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ABSTRACT 
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As the demand for higher quality and productivity increases in industry, multi-tasking 

machine tools attract increasing attention due to their ability to produce complex parts in 

a single set-up. The mill-turn machining center is a multi-tasking machine tool capable of 

performing a variety of machining operations simultaneously, including turning, drilling, 

boring, and multi-axis milling. As a multi-axis machining operation, turn-milling is a 

combination of milling and turning processes, in which the material is removed as a result 

of simultaneous rotations of the cutter and workpiece and translational feed of the tool. 

While turn-milling offers several advantages in manufacturing large-scale parts with hard-

to-cut materials, it presents specific challenges in terms of surface form errors, process 

mechanics, and dynamics. Improper selection of process parameters, tool geometry, and 

eccentricity may result in undesired form errors and excessive cutting forces leading to 

workpiece, tool, and machine component failures. Moreover, self-excited chatter vibration 

may occur, leading to poor surface finish and tool failure. 

In this study, process kinematics and cutter-workpiece engagement are modeled for 

orthogonal turn-milling. A novel mathematical uncut chip geometry model for the side 

and minor edges of the tool is presented. Based on the chip geometry and cutting 

kinematics, a guideline is developed to avoid surface form errors, namely cusps, while 

increasing productivity. The cutting forces resulting from minor and side cutting edges are 

calculated analytically and verified through experiments. The effect of eccentricity on 
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cutter-workpiece engagement and cutting forces is presented. 

A fully analytical model is developed to predict the stability of orthogonal turn-milling in 

the discrete-time and frequency domains for the first time in the literature. In this regard, 

the regenerative dynamic chip thickness in feed, cross-feed, and axial are modeled, and 

the corresponding directional coefficients are formulated mathematically. A novel 

approach is proposed to calculate the varying time delay caused by the simultaneous 

rotation of the tool and workpiece. The stability diagrams are computed by solving the 

coupled time-varying delayed differential equations using semi-discretization and zero-

order approximation methods. The effect of eccentricity on process stability is discussed 

for both end mills and inserted tools. The process parameter selection approach is 

proposed to achieve the highest stable depth of cut and cusp-free surface.  

The verified models for the mechanics and dynamics of orthogonal turn-milling are 

generalized to implement serrated and crest-cut tools. The cutting forces are calculated 

analytically using the updated cutter-workpiece engagement model and verified 

experimentally. The stability of orthogonal turn-milling using crest-cut tools is predicted 

in both the discrete-time and frequency domains for the first time in the literature. Another 

novel study is performed to study the effectiveness and performance of standard, variable-

pitch, and crest-cut tools on chatter suppression in milling thin-walled parts. The novel 

stability maps are generated based on varying stability limits caused by in-process 

workpiece dynamics. Using the obtained stability maps, the performance of different 

cutting strategies is compared, considering productivity and surface finish quality. 

As the main contributors to the stability of a process, the dynamics of spindle and 

workpiece assemblies are modeled analytically and verified through experiments. The 

spindle shaft dynamics are modeled based on receptance coupling theory. Then a 

predictive bearing dynamics model is coupled with the shaft’s model using the structural 

modification technique. The model can predict spindle dynamics at different speeds. A 

similar approach is used to model in-process cylindrical workpiece dynamics considering 

contact mechanics.  

This thesis proposes comprehensive physics-based digital models of orthogonal turn-

milling that predict the most productive cutting conditions with improved part quality for 

different types of tools. The presented models encompass the process parameters as well 

as the machine tool structural dynamics. The presented models can be used in industry 

either at the process planning stage to avoid costly physical trials or during the process for 

monitoring and fault-detection purposes. 

 

 



vi 

 

ÖZET 

DİK FREZEYLE TORNALAMA İŞLEMİNİN MEKANİĞİ, DİNAMİĞİ, VE 

KARARLILIĞI 

 

 

KAVEH RAHIMZADEH BERENJI 

 

Üretim Mühendisliği, Doktora Tezi, Haziran 2022 

 

Tez Danışmanı: Prof. Dr. Erhan Budak 

 

Anahtar Kelimeler: Frezeyle tornalama, Tırlama kararlılığı, Özel takımlar, Yapısal 

Dinamik 

 

Endüstride daha yüksek kalite ve üretkenlik talebi arttıkça, çok amaçlı takım tezgahları, 

tek bir kurulumda karmaşık parçalar üretebilme yetenekleri nedeniyle artan bir ilgi 

görmektedir. Freze-tornalama (mill-turn) işleme merkezleri, tornalama, delme, delik 

işleme ve çok eksenli frezeleme dahil olmak üzere çeşitli talaşlı imalat operasyonlarını 

aynı anda gerçekleştirebilen çok amaçlı bir takım tezgahıdır. Çok eksenli bir talaş 

kaldırma işlemi olarak tanınan frezeyle tornalama (turn-milling), kesici ve iş parçasının 

aynı anda döndürülmesi ve takımın ilerlemesinin bir sonucu olarak malzemenin 

kaldırıldığı frezeleme ve tornalama işlemlerinin bir kombinasyonudur. Frezeyle 

tornalama, kesilmesi zor malzemelerle büyük ölçekli parçaların üretiminde çeşitli 

avantajlar sunarken, yüzey biçimi hataları, proses mekaniği ve dinamikler açısından belirli 

zorluklar içerir. Proses parametrelerinin, takım geometrisinin ve eksantrikliğin yanlış 

seçilmesi, istenmeyen kalite hatalarına ve iş parçası, takım ve makine arızalarına yol 

açabilecek aşırı kesme kuvvetlerine neden olabilir. Ayrıca, zayıf yüzey kalitesine ve takım 

kırılmasına yol açan, tırlama titreşimi meydana gelebilir.  

Bu çalışmada, dik torna frezeleme için proses kinematiği ve kesici-iş parçası kesişimi 

(cutter-workpiece engagement) modellenmiştir. Takımın yan ve alt kenarları için yeni bir 

matematiksel kesilmemiş talaş geometrisi modeli sunulmuştur. Talaş geometrisi ve kesme 

kinematiğine dayalı olarak, üretkenliği arttırırken yüzey form hatalarından, yani 

çıkıntılardan kaçınmak için matematiksel bir metot geliştirilmiştir. Alt ve yan kesme 
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kenarlarından kaynaklanan kesme kuvvetleri analitik olarak hesaplanıp ve deneylerle 

doğrulanmıştır. Eksantrikliğin kesici-iş parçası kesişimi ve kesme kuvvetleri üzerindeki 

etkisi sunulmuştur. 

Dik frezeyle tornalamanın kararlılık modeli literatürde ilk kez ayrık zaman ve frekans 

alanlarında tam analitik bir model geliştirilmiştir. Bu bağlamda, 3 boyuttaki rejeneratif 

dinamik talaş kalınlığı modellenme ve karşılık gelen yön katsayıları matematiksel olarak 

formüle edilmiştir. Takım ve iş parçasının aynı anda dönmesinden kaynaklanan değişen 

zaman gecikmesini hesaplaması için yeni bir yaklaşım önerilmiştir. Kararlılık 

diyagramları, kısmi-ayrıştırma ve sıfır dereceli yaklaşım yöntemleri kullanılarak 

birleştirilmiş zamanla değişen gecikmeli diferansiyel denklemlerin çözülmesiyle 

hesaplanmıştır. Eksantrikliğin proses stabilitesi üzerindeki etkisi hem parmak frezeler 

hem de uçlu takımlar için tartışılmıştır. İşlem parametresi seçim yaklaşımı, en yüksek 

kararlı kesme derinliğini ve hatasız yüzey elde etmek için önerilmiştir. Dik frezeyle 

tornalama mekaniği ve dinamiği için doğrulanmış modelleri, tırtıklı ve dalgalı yüzeyli 

(Crest-Cut) takımlara uygulama amacıyla genelleştirilmiştir. Kesme kuvvetleri, 

güncellenmiş kesici-iş parçası kesişim modeli kullanılarak analitik olarak hesaplanıp 

deneysel olarak doğrulanmıştır. Crest-cut takımları kullanarak dik frezeyle tornalama 

kararlılığı, literatürde ilk kez hem ayrık zaman hem de frekans alanlarında tahmin 

edilmektedir. İnce cidarlı parçaların frezelenmesinde tırlama bastırmada standart, 

değişken aralıklı ve crest-cut takımların etkinliğini ve performansını incelemek için başka 

bir yeni çalışma gerçekleştirilmiştir. Yeni stabilite haritaları, proses içi iş parçası 

dinamiklerinin neden olduğu değişken stabilite limitlerine dayalı olarak oluşturulmuştur. 

Elde edilen stabilite haritaları kullanılarak, verimlilik ve yüzey kalitesi dikkate alınarak 

farklı kesme stratejilerinin performansı karşılaştırılmıştır. Bir sürecin kararlılığına ana 

katkıda bulunanlar olarak, iş mili ve iş parçası düzeneklerinin dinamikleri analitik olarak 

modellenir ve deneylerle doğrulanır. İş mili dinamiği, Receptances Coupling teorisine 

dayalı olarak modellenmiştir. Daha sonra, yapısal modifikasyon tekniği kullanılarak şaft 

modeli ile tahmini bir yatak dinamiği modeli birleştirilmiştir. Model, farklı hızlarda iş mili 

dinamiklerini tahmin edebilir. Temas mekaniği dikkate alınarak proses esnasındaki 

silindirik iş parçası dinamiğini modellemek için benzer bir yaklaşım kullanıldı.  

Bu tez, farklı tipteki takımlar için geliştirilmiş parça kalitesi ile en verimli kesme 

koşullarını öngören kapsamlı fizik tabanlı dijital dik torna frezeleme modelleri 

önermektedir. Sunulan modeller, proses parametrelerinin yanı sıra takım tezgahı yapısal 

dinamiklerini de kapsamaktadır. Bu modeller, endüstride maliyetli fiziksel denemelerden 

kaçınmak, süreç planlama aşamasında ya da süreç boyunca izleme ve hata tespiti amacıyla 

kullanılabilir. 
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1. INTRODUCTION 

Machining is a subtractive manufacturing process that removes the material from the bulk 

material to achieve net-shape parts in different industries. Machining operations are 

widely used in manufacturing precise parts in automotive, die & mold, marine, aerospace, 

and medical industries. Machining operations can be applied on different materials such 

as various alloy steels, non-ferrous metals, composites, ceramics, plastics, and wood. The 

material removal process is performed by a cutting tool penetrating the workpiece material 

and removing the chips from the bulk material due to relative motion between the tool and 

the workpiece. Depending on the relative motion between the tool and workpiece, 

machining operations can be categorized as drilling, milling, turning, and boring. A 

rotating tool removes the material with multiple cutting edges in milling and drilling 

operations. However, a stationary single-point or multi-point cutter removes the material 

from a rotating cylindrical workpiece in turning and boring operations. During milling 

operation, each cutting edge of the milling tool periodically enters and exits the workpiece 

leading to intermittent cutting and short (discontinuous) chips, as seen in Figure 1.1b. On 

the other hand, turning and boring operations produce continuous and long chips due to 

the continuous contact of the cutting edge and workpiece (see Figure 1.1a). From the 

industrial and feasibility point of view, short and discontinuous chips are preferred in the 

industry due to their convenience in evacuation, transportation, and storage.  

 

Figure 1.1: a) Continuous chip produced during turning, b) Discontinuous chip produced 

during milling operation. 

 

a) b)
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Figure 1.2: a) Axis Structure of Mori Seiki Mill-turn center [1], b) Mori Seiki NTX 2000 

mill-turn center. 

Usually, for turning and boring cylindrical parts, CNC lathes are used. 3-axes milling 

centers are used for machining prismatic parts, while 5-axis milling centers are used for 

more complex surfaces. However, due to the limitations in the number of independent 

axes, each machining center has a specific application and limited performance.  

Multi-tasking machining centers introduce significant practical advantages over 

conventional machining centers in terms of productivity and finished part precision due 

to their capability to perform multiple machining operations in a single set-up without 

changing the workpiece. As a multi-tasking machining center, a mill-turn machining 

center can perform several machining operations such as turning, milling, multi-axis 

milling, and parallel machining operations.  

Turn-milling, as a multi-axis machining operation, is an emerging machining technology 

in which both turning and milling spindles are actively employed to shape the desired final 

geometry. Turn-milling can be carried out in multi-tasking machining centers as a 

combination of milling and turning operations simultaneously. While the workpiece is 

clamped to a rotating chuck during turn-milling process, a milling tool mounted on a high-

speed milling spindle carries out the material removal operation by adding multi-axes feed 

motions. In addition, the tool can be positioned in different Cartesian coordinates to define 

the axial depth of cut and cutter-offset value, which will be discussed extensively in the 

following sections. As a result, the final workpiece produced by turn-milling has a 

cylindrically symmetric cross-section similar to the one manufactured by turning 

operation.  

a) b)
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Depending on the machine tool configuration and axes limitations, there exist various 

turn-milling set-ups where the relative position of rotational axes of the milling tool and 

workpiece are different. The most common turn-milling process is called orthogonal turn-

milling, where the rotation axis of the milling tool is perpendicular to the rotation axis of 

the workpiece (Figure 1.3a), and the chip is removed by the side and bottom edges of the 

milling tool. In this configuration, a certain eccentricity between tool and workpiece axes 

can be defined, which alters process forces and stability, thus increasing tool life. 

The second configuration is tangential turn-milling, where the milling tool is placed at the 

tangent to the workpiece periphery (Figure 1.3b). As a result, the chip is formed only by 

the side edge of the milling tool as opposed to orthogonal turn-milling. Another possible 

configuration in which the rotational axes of the milling tool and workpiece are parallel 

to each other is called co-axial turn-milling (Figure 1.3c), and the side edge of the tool 

removes the chip. Apart from these three most common turn-milling configurations, 

depending on the machine tool configuration and control, the relative position between 

the milling tool and workpiece can be continuously changed (i.e., the addition of tilt angle) 

along the toolpath, and complex chip geometry is generated as a result of the Cutter-

Workpiece Engagement (CWE) geometry.  

 

Figure 1.3: Three possible turn-milling configurations; a) Orthogonal, b) Tangential, c) 

Co-axial turn-milling processes. 

The intermittent nature of cutting in turn-milling reduces the contact between the cutting 

edge of the milling tool and workpiece significantly, which lets the milling tool cool down 

until the next rotation period. A tool wear comparison of two turn-milling configurations 

with conventional turning operation is performed by Berenji et al. [2], and shown in Figure 

1.4. Based on the results given in [2], it is deduced that despite the high number of inserts 

required for milling tool, turn-milling operations present an average of 35% lower cost in 

roughing and finishing both hard-to-cut materials. 

a) b) c)
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Figure 1.4: Tool life comparisons at different configurations and cutting strategies [2].  

In addition to higher tool life, turn-milling offers easier chip evacuation because of 

producing discontinuous chips, lower workpiece temperature, and reduced surface 

roughness compared to single-point turning operation when the process parameters are 

defined accurately. Furthermore, during manufacturing large-scale parts with hard-to-cut 

material where the cutting speed is decreased to achieve high process rigidity, the turn-

milling operation can achieve the required cutting speed and productivity.  

In this study, the most commonly used configuration, orthogonal turn-milling, where the 

tool axis is perpendicular to the workpiece axis, is considered.  While the workpiece is 

clamped on a chuck rotating at a particular speed, the milling tool cuts the workpiece with 

its specific rotational speeds while having translational feed along the workpiece axis (see 

Figure 1.5). Furthermore, the offset between the tool and workpiece, called eccentricity, 

provides several versatility and limitations to the operation.  

Based on the advantages mentioned above, turn-milling provides several superiorities 

compared to conventional turning. However, in some cases, the material removal rates 

(MRR) are competitive. Nevertheless, orthogonal turn-milling introduces more part 

precision and productivity in manufacturing large-scale, thin-walled, or flexible parts. 
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Figure 1.5: General kinematics of orthogonal turn-milling operation. 

For instance, orthogonal turn-milling has been reported as an effective operation in 

manufacturing combustion and compression casings used in the aerospace industry (see 

Figure 1.6a). In addition, orthogonal turn-milling is used in the production of large-scale 

and long crankshafts (see Figure 1.6b) with high productivity and lower dimensional 

errors. Furthermore, orthogonal turn-milling is widely used in manufacturing spirals and 

screw shafts used in various industries, as shown in Figure 1.6c. Since there is no 

possibility of support in the middle of the shaft, higher workpiece speeds are not 

achievable. The orthogonal turn-milling provides reasonable productivity and precision in 

machining screw shafts. However, like other machining operations, the selection of 

improper machining parameters leads to undesired surface quality, lower tool life, and 

higher cutting forces and torque.  

 

Figure 1.6: a) Different type of casings produced by turn-milling [3], b) A large-scale 

crankshaft produced by turn-milling (https://www.wfl.at/),  c) Large-scale screw shaft 

produced by turn-milling (https://www.wfl.at/). 
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Moreover, erroneous parameter selection can result in self-exited chatter vibrations 

leading to tool failure, low surface quality, and machine tool component damage.  

In order to overcome the potential drawbacks and prevent surface and dimensional errors 

in turn-milling, it is essential to profoundly understand the system's kinematics, 

mechanics, and dynamics. Although there have been several works on the mechanics and 

dynamics of turn-milling, a fully analytical approach including all the particular 

parameters of turn-milling has not been studied. This thesis provides a general approach 

to model the mechanics and dynamics of orthogonal turn-milling in any conditions. 

Firstly, a general kinematics model is proposed for the orthogonal turn-milling process 

based on the cutting geometry and CNC programming parameters. Then an analytical 

cutter-workpiece engagement (CWE) model is presented to predict the uncut chip 

geometry resulting from the tool's side and minor cutting edges. The effect of cutting 

parameters such as eccentricity and stepover on CWE is investigated through simulations. 

Based on the proposed CWE model, a guideline is proposed to achieve a cusp-free surface 

while increasing the MRR in orthogonal turn-milling. This guideline is based on the 

cutting geometry and relates eccentricity and stepover through conditional formulations. 

Beyond the given guideline for the selection of eccentricity and stepover, unfavorable 

surface and chip geometries can be seen during the process.  

Next, CWE is used to calculate the cutting forces, torque, and cutting power for various 

cases. Cutting forces affect the part accuracy and energy consumption during the 

operation. Excessive axial forces in turn-milling can lead to poor part accuracy due to the 

deflections and form errors resulting from axial forces. In addition, tool breakage and 

overloading of the machine tools can be seen if the cutting forces are high. Therefore, an 

analysis is presented to select the cutting parameters properly to avoid excessive cutting 

forces and cusp formation simultaneously.  

Being one of the significant and challenging problems in machining, self-excited chatter 

vibrations must be avoided to prevent excessive cutting forces, tool failure, and poor part 

quality. Stability diagrams calculated based on the structural dynamics of the system and 

process parameters are the best way to predict chatter-free conditions. Due to the complex 

CWE and additional and specific process parameters in orthogonal turn-milling, stability 

calculation becomes more complicated compared to that of conventional 2D milling. One 

of the significant differences compared to conventional milling is the variation of 
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instantaneous depth of cut within the CWE in orthogonal turn-milling. This variation trend 

depends on the tool and workpiece geometries and the eccentricity, which alters the uncut 

chip volume and resultant forces. Moreover, the minor edge of the tool is engaged in the 

cutting process leading to higher chip load and different force distribution in all directions. 

Another significant difference is the existence of additional time delay contributed to the 

system’s dynamics by the simultaneous rotation of the tool and the workpiece, resulting 

in time-varying delay. 

Having all said, the stability of orthogonal turn-milling becomes more sophisticated than 

conventional milling. In this regard, dynamic chip thickness and dynamic cutting forces 

that emerged in orthogonal turn-milling are evaluated in a three-dimensional frame. The 

varying time delay at each angular position of the tool and its distribution along the tool 

axis is modeled by proposing a novel approach. The dynamics of the system, including 

the tooling and workpiece systems and their substructures, are modeled in modal space 

and included in regenerative dynamic chip thickness definitions. The periodic dynamic 

cutting forces generated at the tool-workpiece engagement zone are combined with the 

structural dynamics of the machine tool, and the process dynamics are modeled as 

periodic, time-varying, delayed-differential equations (DDE). The differential equations 

are coupled and solved in both discrete-time and frequency domains. A time-marching 

and iterative approach is employed to calculate the stability lobes in the discrete-time 

domain solution by taking the varying time delay characteristic of the system. In addition,  

the frequency domain solution is performed using Fourier series expansions to evaluate 

the critical stable depth of cut for the first time in the literature. The proposed models are 

validated throughout experiments for various cutting conditions and materials. A 

guideline is proposed to achieve higher productivity and stable cut with a cusp-free cutting 

surface.  

However, the productivity of turn-milling process is limited by the stability limits for each 

condition. In order to increase productivity, the stability limits can be increased by using 

special tools such as variable-helix, variable-pitch, serrated, and crest-cut tools, which are 

shown in Figure 1.7. Features of the milling tool such as the number of cutting teeth, helix 

angle, and shape of cutting edges strongly affect the process stability, and thus part quality 

and productivity. Special end mills can increase stability with the help of varying pitch 

and helix angles compared to standard end mills. The characteristics of variable-helix and 
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variable-pitch tools on process stability and cutting forces have been discussed extensively 

in literature survey sections. This part of the thesis focuses on developing models to 

implement serrated and crest-cut tools in orthogonal turn-milling. 

 

Figure 1.7: Four different types of special end mills. 

The serrated tools offer lower cutting forces due to the discontinuous CWE along the tool 

axis because of the serration geometries on the cutting edges. This phenomenon 

significantly increases the process stability and decreases the cutting forces, torque, and 

power. Therefore, in roughing operations, i.e., in the machining of screw shafts, serrated 

tools can introduce superiorities in terms of cutting forces and process stability compared 

to standard end mills.  

As another type of special end mill, crest-cut end mills have non-constant helix angles 

with harmonic variations along their axis, unlike variable helix tools with constant helix 

angles on each tooth. Considering the benefits proposed by variable pitch and helix tools 

in chatter suppression, crest-cut end mills encompass their effects simultaneously, 

suppressing chatter with better performance. Therefore, implementing crest-cut tools in 

turn-milling can offer a higher stable depth of cuts in machining the screw shafts and 

crankshafts where the flank milling is required.  

In this regard, the mechanics model proposed for standard milling tools is extended to 

calculate the cutting forces resulting in orthogonal turn-milling using serrated and crest-

cut tools. The models are experimentally validated for several conditions. Furthermore, 

the turn-milling stability model is also extended to calculate the specific distributed delays 

and CWE of crest-cut tools in orthogonal turn-milling. The stability lobes are estimated 

in discrete-time and frequency domains for the first time in the literature, and several 

cutting experiments validate the results.   

In addition to turn-milling operations, the stability of crest-cut tools is investigated in thin-

Variable-pitch Variable-helix Serrated Crest-cut
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walled structures and compared to that of variable-pitch and regular end mills. The thin-

walled structures like combustion casings are widely manufactured using the orthogonal 

turn-milling process. Therefore, the stability analysis on a simple thin-walled structure 

while 2D milling is the preliminary work to apply special tools in rotating thin-walled 

casings in turn-milling operation.  

In this regard, the in-process workpiece (IPW) dynamics are calculated based on the 

determined cutting conditions. The tuned variable-pitch and crest-cut tools are designed 

according to the structural dynamics of the system. A stability map for the structure is 

generated based on IPW dynamics. The performance of each tool is investigated 

throughout the stability maps and is validated by experiments for different cutting 

strategies. 

Based on the previously mentioned background, it is an undeniable fact that the tooling 

system (tool-holder-spindle assembly) and workpiece system (workpiece and clamping 

unit) have a deterministic role in the stability of the process. Therefore, it is essential to 

understand the effective parameters of structural dynamics of a machine tool. Although 

there are plenty of studies on predicting the tooltip dynamics according to different tool-

holder assembly designs, in this part of the present thesis, the dynamics of a spindle are 

studied for improved rigidity. Spindle-bearing assembly is the most flexible component 

in machining centers, and its dynamics directly affect the performance of the machines. 

Spindle geometry (shaft geometry, bearing dimensions, etc.) and the location of the 

bearing and their configurations are the crucial parameters that determine the spindle 

dynamics. Therefore, the selection of the optimum design parameters is the key factor for 

the spindle design procedures. This study offers a design methodology for the spindle-

bearing assembly for the optimized spindle dynamics. In this method, the spindle shaft is 

first modeled using the analytical solution of Timoshenko beam and receptance coupling 

methods. Then, bearing dynamics are included using the structural modification 

technique. Using the developed analytical model, the effect of each design parameter on 

spindle dynamics is analyzed. Simulations show that the proposed method and the 

sensitivity analysis can be efficiently used to select the optimum spindle-bearing assembly 

configuration. The workpiece dynamics is the next influential structure in the stability of 

the process. It is vital to determine the in-process workpiece dynamics of the flexible and 

slender workpiece during turn-milling operation. Since it is not possible to measure the 
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workpiece dynamics during the process, it must be calculated analytically; however, the 

clamping stiffness affects the workpiece dynamic properties. Several analytical methods 

are proposed to predict the workpiece dynamics clamped on the rotating chuck. The 

predictions are validated through experiments. 
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2. LITERATURE SURVEY 

The research on turn-milling began in the early 1990, and the researchers first focused on 

the tool wear and surface finish of hard-to-cut materials. Later, researchers began 

investigating the different aspects of this process, such as chip geometry and force 

predictions, CAM, stability analysis, and temperature predictions. The literature survey 

classifies the references according to the sections of the thesis. 

2.1. Surface and Geometrical Errors in Turn-milling 

As the first authors on the turn-milling process, Schulz et al. [4] conducted the co-axial 

turn-milling and reported the surface roughness of below 5μm for alloyed bearing steel. 

Later, the author conducted another experiment of co-axial turn-milling on hardened steel 

(>62HRC) using CBN cutting tools [5]. They achieved surface roughness below 10μm 

depending on the tool's feed rate and wear width. However, the radial depth of the cut was 

kept considerably low during the experiments. Choudhury et al. [6] were the next group 

who investigated the surface roughness by implementing non-eccentric orthogonal turn-

milling on brass and mild-steel cylinders. The surface finish was measured for different 

tool rotational speeds and linear feed. They concluded that the surface roughness would 

decrease by 10 times by increasing the rotational speed and reducing the linear feed rate. 

Another experimental study was conducted by Choudhury et al. [7] four years later on the 

surface finish of mild steel workpiece by orthogonal turn-milling. They conducted an 

empirical analysis of non-eccentric orthogonal turn-milling for different cutter diameters, 

depth of cut, and workpiece rotational speed values. The main conclusions of this work 

are that increasing the depth of the cut will deteriorate the surface finish, while increasing 

the cutter diameter will enhance the surface finish. However, the workpiece speed will 

decrease the surface roughness until a limit (10 rpm) and then increase. The surface 

roughness values for these studies are below the maximum of 4μm.  

Ekinovic et al. [8] conducted high-speed eccentric orthogonal turn-milling experiments 

on hardened and ductile steel and compared them to hard turning for equal MRR and axial 

feed. The cutting speed was high, but the radial and axial depth of cut was kept low. They 
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obtained better surface roughness for turn-milling in all trials. 

Experimental work was conducted by Cai et al. [9] investigating the effect of eccentricity 

on surface roughness. The authors stated that when the eccentricity is equal to the cutter 

radius, the effective cutting edge is maximum, and this will decrease the surface 

roughness. The same research group conducted another research work that focused on the 

effect of eccentricity by Uysal et al. [10] and Karaguzel et al. [11,12]. Both articles utilized 

the normal and wiper inserts and compared their effect on the surface finish of orthogonal 

turn-milling components of AISI 1050 steel. They concluded that the wiper inserts present 

better surface quality than standard inserts. However, the surface roughness has an 

ascending manner until a critical value and then decreases.  

The first attempt to model the surface topology and roughness analytically was made by 

Yuan et al. [13]. The formulation for residual material left regarding tool minor edge 

geometry, nose radius, and residual height was modeled. Similar work was performed by 

Zhu et al. [14]on modeling the surface topology based on cutting parameters with 

experimental validations. In the case of tangential turn-milling, Savas and Ozay [15] were 

the first to perform experiments on this process. They investigated the effect of depth of 

cut, feed rate, and rotational speeds on surface roughness values for AISI 1040 steel. They 

obtained very low surface roughness below 1μm. The same team conducted two other 

research works on tangential turn-milling of two different workpiece materials and 

measured the surface roughness in the axial direction [16,17].  

In another work focused on surface texture simulation, Funke et al. [18] developed a 

dexel-based MATLAB simulation that permits the prediction of surface texture generated 

by tangential turn-milling. They performed the simulations for several tool corner 

geometry and radii and compared them with the experimental results. The main purpose 

of this work was to increase the coefficient of static friction by inclined tool tangential 

turn-milling operation. 

Karpuschewski et al. [19] studied the surface roughness of rolling bearings, hardened 

100Cr6 workpiece with a minimum hardness of 58 HRC, machined by a tangential turn-

milling process with an inclined B-axis angle and compared with hard turning and 

grinding. They conclude that tangential turn-milling meets their tribological needs and 

friction coefficient range better than grinding and turning. 
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Due to the kinematics of turn-milling process, geometric errors occur during on the cut 

surface. The magnitude of these errors depends on several parameters such as tool 

geometry, rotational speed ratio, diameter ratio, and eccentricity.  

As a pioneer study, Schulz et al. [5] mentioned the existence of wavy and non-circular 

surfaces and gave eccentricity suggestions to avoid these defects. Later, Neagu et al. [20] 

investigated the cutting cinematics and tool functional geometry in detail using 

geometrical analysis considering the eccentricity. The authors concluded that orthogonal 

turn-milling is suitable for high productivity ranges, especially in roughing heavy shafts. 

Wang et al. [21] developed a mathematical model to evaluate the scallops left on the 

machined surface of orthogonal turn-milling using cutter-contact points.  

In a comprehensive study, Karaguzel et al. [11,22] and Uysal et al. [10] discussed the 

cylindrical error and formation of the cusp in orthogonal turn-milling operations as a  

possible geometrical error. It is stated that the circularity error always happens due to the 

kinematic of the process. The cusp height formula was also developed depending on the 

eccentricity, tool and workpiece radius and rotational speed ratio and calculated for 

different feed and eccentricity values to find an optimum value for lower cusp height and 

higher MRR.  As a geometrical error, Karpuschewski et al. [19] investigated the roundness 

error for tangential turn-milling components and compared it with hard turning and 

grinding. It is observed that despite the hard turning and grinding, which generated a 

polygon-shaped workpiece and oscillation in roundness, tangential turn-milling produced 

acceptable cylinders with considerably lower roundness error compared to other methods. 

Jiang et al. [23] developed an analytical model which simulates the scallops and textures 

formed by tangential turn-milling on machined parts based on the kinematic of the 

process. Berenji et al. [24] investigated the cusp formation in orthogonal turn-milling 

based on the analytical uncut chip geometry model. They developed an analytical model 

that relates eccentricity and stepover based on the engagement of the minor edge of the 

tool. They demonstrated that according to the proposed model, cups could be eliminated 

while the productivity can approximately be doubled. The model outcomes were validated 

through experiments.  
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2.2. Kinematics and Mechanics of Turn-milling 

In addition to experimental work, many researchers studied turn-milling theoretically 

through modeling. As a first attempt, Filho [25]  proposed an approach to model the chip 

geometry without considering the axial feed of the tool in orthogonal turn-milling for a 

specific engagement condition. A similar approach was followed by Karaguzel et al. [12] 

for a different and specific cutter-workpiece engagement condition without considering 

the effect of tool rotation, axial feed, and tool geometry. Zhu et al. [26] proposed a 

different approach to model the uncut chip geometry based on boundary surfaces 

mathematically. The chip model was verified by visual and analytical chip volume 

comparisons in experiments. Qui et al. [27] proposed an approach for modeling the chip 

geometry of round inserts during the orthogonal turn-milling process. This model was 

based on the kinematic of the process and geometry of the round inserted tool. The 

engagement model was evaluated by mapping the workpiece surface into grids along axial 

and circumferential directions. Yonglin et al. [28] also proposed a model for the prediction 

of the swept are in eccentric orthogonal turn-milling for inserted milling tools. The model 

was based on the sweeping kinematics of cutting-edge and the rotational workpiece. The 

model was limited to a specific range of eccentricities and not validated with any 

experimental method. Later, Comak et al. [29] analyzed and verified the cutting forces of 

orthogonal turn-milling in three dimensions. In this work, the chip geometry was extracted 

using the MACHPro® software package for side cutting edge only, and the experiments 

were performed for centric orthogonal turn-milling. Otalora-Ortega et al. [30] developed 

a more detailed approach for modeling the uncut chip thickness for centric orthogonal 

turn-milling. The authors proposed two different formulations for small and large depth 

of cut regimens by neglecting the effect of minor edge length for zero eccentricity 

conditions. Recently, Sun et al. [31] proposed a relatively complex and case-based 

approach to predict the engagement boundaries of uncut chip in orthogonal turn-milling 

without considering the minor edge geometry.  

2.3. Dynamics and Stability of Turn-milling 

As in any machining process, stability is an important factor in turn-milling operations for 
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high-performance cutting and high part quality. As pioneer research works, Tobias et al 

[32] and Tlusty et al. [33] introduced the self-excited regenerative chip formation 

mechanism due to the relative vibrations between the flexible tool and workpiece, and 

proposed a stability solution in frequency domain. Later, Merrit [34] modeled the 

regeneration mechanism by a feedback control block, and employed Nyquist criterion to 

predict the stability limits. Tlusty et al. [35] and Tobias et al. [36] investigated the non-

linear behavior of cutting in time domain when the tool lost contact due to excessive 

vibration amplitudes. Minis and Yanushevsky [37] modeled the dynamics of milling by 

two sets of coupled delayed differential equations with periodic coefficients. In their 

study, the effect of spindle speed was considered using Floquet Theory, and the stability 

was resolved using Nyquist Theory. For milling operations, Altintas and Budak [38] 

solved the stability in frequency domain analytically by averaging the time periodic 

directional factors. By using this solution technique, also known as zero order solution, it 

is possible to predict the stability limits in milling operations with high radial immersions 

in a rapid and accurate manner. Due to the time-varying nature of the cutting forces, taking 

only the average component to determine the directional factors may not provide a high 

level of accuracy. Stepan and Insperger [39,40] proposed a technique for discretizing 

system equations within the system's time period by applying a semi-discrete method. 

Basically, the semi-discretization method involves discretizing only the delayed states and 

estimating them with piecewise constant functions, while leaving the non-delayed terms 

unchanged.  

 There are very few studies in the development of a chatter stability model for turn-milling 

operations. Zhu et al. [41] performed a study on chatter prediction during turn-milling of 

a blade on a mill-turn machine tool by a ball end mill. The studies were focused on the 5-

axis machining of a thin-walled blade on mill-turn rather than a turn-milling operation 

with a feed rate in the workpiece axis direction. Yan et al. [42] conducted a study on the 

stability prediction of the orthogonal turn-milling process. The mechanistic model was 

employed to evaluate the dynamic cutting forces. The chatter analysis was performed in 

the frequency domain with constant damping constant for tool and workpiece. The 

stability lobe diagram for this case was evaluated and compared for different workpiece-

tool diameter ratios; however, the effect of the minor cutting edge of the tool and effect of 

other cutting parameters such as workpiece rotational speed and eccentricity was not 

stated.  
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In a more complete work by Comak et al. [43], the dynamic model for the orthogonal turn-

milling process by an end mill was presented. In this study, the dynamic chip thickness in 

orthogonal turn-milling is considered with a time-varying delay which is periodic at tooth 

passing periods due to the simultaneous rotation of tool and workpiece. The time-varying 

delay is highly sensitive to tool and workpiece speeds and diameters. Several researchers 

have previously studied the effect of time-varying delay in different machining processes.  

Insperger and Stepan [44] solved the stability of turning with varying spindle speed, which 

has varying time delays for different modulation frequencies and amplitudes, using the 

semi-discretization method. Faassen et al. [45] predicted the chatter in milling using the 

semi-discretization method by considering the trochoidal tool path model and periodic 

time-varying delay approach. In this study, the periodic time delay is calculated based on 

the feed motion of the tool. The authors concluded that the effect of varying time delay is 

more distinguishable at low radial immersion conditions and causes considerable 

differences between up-milling and down-milling conditions. In a similar approach, Long 

et al. [46] proposed a dynamic milling model with variable time delay and solved the 

stability of the system using the semi-discretization method. The effect of feed rate on 2D 

milling operation is investigated using a varying time delay model. Based on the proposed 

model, not much difference was seen between the stability lobes obtained with varying 

and constant time delays. Zhao and Balachandran [47] and Balachandran [48] employed 

a similar approach to predict the chatter in 2D milling. The nonlinear dynamics of the 

process studied. It is concluded that for high-immersion conditions using constant delay 

models is sufficient. However, the time-varying delay models must be used for low-

immersion conditions since the difference between stability lobes increases as the feed 

rate increases.  

In addition to time-varying and periodic delays, multiple delays have been studied in the 

literature on parallel machining operations and special tools. Budak et al.  [49] and Azvar 

et al. [50] proposed a stability model for parallel turning operation based on multiple time 

delays. Budak et al. [51] modeled the parallel milling operation using a multiple delay 

approach. Due to the shared flexible workpiece between the turning and milling tools, 

their time delays are coupled and affect the regenerative chip thickness mechanism. 

A literature review of multiple and distributed delays occurring when using special tools 

is presented in the following section.  
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2.4. Stability of Special Tools 

There have been several studies on the mechanics and dynamics of special end mills and 

their benefits. Slavicek [52] analyzed the effects of irregular tooth pitch by extending 

Tlusty’s chatter model [33] to cutters with non-constant pitch. In this study, the pitch 

selection criteria are defined. Based on the chatter frequency, the optimal pitch to improve 

cutting speed stability is determined. Based on the results, a specific pitch variation pattern 

may not increase stability at all speeds. Tlusty et al. [53,54] studied the effects of irregular-

pitch end mills on the process dynamics in the following years. The employed methods 

are based on time domain simulations which are computationally costly. Based on the 

outcomes of these research works, milling tools with irregular pitch patterns were accepted 

as an alternative way to suppress chatter vibrations and increase the stability limit of 

milling processes. Shirase et al. [55] demonstrated that end mills with irregular pitch 

angles could reduce surface error. Altintas et al. [56] predicted the stability lobes for 

variable pitch cutters using the zero-order approximation by transforming the time-

varying directional cutting constants into constants. The solution is based on numerical 

methods in the frequency domain. Budak [57,58] proposed an analytical method for the 

selection of the optimal pitch variation in designing variable pitch cutters for improved 

stability. An explicit formulation of the relation between the chatter stability limit and 

pitch angle variation is established in this method, leading to a simple equation for 

determining the optimal pitch angle. However, the variable-pitch cutters also introduce 

some limitations. First, when chatter and tooth passing frequencies are considered, regular 

pitch variation in variable pitch tools can only increase chatter stability in a limited spindle 

speed range. Moreover, if the tooth passing frequency is higher than the critical mode 

frequency, the optimum pitch variation increases drastically, resulting in irregular 

overloading of some edges and chip evacuation problems. On the other hand, the pitch 

value between other teeth becomes so small that it causes limitations in manufacturing 

such tools [59]. As an alternative, Suzuki et al. [60] proposed a robust optimal design 

methodology of variable pitch end mills with irregular pitch variation for enhanced 

absolute stability limit. Besides its advantages, the irregular pitch variation can cause 

unbalanced cutting forces and chip loads, leading to significant run outs and overloading. 

An accurate scheme for the optimal selection of pitch angles for maximized stability of 
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variable pitch tools was introduced by Çomak and Budak [61] based on the previous 

approach by Budak [57].  

Based on the advantages of variable-pitch cutters, many works were carried out on 

different types of special end mills, such as variable-helix, serrated, and crest-cut end 

mills. In the 2000s, serrated end mills were the focus of academia and industry because of 

their advantages in decreasing cutting forces in milling processes. Serrated tools, first 

proposed by Strasman [62,63], have wavy flutes that produce periodic variations in local 

radii and the lead angle. Because of the wavy edge shape, the serrated tools cannot be used 

in finishing operations. Merdol and Altintas [64] studied the mechanics and dynamics of 

serrated end mills with sinusoidal wave shapes on their clearance faces. The predictive 

cutting force model and stability model in the time domain are verified experimentally. It 

is deduced that the effectiveness of serrated tools on process stability depends on the feed 

per tooth value. Dombovari et al. [65] investigated the effects of serrations on cutting 

forces and the stability of the process. This study employed the semi-discretization method 

to predict the stability lobes for serrated tools with distributed delays. Recently, a chatter 

stability model for serrated tools in the frequency domain was proposed by Farahani et al. 

[66], which introduces lower computational time compared to time-based solutions. 

Tehranizadeh et al. [67,68] analyzed the mechanics and dynamics of milling operation 

with serrated end mills with different serration wave shapes, such as sinusoidal, 

trapezoidal, and circular. Serration shapes are optimized by considering cutting forces and 

stability limits. In another study, Bari et al. [69] present an improved chip thickness model 

for serrated end mills that considers the tooth's actual trochoidal path. Moreover, the model 

incorporates the effect of radial run-out on teeth. Dombovari and Stepan [70] modeled 

chatter stability of variable-helix end mills using the semi-discretization method and 

investigated the performance of these tools in different spindle speeds. Hayasaka et al. 

[71] proposed a method to design and optimize variable-helix end mills to suppress chatter 

vibration. The proposed method, which is applicable to tools with high helix angles, was 

verified experimentally. Turner et al. [72] used average helix values to establish an 

equivalent variable-pitch model for variable-helix tools. The optimum values for helix and 

pitch angles are obtained using evolutionary optimization algorithms. Variable-helix tools 

are further analyzed by Sims [73] using Laplace transformation by taking the multi-

frequency and nonlinear cutting stiffness effects into account. However, these phenomena 

can adversely affect the accuracy of the stability solution, despite the variable helix tool's 
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ability to enlarge the stable zone. 

As an additional type of special end mill, crest-cut end mills are characterized by non-

constant helix angles that harmonically change over their axis, as opposed to variable helix 

tools that have a constant helix angle on each tooth. Crest-cut end mills encompass the 

effects of variable-pitch and variable-helix tools simultaneously. However, unlike other 

special end mills, these tools are not widely known. Their application in the industry has 

been limited due to the low number of producers and a lack of guidance and instructions 

for their design and application. Due to the continuous variation in the regeneration delay 

caused by the periodic variations in helix and pitch angles along the cutting edges, crest-

cut tools have the ability to improve the process stability substantially, provided that they 

are correctly designed. Nevertheless, there is very limited research on these tools, and 

there is no information available on how to design wave geometries. The stability of crest-

cut tools was investigated by Dombovari et al. [74], employing the semi-discretization 

method using distributed delays for the first time in the literature. It is concluded that large 

stable lobes could be achieved using these tools at lower spindle speeds, while they lose 

this effect at higher speeds [70]. As a technical brief to this article, Sanz et al. [75] used 

the previous model for investigating different case studies without experimental 

validations. Gomez et al. [76] extracted the geometry of crest-cut end mills using a 3D 

scanner and predicted their dynamic behavior using time-domain simulations. In a recent 

study, Tehranizadeh et al. [77] proposed a novel and precise approach to analytically 

model the geometry of crest-cut tools. The cutting forces are calculated and verified 

experimentally based on the proposed model. The stability of crest-cut tools is predicted 

by employing the semi-discretization method. The authors proposed a procedure to select 

the optimal geometrical parameters of crest-cut tools for improved stability. The 

experimentally verified model showed that crest cut tools offers higher stability limits than 

standard and variable-pitch tools.  

There is limited amount of work in literature which focus on the stability of special tools 

in machining thin-walled structures. Avoiding chatter vibrations in machining thin-walled 

structures made from hard-to-cut materials have always been the focus of researchers and 

engineers in academic and industry. Due to the low machinability of hard-to-cut materials, 

lower cutting speeds are preferred when machining these materials. As a result, deeper 

stability pockets which exist at high cutting speeds cannot be achieved. Variable pitch 
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tools can be used at low cutting speeds to suppress chatter vibrations. However, due to the 

existence of multiple dominant modes and varying in-process workpiece dynamics (IPW), 

their use in milling thin-walled parts does not always provide a satisfactory solution for 

chatter suppression. Crest-cut tools, on the other hand, provide chatter suppression 

capability over a wider frequency and speed range [77], and can be highly effective for 

suppression of chatter in milling of thin-walled parts. In machining of thin-walled 

structures, workpiece dynamics have a substantial effect on the process stability. Thus, the 

stability analysis must include the mass removal effect, i.e., in-process workpiece (IPW) 

dynamics [78]. 

The varying dynamics of thin-walled structures are usually obtained using the finite 

element (FE) method at cutter locations considering the material removal. Bravo et al. 

[79] modeled the machined workpiece using FE analysis at each cutting depth along the 

height, while Thevenot et al. [80] obtained the stability diagrams for various cutter 

locations in the feed direction. For more complex part geometry and tool paths, Biermann 

et al. [81] coupled the FE model of the workpiece with time domain simulation to predict 

stable and unstable regions in the 5-axis milling of turbine blades. Budak et al. [78] 

predicted the IPW dynamics for 5-axis milling of blades using the structural modification 

technique, which was previously applied to plate-like structures by Alan et al. [82]. In this 

approach, the dynamics response of the machined workpiece is updated by adding the 

removed material in the opposite direction of the tool path using a structural modification 

technique. In a different method, Tuysuz et al. [83] obtained the IPW dynamics by 

replacing the removed mass with a fictitious substructure having opposite dynamics to the 

removed material. 

2.5. Spindle Dynamics 

Chatter is an important problem in machining operations, and chatter-free machining 

conditions can be determined using stability diagrams [38]. To determine the stability 

diagrams tool point Frequency response function (FRF), which reflects the dynamics of 

the whole spindle-holder-tool assembly at the tooltip, is required. Therefore, spindle 

dynamics directly affect the process stability and part quality.   

Both spindle dynamics and tool point FRF can be obtained experimentally using impact 
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testing [84]. However, performing impact testing for each holder-tool combination is not 

practical in production. Also, direct measurement does not always provide detailed 

information on the component dynamics of the assembly. Additionally, measurements can 

only be done on the existing systems, and thus cannot be used in spindle design 

optimization. Another important limitation in the experimental approach is the effect of 

operational conditions on spindle-bearing assembly dynamics. Under operational 

conditions, bearing stiffness decreases due to centrifugal forces and gyroscopic effects 

[85–87]. In addition, spindle dynamics also change with undercutting forces [88,89] and 

thermal effects in operation [87]. Thus, both spindle dynamics and tool point FRFs deviate 

from the dynamics at the machine's idle state, leading to inaccurate stability predictions at 

high-speed machining operations [90].  

To alter these limitations, Cao and Altintas [86] modeled the spindle-holder-tool assembly 

using the Finite Element method and included the speed-dependent bearing dynamics in 

the model. Later Xiong et al. [91] and Movahhedy and Mosaddegh [92] modeled spindle-

holder-tool assembly, including the gyroscopic effects, and showed the effect on both tool 

point FRFs and chatter stability. As an alternative, Schmitz et al. [93,94] proposed a 

receptance coupling technique for the tool point FRF prediction by coupling the 

analytically calculated holder-tool dynamics with the experimentally identified spindle 

dynamics. Later, Ertürk et al. [95] modeled the complete spindle-holder-tool assembly 

using the analytical solution of Timoshenko beam and receptance coupling technique and 

obtained the tool point FRF analytically. The main advantage of the analytical approach 

over the FEM is that it reduces the computational load considerably [95] and provides an 

efficient way for the design optimization of spindles. 

Since the spindle-bearing assembly is the most flexible component in high-speed 

machining centers, its dynamics directly affect the performance of the machines. 

Therefore, the design of the spindles plays a crucial role in the productivity of machining 

centers. For that purpose, Ertürk et al. [96] analyzed the effect of spindle design 

parameters on both spindle tip and tool point FRFs using the analytical model. Cao et al. 

[97] proposed a design methodology for the spindles for improved productivity based on 

FEM.  

In one of the current studies, Cao et al. [98] developed a dynamic model of the spindle in 

order to find the range of the fit clearance in the front and rear bearings, which can ensure 
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rotational accuracy and meet the design requirements for the minimization of error motion. 

In another study, Wanga et al. [99], uses Genetic Algorithm to find out the best spindle 

speed variation scheme to maximize the sum of all critical axial cutting depths on the 

given interval of spindle speed. Although, they do not take the spindle structure into 

account, they mainly consider removing chatter from the process. 

As most influential parameter in spindle design, speed-dependent dynamics of bearing has 

been extensively studied previously. Angular contact ball bearings (ACBB) can be used 

in high-speed rotors and have the advantage of being able to carry loads in both the axial 

and radial directions, thus they are used in spindles as well [85,100,101]. Angular contact 

ball bearings are unique since they have some inherent properties. As an example, since it 

can support only a load in one axial direction when used as an axial type, two or more are 

used symmetrically arranged, and it is known that the arrangement method predominantly 

affects the characteristics of the spindle [87,102]. In order to use it properly, an axial 

preload must be applied. In recent high-speed spindles, a constant preload can be applied 

regardless of heat generation or thermal expansion caused by it. Many methods are 

adopted in which the support point of one bearing is movable using a ball bush or sleeve 

[103].  

The effect of bearing alignment direction on the dynamic characteristics of the spindle 

was demonstrated by Li and Shin [87].  For the past several decades, there have been many 

studies on the high-speed spindle system for machine tools to improve productivity and 

machining quality. This has been studied as Senda et al. [104] observed the protrusion 

according to the change of the rotational speed, whereas only approached it from the 

viewpoint of thermal expansion. Protrusion was also considered in another study [105], 

whereas it was also discussed in terms of displacement due to thermal deformation and 

compensation. Recently, it has been discussed in [106–108] that the bearing characteristics 

change due to the centrifugal force of the bearing itself or the gyroscopic effect can lead 

to protrusion. However, it is difficult to adequately explain the physical phenomenon 

inside the bearing by focusing on the change in the axial load. Bae et al. [109] presented 

a basic analysis using a commercial bearing analysis program, and it was confirmed that 

the protrusion occurred due to the rotational speed of the ring regardless of thermal 

expansion. 
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3. MECHANICS OF ORTHOGONAL TURN-MILLING OPERATION 

3.1. Overview 

Prediction of static cutting forces is the first step to investigating the characteristic of turn-

milling operation for process planning and optimization purposes. The static cutting forces 

are used to calculate the cutting torque and power, which are critical for machine design, 

process planning, and high-performance cutting. In addition, the predictive model of 

cutting mechanics will be used to predict the stability of the process. For this purpose, a 

comprehensive model is required to precisely predict the uncut chip geometry, 

encompassing all the conditions and configurations of the process with compatibility of 

applying on different tool geometries.  Some studies in the literature focused on predicting 

static cutting forces of orthogonal turn-milling operations for specific and limited 

configurations with sophisticated calculations for uncut chip geometry predictions. This 

chapter presents the cutting mechanics of the orthogonal turn-milling process to predict 

the static cutting forces, cutting torque, and power required for process planning and 

process dynamics. In this regard, firstly, the kinematics of the process is studied. Next, a 

mathematical model is presented to predict the instantaneous uncut chip geometry used 

for discretized static cutting force calculations. Based on the process kinematics, the 

allowable ranges of cutting parameters are discussed to avoid surface errors during the 

cutting operation.  The cutter-workpiece engagement (CWE) is calculated for different 

tool offset, tool-workpiece rotational speed, and diameter ratios. Then the predictive 

cutting force model is confirmed by experiments.  

3.2. Kinematics of Orthogonal Turn-milling 

Turn-milling operation is a multi-axis machining process that can be defined as the 

combination of milling and turning processes in which, the tool and workpiece rotate 

simultaneously. In this regard, turn-milling can be categorized in orthogonal, co-axial, and 

tangential configurations. In this study, the orthogonal turn-milling operation is studied in 

detail, while the formulations for the other two configurations are discussed by Karagüzel 
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et al. [22]. In orthogonal turn-milling, the tool follows a linear path along the workpiece 

axis (−𝑍𝑤 axis of the workpiece coordinate system (WCS)) as shown schematically in 

Figure 1. In addition, the cutter position can be changed in in 𝑋𝑤 direction to adjust the 

axial depth of cut (𝑎𝑝) and in 𝑌𝑤 to add eccentricity (tool axis offset 𝑒) to the process (See 

Figure 3.1). Note that in orthogonal turn-milling, there is no movement in the B-axis 

(rotation around Y-axis). Any alteration in workpiece/tool geometry, depth of cut, or 

eccentricity will change the side and minor edge's engagement boundaries, as shown in 

Figure 1. Since the mechanics and predictive force model of the process is based on the 

instantaneous CWE, the engagement of each edge must be calculated precisely by 

considering the geometrical and process parameters. In this section, the cutting geometry 

and process kinematics are defined and used to develop an accurate model for uncut chip 

geometry resulting from the cutter's side and minor edge. 

 

Figure 3.1. General schematic representation of orthogonal turn-milling operation. 

Turn-milling operation is mainly performed on mill-turn multi-axis machining centers 

where the workpiece chuck and tool spindle can rotate independently. Although the turn-

milling operation can be considered a 5-axis machining operation, implementation of the 

kinematics of the 5-axis operation and the addition of complexity of the C-axis in spatial 

coordinates adds extra infeasibility. However, the independent rotation of chuck and 

spindle on mill-turn machining centers introduces feasible and user-friendly 

programming.  

In turn-milling operation, the cutter is rotating with rotational speed Ω𝑡 (rev/min) and the 
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workpiece is rotating at the speed of Ω𝑤 (rev/min), simultaneously. Considering the 

stationary WCS, the tool is traveling a helical path due to the workpiece rotation and linear 

feed motion. This helical path is aligned to the surface feed direction of ℱ𝒞𝒩 coordinate 

system. In ℱ𝒞𝒩 coordinate system, ℱ stands for feed direction, 𝒞 represents the cross-

feed direction, and 𝒩 is the surface normal axis (See Figure 3.1).  The rotational direction 

of this helical path depends on the rotational direction of the workpiece. Given that the 

tool’s rotational direction is constant, changing the rotational direction of the workpiece 

merely without considering the eccentricity direction would cause undesired cutting due 

to the engagement of the uncut part with the minor edge of the tool and may cause 

excessive tool failure. In order to prevent such cases, it is suggested to perform the 

orthogonal turn-milling operation in two configurations, as shown in Figure 3.2. It is 

shown that, while the tool’s rotation is kept clockwise and linear feed direction is similar 

in both cases, the rotational direction of the workpiece and eccentricity direction pairs, as 

shown below, defines the cutting type; up-milling or down-milling. Figure 3.2-a shows 

that if the workpiece rotates in a counter-clock-wise direction and the eccentricity 

direction is negative, the cutting type is up-milling (entry angle is zero, and exit angle is 

non-zero).  

 

Figure 3.2. Orthogonal turn-milling configurations; a) up-milling, b) down-milling. 

The down-milling case (entry angle is non-zero, and the exit angle is 𝜋) happens in the 
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configuration shown in Figure 3.2-b where is workpiece rotation direction is clock-wise, 

and the eccentricity direction is in +𝑌𝑤 direction. In this study, the kinematics and chip 

geometry model are given according to the up-milling case, which is the most common 

configuration in turn-milling operations. However, the kinematic relations are identical in 

both cases, except for the direction of the tool’s helical path and the entry/exit angles of 

the CWE. 

As mentioned before, due to the rotational of the workpiece and linear motion of the tool 

in the feed direction, the tool follows a helical trajectory in stationary WCS. The helix 

angle of this helical trajectory can be defined as the angle between the stationary TCS and 

the ℱ𝒞𝒩, which is located at the tooltip.  

 

Figure 3.3. Schematics of cutting geometry 
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This angle is defined as below and illustrated schematically in Figure 3.3.  

𝜃𝑥 = ta −1 (
𝑎𝑤

2𝜋(𝑅𝑤 − 𝑎𝑝)
)  (3.1) 

 where 𝑅𝑤 is the workpiece radius before cut, 𝑎𝑝 is the nominal depth of cut, and 𝑎𝑤 is 

the feed per workpiece revolution. Note that, since the process kinematics is based on the 

tooltip position, the machined part radius (𝑅𝑤2 = 𝑅𝑤 − 𝑎𝑝) is used in Equation (3.1). As 

a result, not only the diameter of the unmachined part but also the depth of cut affects the 

helix angle of the helical trajectory of the tool. As shown in Figure 3.3, the radial depth of 

cut (step over) can be calculated as; 

 𝑎𝑒 = 𝑎𝑤.    𝜃𝑥 (3.2) 

 Another important parameter in turn-milling kinematics is the angular displacement of 

the workpiece per tooth passing period (Δ𝑡) of the tool, which is shown by 𝛽 in Figure 3.3 

and defined in Equation (3.3). 

𝛽 =
2𝜋Ω𝑤

Ω𝑡𝑁
 (3.3) 

 where 𝑁 is the teeth number of the cutter. Based on the kinematics of the turn-milling, 

the angle between two surfaces generated by cutting two consecutive teeth and rotation of 

the workpiece simultaneously, equals to 𝛽 (see Figure 3.3), which can be proven using 

geometric relations. The 𝛽 angle is an important parameter in the definition of minor edge 

engagement. Note that, the 𝛽 angle depends on the ratio of the rotational speeds of the 

cutter and workpiece (
Ω𝑤

Ω𝑡
). As the cutter moves along the helical trajectory, the feed value 

in the helical direction (surface feed ℱ) can be divided into axial and radial feed vectors, 

as illustrated in Figure 3.3. The radial and axial feed vectors are the amounts of tool tip 

travel from point 𝑂𝑇
∗  to point 𝑂𝑇 at the time interval of Δ𝑡 at feed and cross-feed directions, 

respectively. The tool positions at time 𝑡 and 𝑡 + Δ𝑡 are shown schematically in Figure 

3.4b. If the tool is discretized into 𝑚 number of disk elements with the height of 𝑑𝑧 along 

its axis, it is seen that each discrete element within the nominal depth of cut (𝑎𝑝)  has 

different radial feed (𝑓𝑟) values depending on its distance from tool tip, as depicted in 

Figure 3.4a. The distance of each element from the tooltip can is defined by 𝑎(𝑧) = 𝑚 ∗

𝑑𝑧. 
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Hence, the elemental radial feed vector is a function of the distance of the associated 

element from the tooltip and can be calculated as follow; 

 𝑓𝑟(𝑧) = 𝛽. ((𝑅𝑤 − 𝑎𝑝) + 𝑎(𝑧)) (3.4) 

The radial feed varies along the depth of cut and the magnitude of 𝑓𝑟 increases as the 

distance from the tooltip (effective radius) increases (See Figure 3.4-a). On the other hand, 

the axial feed vector 𝑓𝑎 is formed due to the linear motion of the tool along the workpiece 

axis. 

 

Figure 3.4: Definition of radial and axial feed vectors along with the axial depth of cut.  

This vector is constant for all of the disc elements and can be calculated as below: 

𝑓𝑎 =
𝑎𝑤Ω𝑤

Ω𝑡𝑁
 (3.5) 

 Note that both radial and axial feed vectors are formulated and defined at the tooth passing 

period. As a result, the resultant vector of these two gives the total feed at tooth passing 

period or the feed per tooth 𝑓𝑡  (
𝑚𝑚

𝑟𝑒𝑣.𝑡𝑜𝑜𝑡ℎ
) on the helical direction for orthogonal turn-

milling operation as follow; 

𝑓𝑡(𝑧) = √𝑓𝑟(𝑧)2 + 𝑓𝑎2 =
2𝜋Ω𝑤

Ω𝑡𝑁    (𝜃𝑥)
(𝑅𝑤 − 𝑎𝑝 + 𝑎(𝑧)) (3.6) 

 Finally, as shown in Figure 3.3, the tool rotates by 𝛽 at stationary WCS at a tooth passing 

period. In other words, the 𝑍𝑇 axis of the tool has a 𝛽 angle with surface normal 𝒩. As a 

result, the feed vectors (𝑓𝑡) at each disc elevation must be transferred into unit surface feed 

direction at ℱ𝒞𝒩. The feed vector can be calculated as:  
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 𝑓𝑡̆(𝑧) = 𝑓𝑡(𝑧).    𝛽 (3.7) 

 In orthogonal turn-milling operation, the linear feed 𝐹 (
𝑚𝑚

𝑚𝑖𝑛
) along the 𝑍𝑤 direction is 

related to the feed per workpiece rotation and the rotational speed of the workpiece and 

can be formulated as follows; 

 𝐹 = Ω𝑤𝑎𝑤 (3.8) 

 As seen, the feed per tooth varies along with the nominal depth of cut. Further, based on 

its dependency on 𝛽 the ratio of rotational speeds also affects the feed per tooth, and hence, 

the cutting mechanics are affected significantly. For this purpose, the parameter selection 

of orthogonal must be according to the precise calculation of kinematic parameters.  

Finally, the simultaneous rotation of the tool and workpiece causes the overall cutting 

speed to vary in turn-milling operation. According to the kinematics illustrated in Figure 

3.3, the linear speed vector resulted from the workpiece 𝑉𝑐
𝑤 varies based on the cutting 

angular position of the cutter since at each angular position, the effective workpiece radius 

is different. This variation is formulated by 𝜃𝑟 angle and formulated as below: 

 𝜃𝑟 = ta (
𝑅𝑡 sin(𝜃𝑥+𝜙𝑖)

𝑅𝑤−𝑎𝑝
)  (3.9) 

 As a result, the overall cutting speed resulting from the tool and workpiece rotations can 

be obtained using the equation below: 

 𝑉𝑐 = 𝑉𝑐
𝑡 + 𝑉𝑐

𝑤 𝑐 𝑠(𝜃𝑟) 𝑠𝑖𝑛(𝜃𝑥) 𝑠𝑖𝑛(𝜙𝑗) (3.10) 

 where 𝜙𝑖 is the angular position of the edge at angular increment 𝑖. Equation (3.10) shows 

that the cutting speed varies in turn-milling due to the simultaneous rotation of the 

workpiece and tool. However, the effect of linear workpiece speed is negligible, and the 

cutting speed of the process can be calculated by the tools cutting speed 𝑉𝑐
𝑡. 

3.3. Geometric Model of Cutter-Workpiece Engagement 

Modeling chip geometry in multi-axis machining plays a significant role in accurately 

predicting cutting mechanics and stability analysis. Although there are several methods 

for evaluating CWE using CAD or FE-based software packages that are costly and time-

consuming, analytical models can introduce the fast and precise calculation of CWE with 
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minimum error.  

This section presents the cutter-workpiece engagement model of orthogonal turn-milling 

operation. In this study, the engagement model is presented for end mill type cutters and 

cylindrical workpieces. As a result of tool geometry and simultaneous rotation of cutter 

and workpiece, the minor edge of the tool is also engaged, despite peripheral milling 

operation. This phenomenon distinguishes the turn-milling cutting geometry, mechanics, 

and dynamics from 3-axis milling operations. In this regard, several studies dealt with 

turn-milling cutting mechanics previously. Karaguzel et al. and Filho [12,25] extracted 

the CWE by employing the simple CAD representation of the tool and workpiece. 

However, the effect of the minor edge was not included in the models, which excludes the 

different chip geometries and limitations caused by the minor edge length. 

Similarly, Ortega et al. [30] used the same approach to evaluate the chip geometry and 

cutting forces without considering the eccentricity. Comak et al. [29] utilized the CAM 

and virtual machining software packages to assess the CWE in turn-milling operation 

required for cutting force calculations. In this section, the CWE occurs at both side edge, 

and the minor edge of the flat end mill is modeled based on basic cutting geometry and 

process kinematics. The current approach calculates the CWE analytically and gives an 

easy and simple understanding of it. This model can predict the uncut chip thickness in 

turn-milling operation while using crest-cut and serrated tools. The following subsections 

will discuss the tool's engagement boundaries for side and minor edges separately.  

3.3.1. Side edge engagement model 

In turn-milling operation, the side edge of the cutter experiences a chip removal process 

with variable depth of cut due to the simultaneous rotation of the cutter and the circular 

workpiece. Based on the geometry of the cutter and workpiece and the cutting parameters, 

the instantaneous depth of cut varies at each angular position of the tool within its 

immersion boundaries. The instantaneous depth of cut (chip height from tooltip)  is 

formulated in Equation (3.11) [24]. 

 𝑎𝑖(𝜙𝑗) = √𝑅𝑤2 − (𝑅𝑡    (𝜙𝑗) − 𝑒)
2
− (𝑅𝑤 − 𝑎𝑝) (3.11) 

 where 𝜙𝑗 is the angular position of tooth 𝑗 within the immersion angles (𝜙𝑠𝑡  ≤ 𝑒 ≤ 𝜙𝑒𝑥), 
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and 𝑒 is the tool center offset (eccentricity) as depicted in Figure 3.3. In our previous work 

[24], the entry angle of tooth 𝑗 was assumed equal to 𝜃𝑥 since the cutting geometry was 

modelled according to stationary TCS. In this chapter, the chip geometry will be discussed 

in ℱ𝒞𝒩 coordinate system in more detail.  

Equation (3.11) shows that the uncut chip geometry has a varying depth of cut within 

CWE. However, if the CWE is divided into disk elements along the tool axis, each element 

has a different entry angle. Further, the variation of instantaneous chip thickness is also 

changing drastically by changing the tool/workpiece radius ratio, eccentricity, and even 

nominal depth of cut. Since the instantaneous depth of cut varies within the CWE, each 

elemental segment along the axial depth of cut will have specific entry and exit angles 

[29]. However, the entry and exit angle definition for each axial element can also be 

divided into two different categories based on the eccentricity.  

i. If the eccentricity is in the range of 𝟎 ≤  ≤  𝒈. 

The entry (start) angle (𝜙𝑠𝑡) for each disc element along the tool axis within the CWE is 

calculated as: 

𝜙𝑠𝑡(𝑧) =     −1 (
−𝑢(𝑧)

𝑅𝑡
)   

𝑢(𝑧) = √𝑅𝑡
2 −

1

4
(𝑓𝑎 − 𝑓𝑟(𝑧)√

4𝑅𝑡
2

𝑓𝑎2 + (𝑓𝑟(𝑧))
2 − 1)

2

 

(3.12) 

 and exit angle (𝜙𝑒𝑥) is: 

 𝜙𝑒𝑥 =    −1 (
𝑎𝑒

2𝑅𝑡
)   (3.13) 

 The 𝑒𝑔 is a critical eccentricity where the uncut chip geometry’s definition changes and 

can be calculated as follows: 

 𝑒𝑔 = 𝑎𝑝√2
𝑅𝑤

𝑎𝑝
− 1 + 𝑅𝑡    (𝜙𝑠𝑡(0))   (3.14) 

 Moreover, the parameter 𝑚 defined in the eccentricity range will be defined geometrically 

in Section 3.3.2. The 𝑚  is defined as: 

𝑚 = (𝑅𝑤 − 𝑎𝑝).
𝛽

2
  (3.15) 
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 If the eccentricity is within case i, the entry and exit angle for each disc element 𝑛 along 

the tool axis can be found by the formulas mentioned above. (See Figure 3.4). 

ii. If the eccentricity is in the range of  𝒈 <  ≤      

Similarly, the entry angle for each disc segment along the tool can be calculated as: 

𝜙𝑠𝑡(𝑧) =     −1(
𝑒−√2𝑅𝑤(𝑅𝑤−𝑎𝑝+𝑎(𝑧))−(𝑅𝑤−𝑎𝑝+𝑎(𝑧)))

2

𝑅𝑡
)  (3.16) 

 The exit angle for this range is equal to case i. and can Equation (3.13) can be employed. 

Note that, 𝑒𝑚𝑎𝑥 is the maximum value of eccentricity that can be defined in an orthogonal 

turn-milling operation and can be calculated as follows: 

𝑒𝑚𝑎𝑥 = 𝑅𝑡 −𝑚  (3.17) 

If eccentricity exceeds this value, the instantaneous depth of cut will be lower than the 

nominal value; hence, the material removal rate will decrease. The detailed simulation and 

discussion are presented in Section3.4. 

3.3.2. Minor edge engagement model 

As mentioned before, due to simultaneous rotation of workpiece and tool, the minor edge 

of the tool is also engaged during the material removal operation. The minor edge 

engagement plays a vital role in the surface quality of the cut part and cutting forces. As 

a result, having a precise model for minor edges is essential in the definition of cutting 

forces and parameter selection procedure. The chip formation by the minor cutting edge 

is based on a different cutting geometry than the side cutting edges of the tool.  

Similarly, the uncut chip thickness varies at each angular position within the immersion 

boundaries, while the immersion boundaries depend on the tool offset value. In general, 

the cutting geometry of the minor edge and its cutting mechanics differ from the milling 

tool's side cutting edge. The schematic representation of the cutting geometry of the minor 

edge is represented in Figure 3.5. The following geometric model is true when tool offset 

is in the range 𝑚 ≤ 𝑒 ≤ 𝑒𝑚𝑎𝑥. It means that for tool offset values greater than 𝑒𝑚𝑎𝑥 the 

minor edge of the tool will lose engagement and decrease the maximum engagement of 

the side edge. 



34 

 

 

Figure 3.5: Schematic representation of chip geometry resulting from the minor edge.  

Note that the minimum value for eccentricity equals 𝑚, as also seen in Section 3.3.1. This 

is because if the eccentricity is equal to zero, the minor edge will not cut at the vicinity of 

the tool center due to zero cutting speed. This issue must be taken into account while 

cutting with endmills since edges can be connected at the tool center. In contrast, the 

inserts have an offset from the tool center in most face milling tools, and zero eccentricity 

will not cause any problem. According to the cutting geometry of the minor edge, the entry 

angle for the immersion zone of the minor edge can be calculated by 

 𝜑𝑠𝑡 =    −1 (
𝑒+𝑚

𝑅𝑡
 ) 

𝜑𝑒𝑥 = {

𝜙𝑒𝑥 𝑎𝑤 ≤ 𝑅𝑡

ta −1 (
𝑎𝑤 − 𝑅𝑡
𝑒 + 𝑚

) 𝑎𝑤 > 𝑅𝑡
 

(3.18) 

 The exit angle for minor edge (𝜑𝑒𝑥) is equal to the exit angle of the side edge (𝜙𝑒𝑥) when 

the 𝑎𝑤 is equal to or smaller than the tool radius. As seen in Figure 3.5, the engagement 

length (𝑙𝑚) of the minor edge changes within the immersion zone at each angular position 

of the minor edge. The engagement length is calculated based on the cutting geometry and 

defined as below: 
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 𝑙𝑚(𝜑𝑗) =  

{
 
 

 
  𝑅𝑡 −

(𝑒+𝑚)

sin𝜑𝑗
                   𝜑𝑠𝑡 ≤ 𝜑𝑗 ≤ 𝜑𝑐

{

𝑅𝑡 −
(𝑅𝑡−𝑎𝑤)

cos𝜑𝑗
𝑎𝑤 ≤ 𝑅𝑡

|
𝑎𝑤−𝑅𝑡

cos𝜑𝑗
| −

(𝑒+𝑚)

sin𝜑𝑗
𝑎𝑤 > 𝑅𝑡

                    𝜑𝑐 < 𝜑𝑗  ≤ 𝜑𝑒𝑥

 (3.19) 

 where 𝜑𝑗 is the immersion angle of the minor edge of tooth 𝑗 within the immersion zone. 

In this equation, 𝜑𝑐 is the angle where the definition of engagement length is changed 

because of the uncut chip geometry and can be calculated as below: 

 𝜑𝑐 = {
ta −1 (

𝑒+𝑚

𝑅𝑡−𝑎𝑤
) 𝑎𝑤 ≤ 𝑅𝑡

𝜋

2
+    −1 (

𝑎𝑤−𝑅𝑡

𝑅𝑡
) 𝑎𝑤 > 𝑅𝑡

 (3.20) 

 It is mentioned before that the region in cut with the minor edge is produced by the face 

formed by current tooth 𝑗  and the face formed by previous tooth 𝑗 − 1, which has an angle 

of 𝛽 due to the rotation of the workpiece. In other words, the angle between these two 

faces is equal to the rotation angle of the workpiece at the tooth passing period of the tool. 

The schematics of these two faces are given in Figure 3.6. As seen, although the angle 

between two faces is constant and equal to 𝛽 at 𝑋𝑇 direction, however, because of the 

geometry, the angle between two faces is different when the geometry is cut at the tool’s 

angular position (𝜑𝑗). This locally varied angle is shown as 𝛽𝑙 in  Figure 3.6. This angle 

is important since it defines the maximum uncut chip thickness for the minor edge at any 

angular position. As a result, as the tool rotates, the minor edge of the tool experiences a 

specific engagement length and maximum uncut chip thickness at each angular position, 

where the uncut chip thickness varies along the engagement length. The elemental uncut 

chip thickness removed by the edge segment on the minor edge with the differential length 

of 𝑑𝑙 is formulated in Equation (3.21). 

 

Figure 3.6: Schematic representation of minor edge geometry 
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ℎ𝑚(𝜑𝑗 , 𝑙𝑘) = 𝑙𝑘 . ta (   
−1 (

[𝑅𝑡 sin(𝜑𝑗)−𝑒−𝑚] tan𝛽

𝑙𝑚(𝜑𝑗)
) )   ∵ 𝑙𝑘 = 𝑘. 𝑑𝑙  (3.21) 

Note that the engagement length (𝑙𝑚) is divided into infinitesimal elements with a length 

of  𝑑𝑙. Therefore, the number of elements varies for each engagement length while the 

element length is constant. The parameter 𝑙𝑘 is the distance of element 𝑘, (1 ≤ 𝑘 ≤ 𝑛) 

from the beginning of the engagement, where 𝑛 =
𝑙𝑚(𝜑𝑗)

𝑑𝑙
 . In order to discuss the uncut 

chip geometry generated by minor edge, a case study is selected, and chip geometry is 

shown in Figure 3.7. The workpiece rotation per tooth period is 𝛽 = 2°. The cross-section 

views of C1-C1 and C2-C2 parallel with 𝑋𝑇 direction shows that the angle between the 

two faces is equal to 𝛽. However, as the tool rotates, the angle between two consecutive 

faces changes because of the geometrical relations. The cross-section views B1-B1, and 

B2-B2 shows the uncut chip cross-section view at two arbitrary angular positions of the 

cutting edge (See Figure 3.7). It is deduced that at each angular position, the angle between 

two consecutive faces is different, and the chip has a local angle of 𝛽𝑙. In other words, the 

maximum uncut chip thickness or minor edge is different at each angular position, and it 

varies along the engagement length (𝑙𝑚(𝜑𝑗)). It is deduced that the minor edge 

experiences a different local maximum uncut chip thickness at each angular position with 

varying engagement lengths. This phenomenon will affect the cutting mechanics and 

dynamics drastically.  

 

 

Figure 3.7: Different cross-section views for chip geometry in orthogonal turn-milling. 
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3.4. Effect of Cutting Parameters on the Chip Geometry 

Based on the geometrical model given in previous sections, the uncut chip model of the 

orthogonal turn-milling operation can be simulated. Using the proposed uncut chip model, 

effect of different cutting parameters and tool/workpiece geometries on chip formation 

can be studied. From this point of view, the impact of these parameters on cutting 

mechanics, surface formation, and process stability can be studied. Note that the uncut 

chip geometrical model will be indirectly confirmed in the next sections using cutting 

force experiments and simulations. However, this section performs preliminary 

confirmation using the CAD model. The uncut chip height and chip boundaries generated 

by the side edge of the tool and the cutting boundaries and chip thickness generated by the 

minor edge are compared and confirmed in both mathematically simulated and CAD 

models in Figure 3.8. Note that the feed per tooth value in CAD simulation is exaggerated 

to have a better visualization; however, all the geometrical parameters are confirmed with 

the mathematical model. The uncut chip geometry simulations are shown in ℱ𝒞𝒩 

coordinate system. 

 

Figure 3.8: Chip geometry simulations for 𝐷𝑡 = 22 𝑚𝑚,𝐷𝑤 = 60 𝑚𝑚, 𝑎𝑝 = 2 𝑚𝑚, 
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𝑎𝑒 = 0.5𝐷𝑡, a) Analytical simulation 𝑒 = 2𝑚𝑚, b) CAD simulation 𝑒 = 2𝑚𝑚, c) 

Analytical simulation 𝑒 = 9 𝑚𝑚, d) CAD simulation 𝑒 = 9 𝑚𝑚 

As mentioned in Section 3.3, the cutter and workpiece diameters affect the chip geometry. 

However, in turn-milling operation, the tool offset (eccentricity) is the most influential 

parameter which influences the CWE drastically. As seen in Figure 3.8, the variation in 

eccentricity changes the chip geometry of the side edge and the chip generated by the 

minor edge. This variation will affect the cutting mechanics and dynamics significantly.  

In this regard, the engagement boundaries of the side edge are simulated to show the effect 

of eccentricity and tool radius on the chip formation caused by the side edge. The cutting 

parameters for the two cases are given in Table 3.1. The tool radii for Case 1 and Case 2 

are different. In both cases, the radial immersion is 50% of the tool diameter. For each 

case, the chip geometry comparisons for various eccentricities values are depicted in 

Figure 3.9 and Figure 3.10.  

As shown in Figure 3.9, the variation of depth of cut within the immersion boundary is 

different at different tool offset values. It is to be noted that the variation pattern is not 

similar for other workpiece and tool diameter ratio values (
𝑅𝑤

𝑅𝑡
 ). 

Table 3.1: Cutting parameters for chip geometry comparisons for different eccentricities. 

 Dw(𝑚𝑚) Dt(𝑚𝑚) aw(𝑚𝑚) ap(𝑚𝑚) Ωt
Ωw
  

Case 1 160 32 16 3 200 

Case 2 160 50 25 3 200 

 

According to Equations (3.14) and (3.17), for Case 1, the critical eccentricity is 𝑒𝑔 =

20.8 𝑚𝑚  and the maximum allowable eccentricity is 𝑒𝑚𝑎𝑥 = 15.3 𝑚𝑚. As shown in 

Figure 3.9, when the tool offset exceeds 𝑒𝑚𝑎𝑥 the axial depth of cut begins to decrease 

(the case 𝑒 = 20𝑚𝑚) while the entry angle stays the same where the Equation (3.12) 

governs. Note that, eccentricity values above the 𝑒𝑚𝑎𝑥 is not practical since the axial depth 

of cut is reducing which causes lower material removal rate and failure in the final part 

dimensions; however, in this example, it is discussed for comparison purposes.  
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Figure 3.9: Chip boundary comparisons for Case 1 in Table 3.1. 

 

Figure 3.10: Chip boundary comparisons for Case 2 in Table 3.1. 

For another workpiece and tool diameter ratio (Case 2), the 𝑒𝑔 value could be smaller than 

𝑒𝑚𝑎𝑥 (𝑒𝑔 < 𝑒𝑚𝑎𝑥) which means that within the feasible range of tool offset (𝑒 ≤ 𝑒𝑚𝑎𝑥), 

both formulation should be used for the calculation of entry immersion angle. In Case 2, 

since the tool diameter is increased, the critical tool offset is altered. For this case, the 

e = 2mm

e = 6mm

e = 10mm

e = 14mm

e = 20mm

e = 22mm

e = 4mm

e = 10mm

e = 16mm

e = 23mm



40 

 

𝑒𝑔 = 20.5 𝑚𝑚 while the 𝑒𝑚𝑎𝑥 = 24.3 𝑚𝑚. The comparison simulation is also depicted 

in Figure 3.10. Equation (3.12) for the tool offset range 𝑒𝑔 ≤ 𝑒 ≤ 𝑒𝑚𝑎𝑥 Equation (3.16) 

must be employed. The simulations are CWE boundaries are depicted in ℱ𝒞𝒩 coordinate 

system. 

It is shown that the allowable eccentricity depends on the ratio of workpiece and tool 

diameter ratio value. Next, the effect of the radial depth of cut on CWE of the side edge 

is studied. For this purpose, the cutting parameters of Case 2 in Table 3.1 are selected with 

𝑒 = 2𝑚𝑚 and two different radial depth of cut values. The 3D simulation of chip 

geometry in ℱ𝒞𝒩 coordinate system and corresponding 2D representation in ℱ −𝒩 view 

is given in Figure 3.11. According to Figure 3.11 (a), for the given eccentricity and radial 

depth of cut value, engagement of the side edge is limited to a specific angular position 

and is diminished after that specific angular position within the immersion angles, while 

the minor edge is in the cut. This is due to the geometrical condition caused by the tool-

workpiece diameter ratio, radial depth of cut, and eccentricity values.  

 

Figure 3.11: Chip geometry comparison with parameters in Table 3.1; 

a) 𝑒 = 2𝑚𝑚, 𝑎𝑤 = 25𝑚𝑚, b) 𝑒 = 2𝑚𝑚, 𝑎𝑤 = 15𝑚𝑚  

a)

b)

Cut at step  

Cut at step  −  

Cut at step  

Cut at step  −  
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However, if the radial depth of cut is decreased (as shown in Figure 3.11 (b)), the side 

edge is kept engaged within the immersion boundary as well as the minor edge. The 

engagement loss of the side edge will cause surface defects due to the uncut material left 

on the machined part. It is shown that in orthogonal turn-milling, eccentricity is a critical 

parameter and cannot be determined randomly. In addition, it has a relationship with the 

radial depth of cut value, and the possible undesired chip geometries can be added or 

omitted by tuning the appropriate eccentricity and radial immersion values. The 

relationship between these two parameters is discussed in detail in terms of surface failures 

in the next section.  

3.5. Surface Errors in Orthogonal Turn-Milling  

The surface quality of the finished part is an important outcome of the machining 

processes. Unlike the conventional turning process, simultaneous rotation of tool and 

workpiece during turn-milling operation leads to surface errors such as circularity and 

cusp formation [12].  The circularity error is the difference between the desired workpiece 

cross-section (perfect circle) and the workpiece's polygon-shaped cross-section, which is 

caused by the simultaneous rotation of the workpiece and tool, which is described by 

Karagüzel et al [12]. The maximum circularity error is depicted in and can be calculated 

as follows; 

𝑒𝑐𝑖𝑟𝑐 = (𝑅𝑤 − 𝑎𝑝) (
1

cos(
𝛽

2
)
− 1)  (3.22) 

 where 𝛽 is defined in Equation (3.3). 

Similar to surface roughness in conventional turning, circularity error in turn-milling 

operation cannot be eliminated because of the intermittent nature of the process; however, 

it can be reduced by increasing the ratio of tool to workpiece spindle speeds. For this 

purpose, the spindle speed of the tool could be increased, which can cause excessive tool 

wear. As an alternative, the workpiece's spindle speed can be decreased, leading to lower 

productivity. As a result, the allowable circularity error must be calculated. The tradeoff 

between the surface quality, MRR, and machining cost must be considered at the process 

planning stage. 
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Figure 3.12: Definition of circularity error in orthogonal turn-milling. 

Another important surface error that happens during orthogonal turn-milling operation is 

the cusp formation. Previously, Karagüzel et al. [12] introduced cusp generation and 

proposed a geometrical model for the calculation of cusp height. However, the tool 

geometry and the geometry of the minor edge on the tool were not considered. As 

mentioned in previous sections, the tool's minor edge significantly affects cutting 

mechanics, surface generation, and chip geometry. The engagement and contact of minor 

edge with the machined surface of the workpiece is the key element in the definition of 

the surface quality, chip formation, and hence, cutting forces.  

As the tool follows a helical path along the workpiece axis, the minor edge is engaged in 

the chip removal process, and depending on the minor edge geometry; the surface form is 

generated. In most of the milling cutters used in 3-axis milling operations, the minor edge 

has an approach angle (𝛼𝑚 > 0) to reduce the friction between the tool and the cut surface 

since the material removal process is done by the side cutting edge of the tool. Using such 

milling tools with minor edge approach angle (See Figure 3.13) in the orthogonal turn-

milling process, cusp formation will be inevitable. As shown in Figure 3.13, due to the 

geometry of the minor edge, uncut material will be left between two consequent passes 

per workpiece rotation.  

In order to eliminate cusp formation in orthogonal turn-milling operation, the first solution 

is to use milling tools with zero minor edge approach angle (𝛼𝑚) as shown in Figure 3.13 

(b). However, using such a tool will not solve the cusp formation phenomenon in 
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Desired Surface
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orthogonal turn-milling process. Because of the complex kinematic of the process, based 

on the eccentricity and radial depth of cut, a cusp can still be formed because of the uncut 

material left between two consequent stepovers even if the approach angle is minor edge 

is zero. 

 

Figure 3.13: Cusp formation in orthogonal turn-milling process due to minor edge 

approach angle.  

As mentioned before, the minor edge will experience a specific engagement length based 

on the eccentricity value. If the engagement length is not sufficient enough to wipe out the 

material left from the previous pass as the tool travels 𝑎𝑤 in the workpiece axial direction 

at the time of one workpiece rotation, the cusp will be formed. In other words, if the feed 

per workpiece rotation (𝑎𝑤) is greater than the length of which minor edge sweeps, the 

uncut material will be left between two consequent passes, named cusp. This phenomenon 

is illustrated in Figure 3.14. 
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Figure 3.14: Formation of cusp in orthogonal turn-milling operation. 

In order to prevent the cusp formation, the feed per workpiece revolution (𝑎𝑤) must be 

smaller than the step over during the process. Alternatively, depending on the eccentricity 

value, there is a maximum allowable range (𝑎𝑤𝑚𝑎𝑥) which the minor edge can wipe out 

all the material during the cut, and no uncut material will be left. Another important issue 

in this regard is the length of the minor edge 𝑙𝑡 (or wiper edge length) which leads to 

different engagement at every eccentricity value. By considering all the mentioned 

parameters, the allowable feed per workpiece revolution 𝑎𝑤𝑚𝑎𝑥 is modeled in Equation 

(3.23) based on the cutting geometry given in Figure 3.15. According to Equation (3.23), 

it is deduced that, unlike the conventional milling process, the stepover in the orthogonal 

turn-milling process cannot be chosen any arbitrary value smaller than tool diameter, and 

it depends on tool geometry and eccentricity value.  

 

Figure 3.15: Schematic representation of cutting geometry for calculation of 𝑎𝑤𝑚𝑎𝑥. 
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𝑎𝑤𝑚𝑎𝑥 =

{
 
 

 
 

𝑙𝑡 +𝑚 𝑒 = 0

√𝑅𝑡
2 − (𝑒 −𝑚)2 − √(𝑅𝑡 − 𝑙𝑡)

2 − (𝑒 −𝑚)2 0 < 𝑒 < 𝑅𝑡 − 𝑙𝑡 −𝑚

2√2𝑅𝑡𝑙𝑡 − 𝑙𝑡
2 𝑒 = 𝑅𝑡 − 𝑙𝑡 −𝑚

2√𝑅𝑡
2 − (𝑒 −𝑚)2 𝑅𝑡 − 𝑙𝑡 −𝑚 < 𝑒 ≤ 𝑅𝑡

   (3.23) 

 where 𝑚 =
(𝑅𝑤−𝑎𝑝)𝛽

2
 and 𝑙𝑡 is the minor edge length. 

According to the proposed model, the minor edge length defines the eccentricity ranges 

and hence, allowable radial depth of cut value and MRR. For better understanding, 

Equation (3.23) is illustrated in Figure 3.16.  

It is deduced that, as the minor edge length increases the allowable feed per workpiece 

revolution (𝑎𝑤) also increases. However, the maximum value of 𝑎𝑤 which defines the 

radial depth of cut happens in a specific eccentricity which depends on minor edge length. 

As a result, if the tool has longer minor (wiper) edge length higher feed per workpiece 

values will be achieved which increases the MRR without sacrificing the surface quality. 

In this regard, employing the proposed model to select the proper eccentricity and feed 

per tooth value based on the tool diameter and minor edge length leads to higher 

productivity with error-free surface. 

 

Figure 3.16: Effect of minor edge length and eccentricity on allowable 𝑎𝑤, (𝑅𝑡 = 31.5) 

3.5.1. Experimental verification 

In this section, the orthogonal turn-milling operation is performed based on the parameters 

which are selected according to the model proposed in the previous section to investigate 

the surface profile. For this purpose, the orthogonal turn-milling experiments are 

performed on Mori Seiki NTX 2000 multi-tasking machine tool, as shown in Figure 3.17. 

The workpiece is stainless steel with 116 mm diameter, where a 63 mm diameter face-

a) b)
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milling cutting tool with four inserts with minor edge length (𝑙) is 12.7 mm, was used. 

During the experiments, the cutting speed and feed per tooth values were kept constant, 

equal to 200 m/min and 0.1 mm/rev/tooth, respectively. Two different experiments were 

conducted to show eccentricity's effect on productivity and surface quality. The 

parameters used in the experiments are given in Table 3.2. 

Table 3.2: Cutting conditions for surface profile measurement experiments. 

Exp. No: nt (rpm) nw (rpm) aw (mm/rev) ap (mm) e (mm) 

1 1000 1 20 0.5 15 

2 1000 1 40 0.5 22 

 

 

Figure 3.17: Experimental setup used for orthogonal turn-milling process. 

The resulting workpiece surfaces are shown in Figure 3.18. While the maximum feed per 

workpiece revolution is  𝑎𝑤𝑚𝑎𝑥 = 16.2
𝑚𝑚

𝑟𝑒𝑣
  for 𝑒 = 15 mm in experiment 1, setting the 

𝑎𝑤 as 20 (mm/rev) which is higher than the allowable value, results in very poor surface 

quality with uncut material left on the surface (see Figure 3.18 (1)). On the other hand, for 

experiment 2 which eccentricity is 𝑒 = 22 𝑚𝑚 the allowable feed per workpiece is 

ϕ=63mm
l=12.7mm

ϕ=63mm
l=12.7mm
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𝑎𝑤𝑚𝑎𝑥 = 45
𝑚𝑚

𝑟𝑒𝑣
. In this case, better surface quality without uncut material is achieved at 

an even higher 𝑎𝑤 value, as seen in Figure 3.18 (2). It is evident that since the eccentricity 

and radial depth of cut in experiment 2 are selected based on the proposed model in Section 

3.5, the cusp formation is prevented while the MRR is doubled. That indicates using the 

procedure proposed in this study; one can select all the parameters in turn-milling and use 

them to program the machine tool by considering both surface quality and productivity. 

The parameter selection for better cutting performance also depends on other criteria such 

as the maximum torque capacity of the machine tool and process stability, which will be 

discussed in the following sections. The complete parameter selection guide will also be 

given the upcoming sections. 

 

Figure 3.18: Surface profile measurements for conditions in Table 3.2. 

3.6. Static Cutting Force Model in Orthogonal Turn-Milling 

Based on the cutting geometry and kinematics, it is deduced that both the side edge and 

minor edge of the milling tool are engaged in cutting in orthogonal turn-milling operation. 

The CWE and uncut chip thickness are modeled for both cutting edges in Sections 3.2 and 

3.3. Once the uncut chip geometry is evaluated, the static cutting forces can be computed 

using the well-known linear edge force model in the literature [110,111]. 

50μm

2)

270μm
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As shown in Figure 3.19, the side edge cutting of the tool is divided into infinitesimal 

small disc elements with a height 𝑑𝑧 and the minor edge is divided into segments with a 

width of 𝑑𝑙. The differential cutting forces of the discrete cutting edges (side and minor) 

are calculated separately since the CWE and uncut chip thickness, and hence the cutting 

mechanics are different for each.  

• Side cutting edge: 

For a discrete element on the side cutting edge of tooth 𝑗𝑡ℎ, the differential cutting forces 

along tangential (𝑡) , radial (𝑟) and axial (𝑎) directions can be written according to linear 

edge force model as follows [111]; 

 𝑑𝐹𝑡,𝑗
𝑠 (𝜙𝑗 , 𝑧) = [(𝐾𝑡𝑐ℎ𝑗 (𝜙𝑗(𝑧)) + 𝐾𝑡𝑒) 𝑑𝑧] . ℊ (𝜙𝑗(𝑧)) . 𝓆(𝜙𝑗(𝑧), 𝑧)  

𝑑𝐹𝑟,𝑗
𝑠 (𝜙𝑗 , 𝑧) = [(𝐾𝑟𝑐ℎ𝑗 (𝜙𝑗(𝑧)) + 𝐾𝑟𝑒) 𝑑𝑧] . ℊ (𝜙𝑗(𝑧)) . 𝓆(𝜙𝑗(𝑧), 𝑧)  

𝑑𝐹𝑎,𝑗
𝑠 (𝜙𝑗 , 𝑧) = [(𝐾𝑎𝑐ℎ𝑗 (𝜙𝑗(𝑧)) + 𝐾𝑎𝑒) 𝑑𝑧] . ℊ (𝜙𝑗(𝑧)) . 𝓆(𝜙𝑗(𝑧), 𝑧)  

(3.24) 

 where 𝜙𝑗 is the angular position of the element on the cutting edge of tooth 𝑗 which is 

defined as; 

 𝜙𝑗(𝑧) = 𝜙 + (𝑗 − 1)𝜙𝑝 −
tan(𝛾𝑗)

𝑅𝑡
𝑧   (3.25) 

where 𝜙 is the angular increment of the reference tooth, 𝑧 is the height of the element from 

the tooltip, 𝛾𝑗 is the helix angle of 𝑗𝑡ℎ tooth and 𝜙𝑝 is the pitch angle defined as 𝜙𝑝 =
2𝜋

𝑁
 

for regular milling tools with 𝑁 number of teeth. The uncut chip thickness in Equation 

(3.24) can be calculated by; 

 ℎ(𝜙𝑗 , 𝑧) = 𝑓𝑡̆(𝑧)    (𝜙𝑗(𝑧))  (3.26) 

 where 𝑓𝑡̆(𝑧) is defined in Equation (3.7). The ℊ (𝜙𝑗(𝑧)) and 𝓆 (𝜙𝑗(𝑧))  in Equation 

(3.24) are unit pulse functions that determine whether the disc element is within the CWE 

boundaries. The 𝑔 function controls the angular position of the disc element if it is within 

the immersion boundary, and the 𝑞 function determines whether the corresponding 

element is within the CWE boundaries at that specific angular position and height. 
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ℊ (𝜙𝑗(𝑧)) = {
1, 𝜙𝑠𝑡(𝑧) ≤ 𝜙𝑗(𝑧) ≤ 𝜙𝑒𝑥

0, 𝜙𝑗(𝑧) < 𝜙𝑠𝑡  | 𝜙𝑗(𝑧) > 𝜙𝑒𝑥
   

𝓆(𝜙𝑗(𝑧), 𝑧) = {
1, 0 < 𝑧 ≤ 𝑎𝑖(𝜙𝑗)

0, 𝑧 > 𝑎𝑖(𝜙𝑗)
    

(3.27) 

 In the linear edge force model, the cutting force coefficients (𝐾𝑡𝑐, 𝐾𝑟𝑐, 𝐾𝑎𝑐) and edge force 

coefficients (𝐾𝑡𝑒 , 𝐾𝑟𝑒 , 𝐾𝑎𝑒) are obtained by orthogonal-to-oblique transformation 

[110,111]. In this approach, the orthogonal cutting experiments are performed to calculate 

the orthogonal cutting parameters; shear stress (𝜏𝑠), shear angle (𝜙𝑠) and friction angle 

(𝛽𝑠) at for cutter-workpiece pair. The orthogonal cutting tests are performed at different 

cutting speeds and feed rates, and rake angles (𝛼𝑟) for that specific cutter-workpiece pair. 

As a result, the orthogonal cutting parameters will be a function of cutting speed, federate 

and rake angle. Then, the orthogonal database is transformed to the oblique plane using 

orthogonal-to-oblique transformation as defined in [111]. The cutting force coefficients in 

for oblique cutting conditions on the oblique plane are formulated as; 

 𝐾𝑡𝑐 =
𝜏𝑠

sin𝜙𝑛 cos𝛾

sin(𝛽𝑛−𝛼𝑛)

√cos2(𝜙𝑛+𝛽𝑛−𝛼𝑛)+ tan2 𝜂𝑐 sin2𝛽𝑛
  

𝐾𝑟𝑐 =
𝜏𝑠

sin𝜙𝑛

cos(𝛽𝑛−𝛼𝑛)+tan𝛾 tan𝜂𝑐 sin𝛽𝑛

√cos2(𝜙𝑛+𝛽𝑛−𝛼𝑛)+ tan2 𝜂𝑐 sin2𝛽𝑛
   

𝐾𝑎𝑐 =
𝜏𝑠

sin𝜙𝑛

cos(𝛽𝑛−𝛼𝑛) tan𝛾+tan𝜂𝑐 sin𝛽𝑛

√cos2(𝜙𝑛+𝛽𝑛−𝛼𝑛)+ tan2 𝜂𝑐 sin2𝛽𝑛
  

  (3.28) 

where 𝜙𝑛, 𝛽𝑛, 𝛼𝑛, and 𝜂𝑐 are the shear, friction, normal rake angle, and chip flow angles 

on the normal plane, respectively. According to the Stabler’s rule [111–113] the angles on 

the normal plane are considered equal to the orthogonal cutting angles 𝜙𝑛 = 𝜙𝑠, 𝛽𝑛 = 𝛽𝑠, 

𝛼𝑛 = 𝛼𝑟, and the chip flow angle 𝜂𝑐 is assumed to be equal to the oblique angle of the 

tool (𝛾). Note that, since the rake angle, helix (oblique) angle, cutting speed (𝑉𝑐) and feed 

per tooth (𝑓𝑡) values are constant along the tool axis for standard end mills, the cutting 

force coefficients for any element on the side cutting edge will be constant. The edge force 

coefficients are obtained by extrapolating the measured forces in orthogonal cutting 

experiments to zero chip thickness. Further details can be found in [111]. 

The differential cutting forces acting on the disc element at height 𝑧 on the 𝑗𝑡ℎ tooth in 

rotating coordinates of (𝑡𝑟𝑎) can be transformed into 𝑇𝐶𝑆 coordinate system using the 

transformation matrix given in Equation (3.29). 
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 𝑑𝐹𝑥,𝑦,𝑧
𝑠 (𝜙𝑗, 𝑧) = {

𝑑𝐹𝑥,𝑗 
𝑠 (𝜙𝑗 , 𝑧)

𝑑𝐹𝑦,𝑗 
𝑠 (𝜙𝑗 , 𝑧)

𝑑𝐹𝑧,𝑗 
𝑠 (𝜙𝑗 , 𝑧)

}

𝑇𝐶𝑆

=   {

𝑑𝐹𝑡,𝑗
𝑠 (𝜙𝑗 , 𝑧)

𝑑𝐹𝑟,𝑗
𝑠 (𝜙𝑗 , 𝑧)

𝑑𝐹𝑎,𝑗
𝑠 (𝜙𝑗 , 𝑧)

} 

  = [

−   𝜙𝑗(𝑧) −    𝜙𝑗(𝑧) 0

   𝜙𝑗(𝑧) −    𝜙𝑗(𝑧) 0

0 0 1

]  

(3.29) 

Note that the 𝑇𝑆 matrix is the transformation matrix only for the differential cutting forces 

acting on the side cutting edge of the tool. The total forces acting on the tool body 

generated by the side cutting edge can be calculated by integrating the differential cutting 

forces contributed by 𝑁 number of teeth within the CWE boundaries [114]. The CWE 

boundaries for each tooth are defined by the immersion angles 𝜙𝑠𝑡(𝑧), 𝜙𝑒𝑥(𝑧) of each 

element and the axial engagement limit of element at each angular position 𝑎𝑖(𝜙𝑗). The 

total cutting forces contributed by all teeth within the CWE are calculated and summed to 

evaluate the instantaneous cutting forces at the angular position of 𝜙 imposed on the tool, 

which are generated by the side edge as follows; 

𝐹𝑝
𝑠(𝜙) =  ∑∫ 𝑑𝐹𝑝

𝑠(𝜙𝑗 , 𝑧)𝑑𝑧
𝑎𝑖(𝜙)

0

𝑁

𝑗=1

,     𝑝: 𝑥, 𝑦, 𝑧 (3.30) 

 The further details of the integration of differential cutting forces resulting from the side 

edge can be found in references [111,114] considering the fact that in orthogonal turn-

milling process, the angular and axial engagement boundaries only differ from the 

conventional milling operation.  

• Minor cutting edge: 

The minor edge engagement is divided into infinitesimal segments with a length of 𝑑𝑙. 

However, as mentioned in previous sections, the engagement length of the minor edge 

varies at every angular increment of 𝜑𝑗. Therefore, the engagement limits and number of 

segments on the engagement length vary. For an arbitrary element with a length of 𝑑𝑙 the 

differential cutting forces in rotating coordinates can be written based on the linear edge 

force model as follows: 

 𝑑𝐹𝑡,𝑗
𝑚(𝜑𝑗, 𝑙𝑘) = [(𝐾𝑡𝑐(𝜑𝑗 , 𝑙𝑘) ℎ𝑚,𝑗(𝜑𝑗, 𝑙𝑘) + 𝐾𝑡𝑒)𝑑𝑙]. ℊ(𝜑𝑗)  (3.31) 
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𝑑𝐹𝑓,𝑗
𝑚(𝜑𝑗 , 𝑙𝑘) = [(𝐾𝑟𝑐(𝜑𝑗, 𝑙𝑘) ℎ𝑚,𝑗(𝜑𝑗 , 𝑙𝑘) + 𝐾𝑟𝑒)𝑑𝑙]. ℊ(𝜑𝑗)  

𝑑𝐹𝑟,𝑗
𝑚(𝜑𝑗 , 𝑙𝑘) = [(𝐾𝑎𝑐(𝜑𝑗, 𝑙𝑘) ℎ𝑚,𝑗(𝜑𝑗 , 𝑙𝑘) + 𝐾𝑎𝑒)𝑑𝑙]. ℊ(𝜑𝑗)  

The angular position (𝜑𝑗) of the minor edge of the 𝑗𝑡ℎ tooth is defined by  

𝜑𝑗 = 𝜙 + (𝑗 − 1)𝜙𝑝 ,      𝜙𝑝 =
2𝜋

𝑁
  (3.32) 

 Where the 𝜙 = Ω𝑡𝑡 is the angular increment of the reference tooth from the 𝑌𝑇 axis, and 

𝑙𝑘 is the distance of the element from the beginning of the engagement (𝑙𝑘 = 𝑘. 𝑑𝑙). The 

uncut chip thickness ℎ𝑚,𝑗(𝜑𝑗, 𝑙𝑘) is different for each element along the engagement 

length as defined and discussed in (3.21) in Section 3.3.2. The ℊ(𝜑𝑗) is a binary function 

similar to Equation (3.27), is equal to one if the angular position of the minor edge of tooth 

j is between 𝜑𝑠𝑡 and 𝜑𝑒𝑥, and is equal to zero if the angular position is out of this boundary. 

Note that, unlike the side cutting edge, the discrete elements on the minor cutting edge 

have a different radius and hence, different cutting speed values. Since the varying cutting 

speeds affect the cutting force coefficients, the cutting force coefficients are written as a 

function of the radial distance of each element. The radial distance of discrete element 𝑘 is 

𝑟𝑘(𝜑𝑗) = (𝑘 − 0.5)𝑑𝑙 + 𝑟𝑡(𝜑𝑗), where 𝑟𝑡 is the offset distance of the insert from tool 

center and is equal to; 𝑟𝑡(𝜑𝑗) = 𝑅𝑡 − 𝑙𝑚(𝜑𝑗). Therefore, the cutting force and edge force 

coefficients for minor edge must be calculated according to the radial distance of the 

discrete element, minor edge rake, and oblique angle. The differential cutting forces acting 

on each element of the minor edge is resolved to 𝑇𝐶𝑆 coordinates in 𝑋𝑇𝑌𝑇𝑍𝑇 frame using 

the transformation matrix given in Equation (3.33).  

 𝑑𝐹𝑥,𝑦,𝑧
𝑚 (𝜑𝑗, 𝑙𝑘) = {

𝑑𝐹𝑥,𝑗 
𝑚 (𝜑𝑗, 𝑙𝑘)

𝑑𝐹𝑦,𝑗 
𝑚 (𝜑𝑗 , 𝑙𝑘)

𝑑𝐹𝑧,𝑗 
𝑚 (𝜑𝑗, 𝑙𝑘)

}

𝑇𝐶𝑆

=   {

𝑑𝐹𝑡,𝑗
𝑚(𝜑𝑗 , 𝑙𝑘)

𝑑𝐹𝑓,𝑗
𝑚(𝜑𝑗 , 𝑙𝑘)

𝑑𝐹𝑟,𝑗
𝑚 (𝜑𝑗, 𝑙𝑘)

} 

  = [

−    𝜑𝑗    𝜑𝑗    𝛼𝑚    𝜑𝑗    𝛼𝑚
   𝜑𝑗    𝜑𝑗    𝛼𝑚    𝜑𝑗    𝛼𝑚
0    𝛼𝑚 −   𝛼𝑚

]  

(3.33) 

Note that, the transformation matrix 𝑇𝑀 is given for the general case where the milling 

tool has an approach angle of minor angle 𝛼𝑚 (See Figure 3.13). However, it is previously 

mentioned that in order to prevent the cusp formation, it is recommended to use milling 

tools with zero minor edge approach angle (𝛼𝑚 = 0) for orthogonal turn-milling 
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operations. The total cutting forces generated by the minor cutting edges of all contributed 

teeth can be calculated by integrating the discrete elements along the engagement length 

at the angular position of 𝜑 within the CWE as follows; 

𝐹𝑝
𝑚(𝜑) = ∑∫ 𝑑𝐹𝑝

𝑚(𝜑𝑗)𝑑𝑙,     𝑝 = 𝑥, 𝑦
𝑙𝑗,2(𝜑𝑗)

𝑙𝑗,1(𝜑𝑗)

𝑧

𝑁

𝑗=1

 (3.34) 

  where 𝑙𝑗,1(𝜑𝑗) = 𝑅𝑡 − 𝑙𝑚(𝜑𝑗) and 𝑙𝑗,2(𝜑𝑗) = 𝑅𝑡 are the engagement boundary of minor 

edge at angular position of 𝜑𝑗. 

The total instantaneous cutting forces imposed on the tool body and produced by both side 

and minor cutting edges is obtained by the superposition of both forces in TCS coordinate 

system (𝑋𝑇𝑌𝑇𝑍𝑇 frame) as follows; 

 𝐹̅𝑝(𝜙) = 𝐹𝑝
𝑠(𝜙) + 𝐹𝑝

𝑚(𝜙),         𝑝 = 𝑥, 𝑦, 𝑧 (3.35) 

 

Figure 3.19: Representation of differential forces imposed on side and minor cutting 

edges in tangential, feed, and radial directions.  

Note that the angular position 𝜙 in Equation (3.35) is an arbitrary angle. However, the 

unit pulse function for each cutting edge should be checked to make sure that 𝜙 is within 

the CWE and immersion angles. 

As the cutting forces are calculated, spindles' torque and power requirements can also be 

calculated using the cutting forces. Unlike conventional milling operation, in turn-milling 

operation and tool spindle, the torque and power predictions must be considered at the 
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process planning stage. The torque value imposed on the tool spindle 𝑇𝑡 (N.m) and cutting 

power 𝑃𝑡 (W) are calculated as below; 

𝑇𝑡(𝜙) = 𝑅𝑡(𝐹̅𝑡
𝑠(𝜙) + 𝐹̅𝑡

𝑚(𝜙)) 

𝑃𝑡(𝜙) = Ω𝑡𝑇𝑡(𝜙) 
(3.36) 

  where 𝑅𝑡 is tool radius, Ω𝑡 is the tool spindle speed, 𝐹̅𝑡
𝑠(𝜙) and 𝐹̅𝑡

𝑚(𝜙) are the total 

tangential force imposed on the tool for all teeth within the CWE generated by side edge 

and minor edge, respectively. 

The torque from the workpiece spindle 𝑇𝑤 (N.m) and the corresponding power 𝑃𝑤 (W) 

can also be calculated by; 

 𝑇𝑤(𝜙) = 𝑅𝑤𝐹̅𝑥(𝜙) 

𝑃𝑤(𝜙) = Ω𝑤𝑇𝑤(𝜙)  
(3.37) 

 where 𝑅𝑤 is the workpiece radius, Ω𝑤 is the workpiece spindle speed, and 𝐹̅𝑥(𝜙) is the 

total cutting forces generated by both side and minor cutting edges in 𝑋𝑇 direction, which 

is calculated in Equation (3.35). 

3.7. Experimental Verification of Cutting Force Model 

The proposed force model of the orthogonal turn-milling process has been verified in this 

section. The cutting force verifications are carried out on aluminum alloy Al7075-T6 

cylindrical workpiece. Two different cutters are used for experiments, a solid carbide end 

mill and inserted milling tool, and the specifications are given as follows. The cutting 

forces are measured using Kistler 9123C rotary dynamometer, as seen in Figure 3.20. The 

cutting force data were collected using DAQ systems. The cutting force coefficients were 

calculated using orthogonal-to-oblique transformation from the orthogonal data for the 

given tool geometry and workpiece material using Equation (3.28). The orthogonal 

database for Aluminum alloy Al7075-T6 and uncoated WC tool are given in Appendix A: 

Orthogonal databases, Table A1.  

The cutting experiments can be conducted on Mori Seiki NTX2000 CNC mill-turn (Figure 

3.20a) and DMG Mori DMU monoblock75 (Figure 3.20b) machining centers. In the first 

experimental setup, as shown in Figure 3.20a, an additional extension must be added due 
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to the difference in spindle adaptor interfaces. Due to the extension length, the tool tip 

experiences excessive runout. In order to eliminate the runout, the cutting force 

measurements are performed on DMG Mori DMU machining center, in which the spindle 

adaptor of the machine tool and spindle are both SK40.  

In the first set of measurements, a WC standard end mill with four flutes, having 16mm 

diameter, 7˚ rake, and 38˚ helix angle, is selected. The minor edge has a rake angle of 5˚ 

and zero oblique angles. The cutting conditions are given in Table 3.3. Note that 𝑓𝑡 is the 

nominal feed per tooth value at the tool tip; however, it varies along the tool axis because 

of the kinematics of the process (See Equation (3.6)).  𝐷𝑤1 is the diameter of workpiece 

before cut. The cutting parameters for experimental verification of the cutting forces with 

a solid end mill are given in Table 3.3.  

 

Figure 3.20: Experimental setup for cutting force measurement in orthogonal tur-milling 

a) Mori Seiki NTX 2000, b) DMG Mori DMU Monoblock 75. 

Table 3.3: Cutting conditions for cutting force measurement experiments in turn-milling. 

Exp. 
Ω𝑡 

(𝑟𝑝𝑚) 

Ω𝑤 

(𝑟𝑝𝑚) 

𝑒 

(𝑚𝑚) 

𝑓𝑡  

𝑚𝑚/(𝑟𝑒𝑣. 𝑡  𝑡ℎ) 

𝑎𝑤 

(𝑚𝑚/𝑟𝑒𝑣) 

𝑎𝑝 

(𝑚𝑚) 

𝐹 

(𝑚𝑚
𝑚𝑖𝑛 ) 

𝐷𝑤1 

(𝑚𝑚) 

1 3600 5 2 0.15 4 3.5 40 143 

2 3600 5 5 0.15 4 3.5 40 143 

3 3600 5 7 0.15 4 3.5 40 143 

4 3600 10 5 0.31 4 3.5 40 143 

5 3600 5 5 0.15 8 3.5 40 143 
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Figure 3.21: Verification of cutting forces in turn-milling with the standard tool for the 

given conditions in Table 3.3.   
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The simulation and experimental results are shown in Figure 3.21, comparing the resultant 

force, axial force, and tool torque. Exp1. – Exp3. are performed at different eccentricity 

values with similar other parameters. As expected, by increasing the eccentricity, the 

engagement of the minor edge is decreased, and hence the axial forces are reduced. In 

Exp.4, the workpiece rotational speed is increased, which causes an increase in nominal 

feed per tooth value. In order to keep the radial depth of cut similar to Exp.2, the linear 

feed value is increased. Moreover, in Exp.5, the effect of radial depth of cut is investigated 

by increasing the linear feed value and keeping the workpiece rotational speed similar to 

Exp.2.  

It is seen that workpiece rotational speed has a major effect on the axial force magnitude. 

According to Figure 3.21, there is a good agreement between the cutting force simulations 

and experiments. The relatively high error occurs in Exp.4 and Exp.5, where the maximum 

cutting forces increased due to the increased workpiece rotational speed and radial depth 

of cut, respectively. The maximum error occurs in Exp.5 with 7.5% for resultant force and 

12.5% for the torque values. 

3.8. Analyzing Cutting Forces in Orthogonal Turn-Milling 

According to the cutting force results given in the previous section, it is seen that while 

the eccentricity and radial depth of cut varies, the average axial force has a relatively 

smaller variation compared to resultant forces. Depending on the tool geometry, with the 

minor edge engagement increase, the axial forces resulted from the minor edge increase. 

According to equations (3.18) and (3.19), the engagement length of the minor edge can be 

changed by the radial depth of cut, eccentricity, and tool radius. In order to discuss the 

effect of these, maximum resultant force, maximum torque, and maximum axial cutting 

forces are plotted with respect to eccentricity and radial depth of cut. For this purpose, the 

simulations are performed for a case study for a roughing operation of a Ti4Al4V 

cylindrical part with 300 mm diameter, an indexable milling tool with 63 mm diameter, 8 

cutting teeth, and 12.7 mm minor edge length. The axial depth of cut is determined as 

𝑎𝑝 = 3𝑚𝑚, with cutting speed 𝑉𝑐 = 60𝑚/𝑚𝑖𝑛, and workpiece rotational speed is taken 

as Ω𝑤 = 1 𝑟𝑝𝑚. The insert grades are selected with respect to the feed per tooth and 

cutting speed. 
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Figure 3.22: variation of resultant force and torque by eccentricity and radial depth of 

cut. 

Figure 3.22 demonstrates the effect of eccentricity and feed per workpiece revolution on 

torque and resultant force. It is seen that the torque and resultant forces have an 

approximately linear relationship with the parameters. As the 𝑎𝑤 increases the both torque 

and resultant force also increases linearly, similar to the conventional milling operation. 

Although the eccentricity also affects the torque and resultant force because of change in 

CWE (as seen in Figure 3.22), the magnitude of the variation is relatively small compared 

to the effect resulting by 𝑎𝑤.  Therefore, it can be concluded that the resultant force and 

torque mostly depend on the radial depth of cut rather than eccentricity, and due to the 

linear relationship, there is no conflicting effect and hence, can be eliminated from the 

parameter selection procedure.  

The total axial force in the tool axis direction (𝑍𝑇) in TCS (workpiece radial direction 

(𝑋𝑊) in WCS) is plotted in Figure 3.23 with respect to eccentricity and feed per workpiece 

revolution (𝑎𝑤). Since the direction of axial forces resulting from the minor edge and side 

edge are opposite (Figure 3.19), the direction of the total axial force changes depending 

on the CWE variation based on the eccentricity and 𝑎𝑤. In other words, as the engagement 

of the minor edge increases (depending on the eccentricity and stepover), the axial forces 

result from the minor edge in −𝑍𝑇 direction exceeds the axial forces generated from the 

side edge (in +𝑍𝑇 direction) and therefore, the total axial force is dominated by the axial 

force of the minor edge.  Note that the total axial force distribution given in Figure 3.23 

depends on the rake and oblique angle of the edges of the tool. Since higher axial forces 

(radial force in WCS) cause deflection on the slender flexible workpieces as well as on 

the thin-walled cylindrical parts causing dimensional errors [115,116], it is crucial to 

select the parameters that result in lower axial forces in the orthogonal turn-milling 
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process. The simulations given in Figure 3.23 allow the selection of eccentricity and 

stepover combinations based on the desired range of the axial forces. In Figure 3.23, an 

arbitrary range in the vicinity of zero axial forces is colored specifically in green for better 

visualization and distinguishing.  

One can select the eccentricity-stepover pair based on minimum axial force using the 

simulations in Figure 3.23; however, this is not a sufficient parameter selection criterion. 

According to the parameter selection procedure proposed by Berenji et al. [24], the 

allowable stepover is limited with respect to eccentricity to avoid cusp formation. 

The authors showed that lower eccentricity values require a lower radial depth of cut to 

provide the sufficient engagement boundary for the minor edge to cut the material at two 

consequent rotations of the workpiece (stepovers). Therefore, the maximum stepover with 

respect to eccentricity for the tool and workpiece geometries used in this case study is 

plotted and merged with the total axial force distribution plot. It is proven that, for a 

specific eccentricity, the stepover values above the critical value, shown as a solid black 

line in Figure 3.23, cause cusp formation [24]. 

 

Figure 3.23: Total axial force variation by eccentricity and radial depth of cut. 

This criterion limits the parameter selection based on axial force. It is deduced that 

although there are lower axial force regions (point A), the surface quality will be 

deteriorated due to cusp formation, which requires an additional operation. For similar 

MRR, Point B's parameters can be selected with a slight change in axial cutting forces. 

However, for the minimum axial force criterion, the parameters of Point C can be selected 

by sacrificing the MRR. 
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 As a result, in orthogonal turn-milling in order to have better surface quality and control 

the exerted forces and torque values, process planning based on the simulation is required 

for efficient cutting, especially in the machining of hard-to-cut materials 

3.9. Summary 

This chapter presents detailed modeling of orthogonal turn-milling kinematics. The 

definition of cutting parameters such as feed per tooth, stepover, and feed rate are different 

from conventional machining operations. An analytical model is proposed for uncut chip 

geometry for both side and minor cutting edges of the milling tool during orthogonal turn-

milling operation. The effect of eccentricity on chip geometry formed by the side edge 

and the minor edge is shown through simulations. Based on the proposed uncut chip 

model, the relation between the eccentricity and stepover is discussed, and its effect on 

surface quality is modeled. The experimental validations proved that using the proposed 

relation cusp-free surface and enhanced MRR can be achieved simultaneously. 

The static cutting forces are calculated based on the proposed chip geometry and cutting 

parameter relations. The proposed mechanics model of orthogonal turn-milling is 

validated throughout experiments against different cases. Having validated the proposed 

model, a parameter solution discussion was made with the axial forces' objective. The total 

axial force variation with respect to eccentricity and stepover is presented to select suitable 

parameters to reduce axial forces while cutting slender and flexible parts. 
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4. DYNAMICS AND STABILITY OF TURN-MILLING OPERATION 

4.1. Overview 

Turn-milling operations require simultaneous rotation of tool and workpiece spindles and 

translational motion of tool spindle in three-dimensional Cartesian coordinates (X, Y, Z). 

In turn-milling operations, the workpiece is mounted on the chuck with constant rotational 

speed. The tool is mounted on the spindle with constant rotational speed and has three 

translational motions. The resulting kinematics of the orthogonal turn-milling operation 

cause a complex chip thickness, cutting forces, and hence, cutting dynamics compared to 

conventional milling and turning operations. In this regard, the uncut chip geometry 

generated by the side and minor cutting edges of the tool and the resulting cutting forces 

have been modeled and verified in Chapter 3. It is deduced that the parameter selection 

highly depends on the tool and workpiece geometry, process kinematics, and the uncut 

chip geometry, which influence the cutting mechanics, surface quality, and productivity. 

Furthermore, the improper selection of cutting parameters such as workpiece and tool 

spindle speeds, cutting depth, eccentricity, and feed rate can cause self-excited, 

regenerative chatter vibrations, leading to poor surface finish and excessive cutting forces, 

tool and spindle failure. This chapter aims to develop a predictive model for the orthogonal 

turn-milling process stability to find chatter-free conditions to avoid costly trial 

experiments. The dynamic chip geometry and cutting forces are modeled based on the 

previous chapter's proposed process kinematics and mechanics models. 

 The dynamics of the orthogonal turn-milling process are modeled as a multi-degree 

freedom system having multi-dimensional chatter vibrations. In order to obtain the 

stability diagrams, the delayed-differential equations of the dynamic system are solved in 

discrete-time domain by considering the time-varying delay caused by the system’s 

kinematics. The results are compared with frequency domain solutions and validated on a 

turn-milling machining center for various conditions and materials.  
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4.2. Dynamic Chip and Cutting Forces in Orthogonal Turn-Milling Process 

In orthogonal turn-milling operations, the uncut chip thickness on the side edge (ℎ) and 

on the minor edge (ℎ𝑚) are different due to the kinematics of chip generation during the 

process. The total uncut chip thickness imposed on each edge consists of static and 

dynamic parts [117]. The static part (ℎ𝑠) corresponds to the constant feed movement of 

the tool and the dynamic part (ℎ𝑑) is due to the self-excited displacements of the cutter 

and/or workpiece under the effect of the regeneration mechanism. Figure 4.1 shows the 

dynamic system in orthogonal turn-milling operations. In this system, the cutter and 

workpiece are assumed to be flexible, each with three degrees of freedom. It is assumed 

that the dynamic system experiences vibrations in two lateral (𝑥, 𝑦) and axial (𝑧) directions 

in 𝑇𝐶𝑆. As shown in Figure 4.1, due to the vibration of the cutter and workpiece, the tooth 

𝑗 of the cutter removes the modulated chip thickness left by the vibration marks of tooth 

𝑗 − 1, in addition to the static chip load. The total chip thickness imposed on the side 

cutting edge of the tool can be written as: 

 ℎ𝑑(𝜙𝑗 , 𝑧) = Δ𝑥    𝜙𝑗(𝑧) + Δ𝑦    𝜙𝑗(𝑧) + 𝑓𝑡̌    𝜙𝑗(𝑧)  (4.1) 

 Similarly, the total chip thickness, including the dynamic and static parts for minor edge, 

is formulated as follows; 

 ℎ𝑚
𝑑 (𝜑𝑗 , 𝑙𝑘) = Δ𝑧 + ℎ𝑚

𝑠 (𝜑𝑗 , 𝑙𝑘) (4.2) 

 Δ𝑥, Δ𝑦, and Δ𝑧 are related to dynamic chip thickness and are defined as the relative 

displacements of the workpiece and cutter to each other in 𝑥, 𝑦, and 𝑧 directions, 

respectively, and can be formulated as below: 

Δ𝑥 = [(𝑥𝑐(𝑡) − 𝑥𝑐(𝑡 − 𝜏)) − (𝑥𝑤(𝑡) − 𝑥𝑤(𝑡 − 𝜏))]  

Δ𝑦 = [(𝑦𝑐(𝑡) − 𝑦𝑐(𝑡 − 𝜏)) − (𝑦𝑤(𝑡) − 𝑦𝑤(𝑡 − 𝜏))]   

Δ𝑧 = [(𝑧𝑐(𝑡) − 𝑧𝑐(𝑡 − 𝜏)) − (𝑧𝑤(𝑡) − 𝑧𝑤(𝑡 − 𝜏))]  

 (4.3) 

 where 𝑥𝑐 , 𝑦𝑐 and 𝑥𝑤, 𝑦𝑤 and 𝑧𝑐, 𝑧𝑤 are the cutter and workpiece displacements in the 

current tooth pass at time 𝑡 in the 𝑥, 𝑦, and 𝑧 directions at the specific angular position of 

tooth 𝑗 at height 𝑧 of side edge and length 𝑙 of the minor edge. 𝜏 stands for the tooth passing 

period which is used to define the cutter and workpiece displacements left on the surface 
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by the tooth 𝑗 − 1 at time 𝑡 − 𝜏 at the same point. Hence, the delay of the system is equal 

to 𝜏. 

 

 

Figure 4.1. Dynamic chip generation.  

The angular position of the discrete element on the side edge at height 𝑧 on tooth 𝑗 is 

𝜙𝑗(𝑧) = Ω𝑡𝑡 + 𝑗𝜙𝑝 −
𝑡𝑎𝑛𝛾𝑗

𝑅𝑡
𝑧, where Ω𝑡 is the rotational speed of cutter (rad/s), 𝜙𝑝 =

2𝜋/𝑁 is the constant pitch angle for standard milling tools and 𝛾𝑗 is the helix angle of the 

tooth 𝑗. The angular position of the minor edge is defined by 𝜑𝑗 = Ω𝑡𝑡 + 𝑗𝜙𝑝. The 

corresponding immersion boundaries for angular positions of each edge are given in 

Section 3. Note that in equations (4.1) and (4.2), the static chip load terms are ℎ𝑠 =
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 𝑓𝑡̌    𝜙𝑗(𝑧) and ℎ𝑚
𝑠 (𝜑𝑗 , 𝑙) are neglected in the stability analysis since they do not 

contribute to regenerative dynamic chip generation mechanisms.  

 Similar to the approach used in static cutting force calculation, the engagement lengths 

on the side and minor edges of the tool are divided into a number of small elements. The 

differential dynamic milling forces in 𝑥, 𝑦, and 𝑧 directions subjected to side cutting edge 

on 𝑡𝑟𝑎 coordinates are shown in Figure 4.1. The differential tangential (𝑑𝐹𝑡,𝑗
𝑠 ), radial 

(𝑑𝐹𝑟,𝑗
𝑠 ), and axial (𝑑𝐹𝑎,𝑗

𝑠 ) cutting forces exerted on the side cutting edge on tooth 𝑗 for an 

infinitesimal axial element thickness of 𝑑𝑧 can be formulated as;  

 {

𝑑𝐹𝑡,𝑗
𝑠 (𝜙𝑗, 𝑧)

𝑑𝐹𝑟,𝑗
𝑠 (𝜙𝑗, 𝑧)

𝑑𝐹𝑎,𝑗
𝑠 (𝜙𝑗, 𝑧)

}

𝑑

= {

𝐾𝑡𝑐
𝐾𝑟𝑐
𝐾𝑎𝑐

} [   𝜙𝑗    𝜙𝑗 0] {
Δ𝑥
Δ𝑦
Δ𝑧

} ℊ (𝜙𝑗(𝑧))𝓆(𝜙𝑗(𝑧), 𝑧) 𝑑𝑧 (4.4) 

 The 𝐾𝑡𝑐 , 𝐾𝑟𝑐 and 𝐾𝑎𝑐 are the tangential, radial, and axial cutting force coefficients, 

respectively, which are defined in Section 3.6 and Equation (3.28). Further, the function 

ℊ (𝜙𝑗(𝑧)) is unit pulse functions which determines whether the tooth is in cut or out of 

the cut, and similarly, 𝓆(𝜙𝑗(𝑧), 𝑧) determines if the axial element is within the 

engagement boundaries. The detailed formulations are given in Section 3.6, Equation 

(3.27). The differential dynamic cutting forces in 𝑡𝑟𝑎 coordinates in Equation (4.4) can be 

resolved in the 𝑇𝐶𝑆 coordinates by using the transformation matrix given in Equation 

(3.29). The differential cutting forces in tool coordinate system can be expressed as; 

 {

𝑑𝐹𝑥,𝑗 
𝑠 (𝜙𝑗 , 𝑧)

𝑑𝐹𝑦,𝑗 
𝑠 (𝜙𝑗, 𝑧)

𝑑𝐹𝑧,𝑗 
𝑠 (𝜙𝑗 , 𝑧)

}

𝑑

= [

−   𝜙𝑗(𝑧) −    𝜙𝑗(𝑧) 0

   𝜙𝑗(𝑧) −    𝜙𝑗(𝑧) 0

0 0 1

] {

𝑑𝐹𝑡,𝑗
𝑠 (𝜙𝑗 , 𝑧)

𝑑𝐹𝑟,𝑗
𝑠 (𝜙𝑗 , 𝑧)

𝑑𝐹𝑎,𝑗
𝑠 (𝜙𝑗 , 𝑧)

}

𝑑

 (4.5) 

The differential dynamic milling forces exerted on the side edge are integrated within the 

element 𝑖 with a height of 𝑑𝑧, for 𝑗𝑡ℎ flute as follows; 

{ 𝐹𝑝𝑗
𝑠 (𝑖, 𝜙𝑗)}

𝑑
=  ∫ {𝑑𝐹𝑝,𝑗 

𝑠 (𝜙𝑗, 𝑧)}𝑑
 𝑑𝑧 ;   𝑝 = 𝑥, 𝑦, 𝑧

𝑧𝑖+1

𝑧𝑖

  (4.6) 

The dynamic cutting forces for each infinitesimal element on the minor edge with a length 

of 𝑑𝑙 in radial distance from the tool center 𝑟𝑘,  in 𝑡𝑟𝑎 coordinates can be formulated as  
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 {

𝑑𝐹𝑡,𝑗
𝑚(𝜑𝑗, 𝑙𝑘)

𝑑𝐹𝑓,𝑗
𝑚(𝜑𝑗 , 𝑙𝑘)

𝑑𝐹𝑟,𝑗
𝑚(𝜑𝑗, 𝑙𝑘)

}

𝑑

= {

𝐾𝑡𝑐(𝜑𝑗, 𝑙𝑘)

𝐾𝑟𝑐(𝜑𝑗, 𝑙𝑘)

𝐾𝑎𝑐(𝜑𝑗 , 𝑙𝑘)

} [0 0 1] {
Δ𝑥
Δ𝑦
Δ𝑧

}ℊ(𝜑𝑗) 𝑑𝑙 (4.7) 

 Note that the cutting force coefficients corresponding to each element along the minor 

edge are a function of the element’s radial distance (𝑙𝑘) and angular position (𝜑𝑗) because 

the cutting speed is different for each element. Moreover, the function ℊ(𝜑𝑗) is unit pulse 

function which determines if the element on the minor edge of tooth 𝑗 at the angular 

position of 𝜑𝑗 is in cut or not.  

The tangential, radial, and feed forces acting on each element on the minor edge can be 

transformed to 𝑇𝐶𝑆 coordinates using the transformation given in Equation (3.33).  

 {

𝑑𝐹𝑥,𝑗 
𝑚 (𝜑𝑗, 𝑙𝑘)

𝑑𝐹𝑦,𝑗 
𝑚 (𝜑𝑗, 𝑙𝑘)

𝑑𝐹𝑧,𝑗 
𝑚 (𝜑𝑗, 𝑙𝑘)

}

𝑑

= [

−    𝜑𝑗 0    𝜑𝑗

   𝜑𝑗 0    𝜑𝑗

0 1 0

]{

𝑑𝐹𝑡,𝑗
𝑚(𝜑𝑗, 𝑙𝑘)

𝑑𝐹𝑓,𝑗
𝑚(𝜑𝑗, 𝑙𝑘)

𝑑𝐹𝑟,𝑗
𝑚(𝜑𝑗 , 𝑙𝑘)

}

𝑑

 (4.8) 

 As discussed in Section 3.5, the milling tools with minor edge approach angle would 

cause undesirable surface quality in orthogonal turn-milling operation. Therefore, stability 

analyses are performed for tools with 𝛼𝑚 = 0 (See Figure 3.13).  

Note that, in this study, the eccentricity value is predefined in stability analysis. Hence, 

the engagement boundaries of the minor edge at each angular position are known (see 

Figure 3.6). As a result, the total dynamic cutting forces resulting from the regeneration 

in 𝑧 direction subjected to the minor edge (Δ𝑧) at each angular position must be summed 

up with the dynamic cutting forces resulting from the element 𝑖  by the regeneration in 𝑥, 

and 𝑦 directions.  

The total dynamic cutting forces on the minor edge of tooth 𝑗 at the angular position of 𝜑𝑗 

can be calculated by integration of all elements with length 𝑑𝑙 within the engagement 

boundary as: 

𝐹𝑥,𝑗
𝑚 (𝜑) = ∫ (−𝐾𝑡𝑐(𝜑𝑗, 𝑙𝑘)    𝜑𝑗 − 𝐾𝑟𝑐(𝜑𝑗, 𝑙𝑘)    𝜑𝑗) Δ𝑧 ℊ(𝜑𝑗) 𝑑𝑙

𝑙𝑗,2(𝜑𝑗)

𝑙𝑗,1(𝜑𝑗)

 

𝐹𝑦,𝑗
𝑚 (𝜑) =  ∫ (−𝐾𝑡𝑐(𝜑𝑗, 𝑙𝑘)    𝜑𝑗 − 𝐾𝑟𝑐(𝜑𝑗, 𝑙𝑘)    𝜑𝑗) Δ𝑧 ℊ(𝜑𝑗) 𝑑𝑙

𝑙𝑗,2(𝜑𝑗)

𝑙𝑗,1(𝜑𝑗)

 

(4.9) 
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𝐹𝑧,𝑗
𝑚 (𝜑) = ∫ 𝐾𝑓𝑐(𝜑𝑗, 𝑙𝑘)Δ𝑧 ℊ(𝜑𝑗) 𝑑𝑙

𝑙𝑗,2(𝜑𝑗)

𝑙𝑗,1(𝜑𝑗)

 

 where 𝑙𝑗,1(𝜑𝑗) and 𝑙𝑗,2(𝜑𝑗) are the engagement boundary of the minor edge at the angular 

position of 𝜑𝑗 (see Section 3.3.2).  

The total dynamic forces in 𝑇𝐶𝑆 can be obtained by the superposition of the dynamic 

forces generated from dynamic chip thicknesses exerted on both side and minor cutting 

edges of the tool (superposition of Equations (4.6) and (4.9)). The explicit form of 

dynamic cutting forces in 𝑥, 𝑦 and 𝑧 direction is show as follow; 

𝐹𝑥,𝑗(𝜙, 𝜑, 𝑛) = ∫ (−𝐾𝑡𝑐    𝜙𝑗  − 𝐾𝑓𝑐    𝜙𝑗)(Δ𝑥    𝜙𝑗

𝑧𝑛+1

𝑧𝑛

+ Δ𝑦    𝜙𝑗) ℊ (𝜙𝑗(𝑧))𝓆 (𝜙𝑗(𝑧))  𝑑𝑧

+ ∫ (−𝐾𝑡𝑐(𝜑𝑗 , 𝑙𝑘)    𝜑𝑗

𝑙𝑗,2(𝜑𝑗)

𝑙𝑗,1(𝜑𝑗)

− 𝐾𝑟𝑐(𝜑𝑗, 𝑙𝑘)    𝜑𝑗) Δ𝑧 ℊ(𝜑𝑗) 𝑑𝑙 

𝐹𝑦,𝑗 (𝜙, 𝜑, 𝑛) =  ∫ (𝐾𝑡𝑐    𝜙𝑗 − 𝐾𝑓𝑐    𝜙𝑗)(Δ𝑥    𝜙𝑗

𝑧𝑛+1

𝑧𝑛

+ Δ𝑦    𝜙𝑗) ℊ (𝜙𝑗(𝑧))𝓆 (𝜙𝑗(𝑧))  𝑑𝑧

+ ∫ (−𝐾𝑡𝑐(𝜑𝑗 , 𝑙𝑘)    𝜑𝑗

𝑙𝑗,2(𝜑𝑗)

𝑙𝑗,1(𝜑𝑗)

− 𝐾𝑟𝑐(𝜑𝑗, 𝑙𝑘)    𝜑𝑗) Δ𝑧 ℊ(𝜑𝑗) 𝑑𝑙 

𝐹𝑧,𝑗(𝜙, 𝜑, 𝑛) =  ∫ 𝐾𝑎𝑐 (
𝑧𝑛+1

𝑧𝑛

Δ𝑥    𝜙𝑗 + Δ𝑦    𝜙𝑗) ℊ (𝜙𝑗(𝑧))𝓆 (𝜙𝑗(𝑧))  𝑑𝑧

− ∫ 𝐾𝑓𝑐(𝜑𝑗, 𝑙𝑘)Δ𝑧 ℊ(𝜑𝑗) 𝑑𝑙
𝑙𝑗,2(𝜑𝑗)

𝑙𝑗,1(𝜑𝑗)

 

(4.10) 

Note that, since the cutting force coefficients of dynamic cutting forces generated by the 

minor edge vary along the engagement length, the integral cannot be executed explicitly. 

In other words, the cutting force coefficients related to the minor edge are functions of 

engagement length and angular position (𝐾𝑝𝑐(𝜑𝑗, 𝑙𝑘)). As an alternative, the average 

cutting force coefficients along the engagement length at each angular position of 𝜑𝑗 can 
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be used. Since the engagement length is different at each angular position, the average 

cutting force coefficients will only be a function of the rotation angle (𝐾̅𝑝𝑐(𝜑𝑗)). After 

the integration and expanding trigonometric formulations, equation (4.10) is simplified as 

follows; 

𝐹𝑥,𝑗(𝜙, 𝜑, 𝑛) =  −
1

2
[(𝐾𝑡𝑐    2𝜙𝑗 + 𝐾𝑟𝑐(1

−    2𝜙𝑗)) Δ𝑥
𝑛 ℊ𝑗(𝑡, 𝑧)𝓆𝑗(𝑡, 𝑧) 𝛿𝑧

+ (𝐾𝑡𝑐(1 +    2𝜙𝑗) + 𝐾𝑟𝑐    2𝜙𝑗)Δ𝑦
𝑛ℊ𝑗(𝑡, 𝑧)𝓆𝑗(𝑡, 𝑧) 𝛿𝑧]

+ (−𝐾̅𝑡𝑐(𝜑𝑗)    𝜑𝑗 − 𝐾̅𝑟𝑐(𝜑𝑗)    𝜑𝑗) Δ𝑧 ℊ(𝜑𝑗) 𝑙(𝜑𝑗) 

𝐹𝑦,𝑗(𝜙, 𝜑, 𝑛) =
1

2
[(𝐾𝑡𝑐(1 −    2𝜙𝑗) − 𝐾𝑟𝑐    2𝜙𝑗)Δ𝑥

𝑛 ℊ𝑗(𝑡, 𝑧)𝓆𝑗(𝑡, 𝑧)𝛿𝑧

+ (𝐾𝑡𝑐    2𝜙𝑗 − 𝐾𝑟𝑐(1 +    2𝜙𝑗)) Δ𝑦
𝑛ℊ𝑗(𝑡, 𝑧)𝓆𝑗(𝑡, 𝑧)𝛿𝑧]

+ (−𝐾̅𝑡𝑐(𝜑𝑗)    𝜑𝑗 − 𝐾̅𝑟𝑐(𝜑𝑗)    𝜑𝑗) Δ𝑧 ℊ(𝜑𝑗)𝑙(𝜑𝑗) 

𝑑𝐹𝑧,𝑗(𝜙, 𝜑, 𝑛) = 𝐾𝑎𝑐    𝜙𝑗 Δ𝑥
𝑛 ℊ𝑗(𝑛)𝓆𝑗(𝑛)𝛿𝑧

+ 𝐾𝑎𝑐 Δ𝑦
𝑛ℊ𝑗(𝑡, 𝑧)𝓆𝑗(𝑡, 𝑧) 𝛿𝑧 − 𝐾̅𝑓𝑐(𝜑𝑗)Δ𝑧 ℊ(𝜑𝑗) 𝑙(𝜑𝑗) 

(4.11) 

where 𝛿𝑧 = 𝑧𝑛+1 − 𝑧𝑛, 𝑧 = 𝑛𝛿𝑧, ℊ𝑗(𝑧) = ℊ (𝜙𝑗(𝑧)) , 𝓆𝑗(𝑧) = 𝓆 (𝜙𝑗(𝑧), 𝑧). Δ𝑥, Δ𝑦, 

and Δz are the elemental displacement of the cutter and workpiece for the considered axial 

element 𝑛 on the side edge of flute 𝑗 and the rotation angle of 𝜙𝑗 in the 𝑋𝑇, 𝑌𝑇 and 𝑍𝑇 

directions, respectively. It is to be noted that 𝑙(𝜑𝑗) is the total engagement length of the 

minor edge of 𝑗𝑡ℎ tooth at each angular position of 𝜑𝑗 which is previously defined in 

Equation  (3.19). As a result, the differential dynamic cutting forces can be written in 

terms of directional coefficients as follows, 

 {

𝑑𝐹𝑥,𝑗(𝑡, 𝑧, 𝑙)

𝑑𝐹𝑦,𝑗(𝑡, 𝑧, 𝑙)

𝑑𝐹𝑧,𝑗(𝑡, 𝑧, 𝑙)

}

𝑑

= [

𝛼𝑥𝑥,𝑗(𝑡, 𝑧) 𝛼𝑥𝑦,𝑗(𝑡, 𝑧) 𝛼𝑥𝑧,𝑗(𝑡, 𝑙)

𝛼𝑦𝑥,𝑗(𝑡, 𝑧) 𝛼𝑦𝑦,𝑗(𝑡, 𝑧) 𝛼𝑦𝑧,𝑗(𝑡, 𝑙)

𝛼𝑧𝑥,𝑗(𝑡, 𝑧) 𝛼𝑧𝑦,𝑗(𝑡, 𝑧) 𝛼𝑧𝑧,𝑗(𝑡, 𝑙)

] {

Δ𝑥(𝑡)
Δ𝑦(𝑡)
Δ𝑧(𝑡)

}  

 ∴  {𝑑𝐹𝑥,𝑦,𝑧
𝑛 (𝑡)}

𝑑
= [𝐷𝐶𝑗,𝑧,𝑛(𝑡)]{Δ𝑥,𝑦,𝑧(𝑡)}  

(4.12) 

The directional force coefficients which relate the dynamic milling forces and the dynamic 

displacements at three directions are defined as; 
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𝛼𝑥𝑥,𝑗𝑛(𝑡) = −
1

2
[𝐾𝑡𝑐    2𝜙𝑗 + 𝐾𝑓𝑐(1 −    2𝜙𝑗)]ℊ𝑗(𝑧)𝓆𝑗(𝑧)𝛿𝑧  

𝛼𝑥𝑦,𝑗𝑛(𝑡) = −
1

2
[𝐾𝑡𝑐(1 +    2𝜙𝑗) + 𝐾𝑓𝑐    2𝜙𝑗]ℊ𝑗(𝑧)𝓆𝑗(𝑧)𝛿𝑧  

𝛼𝑥𝑧,𝑗𝑙(𝑡) = [−𝐾̅𝑡𝑐(𝜑𝑗)    𝜑𝑗 − 𝐾̅𝑟𝑐(𝜑𝑗)    𝜑𝑗] ℊ(𝜑𝑗) 𝑙(𝜑𝑗)  

𝛼𝑦𝑥,𝑗𝑛(𝑡) =
1

2
[𝐾𝑡𝑐(1 −    2𝜙𝑗) − 𝐾𝑓𝑐    2𝜙𝑗]ℊ𝑗(𝑧)𝓆𝑗(𝑧)𝛿𝑧  

𝛼𝑦𝑦,𝑗𝑛(𝑡) =
1

2
[   2𝜙𝑗 − 𝐾𝑓𝑐(1 +    2𝜙𝑗)]ℊ𝑗(𝑧)𝓆𝑗(𝑧)𝛿𝑧  

𝛼𝑦𝑧,𝑗𝑙(𝑡) = [−𝐾̅𝑡𝑐(𝜑𝑗)    𝜑𝑗 − 𝐾̅𝑟𝑐(𝜑𝑗)    𝜑𝑗]ℊ(𝜑𝑗)𝑙(𝜑𝑗)  

𝛼𝑧𝑥,𝑗𝑛(𝑡) = [𝐾𝑎𝑐    𝜙𝑗] ℊ𝑗(𝑧)𝓆𝑗(𝑧)𝛿𝑧  

𝛼𝑧𝑦,𝑗𝑛(𝑡) = [𝐾𝑎𝑐    𝜙𝑗]ℊ𝑗(𝑧)𝓆𝑗(𝑧)𝛿𝑧  

𝛼𝑧𝑧,𝑗𝑙(𝑡) = −[𝐾̅𝑓𝑐(𝜑𝑗)] ℊ(𝜑𝑗) 𝑙(𝜑𝑗)  

(4.13) 

The elemental directional coefficients of dynamic forces given in Equation (4.13) are time 

varying according to the angular position of the tooth 𝑗 within the engagement boundaries. 

The directional coefficients will be used in stability analysis in the following section. In 

this study, similar to milling, the stability of the system is studied for different rotational 

speeds of the tool and axial depth of cuts. Since the feasible eccentricity range is limited 

due to surface generation aspects, it cannot be taken as a defining parameter in chatter 

stability. Therefore, the eccentricity which defines the engagement of minor edge will be 

identified prior to stability analysis based on process kinematics and surface quality 

considerations. As a result, whether the axial engagement of the tool at the side cutting 

edge is 𝑎1 or 𝑎2, the engagement and hence, the regenerative dynamic forces resulting 

from the minor edge are constant at similar eccentricity for both cases. In equation (4.12) 

the elemental regenerative forces resulting from the minor edge are integrated along the 

minor edge at time 𝑡, as follows; 

[𝐷𝐶𝑗,𝑧(𝑡)] =

[
 
 
 
 𝛼𝑥𝑥,𝑗𝑛(𝑡) 𝛼𝑥𝑦,𝑗𝑛(𝑡) ∫ 𝛼𝑥𝑧,𝑗𝑙(𝑡)

𝑘

𝑙=1

𝛼𝑦𝑥,𝑗𝑛(𝑡) 𝛼𝑦𝑦,𝑗𝑛(𝑡) ∫ 𝛼𝑦𝑧,𝑗𝑙(𝑡)
𝑘

𝑙=1

𝛼𝑧𝑥,𝑗𝑛(𝑡) 𝛼𝑧𝑦,𝑗𝑛(𝑡) ∫ 𝛼𝑧𝑧,𝑗𝑙(𝑡)
𝑘

𝑙=1 ]
 
 
 
 

= (4.14) 
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 [

𝛼𝑥𝑥,𝑗𝑛(𝑡) 𝛼𝑥𝑦,𝑗𝑛(𝑡) 𝛼𝑥𝑧,𝑗(𝑡)

𝛼𝑦𝑥,𝑗𝑛(𝑡) 𝛼𝑦𝑦,𝑗𝑛(𝑡) 𝛼𝑦𝑧,𝑗(𝑡)

𝛼𝑧𝑥,𝑗𝑛(𝑡) 𝛼𝑧𝑦,𝑗𝑛(𝑡) 𝛼𝑧𝑧,𝑗(𝑡)

]  

 {𝐹𝑥,𝑦,𝑧
𝑛 (𝑡)}

𝑑
= [𝐷𝐶𝑗,𝑛(𝑡)]{Δ𝑥,𝑦,𝑧}  

4.3. Varying Time Delay Model in Turn-Milling Process 

According to the kinematics of the orthogonal turn-milling operation and the cutting 

geometry (See Section 3.3), it is shown that any discrete element on the tool axis 

experiences individual radial feed and angular displacement in a tooth passing period. This 

phenomenon affects the feed value of each element along the tool axis in static cutting 

force calculation. Similarly, the rotational motion of workpiece and the circular tool 

trajectory in turn-milling will affect the regeneration mechanism and formation of the 

dynamic chip thickness, and hence, dynamic forces.  

Based on the process kinematics and cutting geometry of orthogonal turn-milling process, 

the simultaneous rotational motion of workpiece and tool produce a phase shift between 

the waves imprinted on the workpiece surface, resulting in a varying time delay in the 

regenerative chip formation mechanism. Çomak et al. [43] discretized the tool and 

workpiece rotational rigid body motion in Cartesian coordinate system and calculated the 

phase difference by using coordinated of the surface point generated by each tooth at each 

time interval. This study uses a quasi-static approach to evaluate the phase difference 

between the waves imprinted on the surface by the two subsequent teeth [46].  

At discrete time instant 𝑖 (𝑖𝑡ℎ time interval Δ𝑡), the axial element 𝑧 on 𝑗𝑡ℎ tooth leaves a 

surface point 𝑃0 = 𝑃𝑖,𝑗 at angular position 𝜙0 = 𝜙𝑖,𝑗(𝑧), as shown in Figure 4.2. As the 

workpiece rotates at a constant speed and the tool moves in a helical feed direction, after 

one tooth passing period (𝜏0) at time instant 𝑖 + 1, the next immediate tooth 𝑗 + 1 arrives 

at point 𝑃1 = 𝑃𝑖+1,𝑗+1 at angular position 𝜙1 = 𝜙𝑖+1,𝑗+1(𝑧). However, the dynamic chip 

thickness and the corresponding delay must be calculated between the surface points in 

the static chip direction, which is shown as 𝑃0𝑃∗̅̅ ̅̅ ̅̅ ̅. The next immediate tooth 𝑗 + 1 arrives 

at point 𝑃∗ at angular position 𝜙∗ (𝜙∗ ≠ 𝜙𝑖,𝑗). Hence, there is a phase shift between the 

surface marks left by two subsequent teeth on current and previous modulations. This 
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phase shift means that the time interval 𝜏 that tooth 𝑗 + 1 arrives at point 𝑃∗ is different 

than the tooth passing period 𝜏0. The phase difference at time instant 𝑖 is shown by 𝛼𝑖 in 

Figure 4.2, and can be defined as; 

 𝛼𝑖 = 𝜙0 − 𝜙∗ (4.15) 

 At the time interval 𝜏, the displacement of the tool due to workpiece rotational motion 

and linear feed is equal to 
𝜏

𝜏0
𝑓𝑡(𝑧) where 𝑓𝑡(𝑧) is defined in Equation (3.6). 

 

Figure 4.2. Phase difference representation.  

By applying the trigonometrical relations (law of sines) stated in [46], the phase difference 

can be calculated as; 

 𝛼𝑖(𝑧) =

𝜏

𝜏0
𝑓𝑡(𝑧) cos(𝜃𝑥+𝜙𝑖)

𝑅𝑡
 (4.16) 

 The total varying time delay in the regeneration mechanism (𝜏𝑖,𝑗) can be calculated by 

the superposition of the time delays contributed by the phase angle (𝛼𝑖) and the nominal 

tooth passing period (𝜏0) as follows; 

 𝜏𝑖,𝑗(𝑧) = 𝜏0 −
𝛼𝑖

Ω𝑡
=

2𝜋

𝑁Ω𝑡
−

𝜏𝑓𝑡(𝑧) cos(𝜙𝑖+𝜃𝑥)

𝜏0𝑅𝑡Ω𝑡
 (4.17) 

 𝟎 ∗

  

𝜙0

𝜙∗

𝜙1

 

 +  

𝜏𝑓𝑡(𝑧)

 

 +   

𝛼𝑖

𝑂𝑇
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 By combining Equation (3.6) and (4.17), it follows that; 

𝜏𝑖,𝑗(𝑧) =
2𝜋𝑅𝑡    𝜃𝑥

𝑁 [Ω𝑡𝑅𝑡   𝜃𝑥 + Ω𝑤 (𝑅𝑤 − 𝑎𝑝 + 𝑎(𝑧))    (𝜃𝑥 + 𝜙𝑖)]
 (4.18) 

 According to Equation (4.18), it is deduced that the varying time delay resulting from the 

workpiece rotation depends on the spindle speed and radius of the workpiece and tool. As 

the workpiece speed increase, the phase difference at each angular increment increases, 

leading to a lower time delay. This phenomenon affects the regeneration mechanism and 

hence, the stability limits. Furthermore, since the feed values for each axial element along 

the tool are different due to the workpiece radius, the phase difference, and hence overall 

delay will vary along the tool engagement. It is also worth mentioning that, at similar 

workpiece and tool speeds, the time varying delay and its average are different for 

different workpiece diameters. Therefore, unlike conventional milling, where the time 

delay is constant and equal to the tooth passing period (𝜏 = 𝜏0), in turn-milling process 

the time delay varies at each angular position of the tool (each time instant) caused by the 

rotational motion of the workpiece and is not equal to the tooth passing period (𝜏𝑖,𝑗 ≠ 𝜏0). 

The time delays not only are distributed along the tool axis but also vary at each time 

instant within the engagement. This phenomenon brings more complexity to the solution 

of stability. Due to the time-marching nature of the semi-discretization method (SDM) 

[118] in discrete-time domain, it is the best solution method to capture the variations 

resulting from time-varying and distributed delays in orthogonal turn-milling stability. As 

a result, in turn-milling process, the varying time delay approach must be employed in 

order to include the effect of speed and radius ratios in stability diagram calculations.  

The behavior of varying time delays for different conditions is investigated in the 

following diagrams. In Figure 4.3, the time delay values are normalized by the tooth 

passing period (𝜏𝑜) and depicted for different conditions. For case (a) in Figure 4.3, it is 

deduced that as the spindle speed ratio (𝑟𝑠) decreases which means higher workpiece 

spindle speed the time delay variation is increasing which affect the stability of the 

process. The second comparison is depicted in Figure 4.3 (b) shows that as the ratio of 

tool and workpiece diameter decreases the variation of time delay will be close to tooth 

passing period [46]. 
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Figure 4.3. Comparison of time delay variation; a) for different speed ratio, b) different 

diameter ratio, c) different depth of cut 

The third diagram shows the variation of delay amplitude along the depth of cut. It is 

shown that the variation amplitude is lowest at the tooltip (𝑟𝑧 = 0) compared to the axial 

element with 𝑟𝑧 = 1. Based on the simulation given in Figure 4.3, if the workpiece spindle 

speed is slow, which is mainly used in machining of large-scale parts in turn-milling 

operations, the total time delay will be close to the tooth passing period, and the time delay 

will be approximately equal to that of the regular milling operation. However, for 

applications requiring lower cutting speeds (lower tool rotational speed), as the workpiece 

rotational speed increases, the time delay in turn-milling deviates from tooth passing 

period and the system's dynamics will be different from the regular milling operation. 

4.4. Dynamics of Orthogonal Turn-Milling Process in Time Domain 

During orthogonal turn-milling operation, the tool and workpiece can have flexibilities in 

all three dimensions, as shown in Figure 4.4.  

a) b)

c)
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The displacements 𝑄(𝑠) caused by the cutting force 𝐹(𝑠) imposed on the structure can be 

expressed as follows; 

 {𝑄𝑝(𝑠)}4𝑣×1 = {Φp(𝑠)}4𝑣×4𝑣
{𝐹𝑝(𝑠)}4𝑣×1  𝑝: 𝑡, 𝑤 (4.19) 

 where the subscript 𝑣 represents the number of contact points along the engagement 

length of the flexible tool and flexible workpiece [119]. Depending on the turn-milling 

configuration, for both flexible tool and workpiece, if the contact area is large multiple 

contact points (𝑣 > 1) can be used. However, if the depth of cut is small or the workpiece 

is rigid in tool’s flexibility directions the lumped dynamics (𝑣 = 1) approach is employed 

[43]. 

 

Figure 4.4: Structural flexibilities in orthogonal turn-milling operation. 

Subscript 𝑝 defines the equations that corresponds to tool (𝑡) or workpiece (𝑤). The 

Equation (4.19) with on contact point can be written for flexible tool and workpiece in 

three directions as follows; 

 {

𝑄𝑥

𝑄𝑦

𝑄𝑧

}

𝑝

= [

Φ𝑥𝑥 Φ𝑥𝑦 Φ𝑥𝑧

Φ𝑦𝑥 Φ𝑦𝑦 Φ𝑦𝑧

Φ𝑧𝑥 Φ𝑧𝑦 Φ𝑧𝑧

]

𝑝

{

𝐹𝑥
𝐹𝑦
𝐹𝑧

}

𝑝

, 𝑝: 𝑡, 𝑤 (4.20) 

The measured transfer functions are given as; 

  
  

  

  

  

  

Springs and 
dampers
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 Φ𝑝(𝑠) = 𝑈𝑝 (𝐼𝑠
2 + 2𝜁𝑝̅𝜔̅𝑛𝑝𝑠 + 𝜔̅𝑛𝑝

2 )
−1

𝑈𝑝
𝑇 ,    𝑝: 𝑡, 𝑤  (4.21) 

where 𝐼(𝑚𝑝×𝑚𝑝) is identity matrix, 𝜔̅𝑛𝑝(𝑚𝑝×𝑚𝑝)
 is diagonal natural frequency, and 

𝜁𝑝̅(𝑚𝑝×𝑚𝑝)
 is damping ratio matrices for 𝑚𝑝 number of identified flexible modes of the 

tool or workpiece. 𝑈(3×𝑚𝑝) is the mass normalized mode shape matrix of tool and 

workpiece at the cutting location as defined in Equation (4.22). The mode shape matrix 

and diagonal natural frequency and damping ratio matrices are given as follows: 

 𝑈𝑝 = [{

𝑢𝑥,1,𝑝
𝑢𝑦,1,𝑝
𝑢𝑧,1,𝑝

}  {

𝑢𝑥,2,𝑝
𝑢𝑦,2,𝑝
𝑢𝑧,2,𝑝

} . . .  {

𝑢𝑥,𝑚,𝑝

𝑢𝑦,𝑚,𝑝

𝑢𝑧,𝑚,𝑝

}]

3×𝑚𝑝

 ,   𝑝: 𝑡, 𝑤  

𝜔̅𝑛𝑝 = [

𝜔𝑛𝑥,𝑝
0 0

0 𝜔𝑛𝑦,𝑝
0

0 0 𝜔𝑛𝑧,𝑝

]

𝑚𝑝×𝑚𝑝

 , 𝑝: 𝑡, 𝑤 

𝜁𝑝̅ = [

𝜁𝑥,𝑝 0 0

0 𝜁𝑦,𝑝 0

0 0 𝜁𝑧,𝑝

]

𝑚𝑝×𝑚𝑝

 , 𝑝: 𝑡, 𝑤 

(4.22) 

 where each column is the mode shape vector representing the relative displacement of the 

cutting point in three directions in corresponding coordinate system, when the structure 

vibrates in the corresponding mode. The equation of motion of each structure can be 

converted into the time domain as: 

 𝑄̈𝑝(𝑡) + 2𝜁𝑝̅𝜔̅𝑛𝑝𝑄̇(𝑡) + 𝜔̅𝑛𝑝
2 𝑄𝑝(𝑡) = 𝐹𝑝       𝑝: 𝑡, 𝑤  (4.23) 

 It is to be noted that the dynamic displacements and dynamic forces are defined in TCS 

in the previous sections. The frequency response functions and the mode shapes evaluated 

for workpiece in MCS must be transformed into TCS. In orthogonal turn-milling case, the 

FRF of the workpiece in 𝑋𝑀 direction in MCS is aligned with 𝑋𝑇 in TCS, 𝑌𝑀 is aligned in 

𝑋𝑇 direction, and 𝑍𝑀 in 𝑌𝑀 direction, as shown in Figure 4.4.  

The physical dynamic displacements can be transformed into modal space using the 

transformation given in [119]: 

{𝑄𝑝(𝑡)}(3×1) = [𝑈𝑝](3×𝑚𝑝)
 {Γ𝑝(𝑡)}(𝑚𝑝×1)

    (4.24) 
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where 𝑈𝑝 is the mode shape vector of the structure and Γ(𝑡) is the modal displacement 

vector in modal space. By substituting the equation (4.24) into Equation (4.23) the 

equation of motion for tool and workpiece in time domain and modal space can be given 

as: 

Γẗ(𝑡) + 2𝜁𝑡̅𝜔𝑛̅̅ ̅̅ 𝑡
Γ̇𝑡(𝑡) + 𝜔𝑛̅̅ ̅̅ 𝑡

2Γt(𝑡) = 𝑈𝑡
𝑇𝐹𝑛(𝑡)  

Γ̈𝑤(𝑡) + 2𝜁𝑤̅𝜔𝑛̅̅ ̅̅ 𝑤
Γ̇𝑤(𝑡) + 𝜔𝑛̅̅ ̅̅ 𝑤

2 Γw(𝑡) = −𝑈𝑤
𝑇𝐹𝑛(𝑡)  

(4.25) 

 where 𝑈𝑡 and 𝑈𝑤 represent the mass normalized mode shape matrices of the tool and 

workpiece, respectively. Note that the cutting forces generated at the cutting zone between 

tool and workpiece act on both with the same magnitude but in the opposite direction 

[117], as given in Equation (4.25). The following equation can be obtained by unifying 

the explicit equations in Equation (4.25) into matrix form in modal space; 

 𝐼 {
Γẗ(𝑡)

Γ̈𝑤(𝑡)
} + [

2𝜁𝑡̅𝜔𝑛̅̅ ̅̅ 𝑡
0

0 2𝜁𝑤̅𝜔𝑛̅̅ ̅̅ 𝑤

] {
Γ̇𝑡(𝑡)

Γ̇𝑤(𝑡)
} + [

𝜔𝑛̅̅ ̅̅ 𝑡
2 0

0 𝜔𝑛̅̅ ̅̅ 𝑤
2 ] {

Γt(𝑡)

Γw(𝑡)
} = [

𝑈𝑡
𝑇

−𝑈𝑤
𝑇] 𝐹

𝑛(𝑡) (4.26) 

 In Equation (4.26), it is required to define the elemental cutting forces in modal space. 

Therefore, the elemental cutting forces are given in Equation (4.12) must be transformed 

from physical to modal space. For this purpose, the relative displacement between the tool 

and workpiece in the time domain can be written as follows; 

{𝑄(𝑡)} = {𝑄𝑡(𝑡)} − {𝑄𝑤(𝑡)}  (4.27) 

According to the dynamic chip calculation during regeneration mechanics in Equation 

(4.3), the dynamic displacement can be defined in TCS as follows; 

 𝐷(𝑡) = [
Δ𝑥
Δ𝑦
Δ𝑧

] = [𝑄(𝑡) − 𝑄(𝑡 − 𝜏𝑖,𝑗)]  (4.28) 

where {𝑄(𝑡)} and {𝑄(𝑡 − 𝜏𝑖,𝑗)} are the relative displacements between tool and workpiece 

at the present time (𝑡) and one delay period (𝜏𝑖,𝑗) before. 

By substituting the Equations (4.27) and (4.28) into (4.24), the dynamic displacements 

can be obtained as follows; 

 𝐷(𝑡) = [(𝑈𝑡Γ𝑡(𝑡) − 𝑈𝑤Γ𝑤(𝑡)) − (𝑈𝑡Γ𝑡(𝑡 − 𝜏𝑖,𝑗) − 𝑈𝑤Γ𝑤(𝑡 − 𝜏𝑖,𝑗))] (4.29) 

 By substituting equation (4.29) into Equation (4.12), the following formulation can be 
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obtained for the elemental dynamic cutting forces in modal space:  

{𝐹𝑛(𝑡)} = [𝐷𝐶𝑗(𝑡)] [(𝑈𝑡Γ𝑡(𝑡) − 𝑈𝑤Γ𝑤(𝑡)) − (𝑈𝑡Γ𝑡(𝑡 − 𝜏𝑖,𝑗) − 𝑈𝑤Γ𝑤(𝑡 − 𝜏𝑖,𝑗))]   (4.30) 

  where [𝐷𝐶𝑗(𝑡)] refers to the cutting force directional coefficients given in Equations 

(4.12) and (4.13). Combining the Equation (4.30) and (4.27) gives the generalized 

dynamics of turn-milling process in modal space as; 

 𝐼 {
Γẗ(𝑡)

Γ̈𝑤(𝑡)
} + [

2𝜁𝑡̅𝜔𝑛̅̅ ̅̅ 𝑡
0

0 2𝜁𝑤̅𝜔𝑛̅̅ ̅̅ 𝑤

] {
Γ𝑡̇(𝑡)

Γ𝑤̇(𝑡)
} + [

𝜔𝑛̅̅ ̅̅ 𝑡
2 0

0 𝜔𝑛̅̅ ̅̅ 𝑤
2 ] {

Γt(𝑡)

Γw(𝑡)
} =

  [
𝑈𝑡
𝑇

−𝑈𝑤
𝑇] [𝐷𝐶𝑗(𝑡)] [𝑈𝑡 − 𝑈𝑤] ({

Γt(𝑡)
Γ𝑤(𝑡)

} − {
Γ𝑡(𝑡 − 𝜏𝑖,𝑗)

Γ𝑤(𝑡 − 𝜏𝑖,𝑗)
})   

(4.31) 

 Equation (4.31) represents the coupled equation of motion of tool and workpiece by 

taking the dynamic cutting forces that resulted during turn-milling operation into account.  

4.5. Stability of Orthogonal Turn-Milling Process  

In the previous sections, the dynamic chip thickness, dynamic forces, and the dynamic 

model of turn-milling are presented by taking the dynamics of the tool and workpiece into 

account. In order to solve the stability of orthogonal turn-milling dynamics, discrete-time 

domain and frequency domain approaches are proposed in this section. The results and 

comparisons of both approaches are discussed in Section 4.6. 

4.5.1. Stability Analysis in Discrete-Time Domain 

In this section, the stability of turn-milling process is studied using the Semi-discretization 

method (SDM) proposed by Insperger and Stepan [39]. This method allows the delayed 

differential equation to be discretized in discrete time intervals within a period by 

linearizing the time domain simulation of the vibrating system. This method discretizes 

the delayed terms within a period of the system only while keeping the non-delayed states 

unchanged. It has been shown in Section 4.3 that, unlike regular milling operation, the 

time delay varies in time during turn-milling operation. By integrating the varying time 

delay which is obtained in Equation (4.18) with the dynamic equation of motion of turn-

milling process in modal space, the following formulation is obtained: 
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 𝐼 {Γ̈̅(𝑡)} + [𝐶] {Γ̇̅(𝑡)} + [𝐷]{Γ̅(𝑡)} = [𝐹𝐶]({Γ̅(𝑡)} − {Γ̅(𝑡 − 𝜏𝑖,𝑗(𝑧))}),

{Γ̅(𝑡)} = {
Γt(𝑡)

Γw(𝑡)
}
𝑀×1

  
(4.32) 

 The coefficient matrices stated in Equation (4.32) are as follows: 

 [𝐶] = [
2𝜁

𝑡
𝜔𝑛̅̅ ̅𝑡 0

0 2𝜁
𝑤
𝜔𝑛̅̅ ̅𝑤

]
𝑀×𝑀

  ; [𝐷] =  [
𝜔𝑛̅̅ ̅𝑡

2 0

0 𝜔𝑛̅̅ ̅𝑤
2 ]

𝑀×𝑀

   ; 

[𝐹𝐶(𝑡)]𝑀×𝑀 = [
𝑈𝑡
𝑇

−𝑈𝑤
𝑇 ] [𝐷𝐶𝑗(𝑡, 𝑧)] [𝑈𝑡  − 𝑈𝑤]   ∴ 𝑀 = 𝑚𝑤 +𝑚𝑡 

(4.33) 

where 𝑚𝑡 and 𝑚𝑤 are the number of modes of tool and workpiece, respectively.  

Note that, the varying time delay is periodic at the tooth passing period 𝜏𝑖,𝑗 = 𝜏𝑖,𝑗(𝑡) =

 𝜏𝑖,𝑗−1(𝑡 + 𝜏0). The subscript 𝑖 refers to time instant, and subscript 𝑗 refers to tooth number 

for each axial element. Note that, since the time delay varies in time within the cutting 

limits, depending on the delay resolution, several delays can be generated in the system 

[43]. In this regard, special milling tools such as variable-pitch, variable-helix, serrated, 

and crest-cut tools also introduce discrete and distributed time delays during the cutting 

due to their particular geometry, which affects the local pitch angle of each element 

[61,77,120,121]. While the time delay with a regular milling tool (equal-pitch) in milling 

operation is constant and is equal to the tooth passing period (𝜏0), the time delay at each 

discrete interval (𝑖Δ𝑡) and axial height (𝑧) in turn-milling is different and time varying 

but periodic at tooth passing period. In order to apply semi-discretization, the principal 

period (rotational period) of the system 𝑇 is divided into 𝓂 discrete time intervals. 

Δ𝑡 =
𝑇

𝓂
  (4.34) 

 where 𝑚 is an integer and known as the principal period resolution, and Δ𝑡 is the time 

interval. The number of delays can be changed by the tool geometry, process kinematics, 

and process configurations. The delay resolution defines the number of discrete points 

within the delay as can be calculated as follows;  

𝑟𝑖,𝑗(𝑧) = 𝑖𝑛𝑡 (
𝜏𝑖,𝑗(𝑧)

Δ𝑡
+
𝑝

2
) (4.35) 

 where 𝑖𝑛𝑡 denotes the integer-part function, and 𝑝 is the order of the Lagrange polynomial 

for the approximation of the delayed term [118]. As stated in detail by Insperger and 
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Stepan [39,118], while other approaches of SDM approximate the delayed terms of the 

system by piecewise constant delays over each discretization step, higher-order methods 

approximate the delayed terms by higher-order polynomials of time 𝑡. In other words, in 

higher-order SDM, the time-periodic coefficients are approximated by piecewise constant 

ones, and the delayed terms are approximated by a linear combination of the 

corresponding discrete delayed values of the delayed state 𝑞, while the non-delayed terms 

are left in their original form. In this study, the updated first order semi-discretization 

method (SDM) is used where 𝑝 = 1 in equation (4.35) [39].  

Note that, since the time delay 𝜏𝑖,𝑗 is varying at each discrete time interval in turn-milling, 

the period resolution 𝓂 and delay resolution 𝑟𝑖,𝑗 are not equal. However, since the 

principal delay is equal to tooth passing frequency in conventional milling, the delay 

resolution and period resolutions are equal. The number of unique delays (𝑟) in the system 

with the particular delay label of 𝑟𝑖,𝑗 is represented by 𝑁𝐷.  

𝑟 = 𝑢𝑛𝑖𝑞𝑢𝑒 (𝑟𝑖,𝑗(𝑧)) ;  𝑖 = 1,⋯ ,𝑚 ; 𝑗 = 1,⋯ ,𝑁 ; 𝑧 = 𝑛. 𝑑𝑧  

𝑁𝐷 = 𝑠𝑖𝑧𝑒(𝑟)  

(4.36) 

 In the semi-discretization method, the system period is divided into 𝑚 time intervals (Δ𝑡), 

and over each interval, the delayed differential equation (DDE) is turned into an ordinary 

differential equation (ODE) which the analytical solution can be obtained. In this regard, 

the dynamic equations are represented in the state-space form a first order ODE by using 

the time-periodic coefficient matrices [39]; 

 {𝑞̇(𝑡)} = 𝐿(𝑡){𝑞(𝑡)} + 𝐵(𝑡) {𝑞 (𝑡 − 𝜏𝑖,𝑗(𝑧))} (4.37) 

 where the coefficient matrices can be defined as 

 {𝑞(𝑡)} = {
Γ̅(𝑡)

Γ̇̅(𝑡)
} ;   𝐿(𝑡) = [

0 𝐼
 [𝐹𝐶̅̅ ̅̅ (𝑡)] − [𝐷] −[𝐶]

]
2𝑀×2𝑀

 ; 

 𝐵 (𝑡) = [
0 0

−[𝐹𝐶𝑟(𝑡)] 0
]
2𝑀×2𝑀

 

(4.38) 

 {𝑞(𝑡)} represents the modal states of the coupled tool-workpiece system at time 𝑡, which 

is defined by the modal displacements Γ̅(𝑡) and modal velocities Γ̇̅(𝑡) of the coupled tool-

workpiece system. The coefficient matrices 𝐿(𝑡) and 𝐵(𝑡) are periodic at tooth passing 
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period. {𝑞 (𝑡 − 𝜏𝑖,𝑗(𝑧))} is the modal states with time-varying delays (𝜏𝑖,𝑗(𝑧)) which are 

periodic in the tooth passing period, as well. In equation (4.38), the coefficient matrix 𝐵(𝑡) 

consist of matrix [𝐹𝐶𝑟(𝑡)], in which, the directional coefficients are grouped according to 

their delay values based on their delay label. This is because matrix 𝐵(𝑡) is multiplied by 

the state vector that contains delayed states, and it only encompasses the directional 

coefficients of the elements with unique delays with label 𝑟. 

[𝐹𝐶𝑟(𝑡)] =  [
𝑈𝑡
𝑇

−𝑈𝑤
𝑇 ] [∑∫[𝐷𝐶𝑗(𝑡, 𝑧)]𝑑𝑧

𝑎𝑖

0

𝑁

𝑗=1

] [𝑈𝑡 − 𝑈𝑤] (4.39) 

 On the other hand, the matrix [𝐹𝐶̅̅ ̅̅ (𝑡)] in coefficient matrix 𝐿(𝑡) corresponds to the 

transient part of the equation, which is not affected by the delays. In other words, [𝐹𝐶̅̅ ̅̅ (𝑡)] 

has the contributions of all the directional coefficients active with the cut, regardless of 

their delay label, as follows; 

[𝐹𝐶̅̅ ̅̅ (𝑡)] =∑[𝐹𝐶𝑟(𝑡)]

𝑁𝐷

𝑟=1

 (4.40) 

 where 𝑁𝐷 is the number of unique delays contribute to the coupled system. The time-

periodic coefficient matrices (L, R) and varying time delay (𝜏𝑖,𝑗(𝑧)) are averaged within 

each discrete time interval Δ𝑡, 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1) as given below; 

𝐿𝑖 =
1

Δ𝑡
∫ 𝐿(𝑡)𝑑𝑡 

𝑡𝑖+1

𝑡𝑖

;    𝐵𝑖,𝑟 =
1

Δ𝑡
∫ 𝑅𝑟(𝑡)𝑑𝑡 

𝑡𝑖+1

𝑡𝑖

;    𝜏𝑖,𝑗 = ∫ 𝜏𝑗(𝑧)𝑑𝑡 

𝑡𝑖+1

𝑡𝑖

  (4.41) 

where 𝑟 = 1,2, … ,𝑁𝐷. According to the theory of SDM, the delayed state is defined by 

the discretization steps. Having introduced the discretization steps (discrete points), the 

delayed states {𝑞 (𝑡 − 𝜏𝑖,𝑗(𝑧))} are approximated as a weighted sum of the two 

neighboring delayed states 𝑞(𝑡𝑖−𝑟) and 𝑞(𝑡𝑖−𝑟+1) as follows (See Figure 4.5);  

𝑞 (𝑡 − 𝜏𝑖,𝑗(𝑧)) = 𝛽𝑖,𝑎(𝑡) 𝑞(𝑡𝑖−𝑟𝑖) + 𝛽𝑖,𝑏(𝑡) 𝑞(𝑡𝑖−𝑟𝑖+1)  (4.42) 
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Figure 4.5: Approximation of the delayed states by time-varying weights using 1st order 

Lagrange polynomial approximation [39]. 

Note that, since the time delay 𝜏𝑖,𝑗 varies within the time period of the system; hence the 

neighboring delays vary as well. Consequently, the weights are given in equation (4.42) 

also vary within the time period and can be calculated as; 

𝛽𝑖,𝑎(𝑡) =
𝜏𝑖,𝑗 + (𝑖 − 𝑟𝑖 + 1)Δ𝑡 − 𝑡

Δ𝑡
  ;   𝛽𝑖,𝑏(𝑡) =

𝑡 − (𝑖 − 𝑟𝑖)Δ𝑡 − 𝜏𝑖,𝑗

Δ𝑡
 (4.43) 

 The discrete state weights hold the following conditions; 𝛽𝑎,𝑏 = [0,1] ∈ ℝ and 𝛽𝑖,𝑎 +

𝛽𝑖,𝑏 = 1. 

As a result, the state space equation (4.37) can be expressed as below for each discrete 

time interval 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1) for 𝑖 = 0,1,⋯ ,𝑚 − 1; 

{𝑞̇(𝑡𝑖)} = 𝐿𝑖{𝑞(𝑡𝑖)} + ∑ 𝐵𝑖,𝑟[𝛽𝑏,𝑖{𝑞(𝑡𝑖−𝑟𝑖} + 𝛽𝑎,𝑖{𝑞(𝑡𝑖−𝑟𝑖+1)}]

𝑁𝐷

𝑟𝑖=1

   (4.44) 

The solution over one discrete time step is; 

{𝑞𝑖+1} = 𝑃𝑖{𝑞𝑖} +∑(𝑅𝑟,𝑖,𝑏{𝑞𝑖−𝑟} + 𝑅𝑟,𝑖,𝑎{𝑞𝑖−𝑟+1}) 

𝑁𝐷

𝑟=1

 (4.45) 

 where  

 

 

  −  
  −  + 

𝑡𝑖−𝑟𝑖 𝑡𝑖−𝑟𝑖+1 𝑡𝑖−𝓂 𝑡𝑖−𝓂+1 𝑡𝑖 𝑡𝑖+1

𝑇 = 𝓂.Δ𝑡

  , 

  
  + 

 

 

  −  

𝑡𝑖−𝑟𝑖 𝑡𝑖−𝑟𝑖+1

  −  + 

   

𝛽𝑖,𝑎Δ𝑡 𝛽𝑖,𝑏Δ𝑡
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𝑃𝑖 = 𝑒𝐿𝑖Δ𝑡  

𝑅𝑟,𝑖,𝑎 = ∫
𝜏𝑖,𝑗 − (𝑟𝑖 − 1)Δ𝑡 − 𝑠

Δ𝑡

Δ𝑡

0

𝑒𝐿𝑖(Δ𝑡−𝑠)𝑑𝑠𝐵𝑟,𝑖 

𝑅𝑟,𝑖,𝑏 = ∫
𝑠 − 𝜏𝑖,𝑗 + 𝑟𝑖Δ𝑡

Δ𝑡

Δ𝑡

0

𝑒𝐿𝑖(Δ𝑡−𝑠)𝑑𝑠𝐵𝑟,𝑖 

(4.46) 

Assuming that the time periodic coefficient matrix 𝐿𝑖 is invertible (𝐿𝑖𝐿𝑖
−1 = 𝐼), the 

equation (4.46) is calculated as; 

𝑅𝑟,𝑖,𝑎 = (𝐿𝑖
−1 +

1

Δ𝑡
(𝐿𝑖

−2 − (𝜏𝑖,𝑗 − (𝑟𝑖 − 1)Δ𝑡 )𝐿𝑖
−1) (𝐼 − 𝑒𝐿𝑖Δ𝑡))𝐵𝑟,𝑖 

𝑅𝑟,𝑖,𝑏 = (−𝐿𝑖
−1 +

1

Δ𝑡
(−𝐿𝑖

−2 + (𝜏𝑖,𝑗 − 𝑟𝑖Δ𝑡)𝐿𝑖
−1)(𝐼 − 𝑒𝐿𝑖Δ𝑡))𝐵𝑟,𝑖 

(4.47) 

 Or in a short form; 

𝑅𝑟,𝑖,𝑎 = (𝑒𝐿𝑖Δ𝑡 − 𝐼)𝐿𝑖
−1𝐵𝑟,𝑖𝛽𝑎,𝑖   

𝑅𝑟,𝑖,𝑏 = (𝑒𝐿𝑖Δ𝑡 − 𝐼)𝐿𝑖
−1𝐵𝑟,𝑖𝛽𝑏,𝑖  

(4.48) 

 From equations (4.42) and (4.45), the discrete map for one discrete time interval can be 

written as; 

{𝑧𝑖+1} = [𝐺𝑖]{𝑧𝑖}  (4.49) 

 where  

𝑧𝑖 = [𝑞𝑖 𝑞𝑖−1…𝑞𝑖−𝑟+1 𝑞𝑖−𝑟]
𝑇   (4.50) 

 is augmented state vector which encompasses the current state and states a delay before. 

The coefficient matrix 𝐺𝑖 in equation (4.49) which links the states at time 𝑡 to the next 

time interval 𝑖 + 1, reads; 

 

(4.51) 

According to equation (4.45), the matrices  𝑅𝑟,𝑖,𝑎 and 𝑅𝑟,𝑖,𝑏 are located at the (𝑟𝑖 − 1)𝑡ℎ  
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and (𝑟𝑖)
𝑡ℎ columns and upper right block of the transition matrix, respectively. 

Note that, the transition matrix must build according to the maximum number of unique 

delays of the system (𝑟𝑚𝑎𝑥 = max(𝑟𝑖,𝑗)), and the number of total degrees of freedom of 

the system (𝑀) (See equation (4.33)). As a result, the dimensions of the augmented system 

are (2𝑀𝑟𝑚𝑎𝑥 + 2𝑀) × (2𝑀𝑟𝑚𝑎𝑥 + 2𝑀).  

 The stability of the system is solved by evaluating the eigenvalues of the monodromy 

(transition) matrix [𝚿] [39,118]. This matrix is formed by expressing the equation (4.49) 

at 𝓂 number of intervals within the system’s principal period 𝑇, as follows [39,118]; 

{𝑧𝓂} = [𝚿]{𝑧0}  ∵  [𝚿] = 𝐺𝓂−1𝐺𝓂−2⋯𝐺1𝐺0   (4.52) 

 The stability of the linear periodic system in equation (4.52) can be solved by Floquet 

theory [39]. According to Floquet theory, the linear periodic system will be unstable if the 

modulus of any of the characteristic multipliers (eigenvalues) (𝜇) of the monodromy 

matrix is greater than unity, unstable if the modulus is less than unity, and critically stable 

of the modulus is equal to unity [39,118].  

|𝜇[𝐼] − [𝚿]| = 0   ∴   |𝜇| = {
< 1  table
= 1  r t  ally  table
> 1 u  table

  (4.53) 

   In the semi-discretization method, the stability must be searched iteratively at different 

spindle speeds and depth of cuts to find the stability lobes. Note that, for larger period 

resolution 𝑚, the time interval Δ𝑡 decreases, leading to higher accuracy of the solution, 

especially at lower spindle speeds where the vibration wavelength is small. However, for 

smaller time intervals, the number of maximum delay resolutions increases, causing 

matrices with larger dimensions and lower computational speed. Therefore, the period 

resolution must be selected carefully to avoid inaccurate stability lobe prediction or 

unnecessary computational costs.  

4.5.2. Stability Analysis in Frequency Domain 

In this section, the zero-order approximation (ZOA) method proposed by Budak and 

Altintas [117,122] for milling is used to model the stability of orthogonal turn-milling 

process in the frequency domain. The stability model is based on the dynamic chip 

thickness and dynamic milling forces given in Section 4.2 and the dynamics of orthogonal 



82 

 

turn-milling introduced in Section 4.4.  

In this method, the time-varying elemental directional coefficient matrix [𝐷𝐶𝑗,𝑛(𝑡)] given 

in equations (4.12), (4.13), and (4.14) for 𝑛𝑡ℎ element on 𝑗𝑡ℎ tooth, which is periodic at 

spindle rotation frequency and varies within the immersion angles, expanded into the 

Fourier series [111,117]. The Fourier expansion series are given as follows; 

[𝐷𝐶𝑗,𝑛(𝑡)] =  ∑ [𝐷𝐶𝑗,𝑛
𝑟 ]𝑒𝑖𝑟𝜔𝑡𝑡+∞

𝑟=−∞  , [𝐷𝐶𝑗,𝑛
𝑟 ] =

1

𝑇
∫ [𝐷𝐶𝑗,𝑛(𝑡)]𝑒

−𝑖𝑟𝜔𝑡𝑡𝑑𝑡
𝑇

0
 (4.54) 

 where 𝜔𝑡 is tooth passing frequency, and 𝑇 is tooth passing period. If the higher order of 

harmonics are considered (𝑟 > 0), the stability can be solved using the multi-frequency 

approach [117], which also has high computation time due to the long numerical 

calculations. Therefore, by using the zero-order term in the Fourier series, only the average 

component (constant term) of the Fourier series is retained (zero number of harmonics 

(𝑟 = 0)). By substituting 𝜔𝑡𝑡 = 𝑁𝜃 the Fourier expansion can be written in the angular 

domain as the detailed calculations are given in [117]. 

[𝐷𝐶𝑗,𝑛
0 ] =

1

2𝜋
∫ [𝐷𝐶𝑗,𝑛(𝜃)]𝑑𝜃
𝜃𝑒𝑥,𝑗,𝑛
𝜃𝑠𝑡,𝑗,𝑛

 ; 𝜃 = 𝜙𝑗 , 𝜑𝑗  (4.55) 

 In orthogonal turn-milling since the angular position and the immersion angles of the 

elements on the side edge and the minor edges are different, the zero-order Fourier 

expansion is taken according to their particular angular increment parameter (𝜙𝑗 , 𝜑𝑗). 

Definition of 𝜙𝑗 and 𝜑𝑗 are given in equations (3.25) and (3.32), respectively. By 

substituting the equation (4.14) into (4.55), we have; 

[𝐷𝐶𝑗,𝑛
0 ] =

1

2𝜋

[
 
 
 
 ∫ 𝛼𝑥𝑥,𝑗𝑛(𝜙)

𝜙𝑒𝑥,𝑗𝑛

𝜙𝑠𝑡,𝑗𝑛
𝑑𝜙 ∫ 𝛼𝑥𝑦,𝑗𝑛(𝜙)𝑑𝜙

𝜙𝑒𝑥,𝑗𝑛

𝜙𝑠𝑡,𝑗𝑛
∫ 𝛼𝑥𝑧,𝑗(𝜑)𝑑𝜑
𝜑𝑒𝑥,𝑗

𝜑𝑠𝑡,𝑗

∫ 𝛼𝑦𝑥,𝑗𝑛(𝜙)
𝜙𝑒𝑥,𝑗𝑛

𝜙𝑠𝑡,𝑗𝑛
𝑑𝜙 ∫ 𝛼𝑦𝑦,𝑗𝑛(𝜙)𝑑𝜙

𝜙𝑒𝑥,𝑗𝑛

𝜙𝑠𝑡,𝑗𝑛
∫ 𝛼𝑦𝑧,𝑗(𝜑)𝑑𝜑
𝜑𝑒𝑥,𝑗

𝜑𝑠𝑡,𝑗

∫ 𝛼𝑧𝑥,𝑗𝑛(𝜙)
𝜙𝑒𝑥,𝑗𝑛

𝜙𝑠𝑡,𝑗𝑛
𝑑𝜙 ∫ 𝛼𝑧𝑦,𝑗𝑛(𝜙)

𝜙𝑒𝑥,𝑗𝑛

𝜙𝑠𝑡,𝑗𝑛
𝑑𝜙 ∫ 𝛼𝑧𝑧,𝑗(𝜑)𝑑𝜑

𝜑𝑒𝑥,𝑗

𝜑𝑠𝑡,𝑗 ]
 
 
 
 

  (4.56) 

 [𝐷𝐶𝑗,𝑛
0 ] =

1

2𝜋
[

𝛼𝑥𝑥,𝑗𝑛
0 (𝜃) 𝛼𝑥𝑦,𝑗𝑛

0 (𝜃) 𝛼𝑥𝑧,𝑗
0 (𝜃)

𝛼𝑦𝑥,𝑗𝑛
0 (𝜃) 𝛼𝑦𝑦,𝑗𝑛

0 (𝜃) 𝛼𝑦𝑧,𝑗
0 (𝜃)

𝛼𝑧𝑥,𝑗𝑛
0 (𝜃) 𝛼𝑧𝑦,𝑗𝑛

0 (𝜃) 𝛼𝑧𝑧,𝑗
0 (𝜃)

] ;  𝜃 = 𝜙𝑗, 𝜑𝑗  

By substituting the equation (4.56) into (4.12), the elemental cutting forces can be 

calculated as; 
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{

𝑑𝐹𝑥(𝑡)

𝑑𝐹𝑦(𝑡)

𝑑𝐹𝑧(𝑡)

} = [𝐷𝐶𝑗,𝑛
0 ] {

Δx

Δ𝑦

Δ𝑧
}  (4.57) 

 From equation (4.20) it is known that the displacements of the system in Laplace domain 

can be expressed as; 

{
Δx(𝑠)
Δy(𝑠)
Δz( )

} = [

Φ𝑥𝑥(𝑠) Φ𝑥𝑦(𝑠) Φ𝑥𝑧(𝑠)

Φ𝑦𝑥(𝑠) Φ𝑦𝑦(𝑠) Φ𝑦𝑧(𝑠)

Φ𝑧𝑥(𝑠) Φ𝑧𝑦(𝑠) Φ𝑧𝑧(𝑠)

] {

𝐹𝑥(𝑠)
𝐹𝑦(𝑠)

𝐹𝑧(𝑠)

}  (4.58) 

 where the elemental dynamic chip thickness vectors in time domain are defined in 

equation (4.3). The regenerative dynamic chip thickness in time domain in equation (4.3) 

is transformed in Laplace domain as follows; 

{
Δx(𝑠)

Δy(𝑠)

Δz( )
}

𝑗𝑛

= [1 − 𝑒−𝑠𝜏𝑗(𝑧)] {

𝑥(𝑡)

𝑦(𝑡)
𝑧(𝑡)

}  (4.59) 

  Based on the dynamic chip thickness formulation and considering the equal but opposite 

direction force that occurred between tool and workpiece, the transfer function matrix in 

equation (4.58) can be written as the summation of the FRFs of the tool and workpiece 

[117].  

[Φ𝑞𝑞] = [Φ𝑞𝑞]𝑡 + [Φ𝑞𝑞]𝑤 ; 𝑞 = 𝑥, 𝑦, 𝑧  (4.60) 

 where 𝑡 and 𝑤 refer to tool and workpiece, respectively. Note that, in the ZOA frequency 

domain method, the time-varying characteristic of the delay in orthogonal turn-milling is 

neglected. However, in the formulations (See equation (4.59)), the general case is given. 

Time delay can be variable between subsequent teeth and along the cutting edge caused 

by edge geometry in special tools such as variable-pitch variable-helix, serrated, or crest-

cut tools. Recently, Farahani et al. [66] and Bari et al. [123] employed the varying delay 

approach to predict the stability of serrated tools in the frequency domain by using the 

normalized average delay. In this section, the standard end mills with regular pitch 

variation are used, and the time delay for each tooth at the tooltip is equal to the tooth 

passing period (𝜏 = 𝑇). However, due to the kinematics of the turn-milling operation, the 

time delay also varies along the tool axis due to the increase in linear speed of workpiece. 

In addition, as given in equation (4.18), the delay varies at each instantaneous immersion 

angle (by time). In ZOA approach, the average time delay within the immersion boundary 
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is considered for all the teeth for at each height 𝑧.  

The delay term in this section is given in a general form of 𝜏𝑗(𝑧) to be able to include the 

delay variations at each tooth and elemental height. This type of delay distribution can be 

seen in special tools such as variable-helix, variable-pitch, serrated and crest-cut tools. For 

the case of standard tools employed in orthogonal turn-milling, the average delay within 

the immersion boundaries is equal for all the teeth at the tooltip. However, the average 

delay varies along the tool axis. 

By substituting the equations (4.58) and (4.59) into equation (4.57) and switching from 

the Laplace domain to the frequency domain by considering (𝑠 = 𝑖𝜔𝑐), the elemental 

dynamic force equilibrium or orthogonal turn-milling with standard end mills gives; 

{

𝑑𝐹𝑥
𝑑𝐹𝑦
𝑑𝐹𝑧

} 𝑒𝑖𝜔𝑐𝑡 = [1 − 𝑒−𝑖𝜔𝑐𝜏𝑗(𝑧)][𝐷𝐶𝑗,𝑛
0 ][Φ( ω )] {

𝑑𝐹𝑥
𝑑𝐹𝑦
𝑑𝐹𝑧

} 𝑒𝑖𝜔𝑐𝑡  (4.61) 

 Equation (4.61) gives the elemental dynamic cutting forces of 𝑛𝑡ℎ axial element on side 

edge on 𝑗𝑡ℎ tooth in addition to the forces generated from the minor edge by the tooth 𝑗. 

As mentioned previously, the engagement of the minor edge, which is defined by the 

stepover and eccentricity, is established prior to stability analysis concerning surface 

quality and part accuracy. Therefore, the dynamic cutting forces resulting from the minor 

edge are constant regardless of the number of elements (depth of cut) at the side edge. In 

order to obtain the stability limit (critical depth of cut on side edge) all the elements in the 

cut have to be coupled and considered simultaneously. In this regard, it is proposed to sum 

the elemental dynamic forces acting on each element on the side edge to evaluate the total 

lumped dynamic cutting forces in 𝑥, 𝑦, and 𝑧 directions [124,125]. Furthermore, elemental 

forces contributed by all teeth within the cutting boundary must be considered in stability 

calculations. The lumped dynamic cutting forces acting on the side edges of all teeth are 

added to the dynamic cutting forces acting on the minor cutting edges of all teeth. By 

writing the equation (4.61) for all elements and summing up, the zero-order dynamic 

model of turn-milling can be written as; 

{

𝑑𝐹𝑥
𝑑𝐹𝑦
𝑑𝐹𝑧

} 𝑒𝑖𝜔𝑐𝑡 = [1 − 𝑒−𝑖𝜔𝑐𝜏𝑗(𝑧)][[𝐴1] + [𝐴2]][Φ( ω )] {

𝑑𝐹𝑥
𝑑𝐹𝑦
𝑑𝐹𝑧

} 𝑒𝑖𝜔𝑐𝑡  (4.62) 

 where [𝐴1] is the summation of dynamic forces of all axial elements on side edges of all 
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contributed teeth as follows; 

[𝐴1] =∑∑
1

2𝜋
[

𝛼𝑥𝑥,𝑗𝑛
0 (𝜙) 𝛼𝑥𝑦,𝑗𝑛

0 (𝜙) 0

𝛼𝑦𝑥,𝑗𝑛
0 (𝜙) 𝛼𝑦𝑦,𝑗𝑛

0 (𝜙) 0

𝛼𝑧𝑥,𝑗𝑛
0 (𝜙) 𝛼𝑧𝑦,𝑗𝑛

0 (𝜙) 0

]

𝑚

𝑛=1

𝑁

𝑗=1

 (4.63) 

 where 𝑚 is the number of axial elements. [𝐴2] refers to the dynamic forces resulted from 

the minor edges of all contributed teeth; 

[𝐴2] = ∑
1

2𝜋
[

0 0 𝛼𝑥𝑧,𝑗
0 (𝜑)

0 0 𝛼𝑦𝑧,𝑗
0 (𝜑)

0 0 𝛼𝑧𝑧,𝑗
0 (𝜑)

]

𝑁

𝑗=1

 (4.64) 

 As a result, the characteristic equation of the dynamics of the turn-milling in frequency 

domain can be written as: 

𝔼(𝜔𝑐) = det [[𝐼] − [1 − 𝑒−𝑖𝜔𝑐𝜏𝑗(𝑧)][[𝐴1] + [𝐴2]][Φ( ω )]]  (4.65) 

 As a result, in order to find the critically stable depth of cut where the system begins to 

vibration at chatter frequency of 𝜔𝑐, it is required to solve the roots of the characteristic 

equation in the equation [38]. If Λ is expressed as follows; 

Λ = [[𝐼] − [1 − 𝑒−𝑖𝜔𝑐𝜏𝑗(𝑧)][[𝐴1] + [𝐴2]]]  (4.66) 

 Then the roots of the characteristic equation can be found as; 

𝔼(𝜔𝑐) = 0 → det[[𝐼] − Λ[Φ( ω )]] = 0  (4.67) 

 Since the system may have multiple and distributed delays, and due to the mathematical 

limitations that directional coefficient matrices introduce, derivation of an explicit and 

analytical solution for the critical stable depth of cut 𝑎𝑙𝑖𝑚 from Λ, using the eigenvalue 

problem (as given in for milling operation with regular tools [38,117]) is not possible 

[123]. Instead, the Nyquist stability criterion is used to identify the critical stable depth of 

cut 𝑎𝑙𝑖𝑚 at different tool rotational speeds. In this method, at a fixed tool’s rotational speed 

(Ω𝑡) and stepover (𝑎𝑤), the axial depth of cut is increased by elements 𝛿𝑧 until the critical 

stable depth of cut is achieved [56]. Note that, in this method, the workpiece rotational 

speed and eccentricity are also fixed for each iteration. In the Nyquist stability criterion, 

the Nyquist plot of the characteristic equation (𝔼(𝜔𝑐)) is mapped onto a complex plane 

for a range of frequencies encompassing the tool's and workpiece's natural frequencies. 
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The system is unstable if any root of the characteristic equation creates a clockwise 

encirclement of the origin on the complex plane. The details of the solution procedure of 

the Nyquist stability criterion are given in Appendix B: Nyquist Stability Criterion.  

4.6. Simulation and Experimental Verifications of Stability Model 

The proposed chatter stability models in discrete-time and frequency domains are verified 

through experiments in this section. The orthogonal turn-milling experiments were 

verified using different tools and workpiece materials in different cutting conditions. The 

experiments were performed on Mori Seiki NTX 2000 mill-turn machining center. The 

confirmation experiments are performed for three cases with different tools and workpiece 

flexibility, material, and dimensions.  

• Case 1: 

 In the first case, the tool has a significant flexible structural dynamic compared to the 

workpiece. The experimental turn-milling set-up using an end mill is shown in Figure 4.6. 

The chatter identification is performed using both sound measurement and surface quality 

inspection.  

 

Figure 4.6: Experimental set-up for chatter identification in orthogonal turn-milling 

cutting tests.  
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The workpiece is Aluminum alloy Al7075 with 114 mm diameter and 200 mm length. 

The employed tool is a four-fluted WC regular end mill with 12 mm diameter, 70 mm 

stick out, 8˚ rake, and 38˚ helix angles. The cutting force coefficients for the above-

mentioned tool-workpiece material pair are given in Appendix A: Orthogonal databases.  

The tool and workpiece FRFs are measured by impact test using a modal hammer and 

miniature accelerometer, as shown in Figure 4.7. The accelerometer shown in Figure 4.7 

is PCB 352A73, and the modal hammer is Endevco model 2301. The modal parameters 

and the FRF plots in the frequency domain are given in Figure 4.8 and Table 4.1, 

respectively. 

 

Figure 4.7: Impact testing experimental set-up for Case 1.  

The modal analysis and the modal parameter identifications were conducted using 

CutPro® [126]. Note that, as mentioned in Section 4.4 and illustrated in Figure 4.4, the 

measured FRFs of the workpiece in MCS must be transformed into TCS to be used in the 

stability model.  

In the present section, the given directions for both the tool and workpiece are transformed 

to TCS for simplicity. The tool is considered rigid in 𝑍𝑇 direction. The stability lobe 

diagrams for orthogonal turn-milling are calculated using semi-discretization (SDM) and 

zero-order approximation (ZOA) methods as stated in Sections 4.5.1 and 4.5.2 for the 

given tool and workpiece FRF and cutting force coefficient in this section and illustrated 

in Figure 4.9. It is seen that there is a close agreement between the stability lobes 
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calculated by SDM and ZOA methods.  

Table 4.1. Modal parameters of tool and workpiece for Case 1. 

 Direction Modes 
Frequency 

(Hz) 
Damping (%) 

Modal 

Stiffness 

(N/m) 

Tool 

𝑋𝑇 
1 1015 3.38 4.66e7 

2 2073 2.74 3.29e6 

𝑌𝑇 
1 1037 3.9 3.14e7 

2 2057 1.29 2.63e6 

Workpiece 

𝑋𝑇 

1 253.23 4.57 5.16e7 

2 349 2.82 5.41e7 

3 620 3.08 1.69e8 

𝑌𝑇 1 1853.5 0.97 1.46e9 

𝑍𝑇 

1 243 4.09 5.89e7 

2 321.6 4.59 9.33e7 

3 555 2.3 1.26e8 

 

  

Figure 4.8: Tool and workpiece FRFs for set-up in Case 1. 

In order to validate the proposed model and the resulting stability diagrams, several cutting 

tests at different tool spindle speeds and depth of cuts are performed, as shown in Figure 



89 

 

4.9. During the test, the workpiece spindle speed was constant at Ω𝑤 = 5 rpm and the 

eccentricity was 𝑒 = 2 mm. During the tests, the sound signals were acquired using 

G.R.A.S. 40AO microphone. Based on the sound spectrum using Fast Fourier 

Transformation (FFT) of the acquired sound signal and the visual inspections of the cut 

surface by an optical camera, the tests were categorized as stable, unstable, and marginally 

stable.  

 

Figure 4.9: Stability diagram for Case 1 with Ω𝑤 = 5 𝑟𝑝𝑚, and 𝑒 = 2 𝑚𝑚. 

If the FFT of the sound signal was dominated by the spindle or tooth passing frequency 

and/or its harmonics, the test was classified as a stable cut. The chatter case or unstable 

cut is classified when the spectrum of the sound signal is dominated by frequencies close 

to one of the system's natural frequencies or its harmonics other than the tooth passing and 

its harmonics.  

The cases in which the chatter is not entirely developed and the FFT of the sound 

encompasses both tooth passing frequency and its harmonics as well as the chatter 

frequencies with relatively close amplitudes, are classified as marginally stable as 

transition regions from stable cut to chatter. In Figure 4.10, the tooth passing frequency is 

shown by 𝜔𝑇, its 𝑛𝑡ℎ harmonic by 𝜔𝑇𝑛, and the chatter frequency by 𝜔𝑐. According to the 

sound spectrum and the cut surface photos given in Figure 4.10, it is evident that test A is 

A

B
C

D

Stable Chatter Marginal
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stable since only the first harmonic of tooth passing frequency of 370 Hz (at 5600 rpm) is 

dominant in its sound FFT. 

  

  

Figure 4.10: Sound spectrums and surface photos for stable and unstable points. 

Similarly, test C is also classified as stable since its sound spectrum consists of the tooth 

passing frequency of 410 Hz (at 6150 rpm) and its next two harmonics. On the other hand, 

as seen in sound FFTs of tests B and D, the dominant frequency peak, i.e., the chatter 

frequency (𝜔𝑐), is close to the most flexible mode of the system, which is the tool’s second 

mode in this set-up (See Figure 4.8 and Table 4.1). Furthermore, according to the surface 

photos, the chatter marks are visible on the machined surfaces for tests B and D. Based on 

these justifications, tests B and D can be classified as unstable (chatter), which is 

consistent with the predictions.  

While the stability lobes are validated for Case 1 with an eccentricity of 2 mm, the stability 

lobe comparison for the maximum eccentricity for the tool with a 12 mm diameter is 

illustrated in Figure 4.11.  

As seen in Figure 4.11, while the absolute stability limit is 0.4 mm for 𝑒 = 2 mm, it 

increases by 0.1 mm as the eccentricity is increased to 𝑒 = 6 mm. It is to be mentioned 

that, the validation tests were also performed for the case 𝑒 = 6 mm. 

  = 370 Hz

A B

  = 370 Hz

  = 2120 Hz

C

  = 410 Hz

   =  820 Hz

   = 2050 Hz

D

  = 453 Hz

  = 2153 Hz
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Figure 4.11: Stability comparison for conditions in Case 1 at two different eccentricities. 

However, since the absolute stability limit difference is small and considering the 

marginally stable cases at the vicinity of absolute stability limits, the validation 

experiments are similar to the one given for the case of 𝑒 = 2 mm. The negligible variation 

of stability lobes and absolute stability limits between these two conditions is due to the 

small tool diameter in this case and hence, shorter engagement of the minor edge. On the 

other, since the workpiece diameter to tool diameter ratio is considerably high, the uncut 

chip volume variation is low (See Section 3.4). It is previously mentioned that, as the 

diameter ratio increases, the orthogonal turn-milling mechanics and dynamics become 

more similar to the milling process. It is due to the fact that, as the diameter ratio is high, 

which means that the tool radius is much smaller than the workpiece ratio, eccentricity 

variation (𝑒𝑚𝑎𝑥 ≅ 𝑅𝑡) does not result in considerable uncut chip geometry alteration.  

• Case 2: 

In previous cases, the employed tools were standard end mills in which the minor edge 

length is near the tool radius or slightly shorter than the tool radius. According to the 

discussions in Section 3.5 regarding the model for allowable stepover for different 

eccentricities given in equation (3.23) and the corresponding simulation in Figure 3.16, it 

is deduced that for tools with a long minor edge (such as end mills) there is no limitation 

for stepover at various eccentricities. In other words, the stepover can be selected as any 

value while eccentricity is between 𝑚 ≤ 𝑒 ≤ 𝑅𝑡 −𝑚 (See Section 3.3.2). However, turn-
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milling is mostly performed for roughing operations using face-milling tools where the 

minor edges on the inserts are smaller than the tool radius, and there is an offset distance 

between the insert and tool center. In this case, the proposed model in Section 3.5 and 

given in equation (3.23) must be used to select the proper eccentricity and stepover pair 

to prevent cusp formation, threaded surface, and undesired uncut chip geometry.  

In this regard, the proposed stability model for orthogonal turn-milling is validated using 

a four-fluted face milling tool. The milling tool is Ceratizit A491.50.R.04-09 with a 

diameter of 50 mm, and a cutting edge angle of 90˚ (zero minor edge approach angle). 

The employed inserts are SNHU-type inserts with 𝑙𝑡 = 9.1 mm cutting edge length and 

suitable coating for steel machining. The experimental setup is shown in Figure 4.12. 

 

Figure 4.12: Experimental set-up for Case 2. 

In Case 2, it is aimed to simulate the stability of a flexible face milling tool during 

orthogonal turn-milling. This situation can happen in machining a large-scale crankshaft 

where a longer tool holder is required for turn-milling the main journals. In this regard, a 

Haimer 40.326.32 tool holder with an overhang length of 200 mm is selected. The 

workpiece material is AISI 1045, with an initial diameter of 100 mm and 130 mm length 

from the clamping surface. The orthogonal data for the tool and material pair is given in 

Appendix A: Orthogonal databases. Due to the availability of the holder, the experiments 

were performed on DMG Mori DMU75 5-axis machine tool.  

Tool

Workpiece

Microphone

Spindle
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Figure 4.13: Measured FRFs of tool and workpiece employed in experiments of Case 2. 

Table 4.2: Modal parameters of tool and workpiece employed in Case 2. 

 Direction Modes 
Frequency 

(Hz) 
Damping (%) 

Modal 

Stiffness 

(N/m) 

Tool 

𝑋𝑇 

1 259 1.51 4.32e8 

2 404 2.19 5.56e6 

3 1488 1.38 1.32e8 

𝑌𝑇 

1 297 0.12 2.46e9 

2 415 3.63 5.82e6 

3 1501 1.29 1.22e8 

Workpiece 

𝑋𝑤(𝑍𝑇) 
1 240 1.88 2.08e8 

2 468 2.44 3.688e7 

𝑌𝑊(𝑋𝑇) 
1 279 3.78 4.95e8 

2 505 1.85 4.82e7 

𝑍𝑊(𝑌𝑇) 1 1134 1.15 7.41e8 

 

Note that, since the orthogonal turn-milling operation is performed in a 5-axis machining 

center and the machine coordinates are different from a mill-turn center, for compatibility 

with the previously-mentioned formulations, the stationary workpiece coordinate system 

is given, which corresponds to the MCS in mill-turn center in Figure 4.12. For this 
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configuration, the measured FRFs and the modal parameters for the workpiece and tool 

are given in Figure 4.13 and Table 4.2, respectively. 

According to discussions presented in Section 3.5, for a face milling tool with a minor 

edge length of 𝑙𝑡 = 9.1 mm in which there is an offset distance between the tool center 

and inserts, the allowable stepover (𝑎𝑤) and eccentricity must be selected using equation 

(3.23). The allowable stepover with respect to the eccentricity for the given tool in Case 2 

is illustrated in Figure 4.14. In order to investigate the stability of the system given in Case 

2, three points are selected, as shown in Figure 4.14. Points A and B are selected to 

demonstrate the effect of eccentricity on tool engagement and stability limit. 

 

Figure 4.14: Allowable feed per workpiece revolution (stepover) with respect to 

eccentricity for the tool employed in Case 2. 

Point C is selected to investigate the stability at higher stepover values. This is important 

as in orthogonal turn-milling, in order to achieve comparable MRR with the conventional 

turning process, higher stepover (𝑎𝑤) must be selected. Both conditions I and II have the 

stepover value of 𝑎𝑤𝐼,𝐼𝐼
= 8 mm (16% of 𝐷𝑡). The eccentricity of condition I is  𝑒𝐼 = 4 

mm, and for condition II is 𝑒𝐼𝐼 = 19 mm. The corresponding stability diagrams for both 

points I and II are illustrated in Figure 4.15. Based on the cutting inserts' allowable feed 

per tooth values, the workpiece spindle speed is selected as Ω𝑤 = 5 rpm. The stability 

lobes are simulated in a tool spindle speed range that fits in the allowable cutting speed 

range of the given inserts. Based on the simulated stability lobes, cutting tests have been 

Allowable Range

I II

III
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performed at different tool spindle speeds and depth of cuts to validate the simulated 

stability diagrams at conditions I and II shown in Figure 4.14. The chatter detection was 

performed through sound spectrum and surface quality analyses.  

As seen in Figure 4.15, the stability simulations are presented using ZOA and SD methods. 

According to the results, it is seen that both simulations have a good and close agreement. 

All the simulations were run on a PC having Intel ® Core ™ i7 4.0 GHz Central 

Processing Unit (CPU) and 16 GB of Random Access Memory (RAM). For both methods, 

the axial element height is 𝑑𝑧 = 0.1 mm and spindle speed interval is 𝑑𝑠 = 5 rpm during 

iteration. While the period resolution is taken as 𝓂 = 240 in semi-discretization method, 

the frequency resolution in the Nyquist stability criterion approach is taken as 1 Hz. For 

the given conditions above, the SDM simulation takes about ~ 2 hours, and the ZOA 

method using the Nyquist stability criterion takes approximately ~5 minutes to achieve 

the simulation results illustrated in Figure 4.15.  

 

Figure 4.15: Stability diagrams and validations for Case 2 at two different eccentricities. 

(Conditions I and II in Figure 4.14). 

Based on the simulation times and the discussions given in Section 4.3, the simulation 

time increases if the delay variation is high, and hence, the dimensions of matrices are 

larger due to the high number of unique delays.  Therefore, if the spindle ratio (Ω𝑡/Ω𝑤) 

Stable Chatter

A B

C
D
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is high (very low workpiece spindle speed compared to tools rotational speed), and the 

tool is a regular tool with equal pitch angles; the time delay varies neither by the time-

varying nature of the process nor by the tool geometry, and the computational time is 

relatively lower. Moreover, the ZOA approach proposed in this study is more 

computationally efficient than the SDM.  

The stable and unstable cases in Figure 4.15 are indicated as circles and cross marks, 

respectively, with colors corresponding to stability diagrams. According to the 

experimental verifications, chatter is observed at point A while the tool spindle speed is 

930 rpm, at 2 mm depth of cut, and eccentricity is 4 mm. The chatter frequency of 𝜔𝑐 =

418 Hz is visible at vicinity of the most flexible mode of the system, which is the tool’s 

natural frequency in this case (see Figure 4.16).  The tooth passing frequency of 𝜔𝑇 = 62 

Hz and its harmonics are also visible in sound spectrum.  

  

  

Figure 4.16: Sound Spectrum of the chatter experiments for Case 2. 

However, the peak amplitude of the chatter frequency and its combination with tooth 

passing frequency (𝜔𝑐
∗ = 𝜔𝑐 ± 𝑘𝜔𝑇 , 𝑘 = 0, 1,2,⋯ , 𝑘) are higher than the 𝜔𝑇 and close to 
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  −  .     

  −    
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its higher harmonics (Figure 4.16A). A similar phenomenon is seen in Point C, as shown 

in Figure 4.16. The cutting test is performed at Ω𝑡 = 930 rpm, 𝑎𝑝 = 1.5 mm with 𝑒 = 19 

mm eccentricity. As expected, the system chattered at 418 Hz, although the peak 

amplitudes of the tooth passing frequencies are approximately close to that of chatter 

frequencies. The chatter frequencies at different spindle speeds are illustrated in Figure 

4.18.The sound spectrums of experiments B and D are given in Figure 4.16. The 

experiments were performed at Ω𝑡 = 1020 rpm at two different depths of cuts and 

eccentricities. Both spectrums show only tooth passing frequency with higher harmonics 

visible. According to the chatter frequency plot in Figure 4.18, for the current system, at 

a rotational speed of 1020 rpm, the corresponding frequency must be around 432 Hz, while 

no FFT peaks were observed at the related sound spectrums of experiments B and D 

around 432 Hz. 

Furthermore, the chatter and stable conditions are verified by inspection of the cut surface. 

The surface samples for stable and unstable cases are shown in Figure 4.17.  

 

Figure 4.17: A sample surface photo for chatter (left) and chatter-free (right) conditions. 

The chatter marks on the surface of the workpiece reveal that the chatter occurred at point 

A, as shown in Figure 4.17 left, while by increasing the spindle speed to 1020 rpm at an 

eccentricity of 4mm, the chatter marks disappear because of a stable cut. 

The stability lobes are simulated using ZOA and SDM approaches for the eccentricity and 

stepover values of condition III indicated in Figure 4.14. It is seen that, similar to 

conventional milling operation, as the stepover (feed per workpiece revolution) increases, 

the absolute stability limit decreases. Despite the lower absolute stability limit of condition 

III, the MRR is slightly higher than both conditions I and II due to the higher stepover. 

Uncut
Surface

Chatter-free 

Uncut
Surface

Chatter Marks
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Considering the stable depth of cuts inside the stability pockets, 𝑎𝑝 = 2 mm is achievable 

as a stable cutting while the step over is 𝑎𝑤 = 8 mm (conditions I and II). On the other 

hand, at condition III, where the stepover is 𝑎𝑤 = 25 mm, the maximum stable depth of 

cut is 0.8 mm. 

 

Figure 4.18. Chatter frequencies at different spindle speeds for Case 2. 

 

Figure 4.19: Stability lobes and validations for the system in Case 2, condition III in 

Figure 4.14. 

However, by comparing the MRR of I, II, and III, it is deduced that due to the higher 

Stable Chatter
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stepover of condition III, its MRR is 25% higher than conditions I and II. As a result, it is 

favorable to select condition III in orthogonal turn-milling in terms of productivity and 

machining cost. 

 

4.7. Effect of Process Parameters on Stability of Orthogonal Turn-milling 

Due to the simultaneous rotation of tool and workpiece in orthogonal turn-milling, which 

leads to simultaneous engagement of both minor and side cutting edges of the milling tool, 

additional parameters compared to conventional milling and turning are included in the 

process kinematics, mechanics, and dynamics. The effect and significance of these 

additional parameters are discussed in Section3 in terms of surface quality and cutting 

forces. However, these parameters are needed to be analyzed from process dynamics and 

chatter stability points of view. In the previous section, the effect of eccentricity is shown 

through simulations and validated by cutting experiments. Although some conclusions 

regarding the effect of eccentricity and stepover on process stability can be drawn by 

comparing the stability lobes in points I, II, and III shown in Figure 4.14, it is difficult to 

predict the stability behavior of the system at each combination of 𝑒 and 𝑎𝑤. This is due 

to the fact that the stability of orthogonal turn-milling mainly depends on the chip load 

and the amount of force produced by the engagement. The chip volume and the CWE 

engagement do not follow a linear relationship based on eccentricity or engagement length 

of the minor edge. The CWE and uncut chip geometry show different results at a particular 

eccentricity but different tool and workpiece diameter combinations.  

It is believed that at the process planning stage, based on the dynamics properties and the 

allowable ranges of eccentricity and stepover, the absolute stability limit of the system 

must be evaluated, as shown in Figure 4.20. Note that, Figure 4.20 is generated at a 

constant spindle speed of Ω𝑡 = 930 rpm to obtain the absolute stability limit of the system 

at the given speed. Therefore, based on the cutting strategy, one can select the proper 

eccentricity and stepover according to Figure 4.20, aiming stable depth of cut with cusp-

free surface quality. Furthermore, after selecting the chatter-free condition, the axial forces 

during stable cutting must be selected and considered using the graph in Figure 3.23. 
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Figure 4.20: Absolute stability limit map for Case 2 at the allowable range of 

eccentricity and stepover. 

Another important parameter that affects the orthogonal turn-milling process stability is 

the workpiece rotational speed. As discussed in Section 4.3 and the simulations given in 

Figure 4.3, by increasing the rotational speed of the workpiece (decreasing the ratio of  

𝑟𝑠 = Ω𝑡 Ω𝑤⁄ ) the phase shift between the surface marks left by two subsequent teeth on 

current and previous modulations increases. This phenomenon causes the time-varying 

delay in orthogonal turn-milling, affecting stability behavior. Due to varying time delays 

within the engagement boundaries and distributed delays along the tool axis within the 

CWE, the semi-discretization method can capture the impact of variable delays on process 

stability [40,65].  

As seen in Figure 4.21, increasing the workpiece rotational speed shifts the stability lobe 

toward lower tool speeds due to the alteration in time delay [43,46].  

It is known that a higher rotational speed of the workpiece increases the MRR by 

increasing the linear feed rate. At the same time, the feed per tooth value both at side and 

minor cutting edges will be increased drastically, which must be considered in terms of 

cutting tool or insert feasibility at the resulted feed values. In addition, it is seen that the 

stability lobes are also shifted toward lower speeds which may cause unstable cutting 

without considering the effect of spindle speed [43]. 
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Figure 4.21: Effect of delay variation caused by workpiece rotational speed on stability 

lobes. 

4.8. Summary 

In this chapter dynamic and stability model of orthogonal turn-milling process is 

presented. The dynamic chip thickness and dynamic cutting forces are modeled as a 

function of vibrations between the tool and workpiece imposed on both side and minor 

edges of the tool in three directions. The time delay which alters the regeneration 

mechanism is modeled based on the kinematics of the process. It is shown that, due to the 

kinematics of the orthogonal turn-milling process, the tool experiences different time 

delays along its axis. Furthermore, the workpiece rotational speed alters the regenerative 

dynamic chip formation mechanism by altering the resulted time delay. Based on the 

obtained varying time delay, the stability of orthogonal turn-milling process is solved in 

discrete-time, and frequency domains using semi-discretization and zero-order 

approximation approaches, respectively. The proposed stability solutions are validated by 

experiments using standard end mills and face milling tools. The simulations discuss and 

represent the effects of different parameters such as workpiece rotational speed and 

eccentricity, considering their feasibility.   
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5. IMPLEMENTATION OF SPECIAL TOOLS IN TURN-MILLING 

5.1. Overview 

The previous sections present detailed predictive models for the mechanics and dynamics 

of the orthogonal turn-milling process using standard milling tools. However, special 

(irregular) end mills with irregular pitch and/or helix angles have been a focus of interest 

both in industry and academia for decades. It has been previously proved that milling tools 

with nonconstant pitch and/or helix angles can suppress chatter during machining and 

enhance productivity, especially when machining hard-to-cut materials [61,73,127]. In 

addition to variable-pitch and variable-helix tools with straight cutting edge geometry, 

serrated and crest-cut tools are also categorized as special end mills. Unlike standard end 

mills, special geometries (serration geometries or wavy shapes) along the cutting edges of 

serrated and crest-cut tools result in significant enhancements in process mechanics and 

stability [77,120]. Different types of special tools are shown in  

 

Figure 5.1. Different types of special tools. 

In this regard, the serrated and crest-cut tools are implemented in orthogonal turn-milling 

operations to investigate their effect on cutting forces and process stability. Firstly, the 

mechanics of both tools during orthogonal turn-milling is discussed and validated through 

experiments. Next, the stability of crest-cut tools in orthogonal turn-milling is discussed 

based on the previous findings. 

Variable-pitch Variable-helix Serrated Crest-cut
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5.2. Mechanics of Special Tools in Turn-milling 

5.2.1. Serrated Tools 

Due to the existence of serrations, the chip load distribution along the engagement varies 

in serrated tools leading to higher stability and lower cutting forces in roughing operations. 

The performance of a serrated tool depends on the serrations' geometry, the serration 

profile's amplitude, and phase shift between the profiles [65,120]. Optimized geometry of 

serration profiles can lead to higher stability limits due to the disturbance in the 

regenerative mechanism provided by distributed varying time delays, irregular chip 

thicknesses, and missed-cut effects [68,123]. As a result, it is important to use serrated 

tools in turn-milling operations to achieve higher performance. The proposed uncut chip 

model for orthogonal turn-milling can be adaptable for special geometry end mills such 

as serrated tools. This section presents the uncut chip thickness of serrated tools and the 

kinematics of orthogonal turn-milling. For serrated cylindrical end mills, the angular 

position of axial element 𝑖 of tooth 𝑗 is defined as: 

𝜙𝑖𝑗 = 𝑝𝑡(𝑗) −
tan(𝛾𝑗)

𝑅𝑡
𝑧 + 𝜙𝑗   (5.1) 

  where 𝜙𝑗 is the angular increment of reference tooth 𝑗, 𝛾𝑗 is the helix angle of the tooth 

𝑗𝑡ℎ. 𝑝𝑡(𝑗) is the angular position of the tooth 𝑗 with respect to the first edge, provided that 

the angular position of the first tooth as the reference tooth is assumed to be zero and can 

be calculated by; 

𝑝𝑡(𝑗) =  ∑ 𝑝𝑢
𝑗−1
𝑢=1   (5.2) 

 where 𝑝𝑢 is the pitch angle of the tooth 𝑢. It is obvious that the variable helix and variable 

pitch tools can also be modeled using a similar approach. In order to determine the uncut 

chip area, the tool-workpiece interference areas for each axial element are calculated based 

on the model proposed by Tehranizadeh et al. [68]. In the elemental chip area calculation 

of serrated tools in turn-milling operation, it is considered that the differential areas are 

not intersecting, and the chip area direction makes the chip thickness perpendicular to the 

element’s edge.  

While integrating the serrated tools chip geometry model, due to the workpiece's rotation, 
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the workpiece's surface shape, which is generated by the previous teeth on the side cutting 

edge of the tool, is affected by the feed per tooth at each axial element. In order to calculate 

the uncut chip area, the workpiece surface must be calculated for each axial element (𝑖) 

and angular position of tooth 𝑗 as follows; 

𝑊(𝑖, 𝑗, 𝜙𝑗) = max{

0

m  {𝑅𝑖𝑚 +
2(𝑘𝜋𝑛𝑤)

𝑛𝑡𝑁    (𝛽)    (𝜃𝑥)
. (𝑅𝑤 − 𝑎𝑝 + 𝑖. 𝑑𝑧)}} 

𝑚 = { 
𝑘 − 𝑗 𝑖𝑓 𝑘 − 𝑗 > 0

𝑘 − 𝑗 + 𝑀 𝑖𝑓 𝑘 − 𝑗 ≤ 0
}  ∴ 𝑘 = 1,2, … ,𝑁  

(5.3) 

  where 𝑅𝑖𝑚 is the local radius of the element which is different for each axial element due 

to the wavy flank face of the serrated tools. The local radius definition depends on the 

serration wave type, such as sinusoidal, circular, or trapezoidal, as shown in Figure 5.2 

[68]. The geometrical parameters of each serration type are specific, and hence, the 

geometrical relations of the local radius 𝑅𝑖𝑚 (which is a tool geometry property) is specific 

for each serration type and can be found in [68] in detail.  

The uncut chip thickness (the area between the tool and workpiece) for each axial element 

at each angular position depends on the serration type (𝑅𝑖𝑗 is different for each serration 

type) is calculated by; 

ℎ(𝑖, 𝑗, 𝜙𝑖𝑗) = 𝑅𝑖𝑗 −𝑊(𝑖, 𝑗, 𝜙𝑖𝑗)  (5.4) 

  Further geometrical operations are performed in order to avoid the intersection of the 

chip areas as defined by Tehranizadeh et al. [68]. The evaluated uncut chip thickness in 

equation (5.4) is substituted with equation (3.26) for cutting force calculations. The 

engagement of axial elements is updated at each angular position according to the 

engagement boundary given in equation (3.11).   

 

Figure 5.2: Parameter definition for different serration type; a) trapezoidal, b) circular, c) 

sinusoidal 
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Note that calculation of the instantaneous depth of cut and entry and exit angle of each 

axial element on serrated tools in turn-milling is performed by substituting the equation 

(5.1) into equations (3.12) and (3.13), respectively. Furthermore, the transformation of the 

elemental forces in 𝑡𝑟𝑎 coordinate system into 𝑇𝐶𝑆 are performed according to the axial 

and angular immersion angles of the serrated tool, which the formulations are adopted 

from [64,68]. Finally, the cutting forces resulting from the tool's serrated side edge and 

the tool's minor edge are summed according to the mechanics of turn-milling given in 

Section 3. 

The proposed force model of the orthogonal turn-milling process has been verified in this 

section. The cutting experiments are on Mori Seiki NTX2000 CNC mill-turn. The cutting 

force verifications are carried out on aluminum alloy Al7075-T6 cylindrical workpiece 

and two types of solid WC end mills; standard and serrated end mills. The tool parameters 

are given in Table 5.1. The schematic representation of the parameters for trapezoidal 

serration waves is given in Figure 5.2(a).  The cutting forces are measured using Kistler 

9123C rotary dynamometer, as shown in Figure 5.3. 

 

Figure 5.3: Cutting force measurement set-up for orthogonal turn-milling using serrated 

tools. 
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Table 5.1: Serrated tool geometrical parameters  

Tool Type Diameter (mm) 

Cutting 

angles of side 

edge 

Cutting angles 

of minor edge 
Serration type 

Serration parameters 

(mm) 

Standard 16 
𝛼𝑠 = 11° 

𝛾𝑠 = 38° 

𝛼𝑚 = 3° 

𝛾𝑚 = 0 
- - 

Serrated 16 
𝛼𝑠 = 5° 

𝛾𝑠 = 38° 

𝛼𝑚 = 5° 

𝛾𝑚 = 0 
Trapezoidal 

𝐿1=0.7, 𝐿2=0.3, 𝐴=0.5, 

𝛼𝑡 = 𝛽𝑡 = 30°, 

𝑅1 = 𝑅2 = 𝑅3 =
𝑅4 =0.3 
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Figure 5.4: Verification of cutting forces in turn-milling with standard tool for the given 

conditions in Table 5.2. 
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Table 5.2: Cutting conditions for cutting force measurement experiments of serrated tool 

in turn-milling. 

Exp. 
Ω𝑡 

(𝑟𝑝𝑚) 
Ω𝑤 
(𝑟𝑝𝑚) 

𝑒 
(𝑚𝑚) 

𝑓𝑡  
𝑚𝑚/(𝑟𝑒𝑣. 𝑡  𝑡ℎ) 

𝑎𝑤 
(𝑚𝑚/𝑟𝑒𝑣) 

𝑎𝑝 
(𝑚𝑚) 

𝐹 
(𝑚𝑚

𝑚𝑖𝑛 ) 
𝐷𝑤1 
(𝑚𝑚) 

1 3979 8 2 0.14 3 10 24 102 

2 3979 8 4 0.17 3 10 24 122 

3 3979 8 4 0.19 6 5 48 132 

 

The cutting force confirmation for serrated end mills in orthogonal turn-milling is given 

in Figure 5.4. The cutting parameters for the experiments and simulations are listed in 

Table 5.2. The cutting force simulations with the same cutting parameters for standard end 

mills with similar geometrical parameters (See Table 5.1) are presented in Figure 5.4. 

It is shown that the proposed model can predict the cutting forces and torque values for 

serrated tools in orthogonal turn-milling operation in good agreement. The difference 

between the simulation and experimental results for axial forces is negligible. It is evident 

that using the serrated end mills decreases the resultant force and torque due to the 

reduction in effective contact length along with the cutting depth [64]. According to the 

results in Figure 5.4, the serration geometry of the tools affected the resultant forces and 

torque more than the axial forces. As a result, the application of serrated tools will increase 

the stability limits significantly not only due to the decrease in the cutting forces but also 

by disturbing the regeneration in dynamic chip formation, leading to a substantial increase 

in MRR during roughing with turn-milling [64,68].  

5.2.2. Crest-cut tools 

Crest-cut end mills have sinusoidal wavy rake faces leading to varying local helix angles 

along the cutting edges. In addition, the sinusoidal wave on each tooth has a phase shift 

with the subsequent tooth’s wave, resulting in a varying local pitch angle along the cutting 

edges between consecutive teeth (Figure 5.5c). Crest-cut tools are shown in Figure 5.5.  
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Figure 5.5: Crest-cut tools, (a) detailed view of wavy edges, (b) Discretized 

representation of tool along its axis, (c) Representation of varying pitch angles on a 

sample axial element [77]. 

In order to calculate the cutting forces using crest-cut end mills, the tool geometry must 

be primarily modeled to obtain the uncut chip thickness. For this purpose, similar to 

regular tools, the crest-cut tools are discretized into 𝑚 number of disc elements, as shown 

in Figure 5.5b. This is required since each tooth's local pitch, helix, and oblique angle on 

each disc element is different. The detailed and profound definition of the tool geometry 

and local helix angles are defined by Tehranizadeh et al. [77]. In this study, the geometric 

formulations of the crest-cut tools are not included and adopted from [77]. Using the 

geometrical model of crest-cut tools, the angular position of each point (𝜑̅𝑛,𝑗) in polar 

coordinate can be obtained. 𝑛 refers to number of an element along tools axis on 𝑗𝑡ℎ tooth. 

Therefore, the local pitch angle at 𝑛𝑡ℎ disc element between the 𝑗𝑡ℎ and (𝑗 + 1)𝑡ℎ teeth is 

calculated by; 

Δ𝜑̅𝑗(𝑧) = 𝜑̅𝑛,𝑗+1 − 𝜑̅𝑛,𝑗  (5.5) 

 Note that some parameters may be represented with different notations in order to have 

consistency with the previous sections. 

The local pitch variation along the tool axis for standard, variable-pitch, and crest-cut tools 

is depicted in Figure 5.6b. The unfolded view of the cutting edges in Figure 5.6a shows 

the local pitch angle of two points at an elevation 𝑧𝑛 on 𝑗𝑡ℎ and (𝑗 + 1)𝑡ℎ teeth. It is seen 

that, because of the wavy edge shape, the local pitch angles on the crest-cut tool are too 

different from the ones on standard or even variable-pitch tools. In Figure 5.6, 𝐴𝑗 stands 

for wave amplitude, 𝜆𝑗 for wavelength, and 𝛾𝑗  for helix angle on tooth 𝑗. 

A A

A-A Section

5mm 10mm 10mm 5mm

(a) (b) (c)
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Figure 5.6: Representation of pitch variation for three different tool types; a) Unfolded 

comparison of chip variation and cutting edges for three tool types, b) representation of 

local pitch variation of each tool along its axis [128]. 

Considering that the angular position of the tool within a full revolution is 𝜙, the angular 

position of element 𝑛 on 𝑗𝑡ℎ tooth can be defined as; 

𝜙𝑛,𝑗 = 𝜙 + 𝜑̅𝑛,𝑗  (5.6) 

 The first step of adopting crest-cut tools in orthogonal turn-milling is the calculation of 

uncut chip thickness. Based on the uncut chip thickness definition in orthogonal turn-

milling given in Section3.3 and the uncut chip thickness definitions explained in [77], the 

feed per tooth value for crest-cut tools during orthogonal turn-milling is achieved as; 

𝑓𝑡𝑗(𝑧) =  
(𝜑̅𝑛,𝑗+1−𝜑̅𝑛,𝑗)

Ω𝑡 cos(𝜃𝑥) cos(𝛽)
 Ω𝑤(𝑅𝑤 − 𝑎𝑝 + 𝑎(𝑧))  (5.7) 

 where 𝑎(𝑧) is the elevation of disc 𝑛 from the tooltip (𝑎(𝑧) = 𝑛 ∗ 𝑑𝑧). 𝑓𝑛,𝑗 represent the 

amount of feed that each disc element on tooth 𝑗 travels during a tooth passing period. It 

is to be noted that the effect of rotational speed ratio on feed per tooth value is also true 

for crest-cut tools. However, contrary to standard tools, the amount of increase of feed per 

tooth for each tooth is different because of varying local pitch angles between consecutive 

teeth. According to the explanations given in Section 3.2, by transforming the feed per 

tooth vector to ℱ𝒞𝒩  coordinate system, the uncut chip thickness at each angular position 

of the tool can be calculated by; 

ℎ𝑛,𝑗(𝜙𝑛,𝑗) = 𝑓𝑡𝑗(𝑧).    𝛽.    (𝜙𝑛,𝑗)  (5.8) 

 Note that, to find the immersion boundaries using crest-cut tools, the formulation given 

in Section 3.3.1 is sufficient. These formulations provide the overall boundaries of the 
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engagement of the workpiece and the tool. However, due to the wavy edge shape on crest-

cut tools and varying local helix and pitch angles, the engagement of each disc element 

will be different. This phenomenon is controlled by the binary function 𝑔(𝜙𝑛,𝑗) which is 

equal to 1 when the disc element 𝑛 on 𝑗𝑡ℎ tooth is in cut (𝜙𝑠𝑡 ≤ 𝜙𝑛,𝑗 ≤ 𝜙𝑒𝑥), and is equal 

to 0 otherwise. The instantaneous depth of cut at each angular position can be calculated 

by substituting the angular position of the first disc element on each tooth (equation (5.6)) 

into equation (3.11) ; 

𝑎𝑖(𝜙0,𝑗) = √𝑅𝑤2 − (𝑅𝑡    (𝜙0,𝑗) − 𝑒)
2
− (𝑅𝑤 − 𝑎𝑝)  (5.9) 

 Note that the mechanics of minor edges in crest-cut tools are identical to that of standard 

tools. However, in order to achieve better surface quality, the approach angles must be 

zero (𝛼𝑚 = 0). The cutting force calculations are performed using the formulations given 

in Section 3.6. The elemental forces for each disc element at each tooth are calculated 

according to its varying chip load and engagement. Then the exerted forces on the side 

edge and minor edge are summed to obtain the total cutting forces at each angular position 

according to its engagement boundaries.  

The proposed cutting force model for crest-cut tool implementation is validated through 

experiments. The experiments were conducted on Mori Seiki NTX 2000 mill-turn 

machining center. The tool employed in experiments is an uncoated WC crest-cut end mill 

manufactured by Karcan® cutting tool company. The geometric parameters of the crest-

cut tool are listed in Table 5.3. The wave shapes are identical at every tooth with a 
𝜋

2
 𝑟𝑎𝑑 

shift, successively.  

Table 5.3: Parameters of the crest-cut tool used in experiments. 

Tool Dia. 

(𝐷𝑡) (mm) 

No. of flutes 

(𝑁) 

Nominal helix angle 

(𝛾𝑗) (deg) 

Pitch angle 

distribution 

(deg) 

Wave Shape (mm) 

12 4 38 83-97-83-97 𝜆𝑗 = 0.25, 𝐴𝑗 = 4 

 

The workpiece material is Al7075-T6 alloy with a 90 mm diameter. The cutting force 

simulations and experiments are performed at the conditions given in Table 5.4. The 
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resulted cutting forces during experiments were measured using Kistler 9123C rotary 

dynamometer. The orthogonal database for the tool-workpiece pair used in orthogonal-to-

oblique transformation is given in Appendix A: Orthogonal databases. Note that, since the 

local helix (oblique) angle of each element varies along the tool axis, the cutting force 

coefficients are updated for each axial disc element based on the particular oblique angle 

and instantaneous feed per tooth during force predictions.  

Table 5.4: Cutting parameters for cutting force experiments in turn-milling with crest-cut 

tools. 

Exp. 
Ω𝑡 

(𝑟𝑝𝑚) 
Ω𝑤 
(𝑟𝑝𝑚) 

𝑒 
(𝑚𝑚) 

𝑓𝑡  
𝑚𝑚/(𝑟𝑒𝑣. 𝑡  𝑡ℎ) 

𝑎𝑤 
(𝑚𝑚/𝑟𝑒𝑣) 

𝑎𝑝 
(𝑚𝑚) 

𝐹 
(𝑚𝑚

𝑚𝑖𝑛 ) 
𝐷𝑤1 
(𝑚𝑚) 

1 4770 9 4 0.1 3 10 27 90 

2 4770 15 4 0.17 3 10 45 90 

3 4770 9 4 0.1 6 10 54 90 

4 4770 9 2 0.1 1.5 10 13.5 90 

 

As seen in Figure 5.7, there is an acceptable agreement between the force predictions and 

measurements. According to the simulation and measurement results, it is seen that, unlike 

conventional mill tools, the resulted forces from crest-cut tools are distorted due to the 

presence of wave edges on the side cutting edges of the tool. The phase shift between the 

waves on each edge creates a different chip thickness for each axial element on each tool. 

Moreover, each axial element on each tooth has particular immersion angles (entry and 

exit angles). Therefore, unlike standard tools, the resulted cutting forces are non-periodic 

in all feed, cross-feed, and axial directions. This phenomenon is also confirmed by 

Tehranizadeh et al. [77] during three-axis milling by crest-cut tools.  

In addition, by comparing the cutting force results for crest-cut tools in Figure 5.7, for 

serrated tools in Figure 5.4, and standard end mills in Figure 3.21, it is deduced that crest-

cut tools produce smoother cutting forces in the axial direction (𝐹𝑧). This phenomenon can 

decrease the harmonic excitations in axial direction where the workpiece is flexible in the 

axial direction of the tool.  
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Figure 5.7: Verification of cutting forces in turn-milling with crest-cut tool for the given 

conditions Table 5.4. 

5.3. Stability of Special Tools in Turn-milling 

After validating the predicted cutting forces generated by crest-cut tools in orthogonal 

turn-milling operation in Section 5.2, the stability model of the process can be developed. 

While implementing the special tools like serrated, crest-cut, etc., the dynamics of the 

process do not change, and the model given in Section 4.4 governs. Due to the wavy shape 

on the cutting edges, the engagement boundaries along the tool axis change for each tooth 

by employing crest-cut tools. This leads to unequal chip thickness distribution along the 

cutting edges for each tooth. In addition, the variation in engagement boundaries of teeth 

at a specific height causes a varying delay between the subsequent teeth. This delay 

variation is also distributed along the tool axis due to the phase shift between the waves 

on each tooth [74,77]. The variation in engagement boundaries is discussed in Section 

5.2.2. As a result, in order to implement the crest-cut tool in the orthogonal turn-milling 

model, it needs to calculate the varying and distributed time delay caused by both tool 

geometry and process kinematics. Next, the stability of the crest-cut tools in orthogonal 

turn-milling is solved in discrete-time and frequency domains, which are described in 

Sections 4.5.1 and 4.5.2, respectively. 
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5.3.1. Calculation of time delay in crest-cut tools used in orthogonal turn-milling 

Given that, the local pitch angle varies for each disc element along the tool axis between 

the consecutive teeth, the constant tooth passing period governing in standard tools does 

not hold for every element in crest-cut tools. Therefore, the period between the 

engagement of  𝑗𝑡ℎ and (𝑗 + 1)𝑡ℎ teeth on 𝑛𝑡ℎ element (𝑧 = 𝑛. 𝑑𝑧), depends on the local 

pitch angle between these teeth (Δ𝜑̅𝑗(𝑧)) and rotational speed of tool (Ω𝑡), which can be 

calculated as; 

𝜏0(𝑛, 𝑗) =
Δ𝜑̅𝑗(𝑧)

Ω𝑡
 (5.10) 

 In order to add the effect of rotation of the workpiece and calculate the varying time delay 

in orthogonal turn-milling using crest-cut tools, equations (5.10) and (5.5) must be 

combined with (4.17) as given below; 

𝜏𝑖,𝑗(𝑧) = 𝜏0(𝑛, 𝑗) −
𝛼𝑖

Ω𝑡
=

Δ𝜑̅𝑗(𝑧)

Ω𝑡
−

𝜏𝑓𝑡𝑗
(𝑧) cos(𝜙𝑖+𝜃𝑥)

𝜏0(𝑛,𝑗)𝑅𝑡Ω𝑡
  (5.11) 

  By substituting equation (5.7) into equation (5.12), the varying time delay of 𝑛𝑡ℎ element 

at height (𝑧 = 𝑛. 𝑧) on 𝑗𝑡ℎ tooth of a crest-cut tool used turn-milling operation can be 

obtained as follows; 

𝜏𝑖,𝑗(𝑧) =
Δ𝜑̅𝑗(𝑧)𝑅𝑡 cos𝜃𝑥

Ω𝑡𝑅𝑡cos𝜃𝑥+Ω𝑤(𝑅𝑤−𝑎𝑝+𝑎(𝑧)) cos(𝜃𝑥+𝜙𝑖)
  (5.12) 

 As discussed in Section 4.3, the workpiece rotation will decrease the delay, particularly 

for each element along the tool axis. As a result, the effect of different parameters such as 

speed and diameter ratios of tool and workpiece on varying delay in crest-cut tools are 

similar to that of the standard tool, as shown in Figure 4.3. 

5.3.2. Stability solutions 

Having updated the cutter-workpiece engagement boundaries (entry and exit angles, 

instantaneous depth of cut, and the varying time delay for crest-cut tools in turn-milling, 

one can solve the process stability using the explanations and models given in Section 4. 

One of the solution methods for this problem is the semi-discrete time marching method 

which is described in Section 4.5.1. The stability lobes can be obtained by substituting the 
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delay formulation obtained for crest-cut tools in equation (5.12) in SDM model in Section 

4.5.1. However, as discussed previously, semi-discrete time marching methods are 

computationally costly and time-consuming. As an alternative to reduce the computational 

cost, the ZOA method in the frequency domain is employed to simulate the stability lobes 

for orthogonal turn-milling operation using crest-cut tools.  

In orthogonal turn-milling using crest-cut tools, the time delay is different for each axial 

disc element on each tooth caused by varying local pitch angles. For instance, for a four-

fluted crest cut tool with 12 mm diameter, a nominal helix angle of 38˚, the nominal pitch 

angle of 90˚, and wave properties of 𝜆𝑗 = 6mm, 𝐴𝑗 = 1 mm, the local pitch variation along 

the tool axis for each tooth is illustrated in Figure 5.8. For a disc element at level 𝑧 = 2 

mm, the pitch angle distribution for each tooth is Δ𝜑̅1 = 100°,  Δ𝜑̅2 = 94.5°, Δ𝜑̅3 =

66.8°, Δ𝜑̅4 = 98.7°. An illustration of a discrete element and local pitch angle distribution 

is given in Figure 5.5.  

 

Figure 5.8: Local pitch angle variation for each tooth on crest-cut tool (𝜆𝑗 = 6mm, 𝐴𝑗 =

1 mm) vs. the standard tool. 

As a result, at a constant rotational speed, the time delay of each tooth of this disc element 

is different and proportional to the corresponding pitch angle. Moreover, according to 

equation (5.12), this delay varies at each instantaneous angular position. The varying time 

delay of each tooth of the above-mentioned tool at a rotational speed of 1000 rpm is shown 

in Figure 5.9.  
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Figure 5.9: Delay variation of different teeth of the crest-cut tool at level 𝑧 = 2 mm. 

Since it is not possible to consider the time-varying delay in the ZOA method, the average 

value of the delay for each tooth at each disc element within the engagement boundary is 

considered. According to Figure 5.9, the average time delays of each tooth at 𝑧 = 2 mm 

are; 𝜏1(2) = 0.0168 sec,  𝜏2(2) = 0.0158 sec, 𝜏3(2) = 0.0112 sec, 𝜏4(2) = 0.0166 sec. 

Therefore, each tooth of a disc element has a specific averaged-delay value denoted by 

𝜏𝑗(𝑧).  

Based on the discussions made in Section 4.5.2, the zero-order dynamics model of 

orthogonal turn-milling with crest-cut tools in the frequency domain becomes; 

𝔼(𝜔𝑐) = det [[𝐼] − [1 − 𝑒−𝑖𝜔𝑐𝜏𝑗(𝑧)][[𝐴1] + [𝐴2]][Φ( ω )]]  (5.13) 

 where [𝐴1] and [𝐴2] are the summation of zero-order Fourier transform of the time-

varying directional coefficients for all teeth and levels, corresponding to side and minor 

cutting edges, respectively.  

[𝐴1] =∑∑
1

2𝜋
[

𝛼𝑥𝑥,𝑗𝑛
0 (𝜙) 𝛼𝑥𝑦,𝑗𝑛

0 (𝜙) 0

𝛼𝑦𝑥,𝑗𝑛
0 (𝜙) 𝛼𝑦𝑦,𝑗𝑛

0 (𝜙) 0

𝛼𝑧𝑥,𝑗𝑛
0 (𝜙) 𝛼𝑧𝑦,𝑗𝑛

0 (𝜙) 0

]

𝑚

𝑛=1

𝑁

𝑗=1

 

[𝐴2] = ∑
1

2𝜋
[

0 0 𝛼𝑥𝑧,𝑗
0 (𝜑)

0 0 𝛼𝑦𝑧,𝑗
0 (𝜑)

0 0 𝛼𝑧𝑧,𝑗
0 (𝜑)

]

𝑁

𝑗=1

 

(5.14) 
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 Due to the existence of multiple time delays 𝜏𝑗(𝑧) cased by varying pitch angles along 

the tool axis at each tooth, there is no explicit solution for the characteristic equation to 

obtain the stable critical depth of cut, as proposed in [38]. In order to find the critical stable 

depth of cut at a fixed tool speed, the axial depth of cut is increased by increments of 𝑑𝑧, 

and the stability is detected by Nyquist stability criterion (See Appendix B: Nyquist 

Stability Criterion). 

The simulations are performed based on the FRF measurements of the tool and workpiece 

using an impact test. For this purpose, a crest-cut tool produced by Karcan® cutting tool 

company is clamped on a Mori Seiki NTX 2000 mill-turn machining center. The stability 

limits are compared between crest-cut and standard tools for comparison purposes. The 

geometric parameters of the tools are given in Table 5.5. 

Table 5.5: The geometric parameters of the tools.  

Tool Type 
Tool Dia. 

(𝐷𝑡) (mm) 

No. of flutes 

(𝑁) 

Nominal helix 

angle (𝛾𝑗) (deg) 

Pitch angle 

distribution 

(deg) 

Wave Shape (mm) 

Crest-cut (CC) 12 4 38 90-90-90-90 𝜆𝑗 = 1, 𝐴𝑗 = 6 

Standard (ST) 12 4 38 90-90-90-90 -- 

 

The tools are clamped with a stick-out length of 55 mm, and clamping torque of 140 N.m. 

The modal parameters of the tools are given below: 

 

Figure 5.10: FRF measurements of the workpiece and the tools (in Table 5.5) used in 

this section.  
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The workpiece is Al7075-T6 workpiece with 114 mm diameter clamped on the chuck, as 

shown in Figure 4.6. According to Figure 5.10, it is seen that the FRFs of the workpiece 

are 10 times more rigid than the tool. The modal parameters of the workpiece are given in 

Table 4.1, since the identical workpiece is used for both experiments. The modal 

parameters acquired from the FRFs for the standard and crest-cut tools (Figure 5.10) are 

listed in Table 5.6. 

Table 5.6: Modal parameters of the standard and crest-cut tools. 

Tool Direction 
Frequency 

(Hz) 
Damping (%) 

Modal 

Stiffness 

(N/m) 

Crest-cut (CC) 
XX 2801 2.29 4.32e6 

YY 2809 2.05 4.75e6 

Standard (ST) 
XX 2933 3.12 5.21e6 

YY 2941 2.04 5.06e6 

 

 

Figure 5.11: Stability lobe comparison of crest-cut (CC) and standard (ST) milling tools 

listed in Table 6.1 with modal parameters listed in Table 6.2. 𝑎𝑤 = 10% 𝐷𝑡, Ω𝑤 = 5 

rpm, 𝑒 = 16% 𝐷𝑡 
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Based on the FRF measurements of the tools and their geometrical parameters, the 

stability lobes are predicted in discrete-time and frequency domains. The cutting force 

coefficients used in stability predictions are given in Appendix A: Orthogonal databases 

for the uncoated WC tools and Al7075-T6 workpiece material. The stability lobes are 

simulated for step over of 𝑎𝑤 = 0.1𝐷𝑡, workpiece speed Ω𝑤 = 5 rpm, and eccentricity of 

𝑒 = 16%𝐷𝑡. 

According to Figure 5.11, it is seen that using crest-cut tools, the absolute stability limits 

are increased in comparison to that of the standard end mills, which is previously reported 

and confirmed by Tehranizadeh et al. [77]. Furthermore, there is good agreement between 

the stability lobes using SDM and ZOA approaches. The slight deviation between the 

SDM and ZOA simulations for crest-cut tools is caused by the existence of distributed 

delays along each edge. Since the delays are average within the engagement boundaries 

which are specific for each element, the ZOA approach shows lower accuracy. However, 

the location of lobes and the absolute stability limits between the two methods is in an 

acceptable error range. The accuracy can be increased by increasing the frequency 

resolution and step for spindle speed and depth of cut iterations, which leads to higher 

computational costs. For all the simulations given in Figure 5.11, the iteration interval for 

spindle speed is 30 rpm, and for depth of cut, the interval is 0.1 mm. The period resolution 

in SDM is 180, and the frequency interval in the ZOA method is 1 Hz. The simulation 

time for the crest-cut tool using SDM takes approximately 110 minutes, while using the 

ZOA approach reduces the simulation time to 16 minutes. The simulation time for a 

standard tool using SDM is about 78 minutes, and using ZOA is 13 minutes, 

approximately. It is evident that using the ZOA approach decreases the simulation time 

and hence, computational cost drastically. It is observed that using crest-cut tools and 

adding multiple delays into the solution increase the simulation time compared to standard 

tools. 

According to the stability lobes in Figure 5.11, there is an additional lobe within the speed 

range of 5000-8000 rpm [129]. By considering the chatter frequency representation in 

Figure 5.12, it is deduced that there is an added lobe effect around 6500 rpm. Although 

there is a slight shift between the crest-cut and standard tool simulation because of the 

difference in their natural frequencies, the existence of chatter frequencies at the 

corresponding speeds confirms the phenomenon.  
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Figure 5.12: Chatter frequency vs. spindle speed for the stability diagrams in Figure 

5.11. 

Since the radial immersion is low (16% 𝐷𝑡)The process is highly intermittent. Therefore, 

the periodic cutting forces and the directional coefficients regarding angular positions 

become narrow (semi-impulse). While expanding intermittent types of forces into the 

Fourier series, higher harmonics are included. Therefore, the chatter frequency is 

influenced by the higher number of harmonics. In other words, the higher number of 

harmonics of the directional coefficients associated with tooth passing frequency is 

included in the chatter frequency of the system. In low-immersion cases, a higher number 

of harmonics of tooth passing frequency contributes to chatter is called flip bifurcation 

[130,131]. In flip bifurcation, in the cutting force spectrum, the harmonic of tooth passing 

frequency 𝑘𝜔𝑇, and the half of tooth passing frequency as well as its odd harmonics 

(2𝑘 + 1)
𝜔𝑇

2
  can be observed (𝑘 is an integer). As the spindle speed varies, the tooth 

passing frequency changes, and so does its harmonics. The higher harmonics of the tooth 

passing frequency shift the transfer function to higher frequencies. When the transfer 

function of higher harmonics coincides with the transfer function associated with the 

system's natural frequency, the stability solution is affected, and chatter frequency is 

observed near the natural frequency. Therefore, while scanning the possible chatter 

frequencies, the transfer functions with harmonics of the tooth passing frequency in the 

vicinity of the natural mode frequency fold to the region of natural frequency. Hence, if 
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the frequency of the harmonic lies in the frequency region of (1 − 𝜁)𝜔𝑛 ≤ 𝜔𝑐 ≤ 

(1 + 𝜁)𝜔𝑛 flip bifurcation occurs [129]. 

In our case study, the simulations do not see the flip bifurcation frequencies and the added 

lobe for the standard tool. This is due to the fact that the radial immersion, large helix 

angle, and pitch angle variation affect the periodicity of the cutting forces and directional 

coefficients. Flip bifurcations mostly happen in highly intermittent cases. In this regard, 

due to the intermittent engagement of crest-cut tools caused by wavy edge shapes, large 

number of imposed delays, and highly varying pitch angles along the tool axis, the cutting 

forces become nonperiodic and more intermittent at low immersions compared to a 

standard tool. Therefore, added lobes exhibit at rotational speeds where the harmonics of 

tooth passing frequency is near to the natural mode.  

In our case study given in Figure 5.11, at 6170 rpm, the tooth passing frequency is 𝜔𝑇 = 

411.3 Hz. Therefore, the 7th harmonic of tooth passing frequency is in the region of natural 

mode Φ(𝑘𝜔𝑇) → Φ(𝜔𝑐) , 𝑘 = 7. Therefore, the 7th harmonic with 2879 Hz, which is 

within the above-mentioned frequency region, is the flip bifurcation chatter frequency. 

This value can be validated in Figure 5.12, while the chatter frequency of the standard tool 

at a speed of 6170 rpm is much higher than that of the crest-cut tool.  

It is to be noted that the experimental validation for chatter tests is missing in this section. 

The highly stable cuts are observed at a larger depth of cuts at the predicted unstable 

region. This is believed that the straight portion of crest-cut tools increases the process of 

damping even at higher speeds. The small clearance angle of (𝛾1 = 2°, 𝛾2 = 8°) of the 

straight portion is the most important reason that causes process damping [132]. 

Furthermore, a high rate of tool wear has been observed during the chatter experiments, 

which shows a considerable immersion of the flank face of the tool. Further experimental 

investigation and process damping analysis will be the future research direction in this 

regard. 

5.4. Summary 

In this chapter, the predictive model for mechanics of the orthogonal turn-milling process 

is updated to be able to predict the cutting forces while cutting with serrated and crest-cut 

tools. The uncut chip geometry and cutter-workpiece engagement model in orthogonal 
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turn-milling are updated specifically for serrated and crest-cut tools. The calculated 

cutting forces are verified with experiments using a rotary dynamometer for different 

cutting parameters. Next, stability of crest-cut tools in turn-milling operation is predicted. 

The varying time delay in orthogonal turn-milling is combined with the distributed delay 

resulting from the wavy edge geometry of crest-cut tools. The stability problem using 

variable time delays is solved using the semi-discretization method. Moreover, the 

stability of turn-milling with crest-cut tools is solved in the frequency domain for the first 

time in the literature. The resulting stability lobes for crest-cut tools are compared to 

standard tools and discussed. 
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6. APPLICATION OF SPECIAL TOOLS IN THIN-WALLED 

STRUCTURES 

6.1. Overview 

Having seen the advantages of crest-cut tools in milling and turn-milling in previous 

section, it is aimed to investigate the stability and performance of these tools in more 

challenging conditions like machining of thin-walled structures with hard-to-cut materials. 

A simple thin-walled structure is selected as a preliminary study before complex structures 

such as turbine blades or thin-walled tubes. It is known that lower cutting speeds are 

preferred when machining these materials due to the low machinability of hard-to-cut 

materials. As a result, deeper stability pockets that exist at high cutting speeds cannot be 

achieved. Variable pitch tools can be used at low cutting speeds to suppress chatter 

vibrations [133]. However, due to the existence of multiple dominant modes and varying 

IPW dynamics, their use in milling thin-walled parts does not always provide a 

satisfactory solution for chatter suppression. Crest-cut tools, on the other hand, provide 

chatter suppression capability over a wider frequency and speed range [77] and can be 

highly effective for suppressing chatter in milling thin-walled parts. This superior 

capability of crest-cut tools is due to their special geometry, which has to be designed 

considering important modes and IPW dynamics of thin-walled structures. Therefore, 

crest-cut end mills are proposed as a solution for improving the stability of the process in 

milling thin-walled structures. In this study, the varying IPW dynamics of thin-walled 

plates are modeled using FE, considering the element removal. For the first time in the 

literature, a stability map of the whole plate is generated for different tool geometries 

based on the IPW dynamics. According to the obtained stability map of each tool, different 

cutting strategies are explored, surface finish quality maps are derived, and compared in 

terms of cycle time and chatter-free surface area. The proposed simulations are validated 

through experiments. Both simulations and experiments confirm the superiority of crest-

cut tools over variable-pitch and standard end mills, and the results show that these tools 

can be utilized as a robust solution against changes in IPW dynamics of thin-walled parts.  
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6.2. In-Process Dynamics of Thin-Walled Structures 

As structures become more flexible or thinner, the effect of removed material during 

machining becomes more prominent, leading to significant variation in IPW dynamics 

and, therefore, stability limits. This section presents the procedure used for modelling 

material removal in thin-walled structures through FE analysis. In the implemented 

approach, the dependency of the IPW dynamics prediction procedure on the stability 

limits, and thus iterations and long simulation time, are eliminated. For this purpose, the 

unmachined flexible plate is meshed using 3D cubes with an element size of 0.6 mm. The 

elements from the meshed structure are removed, similar to the mass removal during the 

machining cycle (See Figure 6.1). The in-process FRFs are obtained at five different CLs 

along the feed direction (U) for each elemental depth along the plate height (V).  Note that 

the element height in Figure 1 is exaggerated for better visualization. 

 

Figure 6.1:  Illustration of element removal and FRF calculation points. 

 Points 𝑃𝑣,𝑢 in Figure 6.1 represent IPW FRF identification points on the plate. The points 

𝑃0,𝑢 are the FRF identification points on the tip of the uncut plate, Level 0. The next FRF 

identification locations are one element lower (Level 1), which are identified by removing 

the elements at that level which are shown as 𝑃1,𝑢.  Since the material is removed at each 

step, the FRFs of the points with the same coordinates from the previous step are updated. 

For instance, at point 𝑃1,2, two FRFs are identified, upper limit and lower limits. The lower 

limit 𝑃1,2
𝑙 is the FRF of current state, and the upper limit 𝑃1,2

𝑢  is the updated FRF of point 

𝑃0,2 which has the same coordinate. The same procedure is repeated for Level 2 by 

removing the elements in Level 1. Similarly, the FRF of point 𝑃1,2
𝑙  is updated as 𝑃2,2

𝑢  to 

include the effect of material removal (See Figure 6.1). This procedure helps to identify 

the IPW FRF of any CL located between the upper and lower limits using interpolation. 

  , 
 

  , 
 

  , 
 

  , 
 

 𝟎, 
 𝟎, 
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 𝟎, 
 

 

Level 0 Level 1 Level 2



124 

 

Figure 6.2 shows the natural frequency and peak amplitude of each point on the plate for 

the first and second modes by updating the FRFs due to the material removal effect for a 

Ti6Al4V plate with the dimension of 40×65×3 mm. In the following simulations, the 

element size is kept equal to a radial depth of cut (0.6mm) to prevent excessive simulation 

time in FE analysis. 

 

Figure 6.2. Variation of IPW dynamics; a) First, and b) Second natural frequency; c) 

First, and d) Second mode FRF peak amplitudes. 

According to the results in Figure 6.2, both the plate's natural frequency and IPW FRFs 

vary drastically for both modes along the plate length and height directions, requiring 

multi-mode stability analysis. This scheme helps identify the FRF of any CL on the plate 

for evaluating stability limit considering the material removal effect. Note that, the 

damping ratios employed in simulations are identified from hammer tests at different plate 

locations considering the IPW dynamics scheme. In Figure 6.3, experimental and FE 

results at two points and levels on the plate are presented. In Figure 6.3 (a), measurements 

and predictions at two points (corner and middle) along the feed direction at the tip of the 

uncut plate are illustrated. Figure 6.3 (b) shows the results for the same corresponding 

points in the feed direction at level 54 (27mm in plate depth from the free end) after the 

material is removed up to this level. The maximum difference between predicted and 

simulated natural frequencies is less than 4%.  
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Figure 6.3. Validation of IPW dynamics at different levels. 

6.3. Design Procedure of Special End Mills 

The variable-pitch and crest-cut tools offer a significant possibility to attain high stability 

limits by tuning their geometry to a certain spindle speed [57,61,77]. In this study, the 

geometry of the tools is optimized considering the desired spindle speed of 2123 rpm 

(corresponds to 80m/min for 12mm tool diameter (𝐷𝑡)). Two different variable-pitch tools 

with alternating pitch variations are designed to suppress chatter  for each mode of the 

plate with the method presented in [57].   

∆𝑃 = 𝜋
Ωt
∗

𝜔𝑐
                      𝑓 𝑟 𝑒𝑣𝑒𝑛 𝑁 

∆𝑃 = 𝜋
Ωt
∗

𝜔𝑐
 
𝑁±1

𝑁
       𝑓 𝑟  𝑑𝑑 𝑁   

(6.1) 

where Ωt
∗  is spindle speed (rps), 𝜔𝑐 is chatter frequency, and 𝑁 is the number of teeth. In 

order to consider the changes in chatter frequency due to the presence of pitch variation, 

an iterative method presented by Comak et al. [61] is used to find optimum pitch angles. 

According to the natural frequencies of the part and the desired spindle speed (2123 rpm), 

VP1 and VP2 tools (Table 6.1) are selected to suppress chatter. These tools are designed 

considering the average value of the first and second modes of the plate in its most flexible 

zone (0-20 mm in the V direction), 1590Hz, and 2550Hz, respectively. The presence of 

multi modes with varying frequencies due to IPW dynamics causes different chatter 

frequencies at different cutting points on the part. As variable pitch end mills are designed 

for a target chatter frequency and spindle speed, they lose their effectiveness in machining 

of thin-walled parts. 

On the other hand, crest-cut end mills can suppress chatter in wider frequencies and speed 

a) b)
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ranges due to the wavy edges resulting in continuous pitch variations in the cutting zone. 

In order to determine the optimum crest-cut wave shape for a target spindle speed, the 

procedure presented in [77] is applied. The simulations are performed considering the 

average value of the first mode of the plate in its most flexible zone (0-20 mm in the V 

direction). However, as crest-cut tools introduce multiple delays, their effectiveness is not 

limited to the specified frequency as they can perform effectively in wider ranges. Figure 

6.4 shows that the crest-cut tool (CC in Table 6.1) with 1mm edge wave amplitude (𝐴) 

and 6mm edge wavelength (𝜆) shows superior stability at 2123 rpm. 

 

Figure 6.4: Stability of crest-cut end mill with different shapes at 2123 rpm. 

Table 6.1: Geometrical parameters of end mills.  

Type 𝐷𝑡  𝑁 𝛾𝑠 Pitch 𝐴 𝜆 

ST 

1
2

 m
m

 

4
 

3
8

° 

[90°-90°-90°-90°] - - 

CC [90°-90°-90°-90°] 1mm 6mm 

VP1 [88°-92°-88°-92°] - - 

VP2 
[88.75°-91.25°-

88.75°-91.25] 
- - 

 

6.4. Machining Stability of Thin-Walled Parts Using Special End Mills 

After the tools are designed considering the frequency ranges for different modes of the 

plate, the stability limits are calculated using the semi-discretization method (SDM) 

[70,77].  

Using SDM, each point's stability limit along the tool path is obtained according to the 
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varying IPW dynamics described in Section 6.2. The resulting stability limits varying in 

feed (U) and plate depth (V) are illustrated for different tool types in Figure 6.5. Note that 

each tool's stability limits corresponding to 80m/min are calculated.  According to Figure 

6.5, it is seen that the crest-cut tools represent the best stability performance when 

compared to the other tools since the low-stable-depth region (red) is narrow and the high-

stable-depth region (blue) is considerably large. Further, the variation of stability limits in 

feed direction is negligible since crest-cut tools can suppress chatter in a more 

comprehensive range of frequencies [77]. The stability limits for the VP1 tool at the 

middle of the plate are higher compared to the edges, as expected since this tool was 

designed to suppress chatter around the first bending mode of the plate.  VP2 was tuned 

according to the chatter frequencies in the vicinity of the second mode of the plate. 

However, the stability is limited by the first mode of the plate, and thus the changes in the 

feed direction are not significant. As expected, the worst stability map with considerably 

low stability limits belongs to the standard tool. 

 

Figure 6.5. The stability limit distribution on plate considering IPW dynamics. 

Once the stability maps are evaluated (Figure 6.5), several cutting strategies can be 

applied. These strategies involve different schemes of selecting the step down based on 

the stability maps. The most conservative strategy (STG1) has varying stepdown using 

the minimum stability limit of each pass. In the second strategy (STG2), the stepdown is 
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chosen as the average of the stability limit in the feed direction (U), which also varies 

along the plate height. The third strategy (STG3) uses a constant stepdown for the whole 

plate based on the average of all stability limits evaluated in feed (U) and axial (V) 

directions. In STG4, the plate is divided into constant zones of 5 mm height, where the 

stepdown is taken as the average stability limit within that zone. In STG5, the stepdown 

value for all tools is defined according to that of the crest-cut tool to evaluate their 

performance. Finally, in STG6, the plate is divided into constant stepdown values, the 

most practical cutting strategy used with all tools. In order to evaluate the strategies in 

terms of productivity, the number of passes (NP) is calculated according to the stepdown 

value of each case. 

Table 6.2: The number of passes and chatter-free area percentages. 

 Standard Crest-cut VP1 VP2 

 NP CFAP NP CFAP NP CFAP NP CFAP 

STG1 258 100 57 100 159 100 146 100 

STG2 212 36 55 87 49 44 134 58 

STG3 204 57 43 69 68 63 164 56 

STG4 202 37 53 65 46 37 130 52 

STG5 57 11 57 100 57 31 57 36 

STG6 100 47 100 83 100 70 100 52 

 

Here, the Relative Stability Index (RSI), the ratio of the local stability limit at a point to 

the stepdown value, is used to represent the chatter condition related to the surface finish 

quality (SFQ). Then, the SFQ map is obtained based on the local RSI values over the 

workpiece surface, where darkening in color represents the transition from a stable to an 

unstable condition. For instance, the SFQ map for STG5 is shown in Figure 6.6. 

Furthermore, based on the SFQ map, the chatter-free area percentages (CFAP) are 

calculated using the image intensity histogram method as listed in Table 6.2. Low values 

of CFAP mean higher workpiece area with poor surface finish requiring further processing 

such as polishing. From Table 6.2, it can be clearly seen that STG1 results in the highest 

machining time since the most conservative depth of cut is used to generate a completely 
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chatter-free surface. Nevertheless, the crest-cut tool’s productivity is five times higher 

than the standard and three times higher than the variable-pitch tools in STG1. STG2 

offers a significant decrease in machining time for VP1 due to the severe variations of the 

stability limit along the feed direction (See Figure 6.5). Since variable stepdown can be 

time-consuming in CAM programming, a constant stepdown, which is the average of all 

point stability limits is used in STG3. While a slight improvement is seen with standard 

and VP1 tools, the relative improvement with the crest-cut tool is lower compared to the 

previous strategies due to the averaging effect. In STG4, due to the averaging effect, the 

CFAP is lower when compared to the other strategies. In STG5, the performance of all 

tools is compared in terms of stability limits with the crest-cut tool, which shows superior 

performance in all strategies. 

 

Figure 6.6. Surface finish quality map predictions for STG5. 

Figure 6.6 shows that, while the crest-cut tool shows a fully chatter-free surface as 

expected, other tools produce a drastically poor surface finish as they cannot compete with 

the high stability limits of the crest-cut tool. In many cases, during industrial applications, 

a constant stepdown is used in many cases for CAM programming convenience. This 

constant stepdown value is usually selected based on the programmer’s experience and 
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tool-proving test results. This issue is considered in STG6, where a constant stepdown 

value of 0.4 mm is used all around the part. The SFQ maps together with the actual 

machined surfaces for this strategy are shown in Figure 6.7. According to the maps, the 

crest-cut tool offers higher CFAP compared to the other tools. As also illustrated in Figure 

6.7, there is a good agreement between the SFQ maps and the surface finish obtained in 

the milling tests. The darker areas in the SFQ map represent a very poor surface finish, 

whereas the points in the light-colored areas indicate a much better surface finish. 

According to the results, the area with chatter marks is distributed on 50% and 17% of 

plate height for VP1 and crest-cut tools, respectively. This means crest-cut tools require 

lower time for additional processing to remove the chatter area.  

 

Figure 6.7: Surface finish quality maps for STG6 and verifications. 

6.5. Summary 

In this chapter, the simulations and experiments show the effectiveness of crest-cut tools 

compared to variable-pitch tools in machining thin-walled structures. The in-process 

workpiece dynamics are calculated using the FE method. The material removal effect is 
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simulated by removing elements in the cut direction, and the FRFs are updated for any 

cutter location on the part surface. Based on the workpiece dynamics, the tuned variable-

pitch and crest-cut tools are selected according to their stability limits. The surface finish 

quality maps are obtained and compared for 5 different cutting strategies with different 

stepdown values. It is deduced that crest-cut tools improve performance since the chatter-

free area percentage is higher than standard and variable pitch tools in all the strategies. 
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7. EFFECT MACHINE TOOL DYNAMICS ON CUTTING STABILITY 

7.1. Overview 

The most influential and effective factor in the determination of the stability of a system 

is the dynamics of the tool and workpiece. Identifying each component's frequency 

response function (FRF) is vital to understanding how each component reacts to the 

exciting forces. However, a tool is usually clamped to the spindle with a tool holder in a 

machining system. As a result, the frequency response function at the tooltip is influenced 

by the tool-holder-spindle assembly. In addition, in turn-milling operation, the workpiece 

is also clamped to a chuck-spindle assembly. Hence, the spindle and its structural dynamic 

properties influence the dynamics of the tool and workpiece drastically. The main 

components of a regular spindle can be listed as; a shaft supported by some sets of 

bearings, rotor and stator, housing, cooling system, and drawbar system. Each component 

will affect the performance and feasibility of the spindle in different aspects like dynamics, 

thermal growth, speed limitations, and dimensions.  

A predictive model for spindle dynamics allows the designers and engineering to develop 

a high-performance spindle according to different operational conditions like high 

rotational speeds and various types of loadings. The identification of dynamic properties 

of a shaft-bearing system is previously performed by Özşahin et al. [134] through modal 

testing. However, the identified dynamic properties are regardless of the bearing location 

and specifications.  

This chapter presents an analytical approach to predicting the spindle tip and tooltip 

dynamics by implementing the bearing dynamics model into the spindle-shaft model 

based on receptance coupling. The dynamics of the assembly are investigated at different 

speeds and preloading conditions through simulations and verified with the experiments. 

The sensitivity analysis is performed for the machine tool spindle for improved rigidity 

and cutting stability. In addition, the dynamics of the clamped workpiece are also modeled 

using inverse receptance coupling to identify the contact dynamics. The proposed results 

are verified via experiments.  
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7.2. Predictive Model for Spindle Dynamics 

7.2.1. Speed-dependent bearing dynamics model 

In this section, a modified bearing model is presented considering the rotational speed 

effects and the centrifugal force effect of the inner ring proposed by de Mul [135] for 

angular contact ball bearing (ACBB). This model is an improved version of Harris’s 

model [85,136], which facilitates analytical calculations. 

 

Figure 7.1: Forces and moments in a cartesian coordinate system for angular contact ball bearing 

[137]. 

The coordinate system representation to model the dynamic characteristics of an ACBB 

is given in Figure 7.1. The bearing stiffness is calculated based on the displacement against 

the external force and moment with respect to the center point of the inner ring of the 

bearing. The relationship between linear forces and moments (shown in Figure 8.1) and 

the translational and rotational displacements are modeled through coupling components.  

Such a coupling component appears mainly due to the contact angle between the balls and 

inner and outer rings of ACBB. Depending on the bearing arrangements, these 

components have the most important influence on the characteristic variations [87].  

Figure 7.2. demonstrates a free-body diagram expressing the contact reaction force and 

the centrifugal force by the inner and outer rings and the friction force applied to the 

contact point due to the gyroscopic moment for an arbitrary rotating element.  
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Figure 7.2: Contact, centrifugal, and friction forces acting on a ball [137]. 

In Figure 7.2., the coordinates 𝑥 and 𝑟 represent the axial and radial directions, 

respectively. In addition, 𝑄𝑖 and 𝑄𝑒 are the contact forces between the inner and outer 

rings, and 𝛼𝑖 and 𝛼𝑒 stand for the contact angles for the inner and outer rings, respectively. 

The centrifugal force 𝐹𝐶 of the ball is expressed as follows. 

𝐹𝐶 =
1

2
𝑚𝑏𝑑𝑚𝜔𝑏

2  (7.1) 

 In equation (7.1), 𝑚𝑏, 𝑑𝑚, and 𝜔𝑏 are the balls’ mass, bearing pitch diameter, and 

rotational speed, respectively. Also, the gyroscopic moment mg can be obtained by the 

following equation. 

𝑚𝑔 =
1

10
𝑚𝑏𝐷

2𝜔𝑏𝜔𝑟    (𝛽𝑏)   (7.2) 

 Here, 𝐷 is the diameter of the ball, and 𝜔𝑟  and 𝛽𝑏 are the ball's speed and the angle 

between the ball's rotation axis and the bearing axis, respectively.  

The contact force between the ball and the inner and outer rings is assumed as follows 

from the Hertzian contact theory. 

𝑄𝑖 = 𝐾𝑖𝛿𝑖
1.5 , 𝑄𝑒 = 𝐾𝑒𝛿𝑒

1.5  (7.3) 

 Here, 𝛿𝑖  and 𝛿𝑒 stand for the amount of deformation between the inner ring and the ball 

and the outer ring and the ball, respectively, and 𝐾𝑖 and 𝐾𝑒 are the corresponding load-

displacement proportional coefficients, which can be determined using the Hertzian 

contact ratio calculated from the bearing radius of curvature. The following equilibrium 

equation can be obtained from the free-body diagram in Figure 7.2. 
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𝑄𝑖    (𝛼𝑖) − 𝑄𝑒    (𝛼𝑒) + 𝐹𝑐 −
𝑚𝑔

𝐷
(𝜆𝑖    (𝛼𝑖) − 𝜆𝑒    (𝛼𝑒) = 0  

𝑄𝑖    (𝛼𝑖) − 𝑄𝑒    (𝛼𝑒) −
𝑚𝑔

𝐷
(𝜆𝑖    (𝛼𝑖) − 𝜆𝑒    (𝛼𝑒) = 0  

(7.4) 

 where 𝜆𝑖 and 𝜆𝑒 represent the support ratios of the inner and outer rings to the gyroscopic 

moment. In a high-speed spindle, the contact force applied to the outer ring is relatively 

high; thus, it can be assumed that the outer race control mode is a rolling motion based on 

the outer ring, leaving 𝜆𝑒 = 2, otherwise 𝜆𝑖 = 𝜆𝑒 = 1. 

The equilibrium equation for the entire bearing in the global coordinate system can be 

written as follows [137]; 

{𝐹} + ∑ [𝑇𝜓]𝑗
𝑇𝑍

𝑗=1 {𝑄𝑖}𝑗 = 0  (7.5) 

 Here, 𝑍 is the number of balls, {𝐹} is an external force vector applied to the bearing, and 

{𝑄𝑖}𝑗 is a vector obtained from the contact force between the 𝑗𝑡ℎ rotating element and the 

inner ring in the x coordinate direction. Furthermore, [𝑇𝜓]𝑗
𝑇
 is a transformation matrix 

between the coordinates center of the inner ring curvature radius and the global 

coordinates. Both equations (7.4) and (7.5) are non-linear, and solved as a set of equations 

to obtain the stiffness matrix. 

The bearing stiffness matrix is obtained from equation (7.5) as follows [137]; 

𝐾 = [
𝜕{𝐹}

𝜕{𝛿}
] = −∑ [𝑇𝜓]𝑗

𝑇𝑍
𝑗=1 [

𝜕{𝑄𝑖}𝑗

𝜕{𝑢}
] [𝑇𝜓]𝑗

   (7.6) 

 where, 

{𝐹} = {𝐹𝑥 ,   𝐹𝑦,   𝐹𝑧,   𝑀𝑥 ,   𝑀𝑦}
𝑇

  

{𝛿} = {𝛿𝑥 ,   𝛿𝑦,   𝛿𝑧 ,   𝛾𝑥 ,   𝛾𝑦}
𝑇

  

(7.7) 

Force matrix {𝐹} in equation (7.6) consists of the contact forces between the rotating 

elements and the inner ring associated with the transformation matrix. Therefore, the 

resultant stiffness matrix can be easily calculated using all imposed forces and resulting 

translational and rotational displacements, as given in equations (7.6) and (7.7).  

Based on the theories mentioned earlier, a speed-dependent bearing dynamics model 

program has been developed by our project partner Prof. Seon Wook Hong’s research 

group at Kumoh National Institute of Technology in South Korea.  By employing this 
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program, Hong et al. [137] presented the influence of the ACBB on high-speed spindle 

dynamics using the bearing model and finite element method (FEM). Next, the provided 

program by our partner was integrated with the spindle dynamics model given in Section 

7.2.2.  Therefore, a predictive model is developed for the calculation of speed-dependent 

spindle dynamics.  

The program is able to calculate bearing stiffness values under different preload values 

and different geometric parameters of bearing, as listed in Table 7.1. All the parameters 

that are effective in calculating the speed-dependent stiffness matrix of a bearing are given 

in Table 7.1 and illustrated in Figure 7.3. 

 

Figure 7.3: Geometric parameters of an ACBB. 

Table 7.1: Bearing parameters definition. 

𝐵 Width 

𝐷 Outer Ring Diameter 

𝑑 Inner Ring Diameter 

𝑑𝑚 Pitch Diameter 

𝐷𝑎 Ball Diameter 

𝛼 Initial Contact Angle 

𝑓𝑖 (2𝑟𝑖/𝐷𝑎) Inner Curvature Ratio 

𝑓𝑜 (2𝑟𝑜/𝐷𝑎) Outer Curvature Ratio 

𝑍 Number of Balls 

 

The developed model provides all translational and rotational stiffness values and the 

cross-coupled stiffness values as given in equation (7.8). 
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[𝐾] =

[
 
 
 
 
 
𝑘𝑥𝑥  𝑘𝑥𝑦  𝑘𝑥𝑧  

𝑘𝑦𝑥   𝑘𝑦𝑦  𝑘𝑦𝑧  

𝑘𝑧𝑥   𝑘𝑧𝑦  𝑘𝑧𝑧  
     

𝑘𝑥𝜃𝑥  𝑘𝑥𝜃𝑦  

𝑘𝑦𝜃𝑥  𝑘𝑦𝜃𝑦  

𝑘𝑧𝜃𝑥  𝑘𝑧𝜃𝑦  

𝑘𝜃𝑥𝑥 𝑘𝜃𝑥𝑦 𝑘𝜃𝑥𝑧
𝑘𝜃𝑦𝑥 𝑘𝜃𝑦𝑦 𝑘𝜃𝑦𝑧

     
𝑘𝜃𝑥𝜃𝑥 𝑘𝜃𝑥𝜃𝑦
𝑘𝜃𝑦𝜃𝑥 𝑘𝜃𝑦𝜃𝑦]

 
 
 
 
 

   (7.8) 

 In equation (7.8), the diagonal elements of the stiffness matrix are required and used in 

the analytical spindle dynamics model and FE model. The stiffness matrix components in 

equation (7.8)depend on the axial and radial preload magnitudes. Shin et al. [87] showed 

that these four stiffness terms (𝑘𝑥𝜃𝑦, 𝑘𝜃𝑦𝑥, 𝑘𝜃𝑥𝑦, 𝑘𝑦𝜃𝑥) are the only dominant off-diagonal 

terms if there is no external radial load and only axial preload is applied. Similarly, in all 

the analysis in our studies the radial preload is not applied into our design. For zero radial 

preload, the following components of the stiffness matrix becomes negligible in bearing 

matrix calculation, and hence can be considered as zero [87,135,138].  

𝑘𝑥𝑦 = 𝑘𝑥𝑧 = 𝑘𝑥𝜃𝑥 = 𝑘𝑦𝑥 = 𝑘𝑦𝜃𝑦 = 𝑘𝑦𝑧 = 𝑘𝑧𝑥 = 𝑘𝑧𝑦 = 𝑘𝑧𝜃𝑥 = 𝑘𝑧𝜃𝑦 = 𝑘𝜃𝑥𝑥 =

𝑘𝜃𝑥𝑧 = 𝑘𝜃𝑥𝜃𝑦 = 𝑘𝜃𝑦𝑦 = 𝑘𝜃𝑦𝑧 = 𝑘𝜃𝑦𝜃𝑥 = 0  
(7.9) 

Depending on the bearings' arrangement, the cross-coupling components' sign changes 

[87].  As a result, in our case study, for angular contact ball bearing without the radial 

preloading, the diagonal and off-diagonal components of the stiffness matrix have real 

values and will be included in the simulations. However, the main dynamic characteristic 

of the bearing is based on the diagonal terms and translational and rotational stiffness 

components. In this regard, bearing stiffness values are simulated with respect to 

important varying inputs such as rotational speeds and preload to understand their effect 

on bearing stiffness and hence, system dynamics. Figure 7.4 shows the effect of rotational 

speed on the radial, axial and rotational stiffness for a case study bearing with constant 

preload. For the simulations in Figure 7.4 and Figure 7.5, SKF 7009 CE/HCP4BGV275 

bearing with 250N axial preload at zero rpm rotational speed is selected as a case study. 

It is seen that higher speed decreases the radial stiffness drastically while having a slight 

effect on the axial stiffness. On the other hand, the rotational (moment) stiffness decreases 

until a specific speed increases gradually. Increasing rotational speed decreases the 

relative axial displacement between the inner and outer rings for the bearing under 

constant pressure preload. Moreover, the contact angle between the ball and the inner ring 

is increased, and the contact angle between the ball and the outer ring is reduced. As a 
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result, bearing stiffness decreases as the rotational speed increases [107]. 

 

Figure 7.4: Simulation of translational and rotational stiffness with respect to rotational speed. 

Figure 7.5 shows the effect of axial preload on the radial and moment stiffnesses. It is 

deduced that increasing the axial preload will increase the bearing stiffness; however, it 

has been previously proved that the generated heat will also be increased by preload, 

which is a deteriorating parameter in bearing performance and life [139,140].  

 

Figure 7.5: Simulation of translational and rotational stiffness with respect to axial preload. 

7.2.2. Analytical Modeling of the Shaft-Bearing Assembly in a Spindle 

In order to develop the fully analytical model for the spindle shaft-bearing assembly, the 

shaft is divided into subcomponents where the dynamics of each component are calculated 

using the analytical solution of the Timoshenko beam, and the subcomponents are coupled 

using the receptance coupling method to evaluate the dynamics of the whole structure. In 

this regard, the receptance functions of a subcomponent at the free-free condition at 

endpoints (points 1 and 2, as shown in Figure 7.6) are derived using the analytical solution 

of Timoshenko beam theory. The receptance functions relate the transverse displacements 
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and bending rotations at points 1 and 2 with the forces and moments applied at the 

corresponding points. 

 

Figure 7.6: Uniform subcomponent beam with free-free end conditions 

The transverse displacement 𝑤(𝑥, 𝑡) and bending rotation 𝜓(𝑥, 𝑡) equations of a uniform 

beam due to harmonically applied force from Timoshenko beam solution are obtained as 

a function of mass-normalized eigenfunctions of transverse displacement 𝜙𝑟(𝑥) and 

bending rotation 𝜑𝑟(𝑥) [95]. The receptance functions that relate the transverse 

displacements and harmonic forces are denoted as 𝐻̅𝑗𝑘  and the receptance functions that 

give information between the bending rotation and harmonic forces are shown as 𝑁̅𝑗𝑘, and 

defined as: 

𝐻̅𝑗𝑘 =
𝑓𝑘

𝑦𝑗
, 𝑁̅𝑗𝑘 =

𝑓𝑘

𝜃𝑗
 (7.10) 

 where 𝑦 and 𝜃 represent the linear and angular displacements at point 𝑗, respectively. 𝑓𝑘 

is the harmonic force applied at point 𝑘 and is defined as; 

𝑓𝑘 = 𝐹0𝑒
𝑖𝜔𝑡  (7.11) 

 Similarly, the receptance functions which relate the transverse and rotational 

displacements at point 𝑗 with the harmonic moment at point 𝑘 are defined as; 

𝐿̅𝑗𝑘 =
𝑚𝑘

𝑦𝑗
, 𝑃̅𝑗𝑘 =

𝑚𝑘

𝜃𝑗
 (7.12) 

 Where 𝑚𝑘 is the harmonic moment applied on point 𝑘 and can be defined as:  

𝑚𝑘 = 𝑀0𝑒
𝑖𝜔𝑡  (7.13) 

Assuming that the structural damping of the component has the loss factor of 𝛾̅, the 

receptance functions can be defined as a function of transverse and bending eigenfunctions 

in frequency domains as follows; 
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𝐻̅𝑗𝑘 = ∑
𝜙𝑟(𝑥𝑗)𝜙𝑟(𝑥𝑘)

(1+𝑖𝛾̅)𝜔𝑟
2−𝜔2

∞
𝑟=0   (7.14) 

 𝑁̅𝑗𝑘 = ∑
𝜑𝑟(𝑥𝑗)𝜙𝑟(𝑥𝑘)

(1+𝑖𝛾̅)𝜔𝑟
2−𝜔2

∞
𝑟=0   (7.15) 

𝐿̅𝑗𝑘 = ∑
𝜙𝑟(𝑥𝑗)𝜑𝑟(𝑥𝑘)

(1+𝑖𝛾̅)𝜔𝑟
2−𝜔2

∞
𝑟=0    (7.16) 

𝑃̅𝑗𝑘 = ∑
𝜑𝑟(𝑥𝑗)𝜑𝑟(𝑥𝑘)

(1+𝑖𝛾̅)𝜔𝑟
2−𝜔2

∞
𝑟=0    (7.17) 

 Considering the subcomponent in Figure 7.7, 𝑗 = 1,2 and 𝑘 = 1,2. 

The above-mentioned receptance functions must be evaluated for endpoints of a single 

segment for the sufficient number of modes. In order to obtain the FRFs of the multi-

segment beam, the receptance functions of the segments at free-free conditions must be s 

coupled.  

Considering a beam C with two segments, A and B, as shown in Figure 7.7, the receptance 

matrices for each subsegment can be written as follows: 

[𝐴] = [
[𝐴11] [𝐴12]
[𝐴21] [𝐴22]

] , [𝐵] =  [
[𝐵11] [𝐵12]
[𝐵21] [𝐵22]

] (7.18) 

 Where each submatrix includes the receptance functions of the corresponding segment at 

endpoints as follows; 

[𝐴𝑖𝑗] = [
𝐻̅𝑗𝑘
𝐴 𝐿̅𝑗𝑘

𝐴

𝑁̅𝑗𝑘
𝐴 𝑃̅𝑗𝑘

𝐴 ] , [𝐵𝑖𝑗] = [
𝐻̅𝑗𝑘
𝐵 𝐿̅𝑗𝑘

𝐵

𝑁̅𝑗𝑘
𝐵 𝑃̅𝑗𝑘

𝐵 ]  ∴ 𝑗, 𝑘 = 1,2  (7.19) 

  

 

Figure 7.7: Rigid coupling of two uniform beams. 

By holding the individual displacement-force and displacement-moment equilibriums for 

beam segments A and B by taking the continuity and combability relations at the 



141 

 

connection point, the receptance matrix of the beam C by coupling the receptance matrices 

of segments A and B can be written as follows [141]; 

[𝐶11] = [𝐴11] − [𝐴12][[𝐴22] + [𝐵11]]
−1
[𝐴21]  

[𝐶12] = [𝐴12][[𝐴22] + [𝐵11]]
−1
[𝐵12] 

[𝐶21] = [𝐵21][[𝐴22] + [𝐵11]]
−1
[𝐴21] 

[𝐶22] = [𝐵22] − [𝐵21][[𝐴22] + [𝐵11]]
−1
[𝐵12]  

(7.20) 

Considering a spindle shaft with segments that have different diameters and lengths, one 

can calculate the FRF of the shaft at endpoints under free-free conditions. However, the 

spindle shaft is supported by the bearings at certain bearing locations and has contact with 

the specific element. This implies that the bearing can be coupled with the spindle shaft 

as springs and dampers (See Figure 7.8).  

 

Figure 7.8: Coupling bearings with shaft receptance using structural modification. 

It is to be noted that the receptance coupling allows the computation of endpoint 

receptances only. Hence, the effect of bearing dynamics must be imposed on the system 

dynamics by including the receptance of the endpoint of the segment in which the bearing 

is located (See Figure 7.8).  

The dynamics of bearings are coupled with the shaft dynamics using the structural 

modification technique proposed by Özgüven [142]. In this method, the unmodified 

system's receptance matrix and the modification's properties (bearing stiffness and 

damping) are coupled using the displacement-excitation equilibriums. According to 

Equations (7.18), (7.19), and (7.20) the receptance of the two-segment beam C is obtained 

as follows; 
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[𝐶] =  [

𝐻𝐶1𝐶1 𝐿𝐶1𝐶1 𝐻𝐶1𝐶2 𝐿𝐶1𝐶2
𝑁𝐶1𝐶1 𝑃𝐶1𝐶1 𝑁𝐶1𝐶2 𝑃𝐶1𝐶2
𝐻𝐶2𝐶1 𝐿𝐶2𝐶1 𝐻𝐶2𝐶2 𝐿𝐶2𝐶2
𝑁𝐶2𝐶1 𝑃𝐶2𝐶1 𝑁𝐶2𝐶2 𝑃𝐶2𝐶2

 ]   (7.21) 

 In order to apply the structural modification, the equation (7.21) must be rearranged in 

the following manner; 

[Γ𝐶] =  [

𝐻𝐶1𝐶1 𝐻𝐶1𝐶2 𝐿𝐶1𝐶1 𝐿𝐶1𝐶2
𝐻𝐶2𝐶1 𝐻𝐶2𝐶2 𝐿𝐶2𝐶1 𝐿𝐶2𝐶2
𝑁𝐶1𝐶1 𝑁𝐶1𝐶2 𝑃𝐶1𝐶1 𝑃𝐶1𝐶2
𝑁𝐶2𝐶1 𝑁𝐶2𝐶2 𝑃𝐶2𝐶1 𝑃𝐶2𝐶2

 ]   (7.22) 

 Let [𝒟] be the dynamic structural modification matrix that includes the rotational, 

translational, and rotational-translational cross stiffness and damping information of the 

corresponding bearings. 

[𝒟] = [

0 0 0 0

0 𝐾𝑦 0 𝐾𝑦𝜃

0 0 0 0

0 𝐾𝜃𝑦 0 𝐾𝜃

]  (7.23) 

 where; 

𝐾𝑦 = 𝑘𝑦 + 𝑖𝜔𝑐𝑦  

𝐾𝜃 = 𝑘𝜃 + 𝑖𝜔𝑐𝜃  
(7.24) 

 𝐾𝑦 and 𝐾𝜃 are the translational and rotational complex stiffness expressions, respectively. 

The parameters 𝑘𝑦 and 𝑘𝜃 are the translational and rotational stiffness values, respectively, 

which are obtained by the speed-dependent bearing stiffness model presented in Section 

7.2. 𝑐𝑦 and 𝑐𝜃 are the translational and rotational damping coefficients, respectively, which 

are obtained from calibration with experimental measurements.  

In structural modification technique, the translational stiffness 𝑘𝑦 is replaced by the radial 

stiffnesses 𝑘𝑥𝑥, 𝑘𝑦𝑦  [
𝑁

𝑚
] obtained by the model given in Section 7.2.1. This parameter 

modifies the 𝐻𝐶2𝐶2 term in the receptance matrix of the shaft segment, which is the transfer 

function for harmonic force and radial displacement.  Further, rotational stiffness 𝑘𝜃 in 

modification matrix [𝒟] is replaced by the calculated moment stiffnesses 

𝑘𝜃𝑥𝜃𝑥 , 𝑘𝜃𝑦𝜃𝑦  [
𝑁.𝑚

𝑟𝑎𝑑
] discussed in Section 7.2.1. This term modifies the 𝑃𝐶2𝐶2 receptance 

relates the harmonic moment and the bending rotation of the corresponding shaft. 
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 In order to increase the accuracy of our simulations, the cross-stiffness parameters, which 

are appeared as off-diagonal stiffness values in equation (7.8), are also considered. The 

off-diagonal (cross) stiffness parameters obtained from the bearing model are substituted 

by the 𝐾𝑦𝜃 components in modification matrix [𝒟] to modify the receptance functions 

𝑁𝐶2𝐶2 and 𝐿𝐶2𝐶2. Note that, as described previously, these functions relate the harmonic 

radial forces and moment rotations and harmonic moments with radial displacements, 

respectively. The corresponding damping coefficients for translational and rotational 

modification terms in equation (7.24) are calibrated with the experimental data in terms 

of the peak amplitudes of the modes. Further, the signs of the off-diagonal terms for front 

and rear bearings are different. Since the configuration of the existing spindle is “double 

O-configuration,” the off-diagonal terms for front bearings, which are positive bearings, 

are negative. The off-diagonal terms are positive for rear bearings (negative bearings) 

[87]. Note that the negative and positive configuration of the bearings on the spindle 

depends on the shaft-bearing coordinate systems, contact angle directions, and locations 

on the shaft. (See reference [87]). Having formed the modification matrix based on the 

bearing dynamics, the receptance matrix of the modified system (Γ𝐶
′) by integrating the 

analytically obtained bearing stiffnesses can be calculated by; 

[Γ𝐶
′ ] = [[𝐼] + [Γ𝐶]. [𝒟]]

−1
. [Γ𝐶]  (7.25) 

 The FRF of the modified structure can be drawn from the [Γ𝐶
′11] which represents the 

relation between the harmonic excitation force and the translational displacements. After 

the application of the procedure as mentioned earlier for the first bearing, the dynamic of 

the other segments can be coupled to the present segment (in which the first bearing is 

mounted) using receptance coupling until the segment in which the other bearing is 

connected. The structural modification is applied for each segment that the bearing is 

connected to, and then the next shaft segment is coupled to the endpoint of the modified 

segment. This procedure continues until all the segments of the spindle shaft is coupled, 

and the overall shaft-bearing system is modeled.  

7.2.3. Experimental Verification 

The experimental results for FRF measurements are provided by our project partner using 

the existing spindle in their laboratory. The FRF measurements are performed on the 



144 

 

spindle shaft tip using the proper impact hammer and accelerometer, as shown in Figure 

7.9 schematically. 

 

Figure 7.9. Schematic representation of FRF measurement setup. 

In order to simulate the FRF of the existing spindle, the CAD assembly model of the whole 

spindle as well as the CAD model of the shaft and bearing specifications are provided by 

our partner.  

 

Figure 7.10: CAD model of the spindle-bearing system.  

The shaft dynamics are modeled by applying receptances coupling techniques by dividing 

the shaft into segments with specific diameters, as explained in detail in Section 1.3. The 

bearings dynamic effect is added by applying the structural modification method. The 

dimensions of the shaft segments are given in Table 7.2. Note that segment number starts 

from the shaft tip and segment 1 corresponds to the first segment on the spindle shaft tip. 

The front bearings are located on segments 6 and 8, and the rear bearings are on segments 

15 and 17, as shown in Table 7.2. The spindle shaft is made of alloyed steel with Elastic 

modulus 𝐸 = 210 𝐺𝑃𝑎, density 𝜌 = 7810
𝑘𝑔

𝑚3, and Poisson ratio 𝜈 = 0.3. 
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Table 7.2: Dimensions of the spindle shaft. 

Spindle shaft dimensions 

Segment 

number 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Length 

(mm) 
12.5 12.5 6 14.5 20 16 16 16 5 7 15.8 98.4 21 15 13 9 13 12.8 

Outer 

Diameter 

(mm) 

30 30 30 32 61.5 45 55 45 45 51 41.5 26 41.5 37 30 40 30 30 

Inner 

Diameter 

(mm) 

25.0

2 
22 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 

 

The properties of the bearings used in the existing spindle are provided by our project 

partner, and listed in Table 7.3. 

Table 7.3: Properties of the bearings in the existing spindle of Partner 2. 

 
Ball Dia. 

(mm) 

Pitch Dia. 

(mm) 

Outer 

Dia. 

(mm) 

Bore Dia. 

(mm) 

Width 

(mm) 

Contact 

Angle 

(deg) 

Inner 

Curvature 

ratio 

Outer 

Curvature 

ratio 

Number 

of Balls. 

Axial 

Preload 

(N) 

Ball 

material 

Front 

Bearings 
7.14 60 75 45 16 15 0.54 0.53 21 158 Ceramic 

Rear 

Bearings 
6.35 42.5 55 30 13 15 0.53 0.53 17 158 Ceramic 

 

After entering the bearing properties and the shaft dimensions into the integrated program, 

the bearing translational and rotational stiffnesses are calculated and are coupled with the 

shaft dynamics.  The resulted bearing stiffness values are given in Table 7.4.  

Table 7.4: Calculated bearing stiffness and identified damping coefficients for idle state. 

 
Translational 

Stiffness (N/.m) 

Rotational 

Stiffness 

(N.m/rad) 

Cross rotational-

translational 

stiffness (N/rad) 

Translational 

damping 

coefficient 

(N.s/rad) 

Rotational 

damping 

coefficient 

(N.m.s/rad) 

Front 

Bearings 
1.95e8 14941 -1.6716e6 650 1.8 

Rear 

bearings 
1.62e8 6563 1.006e6 400 1 
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The damping coefficients are calibrated according to the experimental results and listed 

in Table 7.4.  The final simulations and the experimental results are compared in Figure 

7.11. As seen in Figure 7.11, the first dominant mode with the highest FRF peak amplitude 

is taken into account. It is seen that the experimental results, the natural frequencies of the 

first mode have 8% deviation for X and Y directions. The error between the X and Y 

direction can be due to the clamping condition of the whole spindle, spindle housing, and 

other fastening parts mounted on the spindle. According to Figure 7.11, it is deduced that 

the experimental and simulation results are in good agreement in terms of first natural 

frequency. The is a 15% error in the second natural frequency between the simulation and 

experimental results. However, since the first mode is dominant, the effect of the second 

mode on overall spindle rigidity is negligible. To investigate the effect of rotational speed 

on spindle dynamics, the tip point FRF of the spindle-bearing assembly is calculated at 

various spindle speeds using the analytical model and speed-dependent bearing model.   

 

Figure 7.11: Comparison of the experimental and simulation results of FRFs at idle state. 

The simulations are performed for the bearings and shaft geometry of the existing spindle, 

which is indicated in Table 7.2 and Table 7.3.  In this approach, the fully-analytical 

angular-contact bearing stiffness matrix model is integrated with the above-mentioned 

receptance coupling and structural modification model to evaluate the speed-dependent 

frequency response functions. Figure 7.12 shows the variation of FRF of the spindle tip 

concerning the rotational speed. It has been previously shown that the rotational speed 
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will decrease the bearing stiffnesses. This is evident in the magnitude variation of the first 

mode and its natural frequency, as shown in Figure 7.12. Higher rotational speeds decrease 

the overall bearing stiffnesses, increasing the FRF magnitude and decreasing the first 

natural frequency. 

  

Figure 7.12: Variation of first mode frequency and FRF amplitude for different rotational speed 

using the analytical approach. 

In order to identify the effect of the rotational speed on spindle FRF, the FRF 

measurements are performed on the spindle shaft tip after a sufficient time of rotation at 

the specific speed, as listed in Table 7.5. Firstly, the spindle FRF is measured at an idle 

state (Condition 1). Then for each condition spindle is rotated at the defined operation 

time. The spindle operated at each condition for approximately 5 minutes, allowing the 

spindle bearings to reach stable thermal conditions. At the end of each operation, the 

spindle stopped, and the FRF measurements were performed on the shaft tip.   

Table 7.5: Conditions for speed variation experiments. 

Condition 
Operation Time 

(min) 

Rotational speed 

(rpm) 

1 Approx. 5 mins 0 

2 Approx. 5 mins 5000 

3 Approx. 5 mins 10000 

4 Approx. 5 mins 15000 

5 Approx. 5 mins 20000 
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The experiments are performed by the project partner and results are depicted in Figure 

7.13. For idle state (zero speed), the comparison between the experiments and the 

simulations are quite similar, as depicted in Figure 7.11. For other rotational speeds, the 

comparisons are given in Figure 7.14. It is seen that up to 10K rpm, there is a small 

different between the experimental and simulation results, which can be neglected.  

.  

Figure 7.13: FRF measurements at different rotational speeds.  

However, despite the simulation results in which the bearing stiffness and natural 

frequencies are decreasing at higher speeds, experimental results show that by increasing 

rotational speed, bearing stiffnesses are increased, leading to a decrease in peak FRF 

amplitudes. This phenomenon could be because the simulations consider the in-situ 

dynamics of the rotating bearing. For FRF measurements, the spindle is stopped, and the 

measurements are performed on a stationary shaft. In other words, the friction, gyroscopic 

forces, and contact angles of the bearing are affected drastically by the rotational speed 

increase, which affects the bearing and shaft dynamics. However, in the present 

experiments, the spindle is rotated at a certain amount of operational time to provide 

sufficient time for the thermal stability of the bearings. According to the experimental 

results in Figure 7.13, it is seen that the frequency change is not significant, but despite the 

simulation results, the FRF peak amplitude is decreasing. This conclusion can be drawn 

that the only reason for FRF reduction is the decrease in the damping coefficient.  
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Figure 7.14: Comparison of experimental and simulation FRFs at different rotational speeds. a) 

at 10K rpm, b) at 15K rpm, c) at 20K rpm 

7.2.4. Sensitivity Analyses of Spindle Parameters 

Spindle dynamic performance is affected by several parameters. Variations in any of these 

parameters produce notable changes in the FRF peak magnitudes and natural frequencies 

of the structure, which are critical indicators of dynamic performance.  

The analyses are based on the coupled-fully-analytical shaft-bearing model in Sections 

7.2.1 and 7.2.2. Although the rigidity of a spindle can be affected by bearings’ 

specifications, this study only focuses on the parameters regarding the shaft-bearing 

assembly, regardless of the bearings’ specifications in Table 7.1. For this analysis, two 

important parameters are shortlisted for sensitivity checks owing to their potential benefits 

in terms of structural rigidity.  

7.2.4.1. Bearing Locations 

This section aims to investigate the effect of spindle locations on spindle and tool point 

a) b)

c)
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FRFs, as well as chatter stability of the process. This study is performed by varying the 

location of the bearing pairs on the spindle shaft with respect to shaft tip and shaft end 

(Figure 7.15). In this part, in a real spindle is considered as a case study adopted from [88]. 

The original dimensions of the shaft are given in Table 7.6 and illustrated schematically 

in Figure 7.15 

 

Figure 7.15: Schematics of the spindle and bearings. 

Different spindle designs are studied by varying the 𝐿1 and 𝐿3 which correspond to the 

front and rear bearing set locations measured from the shaft tip and end, respectively. Note 

that, for the given spindle the front bearings are located on segments 2 and 3 and the rare 

bearings are located on segments 10 and 11.  

Table 7.6: Spindle dimensions with sub-segments 

Segment 

No. 

Length 

(mm) 

Outer 

Diameter 

(mm) 

Inner 

Diameter 

(mm) 

1 32 80 45 

2 8 80 40 

3 8 80 35 

4 22 80 30 

5 45 80 30 

6 8 80 27 

7 70 90 27 

8 279 75 41 

9 20 64 31 

10 8 60 31 

11 8 60 31 

12 66 55 31 

Although the bearing set locations can be varied in a limited amount because of the space 

limitations on the shaft, their impact on FRF is important in terms of process stability and, 

thus, productivity. According to the allowable ranges that the spindle design dictates, 30 

      

Front bearingsRear bearings
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different cases are examined, and the respective FRFs are calculated. The most extreme 

cases are chosen, and the corresponding FRFs are depicted in Figure 7.16. The spindle 

design dimensions for these cases are given in Table 7.7. From simulation results, it can 

be concluded that the peak spindle tip FRF decreases, i.e., its rigidity increases, when both 

bearing sets are close to the spindle tip.  On the contrary, the most flexible case is obtained 

when both bearing sets are close to the spindle shaft end. The closer bearing sets to the 

spindle tip reduces the amplitude of the vibration response at the spindle shaft tip, resulting 

in a more rigid structure and lower FRF peak. Other combinations result in FRFs between 

ones for Case 1 and Case 2.  

Table 7.7 Spindle design dimensions for the most extreme cases. 

  L1 (mm) L2 (mm) L3 (mm) 

Case 1 22 404 146 

Case 2 62 464 46 

 

Figure 7.16: Calculated spindle tip FRFs for two different spindle designs in Table 7.7. 

In order to have a better understanding of the effect of spindle dynamics on the machining 

stability and productivity, the tooltip FRFs for both cases have been obtained by coupling 

the tool-holder-spindle FRFs. The FRFs of the tool and holder is obtained using receptance 

coupling as mentioned in 7.2.2. Furthermore, the elastic coupling at the tool-holder and 

holder-spindle interfaces is also performed using the receptance coupling approach as 

234 Hz

283 Hz
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described in [94,96]. Note that the tooltip FRFs for the given spindle were confirmed by 

Ozsahin [88] by identifying the bearing dynamics and contact dynamics using hammer 

tests and error minimization techniques and given in Appendix C: Tool-holder 

Dimensions and Dynamic properties. The tool and holder dimension identified contact 

parameters at the spindle-holder and holder-tool interface, and the identified bearing 

dynamic for this case study are given in Appendix C: Tool-holder Dimensions and 

Dynamic properties. As it can be seen from the FRFs given for both cases, The third mode, 

which is dominated by the tool, is not affected by the spindle design.  

 

Figure 7.17: Calculated tool point FRFs for the two different spindle designs. 

On the other hand, the first and the second modes are significantly affected by the spindle 

design as they are related to the spindle and the holder, respectively. The stability diagrams 

are calculated and compared based on the given tooltip FRFs for each case. It is shown 

that different spindle dynamics cause a drastic change in the stability diagrams, as shown 

in Figure 7.18.  

It can be deduced that by keeping the tool and holder assembly identical, a spindle design 

with flexible dynamics decreases the stability limit. As shown in Figure 7.18, the peak and 

absolute limits are significantly reduced for case 2 due to flexible spindle dynamics. 
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Figure 7.18: Stability diagrams based on the tool point FRFs of each case in Table 7.7.  

7.2.4.2. Tail Length 

The “tail” in a spindle refers to the length from the rare earing to the shaft end (indicated 

as 𝐿3 in Figure 7.15. In this part, spindle dimensions given in 7.2.3 is taken as the case 

study. Considering that the bearing locations are in the most rigid condition, the structural 

analysis was performed by varying the tail length. The sensitivity check of the tail length 

was initially performed by introducing small variations of 10 mm. However, these failed 

to yield discernible results, indicating that small changes in the tail length are insignificant 

in terms of dynamics and rigidity. Figure 7.19 shows the various simulations run for larger 

variations in the tail length. The base value of the tail may be taken as 10mm. Several 

simulations are performed for comparison purposes. The results may be split into below 

70 mm and above 70 mm. For tail lengths shorter than 70 mm, it is observed that the 

spindle becomes more rigid as peak FRFs slightly decrease while the natural frequencies 

remain approximately the same. After 70 mm, the second mode shows splitting tendencies 

as a third peak appears between the previous two.  

It is observed that the peak FRF shows a decreasing trend with increasing tail length. At a 

tail length of approximately 80 mm, the mode splitting phenomenon is observed at the 

first mode. Initially, the two new peaks appear at a reduced magnitude. As the tail length 

is further increased to 90 mm, one of the peaks rises sharply. This observation indicates 

that there is the favorable region for the tail length where the mode splitting phenomenon 

can be exploited to improve dynamic performance. As a result, considering the amplitude 



154 

 

of both peaks of the first mode, it is seen that the tail length of 86 mm is the most rigid 

case in terms of the average of the splitted modes peaks.  Figure 7.15 shows that the first 

mode splits into two peaks, the higher of which is 25% less in magnitude than the peak 

for the original tail length. 

The variation in each parameter is decided based on practical reasons such as physical 

limitations of the assembly, product availability, and intuition. 

 

Figure 7.19: Spindle tip FRFs for different tail length.  

7.3. Workpiece Dynamics 

As another key factor in the stability of the process, workpiece dynamics must be 

identified precisely in order to have an accurate stability prediction. While the dynamics 

of a tool and spindle remain constant during the process, workpiece dynamics alter due to 

the material removal effect. As the tool removes the material from the rotating workpiece. 

The volume hence the mass of the workpiece, changes continuously. Therefore, the 

dynamic response of the workpiece may vary continuously during the operations.  This 

variation also changes along the workpiece. This phenomenon is more effective in slender 

and flexible geometries.  Based on the dimensions of the workpiece, its dynamics can be 

as flexible as or much more flexible than the tool-holder-spindle assembly. When the 
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workpiece is clamped on the chuck, it can either be supported by the tailstock at the free 

end or not, leading to different boundary conditions. In both cases, workpiece dynamics 

and corresponding mode shapes exhibit different behaviors, affecting process stability.  

Since it is not feasible and convenient to measure the in-process workpiece dynamics 

during the cutting operation at each set-up, analytical approaches must be used to calculate 

the FRFs.  

In this chapter, in order to calculate the workpiece dynamics, receptance coupling [143] 

to predict the workpiece dynamics. As mentioned in Section 7.2.2, the workpiece is 

divided into subcomponents where the dynamics of each component are obtained using 

the analytical solution of the Timoshenko beam (See Figure 7.7). Similar to the receptance 

coupling of the subcomponents of the shaft explained in Section 7.2.2, each subcomponent 

of the workpiece with a specific length and diameter is coupled as illustrated in Figure 

7.20. By coupling beams of different diameters and lengths together, the receptance 

matrices of main components of the shaft can be calculated as given in equation (7.20). 

Obviously, the multi-segment components built this way will have free–free boundary 

conditions. However, the workpiece as a beam is clamped to the chuck. This implies 

adding dynamics of the chuck to the workpiece at the contact locations as springs and 

dampers. Similar to the shaft modeling, the dynamics of the contact point between the 

workpiece and chuck are included in the system by using the Structural Modification 

approach [142]. 

 

Figure 7.20: subcomponents of a clamped workpiece.  

Since the receptance coupling method allows the computation of end point receptances 

𝐿1, 𝐷1𝐿2, 𝐷2𝐿3, 𝐷3
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only, the clamping length (𝐿3) (contact interface between the workpiece and jaws) is 

divided into two substructures, as shown in Figure 7.21. As a result, in the cylindrical 

workpiece shown in Figure 7.20, we have four effective segments instead of a three-

segmented beam.  However, unlike structural modification in spindle-shaft assembly, in 

this approach, the rotational stiffness, rotational complex damping, and the corresponding 

cross terms (off-diagonal) terms are eliminated since the moment effect is neglected. As 

a result, after rearrangement of the receptance matrix of the coupled segments I and II 

illustrated in Figure 7.21, the structural modification matrix, which includes the 

translational stiffness and damping information of the contact, can be written as follows; 

[𝒟] = [

0 0 0 0

0 𝐾𝑦 0 0

0 0 0 0

0 0 0 0

]   (7.26) 

 where 𝐾𝑦 = 𝑘𝑦 + 𝑖𝜔𝑐𝑦 is the translational complex stiffness expression, representing the 

stiffness and damping at the workpiece-jaw interface.  

 

Figure 7.21: Addition of contact dynamics to the system by structural modification.  

The modified receptance matrix of substructure 3 can be calculates by 

[Γ𝐶
′ ] = [[𝐼] + [Γ𝐶]. [𝒟]]

−1
. [Γ𝐶]   (7.27) 

where [Γ𝐶] is the receptance matrix of coupled segments I and II of substructure 3. Having 

obtained all the end point FRFs of a single segment beam by using sufficient number of 

jaw

chuck
Workpiece

k c
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modes in the summation term for each segment, one might now couple the required 

number of free–free beams (substructures 1 and 2) to form the desired multi-segment 

beam and find the endpoint FRFs of the workpiece at its tip using equation (7.20) [143].  

Once the contact mechanics at jaws-workpiece interfaces are identified, one can identify 

the in-process workpiece dynamics during material removal operation by only updating 

the diameter and length of segments 1 and 2. Note that the workpiece in  Figure 7.21 is 

drawn for a simple case. However, more segments can be defined and coupled for tool 

paths with several lengths and diameters. 

The contact stiffness and damping identification are performed by error minimization 

technique between the simulation and FRF measurement. For this purpose, first, a dummy 

workpiece with a relatively short length is clamped to the chuck, and the FRF 

measurements from the workpiece tip are conducted at 𝑋𝑀 and 𝑌𝑀 directions. Then the 

FRF of the dummy workpiece is calculated using the receptance coupling method. The 

contact stiffness and damping at contact stiffness are found iteratively by minimizing the 

error between simulated and measured FRFs. Note that, in this approach, it is assumed 

that the clamping pressure of the hydraulic chuck is constant at each set-up. Furthermore, 

the contact dynamics for each material are unique, and as the material of the workpiece 

changes, the contact dynamic identification procedure should be repeated.  

A cylindrical part is selected as a dummy workpiece with Al7075-T6 Aluminum alloy 

with 60 mm in diameter and 116 mm in length. The clamping length is 40 mm. The 

material properties of the dummy workpiece are given in Table 7.8. 

Table 7.8: Material properties of Al7075-T6. 

Density [
𝑘𝑔

𝑚3] 
Young 

Modulus [𝐺𝑃𝑎] 
Poisson Ratio Loss Factor 

2710 71.6 0.33 0.0002 
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Figure 7.22: Identified FRF simulations using error minimization in X and Y directions. 

After performing the identification procedure which runs several iterations to minimize 

the error between natural frequency and peak magnitude of the dominant mode of the 

simulation and measurement, the identified contact translational stiffness and damping in 

both directions are given as follows; 

Table 7.9: Identified contact stiffness and damping at jaws-workpiece interface. 

 

Translational stiffness 

[𝑁/𝑚] 

Translational damping 

[𝑁. 𝑠 𝑚⁄ ] 

𝑋𝑀 Direction 1.112e9 6493 

𝑌𝑀 Direction 1.5341e9 9593 

 

The natural frequency of the system at 𝑋𝑀 direction is 1223 Hz, and in 𝑌𝑀 direction is 

1376 Hz. Another workpiece with similar material but different dimensions will be 

simulated to confirm the identified contact dynamics. The simulations will be compared 

with the experimental measurements. For this purpose, a workpiece with the dimension 

represented in Figure 7.23 is used as a case study. The resulted simulations and 

experiments are shown in Figure 7.24.  
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Figure 7.23: Dimensions of the tested part. 

According to the simulation results, it is deduced that the predicted natural frequency 

values in both directions are in agreement. However, there is approximately 35% 

difference in FRF magnitudes of 𝑋𝑀 direction and 50% difference in FRF magnitude in 

𝑌𝑀 direction. In other words, the identified stiffness value affects the natural frequency 

with high accuracy. However, the translational damping which affects the FRF magnitude 

is identified with low accuracy. This can be caused by the clamping pressure variation at 

different part diameters, which needs to be investigated more. In addition, including 

rotational stiffness and damping may increase the accuracy of predictions but may 

increase the computational time. This issue also needs to be investigated more deeply. 

While there are other methods for the prediction of part dynamics, such as FEM, analytical 

Euler-Bernoulli, and inverse receptacle coupling, further research is needed to compare 

each method's accuracy and computational time when the effect of contact dynamics is 

included.   

 
Figure 7.24: Comparison of predicted and simulation results of the part. 

 

𝐷3 = 50𝑚𝑚
𝐿3 = 40𝑚𝑚

𝐷2 = 50𝑚𝑚
𝐿2 = 40𝑚𝑚

𝐷1 = 50𝑚𝑚
𝐿1 = 40𝑚𝑚

Clamping
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7.4. Summary 

This chapter presents a dynamic model for predicting the frequency response of spindle 

and workpiece systems. The stability of a process drastically depends on the dynamic 

responses of the spindle-holder-tool assembly and the workpiece dynamics.  

In this regard, a predictive model for bearing dynamics is presented. The frequency 

response function of the spindle shaft was also modeled using the receptance coupling 

method. By coupling the dynamics of bearing and shaft, the dynamic response of the 

spindle shaft tip is predicted and compared with experiments. Regarding rigidity, effective 

parameters such as bearing locations and tail length are analyzed.  

Finally, the workpiece dynamics and the contact stiffness at the clamping interface are 

modeled using the receptance coupling method. The predictions are compared to 

experimental measurements.   
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8. CONCLUSIONS AND FUTURE WORKS 

8.1. Conclusions and contributions 

The contributions of the present thesis can be categorized under four main topics: 

mechanics of turn-milling, stability of turn-milling, stability of special tools, and structural 

dynamics of machine tools. 

8.1.1. Mechanics of turn-milling 

Exact chip geometry and mechanics of orthogonal turn-milling operation are presented. 

Based on the proposed model, cutting force predictions for standard and serrated end mills 

are presented and validated with experiments. It is shown that due to the simultaneous 

rotation of tool and workpiece, the cutter-workpiece engagement is relatively complex and 

additional cutting parameters are involved. As a result, the effect of each parameter on 

uncut chip geometry and cutting forces is different compared to conventional turning or 

milling. Therefore, it is vital to understand the process kinematics and mechanics in detail 

to achieve correct process planning as well as proper surface quality, low energy 

consumption, and high productivity. In this regard, specific contributions and conclusions 

drawn from this study are listed as follows; 

• Due to simultaneous rotation of tools and workpiece, both the side and minor 

cutting edges of the tool are engaged during the chip removal operation. This 

causes a significant change in cutting forces in feed, cross-feed, and axial 

directions, which is important for process planning in terms of process mechanics 

and dynamics.  

• The ratio of the tool over workpiece rotational speeds affects the uncut chip 

thicknesses generated by the side and minor cutting edges of the tool. As the ratio 

decreases, the uncut chip thickness and hence, cutting forces and torque increase. 

• Eccentricity drastically affects the uncut chip geometry resulting from the side 

edge. The instantaneous depth of cut varies within the engagement boundaries, and 
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the variation trend depends on the eccentricity. After a particular eccentricity 

value, the engagement of the side edge decreases, leading to lower MRR. 

• The eccentricity alters the engagement boundaries of the minor edge. As the 

eccentricity increase, the engagement of the minor edge decreases. The part 

accuracy will be decreased for eccentricity values when the minor edge is not 

engaged, leading to smaller CWE and lower MRR. 

• Parameter selection in turn-milling is more difficult owing to the existence of 

additional and special kinematic and geometric conditions due to special 

kinematics of the process resulted by simultaneously rotating tool and workpiece. 

• The relation between eccentricity and stepover was modeled based on tool and 

cutting geometry. The effect of proper selection of these parameters on the surface 

quality is demonstrated experimentally. It is shown that a slight change in the 

eccentricity has a strong impact on the surface finish in turn-milling. However, 

using the proposed model, productivity can be doubled without sacrificing the 

surface quality. 

• The ratio of the tool over workpiece diameters influences the uncut chip geometry 

as well as feed per tooth value. For constant tool radius and rotational speed ratios, 

the maximum feed per tooth value also increases as the workpiece radius increases. 

• While eccentricity has a negligible effect on the torque and resultant force in 

orthogonal turn-milling, stepover affects drastically. On the other hand, both 

stepover and eccentricity significantly affect the axial force. Based on the 

combination of eccentricity and stepover, the axial force magnitude and direction 

can be altered drastically, which is a critical factor in the accuracy of flexible or 

thin-walled parts.   

• A parameter selection procedure is proposed to select the proper eccentricity and 

stepover pair while considering the axial force magnitude and direction, surface 

quality with cusp prevention, and productivity. Minor edge length defines the 

allowable range for eccentricity and stepover and hence, the magnitude of the axial 

force for a specific pair of eccentricity and stepover. Higher productivities with 
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lower axial forces are achievable for a longer minor edge.  

The proposed model for cutting mechanics is confirmed for standard end mills, and the 

influential parameters on part accuracy, productivity, and cutting energy are discussed. 

This study's outcomes are significant for the development of new research possibilities in 

turn-milling and the implementation of high-performance. 

 

8.1.2. Dynamics and Chatter Stability of Turn-milling 

The dynamics of orthogonal turn-milling in three dimensions are modeled and studied for 

the first time in the literature. The dynamic chip thickness in feed, cross-feed, and axial 

directions resulting from the side and minor edges of the tool are modeled, and 

corresponding directional coefficients are formulated for the first time in the literature. 

The machine tool’s structural dynamics are defined in modal space and coupled with the 

tool's and workpiece's dynamic displacements. The varying time delay caused by 

workpiece rotation is modeled using a novel approach. The stability of turn-milling 

process is solved through coupled time-varying delayed differential equation by the semi-

discretization method in the discrete-time domain. The effect of varying time delays on 

process stability at different workpiece speeds is demonstrated. Moreover, the stability of 

turn-milling in the frequency domain is solved for the first time in the literature. The main 

contributions and conclusions of this chapter are listed as follows;  

• The simultaneous workpiece and tool rotational motion produces a phase shift 

between the waves imprinted on the workpiece surface, resulting in a varying time 

delay within the engagement boundaries in the regenerative chip formation 

mechanism. This time delay depends on the ratio of tool and workpiece speeds, 

the ratio of tool and workpiece diameters, number of teeth, and axial depth of cut. 

• Since the linear speed varies along the workpiece diameter, the time delay at each 

axial element along the tool is different. Therefore, a varying delay is distributed 

along the tool’s axis even in turn-milling with standard tools. The delay at the 

tooltip is the minimum.  

• As the ratio of the workpiece to tool diameters (𝑟𝑟 = 𝑅𝑤 𝑅𝑡⁄ ) increases, the time 

delay also decreases since the amount of phase shift at the tooth passing period is 
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higher due to the larger workpiece radius.  

• Increase in workpiece speed (decrease in 𝑟𝑠 = Ω𝑡/Ω𝑤), also increase the phase 

shift, leading to a larger phase shift, and lower time required for the current tooth 

to reach the surface point on the modulation left by the previous tooth, hence lower 

time delay.  

• The stability prediction simulated in time and frequency domains showed good 

agreement with chatter experiments. It is seen that for the cases with a very large 

speed ratio (𝑟𝑠) (low workpiece speed), and relatively small tool diameter in which 

the effect of the minor edge is negligible, the stability lobes are close to the milling 

process. The variation in eccentricity affects the stability lobes slightly while using 

end mills in turn-milling. The variation in absolute stability limit is due to the 

change in CWE resulting from eccentricity alteration. 

• The effect of eccentricity becomes more significant in turn-milling with inserted 

tools. Due to the existence of offset distance between the tool center and inserts, 

the eccentricity and stepover must be selected according to the minor edge length 

and tool radius. Otherwise, cusps will be formed on the machined surface, and 

undesired uncut chip geometries can be formed, leading to excessive forces. 

• An increase in eccentricity alters the absolute stability limit drastically because of 

the change in CWE of both side and minor cutting edges. Furthermore, due to the 

variation of chip distribution resulting from the side edge, the overall resultant and 

axial forces change, affecting stability limits.  

• It is previously reported that lower eccentricities result in higher MRR and better 

surface roughness. In this study, it is also experimentally verified that lower 

eccentricities lead to higher absolute stability limits and hence, higher 

productivity. However, the allowable stepover for lower eccentricities is limited.  

• As expected, larger radial immersions decrease the absolute stability limits. 

However, by selecting the proper stable depth of cuts inside the lobes, higher MRR 

can be achieved despite the lower absolute depth of cut compared to low 

eccentricity cases. 

• High workpiece rotational speeds affect the regeneration system in turn-milling 

because of the smaller time delay, leading to a shift in stability lobes toward lower 

tool speeds. Neglecting the effect of varying time delay at different workpiece 

speeds and the lobe shifting phenomenon may cause chatter vibrations and hence, 
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tool and workpiece failure. 

• The ZOA method exhibits approximately 20 times lower computational time in all 

conditions than SDM. Considering the negligible discrepancies, using the ZOA 

approach in predicting stability lobes in turn-milling is preferable. 

The stability model of turn-milling operation for standard milling tools with regular 

geometry is presented. The proposed model and results are essential to be considered at 

the process planning stage to avoid poor surface quality, part accuracy, tool failure, and 

low MRR. 

8.1.3. Mechanics and Dynamics of Special Tools 

Special tools are implemented in the turn-milling process. The mechanics and dynamics 

of serrated and crest-cut tools are investigated during turn-milling operation. The 

mechanics of turn-milling is upgraded to be able to adopt the particular CWE and uncut 

chip thicknesses for serrated and crest-cut tools. The varying time-delay model of turn-

milling is also upgraded to calculate the distributed time delays along with the crest-cut 

tools during turn-milling operation. While the system's stability is solved with SDM, the 

ZOA method is used to calculate the stability of crest-cut tools for the first time in the 

literature. Some findings are listed as follows; 

• The application of serrated tools decreases the cutting forces and torque due to a 

reduction in engagement distribution along with the cutting depth due to the 

serrated edge geometry. The serrated tools cause a reduction in forces in feed and 

cross-feed directions more than in axial direction.  

• Turn-milling forces resulting from crest-cut tools are predicted and confirmed 

with experimental results for the first time in the literature. Accurate cutting force 

predictions are obtained considering cutter-workpiece engagement and local 

cutting force coefficients. Unlike standard milling tools, crest-cut end mills 

produce non-periodic cutting forces. 

• Crest-cut tools produce significantly smooth axial cutting forces, which may be 

beneficial in machining thin-walled pockets. 
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• Due to the local pitch and helix angle variation along the axis of crest-cut tools, 

the entry and exit angles and the time delay are different for each element on each 

tooth. Therefore, at any axial level, the average delay for each tooth is different. 

• Since it is required to use average time delay for ZOA, the error between stability 

lobes calculated by SDM and ZOA increased. 

• Considering that the computation time for crest-cut tools is higher than the 

standard tools for both methods due to the higher number of delays, the ZOA 

method stills offers a shorter computation time than SDM. 

• Due to the high number of distributed delays imposed by crest-cut tools on the 

dynamic system, the regeneration mechanism is disturbed, leading to higher 

absolute stability limits. 

• The wavy edge shapes on crest-cut tools increase the intermittence nature of 

engagement due to the varying delay and local pitch angles. Therefore, especially 

in lower-immersion engagements, the higher harmonics of the cutting forces can 

be dominant, leading to flip bifurcation type of instability. As a result of higher 

harmonics, added lobes were seen in the stability diagram of crest-cut tools, which 

are significantly helpful in achieving higher productivity. 

• Crest-cut tools also offer significant improvements in machining thin-walled 

structures. Surface finish quality maps show that the crest-cut tool has superior 

performance considering the surface quality and productivity. Variable pitch tools 

may suppress chatter in one of the plate modes. Still, they lose their effectiveness 

on different cutter-location points due to frequency variations of multiple modes 

under mass removal effects. On the other hand, crest-cut tools provide much 

higher stability limits in a wide frequency range with high robustness against 

frequency variation. 

• While calculating the stability of thin-walled structures, it is essential to include 

in-process workpiece dynamics to obtain precise predictions.   

Crest-cut tools exhibit superior advantages compared to standard and variable-pitch 

tools in terms of process stability and productivity.  
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8.1.4. Structural Dynamics of Machine Tools 

As the main contributors to process dynamics and stability, having a predictive model for 

dynamics of the spindle and workpiece systems is vital. Although the dynamic of the 

workpiece and spindle-holder-tool assembly can be performed throughout experimental 

impact hammer testing before the process, the in-process identification of their dynamic 

behavior is impossible. In order to model the spindle under operational conditions at 

different speeds, a predictive model is proposed. In this model, the dynamic model of the 

bearings is coupled with the analytic shaft’s dynamic model based on receptance coupling. 

Moreover, the workpiece dynamics were also modeled using a similar approach. The 

conclusions are given as follows; 

• The translational and rotational stiffnesses of the bearings have a decreasing 

manner as the speed increases. However, they increase as the preload increases.  

• During the validation of our model with experiments, it is observed that including 

the cross-stiffness (off-diagonal terms) significantly increases predictions' 

accuracy.  

• As the rotational speed increases, the system's natural frequency decreases, and 

the system becomes more flexible due to the reduction in stiffness. However, if 

the other parameters like thermal effects are included, this trend could be altered.  

• In a typical spindle, as the location of both bearing sets become closer to the shaft 

tip, the system will have more rigidity and hence, more stability. 

• The tail length of the spindle has an optimum length that exhibits lower FRF peak 

amplitude as well as divided modes. The mass-damper effect of the shaft tail 

improves the spindle rigidity; hence, less chatter vibrations and more productivity 

can be achieved. 

• In-process workpiece dynamics using receptance coupling show a good agreement 

between experiments in terms of natural frequency. However, the required contact 

damping varies from part to part at each set-up.  
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8.2. Future Research Directions 

Based on the presented mathematical models and the experimental validations, this thesis's 

outcomes can be considered a validated foundation for future advanced research in turn-

milling technology. Although the proposed models can predict the process mechanics and 

dynamics, several aspects can still be investigated. The further research potentials in turn-

milling, special tool technologies, and structural dynamics are listed as follows;   

• Effects of minor edge geometrical parameters, such as hone radius, oblique angle, 

clearance, etc., on surface quality, cutting temperature, and process damping can 

be studied.  

• The surface integrity of parts with hard-to-cut material machined using orthogonal 

turn-milling and conventional turning can be examined and compared. The 

residual stresses on the machine part can be obtained. The effect of eccentricity 

and tool geometry can be influential during process planning and optimization to 

achieve higher accuracy. 

• A parameter optimization study can be carried out to investigate the best 

parameters in turn-milling highly flexible parts such as long shafts or thin-walled 

tubes to achieve improved productivity and surface quality and lower dimensional 

errors. 

• A specific tool for orthogonal turn-milling can be designed considering the minor 

and side edge parameters for reduced cutting forces and improved productivity. 

• The in-process workpiece dynamics of highly flexible parts can be considered in 

the stability model of turn-milling. The varying stability limit can be added to the 

global optimization problem as an additional constraint.  

• Based on the calculated cutting forces, the temperature model must be 

investigated. The temperature model can be used either in predicting tool wear or 

predicting residual stresses. This study will help to fully benefit from turn-milling 

technology’s advantages over conventional turning operations. 

• Special tools like crest-cut and serrated tools can also be implemented in other 

turn-milling configurations such as tangential and co-axial to investigate the 

surface quality and stability. 

• Process damping of special tools in turn-milling by considering the damping effect 
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of both side and minor edges can be studied to benefit from its impact in machining 

hard-to-cut materials. 

• The thermal model of the spindle can be combined with the proposed model to 

capture the effect of generated heat on spindle dynamics. The optimized spindle 

design can be obtained by considering the dynamic and temperature model at the 

same time. 
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APPENDICES 

Appendix A: Orthogonal databases 

• Al7075-T6 Alloy 

Table A1: Orthogonal parameters for Al7075-T6 

Orthogonal parameters 

𝜏′𝑠 = 297.1 + 1.1𝛼𝑛 

𝛽′𝑛 = 18.8 + 6.7ℎ + 0.0076𝑉𝑐 + 0.26𝛼𝑛 

𝜙′𝑠 = 24.2 + 36.7ℎ + 0.005𝑉𝑐 + 0.3𝛼𝑛 

Edge Force Coefficients 𝐾𝑡𝑒 = 23.4
𝑁

𝑚𝑚
 , 𝐾𝑟𝑒 = 35.2

𝑁

𝑚𝑚
 

 

where 𝜏′𝑠 is shear stress (MPa), 𝛽′𝑛 is friction angle (deg), 𝜙′𝑠 shear angle (deg), 𝛼𝑛 is 

rake angle (deg), ℎ is feed (mm), 𝑉𝑐 is cutting speed (m/min), 𝐾𝑡𝑒 is edge force coefficient 

in tangential, and 𝐾𝑟𝑒 is edge force coefficient in radial direction.  

• AISI 1045 steel 

Table A2: Orthogonal parameters for AISI 1045 

Orthogonal parameters 

𝜏′𝑠 = 𝑠𝑡(1) ∗ exp(𝑉𝑐 ∗ 𝑠𝑡(2)) + 𝑠𝑡(3) ∗ ℎ 

𝛽′𝑛 = 𝑓(1) ∗ exp(𝑉𝑐 ∗ 𝑓(2)) + 𝑓(3) ∗ ℎ 

𝜙′𝑠 = 𝑠𝑎(1) ∗ exp(𝑉𝑐 ∗ 𝑠𝑎(2)) + 𝑠𝑎(3) ∗ exp(ℎ𝑠𝑎(4)) 

𝑓 = [33.753, −0.00123,−7.33] 

𝑠𝑎 = [10.342, 0.001236, 10.912, 0.35] 

𝑠𝑡 = [524.95, 0.0005302,−21.72] 

Edge Force Coefficients 𝐾𝑡𝑒 = 35
𝑁

𝑚𝑚
 , 𝐾𝑟𝑒 = 42

𝑁

𝑚𝑚
 

 

where 𝜏′𝑠 is shear stress (MPa), 𝛽′𝑛 is friction angle (deg), 𝜙′𝑠 shear angle (deg), 𝛼𝑛 is 

rake angle (deg), ℎ is feed (mm), 𝑉𝑐 is cutting speed (m/min), 𝐾𝑡𝑒 is edge force coefficient 
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in tangential, and 𝐾𝑟𝑒 is edge force coefficient in radial direction.  

Appendix B: Nyquist Stability Criterion 

Considering a characteristic equation in general form of 𝐶𝐻(𝑠) = det[𝐼 + (𝐽 + 𝐽𝑒−𝑠𝑡 +

𝐽𝑠)Φ(𝑠)] = 0 , Λ(𝑠) = (𝐽 + 𝐽𝑒−𝑠𝑡 + 𝐽𝑠), the stability analysis can be performed by 

analyzing its Nyquist plot. Poles of the characteristic equation 𝐶𝐻(𝑠) are the poles of the 

structure (Φ) which are all stable. Any unstable zero of the characteristic equation 𝐶𝐻(𝑠) 

creates a clockwise encirclement of the origin of complex plane by Nyquist mapping of 

the characteristic equation. Unstable zeros of the characteristic equation are unstable poles 

of the system, as the characteristic equation appears in the denominator of the input-output 

transfer functions in the closed loop system.  

Therefore, it is sufficient to count the encirclements for mapping of the positive 

imaginary axis. This is equivalent to replacing 𝑠 with 𝑗𝜔 where 𝜔 is a nonnegative real 

number. It can be seen that 𝛬(𝑗𝜔) forms a spiral shape with varying diameter; the circling 

is mostly due to the phase contribution of the complex exponential term. 

𝑒−𝑖𝑇𝜔 =    (𝑇𝜔) − 𝑖    (𝑇𝜔)  

Nyquist plot of two stable and unstable time delay systems with similar transfer functions 

are plotted in 

 

Figure B1: Nyquist plots in complex plane for stable and unstable cases. 

Although Nyquist contour is a continuous path, it is drawn using discrete frequencies on 

a digital computer. In addition, the frequency response function of the system (Φ(𝜔)) is 

also measured or simulated as a function of discrete frequencies. Therefore, the Nyquist 
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contour is determined as a set of points. The frequency resolution is important to determine 

correct stable or unstable cases. Lower frequency resolutions may result in incorrect 

results. The unstable case in Figure B1 is plotted with lower frequency resolution. It is 

seen that, with lower frequency resolution, the Nyquist contour does not encircle the origin 

and the plot implies a stable condition. However, it is in fact an unstable condition. 

 

Figure B2: Similar condition in Figure B1 with lower frequency resolution. 

In order to detect stable or unstable conditions, the following algorithm is applied: 

1. Select a range of frequency to be swept that covers the flexible modes of the 

system with reasonable resolution 𝜔𝑚𝑖𝑛 ≤ 𝛿𝜔 ≤ 𝜔𝑚𝑎𝑥 . 

2. Set the counter (𝑛 = 1), and calculate 𝐶𝐻0 = 𝐶𝐻(𝑖𝜔𝑛) 

3. While 𝜔𝑛 < 𝜔𝑚𝑎𝑥 do the following steps: 

Calculate 𝐶𝐻1 = 𝐶𝐻(𝑖𝜔𝑛+1)  

a. If 𝐶𝐻0 is in the third quadrant of complex plane (Re(𝐶𝐻0) <

0, Im(𝐶𝐻0) < 0), while 𝐶𝐻1 is in second quadrant (𝑅𝑒(𝐶𝐻1) <

0, 𝐼𝑀(𝐶𝐻1) ≥ 0). The contour crosses the negative real axis (encircles the 

origin) and the condition is unstable.  

b. If 𝐶𝐻0 is in the third quadrant and 𝐶𝐻1 is in the first quadrant, calculate 

the approximate intersection point with the real axis using the two 

consecutive points in each quadrant. A line interpolation can be used 



173 

 

between these points. If the intersection point with real axis has a negative 

part, then go to the step 4. 

4. End. 

Appendix C: Tool-holder Dimensions and Dynamic properties 

Table C1: Holder segments and dimensions [88]. 

Segment 

No. 

Length 

(mm) 

Outer 

Diameter 

(mm) 

Inner 

Diameter 

(mm) 

1 26 63 21 

2 34 50 21 

3 24.5 50 25 

4 17 44.5 25 

5 6 63.5 25 

6 3 56 25 

7 6 63.5 25 

 

Table C2: Tool segment dimensions [88].  

Segment 

No. 

Length 

(mm) 

Outer 

Diameter 

(mm) 

Inner 

Diameter 

(mm) 

1 20 16 0 

2 25 20 0 

 

Table C3: Contact parameters at the spindle-holder and holder-tool interfaces [88]. 

 Translational 

Stiffness 

Rotational 

Stiffness 

Translational 

Damping 

Rotational 

Damping 



174 

 

(N/m) (N.m/rad) (N.s/m) (N.m.s/rad) 

Spindle -

holder 

interface 

12.6×107 1×106 50 170 

Holder -

tool 

interface 

8×107 1.5×106 100 100 

 

Table C4: Dynamic properties of bearings [88]. 

 

Translational 

Stiffness 

(N/m) 

Rotational 

Stiffness 

(N.m/rad) 

Translational 

Damping 

(N.s/m) 

Rotational 

Damping 

(N.m.s/rad) 

Front bearing 1.45x106 3.83x10
6

 3500 10 

Rear bearing 1.02x108 1.5x106 1000 10 

 

 

Figure C1: Calculated and measured tool point FRFs at idle state of the machine [88]. 

 



175 

 

REFERENCES 

[1] M. Mori, A. Hansel, M. Fujishima, Machine Tool BT  - CIRP Encyclopedia of 

Production Engineering, in: L. Laperrière, G. Reinhart (Eds.), Springer Berlin 

Heidelberg, Berlin, Heidelberg, 2014: pp. 792–801. https://doi.org/10.1007/978-3-

642-20617-7_6533. 

[2] K.R. Berenji, M.E. Kara, E. Budak, Investigating High Productivity Conditions for 

Turn-Milling in Comparison to Conventional Turning, Procedia CIRP. 77 (2018) 

259–262. 

[3] W. Xin, D. Wenfeng, Z. Biao, A review on machining technology of aero-engine 

casings, J. Adv. Manuf. Sci. Technol. 2 (2022) 2022011. 

[4] H. Schulz, G. Spur, High speed turn-milling—a new precision manufacturing 

technology for the machining of rotationally symmetrical workpieces, CIRP Ann. 

Technol. 39 (1990) 107–109. 

[5] H. Schulz, T. Kneisel, Turn-milling of hardened steel-an alternative to turning, 

CIRP Ann. 43 (1994) 93–96. 

[6] S.K. Choudhury, K.S. Mangrulkar, Investigation of orthogonal turn-milling for the 

machining of rotationally symmetrical work pieces, J. Mater. Process. Technol. 99 

(2000) 120–128. 

[7] S.K. Choudhury, J.B. Bajpai, Investigation in orthogonal turn-milling towards 

better surface finish, J. Mater. Process. Technol. 170 (2005) 487–493. 

[8] S. Ekinović, E. Begović, A. Silajdžija, Comparison of machined surface quality 

obtained by high-speed machining and conventional turning, Mach. Sci. Technol. 

11 (2007) 531–551. 

[9] Y.L. Cai, C. Huang, J.Y. Li, Experimental study of cutter wear based on turn-

milling, in: Appl. Mech. Mater., Trans Tech Publ, 2012: pp. 538–541. 

[10] E. Uysal, U. Karaguzel, E. Budak, M. Bakkal, Investigating eccentricity effects in 

turn-milling operations, Procedia CIRP. 14 (2014) 176–181. 

[11] U. Karaguzel, E. Uysal, E. Budak, M. Bakkal, Effects of tool axis offset in turn-

milling process, J. Mater. Process. Technol. 231 (2016) 239–247. 

[12] U. Karagüzel, E. Uysal, E. Budak, M. Bakkal, Analytical modeling of turn-milling 

process geometry, kinematics and mechanics, Int. J. Mach. Tools Manuf. 91 (2015) 

24–33. 

[13] S.M. Yuan, W.W. Zheng, The surface roughness modeling on turn-milling process 

and analysis of influencing factors, in: Appl. Mech. Mater., Trans Tech Publ, 2012: 

pp. 1614–1620. 

[14] L. Zhu, H. Li, W. Wang, Research on rotary surface topography by orthogonal turn-

milling, Int. J. Adv. Manuf. Technol. 69 (2013) 2279–2292. 

[15] V. Savas, C. Ozay, Analysis of the surface roughness of tangential turn-milling for 

machining with end milling cutter, J. Mater. Process. Technol. 186 (2007) 279–



176 

 

283. 

[16] V. Savas, C. Ozay, The optimization of the surface roughness in the process of 

tangential turn-milling using genetic algorithm, Int. J. Adv. Manuf. Technol. 37 

(2008) 335–340. 

[17] V. Savas, C. Ozay, H. Ballikaya, Experimental investigation of cutting parameters 

in machining of 100Cr6 with tangential turn-milling method, Adv. Manuf. 4 (2016) 

97–104. 

[18] R. Funke, A. Schubert, Increase of the coefficient of static friction using turn-

milling with an inclined milling spindle, Procedia CIRP. 45 (2016) 83–86. 

[19] B. Karpuschewski, C. Döbberthin, K. Risse, L. Deters, Analysis of the textured 

surface of tangential turn-milling, Mater. Perform. Charact. 6 (2017) 182–194. 

[20] C. Neagu, M. Gheorghe, A. Dumitrescu, Fundamentals on face milling processing 

of straight shafts, J. Mater. Process. Technol. 166 (2005) 337–344. 

[21] W. Wang, F.Y. Peng, R. Yan, X.Y. Duan, Iso-scallop Toolpath Generation for 

Orthogonal Turn-Milling of Ruled Surfaces, in: Adv. Mater. Res., Trans Tech Publ, 

2012: pp. 436–440. 

[22] U. Karaguzel, M. Bakkal, E. Budak, Process modeling of turn-milling using 

analytical approach, Procedia CIRP. 4 (2012) 131–139. 

[23] Z. Jiang, X. Liu, X. Deng, Modeling and simulation on surface texture of workpiece 

machined by tangential turn-milling based on matlab, in: 2011 2nd Int. Conf. Artif. 

Intell. Manag. Sci. Electron. Commer., IEEE, 2011: pp. 4072–4075. 

[24] K. Rahimzadeh Berenji, U. Karagüzel, E. Özlü, E. Budak, Effects of turn-milling 

conditions on chip formation and surface finish, CIRP Ann. 68 (2019) 113–116. 

https://doi.org/10.1016/j.cirp.2019.04.067. 

[25] J.M. Crichigno Filho, Prediction of cutting forces in mill turning through process 

simulation using a five-axis machining center, Int. J. Adv. Manuf. Technol. 58 

(2012) 71–80. 

[26] L. Zhu, H. Li, C. Liu, Analytical modeling on 3D chip formation of rotary surface 

in orthogonal turn-milling, Arch. Civ. Mech. Eng. 16 (2016) 590–604. 

[27] W. Qiu, Q. Liu, S. Yuan, Modeling of cutting forces in orthogonal turn-milling with 

round insert cutters, Int. J. Adv. Manuf. Technol. 78 (2015) 1211–1222. 

[28] C. Yonglin, M. Yemeng, H. Chao, Y. Xiangkai, Swept area modeling and cutter 

wear study in turn-milling, Int. J. Adv. Manuf. Technol. 80 (2015) 775–789. 

[29] A. Comak, Y. Altintas, Mechanics of turn-milling operations, Int. J. Mach. Tools 

Manuf. 121 (2017) 2–9. 

[30] H. Otalora-Ortega, P.A. Osoro, P.J.A. Arriola, Analytical modeling of the uncut 

chip geometry to predict cutting forces in orthogonal centric turn-milling 

operations, Int. J. Mach. Tools Manuf. 144 (2019) 103428. 

[31] T. Sun, L. Qin, Y. Fu, C. Liu, R. Shi, Mathematical modeling of cutting layer 

geometry and cutting force in orthogonal turn-milling, J. Mater. Process. Technol. 

290 (2021) 116992. 

[32] S.A. Tobias, W. Fishwick, Theory of regenerative machine tool chatter, Eng. 205 



177 

 

(1958) 199–203. 

[33] J. Tlusty, M. Polacek, The Stability of the Machine Tool Against Self-Excited 

Vibration in Machining, ASME Int. Res. Prod. 1 (1963) 465–474. 

https://doi.org/citeulike-article-id:4000165. 

[34] H.E. Merrit, Theory of self-excited machine-tool chatter, Trans. ASME, J. Eng. 

Ind. 87 (1965) 447. 

[35] J. Tlusty, F. Ismail, Basic non-linearity in machining chatter, CIRP Ann. 30 (1981) 

299–304. 

[36] H.M. Shi, S.A. Tobias, Theory of finite amplitude machine tool instability, Int. J. 

Mach. Tool Des. Res. 24 (1984) 45–69. 

[37] I. Minis, R. Yanushevsky, A new theoretical approach for the prediction of machine 

tool chatter in Milling, J. Manuf. Sci. Eng. Trans. ASME. 115 (1993) 1–8. 

https://doi.org/10.1115/1.2901633. 

[38] Y. Altintaş, E. Budak, Analytical prediction of stability lobes in milling, CIRP Ann. 

44 (1995) 357–362. 

[39] T. Insperger, G. Stépán, Updated semi-discretization method for periodic delay-

differential equations with discrete delay, Int. J. Numer. Methods Eng. 61 (2004) 

117–141. https://doi.org/10.1002/nme.1061. 

[40] T. Insperger, G. Stépán, Semi-discretization method for delayed systems, Int. J. 

Numer. Methods Eng. 55 (2002) 503–518. https://doi.org/10.1002/nme.505. 

[41] L. Zhu, H. Zhao, X. Wang, 1424. Research on 3D chatter stability of blade by high-

speed turn-milling, J. Vibroengineering. 16 (2014). 

[42] R. Yan, X. Tang, F.Y. Peng, Y. Wang, F. Qiu, The effect of variable cutting depth 

and thickness on milling stability for orthogonal turn-milling, Int. J. Adv. Manuf. 

Technol. 82 (2016) 765–777. 

[43] A. Comak, Y. Altintas, Dynamics and stability of turn-milling operations with 

varying time delay in discrete time domain, J. Manuf. Sci. Eng. 140 (2018) 101013. 

[44] T. Insperger, G. Stepan, Stability analysis of turning with periodic spindle speed 

modulation via semidiscretization, J. Vib. Control. 10 (2004) 1835–1855. 

[45] R.P.H. Faassen, N. Van de Wouw, J.A.J. Oosterling, H. Nijmeijer, Prediction of 

regenerative chatter by modelling and analysis of high-speed milling, Int. J. Mach. 

Tools Manuf. 43 (2003) 1437–1446. https://doi.org/10.1016/S0890-

6955(03)00171-8. 

[46] X.-H. Long, B. Balachandran, B.P. Mann, Dynamics of milling processes with 

variable time delays, Nonlinear Dyn. 47 (2007) 49–63. 

[47] M.X. Zhao, B. Balachandran, Dynamics and stability of milling process, Int. J. 

Solids Struct. 38 (2001) 2233–2248. 

[48] B. Balachandran, Nonlinear dynamics of milling processes, Philos. Trans. R. Soc. 

London. Ser. A Math. Phys. Eng. Sci. 359 (2001) 793–819. 

[49] E. Budak, E. Ozturk, Dynamics and stability of parallel turning operations, CIRP 

Ann. 60 (2011) 383–386. 



178 

 

[50] M. Azvar, E. Budak, Multi-dimensional chatter stability for enhanced productivity 

in different parallel turning strategies, Int. J. Mach. Tools Manuf. 123 (2017) 116–

128. 

[51] E. Budak, A. Comak, E. Ozturk, Stability and high performance machining 

conditions in simultaneous milling, CIRP Ann. 62 (2013) 403–406. 

[52] J. Slavicek, The effect of irregular tooth pitch on stability of milling, in: Proc. 6th 

MTDR Conf., 1965: pp. 15–22. 

[53] J. Tlusty, F. Ismail, W. Zaton, Milling cutters with irregular pitch, Technical 

Report, McMaster Engineering, 1982. 

[54] J. Tlusty, F. Ismail, W. Zaton, Use of special milling cutters against chatter, 

Technical Report, University of Wisconsin , 1983. 

[55] K. Shirase, M. Sano, M. Hirao, T. Yasui, Analysis and suppression of chatter 

vibration in end milling operation (1st report) - Analysis of chatter vibration for 

irregular tooth pitch end mill using time domain cutting simulation, Seimitsu 

Kogaku Kaishi/Journal Japan Soc. Precis. Eng. 65 (1999) 465–469. 

[56] Y. Altintaş, S. Engin, E. Budak, Analytical stability prediction and design of 

variable pitch cutters, J. Manuf. Sci. Eng. Trans. ASME. 121 (1999) 173–178. 

https://doi.org/10.1115/1.2831201. 

[57] E. Budak, An Analytical Design Method for Milling Cutters With Nonconstant 

Pitch to Increase Stability, Part I: Theory, J. Manuf. Sci. Eng. 125 (2003) 29–34. 

https://doi.org/10.1115/1.1536655. 

[58] E. Budak, An Analytical Design Method for Milling Cutters With Nonconstant 

Pitch to Increase Stability, Part 2: Application, J. Manuf. Sci. Eng. 125 (2003) 35–

38. https://doi.org/10.1115/1.1536656. 

[59] A. Iglesias, Z. Dombovari, G. Gonzalez, J. Munoa, G. Stepan, Optimum selection 

of variable pitch for chatter suppression in face milling operations, Materials 

(Basel). 12 (2019) 112. 

[60] N. Suzuki, R. Ishiguro, T. Kojima, Design of irregular pitch end mills to attain 

robust suppression of regenerative chatter, CIRP Ann. 65 (2016) 129–132. 

[61] A. Comak, E. Budak, Modeling dynamics and stability of variable pitch and helix 

milling tools for development of a design method to maximize chatter stability, 

Precis. Eng. 47 (2017) 459–468. 

https://doi.org/http://dx.doi.org/10.1016/j.precisioneng.2016.09.021. 

[62] J. Munoa, X. Beudaert, Z. Dombovari, Y. Altintas, E. Budak, C. Brecher, G. 

Stepan, Chatter suppression techniques in metal cutting, CIRP Ann. 65 (2016) 785–

808. https://doi.org/https://doi.org/10.1016/j.cirp.2016.06.004. 

[63] B. Stone, Chatter and machine tools, Springer, 2014. 

[64] S.D. Merdol, Y. Altintas, Mechanics and Dynamics of Serrated Cylindrical and 

Tapered End Mills, J. Manuf. Sci. Eng. 126 (2004) 317–326. 

https://doi.org/10.1115/1.1644552. 

[65] Z. Dombovari, Y. Altintas, G. Stepan, The effect of serration on mechanics and 

stability of milling cutters, Int. J. Mach. Tools Manuf. 50 (2010) 511–520. 

https://doi.org/http://dx.doi.org/10.1016/j.ijmachtools.2010.03.006. 



179 

 

[66] N.D. Farahani, Y. Altintas, Chatter Stability of Serrated Milling Tools in Frequency 

Domain, J. Manuf. Sci. Eng. 144 (2021) 31013. 

[67] F. Tehranizadeh, E. Budak, Design of serrated end mills for improved productivity, 

Procedia CIRP. 58 (2017) 493–498. https://doi.org/10.1016/j.procir.2017.03.256. 

[68] F. Tehranizadeh, R. Koca, E. Budak, Investigating effects of serration geometry on 

milling forces and chatter stability for their optimal selection, Int. J. Mach. Tools 

Manuf. (2019) 103425. 

[69] P. Bari, M. Law, P. Wahi, Improved chip thickness model for serrated end milling, 

CIRP J. Manuf. Sci. Technol. 25 (2019) 36–49. 

[70] Z. Dombovari, G. Stepan, The Effect of Helix Angle Variation on Milling Stability, 

J. Manuf. Sci. Eng. 134 (2012) 51015–51016. https://doi.org/10.1115/1.4007466. 

[71] T. Hayasaka, A. Ito, E. Shamoto, Generalized design method of highly-varied-helix 

end mills for suppression of regenerative chatter in peripheral milling, Precis. Eng. 

48 (2017) 45–59. https://doi.org/10.1016/j.precisioneng.2016.11.004. 

[72] S. Turner, D. Merdol, Y. Altintas, K. Ridgway, Modelling of the stability of 

variable helix end mills, Int. J. Mach. Tools Manuf. 47 (2007) 1410–1416. 

https://doi.org/10.1016/j.ijmachtools.2006.08.028. 

[73] N.D. Sims, Fast chatter stability prediction for variable helix milling tools, Proc. 

Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 230 (2016) 133–144. 

[74] Z. Dombovari, G. Stepan, The effect of harmonic helix angle variation on milling 

stability, in: Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf., 2011: pp. 467–

473. 

[75] M. Sanz, A. Iglesias, J. Munoa, Z. Dombovari, The effect of geometry on 

harmonically varied helix milling tools, J. Manuf. Sci. Eng. Trans. ASME. 142 

(2020). https://doi.org/10.1115/1.4046901. 

[76] T. No, M. Gomez, R. Copenhaver, J.U. Perez, C. Tyler, T.L. Schmitz, Force and 

stability modeling for non-standard edge geometry endmills, J. Manuf. Sci. Eng. 

Trans. ASME. 141 (2019). https://doi.org/10.1115/1.4045057. 

[77] F. Tehranizadeh, K.R. Berenji, E. Budak, Dynamics and chatter stability of crest-

cut end mills, Int. J. Mach. Tools Manuf. 171 (2021) 103813. 

[78] E. Budak, L.T. Tunç, S. Alan, H.N. Özgüven, Prediction of workpiece dynamics 

and its effects on chatter stability in milling, CIRP Ann. 61 (2012) 339–342. 

[79] U. Bravo, O. Altuzarra, L.N.L. De Lacalle, J.A. Sánchez, F.J. Campa, Stability 

limits of milling considering the flexibility of the workpiece and the machine, Int. 

J. Mach. Tools Manuf. 45 (2005) 1669–1680. 

[80] V. Thévenot, L. Arnaud, G. Dessein, G. Cazenave–Larroche, Influence of material 

removal on the dynamic behavior of thin-walled structures in peripheral milling, 

Mach. Sci. Technol. 10 (2006) 275–287. 

[81] D. Biermann, P. Kersting, T. Surmann, A general approach to simulating workpiece 

vibrations during five-axis milling of turbine blades, CIRP Ann. 59 (2010) 125–

128. 

[82] S. Alan, E. Budak, H.N. Özgüven, Analytical prediction of part dynamics for 



180 

 

machining stability analysis, Int. J. Autom. Technol. 4 (2010) 259–267. 

[83] O. Tuysuz, Y. Altintas, Frequency domain updating of thin-walled workpiece 

dynamics using reduced order substructuring method in machining, J. Manuf. Sci. 

Eng. 139 (2017). 

[84] Altintas  Y , Author, Ber  AA , Reviewer, Manufacturing Automation: Metal 

Cutting Mechanics, Machine Tool Vibrations, and CNC Design, Appl. Mech. Rev. 

54 (2001) B84–B84. https://doi.org/10.1115/1.1399383. 

[85] T.A. Harris, Rolling bearing analysis, John Wiley and sons, 2001. 

[86] Y. Cao, Y. Altintas, Modeling of spindle-bearing and machine tool systems for 

virtual simulation of milling operations, Int. J. Mach. Tools Manuf. 47 (2007) 

1342–1350. https://doi.org/10.1016/j.ijmachtools.2006.08.006. 

[87] H. Li, Y.C. Shin, Analysis of bearing configuration effects on high speed spindles 

using an integrated dynamic thermo-mechanical spindle model, Int. J. Mach. Tools 

Manuf. 44 (2004) 347–364. 

[88] O. Özşahin, E. Budak, H.N. Özgüven, Identification of bearing dynamics under 

operational conditions for chatter stability prediction in high speed machining 

operations, Precis. Eng. 42 (2015) 53–65. 

[89] M. Postel, O. Özsahin, Y. Altintas, High speed tooltip FRF predictions of arbitrary 

tool-holder combinations based on operational spindle identification, Int. J. Mach. 

Tools Manuf. 129 (2018) 48–60. 

[90] O. Özşahin, E. Budak, H.N. Özgüven, In-process tool point FRF identification 

under operational conditions using inverse stability solution, Int. J. Mach. Tools 

Manuf. 89 (2015) 64–73. 

[91] G.L. Xiong, J.M. Yi, C. Zeng, H.K. Guo, L.X. Li, Study of the gyroscopic effect of 

the spindle on the stability characteristics of the milling system, J. Mater. Process. 

Technol. 138 (2003) 379–384. https://doi.org/10.1016/S0924-0136(03)00102-X. 

[92] M.R. Movahhedy, P. Mosaddegh, Prediction of chatter in high speed milling 

including gyroscopic effects, Int. J. Mach. Tools Manuf. 46 (2006) 996–1001. 

https://doi.org/10.1016/j.ijmachtools.2005.07.043. 

[93] T.L. Schmitz, R.R. Donalson, Predicting high-speed machining dynamics by 

substructure analysis, Cirp Ann. 49 (2000) 303–308. 

[94] T.L. Schmitz, M.A. Davies, M.D. Kennedy, Tool point frequency response 

prediction for high-speed machining by RCSA, J. Manuf. Sci. Eng. 123 (2001) 

700–707. 

[95] A. Ertürk, H.N. Özgüven, E. Budak, Analytical modeling of spindle-tool dynamics 

on machine tools using Timoshenko beam model and receptance coupling for the 

prediction of tool point FRF, Int. J. Mach. Tools Manuf. 46 (2006) 1901–1912. 

https://doi.org/10.1016/j.ijmachtools.2006.01.032. 

[96] A. Ertürk, E. Budak, H.N. Özgüven, Selection of design and operational parameters 

in spindle–holder–tool assemblies for maximum chatter stability by using a new 

analytical model, Int. J. Mach. Tools Manuf. 47 (2007) 1401–1409. 

[97] Y. Cao, Y. Altintas, A general method for the modeling of spindle-bearing systems, 

J Mech. Des. 126 (2004) 1089–1104. 



181 

 

[98] H. Cao, B. Li, Y. Li, T. Kang, X. Chen, Model-based error motion prediction and 

fit clearance optimization for machine tool spindles, Mech. Syst. Signal Process. 

133 (2019) 106252. 

[99] C. Wang, X. Zhang, R. Yan, X. Chen, H. Cao, Multi harmonic spindle speed 

variation for milling chatter suppression and parameters optimization, Precis. Eng. 

55 (2019) 268–274. 

[100] E. Abele, Y. Altintas, C. Brecher, Machine tool spindle units, CIRP Ann. 59 (2010) 

781–802. 

[101] G.D. Hagiu, M.D. Gafitanu, Dynamic characteristics of high speed angular contact 

ball bearings, Wear. 211 (1997) 22–29. 

[102] S.-T. Choi, S.-Y. Mau, Dynamic analysis of geared rotor-bearing systems by the 

transfer matrix method, J. Mech. Des. 123 (2001) 562–568. 

[103] G.-H. Bae, C.-H. Lee, J.-H. Hwang, S.-W. Hong, Estimation of axial displacement 

in high-speed spindle due to rotational speed, J. Korean Soc. Precis. Eng. 29 (2012) 

671–679. 

[104] H. Senda, R. Sato, T. Moriwaki, Estimation of thermal displacement under varying 

rotational condition of spindle, Trans. JSME. 70 (2005) 2813–2818. 

[105] J. JĘDRZEJEWSKI, W. Modrzycki, Compensation of thermal displacements of 

high-speed precision machine tools, J. Mach. Eng. 7 (2007) 108–114. 

[106] J.S. Chen, Y.W. Hwang, Centrifugal force induced dynamics of a motorized high-

speed spindle, Int. J. Adv. Manuf. Technol. 30 (2006) 10–19. 

https://doi.org/10.1007/s00170-005-0032-y. 

[107] J. Jedrzejewski, W. Kwasny, Modelling of angular contact ball bearings and axial 

displacements for high-speed spindles, CIRP Ann. 59 (2010) 377–382. 

[108] I. Zverv, Y.-S. Pyoun, K.-B. Lee, J.-D. Kim, I. Jo, A. Combs, An elastic 

deformation model of high speed spindles built into ball bearings, J. Mater. Process. 

Technol. 170 (2005) 570–578. 

[109] G.H. Bae, C.H. Lee, J.H. Hwang, S.W. Hong, Evaluation of axial displacement in 

high-speed spindle supported by angular contact ball bearings, in: Proc. KSPE 

Autumn Conf., 2011: pp. 299–300. 

[110] E. Budak, Y. Altintaş, E.J.A. Armarego, Prediction of milling force coefficients 

from orthogonal cutting data, J. Manuf. Sci. Eng. Trans. ASME. 118 (1996) 216–

224. https://doi.org/10.1115/1.2831014. 

[111] Y. Altintas, Manufacturing automation: metal cutting mechanics, machine tool 

vibrations, and CNC design, Cambridge university press, 2012. 

[112] G. V Stabler, The chip flow law and its consequences, Adv. Mach. Tool Des. Res. 

5 (1964) 243–251. 

[113] R.H. Brown, E.J.A. Armarego, Oblique machining with a single cutting edge, Int. 

J. Mach. Tool Des. Res. 4 (1964) 9–25. https://doi.org/10.1016/0020-

7357(64)90006-X. 

[114] E. Budak, Analytical models for high performance milling. Part I: Cutting forces, 

structural deformations and tolerance integrity, Int. J. Mach. Tools Manuf. 46 



182 

 

(2006) 1478–1488. 

[115] G. Urbikain, L.N.L. De Lacalle, F.J. Campa, A. Fernández, A. Elías, Stability 

prediction in straight turning of a flexible workpiece by collocation method, Int. J. 

Mach. Tools Manuf. 54 (2012) 73–81. 

[116] H. Manikandan, T.C. Bera, A turning simulation environment for geometric error 

estimation of thin-walled parts, Int. J. Adv. Manuf. Technol. 119 (2022) 789–809. 

[117] E. Budak, Y. Altintas, Analytical prediction of chatter stability in milling—part I: 

general formulation, J. Dyn. Syst. Meas. Control. 120 (1998) 22–30. 

[118] T. Insperger, G. Stepan, Semi-Discretization for Time-Delay Systems Stability and 

Engineering Applications, 1st ed., Springer-Verlag New York, 2011. 

[119] C. Eksioglu, Z.M. Kilic, Y. Altintas, Discrete-time prediction of chatter stability, 

cutting forces, and surface location errors in flexible milling systems, J. Manuf. Sci. 

Eng. 134 (2012). 

[120] S.D. Merdol, Y. Altintas, Mechanics and Dynamics of Serrated End Mills, ASME 

Int. Mech. Eng. Congr. Expo. . (2002) 337–342. 

https://doi.org/10.1115/IMECE2002-39114. 

[121] E. Budak, An analytical design method for milling cutters with nonconstant pitch 

to increase stability, part I: theory, J. Manuf. Sci. Eng. 125 (2003) 29–34. 

[122] E. Budak, Y. Altintas, Analytical prediction of chatter stability in milling—part II: 

application of the general formulation to common milling systems, J. Dyn. Syst. 

Meas. Control. 120 (1998) 31–36. 

[123] P. Bari, Z.M. Kilic, M. Law, P. Wahi, Rapid stability analysis of serrated end mills 

using graphical-frequency domain methods, Int. J. Mach. Tools Manuf. 171 (2021) 

103805. https://doi.org/10.1016/j.ijmachtools.2021.103805. 

[124] E. Ozturk, E. Budak, Modeling of 5-axis milling processes, Mach. Sci. Technol. 11 

(2007) 287–311. https://doi.org/10.1080/10910340701554808. 

[125] E. Budak, E. Ozturk, L.T. Tunc, Modeling and simulation of 5-axis milling 

processes, CIRP Ann. - Manuf. Technol. 58 (2009) 347–350. 

https://doi.org/10.1016/j.cirp.2009.03.044. 

[126] MAL Inc, CUTPRO V15.0, Advanced Machining Simulation Software ©MAL Inc, 

(n.d.). https://www.malinc.com/. 

[127] E. Budak, An analytical design method for milling cutters with nonconstant pitch 

to increase stability, part 2: application, J. Manuf. Sci. Eng. 125 (2003) 35–38. 

[128] F. Tehranizadeh, K.R. Berenji, S. Yıldız, E. Budak, Chatter stability of thin-walled 

part machining using special end mills, CIRP Ann. (2022). 

[129] S.D. Merdol, Y. Altintas, Multi frequency solution of chatter stability for low 

immersion milling, J. Manuf. Sci. Eng. 126 (2004) 459–466. 

[130] T. Insperger, G. Stépán, P. V Bayly, B.P. Mann, Multiple chatter frequencies in 

milling processes, J. Sound Vib. 262 (2003) 333–345. 

[131] M.A. Davies, J.R. Pratt, B. Dutterer, T.J. Burns, Stability prediction for low radial 

immersion milling, J. Manuf. Sci. Eng. 124 (2002) 217–225. 



183 

 

[132] E. Budak, L.T. Tunç, Identification and modeling of process damping in turning 

and milling using a new approach, CIRP Ann. 59 (2010) 403–408. 

[133] E. Budak, L. Kops, Improving productivity and part quality in milling of titanium 

based impellers by chatter suppression and force control, CIRP Ann. 49 (2000) 31–

36. 

[134] O. Özşahin, A. Ertürk, H.N. Özgüven, E. Budak, A closed-form approach for 

identification of dynamical contact parameters in spindle–holder–tool assemblies, 

Int. J. Mach. Tools Manuf. 49 (2009) 25–35. 

[135] J.M. de Mul, J.M. Vree, D.A. Maas, Equilibrium and Associated Load Distribution 

in Ball and Roller Bearings Loaded in Five Degrees of Freedom While Neglecting 

Friction—Part II: Application to Roller Bearings and Experimental Verification, J. 

Tribol. 111 (1989) 149–155. https://doi.org/10.1115/1.3261865. 

[136] T. Harris, M. Kotzalas, N. Michael, Roller Bearing Analysis: Advanced Concepts 

of Bearing Technology, (2007). 

[137] S.-W. Hong, C.-S. Choi, C.-H. Lee, Effects of Bearing Arrangement on the 

Dynamic Characteristics of High-speed Spindle, J. Korean Soc. Precis. Eng. 30 

(2013) 854–863. 

[138] B. Fang, K. Yan, J. Hong, J. Zhang, A comprehensive study on the off-diagonal 

coupling elements in the stiffness matrix of the angular contact ball bearing and 

their influence on the dynamic characteristics of the rotor system, Mech. Mach. 

Theory. 158 (2021) 104251. 

[139] B. Bossmanns, J.F. Tu, A thermal model for high speed motorized spindles, Int. J. 

Mach. Tools Manuf. 39 (1999) 1345–1366. 

[140] B. Bossmanns, J.F. Tu, A power flow model for high speed motorized spindles—

heat generation characterization, J. Manuf. Sci. Eng. 123 (2001) 494–505. 

[141] T.L. Schmitz, G.S. Duncan, Three-component receptance coupling substructure 

analysis for tool point dynamics prediction, (2005). 

[142] H.N. Özgüven, Structural modifications using frequency response functions, Mech. 

Syst. Signal Process. 4 (1990) 53–63. 

[143] A. Ertürk, H.N. Özgüven, E. %J I.J. of M.T. Budak, Manufacture, Analytical 

modeling of spindle–tool dynamics on machine tools using Timoshenko beam 

model and receptance coupling for the prediction of tool point FRF, 46 (2006) 

1901–1912. 

 

 

 

 

 


