained by the iCS8 element, which is almost identical to those of FEM analysis.  
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2.3.2. A Curved Plate 

To compare the advantages and shortcomings of the three iFEM elements for 

displacement reconstruction of complex geometries, we considered a simply supported 

cylindrical thin-shell structure (herein referred to as “curved plate”). The curved plate has a 

radius, length, and thickness of 100 [mm], 120 [mm], and 2 [mm], respectively. The material 

properties of the curved plate are the same as the previous example. As illustrated in Fig. 2-

6(a), four edges of the plate are simply supported. Moreover, the top surface of the plate is 

subjected to a sinusoidal pressure of the form, ( , sin( ) cos / )q z q z L  ) = (
0 , with pressure 

magnitude of q =
0

5  [MPa], where the z  and   coordinates are bounded by 

[ / , / ], [ , ]z L L   − 2 2 0 . Due to the symmetrical nature of the computational domain (i.e., 

geometry, material, loading, and constraints), only one-fourth of the curved plate can be 

prudently analyzed using appropriate symmetry boundary conditions as depicted in Fig. 6(b). 

To compare convergence performance of the iFEM elements in terms of the mesh/sensor 

density, three different mesh resolutions (i.e., 3 1 , 5 2 , and 15 5  elements) ranging from 

coarse to fine mesh/sensor densities are constructed using iMIN3, iQS4, and iCS8 elements. 

For the sake of clarity, examples of coarse mesh resolutions ( 3 1 ) are illustrated in Fig. 2-

7. Being particular to the iMIN3 models, two different discretization schemes are proposed, 

namely single and cross diagonal patterns (i.e., iMIN3s and iMIN3c), as shown in Fig. 2-7. 

Here, tria-shape elements (i.e., offspring element) are generated by diagonally dividing the 

quadrilateral elements (i.e., parent element), thereby forming either two or four offspring. 

 

Fig. 2-6. (a) Cylindrical shell; (b) one-fourth of the shell: curved plate with 

symmetric boundary conditions. 
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Fig. 2-7. Mesh resolution of 3×1 for the curved plate using four different 

discretization strategies. 

 

To provide strain data as an input to the iFEM models as well as establish a reference 

solution for the curved plate, a direct FEM analysis was performed utilizing a sufficiently 

fine mesh composed of 105 45  quadrilateral elements with 29,256 DOF. The simulated data 

(i.e., representing the experimental data) is assigned to the geometric center of each relevant 

iFEM element. For iMIN3s and iMIN3c models, the experimental strain value at the centroid 

of each specific parent inverse-element (iQS4/iCS8) is equally assigned to all offspring 

(iMIN3) elements. In this manner, the number of sensors for each tria- or quad-mesh becomes 

identical such that there is no strain-less element in the triangular configurations. In this 

benchmark, the weighting constants associated with the membrane-bending and transverse-

shear section strains are set to w = 1  and w

−= 310  for all iFEM discretization, respectively. 

Afterward, the iFEM analysis for each mesh resolution of a given element type is performed 

and the results are presented and compared with respect to each other and reference solution 

in terms of contours of total displacements in Figs. 2-8, 2-9 and 2-10. One can see from Fig. 

2-8 that at low mesh resolution, iCS8 element generates displacement contours much more 

consistent with reference contours than that produced by iMIN3s/c and iQS4 models. 

Additionally, for moderate mesh resolution, the better shape-sensing capability of the curved 

elements in terms of accurate total displacement contours has prevailed over the flat elements 

as shown in Fig. 2-9. Furthermore, as the mesh density increases (refer to Figs. 2-9,2-10), the 
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difference between the results of all elements disappears and their displacement contours 

become almost indistinguishable from the reference solution. 

 

Fig. 2-8. Contours of total displacement [mm] obtained from iFEM (coarse mesh) and 

high-fidelity FEM analyses for the curved plate. 

 

 

Fig. 2-9. Contours of total displacement [mm] obtained from iFEM (moderate mesh) 

and high-fidelity FEM analyses for the curved plate. 
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Fig. 2-10. Contours of total displacement [mm] obtained from iFEM (fine mesh) and 

high-fidelity FEM analyses for the curved plate. 

 

 

Fig. 2-11. Comparison of normalized total displacements versus increasing mesh 

resolution for the curved plate. 

 

To provide a quantitative comparison for all elements, the maximum values of the total 

displacements of each iFEM analysis are normalized with respect to that of FEM analysis, 

and these results are plotted versus the increasing mesh resolution in Fig. 2-11. One can 
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conclude that for the modeling of a curved geometry the curved element produces the lowest 

displacement errors with respect to the reference solution even using the coarse discretization 

in the iFEM analysis. As elaborated previously, the preeminent performance of iCS8 over all 

the other elements is associated with the high-order (serendipity) Lagrangian shape functions 

and the inclusion of a greater number of nodes, which enables a better physical representation 

of the geometry even in the case of low mesh resolutions. It would be also interesting to 

compare the performance of the single- and cross-diagonal mesh models of the iMIN3 

element. Accordingly, in Fig. 2-11, the iMIN3s predicts maximum normalized displacements 

more erroneous than the results of iMIN3c. Hence, even the same number of sensors is being 

used in iMIN3s/c models; the iMIN3c entails a higher precision because of the central node 

included in the parent quadrilateral elements, thereby enabling a better interpolation of the 

structural deformations in the parent domain. When the performance of the iQS4 and iMIN3c 

are compared in terms of displacement reconstruction, the iQS4 estimates displacements 

more accurately over the curved geometry, hence yielding the highest precision among the 

family of flat elements. Therefore, in the rest of the study, we only compare the performance 

of curved (iCS8) and more accurate flat elements (iQS4). 

2.3.3. A Stiffened Curved Plate 

Previous numerical examples have proven that the iMIN3s/c meshing strategies are not 

as accurate as other meshing methods using flat/curved inverse elements (namely, iCS8 and 

iQS4) in terms of reconstructing structural deformations. Therefore, we eliminate the 

comparative assessments of iMIN3 element in the remaining test cases and herein continue 

with the implementation of iCS8 and iQS4 on more complicated geometry, i.e., a stiffened 

curved plate with dimensions depicted in Fig. 2-12(a). It is expected that the strain/stress 

distribution should include severe and non-smooth variations due to the presence of stiffeners 

as well as the curvilinear geometry of the plate. Therefore, this benchmark problem lends 

itself to revealing the capabilities of two high- performance iFEM elements (iQS4 and iCS8) 

comparatively in terms of both shape and stress sensing. Specifically, the curved plate has a 

length, radius, and uniform thickness of 2000 [mm], 1000 [mm], and 30 [mm], respectively. 

The plate has equally spaced transverse stiffeners with height and thickness of 200 [mm] and 

30 [mm]. The plate and stiffeners are made of an isotropic (steel) material with the elastic 
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modulus, Poisson’s ratio, and density of 200 [GPa], 0.3, and 7800 [kg/m3], in the given order. 

All edges of the plate are simply supported through allowing for rotational DOF and 

constraining translational DOF only. Here, the stiffened curved plate is subjected to the 

gravity of 9.81 [m/s2], thus resulting in the body force of 7800×9.81 [N/m3].  

 

Fig. 2-12. (a) Dimensions of the stiffened curved plate; (b) sparse and (c) very sparse 

sensor placement models. 

 

As in the case of previous test cases, the forward structural analysis is first performed 

using a high-fidelity FEM model composed of 1026 elements to generate reference solution 

as well as strain-sensor data, i.e., input of the iFEM analysis. The present iFEM analyses are 

performed using a discretization composed of uniformly distributed 114 quad-shape inverse-

elements, namely as iCS8 and iQS4 element. For this test case, three types of sensor 

placement models, namely ‘full’, ‘sparse’, and ‘very sparse’ with the labels f, s, vs, are used 

on the same iFEM mesh resolution. In the full model, all elements include strain sensors with 

114×2 total number of strain rosettes. As for the sparse sensor placement model, only inverse-

elements on the surface of the plate are assigned to input strain data, thus requiring the usage 

of 60×2 many strain rosettes. For the last sensor configuration (vs model), the total number 

of strain rosettes is reduced to 28×2 many since only the inverse-elements along the edges of 

the curved plate are instrumented with sensors. For clarity, representative sensor-placement 

configurations (s and vs models) are illustrated in Fig. 2-12(b-c). All weighting constants for 

strain-less elements (without experimental strain data) are set to 
−410  while they are defined 

as w = 1  and w

−= 410  for all elements with strain rosettes in the different iFEM models. 
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Fig. 2-13. Contours of total displacement [mm] for stiffened curve plate. 
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Fig. 2-14. Contours of von Mises stress [MPa] for stiffened curved plate. 
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In Fig. 2-13, the total displacements contours of iQS4 and iCS8 elements with different 

sensor density are compared with each other and with respect to the reference solution. As 

can be seen from the Fig., the iQS4 produces a more localized maximum total displacement 

field along the centerline of the plate than those of iCS8 and the reference solution for all 

three sensor-placement configurations. Hence, this clearly indicates that the iCS8 element 

reconstructs the total displacement field much better than the iQS4 element for the given 

curved (complex) stiffened geometry. Quantitatively speaking, the percent differences for 

the maximum total displacements between iFEM and FEM analyses are calculated as (1.43%, 

2.59%, 8.37%) and (0.43%, 0.73%, 7.35%) for the iQS4 and iCS8 (f, s, vs) models, 

respectively. At higher sensor density, the iCS8 element predicts total displacement that have 

at least 3 times lower error than that of iQS4 element while this error reduces down to 1.15 

at very sparse sensor deployment. Despite a closer error level between flat/curved elements 

for the vs model, it can be understood from the percent errors that as the sensor density 

increases, the predictive capability of the iCS8 becomes much better than the iQS4 element. 

Nonetheless, for any sensor density, iCS8 yields a superior shape sensing than iQS4, which 

can be ascribed to the conforming nature of the quad-shape curved element. A similar 

comparison is also provided for the von Mises stress fields as shown in Fig. 2-14. Likewise, 

the percent differences for von Mises stress between iFEM and FEM analyses are 13.30%, 

15.50%, and 20.50%, respectively, for iQS4 models with f, s, and vs sensor deployments. 

Correspondingly, they are 4.20%, 6.54%, and 14.94%, for the iCS8 models. An important 

observation is that although there are no sensors on the stiffeners in the s and vs sensor 

deployments, both flat and curved elements of iFEM can predict accurate stress variations 

across stiffeners to an adequate degree. Overall, it is shown that the iCS8 element surpasses 

the predictive capability of the iQS4 not only in terms of the displacement field but also 

equivalent stress field. 

Three previous benchmark cases were assessed again by the standard deviation 

measurement principle to ensure the accuracy of the obtained results. herein, not only the 

node with the maximum value but also all the nodes are contributed to increasing the stability 

of the results of different iFEM elements. The standard deviation was computed using Eq. 

(11) and the related results are listed in Table1. 
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Standard deviation =
( )

nN iFEM FEM

i ii

nN

 
=

−
1  

(

(11) 

Where nN  represents the total number of nodes and   parameter corresponds to either 

total displacement or von Mises stress.  

 

Table 2-1. Standard deviation of TU displacement and vm  of corresponding to iFEM 

models. 

iFEM elements Case1 Case2(moderate) Case3(sparse) 

 iMin3s   iQS4    iCS8  iMin3s  iMIN3c  iQS4    

iCS8 

iQS4   iCS8 

 TU  0.116     0.014    0.009 0.0228   0.0221   0.0220   

0.0219 

0.530   0.411 

vm  0.508     0.116    0.067  3.620   2.772 

 

2.3.4. A Curved Plate with a Damaged Region 

In many engineering structures, there might be internal features in the form of holes, 

slots, or cutouts due to the topological design or assembly requirement. These regions 

experience drastic strain/stress variation that needs to be closely monitored to ensure the 

structural integrity of the component under operational conditions. Such internal features can 

be modeled as a material region with degraded elastic constants or without any stiffness. 

Since these domains can be considered as pre-damaged locations, it will be very important 

and critical to accurately reconstruct the displacement and stress variation from the discrete 

sensor information collected at the far-field region of these pre-damaged positions. To this 

end, it is crucial to select effective iFEM elements for geometry-specific problems. 

Therefore, in this study, we have extended our benchmark cases further such that the 

performance of two main iFEM elements is scrutinized comparatively in terms of their 

predictive capabilities for full-field shape and strain sensing of pre-damaged structure. 

Specifically, this test case focuses on a curved plate with an eye-shaped cutout, representing 

either an internal feature or a pre-damaged section of a structural component. The present 

investigation on the curved plate can also entail the performance evaluation of curved/flat 

elements for their usage in damage localization and detection sensitivity. 
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Fig. 2-15. (a) Dimensions of the curved plate with a damaged region at the center; (b) 

sensor placement model for iCS8/iQS4 discretization. 

 

The dimensions of the curved plate are provided in Fig. 2-15(a), where the eye-shaped 

region is symmetrically located with respect to the center of the curved plate with an angle 

of / = 16 . Two edges of this region are created by passing arcs from points of 1, 2, 3 and 

1, 4, 3, in the given order. As depicted in Fig. 2-15(a), the top edge of the plate is fully 

clamped, namely no rotational and translation DOF, and a line-distributed force of 750 [N/m] 

is applied at the bottom edge of the plate. Initially the curved plate is considered to be free of 

any damaged, representing undamaged condition. Under the operating conditions, the plate 

is assumed to develop a defective eye-shaped region. Here, this region is particularly chosen 

to intensify the strain variation near the damaged region, thereby setting up a more 

challenging test case. To represent the intact and damaged (degraded) regions of the curved 

plate, two different elastic moduli are used, namely 210 [GPa] and 21 [MPa] for intact and 

defective regions, respectively, having the same Poisson’s ratio of 0.3. Similar to the previous 

test cases, a direct FEM analysis is used for simulating experimental sensor data and 

establishing reference solutions for both undamaged and damaged conditions of the plate. 

After FEM analyses, two iFEM analyses are performed using the discrete strain data 

collected from the undamaged and damaged conditions of the curved plate. As shown in Fig. 

2-15(b), the iFEM model is composed of 88 quad-shape elements (representing either iCS8 

or iQS4) and the edgewise elements accommodate the strain sensors, thereby resulting in 30 

many sensors in the model. During the iFEM analysis of the present geometry, the weighting 
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constants are set to the values of the previous case study (corresponding to the sparse sensor 

configurations, namely either s or vs model). Once the displacement is reconstructed using 

iCS8 and iQS4 models, the von Mises strains are calculated for each node , ,..., nodei n= 1 2  

where noden  represents the total number of nodes available in the iFEM models. Then, for 

localizing the damage, the damage indication factor, i , is computed as [46-47]: 

max/D U D

i i i   = −  (12) 

where the 
D

i  and 
U

i  parameters represent the iFEM-based reconstructed von Mises 

strains at the nodes for the damaged and undamaged conditions of the curved plate, 

respectively, and the max

D  denotes the maximum value of the reconstructed von Mises strains 

for the damaged case. Finally, Eq. (11) is used to estimate and compare the damage detection 

capability of iQS4 and iCS8 elements for the present test case.  

 

Fig. 2-16. Contours of total displacement [mm] for the damaged condition of the 

curve plate. 
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Fig. 2-17. Contours of damage indication factor for the curved plate with a damaged 

region. 

 

Fig. 2-16 compares the reconstructed displacement of flat and curved elements with 

respect to the reference solution for the damaged configuration. As is evident from the 

comparison, the displacement contours do not imply the possible location of the damaged 

region. Nevertheless, according to maximum displacement produced by iCS8 and iQS4, the 

result of the curved element is in a better agreement with the reference solution than the flat 

element. In numbers, the percent difference between iCS8 and reference solution for the 

maximum displacement is 0.15% whereas it is 6.03% for the iQS4 element, thus confirming 

the higher precision of curved element for shape sensing of cylindrical geometry even using 

sparse sensor configuration. To reveal the damage localization capabilities of these elements, 

in Fig. 2-17 is provided the contours of damage indication factor plotted over the curved 

geometry using iFEM and FEM analyses. It is clearly seen from these contours that the iCS8 

element localizes the damage as well as detects its eye-shape better than the flat element. 

Hence, it can be concluded that iCS8 element offers a better shape sensing and structural 

health monitoring features for real-time monitoring of complex geometries.  
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2.4. Conclusions  

Shape-, strain-, and stress-sensing performance of iMIN3, iQS4, iCS8 elements are 

investigated and compared for various plate and shell structures by gradually increasing their 

geometrical complexity. These geometries include flat, curved, stiffened-curved, and a 

curved plate with a damaged region. For all iFEM elements, the weighted-least-squares 

functional is constructed according to the FSDT displacement kinematics. When the 

geometry of the structure is blade-like, as intuitively expected, there is no distinctive 

difference among all iFEM-reconstructed displacement results with respect to the reference 

solution. A slightly better stress-sensing accuracy is observed for iCS8 element over the other 

elements for the flat geometry. This improved in the stress prediction of iCS8 is attributed to 

its high-order serendipity shape functions allowing for an extra mid-node in the stress 

prediction. As the complexity of the geometry of the test cases increase (i.e., curved and 

stiffened-curved), it is proven that the predictive capability of iCS8 element becomes 

obviously superior to the flat elements for shape sensing with low number of sensors and 

coarse mesh configuration. This is because the second order isoparametric mapping functions 

of iCS8 allow for a smoother approximation of the curved geometries by using lower number 

of elements. When the flat element is compared to each, it is observed that iQS4 yields a 

better displacement reconstruction than that of iMIN3 meshing strategies. These meshing 

configurations consist of single- and cross-diagonal divisions of a quad-element into tria-

elements. Remarkably, the shape-sensing ability of iMIN3 can be enhanced if the cross-

diagonal meshing strategy is utilized. Finally, the damage detection feature of the elements 

is explored on a curved plate with a geometrically complex damage region. Accordingly, the 

damage detection sensitivity of the curved element is observed to much better than that of 

the flat element. It should be noted that this study compares iFEM elements in terms of 

accuracy and efficiency. However, the computational complexity is not considered. Since the 

iCS8 element has more nodes and consequently more DOFs compared to flat elements, the 

computation time is also higher. Overall, all the test cases presented herein can serve as 

“benchmark problems” for the newly developed iFEM shell/plate elements. In the authors' 

opinion, the optimization of sensor placement for shell and plate structures using iFEM can 

be considered as a complementary study of the current paper for future research.  
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CHAPTER 3. A Combined Experimental/Numerical Study on 

Deformation Sensing of Sandwich Structures Through Inverse Analysis of 

Pre-Extrapolated Strain Measurements 

 

Real-time reconstruction of displacement field from a network of discrete strain sensors 

is referred to as “shape (deformation) sensing” for which inverse finite element method 

(iFEM) has been extensively studied and proven to be an efficient, robust, and accurate 

algorithm. In this study, practical shape-sensing capability of an enhanced iFEM formulation, 

which utilizes the kinematics of refined zigzag theory (RZT) as its baseline, is numerically 

and experimentally investigated for moderately thick sandwich plates/shells. To this end, a 

novel four-node inverse-shell element (iRZT4) is developed and implemented to discretize 

the governing equations of the iFEM-RZT formulation. Moreover, the iFEM-RZT approach 

is coupled with a polynomial-based strain pre-extrapolation technique to achieve a highly 

precise prediction for numerical and experimental case studies using different sensor 

deployment strategies. Various test cases namely stiffened plate and curved sandwich shells 

subjected to bending loads, and a wing-shape sandwich panel exposed to torsional loading 

condition are solved to evaluate the performance of the iRZT4 element. For these problems, 

the results of iFEM-RZT analysis with/without ‘a priori’ smoothing of experimental strain 

data are compared with high-fidelity FEM reference solutions as well as the results of the 

classical iFEM formulation. In addition, through-the-thickness full-field displacement maps 

obtained from digital image correlation (DIC) are used to verify the iFEM and FEM results. 

These comparisons reveal that using a sparse sensor placement model for an iRZT4 

discretization paired with the polynomial smoothing approach leads to the most precise, 

efficient, and reliable deformation reconstruction for moderately thick sandwich structures, 

among other strategies. 

3.1. Introduction 

Nowadays composite panels are widely used to build structural elements, e.g., 

aerospace components, aircraft, ship hulls, automobile bodies, and drones [60-68]. 

Composite materials enhance the mechanical properties (i.e., stiffness and strength) while 

reducing weight. Despite these advantages, composite laminates and sandwich panels are 
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exposed to harsh environmental conditions such as storms, winds, and wave impacts during 

their service life that may cause different modes of failure in these materials such as face/core 

debonding [69], impact damage [70], and delamination [71]. These kinds of damages can 

lead to catastrophic rupture of the entire structure and thereby result in economic losses, 

environmental issues, and human casualties. Thus, implementing a reliable, compatible, and 

onboard structural health monitoring (SHM) system is a necessity to prevent undesirable 

failure modes in engineering structures [72, 22-23]. SHM is an interdisciplinary technique 

that can provide a real-time estimation of physical/mechanical properties such as strain, 

pressure, and temperature using discrete sensors installed structure onboard. The main 

objective of SHM is to examine structural performance and potentially detect damage and 

failure conditions. Therefore, the development of an efficient and reliable SHM system that 

prevents those unwanted situations has become an issue of primary importance. In recent 

decades, numerous investigations have been performed based on the SHM systems on 

different kinds of materials (e.g., isotropic, and orthotropic [73, 29-30]), structural elements 

(e.g., beams, and shells), and various damage types of laminated composites (e.g., 

delamination, and indentation).  

Shape sensing is the real-time reconstruction of deformations from in-situ strain 

measurements obtained by a network of sensors and serves as a vital complementary 

technology for the SHM systems. In recent years, embedded fiber optic networks e.g., Fiber 

Brag Grating (FBG) sensors have been extensively implemented in various engineering 

structures due to their high sensitivity, and measurement accuracy as well as deployment 

practicality (ease to embed). Therefore, FBG sensors are favorable to be used in multilayered 

structures for shape sensing purposes as highlighted on various review studies on the fiber 

optic shape sensing systems. [74-78]. Recently, different methods such as modal, analytical, 

and curve fitting schemes have been proposed for solving the inverse problem of shape 

sensing [6-13]. In addition, Tikhonov and Arsenin [1] introduced a regularization technique 

with a stable smoothness degree to solve this inverse problem, which has been used as the 

baseline of most shape sensing studies [2-5]. Moreover, various other studies have been 

dedicated to conducting shape sensing of beam structures experimentally with a variety of 

numerical algorithms [79-80]. However, these algorithms inherently lack the required 

accuracy and stability to be considered as a general shape sensing methodology for structures 
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subjected to complex loading conditions and possessing variable structural features and 

material properties. Apart from inverse algorithms mentioned herein, the inverse Finite 

Element Method (iFEM) has been lately demonstrated to be a comprehensive and robust 

technique that fulfills the requirements of a general shape sensing approach. The iFEM was 

firstly introduced by Tessler and Spangler [14,15] for real-time displacement monitoring of 

plate structures. This method provides various benefits listed below for diverse engineering 

applications:  

i- Capability to assess the static or dynamic response of any structural component 

(beam, plate, shell, and solid) regardless of its geometrical topology and constraint boundary 

conditions.  

ii- Utilizing only a discrete set of strain sensor data without requiring any primary 

knowledge of loading or material information.  

iii- Possessing a general and robust mathematical formulation based on minimization 

of a least-squares functional that can be readily discretized and solved using C0-continuous 

inverse elements in real-time. 

During the last decade, different types of inverse elements have been developed based 

on first-order shear deformation theory (FSDT) which makes iFEM applicable to real-time 

monitoring of beam, plate, and shell structures. FSDT based iFEM elements include a three-

node inverse-shell element, namely iMIN3 [42], an efficient two-node inverse-beam/-frame 

element [34-81], a four-node quadrilateral inverse-shell element abbreviated as iQS4 [43], 

and an eight-node curved inverse shell element known as iCS8 [44]. A recent review study 

has been dedicated to comparing the practical shape sensing and damage detection 

capabilities of these inverse shell elements (i.e., iMIN3, iQS4, and iCS8) [16]. Up to now, 

these iFEM elements have been scrutinized both experimentally and numerically for 

displacement and stress monitoring of marine structures including chemical tankers [51], 

Panamax container ships [28], bulk carriers [52], and offshore wind turbine towers [53,54]. 

Furthermore, Kefal and Oterkus [82] have recently developed an isogeometric iFEM 

formulation for shape sensing of curved shell structures. Afterwards, various researchers also 

employed the isogeometric analysis coupled with iFEM for deformation reconstruction of 

beam-like geometries [83,84]. Additionally, the iFEM approach was used for deformed shape 
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estimation of thin plates undergoing large deflections [85]. Besides, three-dimensional 

deformations of slender composite structures were reconstructed with a highly acceptable 

precision using iQS4/iFEM element [56]. However, for the shape sensing of thick and 

moderately thick laminated structures, FSDT based iFEM formulations may have accuracy 

deficits due to the linearity of the kinematic relations. Therefore, these formulations may 

need to be enhanced for the correct prediction of through-the-thickness deformations in 

multilayered composites and sandwich structures. 

Such a refinement was initially proposed by Cerracchio et al. [39] through utilizing 

iFEM together with kinematic relations of a recent single layer theory, known as refined 

zigzag theory (RZT) [38]. This iFEM-RZT formulation was later enhanced by Kefal et al. 

[40] by employing a corrected form of least-squares functional which uses the complete set 

of section strain in RZT including membrane, bending, zigzag, and full transverse-shear 

section strains. Moreover, they developed an efficient three-node inverse-shell element (i3-

RZT) to solve the shape sensing problem of thick sandwich shell structures. Afterward, Kefal 

and Yildiz [57] utilized the i3-RZT element to numerically assess various sensor placement 

strategies for shape sensing and structural health monitoring of wing-shaped sandwich 

panels. This numerical application was later extended to experimentally verify the accuracy 

of the enhanced iFEM-RZT formulation [40] using a model-scale test setup of a wing-shaped 

sandwich structure subjected to bending loads [86], whereby the iFEM-RZT formulation was 

also refined for twill woven composite materials. Apart from this, a smoothed iFEM-RZT 

formulation was recently developed to reduce the number of sensors without losing the 

prediction accuracy for the deformation reconstruction [87]. In both studies of Kefal et al. 

[CS/MSSP], a four-node inverse-plate element (iRZT4) [88] was employed to conduct 

iFEM-RZT analysis based on experimental strain measurements. 

To the best of the authors’ knowledge, apart from the i3-RZT element, no investigation 

has dealt with thick sandwich shell structures using the iFEM-RZT approach. Moreover, the 

experimental and/or numerical studies of iFEM-RZT have not considered the reconstruction 

of torsional deformation in multilayered structures. Furthermore, the current state-of-the-art 

for iFEM-RZT does not involve polynomial smoothing techniques for ‘a priori’ analysis of 

strains to generate a continuous form of experimental strain measurements for conducting 
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shape sensing via a fewer number of sensors. The main and novel aim of the current study is 

to address these issues by extending the capabilities of the iRZT4 element to model shape 

sensing of thick sandwich shell structures. To this end, the membrane modeling capability of 

the iRZT4 element is enhanced by quadratic shape functions with an additional set of degrees 

of freedom (DOF) including drilling and artificial zigzag rotations. Such refinement of the 

iRZT4 formulation can avoid singular solutions when modeling shell geometries and thus 

extend the practical utility of the iFEM-RZT framework to displacement monitoring of 

complex/curved/built-up composite shell geometries with superior accuracy. Besides, apart 

from Oboe et al. [89] who have recently utilized polynomial-based strain extrapolation in the 

iFEM-FSDT approach only, the present study implements the polynomial strain pre-

extrapolation technique to the iFEM-RZT analysis of the thick sandwich structures for the 

first time in literature. Furthermore, we perform an experimental torsion test on a wing-

shaped sandwich panel and collect strain measurements from embedded FBGs and surface 

mounted strain rosettes. Then, this experimental data is rigorously processed by the iFEM-

RZT approach using the iRZT4 inverse-shell element to reveal its shape sensing accuracy as 

compared to that of the iFEM-FSDT/iQS4 element. Overall, such novel aspects of the present 

effort advance the current state-of-the-art of the iFEM research. 

The current investigation is structured as follows. In Section 2, the practical 

quadrilateral inverse-shell element, i.e., iRZT4, is mathematically formulated in detail to 

computationally implement the iFEM-RZT analyses for both numerical and experimental 

cases. In Section 3, first, three-dimensional numerical examples (a stiffened composite plate 

and a thick curved sandwich shell) are modeled and analyzed using iFEM-RZT and -FSDT 

approaches by making use of simulated strain data generated in the commercial FEM 

software (i.e., ANSYS APDL). Afterward, the influence of coupling the iFEM-RZT with a 

strain pre-extrapolating technique is evaluated and demonstrated for a different type of sparse 

sensor deployments. In the remainder of Section 3, for the experimental case, a tapered wing-

shaped sandwich composite plate, which was previously designed and manufactured by 

authors [86], is analyzed by onboard and embedded strain measurement systems (i.e., strain 

rosettes and FBG sensors) under torsional loading boundary condition. For this purpose, 

various steps of the experiment, testing machine, measurement devices, and applied 

boundary conditions are given in detail. Then, the novel smoothing approach is conducted 
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using various degrees of polynomials and its continuous output strains are used in iFEM-

RZT analysis with iRZT4 elements. Additionally, iFEM-FSDT and reference FEM analyses 

are conducted for comparison and verification, respectively and the associated results are 

described. Finally, in Section 4, several conclusions have been highlighted as the main 

advantages of utilizing improved iFEM-RZT/iRZT4 methodology coupled with polynomial 

smoothing approach. 

3.2. Mathematical Modeling of the Shape-Sensing Problem 

3.2.1. The iRZT4 Element based on iFEM-RZT Methodology 

In this section, the mathematical formulation of a new RZT-based four-node 

quadrilateral inverse plate/shell element, so-called iRZT4, will be presented. This element 

was originally developed for shape sensing of laminated plate structures [88] and utilized to 

discretize the governing equation of the iFEM-RZT method [40]. We herein extend the 

capability of the iRZT4 element to displacement monitoring of shell geometries by 

incorporating additional degree of freedom (DOF). To present the new iRZT4 shell element 

formulation, a local Cartesian coordinate system ( , , )x x z1 2  is placed at the center of the 

reference (middle) surface of the element as shown in Fig. 3-1(a), where the ,x x1 2  axes 

represent the in-plane coordinates, and the z  axis refers to the thickness coordinate ranging 

from h−  to h+  (therefore total thickness is h2 ), with the ( )jz coordinate identifying the j-th 

interface position within the laminate as depicted in Fig. 3-1(b). The iRZT4 inverse shell 

element has nine DOF per its each node including three , ,i i iu v w  translational, three , ,
i i zi

  
1 2

 

rotational, and three , ,
i i zi

  
1 2

 zigzag DOFs. The positive directions of these DOFs are 

aligned with the positive x1, x2, z axes of the element coordinate system as depicted in Fig. 

3-1(a). 

 



39 

 

 

Fig. 3-1. (a) Geometry of an iRZT4 inverse shell element with associated coordinates 

and its nodal translational, rotational, and zigzag DOFs (b) Layer notation for a three-Layer 

laminate. 

 

To solve the inverse problem of shape sensing based on the iFEM-RZT method, firstly, 

the in-plane displacement components, 
( )ku1  and 

( )ku2 , and the out-of-plane displacement zu  

at any material point within the k-th layer of the laminate are defined in accordance with RZT 

kinematic relations as [38]: 

( ) ( )( , , ) ( , ) ( , ) ( ) ( , )k ku x x z u x x z x x z x x  = + +1 1 2 1 2 2 1 2 1 2 1 2  (1a) 

( ) ( )( , , ) ( , ) ( , ) ( ) ( , )k ku x x z v x x z x x z x x  = − −2 1 2 1 2 1 1 2 2 1 1 2  (1b) 

( , , ) ( , )zu x x z w x x=1 2 1 2  (1c) 

where the u , v , w  functions represent the positive translational kinematic variables along 

positive x1 , x2 , z  axes, respectively, and the 1 , 2 , and  1 ,  2  functions are used to 

define the counter-clockwise bending and zigzag rotational kinematic variables around the 

positive x1  and x2  axes, in the given order as shown in Fig. 3-1(a). Note that these seven 

kinematic variables are the functions of x1  and x2  coordinates and independent from the 

thickness coordinate, z . In Eq. (1), the superscript (k) indicates the k-th lamina, and the 

functions 
( )k1  and 

( )k2  represent the through-the-thickness piecewise linear zigzag functions 

which can be expressed as [38]: 

( ) ( ) ( )  (  = 1,2)k k k

i i iz i  = +  (2) 
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where the 
( )k1 ,

( )k2  symbols represent the slopes of the zigzag functions, and 
( )k1 , 

( )k 2 are 

the lamina-level constants that satisfy the equilibrium of the zigzag functions at the interface 

of the adjacent layers. These terms can be defined as follows:  

( ) ( )= / (  = 1,2 ;  = 1,2..., )k k

i i iiG Q i k N  
(3

a) 

( )
( ) ( ) ( )

( ) ( ) ( )
 (i = 1,2) ,  = (i = 1,2)

jk N
k k j

i i i ik j j
j jii ii

h
h h G G

Q Q h Q
 

−

−

−
= =

  
= + −   

   
 

1

1

1
2 1 11

1 1 1
2  

(3

b) 

where N is the number of plies in the laminate, and the iG  and 
( )k

iiQ  symbols denote the 

weighted average transverse shear stiffness of the whole laminate and the transformed 

transverse-shear moduli of each ply, in the given order. It is necessary to calculate element-

level section strains (strain measures) both analytically and experimentally in accordance 

with the iFEM-RZT methodology. For the analytical calculation, isoparametric mapping of 

both x1  and x2  coordinates of the iRZT4 element can be performed by leveraging the 

isoparametric s and t  coordinates as: 

( , ) , ( , )i i i i

i i

x s t N x x s t N x
= =

= = 
4 4

1 1 2 2
1 1

 (4) 

where, the , ( , , , )i ix x i =1 2 1 2 3 4  symbols indicate the reference (local) coordinates of the 

element according to ( , , )x x z1 2  system and the ( , )i iN N s t  functions are the bilinear 

isoparametric shape functions provided in Appendix explicitly. This isoparametric 

transformation can readily enable one to numerically integrate the iFEM-RZT equations over 

the surface area of an iRZT4 inverse-shell element by using the Gauss quadrature rule. In 

addition, the seven kinematic variables of the RZT formulation can be approximated through 

quadratic interpolation functions and iRZT4 element’s DOF as: 

( )i i i zi

i

u N u L 
=

= +
4

1

 (5a) 

( )i i i zi

i

v N v M 
=

= +
4

1

 (5b) 
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( )( ) ( )i i i i i i i i

i

w N w L M   
=

= − − − −
4

1 1 2 2
1

 (5c) 

( , , , )i i

i

N      
=

= =
4

1 2 1 2
1

 (5d) 

where the ( , )i iL L s t  and ( , )i iM M s t  functions represent the second order 

anisoparametric shape functions [86], which are given in Appendix  for mathematical 

completeness of the present study. Substituting Eq. (5) into Eq. (1), and then taking relevant 

derivatives of the resultant equation with respect to the element coordinates as stated by the 

linear elasticity, the in-plane and transverse-shear strains of a material point can be 

established as: 

( ) ( )

,

( ) ( ) ( )

,

( ) ( ) ( )

, ,

( ) ( ) ( , )

k k

k k e e k e

k k k

u

u z z

u u







   
   

=  + +   
   +   

e u κ u μ u
11 1 1

22 2 2

12 1 2 2 1

 (6a) 

( )( )

, , ( )

( )( )

, ,

( )

( )

k ek

z z kz

k ek

z zz

u u

u u






 +     
 =     

+     

γ u
H

η u

1 11

2 22

 (6b) 

with the comma subscript defining derivative operator with respect to local coordinate 

axes, 
( )

,( ) ( , )
x  


 = = 1 2  and ( )

,( ) z z

 


 = . In Eq. (6b), the ( )k

H  matrix is a transverse-shear 

auxiliary term given as: 

( ) ( )

( )

( ) ( )

k k

k

k k

 

 

 + −
=  

+ − 
H 1 1

2 2

1 0 0

0 1 0
 (6c) 

and the nodal displacement DOF of the iRZT4 element, 
eu  vector, given as: 

   
T

e e e e e =  u u u u u1 2 3 4  (6d) 

    ( , , , )
Te

i i i i i i zi i i ziu v w i     = =u 1 2 1 2 1 2 3 4  (6e) 

 

In Eq. (6a-b), the ( )ee u , ( )eκ u , and 
( ) ( )k eμ u  vectors represent the membrane, 

bending, and zigzag section strains of the RZT whereas the vectors, ( )eγ u  and ( )eη u , stand 

for the first and second transverse-shear section strains of the RZT, respectively. These strain 
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measures can be scrupulously defined in terms of either derivatives of RZT kinematic 

variables or derivatives of the iRZT4 inverse-shell element’s shape functions as:  

, , , ,( )
Te e eu v u v = + = e u B u1 2 2 1  (7a) 

, , , ,( )
Te e    = − − = κ u B u2 1 1 2 2 2 1 1  (7b) 

( ) ( ) ( ) ( ) ( ) ( )

, , , ,( )
T

k e k k k k k e

        = − − = μ u H B u1 2 1 2 1 2 1 2 2 2 1 1  (7c) 

  , ,( )
TTe ew w       + − = γ u B u1 2 1 2 2 1  (7d) 

 ( )
Te e    − + =η u B u1 2 2 1  (7e) 

with an auxiliary term for zigzag strains defined as: 

 

(7f) 

where the matrices ( , , , , )e     =B  contain the shape functions’ derivatives of the 

iRZT4 element and their explicit forms are provided in Appendix.  

3.2.2. In Situ Section Strains 

For the experimental calculation of section strains defined in Eq. (7a-e), it is necessary 

to collect in situ strain data from the surface structure by means of strain sensors (e.g., strain 

rosette and/or embedded FBG sensors). The experimental surface strain measurements 

obtained from these sensors can be expressed as follows: 

[ ]T

i i  + + + +=ε 11 22 12  (8a) 

[ ]T

i i  −



− − −=ε 11 22 2  (8b) 

[ ]j j j j T

i i  =ε 11 22 2  (8c) 

where the subscripts 11, 22, and 12 are utilized to describe the normal strains along the x1  

and x2 directions, and the shear strain in the x x1 2 -plane, respectively. Moreover, the i  

subscript is used to represent the n number of sensor measurements collected from the 

( , ) ( , , ,..., )ix x i n=1 2 1 2 3  in-plane positions at the reference surface of the iRZT4 element. 

( )

1

( ) ( )

2

( ) ( )

1 2

0 0 0

0 0 0

0 0







 

 
 

=  
 
 

k

k k

k k

H
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Furthermore, ‘+’ and ‘−’ superscripts indicate the conventional surface-mount strain 

gauges/rosettes on the upper (top) and lower (bottom) surfaces of laminate, respectively, 

whereas the ‘j’ superscript represents the optic FBG sensors embedded within the j-th 

interface of the laminate as illustrated in Fig. 3-2. 

 

Fig. 3-2. Layout of strain sensors on the top and bottom surfaces, and at the j-th 

interface. 

Since the zigzag functions on the upper and lower surfaces of the laminate are zero, the 

experimental equivalents of the membrane and bending curvature strains can be calculated 

explicitly according to the original plate formulation of iFEM as [15]:  

( ) ( , ,..., )i i i i n+ −= + =Ε ε ε
1

1 2
2

 (9a) 

( ) ( , ,..., )i i i i n
h

+ −= − =Κ ε ε
1

1 2
2

 (9b) 

where iE  and iK  represent the experimental counterparts of the membrane, ( )ee u , 

and bending, ( )eκ u , section strains, in the given order. Also, experimental zigzag section 

strains can be computed using the iFEM-RZT formulation as [39,40]: 

( ) ( , ,..., )j j

i i i j iz i n= − − =Μ ε E Κ 1 2  (10) 

where the j-th interface can be selected as ( )j N  −1 1 . For example, considering a 

three-ply ( N = 3 ) composite structure illustrated in Fig. 2, the top and bottom strain rosettes 

need to be located at ( )z 0 and ( )z 3 coordinates, respectively. Additionally, the interlaminar 

coordinates of either ( )z 1 or ( )z 2  can be selected to embed the FBG sensors for careful 

calculation of the Eq. (10). Therefore, selecting only one interlaminar position of sensor 
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embedment is adequate to account for experimental measurement of the zigzag section 

strains. Unlike the membrane, bending, and zigzag section strains, the experimental 

counterparts (i.e., iΓ  and iΗ ) of the transverse-shear strains cannot be extracted directly 

using surface strain data ( , , )j

i i i

+ −ε ε ε . To account for these strain measures, one can review 

the recent studies of Kefal et al. [40, 88], which implements the smoothing element analysis 

(SEA) [90,91] to computationally obtain transverse-shear section strains from derivatives of 

the experimental surface strains ( , , )j

i i i

+ −ε ε ε . However, when performing shape sensing for 

thin and moderately thick composite plates/shells (e.g., the current case study), the iΓ  and 

iΗ  contributions to the bending deformation of the laminate are negligibly small, thereby 

being meticulously omitted in the proceeding iFEM-RZT formulation. 

3.2.3. The Weighted-Least-Squares Functional  

For an individual iRZT4 element, the analytical and experimental strain measures can 

be placed in the iFEM-RZT least-squares-functional, (u )e

e , as [40, 57]: 

( )

( )( ) ( ) ( ) ( , )

( ) ( )

e e e k e j

e e j

e e

w w w z

w w

 

 

 = − + − + −

+ − + −

u e u Ε κ u Κ μ u Μ

γ u Γ η u Η

2 2 2

2 2
 (11) 

where , ,ew w w   refer to the weighting coefficients associated with the membrane, 

bending curvature, and zigzag strains in the given order. For an iRZT4 element with an 

attached strain sensor, these constants should be set to unity. Otherwise, to ensure the strain 

integrity condition over the entire domain, the associated weighting constants should be set 

to a relatively small value as compared to unity, such as  
ew w w 

−= = = 610 . Similarly, if 

the experimental counterparts of first and second transverse shear strains, iΓ  and iΗ , are not 

available, then their weighting coefficients can be set to a small value as w w 

−= = 610 . 

More details about choosing weighting coefficient are described in [40,41]. The squared 

norms of Eq. (11) can be shown in normalized Euclidean norms as: 
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( )( ) ( )
e

e e

A

dx dx− = −e u Ε e u Ε
22

1 2
 (12a) 

( )( ) ( )
e

e e

A

h dx dx− = −κ u Κ κ u Κ
22

1 24  (12b) 

( )( ) ( )

( ) ( )( , ) ( , )
e

k e j k e j

j j

A

z z dx dx− = −μ u Μ μ u Μ
22

1 2
 (12c) 

( )( ) ( )
e

e e

A

dx dx− = −γ u Γ γ u Γ
22

1 2
 (12d) 

( )( ) ( )
e

e e

A

dx dx− = −η u Η η u Η
22

1 2
 (12e) 

where the eA  symbol indicates the area of an individual iRZT4 element. The 

formulation in Eqs. (12a-e) are valid when only one sensor is present at the centroid of the 

iRZT4 inverse element. In the case of multiple sensors, their contribution which comes from 

the other points rather than the centroid of the element should be taken into consideration by 

imposing appropriate weighting constants [44,56]. Minimizing the ( )e

e u  functional with 

respect to the unknown 
eu  nodal displacement leads to the following equation: 

( )e
e e e e e ee

e


= − =  =



u
k u f k u f

u
0  (13) 

where the ef  is the local shape vector, which is a function of experimental strain data, 

while the ek  is the local shape matrix which is calculated analytically based on iRZT4 

element. The enhanced iFEM-RZT equations obtained herein can be given as [62]: 

( ) ( )

( ) ( )( ( )) ( )e

T T

ee

T k T k T T

j jA

w w h
dx dx

w z z w w



    

 + +
=  

 + + 


e e κ κ

μ μ γ γ η η

B B B B
k

B H H B B B B B

2

1 2

4
 
(14

a) 

( )

( )( ( ))e

T T

ee

T k T j T T

jA

w w h
dx dx

w z w w



   

 + +
=  

 + + 


e κ

μ γ η

B E B K
f

B H M B Γ B H

2

1 2

4
 

(14

b) 

Herein, the integrals of the left-hand-side-matrix ek  and the right-hand-side-vector ef  

can be calculated numerically by the Gaussian integration method. After calculating the ek  

matrix using Eq. (14a) for an iRZT4 element, one artificial stiffness constant must be placed 

in the diagonal positions of the ek  matrix corresponding to each artificial zigzag degree of 

freedom. In this way, spurious modes or singular solutions resulting from the inclusion of the 
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artificial degree of freedom can be easily avoided. These constants can be chosen and placed 

at diagonal positions corresponding to the degree of freedom ( , , , )zi i = 1 2 3 4 for each node 

in the matrix ek  as follows: 

( )( ) ( )( ) ( )( )min( , ) ( ; , , , )e e e

j j j j j j j i i − − − −=  = =k k k1 1 2 2 9 1 2 3 4  (15) 

where   represents a small value (e.g.,  −= 510 ) and the first and second indices inside 

the parentheses of the 
( )( ) ( )( ) ( )( ), ,e e e

j j j j j j− − − −k k k1 1 2 2 terms represent the row and column 

positions of the elements belonging to the ek  matrix. Moreover, a suitable transformation 

matrix, eT , must be used to transform the mentioned local matrix and vector given in Eq. 

(13) to the global coordinate system. Afterward, the global equations associated with each 

inverse element are assembled to constitute a general shape matrix, K , shape vector, F , and 

displacement vector, U as follows: 

=KU F  (16a) 

,  ,  
el el elN N N

eT e e eT e eT e

e e e= = =

     = = =     K T k T F T f U T u
1 1 1

 (16b) 

,  
T

e T T T

 
 
   = =   
 
 

T 0 0

0 T 0 0
T T l p n

0

0 0 T

 (16c) 

where the symbol shows the finite element assembly process for el
N number of 

discrete inverse element and l , p , n  vectors are defined as unit vectors of the , ,x x z1 2 axes 

according to the global coordinate system, respectively. As the final step, geometric and 

constraint boundary conditions are imposed into Eq. (16a) leading to a reduced form of global 

equations. The reduced displacement vector, RU , can be calculated via an inversion 

procedure as: 

R R R R R R

−=  =K U F U K F1  (17) 

where the RK  and RF  terms correspond to the reduced forms of the global shape matrix 

and vectors used in Eq. (16a). Afterwards, to establish an equivalent structural state, total 

displacement of the iRZT4 shell mid-surface can be computed as: 
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TU u v w= + +2 2 2  (18) 

In the present study, to investigate the accuracy and efficiency of the iFEM results, the 

percent difference between the reconstructed structural responses (i.e., total displacement) 

and reference solution is calculated as:  

iFEM

T T

T

Percent Difference (%) = 

ref

ref

U U

U

−
100  (19) 

where the 
iFEM

TU  and T

refU  symbols indicate the total displacements predicted by iFEM 

formulation and its reference analysis such as high-fidelity FEM analysis and/or 

experimental measurement techniques (e.g., digital image correlation analysis). 

3.2.4. The Strain Pre-extrapolation technique 

In the current study, all the results obtained from iFEM-RZT analyses for numerical 

and experimental cases are re-evaluated using the strain pre-extrapolation technique. To this 

end, the so-called polynomial smoothing approach is employed by constructing a curve 

(mathematical function) that has the best fit to a series of strain data points along a selected 

sensor line. Coupling polynomial smoothing technique with iFEM-RZT enables usage of 

fewer strain sensors for an accurate shape-sensing process, thereby leading to a low-cost 

approach. To implement the proposed methodology for numerical case studies, only half of 

the discrete strain measurement points are utilized by using different types of sensor 

placement strategies. For the experimental example, number of sensors is kept constant while 

a high-resolution iFEM mesh is utilized to generate extra elements in the whole domain. 

Afterward, multinomial curves are fit through the available discrete experimental strain 

measurement points in order to substitute the missing strain values with virtual strain data. 

The least squares method is used for fitting polynomials through discretely obtained 

strain data. The general form of a polynomial with kth order takes the form: 

k

ky a x a x a= + + +1 0  (20) 

Where a  represents polynomial coefficient, and the term k  shows the degree of the 

polynomial. The method of least squares minimizes the difference between the estimated 

values of the polynomial and the expected values from the dataset. The coefficient of the 
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polynomial regression model is determined by solving the following system of linear 

equations. 

            

     

                                  

  

N N Nk

i i ii i i

N N N Nk

i i i i ii i i i

N N N Nk k k kk
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where N refers to the number of points to be regressed. This system of equations is 

derived from the polynomial residual function, and it is presented in the standard form of 

Ma b= . Cramer’s rule allows one to solve the linear system of equations to find the 

regression coefficients using the determinants of the square matrix M . Each of the 

coefficients ka can be determined using the following equation: 

det( )

det( )

i
k

M
a

M
=  (22) 

where iM is the matrix with the ith  column replaced with the column vector b. For instance, 

M 0 could be calculated as follows: 
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The authors perform the Cramer’s rule to solve the aforementioned linear system of 

equations, and thereby find the best curve fit through the discrete strain measurements. 

3.3. Numerical and Experimental Examples 

As mentioned in previous section, the main aim of this study is to investigate the new 

inverse shell element’s (i.e., iRZT4) capability for shape sensing three-dimensional 

moderately thick sandwich structures. This new iFEM-RZT inverse element is developed 

based on a robust quadrilateral iFEM inverse element so called iQS4. The authors recently 

have investigated a comparative study between existing inverse elements including a three-
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node (iMIN3) , a four-node (iQS4) , and eight-node (iCS8) inverse shell elements in terms 

of their efficiency and accuracy for the shape-sensing of various geometries [16]. The 

obtained results and observations of previous study shows the superior performance of the 

quadrilateral inverse shell elements (iQS4 and iCS8) as compared to the three-node inverse 

element (iMIN3) for tapered plate and curved geometries. It is shown that better performance 

of four- and eight-node inverse shell elements is attributed to shape function construction 

approach. Anisoparametric shape functions of the iMIN3 inverse element use the area-

parametric coordinates of a triangle, while the iQS4 and iCS8 inverse shell elements use 

anisoparametric shape functions with bilinear isoparametric mapping technique. Since the 

area-parametric coordinates have a less accurate interpolation capability than the Lagrangian 

mapping functions, the displacement approximation achieved by quadrilateral elements is 

superior to that of the three-node inverse element. Since the best existing RZT-based three-

node inverse element i.e., i3-RZT [40] is developed based on iMIN3 element, enhanced shape 

sensing performance of iRZT4 against i3-RZT is deemed. However, to show the superiority 

of four-node versus three-node inverse shell elements, the comparison between iRZT4 and 

i3-RZT elements is performed over a laminated stiffened plate. As an extra justification, the 

shape estimating capability of iFEM-iRZT4 element is compared to that of iFEM-iQS4 

element for a curved laminated sandwich structure. Finally, for the purpose of experimental 

validation, a wing-shaped sandwich laminate with embedded discrete FBG sensors and 

surface mounted strain rosettes is designed, manufactured, and tested under torsional 

deformation. 

 The acquired strain data are used as input in iFEM-RZT and -FSDT formulation for 

shape sensing of the structure. Additionally, a  high-fidelity FEM model is generated to 

establish a reference solution for assessing the accuracy of iFEM reconstructed 

displacements. Finally, a polynomial extrapolation strategy is employed to smooth the 

discrete and sparse in-situ strain data for improving the accuracy of the iFEM results and 

optimizing the sparse sensor deployment with a fewer number of sensors. 

3.3.1 Longitudinally and Transversely Stiffened Sandwich Plate: Numerical Case 

Study I 



50 

 

Shape sensing application of a stiffened laminate is assessed to show the ability of the 

iRZT4 shell element to be used for three-dimensional built-up composite structures. As 

shown in Fig. 3-3(a) the laminate has a length of 3000 [mm], a width of 1000 [mm], and six 

stiffeners with a height of 150 [mm]. Support elements have the same constant thickness of 

25 [mm] whereas the plate has a uniform thickness of 50 [mm]. The stiffened plate is a 

sandwich laminate made of unidirectional carbon fiber reinforced polymer matrix (CFRP) 

face sheets and PVC soft-core materials. The span to thickness ratio of the plate is equal to 

60 which categorizes this sandwich laminate among moderately thick composites.   

 

Fig. 3-3. a) Dimensions [mm] and boundary condition of the stiffened shell laminate; b) 

Mesh resolution and sensor placement for iFEM-iRZT4 and -iQS4 elements c) Mesh 

resolution and sensor placement for iFEM-i3-RZT elements 

The mechanical properties of both CFRP face sheets and the PVC core materials are 

listed in Table 3-1. CFRP face sheets have normalized lamina thicknesses (h(k)/h) of 0.2 

whereas this value for the PVC core material is 0.6. The laminate stacking sequence is listed 

in Table 3-2. This multilayered structure is subjected to a constant pressure of 63.5 [KPa] 

along negative z direction and the edges of the laminate are simply supported as illustrated 
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in Fig. 3-3(a). The kinematic boundary conditions for the laminate in the z = 0  plane is 

defined as follows: 

  ( ,  [m]),  

  ( ,  [m])

v w x x

u w y y

 

 

= = = = = =

= = = = = =

1 1

2 2

0 0 3

0 0 1
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A FEM analysis is performed to create the reference solution and to provide required 

sensor data to be used in the iFEM-RZT formulation. Fig. 3-3(b), illustrates in-plane 

locations of onboard strain sensors. For the iFEM-RZT and -FSDT analyses, a low-resolution 

mesh is created using 118 inverse elements as depicted in Fig. 3-3(b).  

The weighting coefficients of the membrane, bending curvature, and zigzag strains for 

the iRZT4 inverse shell elements, possessing sensors are set to unity. However, for sensor-

less elements these constants are set to a small value (i.e., 10-6 ). Moreover, weighting 

coefficients corresponding to transverse shear strains are chosen as w

−= 910 , and w

−= 310

for iFEM-RZT and w

−= 610 for iFEM-FSDT analyses. These weighting coefficients ensure 

the necessary strain interpolation connectivity among inverse elements with sensors.  

Table 3-1. Mechanical properties of the orthotropic and isotropic materials 

       Lamina material  Young’s modulus 

[GPa]  

Poisson’s ratio  Shear modulus[GPa] 

C 

Carbon-epoxy 

unidirectional 

composite 

( )
 157.9

k
E =

1  

( ) ( )
.

k k
E E= =

2 3
9 584  

( ) ( )
.

k k
 = =

12 13
0 32  

( )
.

k
 =
23

0 49  

( ) ( )
.

k k
G G= =

12 13
5 93  

( )
.

k
G =

23
3 227  

P PVC core 
( )

.
k

E = 0 104  
( )

.
k

 = 0 3  
( )

.
k

G = 0 04  

 

In Fig. 3-4, the total displacement results of iFEM-RZT analyses using i3-RZT, and 

iRZT4 inverse shell elements, and iFEM-FSDT analysis by iQS4 inverse shell element on 

the geometry of the laminate are compared with the reference FEM solution result. As shown 

in Fig. 3-4, there are approximately 6% and 20% differences for the maximum values of the 

total displacement between the reference (FEM) result and those obtained using the iFEM-

iRZT4 and -i3-RZT models, respectively. However, when comparing the FEM result with 

iFEM-FSDT the percent deference increases drastically to almost 85%. These margins of 

errors indicate an acceptable level for iFEM-RZT analyses versus iFEM-FSDT analysis. 

Moreover, the superior applicability and high precision of four-node iFEM-RZT element, 
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iRZT4 as compared to three-node inverse shell element i3-RZT for shape estimating of three-

dimensional composite shell structures is observed. The more robust result of iRZT4 inverse 

element is also emphasize the previous study accomplished by authors [16]. In addition, as 

is seen in Fig. 3-4, the comparison of the displacement contours obtained from direct and 

inverse analyses demonstrates that the final deformed shape of the structure can be almost 

identically reconstructed by the iFEM-RZT approach. On the contrary, the iFEM-FSDT 

analysis underestimates the maximum displacements albeit having similar displacement 

contours to the reference solution. Hence, these results prove the superior full-field shape 

sensing capability of the iRZT4 element over iQS4 for three-dimensional moderately thick 

shell structures.  

 

Fig. 3-4. Contour plots of total displacements [mm] of the stiffened sandwich laminate 

using FEM, iFEM-RZT, and -FSDT analyses. 

Table 3-2. Laminate stacking sequences 

Laminate 
Normalized lamina 

thickness, h(k)/h 

Lamina 

materials 

Lamina orientation 

[ ] 

Uniaxial  

Sandwich 
0.2/0.6/0.2 C/P/C 0/0/0 
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One of the main aims of this study is to couple the iFEM-RZT approach and a 

polynomial smoothing technique to decrease the required number of strain measurements 

and attain much more precise results using the same number of sensors. Therefore, this 

numerical example is reevaluated using four different sparse sensor placement models as 

shown in Fig. 3-5. The first sensor model has an asymmetrical distribution with respect to 

the x2  axis, while the other three sensor models (types II, III and IV) are symmetrically 

arranged. For the first model, the sensors are accommodated on six parallel rows along the  

x2  axis with each row having five sensors. The other six rows are considered one in between 

without sensors. On the other hand, for second sensor placement, the strain rosettes and FBGs 

are installed in a checkered form. For third arrangement, there are six parallel rows of five 

sensors in a lateral direction wherein two rows are at the edges and the remaining sensors are 

paired at two sides of the lateral stiffeners. Finally, for the fourth case, sensor modeling 

consisted of three parallel pairs with ten sensors for each segment such that two lateral rows 

between sensors lines are left without sensors as clearly illustrated in Fig. 3-5. To numerically 

predict the missing in-situ strain values (for gray inverse elements), an extrapolation 

technique is employed through fitting five-degree polynomial curves between in-situ strain 

values of the inverse elements with discrete sensors (yellow inverse elements) aligned along 

x1 axis. The weighting constants of the membrane, bending, and zigzag section strains 

corresponding to the elements on the plate are set to unity. However, for the elements on the 

stiffeners (i.e., without sensors) these constants are defined as a very small value (i.e.,10-6). 

Additionally, the weighting coefficients of the transverse shear strains are set to w

−= 710 , 

w

−= 310 during iFEM-RZT analyses.  
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Fig. 3-5. Different types of sensors layouts.  

As illustrated in Fig. 3-6, despite decreasing the number of the sensors to half of the 

previous test case iFEM-RZT analyses can still reconstruct precise enough full-field 

displacement contours in all four configurations of the sensor deployments studied herein. 

Furthermore, the comparison of the quantitative results reveals that in the first and third types 

of sensor placement strategies, the error percentage between iFEM-RZT and FEM analyses 

has increased to almost 15% while it remains at the same rate of 6% for the second sensor 

layout. This superior performance of the second layout as compared to the others (i.e., first 

and third sensor placement types) can be attributed to its checkered sensor distribution which 

enforces the iRZT4 model to fulfill the existing strain gap between the sensor lines in an 

accurate manner. Among these four types of sensor placements, the best performance belongs 

to the fourth type with only a 3% difference with the FEM reference solution. Since the 

central part of the structure experiences a significant amount of the strains under current 

constraint boundary conditions, the presence of one-third of all sensors at that segment makes 

this sensor model very efficient for the prediction of full-field displacement. As another 

important finding, the obtained results imply that by using a polynomial smoothing approach 

for iFEM-RZT no discrete strain values are needed to be collected from the locations adjacent 

to the stiffeners. 

Additionally, as depicted in Fig. 3-7, the variation of the transverse displacement 

through the entire length of the structure is investigated to provide a more concrete 

comparison between the performance of the four types of sensor arrangements. The iFEM-
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RZT analysis using the fourth sensor placement produces a highly accurate distribution of 

deflection which is almost indistinguishable from the reference solution result as seen in Fig. 

3-7. Likewise, the deformation profile predicted by the second sensor placement model is 

similar to that of the FEM reference solution with a minor discrepancy at the middle of the 

structure. On contrary, the first and third types of sensor deployment have the least similarity 

to the FEM reference solution among all sensor layouts. It is noteworthy that the asymmetric 

placement of sensor type I is reflected in the variation line of the transverse displacement, as 

shown in Fig. 3-7. One can observe from the obtained results that using the extrapolation 

technique enables iFEM-RZT to predict the missing sensors' contribution over the whole 

structure domain in an efficient manner. Overall, as the main outcome of this numerical 

assessment, it can be stated that the iFEM-RZT method combined with the strain pre-

extrapolation approach by using an appropriate sensor layout can provide reliable and cost-

effective results. 

 

Fig. 3-6. Contour plots of total displacements [mm] of the stiffened sandwich 

laminate using iFEM-RZT method coupled with polynomial smoothing approach. 
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Fig. 3-7. Transverse displacement Uz (x,0.4,0.0) variation through the length of the shell. 

3.3.2 A Curved Sandwich Shell Structure: Numerical Case Study II 

A curved sandwich shell structure is evaluated using iFEM-RZT as the second 

numerical case study. The geometry of this curved shell is made by a quarter of a cylinder 

with a radius of 500 [mm], a width of 600 [mm], and a uniform thickness of 20 [mm] as 

depicted in Fig. 3-8(a). The radius to thickness ratio is 25 which classifies this sandwich 

laminate as a moderately thick composite structure. The same constitutive materials provided 

in Table 3-1 for the previous numerical case study are also used for this curved sandwich 

shell structure. The laminate stacking sequence for this numerical example is listed in Table 

3-3. Since the curved composite panels are commonly used in aircraft which experience high 

gravitational accelerations due to altitude variations, they are designed to be stiff enough 

under subjected gravitational accelerations. To simulate such a condition in the current 

numerical case, the curved shell laminate is subjected to the gravity of 10g (98.1 [m/s2]) 

along negative and in-plane directions. Additionally, all the edges of the curved panel are 

fully clamped. Similar to the previous example, a high-fidelity FEM analysis (with a uniform 

mesh composed of 6400 quadrilateral shell elements) is performed to provide required strain 

data and a comparative reference solution for the iFEM analyses. On the other hand, the 

shape sensing of this curved geometry is carried out using a coarse mesh resolution ( 8 8
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iFEM elements) illustrated in Fig. 3-8(b) where the top/bottom sensor measurements are 

collected from each inverse element. Since strain data is available for all inverse elements, 

in the current numerical case, the weighting constants associated with the membrane, 

bending, and zigzag section strains are set to unity. However, the weighting coefficients of 

transverse shear strains are chosen as w

−= 310 and w

−= 510  for iFEM-RZT, and w

−= 310

for iFEM-FSDT.  

Table 3-3. Laminate stacking sequences 

Laminate 
Normalized lamina 

thickness, h(k)/h 

Lamina 

materials 

Lamina orientation 

[ ] 

Cross-ply  

Sandwich 
(0.5)4/1.6/(0.5) 4 (C)4/P/(C)4 (0/90)4/0/(90/0)4 

 

 

  

Fig. 3-8. a) Dimensions [mm] and boundary condition of the curved shell laminate; b) 

Mesh resolution for iFEM model with strain measurement sets at the center of the elements. 
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Fig. 3-9. Contour plots of total displacements [mm] of the curved sandwich laminate using 

FEM, iFEM-RZT, and -FSDT analyses. 

As depicted in Fig. 3-9, the total displacement contours obtained from iFEM, and FEM 

analyses prove superior performance of iRZT4 as compared to the iQS4 inverse element. 

Comparison of the quantitative results shows almost 0.5% difference between the maximum 

amount of the total displacement for reference FEM solution and iFEM-RZT while this error 

percentage increases up to 6% between FEM and iFEM-FSDT analyses. Furthermore, 

obtained contours demonstrate a better predictive capability of iFEM-RZT in comparison to 

iFEM-FSDT. To sum up, both analyzed numerical examples namely stiffened and curved 

moderately thick laminated structures show a high level of efficiency and accuracy of iFEM-

RZT as compared to iFEM-FSDT. The findings of these numerical case studies demonstrate 

practical applicability and high efficiency of the iRZT4 inverse-shell element for shape 

sensing of thick and moderately thick composite structures.  

Herein, a polynomial smoothing approach is also implemented to optimized sensor 

locations for increasing the accuracy of the shape sensing results of the reduced sensor model. 

Since the displacement contours for the current case study are similar to those of the previous 

stiffened plate case, i.e., maximum strain distribution in the middle of the structure, we 
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choose a sensor deployment strategy similar to type IV as illustrate in Fig. 3-10(b). According 

to this configuration, only half of the elements are accommodated with sensors, depicted as 

yellow elements in Fig. 3-10(b). To this end, three-degree polynomial curves are fit through 

the discrete sensor positions along the z axis, and the weighting coefficients of the transverse 

shear strains are set to w

−= 310 and w

−= 810 . 

 

Fig. 3-10. a) Contour plots of total displacement [mm] of the curved sandwich 

laminate using iFEM-RZT method coupled with polynomial smoothing approach; b) 

Sensor layout used for polynomial smoothing. 

 

Although the number of sensors is reduced to half in the case of smoothing analyses, 

the displacement contours are identical to that of iFEM-RZT with complete sensor 

deployment shown in Fig. 3-10(a). Moreover, the deference between direct and inverse 

analyses has decreased to 0.3%. These results indicate that a successful low-cost shape 

sensing in loaded composite structures can be obtained via utilization of a strain pre-

extrapolation technique, optimum sensor deployment and selection of appropriate weighting 

constants. 

3.3.3 A Wing-Shaped Sandwich Panel: Experimental Case Study  

A wing-shaped plate with a length of 1000 [mm], left and right widths of 175 [mm] 

and 75 [mm] respectively, and a uniform thickness of 26 [mm] is manufactured as depicted 

in Fig. 3-11. Details of the manufacturing procedure and optimizing sensor arrangement can 

be found in [86]. The length to the thickness ratio of the plate is  = 1000/26 = 38.5. The 

sandwich structure is made of a TWILL T300 type carbon fiber woven fabric as a face sheet 

material, and a CORECELL M60 foam as soft-core material having orthotropic and isotropic 

material features, respectively. The left black area with a length of 100 [mm] is fully clamped 
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against translational and rotational deformations as well as the bottom right corner of the 

plate is restrained for translational deformations along z  axis only as shown in Fig. 3-11. 

Furthermore, the top right corner of the laminate is subjected to a normal concentrated force 

of zF = -620 [N] (along z axis) to yield a torsional deformation within the sandwich laminate. 

The exact in-plane positions of the sensors with respect to the origin indicated in Fig. 3-11 

are listed in Table 3-4. The , x x1 2 and z   axes are referred to as ‘length’, ‘width’, and 

‘thickness’ coordinates, in the given order.  

 

Fig. 3-11. Dimensions, boundary conditions, and sensor positions of the wing-shaped 

laminate 

Table 3-4. Coordinates of sensors on wing shaped structure. 

Sensor x1 [mm] x2 [mm] Sensor x1 [mm] x2 [mm] 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

45 

136 

227 

317 

408 

499 

589 

680 

771 

861 

952 

-49 

-59 

-70 

-80 

-91 

-101 

-112 

-122 

-133 

-143 

-154 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

45 

135 

226 

316 

406 

496 

586 

677 

767 

857 

947 

-134 

-140 

-146 

-152 

-158 

-164 

-170 

-176 

-181 

-187 

-193 
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The mechanical properties of both carbon-epoxy twill-woven composite and M60 core 

materials are provided in Table 3-5 and the relevant details can be found in [86]. The 

thickness, laminate layup, and orientation of each lamina are specified in Table 3-6 as well. 

Table 3-5. Mechanical properties of the orthotropic and isotropic materials 

Lamina material  Young’s modulus [GPa]  Poisson’s ratio  Shear modulus[GPa] 

CT 

Carbon-epoxy 

twill woven 

composite 

( ) ( )
.

k k
E E= =
1 2

53 8085  

( )
.

k
E =

3
16 0  

( )
.

k
 =

12
0 03285  

( ) ( )
.

k k
 = =
13 23

0 2  

( )
.

k
G =

12
3 012  

( ) ( )
.

k k
G G= =

13 23
1 255  

M 
Corecell M60 

core 

( )
.

k
E = 0 044  

( )
.

k
 = 0 1  

( )
.

k
G = 0 02  

 

As listed in Table 3-6, the twill-woven carbon face sheets have identical thicknesses of 

6 [mm], whereas the thickness of the core material is 14 [mm]. Since the plate geometry is 

symmetrical with respect to the reference mid-plane, the applied loading condition does not 

produce any membrane strains and subsequently, top/bottom strain measurements are 

expected to be identical in absolute values. Hence, as illustrated in Fig. 3-11, instrumenting 

22 discrete strain rosettes at the center of each iFEM element on the top surface of the 

structure is sufficient. In addition, 22 FBG sensors are embedded within the laminate at a 

thickness position of 1.2 [mm] away from the top surface of the laminate at the interface of 

layers k = 3 and k = 4. Both strain rosettes and the FBG sensors are aligned along the x1  axis 

(length coordinate) of l1 and l2 lines as depicted in Fig. 3-12. To apply the discussed clamped 

boundary condition in the experiment, a specific portable test fixture is used which can be 

paired with any typical tensile test machine (e.g., INSTRON test machines) [87]. 
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Fig. 3-12. Experimental deployment of the sensors on the laminate and strain-data 

collection systems. 

As seen in Fig. 3-12, the strain data of the FBG sensors are acquired through two optical 

sensing interrogator modules whereas the in-situ strain data related to the rosettes are 

collected by National Instrument (NI) data acquisition system during the mechanical test.  

Table 3-6. Laminate stacking sequences 

Laminate 
Lamina thickness, 

2h(k)[mm] 

Lamina 

materials 

Lamina orientation 

[ ] 

Twill Woven 

Sandwich 
6.0/14.0/4.8/1.2 CT/M/(CT)2 0/0/0/0 

 

The head of the loading machine pushes the structure downward with a constant 

velocity of 0.1 [mm/sec] until reaching the maximum deflection of 7 [mm] and is fixed at 

this position for 50 seconds and then the plate is unloaded at the same rate of the velocity as 

shown in Fig. 3-13. Such an experimental real-time loading with the constraint conditions 

ensures a quasi-static torsion/twisting test case on the given wing shape laminate.  
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Fig. 3-13. Time dependent variation of force at the tip of the wing shaped sandwich 

structure. 

The loading and unloading procedures are repeated three times to avoid any error in 

the results and ensure repeatability of the findings. Corresponding force to the maximum 

displacement is calculated by taking an average value of obtained force data. To establish a 

reliable and comparable reference solution, a high-fidelity FEM model with identical 

geometric and boundary conditions is analyzed using ANSYS-APDL software. For such 

analysis, the plate is discretized into 1386 quadrilateral subdomains possessing 10700 DOFs. 

The experimental data collected from strain sensors are used as an input for both iFEM-RZT 

and -FSDT analyses.  

To perform these analyses, the whole domain of the plate is divided into 22 

quadrilateral subdomains, representing iRZT4 and iQS4 inverse elements as shown in Fig. 

3-14(a). Note that the center of these elements is corresponding to the discrete locations of 

experimental measurement sets. The weighting constants related to the membrane, bending, 

and zigzag section strains are set to one whereas the weighting coefficients of the transverse 

shear strains are equated to w

−= 710  and w

−= 810  for iFEM-RZT, and w

−= 810  for 

iFEM-FSDT. Despite the absence of shear and lateral strains for FBG sensors (i.e., only the 

uniaxial strains are collected along x1 direction), the corresponding weighting constants are 

kept as unity to preserve the compatibility of zigzag strains along different coordinate 

directions. 
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Fig. 3-14. Mesh resolution and iRZT4 elements with strain measurement sets at the center 

for a) iFEM-RZT and -FSDT analyses, b) iFEM analysis using polynomial smoothing 

approach. 

To compare the performance of the iFEM elements (i.e., iRZT4, and iQS4), the total 

displacement contours of the wing-shaped sandwich laminate are plotted as illustrated in Fig. 

3-15(b). Moreover, as thoroughly explained in [64], a speckle pattern is applied to one edge 

of the wing-shaped structure to create a suitable surface area for full-field displacement 

monitoring using a 2D-DIC technique. A CCD camera is placed at a normal distance of 45cm 

from the edge of the wing. The viewpoint of the camera had a clear image up to 45cm away 

from the tip of the wing. The video taken during the loading of the structure is post-processed 

and imported an image into GOM correlate 2020 software for the DIC analysis. The constant 

thickness size of the wing shape sandwich structure is used for calibration of the software 

with respect to the taken images. The region of interest for DIC simulation is defined using 

square facets with a size of 25 × 25 pixels and a step size of 19×19 pixels.  

The results of total displacement at the edge of the wing structure (obtained from DIC 

analysis) are presented in Fig. 3-15(a) at undeformed and maximum deformation states. The 

comparison of the values between DIC results and FEM solutions clearly shows a high 

agreement between the predicted experimental and numerical displacements. According to 

the displacement contours in Fig. 3-15(b), the iFEM-RZT approach can generate a total 

displacement contour indistinguishable from that of the FEM analysis whereas iFEM-FSDT 

can only reconstruct an erroneous deformed shape with the dissimilar contours/displacement 

magnitudes.  
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Fig. 3-15. a) Total displacement maps obtained via DIC images at undeformed and 

deformed states b) iFEM and FEM deflection contours of total displacement. 

 

To elaborate on these results more quantitatively, the magnitudes of maximum total 

displacements can be compared to each other. The percent difference for the maximum total 

displacements between the iFEM-FSDT and FEM analyses is 35% whereas this difference 

reduces down to 6% only in the iFEM-RZT analysis, thereby demonstrating the adequately 

precise torsion-sensing capability of the iFEM-RZT approach for moderately thick sandwich 

structures. Besides, these results bespeak that, iFEM-FSDT is incapable of torsional 

displacement monitoring on thick laminated structures.  
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Fig. 3-16. Axial and shear strains of x1 coordinate along lines l1 and l2. 

In addition, a higher consistency between iFEM-RZT values and DIC full-field maps 

is also achieved as compared to those seen between iFEM-FSDT and DIC displacement 

measurements. From this quantitative comparison, it can be concluded that iFEM-RZT has a 

superior prediction capability than the iFEM-FSDT approach by considering the reference 

solution either as FEM or DIC. In Fig. 3-16, the experimental axial and shear strain results 

along l1  and l2 lines are compared with numerical ‘FEM’ strains. The term ‘EXP’ in the 

legend of Fig. 3-16 represents 11 discrete experimental strain collected along each of the 

lines l1  and l2 . As an important result, it can be inferred from Fig. 3-16 that the shear strains 

are the dominant strains. This behavior is expected due to the torsional deformation of the 

structure. 

Moreover, one can easily observe that there is an overall acceptable agreement between 

the numerical and experimental data, especially regarding the shear strains. However, the 
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discrete axial experimental data do not match exactly with the numerical trend (Fig. 3-16). 

This inconsistency might be due to the presence of inherent noise during experimental data 

collection which reduces the signal-to-noise ratio in small strain levels. Nevertheless, since 

the axial strains do not have a major contribution compared to the shear strains, their 

nonconforming effect is negligible for the torsional deformations of the laminate. 

 

Fig. 3-17. Percent difference between maximum values of total displacement for 

FEM and iFEM-RZT analyses using different degrees of pre-extrapolation technique. 

 

Similar to numerical examples in previous sections, a polynomial smoothing method 

is performed over discrete sets of experimental strain data to make the obtained results of the 

iFEM-RZT analyses more accurate. For this purpose, each iFEM element is divided into nine 

sub-elements to provide a finer mesh resolution as shown in Fig. 3-14(b). Afterward, a first- 

to sixth-degree polynomial line and curves are fitted through these discrete strain data 

providing a higher number of strain measurements available along l1  and l2  lines. 

Consequently, extra pre-computed strain data are generated and used as input in the iFEM-

RZT analyses. Herein, the corresponding weighting constants of the membrane, bending, and 

zigzag strains for the elements having sensor are set to unity. However, for sensor-less 

elements, these coefficients are defined as a very small value (i.e.,10-9). The weighting 

constants corresponding to transverse shear strains are set to w

−= 710 , w

−= 810 .  

Percent differences of the maximum total displacement between smoothed iFEM-RZT 

and FEM analyses corresponding to each degree of the polynomials are illustrated in Fig. 3-
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17. Here, the utilization of the first-degree (linear) polynomial reduces the error percentage 

to below 6%. Moreover, in the case of the second-and third-degree polynomials, the percent 

differences come below 4% and 1% in the given order. Furthermore, it can be observed from 

the results that using the higher-order polynomials does not make further drastic reductions 

and provide stable convergency to a constant value of 0.57% between iFEM-RZT and 

reference solution. Hence, it can be concluded that for this special case study, third or fourth-

degree polynomials can provide excellent deformation reconstruction in the iFEM-RZT 

analyses. Overall, this case study experimentally verifies the torsion-sensing capability of the 

new iRZT4 inverse-shell element and demonstrates the practical utility of the strain pre-

extrapolation technique for the iFEM-RZT approach. Finally, the computational strategy 

presented herein can be leveraged to design precise and efficient applications of iFEM-

RZT/iRZT4 methodology to shape sensing of thick sandwich structures using sparse sensor 

deployments with few sensors. 

3.4. Conclusions 

Numerical and experimental shape sensing of the moderately thick sandwich 

plate/shell structures is investigated using the iFEM-RZT approach coupled with strain pre-

extrapolation technique. This method is based on the weighted least square functional which 

enforces the compatibility between analytical and experimental strains. Both numerically and 

experimentally acquired section strains from three surfaces through the thickness of the 

sandwich structure are successfully used as the main input for iFEM-RZT formulation. To 

this end,  a new four-node RZT based quadrilateral inverse-shell element called iRZT4, with 

nine degrees of freedom at each node, is developed and utilized. To verify the accuracy and 

efficiency of the iRZT4 inverse-shell element, a stiffened sandwich plate, a curved sandwich 

shell and a wing-shaped sandwich structure are considered as two numerical and one 

experimental case studies, respectively. Moreover, iFEM-FSDT analysis and reference FEM 

solution are performed to be compared with iFEM-RZT analysis. Consequently, for both 

numerical and experimental case studies, a suitable pre-extrapolation technique is 

implemented using various degree polynomial fitting curves to make the obtained results 

smoother. Additionally, full-field displacement contours obtained by the DIC technique are 

used as an extra evaluation method for comparison of the data through iFEM-RZT and -

FSDT analyses. Obtained results from numerical and experimental case studies clearly 
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indicate that iFEM-FSDT is not robust enough to be used as a highly precise shape sensing 

system for moderately thick sandwich structures. However, iFEM-RZT shows superior 

performance for the reconstruction of the displacement contours and quantitative results as 

compared to those of iFEM-FSDT analysis. Besides, it is observed that the in-plane shear 

strain measurements have a significant contribution to torsional deformations in the 

experimental case study. Hence, utilizing triaxial strain gauges (i.e., strain rosettes) is crucial 

to capture precise three-dimensional torsional deformations. To sum up, the obtained results 

of the iFEM-RZT approach coupled with strain pre-extrapolation technique provide robust 

and reliable real-time shape sensing of moderately thick sandwich plate/shell structures. 

3.5. Appendix  

The shape functions iN , iL , and iM , which are used to describe membrane, bending 

and zigzag capability of the iRZT4 element as given in Eqs. (5a–d), are respectively defined 

as: 

( ) ( ) ( , , , ),i i iN s s t t i= + + =
1
1 1 1 2 3 4

4
 

( ) ( ) ( , )i iN s t t i+ = − + =2
4

1
1 1 1 3

2
, ( ) ( ) ( , )i iN s s t i+ = + − =2

4

1
1 1 2 4

2
 

(A.1) 

, ( , , , ; , , , )i j j i i i j j i iM a N a N L b N b N i j+ + + += − = − = =4 4 4 4 1 2 3 4 4 1 2 3  (A.2) 

with 

, ( , , , ; , , , )i k k i
i i

x x y y
a b i k

− −
= = = =1 2 3 4 2 3 4 1

8 8
 (A.3) 

where the  , , ( , , , )i is t i − + =1 1 1 2 3 4  symbols represent the isoparametric coordinates of 

iRZT4 element’s nodes. The derivatives of shape functions given in Eqs. (A1-A3) can be 

calculated with respect to x1  and x2  axes to define the strain measures of the iRZT4 element. 

As given in Eqs. (7a-e), these section strains are computed by the 

( , , , , )      = = B B B B B e κ μ γ η1 2 3 4  matrices, which are explicitly defined as: 

, ,

, ,

, , , ,

i i

i i i

i i i i

N L

N M

N N L M

 
 

  
 + 

eB
1 1

2 2

2 1 2 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

 (A.4) 



70 

 

,

,

, ,

i

i i

i i

N

N

N N

 
 

 − 
 − 

κB
1

2

1 2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

 (A.5) 

,

,

,

,

i

i

i

i

i

N

N

N

N

 
 

−
 
 
 

− 

μB

1

2

2

1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 (A.6) 

, , , , ,

, , , , ,

i i i i i i i

i

i i i i i i i

N L M N L M N

N L N M L N M

− − + − 
  

− − − + 

ηB
1 1 1 1 1

2 2 2 2 2

0 0 0 0

0 0 0 0
 (A.7) 

, , , , ,

, , , , ,

i i i i i i

i

i i i i i i

N L M N L M

N L N M L M

− − + 
  

− − − 

γB
1 1 1 1 1

2 2 2 2 2

0 0 0 0

0 0 0 0
 (A.8) 

 

where the subscript , , ,i = 1 2 3 4  corresponds to the local node numbers. Note that the 

derivative operation for calculating  ,i jN ,
,i jL , ,i jM  ( , )j = 1 2  functions can be achieved by 

using chain rule and associated Jacobian matrix J  as follows:  

, , , ,

, , , ,

( , , ),
i i s s s

i i t t t

x x
N L M

x x

 

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J J
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 (A.9) 

where the comma subscript followed by isoparametric axes ( s , t ) indicates the partial 

derivative of ( )

,( ) ( , )s t 
 


 = = . 
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CHAPTER 4. Experimental and Numerical Investigation on Large 

Deformation Reconstruction of Thin Laminated Composite Structures 

Using Inverse Finite Element Method 

 

The inverse finite element method (iFEM) is one of the best candidates to perform 

displacement monitoring (shape sensing) of structures using a set of on-board/embedded 

strain sensors. This study demonstrates the high efficiency, robustness, and accuracy of the 

iFEM approach to reconstruct geometrically non-linear deformations of thin laminated plates 

and shells by performing experimental measurements and numerical analyses. The iFEM 

formulation is derived based on the first-order shear deformation theory of plates. A weighted 

least-squares variational principle is utilized with incremental non-linear strains while 

performing the geometrical update of the model using predicted incremental deformations. 

Moreover, a quadrilateral inverse-shell element (iQS4) is employed to discretize the whole 

domain of the laminated panels and solve the numerical/experimental shape-sensing 

problems. Further, a polynomial strain pre-extrapolation technique is incorporated with the 

iQS4 formulation to smoothen the discrete strain data obtained from a few strain rosettes 

placed along the entire length of the structures. For each case study, a high-fidelity finite 

element analysis is performed to establish a reference displacement solution. Finally, the 

qualitative and quantitative comparison of reconstructed displacement results with reference 

solutions confirms the superior potential of the iFEM-iQS4 approach for full-field shape 

sensing of thin laminates undergoing non-linear deformations. 

4.1. Introduction 

Long fiber-reinforced polymer composites with advanced mechanical performances 

are commonly used to manufacture laminated structures of two or more plies with variable 

fiber angles to offer high flexural rigidity and lighter weight. These laminated structures can 

be classified according to their span-to-thickness ratio as thin (slender), moderately thick, 

and thick plates or shells [92]. Among this class of composites, thin laminated plates are 

widely used for various types of aerospace, marine, and civil structures due to their improved 

mechanical properties, i.e., long fatigue life [93-94], high strength [95-96], and superior 

corrosion resistance [97]. However, the thin laminated structures are susceptible to 

geometrically non-linear displacements due to harsh operating conditions, such as large 
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deflections and/or buckling deformations. Therefore, the safety of these structures must be 

ensured by a reliable inspection system in real time. To this end, structural health monitoring 

(SHM) systems can be effectively employed to dynamically track large structural 

deformations for predicting any occurrence of progressive damage accumulation before 

catastrophic structural failure. For instance, in the last few decades, various SHM techniques 

have been used to detect damage and failure modes of composite structures utilizing 

embedded and/or surface-mounted sensor systems [98-101]. Hence, smart composites 

integrated with sensors and SHM systems is key to future engineering science and 

technology.  

Shape sensing is one of the critical aspects of SHM systems that deals with the real-

time reconstruction of deformation levels on structural components. This approach utilizes 

experimental strain data collected from a network of on-board/embedded sensors which can 

be transmitted via wireless or wired (conventional) techniques to data processing platforms. 

Fiber Bragg Grating (FBG) sensors and strain rosettes are among the wired systems primarily 

used in composite structures due to their simple and efficient applicability. FBG sensors are 

flexible and durable enough to embed in composite materials easily. When these sensors are 

embedded in the laminated structure, they can observe temporary and permanent strain 

variations at discrete positions within the composite materials [102-104]. Shape sensing is 

an inverse problem. Inverse problems arise in a variety of sensing applications. Recently, 

data-driven methods using neural networks have been shown to be significantly superior to 

classical solution methods for inverse problems [105]. Moreover, surrogate modelling is also 

created to speed up the solution of the inverse problems as well [106]. To obtain a full-field 

displacement solution, in-situ sensor measurements must be employed in an inverse method 

to solve the shape-sensing problem. To this end, several inverse methods such as modal [6-

8], curve-fitting [11], and analytical [12] approaches have been proposed in the literature. 

The inverse finite element method is a state-of-the-art robust shape-sensing algorithm [14-

15] that has recently attracted much more attention than other inverse methods due to its 

unique features. These advantages mainly include (i) no requirement of loading/material 

information and (ii) full-field deformation reconstruction capability over the entire structural 

domain.  



73 

 

The iFEM method was initially developed based on the first-order shear deformation 

theory (FSDT) for the shape estimation of plate structures. The critical input of this method 

is triaxial strain data obtained from a discrete number of on-board sensors, e.g., strain 

rosettes. The iFEM algorithm minimizes the difference between the calculated numerical 

strains and their experimental counterparts utilizing a weighted least-squares functional. 

Thus far, different types of the inverse beam [34,81] and plate/shell [42-44] elements have 

been proposed using iFEM methodology for real-time monitoring of complex deformed 

shapes. In a recent comparative study, the performance of C0-continuous inverse shell 

elements was investigated for shape sensing and damage detection of various plate/shell-like 

geometries [16]. Furthermore, experimental, and numerical studies leveraged the iFEM 

algorithm for displacement and stress monitoring of different marine [19,22,28,53] aerospace 

[49,56,107,108], and civil structures [109-111]. Also, recent research efforts have addressed 

the optimal placement of sensors for iFEM analyses using effective optimization methods 

[112-114].  

Additionally, isogeometric iFEM formulations were developed for displacement 

monitoring of thin-shell [82,115] and beam-like [83-84] structures. Most recently, Kefal et 

al. [116] have introduced coupling of iFEM methodology with a nonlocal meshless approach 

known as peridynamics for crack propagation monitoring of laminated composite plates. 

Besides, the ability of the iFEM approach was numerically demonstrated for shape sensing 

of isotropic plates undergoing large deformations [117]. Since the FSDT-based iFEM method 

may not always be applicable to accurate reconstruction of the displacement, strain, and stress 

fields of thick multi-layered composite and sandwich structures, enhanced iFEM 

formulations [39-40] were developed by extending kinematic relations towards zigzag 

theories [88]. On this basis, smoothed iFEM approach has been proposed by coupling 

enhanced iFEM formulation with smoothing element analysis for effective shape sensing 

application [87]. The predictive capability of the enhanced iFEM approaches was 

numerically and experimentally assessed on real-time displacement monitoring of 

moderately thick sandwich structures [17,118]. In addition to top/bottom sensor, these iFEM 

formulations require an additional set of interlaminar in-situ strain data (which can be 

obtained from embedded FBG sensors) for thick structures. Therefore, the iFEM-FSDT 

formulation is preferable compared to enhanced iFEM methods in terms of practical 
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experimental implementation on thin-walled structures with a smaller number of strain 

sensors. Real-time deformation prediction of thin laminated plates/shells plays a critical role 

in the realistic assessment of structural damage and fatigue life of structural components used 

in today’s engineering industry. In this regard, the need for an extensive numerical-

experimental application of iFEM-FSDT to thin-walled composite structures is evident. 

Nevertheless, the predictive capability of the iFEM algorithm has not been assessed for 

reconstructing geometrical nonlinear deformations of thin composite structures subjected to 

bending and/or post-buckling loads. Among the myriad of computational or experimental 

shape-sensing investigations, the application of iFEM-FSDT to displacement monitoring of 

composites is limited to only a few studies, which include linear elastic shape-sensing of thin 

composite structures under thermo-mechanical [118], compressive linear-buckling [89], and 

impact [119] loads.  

To fill the critical gap mentioned above, this study performs geometrically nonlinear 

deformation reconstruction of thin composite plates and shells using experimental strain 

measurements employing iFEM-FSDT formulation for the first time. Therefore, the novelty 

of this study lies in the numerical and experimental investigation of the iFEM-FSDT 

approach for shape sensing of thin laminated structures undergoing large bending/post-

buckling deflections in real time. For this purpose, two numerical and one experimental study 

cases are performed to verify the iFEM approach for nonlinear shape sensing of thin 

laminates. A robust and computationally efficient quadrilateral inverse shell element (iQS4) 

[43] is used to perform the nonlinear iFEM analysis. This inverse element needs less 

computational time compared to other existing inverse curved shell element (iFEM-iCS8). 

In addition, the iFEM-iQS4 model is extended through a smoothing analysis to recover 

continuous strains from discrete strain measurements obtained during the experimental test. 

Finally, the obtained iFEM results are validated by the reference solutions generated using a 

well-known commercial finite element software, i.e., ANSYS APDL. 

This paper is organized in the following order. In Section 2, the fundamental 

formulation of the iQS4 element, the algorithm of nonlinear-displacement geometric update, 

and the polynomial smoothing approach are summarized. Section 3 first describes the 

numerical examples, (1) a post-buckling analysis of a thin laminated plate and (2) bending 
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analysis of a curved plate with large deflection using the iFEM technique. Then, experimental 

shape-sensing implementation of iFEM-iQS4 for thin laminated plate is elaborated in Section 

3. Finally, in Section 4, several important implications are drawn from the iFEM results of 

the thin multi-layered composite structures exposed to large bending/buckling deformations. 

4.2. Theoretical Framework 

4.2.1 The iFEM-iQS4 Element for Shape Sensing of Thin Laminated Structures 

The iQS4 is an inverse shell element with four nodes, originally developed by Kefal et 

al. [43], for shape and stress sensing of plate/shell structures. Each node of this inverse 

element has three translational ( iv1 , iv2 , ziv ) and three rotational ( i1 , i2 , zi ) degrees of 

freedom (DOF) with the positive directions as shown in Fig. 4-1(a). With the use of 

hierarchical drilling rotation DOF, zi , this element becomes a robust iFEM tool for 

modelling curved/blade-stiffened shell geometries.  Mathematical fundamentals for the 

development of the elements with drilling DOF were investigated in detail by Hughes and 

Brezzi [60]. 

 

Fig. 4-1. (a) Geometry of iQS4 inverse shell element with associated coordinates and its 

nodal DOFs, (b) Cross-section of a laminated panel. 

The element has a total thickness of 2h, and therefore its thickness coordinate is defined 

as ( , )z h h − + . Besides, the element is oriented with respect to a local (element) coordinate 

system, ( , )x xx 1 2 , representing the in-plane coordinates of the element. Here, the iQS4 

element is employed to model a laminate with a total number of Ln  layers (made of isotropic 

or orthotropic materials) as shown in Fig. 4-1(b). The laminate notation can be described as 

(a) (b)
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follows. The superscript (k) is utilized to identify the interlaminar strain field and thickness 

coordinate between ( )k −1 -th and k -th plies. Besides, the (k)-th lamina has thickness of 

( )kh2  with the top and bottom thickness coordinates, 
( )k

z
−1

 and 
( )k

z , respectively, as 

illustrated in Fig. 4-1(b). 

Regardless of the individual ply kinematics, the in-plane and out-of-plane displacement 

components of any material point can be described according to FSDT as a function of five 

independent kinematic variables as: 

( , ) ( ) ( )u z v z= +x x x1 1 2  (1) 

( , ) ( ) ( )u z v z= −x x x2 2 1  (2) 

( , ) ( )z zu z v=x x  (3) 

where translational ( v1 , v2 , zv ) and rotational (1 ,2 ) kinematic variables can be 

approximated utilizing shape functions of the iQS4 element as [43]: 

( )( ) i i i zi
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= +x
4
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( )( ) i i i zi
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1
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( ) ( , )i j ij
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N i 
=

= =x
4

1

1 2  (7) 

where the isoparametric mapping of in-plane coordinates to parent domain ( , )s t  can be 

performed using the nodal coordinates of the iQS4 element, , ( , , , )i ix x i =1 2 1 2 3 4 , as: 

( , )

( , )

i

i

i i

xx s t
N

xx s t =

  
= =   
   

x
4

11

1 22

 (8) 

In Eqs. (4-7), the ( , )i iL L s t  and ( , )i iM M s t  functions are the second order 

anisoparametric shape functions [118], and ( , )i iN N s t  is bilinear isoparametric shape 

functions. The explicit form of these shape functions can be found in references [43, 46].  
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Substituting Eqs. (4-7) to Eqs. (1-3) and subsequently taking the spatial derivatives of 

the resultant displacement vector according to infinitesimal strain theory, the in-plane, ε , and 

transverse-shear, γ , strains at every position of the plate/shell domain can be derived 

analytically in terms of the nodal DOF vector of the iQS4 element, 
eu , as:  

( ) = ( ) + ( ) = ( + )e e e e ez z ε u e u κ u B B u  (9) 

( )e e=γ u B u  (10) 

T
e e e e e =  u u u u u1 2 3 4  (11) 

  ( , , , )e

i i i zi i i ziv v v i  = =u 1 2 1 2 1 2 3 4  (12) 

where 
e

iu  represents the DOF of the i-th node, the ( )ee u  and ( )eκ u  vectors are the 

membrane and bending section strains, respectively, and the 

( , , )e        = = B B B B B1 2 3 4  matrices are the strain-displacement matrices of the 

iQS4 element. These matrices contain derivatives of the shape functions with respect to x1  

and x2  axes and can be explicitly described as [43]: 
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where the comma subscript followed by 1 and 2 indicates the partial derivative of 

( )

,( ) ( , )
x  


 = = 1 2 . Using the chain rule and the inverse of the Jacobian matrix of the iQS4 

element, one can calculate the derivatives of the shape functions, ,i jN , ,i jL , ,i jM  ( , )j = 1 2 , 

as: 
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where the symbol ( )

,( ) ( , )s t 
 


 = =  indicates the partial derivatives of the shape functions 

or local in-plane coordinates with respect to the isoparametric coordinates. 

The experimental surface strains collected from the on-board strain rosettes and/or 

embedded FBG sensors are the main input of the iFEM-iQS4 formulation. To provide this 

data, the sensors must be located in at least two different positions along the thickness 

coordinate of the laminate for a given discrete in-plane position, ( , ) ( , ,..., )i i Sx x i n =x 1 2 1 2

, where the Sn  represents the number of the two strain rosettes set. For clarity, an example 

of sensor placement configuration is depicted in Fig. 4-2, where 
( ) ( , )i k k  =ε 1 2   denotes 

the interlaminar triaxial strains measured at k1  and k2  interface of the plies at ix  position. 

Here,  , ( , )i Lk n i =0 1 2   interfaces can be assigned to any arbitrarily integer and it is 

assumed that k2  interface is closer to the top surface of the laminate than k1  interface as such 

k k2 1  

 

Fig. 4-2. Layout of strain sensors along the thickness coordinate of the thin laminated 

composite structure. 

Utilizing the in-plane strain definition given in Eq. (9), experimental surface strains, 

( )k

iε
1  and 

( )k

iε
2 , can be expressed in terms of the experimental membrane, 

e , and bending, 

κ , section strains as: 

( ) ( ) ( )
( , ) ( ) ( )

k k k

i i i iz z  = +ε ε x e x κ x1 1 1  (17) 



79 

 

( ) ( ) ( )
( , ) ( ) ( )

k k k

i i i iz z  = +ε ε x e x κ x2 2 2  (18) 

which be solved to obtained general description of experimental membrane and bending 

section strains of laminate with Ln  plies as: 

( ) ( ) ( ) ( )

( )

( ) ( , ,..., ; )
k k k k

i i
i i Sk

k

k k

z z
i n k k

h

 

= +

−
 = = 



ε ε
e x e

1 2 2 1

2

1

2 1

1

1 2

2

 (19) 

( ) ( )

( )

( ) ( , ,..., ; )
k k

i i
i i Sk

k

k k

i n k k

h

 

= +

−
 = = 



ε ε
κ x κ

2 1

2

1

2 1

1

1 2

2

 (20) 

It is important to recall that the i

e  and i

κ  vectors are the experimental counterparts 

of the membrane, ( )ee u , and bending, ( )eκ u , section strains given in Eq. (9), and thus can 

be directly computed during the experimental test given that the 
( )k

iε
1  and 

( )k

iε
2  are gathered 

by sensors. If no experimental test is available, these strain measurements can be simulated 

using numerical methods such as finite element method to be able to optimize sensor 

placement configurations for an experimental setup. If surface mounted strain gauges are 

located on top and bottom position of the laminate (i.e., no embedded FBG sensors), the 

interface indices are automatically set to ; Lk k n= =1 20  in Eqs. (19-20), leading to the 

original expression of the iFEM-iQS4 formulation for isotropic plates/shells as [14]: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( )

( )L L L L

L

n n n n

i i i i i i
i n

k

k

z z h h

h
h



=

− − − +
= = =



ε ε ε ε ε ε
e

0 0 0 0

1

2 2
2

 (21) 

( ) ( )( ) ( )

( )

L L

L

n n

i i i i
i n

k

k

h
h



=

− −
= =



ε ε ε ε
κ

0 0

1

2
2

 (22) 

where the vectors 
( ) ( ),Ln

i iε ε 0
 represent the top and bottom surface triaxial strains collected 

from sensors at any ix  position (Fig. 4-2). Unlike the membrane and bending section strains, 

experimental counterpart of the transverse-shear strains ( )eγ u  cannot be extracted directly 

using surface strain data,
( ) ( , )i k k  =ε 1 2 . However, the contributions of transverse-shear 
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strains to large bending deformations can be ignored for shape sensing of thin-walled 

structures. 

For an individual iQS4 element with the area of eA , the weighted least-squares 

functional of iFEM methodology can be expressed based on calculated errors between 

analytical and experimental section strains as [15, 43]: 

( )) ) ( ) ) )
e

e e e e

ee

A

w w h w dx dx
A

 

 ( = ( − + ( − + (u e u e κ u κ γ u
2 2 22

1 2

1
2  (23) 

where the ew  and w  represent the weighting constants related to the membrane and bending 

strains respectively, and w  stands for the weighting coefficient of transverse-shear strains 

that is always set to a small number compared to unity, e.g., w

−= 510 , due to the lack of 

experimental counterpart. In the case of 
e  and 

κ  section strains being available for the 

iQS4 element, the weighting coefficients take the value of unity ( ew w= = 1 ). Otherwise, 

they should be set to relatively small values such as 
ew w

−= = 510 . Minimizing the )e(u  

functional with respect to the unknown 
eu  nodal displacement of the iQS4 element, the final 

equation system of the element can be written as: 

)e
e e e

e

(
=  =



u
k u f

u
0  (24) 

( )( ) (2 ) ( ) ( )
e

e e T e

e

A

T T

e h w dx dx
A

w w    

 + += k B B B B B B2
1 2

1
 (25) 

( )e ( ) (2 ) ( )
e

e T T

e

A

e
h dw w x dx

A

  

= +f B e B κ2
1 2

1
 (26) 

where the ek  and ef  indicate shape matrix and experimental strain vectors corresponding to 

an individual element in the given order. Note that, unlike shape matrix ek , the ef  vector is 

dependent on experimental measurements. To numerically compute the area integral in Eq. 

(26), the discrete values of the experimental section strains, i

e  and i

κ , given by Eqs. (19-

20) are required at the Gauss points of the iQS4 element. One can employ ‘a priori’ strain 

smoothing methods or “smoothed iFEM” to overcome this issue for practical applications 

[39]. Alternatively, if a single sensor set is available within the iQS4 element, then the 
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experimental data can be assigned uniformly to each Gauss integration point (e.g., the same 

i

e  and i

κ  values for each of four Gauss points). For reasonable averaging of the sensor 

data, the centroid element can be chosen to mount this sensor set [44]. A suitable 

transformation matrix, eT , should be utilized to transform the iFEM equation (Eq. 24) from 

local to global coordinate system, and then they can be assembled for the entire iQS4 

discretization as:  

=KU F  (27) 

( )( )
eln

e T e e

e=

=K T k T
1

 (28) 

( )( )
eln

e T e

e=

=F T f
1

 (29) 

( )( )
eln

e T e

e=

=U T u
1

 (30) 

where eln  denotes the number of inverse elements for a given discretization, and the 

operator represents the finite element assembly process. The details of computing the eT  

transformation matrix by using global coordinates of the nodes were given in reference [44]. 

In Eq. (27), the K , U  and F symbols are referred to global shape matrix, displacement 

vector and experimental strain vector, respectively. Note that since F  vector is dependent on 

experimental strain data, it needs to be updated at each time step to provide a real-time 

monitoring system. After imposing displacement and loading boundary conditions, the Eq. 

(27) can be updated for the reduced forms of global equations. Then, an inversion process is 

performed to solve this equation system as: 

R R R R R R

−=  =K U F U K F1  (31) 

which provides the real-time deformations (nodal DOF of the entire iQS4 model) for any 

strain increment. To obtain more accurate non-linear large deformations reconstruction for a 

given strain increment step, ls , the global displacement vector of the nodes, 

  ( , ,..., )
T

i i i i nodeU V W i n =U 1 2 , can be utilized to update the geometry of the iFEM-

iQS4 domain before the shape analysis for next strain-increment step, ls+1, as: 
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( ) ( ) ( )  ( , ,..., ; , , ,..., )i ls i ls i ls step nodels n i n+ = + = =X X U1 1 2 1 2 3  (32) 

where the vector ( )  
T

i i i ils ls
X Y ZX  indicates the global coordinates of the i-th 

node at strain increment step of ls , the noden  and stepn  symbols stand for the total number of 

nodes and strain-acquisition step. Note that the ( )i lsU  displacements are calculated by 

performing linear iFEM analysis. Nonlinear deformation reconstruction is enforced by using 

new geometrical surface, ( )i ls+X 1 , for the next iFEM analysis. Besides, the nonlinear 

deformations can be calculated correctly since the experimental section strains vary 

nonlinearly in case of large displacement event.  If the incremental deformations are not large 

enough as compared to geometrical dimensions of the iQS4 model, they can be neglected for 

next steps. Accurate large deformation can still be monitored in this case due to the nonlinear 

input of experimental data. For further details of the incremental iFEM analysis, the reader 

can refer to the reference [50]. To facilitate the computer implementation, the flowchart and 

pseudocode of the iFEM-iQS4 approach have been scrutinized in Fig. 4-3 and Algorithm 1, 

respectively. 
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Algorithm 1 iFEM analysis for displacement reconstruction of non-linear deformations 

➢ procedure iFEM SOLUTION 

➢ Read nodal coordinates and elements connectivity data 

for e = 1 to nel do 

➢ Compute ( , , )e   =B  matrix defined in Eqs. (13-15) 

➢ Compute ef and ek matrix using Eqs. (25-26)  

➢ Assemble ef and ek matrices for all inverse elements 

end 

➢ Read constraint boundary conditions 

➢ Compute RF and RK  reduced matrices using constraint conditions and obtain 

RU   

for e = 1 to nel do 

➢ Compute the kinematic variables using element DOF vector  

➢ Compute full-field strain components  

➢ Compute full-field stress components 

end 

if the reconstructed results are far from the reference solution 

➢ Update the geometry of the structure using Eq. (32) for each time step and 

repeat the process until the result matches the FEM solution 

end 
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Fig. 4-3. Flowchart of iFEM solution for geometrically non-linear deformations. 

4.2.2. The Role of Strain Pre-extrapolation Technique for iFEM Analysis 

The experimental strain measurements are most likely noisy and erroneous, either due 

to operator error or poor equipment. In addition, due to the tendency to use a minimum 

number of sensors in real conditions, the number of sensors is optimally chosen, which can 

lead to discontinuity between strain data. To minimize this type of errors and to obtain a 

continuous distribution of experimental strains over the entire area of the plate, the 

experimental strain data can be processed using analytical techniques. Different types of 

smoothing techniques for stress and strain recovery and error estimating have been discussed 

in the literature [121]. Strain pre-extrapolation is one of those techniques which is based on 

data smoothing. To implement the proposed methodology for the experimental example, the 

number of sensors is kept constant while a high-resolution iFEM mesh is used to generate 

additional elements throughout the domain. A multinomial curve is then fitted through the 

available discrete experimental strain measurement points to replace the missing strain values 

with virtual strain data. The least squares method is a curve fitting technique which fits 
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polynomials through discretely determined strain data. The general form of a polynomial 

with k-th order takes the form: 

( ) k

k       = + + + +2
12 0  (33) 

where ( , , ,..., )i i k = 0 1 2  is the polynomial coefficient and the term k is the degree of 

the polynomial curve. The least-squares method minimizes the difference between the 

estimated values of the polynomial and the expected values from the data set. The coefficients 

of the polynomial regression model are determined by solving system of linear equations as 

follows: 

P P P

P P P P

P P P P

n n n
k

P i i i

i i i

n n n n
k

i i i i i

i i i i

kn n n n
k k k k

i i i i i

i i i i

n   



    



    

= = =

+

= = = =

+

= = = =

   
   
    
    

    
=    

    
      

  
  

   

  

   

   

1 1 1

0

2 1
0

1 1 1 1

1 2

1 1 1 1

 (34) 

where Pn  is the number of points to be regressed, and i  is the discrete strain data obtain 

during the experimental test from sensors. These set of equations can be represented in a 

general form of =H αQ  and the coefficients k  can be determined as: 

det( )

det( )

i
k =

H

H
 (35) 

where the iH  is a new matrix with the i-th column replaced by the column vector Q . An 

example of H0  matrix computation can be found in [18]. Solving these equations for different 

polynomial order, the best curve fit for the discrete experimental strain measurements can be 

obtained and accordingly the results of pre-extrapolated strains can be employed in iFEM-

iQS4 analysis.  

4.3. Numerical and Experimental Examples 

In this section, the ability of the iFEM method to reconstruct the geometrically non-

linear deformation of thin laminated plates and shell structures is thoroughly investigated 
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numerically and experimentally. The numerical problems involve flat and curved laminated 

panels subjected to increasing compressive load and exhibiting geometrically non-linear 

buckling and bending deformations. In the experimental case, a rectangular thin laminated 

plate is subjected to a line load that leads to deformation with a large deflection in the center 

of the plate. It should be noted that these case studies are carefully selected to demonstrate 

the inherent geometric application of the iFEM-iQS4 element for flat and curved thin 

laminated composite panels. As mentioned earlier, strain values have a critical role in iFEM 

shape sensing methodology. These required strain data are obtained for the numerical 

problems by performing non-linear FEM analysis utilizing ANSYS-APDL software [122]. 

However, these strain values are collected for the experimental case by using a network of 

strain gauges on the surface of the plate. To improve the accuracy of iFEM analyses with 

discrete in-situ strain data, a polynomial extrapolation strategy is used to smooth the discrete 

in-situ strain data. Finally, all the numerical and experimental results are verified using high-

fidelity FEM analyses. 

 

4.3.1 Post-buckling Analysis of a Flat Laminate: First Numerical Case Study  

A carbon fiber reinforced polymer (CFRP) laminate with a square shape of 1 [m2] area 

is considered as shown in Fig. 4-4. The stacking order of the laminate is [± 30]3s, with a total 

of 12 layers symmetric about the midplane. Each layer has a thickness of 0.3 [mm], resulting 

in a total laminate thickness of 3.6 [mm]. The right edge of the plate is rigid, and a 

concentrated axial load of 60 [kN] is applied across this rigid end, thereby resulting in a 

uniform displacement in the negative x -direction, as depicted in Fig. 4-4. Since the load is 

applied so slowly that there are no dynamic effects within the structure, which is called 

quasistatic, the non-linear nature of the problem requires that the load be increased gradually. 

The initial load of 600 [N] is applied and then ramped to 60 [kN] with 17 incremental steps. 

Nonlinear analyses are performed using FEM software (i.e., ANSYS APDL). This software 

uses Newton-Raphson convergence criteria for nonlinear problems. The maximum number 

of equilibrium iterations is set to 1000 in ANSYS for each load increment to ensure a correct 

convergence and load-equilibrium analysis. The left edge of the laminated plate is fully 

clamped. However, only the transverse displacement  w  and bending rotation about the y-
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axis y  are considered constrained for both top and bottom edges of the plate, as shown in 

Fig. 4-4. The mechanical properties of the CFRP material are listed in Table 4-1. This post-

buckling analysis aims to evaluate the ability of the iFEM analyses to track the variations of 

the translational and rotational displacement at points A, B, and C as the load increases (the 

exact positions of points A, B, and C are depicted in Fig. 4-4). For this purpose, a non-linear 

FEM analysis is performed to simulate the required strain data as input to the iFEM analysis.  

Table 4-1. Mechanical properties of the CFRP material 

 Lamina material  Young’s modulus [GPa]  Poisson’s ratio  Shear modulus [GPa] 

Carbon-epoxy 

unidirectional 

composite 

( )
 157.9

k
E =

1  

( ) ( )
.

k k
E E= =

2 3
9 584  

( ) ( )
.

k k = =
12 13

0 32  

( )
.

k =
23

0 49  

( ) ( )
.

k k
G G= =

12 13
5 93  

( )
.

k
G =

23
3 227  

 

The entire area of the plate is discretized into 100 sub-areas, as shown in Fig. 4-5. Three 

types of sensor placement models, namely 'Model I', 'Model II', and 'Model III' are used to 

perform the iFEM analyses at the same mesh resolution. In the arrangement of sensors for 

Model I, all inverse elements contain two strain measurement sets at the center of the element 

at two different interlaminar positions. These positions are chosen preferably through the 

thickness of the laminate (as mentioned in Section 4.2) with a total number of  =2 100 200  

strain rosettes. The sensor placement strategy of Model II uses  =2 40 80  strain rosettes 

placed in the center of 40 elements. In the last sensor configuration (Model III), the total 

number of strain rosettes is reduced to  =2 16 32  sensors, as shown in Fig. 4-5. 

The weighting coefficients for elements owning sensors at the middle are assigned as  

ew w= = 1  and w

−= 710 . However, for elements without sensors, these constants are set 

to 
ew w w 

−= = = 410 . It is worth noting that although thin plates undergo large 

deformations, but the strain values remain small, i.e., 1 to 10 micro strains. Therefore, when 

performing iFEM analyses, it is not practical to update the in-plane geometry and sensor 

positions with respect to each time step. However, the out-of-plane geometry (i.e., deflection) 

of the plate may need to be updated at each loading step. Since there is no significant 
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deflection between each time step, a linear iFEM analysis is preferred in the first numerical 

case compared to incremental linear iFEM analysis. 

 

 

Fig. 4-4. Dimensions, fiber orientation, and boundary conditions of the laminated plate. 

 

 

Fig. 4-5. Different sensor placement models of the plate. 
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Fig. 4-6. Variation of transverse and axial displacement components at points A, B, and 

C.  
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Fig. 4-7. Variation of rotational displacement components at points A, and B.  
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Fig. 4-6 shows the change in z-displacements w for points A and B, and the absolute 

value of x-displacement u at point C under incremental loading obtained by FEM and iFEM 

analysis using three types of sensor configuration. Moreover, the rotation variation about the 

x-axis x  for point A and the y-axis y for point B is illustrated in Fig. 4-7. The force-

displacement diagrams (Figs. 4-6, 4-7) exhibit that points A and B of the plate experience 

linearly transverse and rotational displacement almost up to 35 [kN] load level. After that, as 

the load increases, the plate experiences geometrically non-linear deformations up to 60 [kN]. 

However, point C experiences bilinear axial deformation throughout the loading history, as 

shown in Fig. 4-6. It can be observed from Figs. 4-6,4-7 that the iFEM can accurately capture 

the bilinear and non-linear behavior of the plate using Model I and Model II. However, 

regarding Model III, the iFEM results are slightly deviating from FEM results due to a 

smaller number of sensors, but it can still forecast the trend of FEM results. 

The contour plots of obtained transverse and rotational displacements are compared 

between FEM and iFEM analyses with different sensor deployments are shown in Figs. 4-8, 

4-9, 4-10. These figures show that the last time-step contour plots of transverse and rotational 

displacement of iFEM analyses are compared with the reference FEM solution. It can be seen 

from these figures that the iFEM results are quite similar to each other and almost 

indistinguishable from the FEM result. These contour results confirm the superior ability of 

the iFEM-iQS4 element to reconstruct post-buckling analyses of thin laminates.  

To compare the quantitative results related to Figs. 4-8, 4-9, 4-10., a percent differences 

calculation is performed between maximum values of FEM and the iFEM analyses. In this 

regard, the percent differences between the reference solution and the iFEM analyses using 

sensor positions of Model I to III for the maximum transverse displacement are about 0.0%, 

0.15%, and 5.4% in the given order. However, the same comparison for the maximum 

rotation about the x-axis between FEM and the iFEM analyses are 0.0%, 0.03%, and 1.1%, 

respectively. Finally, the comparison between the FEM and iFEM analyses for the maximum 

rotation about the y-axis are 0.45%, 2.5%, and 3%, respectively. This quantitative evaluation 

proves that iFEM is accurate enough to predict the maximum values of the translation and 

rotation field with only a small margin of error, even when only a few discrete sensor data 

are used. 
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Fig. 4-8. Contours of transverse displacement w [mm] between FEM and iFEM 

analyses. 

 

Fig. 4-9. Contours of rotation [rad] around x-axis between FEM and iFEM analyses. 
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Fig. 4-10. Contours of rotation [rad] around y-axis between FEM and iFEM analyses. 

4.3.2 Large Deflection of a Clamped Laminated Cylindrical Panel: Second Numerical 

Case Study 

A deep cylindrical CFRP laminated plate under a point load with a stacking order of 

(0/90/0/90)s is evaluated by iFEM analyses. The geometry and boundary conditions are 

similar to a benchmark problem performed in some preliminary studies [123] with the 

following data: R = 500 [mm], L = 450 [mm], β = 30°, h = 4 [mm] (refer to Fig. 4-11). The 

plate is subjected to gradually increasing concentrated loads of a maximum of 4 [kN] to 

achieve geometrically non-linear deflection. Like the previous example, three sensor 

positions are used to provide the required strain values for the iFEM formulation. Herein, the 

whole curved domain is divided into 144 sub-elements. For the first type of sensor 

distribution, indicated by the legend 'Model I,' all elements are instrumented using 

 =2 144 288  strain sensors. The second model of sensor deployment is labelled as 'Model 

II', and the number of sensors is reduced to half (  =2 72 144 ). However, for the third model 

of sensor distribution, 'Model III', the number of rosettes is reduced to one-sixth (  =2 24 48

) as shown in Fig. 4-12.  The weighting constants for elements with sensors are set as 
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ew w= = 1 , w

−= 610 . However, for elements without sensors, they are assigned as 

ew w w 

−= = = 310 . 

 

Fig. 4-11. Clamped laminated cylindrical panel under point load. 

 

Fig. 4-12. Different types of sensor placement for cylindrical panel. 

The capabilities of iFEM analyses in terms of shape sensing of curved laminates under 

point loads are evaluated. The central point of the laminate is subjected to a gradually 

increasing load of a maximum of 4 [kN]. The load is applied to the structure in ten increasing 

steps with equal intervals of 400 [N], as shown in Fig. 4-13. In this way, the central point of 

the plate is deflected as a function of incremental forces. Since the incremental strain values 

associated with the alternating time-steps are large enough to affect the deflection results of 

the iFEM analyses, the incremental linear iFEM formulation is applied at each loading step 

to reconstruct the current deformed shape. Then, the geometry is updated, and the iFEM 

analyses are performed based on the incremental strain data utilizing three types of sensor 

configurations (i.e., Models I to III).  
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Fig. 4-13. Central deflection of the cylindrical laminate using three types of sensor 

placement. 
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Fig. 4-13 obviously shows that the deflection predicted by the linear incremental iFEM 

approach agrees quite well with the FEM solution when the first sensor model is used. It is 

also clear that as the number of strain gauges decreases, there is a discrepancy between the 

linear incremental iFEM and FEM results. However, these error margins are negligibly small, 

indicating that the incremental linear iFEM approach can capture well the geometrically non-

linear deflection of a thin laminated shell structure. The linear iFEM results are calculated 

and compared with the FEM solution and are exhibited in Fig. 4-13. In the current case study, 

it can be observed that, unlike the previous numerical example, linear iFEM analyses cannot 

be a substitute for the shape sensing of curved laminates. 

 

Fig. 4-14. Contours of x-displacement [mm] component obtained by iFEM and FEM 

analyses. 

Additionally, the ability of the incremental iFEM approach to reconstruct the axial and 

rotational displacements of the last time-step using the Model I, Model II, and Model III 

sensor configurations are illustrated in Figs. 4-14, 4-15, and 4-16. These axial and rotational 

displacement contours show that the iFEM analysis with the sensor distribution of Model I 

reconstructs quite similar contours to the reference FEM solution. Moreover, the obtained 
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contours of the iFEM analyses with the Models II and III sensor configuration are less 

accurate but still comparable to FEM solutions. It should be noted that although the use of a 

smaller number of sensors leads to a minor contour inconsistency compared to the reference 

solution, it predicts the precise location of the occurrence of the maximum displacement, 

which fulfills the most crucial requirement of a reliable shape sensing system.  

 

Fig. 4-15. Contours of y-displacement [mm] component obtained by iFEM and FEM 

analyses. 

Quantitatively speaking, the percent differences for the maximum x and y 

displacements between the FEM reference and the iFEM analyses are calculated as (3.7%, 

7.3%, 16%) and (5.8%, 9.1%, 18%), respectively, for the Models (I, II, III). However, when 

a similar comparison is made between FEM and iFEM analyses for the case of rotation z  

(around global z-axis), these margins of error are reduced to 0.04%, 0.9%, and 0.91% in the 

given order. These values for the percent difference show the superior performance of the 

iFEM approach at a higher sensor density, especially at the maximum rotational 

displacement. Although the values for the percent difference increase at lower sensor 

densities, these error percentages are not significant enough to affect the reconstruction 
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performance of the iFEM method. Overall, based on the obtained quantitative and qualitative 

results, it can be declared that the iFEM-iQS4 element is efficient enough to reconstruct the 

non-linear deformations as well as the axial and rotational contours with only a few sensors. 

These two numerical investigations clearly illustrate that using iFEM analyses for shape 

sensing of thin laminated plates and shells leads to reliable and cost-effective results. 

 

Fig. 4-16. Contours of rotation [rad] around z-axis obtained by iFEM and FEM 

analyses. 

 

4.3.3 Large Deflection Sensing of a Clamped Laminated Flat Panel: Experimental 

Case Study  

4.3.3.1 Laminate manufacturing and testing 

E-glass fiberglass woven roving fabric with an areal weight of 300 g/m2 and Biresin 

CR120 resin and CH120 hardener were procured from Metyx-Turkey and Sika for 

fabrication, respectively. The vacuum-assisted resin infusion process is used to fabricate the 

composite sheet with a uniform thickness of almost 0.83 [mm]. For the resin infusion, a flat 
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stainless-steel surface of the table was prepared by applying coats of sealant and release films. 

Four layers of fibers were placed on the prepared surface and covered with a peel ply and 

then flow-mesh, which helps prevent the air entrapment and assists the uniform resin flow. 

A vacuum bag was sealed with the help of sealant tape, and then a debulking process was 

carried out for 30 minutes. Resin and hardener were mixed in a ratio of 100:30 wt% and then 

degassed for 20 minutes to remove entrapped air. After degassing, epoxy was injected into 

the system, and a temperature of 120ºC was applied through Wittmann Tempro plus D-18 

for 24 hours. The samples from the composite plate were machined by a Kuka KR16 Ultra-

F-robot water jet to characterize the material properties.  

 

Fig. 4-17. The schematics of tensile and shear test specimens. 

Table 4-2. Mechanical properties of the Glass-Epoxy material 

 Lamina 

material  

Young’s modulus 

[GPa]  

Poisson’s ratio  Shear modulus [GPa] 

Glass-epoxy 

twill composite 

( ) ( )k k
E E= =
1 2

24  

( )
.

k
E =

3
7 1  

( ) ( ) ( )
.

k k k  = = =
12 13 23

0 14  

 

( ) ( ) ( )
.

k k k
G G G= = =

12 13 23
3 1  

 

 

Tensile test was performed according to ASTM D-3039 standard to determine the 

elastic modulus and Poisson's ratio, whereas Iosipescu shear test was performed as per ASTM 

D5379 to measure the shear modulus. For the tensile test, six specimens with a size of 250×25 

[mm2] were cut and tabbed with 50 [mm] aluminum, while for the shear test, five specimens 

with a size of 76×19 [mm2] were tested. Both shear and tensile tests were performed with the 

help of the Instron universal testing machine (UTM) 5982, which is equipped with a 100 

[kN] load cell. Fig. 4-17 depicts the schematic of tensile and V-notch shear test specimens. 

The obtained mechanical properties of the glass-epoxy material are listed in Table 4-2. It is 

noteworthy that a bending test cannot determine the out-of-plane material properties because 
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the plate is not thick enough. Therefore, these material properties are approximated and 

calibrated using the FEM analysis. 

3.3.2 Large deformation test setup 

For the large deformation test setup, sixteen Type I C2A-06 125ww-350 strain gauges 

with quarter bridges are used to measure the strain. These strain gauges have a grid resistance 

of 350 ± 0.6% [Ohms] and are stacked as 0º-45 º-90 º rosette, recommended for steep strain 

gradient and limited gaging areas. These strain gauges are attached to the bottom of the 

1200×300 [mm2] composite laminate. The laminate is fixed in a metal fixture, and a 

compression line load is applied along the length of the laminate (refer to Fig. 4-19). The 

geometry, boundary conditions, and sensor positions of the clamped flat plate are shown in 

Fig. 4-18. The whole area of the plate is discretized into several elements. Some of these 

elements have sensors at their centers marked with yellow color as seen in Fig. 4-18. The 

exact location of these sensors is shown in Table 4-3. 

 

Fig. 4-18. The geometry, boundary conditions and sensor positions of the flat plate 

under line load.  

Experimental Sensor Placement on the Composite Plate
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Table 4-3. Coordinates of sensors on experimental laminated plate 

Sensor x [mm] y [mm] Sensor x [mm] y [mm] 

1 1100 75 9 1100 225 

2 900 125 10 900 275 

3 700 75 11 700 225 

4 900 25 12 900 175 

5 500 75 13 500 225 

6 300 125 14 300 275 

7 100 75 15 100 225 

8 300 25 16 300 175 

 

 

Fig. 4-19. Test setup a) before loading, b) after loading, c) data acquisition system.  

Strain data is acquired using the NI PXIe-1075 chassis via the NI 6363 strain card, 

using the NI signal express software to record the continuous data. To achieve a 

homogeneous distribution of strains, a preload of 100 [N] is applied to the surface of the plate 

via a steel bar. At a preload of 100 [N], the strain gauges are calibrated to use the zero value 

      

Plate

Fixture

   

 I system

Test setup
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as a reference. A continuous ramp load of 100 [N] to 750 [N] with a hold time of 10 seconds 

between each ramp is applied to the plate within an interval of 250 seconds, as shown in Fig. 

4-20. Strain data are post-processed using NI- DIAdem 2021 software, where strain data for 

each 10-second hold step (13 in total) from each strain gauge are averaged and then used for 

iFEM calculations. As shown in Fig. 4-18, the arrangement of the sensors and the applied 

boundary condition are symmetrical, which also results in symmetrical strain data. Therefore, 

one set of strain gauges (1 to 4) can represent the strain distribution across the whole laminate. 

Fig. 4-21 shows the non-linear variation of axial strains of these sensors (1 to 4) over the 

time-steps. 

  

Fig. 4-20. Time-loading history. 

 

Fig. 4-21. The variation of axial strains of sensors number 1 to 4 over the time steps. 
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4.3.3.3 iFEM-based Shape Sensing  

This section presents real-time shape sensing for the clamped laminated plate by 

performing iFEM analyses. As described in the previous sections, a prior smoothing analysis 

is performed over the obtained experimental strain data. For this purpose, a moderately fine 

resolution of the iFEM discretization is used with discrete strain data obtained through strain 

gauges, as shown in Fig. 4-22(a). After that, the missing strain values of the empty elements 

are predicted by performing a strain pre-extrapolation technique to fit a fourth-order 

polynomial curve through discrete strain values aligned along the x-axis as shown in Fig. 4-

22(b). Thus, the number of available strain data is increased from sixteen to forty-four, and 

this extensive strain data is used in the iFEM formulation. The iFEM analyses are then 

performed for all incremental loading steps to reconstruct the non-linear large deflection of 

the entire laminate. The weighting values for the elements accommodated with sensors are 

set as ew w= = 1  and w

−= 610 . However, these constants are assigned as 

ew w w 

−= = = 510  for elements without sensors (strain-less elements). Finally, a high-

fidelity FEM analysis with 14701 nodes and 88206 DOFs is performed to serve as a reference 

solution to compare with the iFEM results as illustrated in Fig. 22(c).  

The central deflection (maximum displacement) of the laminate for all loading levels 

obtained by experiment, FEM, iFEM using discrete strain data, and iFEM coupled with the 

pre-extrapolation technique are shown in Fig. 23. This figure shows that the iFEM (pre-

extrapolated strain data), experimental results and FEM analyses have a higher degree of 

agreement compared to iFEM (discrete strain data), thereby proving the advantage of the 

strain extrapolation before running an iFEM analysis. In other words, the use of polynomial 

smoothing analyses for iFEM analysis results in almost identical nonlinear deflection 

predictions to the experimental deflections and reference FEM solutions, whereas iFEM 

analysis with discrete strains underestimates the maximum deflections as shown in Fig. 23. 

This behaviour is even more apparent at the higher loading levels (after load step of 6). For 

smaller loads (before load step 6), both iFEM approaches produce more erroneous 

deformations due to the fully clamped constrained boundary condition of the plate and 

absence of enough sensors near the clamped edges as can be observed from Figs. 22a-b. 
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Fig. 4-22. Mesh resolution and iQS4 elements with strain measurement sets at the 

center for a) iFEM analysis using discrete sensors, b) iFEM analyses using polynomial 

smoothing approach, and c) FEM model. 

This means that in the lower loading stages, the strains dominate at the edges of the laminates 

whereas, at higher load levels, these strain magnitudes become smaller as compared to the 

strains at the centre of the plate, thereby allowing a better deformation reconstruction after 

load step of 6. In sum, since the edge lines of the plate do not have enough sensors to detect 

these experimental strains, the iFEM-reconstructed displacements at low loading levels 

become less accurate than that of the higher loading stages. 

 

Fig. 4-23. Central deflection of the plate obtained from experimental, FEM and iFEM 

analyses. 
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Fig. 4-24. Total displacement contours at time-step 3 obtained by (a) iFEM analysis 

using discrete sensors, (b) iFEM analysis using polynomial smoothing approach, and (c) 

FEM analysis. 

 

Fig. 4-25. Total displacement contours at time-step 8 obtained by (a) iFEM analysis 

using discrete sensors, (b) iFEM analysis using polynomial smoothing approach, and (c) 

FEM analysis. 

Figs. 4-24, 4-25, and 4-26 illustrate full-field deflection of the plate obtained with iFEM 

using discrete and pre-extrapolated strains and FEM analyses for three arbitrarily selected 
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time loading levels (i.e., steps 3, 8, and 13). As can be seen in these figures, the total 

displacement contours obtained using iFEM in conjunction with a polynomial smoothing 

approach are comparable to the reference FEM, which also confirms the high performance 

of the iFEM method for full-field reconstruction in real-time. However, the iFEM analyses 

with discrete strains show lower accuracy in reconstructing the full-field displacement 

contours. In terms of numbers, the maximum values of the total displacement between FEM 

and the iFEM analyses using the strain pre-extrapolated technique are 12%, 0.9%, and 0.3% 

for steps 3, 8, and 13, respectively. However, the percentage errors between FEM and the 

iFEM analyses using discrete strain data are 21%, 7.5%, and 7% in the given order, 

confirming the higher accuracy and efficiency of the iFEM analyses using the pre-

extrapolated strain data. 

 

Fig. 4-26. Total displacement contours at time-step 13 obtained by (a) iFEM analysis 

using discrete sensors, (b) iFEM analysis using polynomial smoothing approach, and (c) 

FEM analysis. 

Finally, the three-dimensional deformed shapes reconstructed utilizing the iQS4 

models of the iFEM (discrete and pre-extrapolated strains) are compared with each other and 

reference solutions in Fig. 4-27. According to these deformed shapes, the improved 

performance of iFEM-iQS4 with pre-extrapolated strains can be observed for full-field large 

deformation sensing, thus proving the experimental advantages of the proposed method. 
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Overall, this study case experimentally verifies the ability of the iFEM-iQS4 inverse element 

to capture the geometrically non-linear deflection of thin laminates and validates the practical 

utility of the strain pre-extrapolation technique for the iFEM-FSDT approach. The 

computational strategy presented here can be used to develop accurate and efficient 

applications of the iFEM-FSDT method in future research on shape detection of thin 

laminated structures subjected to large deformations using a small number of discrete 

sensors. 

 

Fig. 4-27. Comparison of three-dimensional deformed shapes (30 times magnified) 

obtained at time-step 13. 

4.4. Conclusions 

This study presents an experimental and numerical evaluation for shape sensing of thin 

laminated structures subjected to large deformations using the iFEM approach. The iFEM is 

a sensor-based algorithm that uses a weighted least squares function to minimize the error 

between experimental and numerical section strains to predict full-field deformations. To this 
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end, the entire domain of the structure is discretized into quadrilateral inverse shell elements, 

referred to as the iFEM-iQS4 model. For the numerical verification of the iFEM approach 

for geometrically non-linear displacement monitoring of thin laminated structures, two case 

studies are considered, including a post-buckling analysis of a thin laminated plate and a 

curved thin laminated shell geometry subjected to large deformations. For this purpose, three 

different sensor placement models are used for these laminates.  

Furthermore, the efficiency of the iFEM-iQS4 element is verified through experiments 

where initially a thin laminate is fabricated, and then the mechanical properties of the 

laminate are measured through tensile and shear tests. Moreover, this thin laminate is 

clamped on a fixture and then tested under large deflection deformation. The appropriate 

locations for installing sixteen strain rosettes are calculated to obtain the required strain data 

for the iFEM analysis. Then, these sensors are placed at the designated locations on the 

surface of the plate, and the strain data is collected using data acquisition systems. Since the 

sensors are discretely distributed from each other, the iFEM formulation is coupled with a 

strain data smoothing technique known as the “strain pre-extrapolation technique” to recover 

these sparse strain data over the entire area of the structure. This smoothing method also 

helps to neglect strain measurement errors and other operational mistakes during the 

analyses.  

The obtained quantitative and qualitative results of the post-buckling analysis clearly 

show the high performance and accuracy of iFEM in buckling deformation reconstruction of 

thin laminates even by employing a few sensors. Moreover, the incremental iFEM analyses 

obtained for the curved shell laminate show a good agreement with the reference FEM 

solution by using sparse sensor deployments. In the experimental analyses, the efficiency of 

the coupled iFEM method with the pre-extrapolated strain technique is well demonstrated in 

recovering discrete strain data over the entire domain of the structure. This smoothed strain 

data leads to almost excellent reconstruction of the displacement field of the thin laminates 

subjected to large deformation. In conclusion, the knowledge acquired from this study can 

be utilized as a practical guideline for future applications of the iFEM-iQS4 algorithm for 

displacement monitoring of thin laminated structural components subjected to geometrically 

non-linear deformations.  
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CHAPTER 5. Numerical Applications of Inverse Finite Element Method 

for Shape Sensing of Marine and Aerospace Structural Components 

 

Marine and aerospace structural components are usually exposed to harsh 

environmental conditions which can lead to damage/failure of the structure. Therefore, the 

implementation of a reliable Structural Health Monitoring (SHM) system is crucial to reduce 

the economic cost and improve the predictive maintenance plan. As an important part of 

SHM, shape sensing reconstructs the displacement field using in-situ strain sensors. The 

inverse finite element method (iFEM) is a powerful technique for tracking the static and 

dynamic response of structural components in three dimensions in real time. For this purpose, 

iFEM uses strain data collected from a discrete number of on-board/embedded sensors. The 

main objective of this chapter is to monitor the deformation of a ship hull structure and a 

doubly curved aft fuselage panel under representative loads using the iFEM method. A robust 

inverse shell element, called iQS4, is used to estimate the iFEM capability in three-

dimensional shape sensing with only a number of sensors on board. A direct Finite Element 

Analysis (FEM) is performed to simulate the strain information required for the iFEM 

analysis. The obtained reference results are compared with the iFEM analysis to prove the 

efficiency and accuracy of the iFEM method in predicting the full-field deformation of such 

structural components with only a few sensor paths. In addition, the accuracy of iFEM 

approach is also assessed for broken/damaged sensors among other sensors. 

5.1.  Introduction 

Stiffened panels are widely used to build structural elements of aerospace and marine 

structures. One of the most common types of those panels are aft fuselage structures in 

aerospace engineering and ship-hull structure in marine engineering. However, the harsh 

environmental conditions may sometimes cause damage in them which may lead to 

catastrophic failure of the overall structure. To detect such probable flaws in composite 

structures, a suitable structural health monitoring (SHM) system is necessary to be installed 

onboard structure. Reconstructing the displacement field from in-situ sensors in real-time is 

referred to as “shape sensing”, which is an important part of the SHM process. The inverse 

finite element method (iFEM) is a powerful shape-sensing technique, introduced by Tessler 

and Spangler [14,15], which can be potentially useful for SHM of plate/shell structures. The 
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iFEM methodology performs the shape sensing by minimizing a weighted-least-squares 

functional that aims to match the experimental strain measurements with their theoretical 

counterparts. The minimization process leads to a system of linear algebraic equations that 

can be solved to determine the unknown displacements in real-time. Once the displacement 

field is reconstructed, the strains throughout the field can be calculated using the strain-

displacements relationships based on iFEM. Then, the three-dimensional stress state of the 

structure can be calculated using the full-field strains and the material properties of the 

structure. Finally, the three-dimensional stresses can be fitted to an equivalent stress using an 

appropriate failure criterion (e.g., von Mises yield criterion), allowing real-time damage 

predictions. The applications of iFEM to damage detection and SHM of metal and composite 

structures have been recently carried out [58,59,116,124].  

In addition to damage detection based on iFEM, several robust inverse elements have 

been developed for shape sensing beam/plate/shell-like structural components based on 

iFEM formulations [35,44,45]. Abdollahzadeh, Kefal, and Yildiz [16] provided a comparison 

study among existing inverse shell elements (i.e., iMIN3, iQS4, and iCS8). The iQS4 element 

is a four-node quadrilateral inverse-shell element which firstly introduced by Kefal et al. [43]. 

The kinematic relations of the iFEM-iQS4 formulation are based upon Mindlin’s plate theory 

[125]. The iFEM analyses have been widely used to shape and stress monitoring of different 

engineering applications with different geometrical topologies and types of materials 

[18,19,126]. Moreover, coupled refined zigzag theory with iFEM approach is developed and 

introduced to better study the shape and stress monitoring of thick multilayered structures 

[17,40,57,86,87]. Coupled iFEM with isogeometric and peridynamics analyses can also be 

found in the literature [116,82].   

To the best of the authors’ knowledge, there is no research has been dedicated to 

verifying the capability of iFEM for shape sensing of aft fuselages and representative ship-

hull structures in the literature.  The problem mentioned above is addressed in the current 

study through performing various numerical shape-sensing analyses on a doubly curved 

composite panel as an aft fuselage and a stiffened representative ship-hull structure by 

utilizing the iFEM-iQS4 methodology. The iFEM-iQS4 element requires less computational 

effort than the other robust curved inverse shell element called iFEM-iCS8. Therefore, to 
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achieve fast real-time response, we used the iQS4 element. To this end, a high-fidelity FEM 

analysis is performed using ANSYS-APDL to provide simulated strain data (that can be 

considered as a representative of experimental sensor data) as well as to be a reliable 

reference solution to be compared with iFEM results. The obtained full-field displacement 

and strain contours demonstrate a high consistency between iFEM and FEM solutions. The 

obtained results also prove that iFEM can reliably predict full-field displacements of such 

structures with complex geometries by using sparse strain data collected from few numbers 

of sensors onboard. In addition, the efficiency and accuracy of iFEM approach are also 

assessed for broken/damaged sensors among other sensors. It is shown that in the case of loss 

of a few sensors, iFEM still can provide a reliable 3D shape reconstruction.  

5.2. Mathematical formulation 

iQS4 is a four-node quadrilateral inverse plate/shell element with six degrees of 

freedom (DOF) per node as shown in Fig. 5-1(a). The main advantage of using iQS4 is the 

inclusion of the drilling rotations which enables superior shape-sensing of different 

applications with complex geometries. 

 

Fig. 5-1. (a) Geometry of iQS4 inverse shell element with related global and local 

coordinate systems, (b) Position of the strain sensors at top and bottom of the element’s 

surface. 

 

The detailed formulation of the shape functions, displacement vectors and 

displacement-strain relationships are provided in [3]. The analytical strain components can 

be calculated in terms of the nodal displacement vector,
eu , as  
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where e , κ , and g  represent the analytical membrane, bending, and transverse shear 

strains respectively and sB , mB and kB are the matrices containing derivatives of the iQS4 

shape functions. The explicit forms of these matrices can be found in [3]. To calculate the 

experimental counterparts of the numerical section strains, strain rosettes should be located 

on top and bottom surfaces of each iQS4 element as depicted in Fig. 5-1(b). Using these in-

situ strain measures, one can easily calculate the experimental section strains as:  

ε ε

i i ( ) ( ) ( , ,..., )i i i i si n
h

+ − + − 
   + − =   

 
e κ ε ε ε ε

1 1
1 2

2 2
 (2) 

where 
ε

ie  and 
ε

iκ  show the experimental counterparts of the membrane and bending 

strains for sn  numbers of discrete sensors, respectively. The experimental transverse shear 

strain 
ε

ig  cannot be directly extracted from the obtained strain measurements. Nevertheless, 

the contribution of this shear strain  for shape sensing of slender structures can be safely 

omitted due to its minor effect among other strains. The weighted least-square functional can 

be defined based on the numerical and experimental section strains as follows: 

2 2 2

Φ( ) = w ( ) e + w ( ) w ( )e e e e

e k g− − + −u e u κ u κ g u gε ε ε  (3) 

where the weighting constants of individual section strains w  e , w k , and wg
 are 

related to membrane, bending, and transverse shear section strains, respectively. If any of the 

experimental section strain data is missing, then the related weighting constants are set to a 

small positive value such as w  w we k g

−= = = 410 . Otherwise, they are assumed to be equal 

to unity. Minimizing the Φ  functional with respect to the nodal displacement vector results 

in an equation in the form below: 
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where the ek  and ef  are analytical shape matrix and experimental shape vector in the 

local coordinate system, respectively. These local quantities can be transformed into a global 

coordinate system by using an appropriate transformation matrix, eT as: 

KU=F  (5a) 

( ) ,  F ( ) ,  ( )
el el elN N N

e T e e e T e e T e

e e= e=

     = = =     K T k T T f U T u
1 1 1=

 (5b) 

where the operator denotes assembly process of the finite element method, and the 

U ,F , and K  represent the shape matrix, displacement vector, and experimental shape 

vector, in  global coordinate system in the given order. In this study, the accuracy and 

efficiency of the iFEM element are assessed by computing the percent difference for the 

maximum values of the total displacement between iFEM and FEM analyses as 

iFEM FEM

FEM
Percent Difference(%) = 

 



−
100  (6) 

 

5.3. Shape Sensing of a Doubly Curved Aft Fuselage Panel using Inverse Finite Element 

Method 

Shape sensing of a three-dimensional multi-layered aft fuselage panel is performed 

based on the iFEM analyses. The panel has a doubly curved geometry which is supported by 

longitudinal girders and lateral stiffeners as shown in Fig. 5-2. Both the plate and the stringers 

have a uniform thickness of 10 mm and an unsymmetric balanced angle-ply lamination 

stacking sequence with fiber angles of (-30/45/0/-45/30). Each of these layers is made of 

carbon-epoxy material and has an equal thickness of 2 [mm] resulting in a total laminate 

thickness of 10 [mm]. The mechanical properties of the carbon-epoxy material are provided 

in Table 5-1. The panel is subjected to a constant pressure of 24 [MPa] along positive z-

direction and all the edges are fully clamped. The geometrical dimensions of the panel are 

illustrated in Fig. 5-2. 
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Fig. 5-2. Dimensions of the stiffened multi-layered aft fuselage panel (all in 

millimeters). 

 

As previously discussed, the most critical part of iFEM analyses is collecting the 

experimental strain measurements from the top and bottom surfaces of the structural 

components. Before installing the sensor network to the structure experimentally, one must 

configure a precise layout of the sensors’ locations. 

Table 5-1. Mechanical properties of the unidirectional carbon-epoxy material 

Lamina 

material  

Young’s modulus 

[GPa]  

Poisson’s ratio  Shear modulus 

[GPa] 

Unidirectional 

carbon-epoxy  

composite 

( )
.

k
E =

1
157 9  

( ) ( )
.

k k
E E= =

2 3
9 584  

( ) ( )
.

k k
 = =

12 13
0 32  

( )
.

k
 =
23

0 49  

( ) ( )
.

k k
G G= =

12 13
5 93  

( )
.

k
G =

23
3 227  

 

The required experimental strain data can be obtained either by in-situ strain 

measurement systems (e.g., strain gauges, rosettes, and FBGs) or simulated through a high-

fidelity FEM analysis, which can be utilized as discrete strain data in the iFEM formulation. 

Furthermore, the FEM analysis is used as a reliable reference solution to be compared with 

iFEM results. In the current study, the iFEM and FEM models possess 96 and 2573 elements, 

respectively. The weighting constants corresponding to the membrane and bending strains of 

the elements mounted a sensor at the center were set to unity. However, for the elements with 

no sensors, these constants were defined as a very small value (i.e.,10-6). Weighting 

coefficient of the transverse shear strains was set to   for all iQS4 elements. 
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Fig. 5-3. Sensor deployment used for a) iFEM, and b) iFEM(D) analyses. 

 

The iFEM-iQS4 model utilizes the strain data collected from the sensors located on the 

surface elements of the panel and therefore, it has just 20 elements installed with top and 

bottom strain rosettes as shown in Fig. 5-3(a). For most of engineering applications, sensor 

damage/loss is almost inevitable during severe manufacturing and/or operational conditions. 

Therefore, to illustrate the practical efficiency and accuracy of the iFEM approach, some 

damaged/broken sensors were simulated arbitrarily among other sensors. For this purpose, 

one-sixth of the whole sensors (i.e., four sensors) are assumed to be out of service as depicted 

in Fig. 5-3(b). The symbol ‘iFEM(D)’ is used to represent the iFEM analyses possessing 

damaged/broken sensors. 

 

Fig. 5-4. The FEM and iFEM deformed shapes ( with same magnitude factor of  2000). 
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Fig. 5-5. Total displacement fields obtained by FEM, iFEM, and iFEM(D) analyses. 

 

Regarding the quantitative results in Figs. 5-5,5-6, the percentage differences in the 

maximum total displacement for iFEM and iFEM(D) analyses compared to the reference 

solutions FEM are about 2.6% and 4.0%, respectively. This error percentage for maximum 

total rotation between the mentioned analyses are 0.4%, and 1.0% in the given order. 

Furthermore, the total displacement and rotation contours obtained from the iFEM analyses 

show superior reconstruction capability of the iQS4 approach for the SCP. In the case of the 

iFEM(D) model, the obtained contours also show high efficiency and reliable accuracy, even 

though they are less precise than those of the iFEM model with intact sensors.  

Moreover, to investigate the ability of the iFEM approach to reconstruct the full-field 

strain components, the equivalent strain state obtained from the iFEM analyses for a single 

layer, i.e., the top layer, is compared with the results from FEM in Fig. 5-7. This equivalent 

strain state can be used to predict damage and can be calculated under plane stress conditions 

as follows: 

( ) ( ) ( )eq      = − + − + −2 2 2
1 2 2 3 1 3

2

3
 (7) 
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where, and are principal strains obtained from iFEM analyses. The reconstructed 

contours are quite similar to the FEM reference solution and the percentage error between 

the maximum values of FEM and the iFEM results is less than 1.3%. Overall, the quantitative 

contour results and the reconstructed deformed shapes indicate that the iFEM approach can 

be readily used to predict high-precision full-field displacements, even in the case of an on-

board sensor network with multiple defective/damaged sensors. Moreover, the obtained 

equivalent strain contours and results prove that iFEM is capable of reconstructing strain 

fields with high precision. Therefore, for structural monitoring of various aircraft 

components (particularly, aft fuselage panels), iFEM can be classified as one of the most 

robust and accurate systems for shape sensing and real-time monitoring. 

 

Fig. 5-6. Total rotation fields obtained by FEM, iFEM, and iFEM(D) analyses. 

 

Fig. 5-7. Equivalent strain fields obtained by FEM, and iFEM analyses. 
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Overall, the quantitative contour results and the reconstructed deformed shapes indicate 

that the iFEM approach can readily be used to predict high-precision full-field displacements, 

even in the case of an on-board sensor network that has multiple defective/damaged sensors. 

Therefore, for structural health monitoring of various aircraft components (particularly, aft 

fuselage panels), iFEM can be classified as one of the most robust and accurate systems for 

shape sensing and real-time monitoring. 

5.4. Three-Dimensional Shape Sensing of a Representative Ship-Hull Cross-Section 

Based on Inverse Finite Element Method 

A representative cross-section of a small ship-hull is considered to be shape estimated 

using the iFEM method. The cross-section of this ship-hull has a width of 5m, a height of 2.5 

m, and a depth of 2 m as demonstrated in Fig. 5-8. The hull is stiffened laterally and 

longitudinally using girders with 0.2 m width as shown in Fig. 5-8. All components of this 

hull are made of 5 mm thick sheets of AISI type 304 stainless steel. It is presumed that 1.5 

m of the hull becomes under the water subjected to hydrostatic pressure. Moreover, the right 

and left panels of the hull are exposed to water wave strikes of maximum a 6 KPa pressure. 

Moreover, all the cross-sectional edges are considered to be fully clamped.  

 

Fig. 5-8. Dimensions of the stiffened ship-hull. 

The most important part of the iFEM analyses is the acquisition of the experimental 

strain measurements on the top and bottom of the structural components. Before installing 

the sensor network experimentally on the structure, you must create an accurate layout for 

the location of the sensors. The required experimental strain data can be obtained either by 

in-situ strain measurement systems (e.g., strain gauges, rosettes and FBGs) or simulated by 
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a FEM analysis, which can be used as discrete strain data in the iFEM formulation. Moreover, 

the FEM analysis is used as a reliable reference solution that can be compared with the iFEM 

results. In the current study, the iFEM model consist of 148 elements which 48 of them are 

accommodated with strain rosettes as shown in Fig 5-9(a). The weighting constants 

corresponding to the membrane and bending strains of the elements that have a sensor in the 

center were set to unity. However, for the elements without sensors, these constants were 

defined with a very small value (i.e., 10-8). The weighting coefficient of the transverse shear 

strains was set to 
gw −= 510 for all iQS4 elements.  

In most engineering applications, damage or loss of the sensors is almost inevitable 

under difficult manufacturing and/or operating conditions. Therefore, to illustrate the 

practical efficiency and accuracy of the iFEM approach, some damaged/broken sensors were 

randomly simulated among other sensors. For this purpose, one-sixth of the total sensors (i.e., 

eight sensors) are assumed to be out of service, as shown in Fig. 5-9(b). The symbol 

'iFEM_D' is used to represent the iFEM analyses with damaged/defective sensors. 

 

Fig. 5-9. Sensor deployment used for (a) iFEM, and b) iFEM_D analyses. 

In this section, the results of the iFEM and FEM analyses are compared and discussed 

in detail to verify the predictive shape detection capability of the iQS4 element. Fig. 5-10 

shows the deformed shapes of the preventative ship-hull cross section obtained from both 

FEM and iFEM analyses. Note that the deformation values for both solutions are magnified 

by the same factor 4000. Observing Fig. 5-11, one can easily understand that iFEM has 

reasonable potential to reconstruct the 3D full-field deformations compared to the results 

obtained by FEM. This proves the practical suitability of iFEM-iQS4 as a reliable system for 

shape acquisition. 
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Fig. 5-10. The FEM and iFEM deformed shapes (with same magnitude factor of 4000). 

 

Fig. 5-11. Total displacement fields obtained by FEM, iFEM, and iFEM_D analyses. 
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As for the quantitative results in Fig. 5-11, the percentage differences between the 

maximum total displacement of iFEM, iFEM_D and the reference solution FEM are about 

0.6% and 3.4%, respectively. Moreover, the total displacement contours obtained from the 

iFEM analyses show a superior similarity between FEM and iFEM analyses. Overall, the 

quantitative contour results and the reconstructed deformed shapes show that the iFEM 

approach can be easily used to predict high-precision full-field displacements, even in the 

case of an on-board sensor network with multiple defective/damaged sensors. Therefore, for 

monitoring the structural health of various marine components iFEM can be classified as one 

of the most robust and accurate shape detection and real-time monitoring systems. 

5.5. Conclusions 

The shape sensing of a multilayered aft fuselage panel with double curved geometry 

and a representative ship hull structure are carried out using a new sensor-based approach 

called iFEM. The obtained results clearly show that this method is robust enough to 

reconstruct the translational and rotational fields and is able to predict quantitative results 

with a small deviation from the FEM reference solution, even when some of the sensors are 

out of service due to operational and application situations. This study is one of the first 

attempts to capture the shape of aft fuselage panels of aircrafts using iFEM methodology. 

The knowledge gained from this study may lead to the expansion of numerical applications 

of shape sensing other aircraft and marine structural components using iFEM technique in 

the future. 
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CHAPTER 6. General Conclusions 

6.1 Achievements against the Objectives 

The main objective of this dissertation was to investigate numerical and experimental 

applications for shape and stress sensing of shell structures using iFEM analysis. The results 

of this work, which are consistent with the research objectives, are given below: 

1. The main existing iFEM shell elements (i.e., iMIN3, iQS4 and iCS8) are compared 

in terms of their accuracy and efficiency for shape and stress sensing of structural 

components with simple and complex geometries. For this purpose, three numerical 

benchmark problems are considered to be evaluated by these iFEM elements. 

Moreover, the damage detection capability of these iFEM elements is evaluated as 

the fourth numerical example. FEM analyses are utilized as a reference solution to 

compare with iFEM results. It was demonstrated that quadrilateral inverse elements 

(i.e., iQS4 and iCS8) are more accurate regarding the shape and stress sensing of 

complex geometries.  Between two quadrangular elements, iCS8 shows more 

promising results. This improvement in iCS8 prediction is due to the higher order 

serendipity shape functions, which allow an additional middle node to better 

precede shape and stress field reconstruction and damage prediction. 

2. An improved iFEM formulation compatible with the RZT approach was developed 

based on a weighted least-squares variational principle using the full set of strain 

measures. A new iFEM-RZT-based inverse element, named iRZT4, is derived 

using this formulation to investigate the shape and stress sensing of thick and 

moderately thick sandwich structures. The robustness and effectiveness of this new 

element is demonstrated through a series of experimental and numerical case 

studies using only a few discrete sensors. Furthermore, an efficient smoothing 

method, called the strain pre-extrapolation technique, is coupled with iFEM-RZT 

analyses to obtain smoother strain results over the entire aera of the structure. In 

addition to the FEM analyses, the full-field displacement contours obtained with 

the DIC technique used as an additional evaluation method for comparing the data 

from iFEM-RZT and -FSDT analyses. 
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3. Shape sensing of geometrically nonlinear deformations of thin multilayer 

plates/shells was evaluated by numerical and experimental case studies using iFEM 

analyses. Large deformations and post-buckling analyses of flat and curved 

multilayer thin composites were investigated numerically, while the geometrically 

nonlinear deformation of a thin multilayer plate was studied experimentally. The 

obtained qualitative and quantitative results show the high accuracy of the iFEM 

method in predicting the translational and rotational displacement fields. Moreover, 

in the case of the experimental example, a pre-extrapolation technique was coupled 

with iFEM analyses to obtain the strain data from a discrete set of sensors over the 

entire domain of the structure. 

4. Health monitoring of structural components for marine and aerospace applications 

has been studied using iFEM. These applications are the most common uses of 

shell-like structures in engineering fields. For this purpose, a representative ship 

hull and aft fuselage structures was modeled and evaluated by iFEM analyses. In 

this work, the effects of the absence of some sensors during operation are 

investigated. The obtained results clearly show that this method is robust enough 

to reconstruct the translational and rotational fields and is able to predict 

quantitative results with a small deviation from the FEM reference solution, even 

when some of the sensors are out of service due to operational and application 

situations. 

6.2 Novelty and Contribution to the Field 

Nowadays, there are many research papers using iFEM approach for shape and stress 

sensing of different structural components. However, no comparative study had investigated 

the efficiency and accuracy of different iFEM elements for shape and stress sensing and 

damage identification of structural components with simple/complex geometries. The study 

described in Chapter 2 provides an overview and comparative study between existing inverse 

shell elements in terms of their performance in predicting full-field displacements, strains 

and stresses, and damage prediction capability. This work will be a reliable guide for other 

researchers to select a suitable inverse shell element considering the desired geometry.  
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In recent decades, the use of composite and sandwich material systems as primary 

structures in various engineering applications has increased significantly. The study 

described in Chapter 3 presents a newly developed RZT-based inverse shell element suitable 

for shape sensing of thick and moderately thick sandwich and multilayer composite 

structures, where iFEM-FSDT loses accuracy due to the linear relationship between 

kinematic variables through the thickness of the structure. Furthermore, since the number of 

sensors used in experimental analyses is limited, a smoothing method is needed to cover all 

missing strain data. This study fills this gap by introducing a highly efficient smoothing 

method (strain pre-extrapolation technique) to recover strain data over the entire domain of 

the structure. By coupling iFEM-RZT with extrapolated strain data, a robust shape sensing 

algorithm is provided for the various engineering applications of composite materials. 

Thin multilayer composites are widely used in industry. These components are usually 

subjected to geometrically nonlinear deformations that can lead to complete failure of the 

structure. iFEM as a reliable health monitoring system can also play a shape sensing role for 

this type of requirements. The study described in Chapter 4 demonstrates this capability of 

iFEM methodology for shape sensing of thin plate/shell multilayered structures subjected to 

nonlinear deformations. Finally, the study described in Chapter 5 shows the applications of 

the iFEM/iQS4 methodology for shape sensing of marine and aerospace structures. The 

literature was lacking such a novel application, which can now be found in this thesis. 

6.3 Gaps and Future Studies 

• Regarding the best performance of the iFEM-iCS8 element presented in Chapter 2, 

there are few numerical studies, and no experimental study has been conducted to 

better evaluate the capability of this element in engineering applications. Therefore, 

this high-performance element can be further considered in iFEM shape sensing 

applications. 

• The iFEM-iRZT4 inverse shell element presented in Chapter 3 can be further 

investigated for shape and stress sensing of thick and moderately thick sandwich and 

multilayer composites with curved fiber orientations and/or functionally graded 

materials that impart different stiffness properties to the structure.  
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• Although Chapter 4 explored the superior capabilities of the iFEM approach for shape 

sensing of composites subjected to geometrically nonlinear deformations, this 

performance can also be examined for structures where material nonlinearity 

(plasticity) and contact issues are present. 

• In addition to aerospace and marine structural components, which were explained as 

iFEM applications in Chapter 5, other technical areas such as the automotive as well 

as oil, gas and petrochemical industries can be scrutinized as SHM applications of 

iFEM technology.  

• In the present work, the performance of iFEM is evaluated only for the static and 

quasi-static load cases. However, the structural components under dynamic load 

effects can also be evaluated using iFEM methodology. 
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