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ABSTRACT

MECHANICS, DYNAMICS, AND STABILITY OF ORTHOGONAL TURN-
MILLING OPERATION

KAVEH RAHIMZADEH BERENJI

Manufacturing Engineering, Ph.D. Dissertation, June 2022

Thesis supervisor: Prof. Dr. Erhan Budak

Keywords: Turn-milling, Chatter Stability, Special Tools, Structural Dynamics

As the demand for higher quality and productivity increases in industry, multi-tasking
machine tools attract increasing attention due to their ability to produce complex parts in
a single set-up. The mill-turn machining center is a multi-tasking machine tool capable of
performing a variety of machining operations simultaneously, including turning, drilling,
boring, and multi-axis milling. As a multi-axis machining operation, turn-milling is a
combination of milling and turning processes, in which the material is removed as a result
of simultaneous rotations of the cutter and workpiece and translational feed of the tool.
While turn-milling offers several advantages in manufacturing large-scale parts with hard-
to-cut materials, it presents specific challenges in terms of surface form errors, process
mechanics, and dynamics. Improper selection of process parameters, tool geometry, and
eccentricity may result in undesired form errors and excessive cutting forces leading to
workpiece, tool, and machine component failures. Moreover, self-excited chatter vibration
may occur, leading to poor surface finish and tool failure.

In this study, process kinematics and cutter-workpiece engagement are modeled for
orthogonal turn-milling. A novel mathematical uncut chip geometry model for the side
and minor edges of the tool is presented. Based on the chip geometry and cutting
kinematics, a guideline is developed to avoid surface form errors, namely cusps, while
increasing productivity. The cutting forces resulting from minor and side cutting edges are
calculated analytically and verified through experiments. The effect of eccentricity on
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cutter-workpiece engagement and cutting forces is presented.

A fully analytical model is developed to predict the stability of orthogonal turn-milling in
the discrete-time and frequency domains for the first time in the literature. In this regard,
the regenerative dynamic chip thickness in feed, cross-feed, and axial are modeled, and
the corresponding directional coefficients are formulated mathematically. A novel
approach is proposed to calculate the varying time delay caused by the simultaneous
rotation of the tool and workpiece. The stability diagrams are computed by solving the
coupled time-varying delayed differential equations using semi-discretization and zero-
order approximation methods. The effect of eccentricity on process stability is discussed
for both end mills and inserted tools. The process parameter selection approach is
proposed to achieve the highest stable depth of cut and cusp-free surface.

The verified models for the mechanics and dynamics of orthogonal turn-milling are
generalized to implement serrated and crest-cut tools. The cutting forces are calculated
analytically using the updated cutter-workpiece engagement model and verified
experimentally. The stability of orthogonal turn-milling using crest-cut tools is predicted
in both the discrete-time and frequency domains for the first time in the literature. Another
novel study is performed to study the effectiveness and performance of standard, variable-
pitch, and crest-cut tools on chatter suppression in milling thin-walled parts. The novel
stability maps are generated based on varying stability limits caused by in-process
workpiece dynamics. Using the obtained stability maps, the performance of different
cutting strategies is compared, considering productivity and surface finish quality.

As the main contributors to the stability of a process, the dynamics of spindle and
workpiece assemblies are modeled analytically and verified through experiments. The
spindle shaft dynamics are modeled based on receptance coupling theory. Then a
predictive bearing dynamics model is coupled with the shaft’s model using the structural
modification technique. The model can predict spindle dynamics at different speeds. A
similar approach is used to model in-process cylindrical workpiece dynamics considering
contact mechanics.

This thesis proposes comprehensive physics-based digital models of orthogonal turn-
milling that predict the most productive cutting conditions with improved part quality for
different types of tools. The presented models encompass the process parameters as well
as the machine tool structural dynamics. The presented models can be used in industry
either at the process planning stage to avoid costly physical trials or during the process for
monitoring and fault-detection purposes.



OZET

DIK FREZEYLE TORNALAMA ISLEMININ MEKANIGI, DINAMIGI, VE
KARARLILIGI

KAVEH RAHIMZADEH BERENJI

Uretim Miihendisligi, Doktora Tezi, Haziran 2022

Tez Danismani: Prof. Dr. Erhan Budak

Anahtar Kelimeler: Frezeyle tornalama, Tirlama kararliligi, Ozel takimlar, Yapisal

Dinamik

Endiistride daha ytiksek kalite ve iiretkenlik talebi arttik¢a, cok amaglh takim tezgahlari,
tek bir kurulumda karmagsik parcalar iiretebilme yetenekleri nedeniyle artan bir ilgi
gormektedir. Freze-tornalama (mill-turn) isleme merkezleri, tornalama, delme, delik
isleme ve cok eksenli frezeleme dahil olmak {izere cesitli talagli imalat operasyonlarini
aynm1 anda gercgeklestirebilen ¢ok amagh bir takim tezgahidir. Cok eksenli bir talag
kaldirma islemi olarak taninan frezeyle tornalama (turn-milling), kesici ve is pargasinin
aymi anda dondiiriilmesi ve takimin ilerlemesinin bir sonucu olarak malzemenin
kaldirildig1 frezeleme ve tornalama islemlerinin bir kombinasyonudur. Frezeyle
tornalama, kesilmesi zor malzemelerle biiylik Olgekli parcalarin iiretiminde cesitli
avantajlar sunarken, yilizey bi¢imi hatalari, proses mekanigi ve dinamikler agisindan belirli
zorluklar igerir. Proses parametrelerinin, takim geometrisinin ve eksantrikliin yanlis
secilmesi, istenmeyen kalite hatalarina ve is pargasi, takim ve makine arizalarina yol
acabilecek asir1 kesme kuvvetlerine neden olabilir. Ayrica, zayif ylizey kalitesine ve takim
kirilmasina yol acan, tirlama titresimi meydana gelebilir.

Bu ¢alismada, dik torna frezeleme i¢in proses kinematigi ve kesici-ig parcast kesigimi
(cutter-workpiece engagement) modellenmistir. Takimin yan ve alt kenarlar1 i¢in yeni bir
matematiksel kesilmemis talas geometrisi modeli sunulmustur. Talas geometrisi ve kesme
kinematigine dayali olarak, iiretkenligi arttirirken yiizey form hatalarindan, yani
cikintilardan kag¢inmak i¢in matematiksel bir metot gelistirilmistir. Alt ve yan kesme
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kenarlarindan kaynaklanan kesme kuvvetleri analitik olarak hesaplanip ve deneylerle
dogrulanmistir. Eksantrikligin kesici-is parcasi kesigimi ve kesme kuvvetleri {izerindeki
etkisi sunulmustur.

Dik frezeyle tornalamanin kararlilik modeli literatiirde ilk kez ayrik zaman ve frekans
alanlarinda tam analitik bir model gelistirilmistir. Bu baglamda, 3 boyuttaki rejeneratif
dinamik talas kalinlig1 modellenme ve karsilik gelen yon katsayilari matematiksel olarak
formiile edilmistir. Takim ve is pargasinin ayn1 anda donmesinden kaynaklanan degisen
zaman gecikmesini hesaplamasi i¢in yeni bir yaklagim Onerilmistir. Kararlilik
diyagramlari, kismi-ayristirma ve sifir dereceli yaklasim yontemleri kullanilarak
birlestirilmis zamanla degisen gecikmeli diferansiyel denklemlerin ¢oziilmesiyle
hesaplanmistir. Eksantrikligin proses stabilitesi iizerindeki etkisi hem parmak frezeler
hem de uglu takimlar i¢in tartistlmistir. Islem parametresi secim yaklasimi, en yiiksek
kararli kesme derinligini ve hatasiz yiizey elde etmek icin Onerilmistir. Dik frezeyle
tornalama mekanigi ve dinamigi i¢in dogrulanmis modelleri, tirtikli ve dalgali yiizeyli
(Crest-Cut) takimlara uygulama amaciyla genellestirilmigtir. Kesme kuvvetleri,
giincellenmis kesici-is parcast kesisim modeli kullanilarak analitik olarak hesaplanip
deneysel olarak dogrulanmistir. Crest-cut takimlar1 kullanarak dik frezeyle tornalama
kararliligi, literatiirde ilk kez hem ayrik zaman hem de frekans alanlarinda tahmin
edilmektedir. Ince cidarli parcalarin frezelenmesinde tirlama bastirmada standart,
degisken aralikli ve crest-cut takimlarin etkinligini ve performansini incelemek i¢in baska
bir yeni calisma gerceklestirilmigtir. Yeni stabilite haritalari, proses i¢i ig pargasi
dinamiklerinin neden oldugu degisken stabilite limitlerine dayali olarak olusturulmustur.
Elde edilen stabilite haritalart kullanilarak, verimlilik ve yiizey kalitesi dikkate alinarak
farkli kesme stratejilerinin performansi karsilastirllmigtir. Bir siirecin kararliligina ana
katkida bulunanlar olarak, is mili ve is pargast diizeneklerinin dinamikleri analitik olarak
modellenir ve deneylerle dogrulanir. Is mili dinamigi, Receptances Coupling teorisine
dayal1 olarak modellenmistir. Daha sonra, yapisal modifikasyon teknigi kullanilarak saft
modeli ile tahmini bir yatak dinamigi modeli birlestirilmistir. Model, farkli hizlarda is mili
dinamiklerini tahmin edebilir. Temas mekanigi dikkate alinarak proses esnasindaki
silindirik is par¢asi dinamigini modellemek icin benzer bir yaklasim kullanildu.

Bu tez, farkl tipteki takimlar icin gelistirilmis parca kalitesi ile en verimli kesme
kosullarin1 6ngoéren kapsamli fizik tabanli dijital dik torna frezeleme modelleri
onermektedir. Sunulan modeller, proses parametrelerinin yani sira takim tezgahi yapisal
dinamiklerini de kapsamaktadir. Bu modeller, endiistride maliyetli fiziksel denemelerden
kaginmak, siire¢ planlama agsamasinda ya da siire¢ boyunca izleme ve hata tespiti amaciyla
kullanilabilir.
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1. INTRODUCTION

Machining is a subtractive manufacturing process that removes the material from the bulk
material to achieve net-shape parts in different industries. Machining operations are
widely used in manufacturing precise parts in automotive, die & mold, marine, aerospace,
and medical industries. Machining operations can be applied on different materials such
as various alloy steels, non-ferrous metals, composites, ceramics, plastics, and wood. The
material removal process is performed by a cutting tool penetrating the workpiece material
and removing the chips from the bulk material due to relative motion between the tool and
the workpiece. Depending on the relative motion between the tool and workpiece,
machining operations can be categorized as drilling, milling, turning, and boring. A
rotating tool removes the material with multiple cutting edges in milling and drilling
operations. However, a stationary single-point or multi-point cutter removes the material
from a rotating cylindrical workpiece in turning and boring operations. During milling
operation, each cutting edge of the milling tool periodically enters and exits the workpiece
leading to intermittent cutting and short (discontinuous) chips, as seen in Figure 1.1b. On
the other hand, turning and boring operations produce continuous and long chips due to
the continuous contact of the cutting edge and workpiece (see Figure 1.1a). From the
industrial and feasibility point of view, short and discontinuous chips are preferred in the

industry due to their convenience in evacuation, transportation, and storage.

N\

a) b)

Figure 1.1: a) Continuous chip produced during turning, b) Discontinuous chip produced

during milling operation.
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Figure 1.2: a) Axis Structure of Mori Seiki Mill-turn center [1], b) Mori Seiki NTX 2000

mill-turn center.

Usually, for turning and boring cylindrical parts, CNC lathes are used. 3-axes milling
centers are used for machining prismatic parts, while 5-axis milling centers are used for
more complex surfaces. However, due to the limitations in the number of independent

axes, each machining center has a specific application and limited performance.

Multi-tasking machining centers introduce significant practical advantages over
conventional machining centers in terms of productivity and finished part precision due
to their capability to perform multiple machining operations in a single set-up without
changing the workpiece. As a multi-tasking machining center, a mill-turn machining
center can perform several machining operations such as turning, milling, multi-axis

milling, and parallel machining operations.

Turn-milling, as a multi-axis machining operation, is an emerging machining technology
in which both turning and milling spindles are actively employed to shape the desired final
geometry. Turn-milling can be carried out in multi-tasking machining centers as a
combination of milling and turning operations simultaneously. While the workpiece is
clamped to a rotating chuck during turn-milling process, a milling tool mounted on a high-
speed milling spindle carries out the material removal operation by adding multi-axes feed
motions. In addition, the tool can be positioned in different Cartesian coordinates to define
the axial depth of cut and cutter-offset value, which will be discussed extensively in the
following sections. As a result, the final workpiece produced by turn-milling has a
cylindrically symmetric cross-section similar to the one manufactured by turning

operation.



Depending on the machine tool configuration and axes limitations, there exist various
turn-milling set-ups where the relative position of rotational axes of the milling tool and
workpiece are different. The most common turn-milling process is called orthogonal turn-
milling, where the rotation axis of the milling tool is perpendicular to the rotation axis of
the workpiece (Figure 1.3a), and the chip is removed by the side and bottom edges of the
milling tool. In this configuration, a certain eccentricity between tool and workpiece axes

can be defined, which alters process forces and stability, thus increasing tool life.

The second configuration is tangential turn-milling, where the milling tool is placed at the
tangent to the workpiece periphery (Figure 1.3b). As a result, the chip is formed only by
the side edge of the milling tool as opposed to orthogonal turn-milling. Another possible
configuration in which the rotational axes of the milling tool and workpiece are parallel
to each other is called co-axial turn-milling (Figure 1.3c), and the side edge of the tool
removes the chip. Apart from these three most common turn-milling configurations,
depending on the machine tool configuration and control, the relative position between
the milling tool and workpiece can be continuously changed (i.e., the addition of tilt angle)
along the toolpath, and complex chip geometry is generated as a result of the Cutter-

Workpiece Engagement (CWE) geometry.

Figure 1.3: Three possible turn-milling configurations; a) Orthogonal, b) Tangential, c)

Co-axial turn-milling processes.

The intermittent nature of cutting in turn-milling reduces the contact between the cutting
edge of the milling tool and workpiece significantly, which lets the milling tool cool down
until the next rotation period. A tool wear comparison of two turn-milling configurations
with conventional turning operation is performed by Berenji et al. [2], and shown in Figure
1.4. Based on the results given in [2], it is deduced that despite the high number of inserts
required for milling tool, turn-milling operations present an average of 35% lower cost in

roughing and finishing both hard-to-cut materials.
3
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Figure 1.4: Tool life comparisons at different configurations and cutting strategies [2].

In addition to higher tool life, turn-milling offers easier chip evacuation because of
producing discontinuous chips, lower workpiece temperature, and reduced surface
roughness compared to single-point turning operation when the process parameters are
defined accurately. Furthermore, during manufacturing large-scale parts with hard-to-cut
material where the cutting speed is decreased to achieve high process rigidity, the turn-

milling operation can achieve the required cutting speed and productivity.

In this study, the most commonly used configuration, orthogonal turn-milling, where the
tool axis is perpendicular to the workpiece axis, is considered. While the workpiece is
clamped on a chuck rotating at a particular speed, the milling tool cuts the workpiece with
its specific rotational speeds while having translational feed along the workpiece axis (see
Figure 1.5). Furthermore, the offset between the tool and workpiece, called eccentricity,

provides several versatility and limitations to the operation.

Based on the advantages mentioned above, turn-milling provides several superiorities
compared to conventional turning. However, in some cases, the material removal rates
(MRR) are competitive. Nevertheless, orthogonal turn-milling introduces more part

precision and productivity in manufacturing large-scale, thin-walled, or flexible parts.



Figure 1.5: General kinematics of orthogonal turn-milling operation.

For instance, orthogonal turn-milling has been reported as an effective operation in
manufacturing combustion and compression casings used in the aerospace industry (see
Figure 1.6a). In addition, orthogonal turn-milling is used in the production of large-scale
and long crankshafts (see Figure 1.6b) with high productivity and lower dimensional
errors. Furthermore, orthogonal turn-milling is widely used in manufacturing spirals and
screw shafts used in various industries, as shown in Figure 1.6¢c. Since there is no
possibility of support in the middle of the shaft, higher workpiece speeds are not
achievable. The orthogonal turn-milling provides reasonable productivity and precision in
machining screw shafts. However, like other machining operations, the selection of
improper machining parameters leads to undesired surface quality, lower tool life, and

higher cutting forces and torque.

a)

B

Figure 1.6: a) Different type of casings produced by turn-milling [3], b) A large-scale

crankshaft produced by turn-milling (https://www.wfl.at/), c) Large-scale screw shaft

produced by turn-milling (https://www.wfl.at/).
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Moreover, erroneous parameter selection can result in self-exited chatter vibrations

leading to tool failure, low surface quality, and machine tool component damage.

In order to overcome the potential drawbacks and prevent surface and dimensional errors
in turn-milling, it is essential to profoundly understand the system's kinematics,
mechanics, and dynamics. Although there have been several works on the mechanics and
dynamics of turn-milling, a fully analytical approach including all the particular
parameters of turn-milling has not been studied. This thesis provides a general approach

to model the mechanics and dynamics of orthogonal turn-milling in any conditions.

Firstly, a general kinematics model is proposed for the orthogonal turn-milling process
based on the cutting geometry and CNC programming parameters. Then an analytical
cutter-workpiece engagement (CWE) model is presented to predict the uncut chip
geometry resulting from the tool's side and minor cutting edges. The effect of cutting
parameters such as eccentricity and stepover on CWE is investigated through simulations.
Based on the proposed CWE model, a guideline is proposed to achieve a cusp-free surface
while increasing the MRR in orthogonal turn-milling. This guideline is based on the
cutting geometry and relates eccentricity and stepover through conditional formulations.
Beyond the given guideline for the selection of eccentricity and stepover, unfavorable

surface and chip geometries can be seen during the process.

Next, CWE is used to calculate the cutting forces, torque, and cutting power for various
cases. Cutting forces affect the part accuracy and energy consumption during the
operation. Excessive axial forces in turn-milling can lead to poor part accuracy due to the
deflections and form errors resulting from axial forces. In addition, tool breakage and
overloading of the machine tools can be seen if the cutting forces are high. Therefore, an
analysis is presented to select the cutting parameters properly to avoid excessive cutting

forces and cusp formation simultaneously.

Being one of the significant and challenging problems in machining, self-excited chatter
vibrations must be avoided to prevent excessive cutting forces, tool failure, and poor part
quality. Stability diagrams calculated based on the structural dynamics of the system and
process parameters are the best way to predict chatter-free conditions. Due to the complex
CWE and additional and specific process parameters in orthogonal turn-milling, stability
calculation becomes more complicated compared to that of conventional 2D milling. One

of the significant differences compared to conventional milling is the variation of
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instantaneous depth of cut within the CWE in orthogonal turn-milling. This variation trend
depends on the tool and workpiece geometries and the eccentricity, which alters the uncut
chip volume and resultant forces. Moreover, the minor edge of the tool is engaged in the
cutting process leading to higher chip load and different force distribution in all directions.
Another significant difference is the existence of additional time delay contributed to the
system’s dynamics by the simultaneous rotation of the tool and the workpiece, resulting

in time-varying delay.

Having all said, the stability of orthogonal turn-milling becomes more sophisticated than
conventional milling. In this regard, dynamic chip thickness and dynamic cutting forces
that emerged in orthogonal turn-milling are evaluated in a three-dimensional frame. The
varying time delay at each angular position of the tool and its distribution along the tool
axis is modeled by proposing a novel approach. The dynamics of the system, including
the tooling and workpiece systems and their substructures, are modeled in modal space
and included in regenerative dynamic chip thickness definitions. The periodic dynamic
cutting forces generated at the tool-workpiece engagement zone are combined with the
structural dynamics of the machine tool, and the process dynamics are modeled as
periodic, time-varying, delayed-differential equations (DDE). The differential equations
are coupled and solved in both discrete-time and frequency domains. A time-marching
and iterative approach is employed to calculate the stability lobes in the discrete-time
domain solution by taking the varying time delay characteristic of the system. In addition,
the frequency domain solution is performed using Fourier series expansions to evaluate
the critical stable depth of cut for the first time in the literature. The proposed models are
validated throughout experiments for various cutting conditions and materials. A
guideline is proposed to achieve higher productivity and stable cut with a cusp-free cutting

surface.

However, the productivity of turn-milling process is limited by the stability limits for each
condition. In order to increase productivity, the stability limits can be increased by using
special tools such as variable-helix, variable-pitch, serrated, and crest-cut tools, which are
shown in Figure 1.7. Features of the milling tool such as the number of cutting teeth, helix
angle, and shape of cutting edges strongly affect the process stability, and thus part quality
and productivity. Special end mills can increase stability with the help of varying pitch

and helix angles compared to standard end mills. The characteristics of variable-helix and
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variable-pitch tools on process stability and cutting forces have been discussed extensively
in literature survey sections. This part of the thesis focuses on developing models to

implement serrated and crest-cut tools in orthogonal turn-milling.

Variable-pitch Variable-helix Serrated Crest-cut

Figure 1.7: Four different types of special end mills.

The serrated tools offer lower cutting forces due to the discontinuous CWE along the tool
axis because of the serration geometries on the cutting edges. This phenomenon
significantly increases the process stability and decreases the cutting forces, torque, and
power. Therefore, in roughing operations, i.e., in the machining of screw shafts, serrated
tools can introduce superiorities in terms of cutting forces and process stability compared

to standard end mills.

As another type of special end mill, crest-cut end mills have non-constant helix angles
with harmonic variations along their axis, unlike variable helix tools with constant helix
angles on each tooth. Considering the benefits proposed by variable pitch and helix tools
in chatter suppression, crest-cut end mills encompass their effects simultaneously,
suppressing chatter with better performance. Therefore, implementing crest-cut tools in
turn-milling can offer a higher stable depth of cuts in machining the screw shafts and

crankshafts where the flank milling is required.

In this regard, the mechanics model proposed for standard milling tools is extended to
calculate the cutting forces resulting in orthogonal turn-milling using serrated and crest-
cut tools. The models are experimentally validated for several conditions. Furthermore,
the turn-milling stability model is also extended to calculate the specific distributed delays
and CWE of crest-cut tools in orthogonal turn-milling. The stability lobes are estimated
in discrete-time and frequency domains for the first time in the literature, and several

cutting experiments validate the results.

In addition to turn-milling operations, the stability of crest-cut tools is investigated in thin-
8



walled structures and compared to that of variable-pitch and regular end mills. The thin-
walled structures like combustion casings are widely manufactured using the orthogonal
turn-milling process. Therefore, the stability analysis on a simple thin-walled structure
while 2D milling is the preliminary work to apply special tools in rotating thin-walled

casings in turn-milling operation.

In this regard, the in-process workpiece (IPW) dynamics are calculated based on the
determined cutting conditions. The tuned variable-pitch and crest-cut tools are designed
according to the structural dynamics of the system. A stability map for the structure is
generated based on IPW dynamics. The performance of each tool is investigated
throughout the stability maps and is validated by experiments for different cutting

strategies.

Based on the previously mentioned background, it is an undeniable fact that the tooling
system (tool-holder-spindle assembly) and workpiece system (workpiece and clamping
unit) have a deterministic role in the stability of the process. Therefore, it is essential to
understand the effective parameters of structural dynamics of a machine tool. Although
there are plenty of studies on predicting the tooltip dynamics according to different tool-
holder assembly designs, in this part of the present thesis, the dynamics of a spindle are
studied for improved rigidity. Spindle-bearing assembly is the most flexible component
in machining centers, and its dynamics directly affect the performance of the machines.
Spindle geometry (shaft geometry, bearing dimensions, etc.) and the location of the
bearing and their configurations are the crucial parameters that determine the spindle
dynamics. Therefore, the selection of the optimum design parameters is the key factor for
the spindle design procedures. This study offers a design methodology for the spindle-
bearing assembly for the optimized spindle dynamics. In this method, the spindle shaft is
first modeled using the analytical solution of Timoshenko beam and receptance coupling
methods. Then, bearing dynamics are included using the structural modification
technique. Using the developed analytical model, the effect of each design parameter on
spindle dynamics is analyzed. Simulations show that the proposed method and the
sensitivity analysis can be efficiently used to select the optimum spindle-bearing assembly
configuration. The workpiece dynamics is the next influential structure in the stability of
the process. It is vital to determine the in-process workpiece dynamics of the flexible and

slender workpiece during turn-milling operation. Since it is not possible to measure the
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workpiece dynamics during the process, it must be calculated analytically; however, the
clamping stiffness affects the workpiece dynamic properties. Several analytical methods
are proposed to predict the workpiece dynamics clamped on the rotating chuck. The

predictions are validated through experiments.
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2. LITERATURE SURVEY

The research on turn-milling began in the early 1990, and the researchers first focused on
the tool wear and surface finish of hard-to-cut materials. Later, researchers began
investigating the different aspects of this process, such as chip geometry and force
predictions, CAM, stability analysis, and temperature predictions. The literature survey

classifies the references according to the sections of the thesis.

2.1. Surface and Geometrical Errors in Turn-milling

As the first authors on the turn-milling process, Schulz et al. [4] conducted the co-axial
turn-milling and reported the surface roughness of below 5um for alloyed bearing steel.
Later, the author conducted another experiment of co-axial turn-milling on hardened steel
(>62HRC) using CBN cutting tools [5]. They achieved surface roughness below 10um
depending on the tool's feed rate and wear width. However, the radial depth of the cut was
kept considerably low during the experiments. Choudhury et al. [6] were the next group
who investigated the surface roughness by implementing non-eccentric orthogonal turn-
milling on brass and mild-steel cylinders. The surface finish was measured for different
tool rotational speeds and linear feed. They concluded that the surface roughness would
decrease by 10 times by increasing the rotational speed and reducing the linear feed rate.
Another experimental study was conducted by Choudhury et al. [7] four years later on the
surface finish of mild steel workpiece by orthogonal turn-milling. They conducted an
empirical analysis of non-eccentric orthogonal turn-milling for different cutter diameters,
depth of cut, and workpiece rotational speed values. The main conclusions of this work
are that increasing the depth of the cut will deteriorate the surface finish, while increasing
the cutter diameter will enhance the surface finish. However, the workpiece speed will
decrease the surface roughness until a limit (10 rpm) and then increase. The surface

roughness values for these studies are below the maximum of 4pm.

Ekinovic et al. [8] conducted high-speed eccentric orthogonal turn-milling experiments
on hardened and ductile steel and compared them to hard turning for equal MRR and axial

feed. The cutting speed was high, but the radial and axial depth of cut was kept low. They
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obtained better surface roughness for turn-milling in all trials.

Experimental work was conducted by Cai et al. [9] investigating the effect of eccentricity
on surface roughness. The authors stated that when the eccentricity is equal to the cutter
radius, the effective cutting edge is maximum, and this will decrease the surface
roughness. The same research group conducted another research work that focused on the
effect of eccentricity by Uysal et al. [10] and Karaguzel et al. [11,12]. Both articles utilized
the normal and wiper inserts and compared their effect on the surface finish of orthogonal
turn-milling components of AISI 1050 steel. They concluded that the wiper inserts present
better surface quality than standard inserts. However, the surface roughness has an

ascending manner until a critical value and then decreases.

The first attempt to model the surface topology and roughness analytically was made by
Yuan et al. [13]. The formulation for residual material left regarding tool minor edge
geometry, nose radius, and residual height was modeled. Similar work was performed by
Zhu et al. [14]Jon modeling the surface topology based on cutting parameters with
experimental validations. In the case of tangential turn-milling, Savas and Ozay [15] were
the first to perform experiments on this process. They investigated the effect of depth of
cut, feed rate, and rotational speeds on surface roughness values for AISI 1040 steel. They
obtained very low surface roughness below 1um. The same team conducted two other
research works on tangential turn-milling of two different workpiece materials and

measured the surface roughness in the axial direction [16,17].

In another work focused on surface texture simulation, Funke et al. [18] developed a
dexel-based MATLAB simulation that permits the prediction of surface texture generated
by tangential turn-milling. They performed the simulations for several tool corner
geometry and radii and compared them with the experimental results. The main purpose
of this work was to increase the coefficient of static friction by inclined tool tangential

turn-milling operation.

Karpuschewski et al. [19] studied the surface roughness of rolling bearings, hardened
100Cr6 workpiece with a minimum hardness of 58 HRC, machined by a tangential turn-
milling process with an inclined B-axis angle and compared with hard turning and
grinding. They conclude that tangential turn-milling meets their tribological needs and

friction coefficient range better than grinding and turning.
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Due to the kinematics of turn-milling process, geometric errors occur during on the cut
surface. The magnitude of these errors depends on several parameters such as tool

geometry, rotational speed ratio, diameter ratio, and eccentricity.

As a pioneer study, Schulz et al. [5] mentioned the existence of wavy and non-circular
surfaces and gave eccentricity suggestions to avoid these defects. Later, Neagu et al. [20]
investigated the cutting cinematics and tool functional geometry in detail using
geometrical analysis considering the eccentricity. The authors concluded that orthogonal
turn-milling is suitable for high productivity ranges, especially in roughing heavy shafts.
Wang et al. [21] developed a mathematical model to evaluate the scallops left on the

machined surface of orthogonal turn-milling using cutter-contact points.

In a comprehensive study, Karaguzel et al. [11,22] and Uysal et al. [10] discussed the
cylindrical error and formation of the cusp in orthogonal turn-milling operations as a
possible geometrical error. It is stated that the circularity error always happens due to the
kinematic of the process. The cusp height formula was also developed depending on the
eccentricity, tool and workpiece radius and rotational speed ratio and calculated for
different feed and eccentricity values to find an optimum value for lower cusp height and
higher MRR. As a geometrical error, Karpuschewski et al. [19] investigated the roundness
error for tangential turn-milling components and compared it with hard turning and
grinding. It is observed that despite the hard turning and grinding, which generated a
polygon-shaped workpiece and oscillation in roundness, tangential turn-milling produced
acceptable cylinders with considerably lower roundness error compared to other methods.
Jiang et al. [23] developed an analytical model which simulates the scallops and textures
formed by tangential turn-milling on machined parts based on the kinematic of the
process. Berenji et al. [24] investigated the cusp formation in orthogonal turn-milling
based on the analytical uncut chip geometry model. They developed an analytical model
that relates eccentricity and stepover based on the engagement of the minor edge of the
tool. They demonstrated that according to the proposed model, cups could be eliminated
while the productivity can approximately be doubled. The model outcomes were validated

through experiments.
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2.2. Kinematics and Mechanics of Turn-milling

In addition to experimental work, many researchers studied turn-milling theoretically
through modeling. As a first attempt, Filho [25] proposed an approach to model the chip
geometry without considering the axial feed of the tool in orthogonal turn-milling for a
specific engagement condition. A similar approach was followed by Karaguzel et al. [12]
for a different and specific cutter-workpiece engagement condition without considering
the effect of tool rotation, axial feed, and tool geometry. Zhu et al. [26] proposed a
different approach to model the uncut chip geometry based on boundary surfaces
mathematically. The chip model was verified by visual and analytical chip volume
comparisons in experiments. Qui et al. [27] proposed an approach for modeling the chip
geometry of round inserts during the orthogonal turn-milling process. This model was
based on the kinematic of the process and geometry of the round inserted tool. The
engagement model was evaluated by mapping the workpiece surface into grids along axial
and circumferential directions. Yonglin et al. [28] also proposed a model for the prediction
of the swept are in eccentric orthogonal turn-milling for inserted milling tools. The model
was based on the sweeping kinematics of cutting-edge and the rotational workpiece. The
model was limited to a specific range of eccentricities and not validated with any
experimental method. Later, Comak et al. [29] analyzed and verified the cutting forces of
orthogonal turn-milling in three dimensions. In this work, the chip geometry was extracted
using the MACHPro® software package for side cutting edge only, and the experiments
were performed for centric orthogonal turn-milling. Otalora-Ortega et al. [30] developed
a more detailed approach for modeling the uncut chip thickness for centric orthogonal
turn-milling. The authors proposed two different formulations for small and large depth
of cut regimens by neglecting the effect of minor edge length for zero eccentricity
conditions. Recently, Sun et al. [31] proposed a relatively complex and case-based
approach to predict the engagement boundaries of uncut chip in orthogonal turn-milling

without considering the minor edge geometry.

2.3. Dynamics and Stability of Turn-milling

As in any machining process, stability is an important factor in turn-milling operations for
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high-performance cutting and high part quality. As pioneer research works, Tobias et al
[32] and Tlusty et al. [33] introduced the self-excited regenerative chip formation
mechanism due to the relative vibrations between the flexible tool and workpiece, and
proposed a stability solution in frequency domain. Later, Merrit [34] modeled the
regeneration mechanism by a feedback control block, and employed Nyquist criterion to
predict the stability limits. Tlusty et al. [35] and Tobias et al. [36] investigated the non-
linear behavior of cutting in time domain when the tool lost contact due to excessive
vibration amplitudes. Minis and Yanushevsky [37] modeled the dynamics of milling by
two sets of coupled delayed differential equations with periodic coefficients. In their
study, the effect of spindle speed was considered using Floquet Theory, and the stability
was resolved using Nyquist Theory. For milling operations, Altintas and Budak [38]
solved the stability in frequency domain analytically by averaging the time periodic
directional factors. By using this solution technique, also known as zero order solution, it
is possible to predict the stability limits in milling operations with high radial immersions
in a rapid and accurate manner. Due to the time-varying nature of the cutting forces, taking
only the average component to determine the directional factors may not provide a high
level of accuracy. Stepan and Insperger [39,40] proposed a technique for discretizing
system equations within the system's time period by applying a semi-discrete method.
Basically, the semi-discretization method involves discretizing only the delayed states and
estimating them with piecewise constant functions, while leaving the non-delayed terms

unchanged.

There are very few studies in the development of a chatter stability model for turn-milling
operations. Zhu et al. [41] performed a study on chatter prediction during turn-milling of
a blade on a mill-turn machine tool by a ball end mill. The studies were focused on the 5-
axis machining of a thin-walled blade on mill-turn rather than a turn-milling operation
with a feed rate in the workpiece axis direction. Yan et al. [42] conducted a study on the
stability prediction of the orthogonal turn-milling process. The mechanistic model was
employed to evaluate the dynamic cutting forces. The chatter analysis was performed in
the frequency domain with constant damping constant for tool and workpiece. The
stability lobe diagram for this case was evaluated and compared for different workpiece-
tool diameter ratios; however, the effect of the minor cutting edge of the tool and effect of
other cutting parameters such as workpiece rotational speed and eccentricity was not

stated.
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In a more complete work by Comak et al. [43], the dynamic model for the orthogonal turn-
milling process by an end mill was presented. In this study, the dynamic chip thickness in
orthogonal turn-milling is considered with a time-varying delay which is periodic at tooth
passing periods due to the simultaneous rotation of tool and workpiece. The time-varying
delay is highly sensitive to tool and workpiece speeds and diameters. Several researchers

have previously studied the effect of time-varying delay in different machining processes.

Insperger and Stepan [44] solved the stability of turning with varying spindle speed, which
has varying time delays for different modulation frequencies and amplitudes, using the
semi-discretization method. Faassen et al. [45] predicted the chatter in milling using the
semi-discretization method by considering the trochoidal tool path model and periodic
time-varying delay approach. In this study, the periodic time delay is calculated based on
the feed motion of the tool. The authors concluded that the effect of varying time delay is
more distinguishable at low radial immersion conditions and causes considerable
differences between up-milling and down-milling conditions. In a similar approach, Long
et al. [46] proposed a dynamic milling model with variable time delay and solved the
stability of the system using the semi-discretization method. The effect of feed rate on 2D
milling operation is investigated using a varying time delay model. Based on the proposed
model, not much difference was seen between the stability lobes obtained with varying
and constant time delays. Zhao and Balachandran [47] and Balachandran [48] employed
a similar approach to predict the chatter in 2D milling. The nonlinear dynamics of the
process studied. It is concluded that for high-immersion conditions using constant delay
models is sufficient. However, the time-varying delay models must be used for low-
immersion conditions since the difference between stability lobes increases as the feed

rate increases.

In addition to time-varying and periodic delays, multiple delays have been studied in the
literature on parallel machining operations and special tools. Budak et al. [49] and Azvar
et al. [50] proposed a stability model for parallel turning operation based on multiple time
delays. Budak et al. [51] modeled the parallel milling operation using a multiple delay
approach. Due to the shared flexible workpiece between the turning and milling tools,

their time delays are coupled and affect the regenerative chip thickness mechanism.

A literature review of multiple and distributed delays occurring when using special tools

is presented in the following section.
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2.4. Stability of Special Tools

There have been several studies on the mechanics and dynamics of special end mills and
their benefits. Slavicek [52] analyzed the effects of irregular tooth pitch by extending
Tlusty’s chatter model [33] to cutters with non-constant pitch. In this study, the pitch
selection criteria are defined. Based on the chatter frequency, the optimal pitch to improve
cutting speed stability is determined. Based on the results, a specific pitch variation pattern
may not increase stability at all speeds. Tlusty et al. [53,54] studied the effects of irregular-
pitch end mills on the process dynamics in the following years. The employed methods
are based on time domain simulations which are computationally costly. Based on the
outcomes of these research works, milling tools with irregular pitch patterns were accepted
as an alternative way to suppress chatter vibrations and increase the stability limit of
milling processes. Shirase et al. [55] demonstrated that end mills with irregular pitch
angles could reduce surface error. Altintas et al. [56] predicted the stability lobes for
variable pitch cutters using the zero-order approximation by transforming the time-
varying directional cutting constants into constants. The solution is based on numerical
methods in the frequency domain. Budak [57,58] proposed an analytical method for the
selection of the optimal pitch variation in designing variable pitch cutters for improved
stability. An explicit formulation of the relation between the chatter stability limit and
pitch angle variation is established in this method, leading to a simple equation for
determining the optimal pitch angle. However, the variable-pitch cutters also introduce
some limitations. First, when chatter and tooth passing frequencies are considered, regular
pitch variation in variable pitch tools can only increase chatter stability in a limited spindle
speed range. Moreover, if the tooth passing frequency is higher than the critical mode
frequency, the optimum pitch variation increases drastically, resulting in irregular
overloading of some edges and chip evacuation problems. On the other hand, the pitch
value between other teeth becomes so small that it causes limitations in manufacturing
such tools [59]. As an alternative, Suzuki et al. [60] proposed a robust optimal design
methodology of variable pitch end mills with irregular pitch variation for enhanced
absolute stability limit. Besides its advantages, the irregular pitch variation can cause
unbalanced cutting forces and chip loads, leading to significant run outs and overloading.

An accurate scheme for the optimal selection of pitch angles for maximized stability of
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variable pitch tools was introduced by Comak and Budak [61] based on the previous

approach by Budak [57].

Based on the advantages of variable-pitch cutters, many works were carried out on
different types of special end mills, such as variable-helix, serrated, and crest-cut end
mills. In the 2000s, serrated end mills were the focus of academia and industry because of
their advantages in decreasing cutting forces in milling processes. Serrated tools, first
proposed by Strasman [62,63], have wavy flutes that produce periodic variations in local
radii and the lead angle. Because of the wavy edge shape, the serrated tools cannot be used
in finishing operations. Merdol and Altintas [64] studied the mechanics and dynamics of
serrated end mills with sinusoidal wave shapes on their clearance faces. The predictive
cutting force model and stability model in the time domain are verified experimentally. It
is deduced that the effectiveness of serrated tools on process stability depends on the feed
per tooth value. Dombovari et al. [65] investigated the effects of serrations on cutting
forces and the stability of the process. This study employed the semi-discretization method
to predict the stability lobes for serrated tools with distributed delays. Recently, a chatter
stability model for serrated tools in the frequency domain was proposed by Farahani et al.
[66], which introduces lower computational time compared to time-based solutions.
Tehranizadeh et al. [67,68] analyzed the mechanics and dynamics of milling operation
with serrated end mills with different serration wave shapes, such as sinusoidal,
trapezoidal, and circular. Serration shapes are optimized by considering cutting forces and
stability limits. In another study, Bari et al. [69] present an improved chip thickness model
for serrated end mills that considers the tooth's actual trochoidal path. Moreover, the model
incorporates the effect of radial run-out on teeth. Dombovari and Stepan [70] modeled
chatter stability of variable-helix end mills using the semi-discretization method and
investigated the performance of these tools in different spindle speeds. Hayasaka et al.
[71] proposed a method to design and optimize variable-helix end mills to suppress chatter
vibration. The proposed method, which is applicable to tools with high helix angles, was
verified experimentally. Turner et al. [72] used average helix values to establish an
equivalent variable-pitch model for variable-helix tools. The optimum values for helix and
pitch angles are obtained using evolutionary optimization algorithms. Variable-helix tools
are further analyzed by Sims [73] using Laplace transformation by taking the multi-
frequency and nonlinear cutting stiffness effects into account. However, these phenomena

can adversely affect the accuracy of the stability solution, despite the variable helix tool's
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ability to enlarge the stable zone.

As an additional type of special end mill, crest-cut end mills are characterized by non-
constant helix angles that harmonically change over their axis, as opposed to variable helix
tools that have a constant helix angle on each tooth. Crest-cut end mills encompass the
effects of variable-pitch and variable-helix tools simultaneously. However, unlike other
special end mills, these tools are not widely known. Their application in the industry has
been limited due to the low number of producers and a lack of guidance and instructions
for their design and application. Due to the continuous variation in the regeneration delay
caused by the periodic variations in helix and pitch angles along the cutting edges, crest-
cut tools have the ability to improve the process stability substantially, provided that they
are correctly designed. Nevertheless, there is very limited research on these tools, and
there is no information available on how to design wave geometries. The stability of crest-
cut tools was investigated by Dombovari et al. [74], employing the semi-discretization
method using distributed delays for the first time in the literature. It is concluded that large
stable lobes could be achieved using these tools at lower spindle speeds, while they lose
this effect at higher speeds [70]. As a technical brief to this article, Sanz et al. [75] used
the previous model for investigating different case studies without experimental
validations. Gomez et al. [76] extracted the geometry of crest-cut end mills using a 3D
scanner and predicted their dynamic behavior using time-domain simulations. In a recent
study, Tehranizadeh et al. [77] proposed a novel and precise approach to analytically
model the geometry of crest-cut tools. The cutting forces are calculated and verified
experimentally based on the proposed model. The stability of crest-cut tools is predicted
by employing the semi-discretization method. The authors proposed a procedure to select
the optimal geometrical parameters of crest-cut tools for improved stability. The
experimentally verified model showed that crest cut tools offers higher stability limits than

standard and variable-pitch tools.

There is limited amount of work in literature which focus on the stability of special tools
in machining thin-walled structures. Avoiding chatter vibrations in machining thin-walled
structures made from hard-to-cut materials have always been the focus of researchers and
engineers in academic and industry. Due to the low machinability of hard-to-cut materials,
lower cutting speeds are preferred when machining these materials. As a result, deeper

stability pockets which exist at high cutting speeds cannot be achieved. Variable pitch
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tools can be used at low cutting speeds to suppress chatter vibrations. However, due to the
existence of multiple dominant modes and varying in-process workpiece dynamics (IPW),
their use in milling thin-walled parts does not always provide a satisfactory solution for
chatter suppression. Crest-cut tools, on the other hand, provide chatter suppression
capability over a wider frequency and speed range [77], and can be highly effective for
suppression of chatter in milling of thin-walled parts. In machining of thin-walled
structures, workpiece dynamics have a substantial effect on the process stability. Thus, the
stability analysis must include the mass removal effect, i.e., in-process workpiece (IPW)

dynamics [78].

The varying dynamics of thin-walled structures are usually obtained using the finite
element (FE) method at cutter locations considering the material removal. Bravo et al.
[79] modeled the machined workpiece using FE analysis at each cutting depth along the
height, while Thevenot et al. [80] obtained the stability diagrams for various cutter
locations in the feed direction. For more complex part geometry and tool paths, Biermann
et al. [81] coupled the FE model of the workpiece with time domain simulation to predict
stable and unstable regions in the 5-axis milling of turbine blades. Budak et al. [78]
predicted the IPW dynamics for 5-axis milling of blades using the structural modification
technique, which was previously applied to plate-like structures by Alan et al. [82]. In this
approach, the dynamics response of the machined workpiece is updated by adding the
removed material in the opposite direction of the tool path using a structural modification
technique. In a different method, Tuysuz et al. [83] obtained the IPW dynamics by
replacing the removed mass with a fictitious substructure having opposite dynamics to the

removed material.

2.5. Spindle Dynamics

Chatter is an important problem in machining operations, and chatter-free machining
conditions can be determined using stability diagrams [38]. To determine the stability
diagrams tool point Frequency response function (FRF), which reflects the dynamics of
the whole spindle-holder-tool assembly at the tooltip, is required. Therefore, spindle
dynamics directly affect the process stability and part quality.

Both spindle dynamics and tool point FRF can be obtained experimentally using impact
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testing [84]. However, performing impact testing for each holder-tool combination is not
practical in production. Also, direct measurement does not always provide detailed
information on the component dynamics of the assembly. Additionally, measurements can
only be done on the existing systems, and thus cannot be used in spindle design
optimization. Another important limitation in the experimental approach is the effect of
operational conditions on spindle-bearing assembly dynamics. Under operational
conditions, bearing stiffness decreases due to centrifugal forces and gyroscopic effects
[85—87]. In addition, spindle dynamics also change with undercutting forces [88,89] and
thermal effects in operation [87]. Thus, both spindle dynamics and tool point FRFs deviate
from the dynamics at the machine's idle state, leading to inaccurate stability predictions at

high-speed machining operations [90].

To alter these limitations, Cao and Altintas [86] modeled the spindle-holder-tool assembly
using the Finite Element method and included the speed-dependent bearing dynamics in
the model. Later Xiong et al. [91] and Movahhedy and Mosaddegh [92] modeled spindle-
holder-tool assembly, including the gyroscopic effects, and showed the effect on both tool
point FRFs and chatter stability. As an alternative, Schmitz et al. [93,94] proposed a
receptance coupling technique for the tool point FRF prediction by coupling the
analytically calculated holder-tool dynamics with the experimentally identified spindle
dynamics. Later, Ertiirk et al. [95] modeled the complete spindle-holder-tool assembly
using the analytical solution of Timoshenko beam and receptance coupling technique and
obtained the tool point FRF analytically. The main advantage of the analytical approach
over the FEM is that it reduces the computational load considerably [95] and provides an

efficient way for the design optimization of spindles.

Since the spindle-bearing assembly is the most flexible component in high-speed
machining centers, its dynamics directly affect the performance of the machines.
Therefore, the design of the spindles plays a crucial role in the productivity of machining
centers. For that purpose, Ertiirk et al. [96] analyzed the effect of spindle design
parameters on both spindle tip and tool point FRFs using the analytical model. Cao et al.
[97] proposed a design methodology for the spindles for improved productivity based on
FEM.

In one of the current studies, Cao et al. [98] developed a dynamic model of the spindle in

order to find the range of the fit clearance in the front and rear bearings, which can ensure
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rotational accuracy and meet the design requirements for the minimization of error motion.
In another study, Wanga et al. [99], uses Genetic Algorithm to find out the best spindle
speed variation scheme to maximize the sum of all critical axial cutting depths on the
given interval of spindle speed. Although, they do not take the spindle structure into

account, they mainly consider removing chatter from the process.

As most influential parameter in spindle design, speed-dependent dynamics of bearing has
been extensively studied previously. Angular contact ball bearings (ACBB) can be used
in high-speed rotors and have the advantage of being able to carry loads in both the axial
and radial directions, thus they are used in spindles as well [85,100,101]. Angular contact
ball bearings are unique since they have some inherent properties. As an example, since it
can support only a load in one axial direction when used as an axial type, two or more are
used symmetrically arranged, and it is known that the arrangement method predominantly
affects the characteristics of the spindle [87,102]. In order to use it properly, an axial
preload must be applied. In recent high-speed spindles, a constant preload can be applied
regardless of heat generation or thermal expansion caused by it. Many methods are
adopted in which the support point of one bearing is movable using a ball bush or sleeve

[103].

The effect of bearing alignment direction on the dynamic characteristics of the spindle
was demonstrated by Li and Shin [87]. For the past several decades, there have been many
studies on the high-speed spindle system for machine tools to improve productivity and
machining quality. This has been studied as Senda et al. [104] observed the protrusion
according to the change of the rotational speed, whereas only approached it from the
viewpoint of thermal expansion. Protrusion was also considered in another study [105],
whereas it was also discussed in terms of displacement due to thermal deformation and
compensation. Recently, it has been discussed in [106—108] that the bearing characteristics
change due to the centrifugal force of the bearing itself or the gyroscopic effect can lead
to protrusion. However, it is difficult to adequately explain the physical phenomenon
inside the bearing by focusing on the change in the axial load. Bae et al. [109] presented
a basic analysis using a commercial bearing analysis program, and it was confirmed that
the protrusion occurred due to the rotational speed of the ring regardless of thermal

expansion.
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3. MECHANICS OF ORTHOGONAL TURN-MILLING OPERATION

3.1. Overview

Prediction of static cutting forces is the first step to investigating the characteristic of turn-
milling operation for process planning and optimization purposes. The static cutting forces
are used to calculate the cutting torque and power, which are critical for machine design,
process planning, and high-performance cutting. In addition, the predictive model of
cutting mechanics will be used to predict the stability of the process. For this purpose, a
comprehensive model is required to precisely predict the uncut chip geometry,
encompassing all the conditions and configurations of the process with compatibility of
applying on different tool geometries. Some studies in the literature focused on predicting
static cutting forces of orthogonal turn-milling operations for specific and limited
configurations with sophisticated calculations for uncut chip geometry predictions. This
chapter presents the cutting mechanics of the orthogonal turn-milling process to predict
the static cutting forces, cutting torque, and power required for process planning and
process dynamics. In this regard, firstly, the kinematics of the process is studied. Next, a
mathematical model is presented to predict the instantaneous uncut chip geometry used
for discretized static cutting force calculations. Based on the process kinematics, the
allowable ranges of cutting parameters are discussed to avoid surface errors during the
cutting operation. The cutter-workpiece engagement (CWE) is calculated for different
tool offset, tool-workpiece rotational speed, and diameter ratios. Then the predictive

cutting force model is confirmed by experiments.

3.2. Kinematics of Orthogonal Turn-milling

Turn-milling operation is a multi-axis machining process that can be defined as the
combination of milling and turning processes in which, the tool and workpiece rotate
simultaneously. In this regard, turn-milling can be categorized in orthogonal, co-axial, and
tangential configurations. In this study, the orthogonal turn-milling operation is studied in

detail, while the formulations for the other two configurations are discussed by Karagiizel
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et al. [22]. In orthogonal turn-milling, the tool follows a linear path along the workpiece
axis (—Z,, axis of the workpiece coordinate system (WCS)) as shown schematically in
Figure 1. In addition, the cutter position can be changed in in X,, direction to adjust the
axial depth of cut (a,) and in Y, to add eccentricity (tool axis offset e) to the process (See
Figure 3.1). Note that in orthogonal turn-milling, there is no movement in the B-axis
(rotation around Y-axis). Any alteration in workpiece/tool geometry, depth of cut, or
eccentricity will change the side and minor edge's engagement boundaries, as shown in
Figure 1. Since the mechanics and predictive force model of the process is based on the
instantaneous CWE, the engagement of each edge must be calculated precisely by
considering the geometrical and process parameters. In this section, the cutting geometry
and process kinematics are defined and used to develop an accurate model for uncut chip

geometry resulting from the cutter's side and minor edge.

Minor Cutting Edge

Figure 3.1. General schematic representation of orthogonal turn-milling operation.

Turn-milling operation is mainly performed on mill-turn multi-axis machining centers
where the workpiece chuck and tool spindle can rotate independently. Although the turn-
milling operation can be considered a 5-axis machining operation, implementation of the
kinematics of the 5-axis operation and the addition of complexity of the C-axis in spatial
coordinates adds extra infeasibility. However, the independent rotation of chuck and
spindle on mill-turn machining centers introduces feasible and user-friendly

programming.

In turn-milling operation, the cutter is rotating with rotational speed (1, (rev/min) and the
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workpiece is rotating at the speed of (,, (rev/min), simultaneously. Considering the
stationary WCS, the tool is traveling a helical path due to the workpiece rotation and linear
feed motion. This helical path is aligned to the surface feed direction of FCN coordinate
system. In FCN coordinate system, F stands for feed direction, C represents the cross-
feed direction, and JV' is the surface normal axis (See Figure 3.1). The rotational direction
of this helical path depends on the rotational direction of the workpiece. Given that the
tool’s rotational direction is constant, changing the rotational direction of the workpiece
merely without considering the eccentricity direction would cause undesired cutting due
to the engagement of the uncut part with the minor edge of the tool and may cause
excessive tool failure. In order to prevent such cases, it is suggested to perform the
orthogonal turn-milling operation in two configurations, as shown in Figure 3.2. It is
shown that, while the tool’s rotation is kept clockwise and linear feed direction is similar
in both cases, the rotational direction of the workpiece and eccentricity direction pairs, as
shown below, defines the cutting type; up-milling or down-milling. Figure 3.2-a shows
that if the workpiece rotates in a counter-clock-wise direction and the eccentricity
direction is negative, the cutting type is up-milling (entry angle is zero, and exit angle is

non-zero).

Figure 3.2. Orthogonal turn-milling configurations; a) up-milling, b) down-milling.

The down-milling case (entry angle is non-zero, and the exit angle is ) happens in the
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configuration shown in Figure 3.2-b where is workpiece rotation direction is clock-wise,
and the eccentricity direction is in +Y,, direction. In this study, the kinematics and chip
geometry model are given according to the up-milling case, which is the most common
configuration in turn-milling operations. However, the kinematic relations are identical in
both cases, except for the direction of the tool’s helical path and the entry/exit angles of

the CWE.

As mentioned before, due to the rotational of the workpiece and linear motion of the tool
in the feed direction, the tool follows a helical trajectory in stationary WCS. The helix
angle of this helical trajectory can be defined as the angle between the stationary TCS and
the FCIV, which is located at the tooltip.

w .
V¥ cos 6, sin 6

uncut chip area
<.,

W
V¥ sin 6,

Figure 3.3. Schematics of cutting geometry
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This angle is defined as below and illustrated schematically in Figure 3.3.

6, = tan~! (a—w> (3.1
2n(Ry — ap)

where R, is the workpiece radius before cut, a, is the nominal depth of cut, and a,, is
the feed per workpiece revolution. Note that, since the process kinematics is based on the
tooltip position, the machined part radius (R,,, = R, — a,,) is used in Equation (3.1). As
a result, not only the diameter of the unmachined part but also the depth of cut affects the
helix angle of the helical trajectory of the tool. As shown in Figure 3.3, the radial depth of

cut (step over) can be calculated as;
a, = a,,.cos 0, (3.2)

Another important parameter in turn-milling kinematics is the angular displacement of
the workpiece per tooth passing period (At) of the tool, which is shown by £ in Figure 3.3
and defined in Equation (3.3).

_ 2nQ,,
N

(3.3)

where N is the teeth number of the cutter. Based on the kinematics of the turn-milling,
the angle between two surfaces generated by cutting two consecutive teeth and rotation of
the workpiece simultaneously, equals to S (see Figure 3.3), which can be proven using
geometric relations. The f angle is an important parameter in the definition of minor edge

engagement. Note that, the § angle depends on the ratio of the rotational speeds of the
cutter and workpiece (%—W) As the cutter moves along the helical trajectory, the feed value
t

in the helical direction (surface feed F) can be divided into axial and radial feed vectors,
as illustrated in Figure 3.3. The radial and axial feed vectors are the amounts of tool tip
travel from point O to point O at the time interval of At at feed and cross-feed directions,
respectively. The tool positions at time ¢ and t + At are shown schematically in Figure
3.4b. If the tool is discretized into m number of disk elements with the height of dz along
its axis, it is seen that each discrete element within the nominal depth of cut (a,) has
different radial feed (f,,) values depending on its distance from tool tip, as depicted in

Figure 3.4a. The distance of each element from the tooltip can is defined by a(z) = m *

dz.
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Hence, the elemental radial feed vector is a function of the distance of the associated

element from the tooltip and can be calculated as follow;

f:@) = B.((Ry — ) + a(2)) (3.4)

The radial feed varies along the depth of cut and the magnitude of f, increases as the
distance from the tooltip (effective radius) increases (See Figure 3.4-a). On the other hand,

the axial feed vector f, is formed due to the linear motion of the tool along the workpiece

axis.
Tool
P
N
B ST S 7
--o 7N X7 p
ap ;o B I Yw
n= Zig az ;’f : Workpiece Y e \
n=1% dz ; k| \
LY. _ [ _m=1 Fal_g J \ \ 7
0;C , | JEN= ! W
/ 1 ! Q,
R, Xw,
Workpiece]|
a) b)

Figure 3.4: Definition of radial and axial feed vectors along with the axial depth of cut.

This vector is constant for all of the disc elements and can be calculated as below:

_ Ay Ly
fa="0N

(3.5)

Note that both radial and axial feed vectors are formulated and defined at the tooth passing

period. As a result, the resultant vector of these two gives the total feed at tooth passing

period or the feed per tooth f; (Tezzz)th) on the helical direction for orthogonal turn-
milling operation as follow;
B \/f 27, R
fi(@) =22+ fE = m( w—ap+ a(Z)) (3.6)

Finally, as shown in Figure 3.3, the tool rotates by [ at stationary WCS at a tooth passing
period. In other words, the Z; axis of the tool has a § angle with surface normal V. As a
result, the feed vectors (f;) at each disc elevation must be transferred into unit surface feed

direction at FCINV'. The feed vector can be calculated as:
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fe(2) = f(2).cos B (3.7)

In orthogonal turn-milling operation, the linear feed F (%) along the Z,, direction is

related to the feed per workpiece rotation and the rotational speed of the workpiece and

can be formulated as follows;
F =Q,a, (3.8)

As seen, the feed per tooth varies along with the nominal depth of cut. Further, based on
its dependency on £ the ratio of rotational speeds also affects the feed per tooth, and hence,
the cutting mechanics are affected significantly. For this purpose, the parameter selection

of orthogonal must be according to the precise calculation of kinematic parameters.

Finally, the simultaneous rotation of the tool and workpiece causes the overall cutting
speed to vary in turn-milling operation. According to the kinematics illustrated in Figure
3.3, the linear speed vector resulted from the workpiece IV varies based on the cutting
angular position of the cutter since at each angular position, the effective workpiece radius
is different. This variation is formulated by 8, angle and formulated as below:

@=mdﬁﬂ@ﬁ% (3.9)

Rw—ap

As a result, the overall cutting speed resulting from the tool and workpiece rotations can

be obtained using the equation below:
V. = V! 4+ VY cos(6,) sin(6,) sin(¢;) (3.10)

where ¢; 1s the angular position of the edge at angular increment i. Equation (3.10) shows
that the cutting speed varies in turn-milling due to the simultaneous rotation of the
workpiece and tool. However, the effect of linear workpiece speed is negligible, and the

cutting speed of the process can be calculated by the tools cutting speed V;'.

3.3. Geometric Model of Cutter-Workpiece Engagement

Modeling chip geometry in multi-axis machining plays a significant role in accurately
predicting cutting mechanics and stability analysis. Although there are several methods
for evaluating CWE using CAD or FE-based software packages that are costly and time-

consuming, analytical models can introduce the fast and precise calculation of CWE with
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minimum error.

This section presents the cutter-workpiece engagement model of orthogonal turn-milling
operation. In this study, the engagement model is presented for end mill type cutters and
cylindrical workpieces. As a result of tool geometry and simultaneous rotation of cutter
and workpiece, the minor edge of the tool is also engaged, despite peripheral milling
operation. This phenomenon distinguishes the turn-milling cutting geometry, mechanics,
and dynamics from 3-axis milling operations. In this regard, several studies dealt with
turn-milling cutting mechanics previously. Karaguzel et al. and Filho [12,25] extracted
the CWE by employing the simple CAD representation of the tool and workpiece.
However, the effect of the minor edge was not included in the models, which excludes the

different chip geometries and limitations caused by the minor edge length.

Similarly, Ortega et al. [30] used the same approach to evaluate the chip geometry and
cutting forces without considering the eccentricity. Comak et al. [29] utilized the CAM
and virtual machining software packages to assess the CWE in turn-milling operation
required for cutting force calculations. In this section, the CWE occurs at both side edge,
and the minor edge of the flat end mill is modeled based on basic cutting geometry and
process kinematics. The current approach calculates the CWE analytically and gives an
easy and simple understanding of it. This model can predict the uncut chip thickness in
turn-milling operation while using crest-cut and serrated tools. The following subsections

will discuss the tool's engagement boundaries for side and minor edges separately.

3.3.1. Side edge engagement model

In turn-milling operation, the side edge of the cutter experiences a chip removal process
with variable depth of cut due to the simultaneous rotation of the cutter and the circular
workpiece. Based on the geometry of the cutter and workpiece and the cutting parameters,
the instantaneous depth of cut varies at each angular position of the tool within its
immersion boundaries. The instantaneous depth of cut (chip height from tooltip) is

formulated in Equation (3.11) [24].

ai(¢;) = \/szv — (R sin(¢;) — e)2 — (Rw — a) (3.11)
where ¢; is the angular position of tooth j within the immersion angles (¢s; < e < ¢ey),
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and e is the tool center offset (eccentricity) as depicted in Figure 3.3. In our previous work
[24], the entry angle of tooth j was assumed equal to 6, since the cutting geometry was
modelled according to stationary TCS. In this chapter, the chip geometry will be discussed

in FCNV coordinate system in more detail.

Equation (3.11) shows that the uncut chip geometry has a varying depth of cut within
CWE. However, if the CWE is divided into disk elements along the tool axis, each element
has a different entry angle. Further, the variation of instantaneous chip thickness is also
changing drastically by changing the tool/workpiece radius ratio, eccentricity, and even
nominal depth of cut. Since the instantaneous depth of cut varies within the CWE, each
elemental segment along the axial depth of cut will have specific entry and exit angles
[29]. However, the entry and exit angle definition for each axial element can also be

divided into two different categories based on the eccentricity.
i.  If the eccentricity is in the range of 0 < e < e,.

The entry (start) angle (¢ ) for each disc element along the tool axis within the CWE is

calculated as:

$su(2) = sin! (52)

> 2 (3.12)
w@ = R fo- i) —t 1
4 2+ (f(2)
and exit angle (¢, ) is:
Gex = cos ! (1) (3.13)

The ey is a critical eccentricity where the uncut chip geometry’s definition changes and

can be calculated as follows:

e, = a, /2‘;—: — 1+ R, sin(¢4:(0)) (3.14)

Moreover, the parameter m defined in the eccentricity range will be defined geometrically

in Section 3.3.2. The m is defined as:

m= (R, — a,).2 (3.15)
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If the eccentricity is within case i, the entry and exit angle for each disc element n along

the tool axis can be found by the formulas mentioned above. (See Figure 3.4).

ii.  Ifthe eccentricity is in the range of ey < € < ey

Similarly, the entry angle for each disc segment along the tool can be calculated as:

L e—\IZRW(RW—ap+a(z))—(RW—ap+a(z)))2

R¢

¢se(z) = sin” (3.16)
The exit angle for this range is equal to case i. and can Equation (3.13) can be employed.
Note that, e,,,, 1s the maximum value of eccentricity that can be defined in an orthogonal

turn-milling operation and can be calculated as follows:
emax = Rt —m (3.17)

If eccentricity exceeds this value, the instantaneous depth of cut will be lower than the
nominal value; hence, the material removal rate will decrease. The detailed simulation and

discussion are presented in Section3.4.

3.3.2. Minor edge engagement model

As mentioned before, due to simultaneous rotation of workpiece and tool, the minor edge
of the tool is also engaged during the material removal operation. The minor edge
engagement plays a vital role in the surface quality of the cut part and cutting forces. As
a result, having a precise model for minor edges is essential in the definition of cutting
forces and parameter selection procedure. The chip formation by the minor cutting edge

is based on a different cutting geometry than the side cutting edges of the tool.

Similarly, the uncut chip thickness varies at each angular position within the immersion
boundaries, while the immersion boundaries depend on the tool offset value. In general,
the cutting geometry of the minor edge and its cutting mechanics differ from the milling
tool's side cutting edge. The schematic representation of the cutting geometry of the minor
edge is represented in Figure 3.5. The following geometric model is true when tool offset
is in the range m < e < e,,4,. It means that for tool offset values greater than e,,,, the
minor edge of the tool will lose engagement and decrease the maximum engagement of

the side edge.
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Figure 3.5: Schematic representation of chip geometry resulting from the minor edge.

Note that the minimum value for eccentricity equals m, as also seen in Section 3.3.1. This
is because if the eccentricity is equal to zero, the minor edge will not cut at the vicinity of
the tool center due to zero cutting speed. This issue must be taken into account while
cutting with endmills since edges can be connected at the tool center. In contrast, the
inserts have an offset from the tool center in most face milling tools, and zero eccentricity
will not cause any problem. According to the cutting geometry of the minor edge, the entry

angle for the immersion zone of the minor edge can be calculated by

{ Dex ay, <R, (3.18)
Pex = -1 (aW Rt)

t >R

an e+m ) w7t

The exit angle for minor edge (¢, ) is equal to the exit angle of the side edge (¢,,) when
the a,, is equal to or smaller than the tool radius. As seen in Figure 3.5, the engagement
length (1,,,) of the minor edge changes within the immersion zone at each angular position
of the minor edge. The engagement length is calculated based on the cutting geometry and

defined as below:
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(e+m)

Rt—m Pst < Q< @
_ (Re—aw)
lm(QOj) = Ry cos@; Ay < R - (3.19)
aw—R: (e+m) Pc < Pj = Pex
— | = a, > R,
cos @ sing;

where @; is the immersion angle of the minor edge of tooth j within the immersion zone.

In this equation, ¢, is the angle where the definition of engagement length is changed

because of the uncut chip geometry and can be calculated as below:

-1 e+m
tan (Rt_aw) ay <R,

Qe = (3.20)

T .- ay—R
-+ sin 1(W—t) a,, > R,
2 Ry

It is mentioned before that the region in cut with the minor edge is produced by the face
formed by current tooth j and the face formed by previous tooth j — 1, which has an angle
of f due to the rotation of the workpiece. In other words, the angle between these two
faces is equal to the rotation angle of the workpiece at the tooth passing period of the tool.
The schematics of these two faces are given in Figure 3.6. As seen, although the angle
between two faces is constant and equal to § at X; direction, however, because of the
geometry, the angle between two faces is different when the geometry is cut at the tool’s
angular position (¢;). This locally varied angle is shown as f8; in Figure 3.6. This angle
1s important since it defines the maximum uncut chip thickness for the minor edge at any
angular position. As a result, as the tool rotates, the minor edge of the tool experiences a
specific engagement length and maximum uncut chip thickness at each angular position,
where the uncut chip thickness varies along the engagement length. The elemental uncut
chip thickness removed by the edge segment on the minor edge with the differential length
of dl is formulated in Equation (3.21).

Figure 3.6: Schematic representation of minor edge geometry
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hm((Pj, lk) = [j.tan (sin—l ([Rtsin(ig(—;j_)m]tanﬁ>) = k.dl (3.21)

Note that the engagement length (1,,,) is divided into infinitesimal elements with a length
of dl. Therefore, the number of elements varies for each engagement length while the
element length is constant. The parameter [, is the distance of element k, (1 < k < n)

lm(‘Pj)

from the beginning of the engagement, where n = . In order to discuss the uncut

chip geometry generated by minor edge, a case study is selected, and chip geometry is
shown in Figure 3.7. The workpiece rotation per tooth period is § = 2°. The cross-section
views of C1-C1 and C2-C2 parallel with X; direction shows that the angle between the
two faces is equal to 5. However, as the tool rotates, the angle between two consecutive
faces changes because of the geometrical relations. The cross-section views B1-B1, and
B2-B2 shows the uncut chip cross-section view at two arbitrary angular positions of the
cutting edge (See Figure 3.7). It is deduced that at each angular position, the angle between
two consecutive faces is different, and the chip has a local angle of ;. In other words, the
maximum uncut chip thickness or minor edge is different at each angular position, and it
varies along the engagement length (l,(¢;)). It is deduced that the minor edge
experiences a different local maximum uncut chip thickness at each angular position with

varying engagement lengths. This phenomenon will affect the cutting mechanics and

dynamics drastically.
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Figure 3.7: Different cross-section views for chip geometry in orthogonal turn-milling.
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3.4. Effect of Cutting Parameters on the Chip Geometry

Based on the geometrical model given in previous sections, the uncut chip model of the
orthogonal turn-milling operation can be simulated. Using the proposed uncut chip model,
effect of different cutting parameters and tool/workpiece geometries on chip formation
can be studied. From this point of view, the impact of these parameters on cutting
mechanics, surface formation, and process stability can be studied. Note that the uncut
chip geometrical model will be indirectly confirmed in the next sections using cutting
force experiments and simulations. However, this section performs preliminary
confirmation using the CAD model. The uncut chip height and chip boundaries generated
by the side edge of the tool and the cutting boundaries and chip thickness generated by the
minor edge are compared and confirmed in both mathematically simulated and CAD
models in Figure 3.8. Note that the feed per tooth value in CAD simulation is exaggerated
to have a better visualization; however, all the geometrical parameters are confirmed with
the mathematical model. The uncut chip geometry simulations are shown in FCN

coordinate system.
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Figure 3.8: Chip geometry simulations for D, = 22 mm, D,, = 60 mm, a,, = 2 mm,
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a, = 0.5D;, a) Analytical simulation e = 2Zmm, b) CAD simulation e = 2mm, c)

Analytical simulation e = 9 mm, d) CAD simulation e = 9 mm

As mentioned in Section 3.3, the cutter and workpiece diameters affect the chip geometry.
However, in turn-milling operation, the tool offset (eccentricity) is the most influential
parameter which influences the CWE drastically. As seen in Figure 3.8, the variation in
eccentricity changes the chip geometry of the side edge and the chip generated by the

minor edge. This variation will affect the cutting mechanics and dynamics significantly.

In this regard, the engagement boundaries of the side edge are simulated to show the effect
of eccentricity and tool radius on the chip formation caused by the side edge. The cutting
parameters for the two cases are given in Table 3.1. The tool radii for Case 1 and Case 2
are different. In both cases, the radial immersion is 50% of the tool diameter. For each
case, the chip geometry comparisons for various eccentricities values are depicted in

Figure 3.9 and Figure 3.10.

As shown in Figure 3.9, the variation of depth of cut within the immersion boundary is

different at different tool offset values. It is to be noted that the variation pattern is not

similar for other workpiece and tool diameter ratio values (RW / Rt)'

Table 3.1: Cutting parameters for chip geometry comparisons for different eccentricities.

D,,(mm) D (mm) a,, (mm) ap(mm) {, / Q,
Case 1 160 32 16 3 200
Case 2 160 50 25 3 200

According to Equations (3.14) and (3.17), for Case 1, the critical eccentricity is e5 =
20.8 mm and the maximum allowable eccentricity is e,,,, = 15.3 mm. As shown in
Figure 3.9, when the tool offset exceeds e,,,, the axial depth of cut begins to decrease
(the case e = 20mm) while the entry angle stays the same where the Equation (3.12)
governs. Note that, eccentricity values above the e, 4, is not practical since the axial depth
of cut is reducing which causes lower material removal rate and failure in the final part

dimensions; however, in this example, it is discussed for comparison purposes.

38



35

N
152
T

N
T

=
92}
T

Axial Depth of Cut (mm)
[y

e=2mm === e=14mm

e=6mm == e=20mm

e
v
T

= e=10mm === e=22mm

0 1 1 1 1 J
0 20 40 60 80 100

Angular Position (deg)

Figure 3.9: Chip boundary comparisons for Case 1 in Table 3.1.
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Figure 3.10: Chip boundary comparisons for Case 2 in Table 3.1.
For another workpiece and tool diameter ratio (Case 2), the e, value could be smaller than

emax (€g < €may) Which means that within the feasible range of tool offset (e < e;4y),

both formulation should be used for the calculation of entry immersion angle. In Case 2,

since the tool diameter is increased, the critical tool offset is altered. For this case, the
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eg = 20.5 mm while the e;,4, = 24.3 mm. The comparison simulation is also depicted
in Figure 3.10. Equation (3.12) for the tool offset range e; < e < ey, Equation (3.16)
must be employed. The simulations are CWE boundaries are depicted in FCN coordinate

system.

It is shown that the allowable eccentricity depends on the ratio of workpiece and tool
diameter ratio value. Next, the effect of the radial depth of cut on CWE of the side edge
is studied. For this purpose, the cutting parameters of Case 2 in Table 3.1 are selected with
e = 2mm and two different radial depth of cut values. The 3D simulation of chip
geometry in FCV coordinate system and corresponding 2D representation in F — N view
is given in Figure 3.11. According to Figure 3.11 (a), for the given eccentricity and radial
depth of cut value, engagement of the side edge is limited to a specific angular position
and is diminished after that specific angular position within the immersion angles, while
the minor edge is in the cut. This is due to the geometrical condition caused by the tool-

workpiece diameter ratio, radial depth of cut, and eccentricity values.
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Figure 3.11: Chip geometry comparison with parameters in Table 3.1;

a) e =2mm,a, = 25mm,b)e =2mm, a,, = 15mm
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However, if the radial depth of cut is decreased (as shown in Figure 3.11 (b)), the side
edge is kept engaged within the immersion boundary as well as the minor edge. The
engagement loss of the side edge will cause surface defects due to the uncut material left
on the machined part. It is shown that in orthogonal turn-milling, eccentricity is a critical
parameter and cannot be determined randomly. In addition, it has a relationship with the
radial depth of cut value, and the possible undesired chip geometries can be added or
omitted by tuning the appropriate eccentricity and radial immersion values. The
relationship between these two parameters is discussed in detail in terms of surface failures

in the next section.

3.5. Surface Errors in Orthogonal Turn-Milling

The surface quality of the finished part is an important outcome of the machining
processes. Unlike the conventional turning process, simultaneous rotation of tool and
workpiece during turn-milling operation leads to surface errors such as circularity and
cusp formation [12]. The circularity error is the difference between the desired workpiece
cross-section (perfect circle) and the workpiece's polygon-shaped cross-section, which is
caused by the simultaneous rotation of the workpiece and tool, which is described by
Karagiizel et al [12]. The maximum circularity error is depicted in and can be calculated

as follows;

€circ = (RW - ap) <;ﬁ) - 1> (3.22)

COS(E
where S is defined in Equation (3.3).

Similar to surface roughness in conventional turning, circularity error in turn-milling
operation cannot be eliminated because of the intermittent nature of the process; however,
it can be reduced by increasing the ratio of tool to workpiece spindle speeds. For this
purpose, the spindle speed of the tool could be increased, which can cause excessive tool
wear. As an alternative, the workpiece's spindle speed can be decreased, leading to lower
productivity. As a result, the allowable circularity error must be calculated. The tradeoff
between the surface quality, MRR, and machining cost must be considered at the process

planning stage.
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Surface with
circularity error

Figure 3.12: Definition of circularity error in orthogonal turn-milling.

Another important surface error that happens during orthogonal turn-milling operation is
the cusp formation. Previously, Karagiizel et al. [12] introduced cusp generation and
proposed a geometrical model for the calculation of cusp height. However, the tool
geometry and the geometry of the minor edge on the tool were not considered. As
mentioned in previous sections, the tool's minor edge significantly affects cutting
mechanics, surface generation, and chip geometry. The engagement and contact of minor
edge with the machined surface of the workpiece is the key element in the definition of

the surface quality, chip formation, and hence, cutting forces.

As the tool follows a helical path along the workpiece axis, the minor edge is engaged in
the chip removal process, and depending on the minor edge geometry; the surface form is
generated. In most of the milling cutters used in 3-axis milling operations, the minor edge
has an approach angle (a,, > 0) to reduce the friction between the tool and the cut surface
since the material removal process is done by the side cutting edge of the tool. Using such
milling tools with minor edge approach angle (See Figure 3.13) in the orthogonal turn-
milling process, cusp formation will be inevitable. As shown in Figure 3.13, due to the
geometry of the minor edge, uncut material will be left between two consequent passes

per workpiece rotation.

In order to eliminate cusp formation in orthogonal turn-milling operation, the first solution
is to use milling tools with zero minor edge approach angle (a,,) as shown in Figure 3.13

(b). However, using such a tool will not solve the cusp formation phenomenon in
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orthogonal turn-milling process. Because of the complex kinematic of the process, based
on the eccentricity and radial depth of cut, a cusp can still be formed because of the uncut
material left between two consequent stepovers even if the approach angle is minor edge

is zero.

Side Edge .
a) of Tool Minor Edge of Tool b)

—
aW

uncut surface .
Previous

1
1
1
1
1
Pass 1

Figure 3.13: Cusp formation in orthogonal turn-milling process due to minor edge

approach angle.

As mentioned before, the minor edge will experience a specific engagement length based
on the eccentricity value. If the engagement length is not sufficient enough to wipe out the
material left from the previous pass as the tool travels a,, in the workpiece axial direction
at the time of one workpiece rotation, the cusp will be formed. In other words, if the feed
per workpiece rotation (a,,) is greater than the length of which minor edge sweeps, the
uncut material will be left between two consequent passes, named cusp. This phenomenon

is illustrated in Figure 3.14.
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Cusp: Uncut material left between
two consequent cut

Following Cut

First Cut

First Cut

Figure 3.14: Formation of cusp in orthogonal turn-milling operation.

In order to prevent the cusp formation, the feed per workpiece revolution (a,,) must be
smaller than the step over during the process. Alternatively, depending on the eccentricity
value, there is a maximum allowable range (a,,;,q,) Which the minor edge can wipe out
all the material during the cut, and no uncut material will be left. Another important issue
in this regard is the length of the minor edge [, (or wiper edge length) which leads to
different engagement at every eccentricity value. By considering all the mentioned
parameters, the allowable feed per workpiece revolution a4, 1s modeled in Equation
(3.23) based on the cutting geometry given in Figure 3.15. According to Equation (3.23),
it is deduced that, unlike the conventional milling process, the stepover in the orthogonal
turn-milling process cannot be chosen any arbitrary value smaller than tool diameter, and

it depends on tool geometry and eccentricity value.

O0<e<R,—l;—m Ri—l;,—m<e<R,

Figure 3.15: Schematic representation of cutting geometry for calculation of @,y
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where m = M and [; is the minor edge length.

According to the proposed model, the minor edge length defines the eccentricity ranges
and hence, allowable radial depth of cut value and MRR. For better understanding,

Equation (3.23) is illustrated in Figure 3.16.

It is deduced that, as the minor edge length increases the allowable feed per workpiece
revolution (a,,) also increases. However, the maximum value of a,, which defines the
radial depth of cut happens in a specific eccentricity which depends on minor edge length.
As a result, if the tool has longer minor (wiper) edge length higher feed per workpiece
values will be achieved which increases the MRR without sacrificing the surface quality.
In this regard, employing the proposed model to select the proper eccentricity and feed
per tooth value based on the tool diameter and minor edge length leads to higher

productivity with error-free surface.

50 40
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g

(mm/rev)

aw
max
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c icity ’ Wiper edge length (/R ) e
Eccentricity (c/R‘) ¢ Eccentricity(mm)

a) b)
Figure 3.16: Effect of minor edge length and eccentricity on allowable a,,,, (R; = 31.5)

3.5.1. Experimental verification

In this section, the orthogonal turn-milling operation is performed based on the parameters
which are selected according to the model proposed in the previous section to investigate
the surface profile. For this purpose, the orthogonal turn-milling experiments are
performed on Mori Seiki NTX 2000 multi-tasking machine tool, as shown in Figure 3.17.
The workpiece is stainless steel with 116 mm diameter, where a 63 mm diameter face-
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milling cutting tool with four inserts with minor edge length (1) is 12.7 mm, was used.
During the experiments, the cutting speed and feed per tooth values were kept constant,
equal to 200 m/min and 0.1 mm/rev/tooth, respectively. Two different experiments were
conducted to show eccentricity's effect on productivity and surface quality. The

parameters used in the experiments are given in Table 3.2.

Table 3.2: Cutting conditions for surface profile measurement experiments.

Exp. No: nt(rpm) nw (rpm) aw(mm/rev) ap(mm) e (mm)
1 1000 1 20 0.5 15
2 1000 1 40 0.5 22

Figure 3.17: Experimental setup used for orthogonal turn-milling process.

The resulting workpiece surfaces are shown in Figure 3.18. While the maximum feed per

workpiece revolution is @,,;mqx = 16.2 T:TT: for e = 15 mm in experiment 1, setting the

a,, as 20 (mm/rev) which is higher than the allowable value, results in very poor surface
quality with uncut material left on the surface (see Figure 3.18 (1)). On the other hand, for

experiment 2 which eccentricity is e = 22 mm the allowable feed per workpiece is
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Qymax = 45 . In this case, better surface quality without uncut material is achieved at
rev

an even higher a,,, value, as seen in Figure 3.18 (2). It is evident that since the eccentricity
and radial depth of cut in experiment 2 are selected based on the proposed model in Section
3.5, the cusp formation is prevented while the MRR is doubled. That indicates using the
procedure proposed in this study; one can select all the parameters in turn-milling and use
them to program the machine tool by considering both surface quality and productivity.
The parameter selection for better cutting performance also depends on other criteria such
as the maximum torque capacity of the machine tool and process stability, which will be
discussed in the following sections. The complete parameter selection guide will also be

given the upcoming sections.
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Figure 3.18: Surface profile measurements for conditions in Table 3.2.

3.6. Static Cutting Force Model in Orthogonal Turn-Milling

Based on the cutting geometry and kinematics, it is deduced that both the side edge and
minor edge of the milling tool are engaged in cutting in orthogonal turn-milling operation.
The CWE and uncut chip thickness are modeled for both cutting edges in Sections 3.2 and
3.3. Once the uncut chip geometry is evaluated, the static cutting forces can be computed

using the well-known linear edge force model in the literature [110,111].
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As shown in Figure 3.19, the side edge cutting of the tool is divided into infinitesimal
small disc elements with a height dz and the minor edge is divided into segments with a
width of dl. The differential cutting forces of the discrete cutting edges (side and minor)
are calculated separately since the CWE and uncut chip thickness, and hence the cutting

mechanics are different for each.

e Side cutting edge:

For a discrete element on the side cutting edge of tooth jt*, the differential cutting forces
along tangential (t) , radial (r) and axial (a) directions can be written according to linear

edge force model as follows [111];
dFE;(¢,2) = |(Kechy (0;(2)) + Kee ) dz]. 3. (4,(2)) - 4(¢5(2), 2)
dFS (05, 2) = [(Kechy (0;(D) + Kre ) dz|. g (0;(2)) . a4(;(2), 2) (3.24)

dFs(9),2) = (Kach; (6 (@) + Kae ) d2] .2 (6;2)) - a(¢;(2), 2)

where ¢; is the angular position of the element on the cutting edge of tooth j which is

defined as;

$,(2) = b+ ( — Db, — 22, (3.25)

Rt

where ¢ is the angular increment of the reference tooth, z is the height of the element from

27

the tooltip, y; is the helix angle of j th tooth and ¢, 1s the pitch angle defined as ¢, = ~

for regular milling tools with N number of teeth. The uncut chip thickness in Equation

(3.24) can be calculated by;
h(;.2) = Fi(2) sin (¢;(2)) .

where f,(z) is defined in Equation (3.7). The g (q_’)j (z)) and g (q_’)j (z)) in Equation
(3.24) are unit pulse functions that determine whether the disc element is within the CWE
boundaries. The g function controls the angular position of the disc element if it is within
the immersion boundary, and the g function determines whether the corresponding

element is within the CWE boundaries at that specific angular position and height.
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_ 1, bse(z) < ¢j(z) < Pex
¢ (d)](Z)) Bl {0’ d)j(z) < st | d)j(z) > Gex
(3.27)
, 0<z< ai(qu)

1
@((l)](Z),Z) = {0’ 7> al((p])

In the linear edge force model, the cutting force coefficients (K;., K;c, K4 ) and edge force
coefficients (K., Kye, Kge) are obtained by orthogonal-to-oblique transformation
[110,111]. In this approach, the orthogonal cutting experiments are performed to calculate
the orthogonal cutting parameters; shear stress (7g), shear angle (¢,) and friction angle
(Bs) at for cutter-workpiece pair. The orthogonal cutting tests are performed at different
cutting speeds and feed rates, and rake angles (a,.) for that specific cutter-workpiece pair.
As aresult, the orthogonal cutting parameters will be a function of cutting speed, federate
and rake angle. Then, the orthogonal database is transformed to the oblique plane using
orthogonal-to-oblique transformation as defined in [111]. The cutting force coefficients in

for oblique cutting conditions on the oblique plane are formulated as;

K.. = Ts sin(Bp—ay)
te sin ¢p cosy \/cos2(¢pp+Bn—ay) +tanZ n.sin2 By,
T cos(Bn—ayn)+tany tann.sin B
Krc — S n n C n (3,28)

Sin ¢p \/cos2(pp+Bn—an) + tan? 1. sin2 B,

Ts cos(Bnp—ay) tany+tann.sin By
sin ¢n /cos2(¢pn+Bn—an) +tan2 . sin? B,

ac —

where ¢, fn, @y, and 71, are the shear, friction, normal rake angle, and chip flow angles
on the normal plane, respectively. According to the Stabler’s rule [111-113] the angles on
the normal plane are considered equal to the orthogonal cutting angles ¢,, = ¢s, B, = Bs,
a, = a,, and the chip flow angle 7, is assumed to be equal to the oblique angle of the
tool (y). Note that, since the rake angle, helix (oblique) angle, cutting speed (V) and feed
per tooth (f;) values are constant along the tool axis for standard end mills, the cutting
force coefficients for any element on the side cutting edge will be constant. The edge force
coefficients are obtained by extrapolating the measured forces in orthogonal cutting

experiments to zero chip thickness. Further details can be found in [111].

The differential cutting forces acting on the disc element at height z on the jt* tooth in
rotating coordinates of (tra) can be transformed into TCS coordinate system using the

transformation matrix given in Equation (3.29).
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dFy; (¢).2) dF;;(¢;,2)
dES, ,(¢j.z) = { dF; ; (¢}, 2) = Ts{ dF; (¢, z)

dF;; ($.2)) dFg;(¢).2) (3.29)

—cospj(z) —sing;(z) 0

Tg=] sing;(z) —cosg;(z) 0

0 0 1
Note that the Ts matrix is the transformation matrix only for the differential cutting forces
acting on the side cutting edge of the tool. The total forces acting on the tool body
generated by the side cutting edge can be calculated by integrating the differential cutting
forces contributed by N number of teeth within the CWE boundaries [114]. The CWE
boundaries for each tooth are defined by the immersion angles ¢y (2), per(2) of each
element and the axial engagement limit of element at each angular position ai(q,') j). The
total cutting forces contributed by all teeth within the CWE are calculated and summed to
evaluate the instantaneous cutting forces at the angular position of ¢p imposed on the tool,

which are generated by the side edge as follows;

N a@)
E(¢) = Z] deS(qu,z)dz, p:X,y,Z (3.30)
j=17°

The further details of the integration of differential cutting forces resulting from the side
edge can be found in references [111,114] considering the fact that in orthogonal turn-
milling process, the angular and axial engagement boundaries only differ from the

conventional milling operation.

e Minor cutting edge:

The minor edge engagement is divided into infinitesimal segments with a length of dl.
However, as mentioned in previous sections, the engagement length of the minor edge
varies at every angular increment of ¢;. Therefore, the engagement limits and number of
segments on the engagement length vary. For an arbitrary element with a length of dl the
differential cutting forces in rotating coordinates can be written based on the linear edge

force model as follows:

dF (9 le) = [(Kee(@)) ) P, (9, ) + Kee)dl]- g(o;) (3.31)
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dFf (0 1) = [(Kre(0)) i) hom (0, lc) + Kre)dl]- (o))
dF (@) b)) = [(Kac(@), Uc) Bm,j (@5 L) + Kae)dl]- (o))

The angular position ((p j) of the minor edge of the j"* tooth is defined by

;= ¢+ (] - 1)¢p ’ d)p =N (3.32)

Where the ¢p = (), t is the angular increment of the reference tooth from the Y axis, and
[, is the distance of the element from the beginning of the engagement (I, = k.dl). The
uncut chip thickness h,, j((pj, lk) is different for each element along the engagement
length as defined and discussed in (3.21) in Section 3.3.2. The g(go j) is a binary function
similar to Equation (3.27), is equal to one if the angular position of the minor edge of tooth
Jj is between @4, and ¢,,, and is equal to zero if the angular position is out of this boundary.
Note that, unlike the side cutting edge, the discrete elements on the minor cutting edge
have a different radius and hence, different cutting speed values. Since the varying cutting
speeds affect the cutting force coefficients, the cutting force coefficients are written as a
function of the radial distance of each element. The radial distance of discrete element k is
1 (@;) = (k — 0.5)dl + r:(¢j), where 1, is the offset distance of the insert from tool
center and is equal to; 7:(¢;) = Ry — I, (¢;). Therefore, the cutting force and edge force
coefficients for minor edge must be calculated according to the radial distance of the
discrete element, minor edge rake, and oblique angle. The differential cutting forces acting
on each element of the minor edge is resolved to TCS coordinates in X;YrZ7 frame using

the transformation matrix given in Equation (3.33).

dFy; (@), 1) (@), li)
A, (95.l) = Y aFyy (ep ) ¢ =T A7 (9 1)
dFy; (9, 1) ) 1 g dFT (@), ) (333)
—cos@; sing;sina, sin@;cosa,,
Ty =| sing; cosg@jsina, Ccos@;cosany
0 COS —sina,,

Note that, the transformation matrix T, is given for the general case where the milling
tool has an approach angle of minor angle «,,, (See Figure 3.13). However, it is previously
mentioned that in order to prevent the cusp formation, it is recommended to use milling
tools with zero minor edge approach angle (a,, = 0) for orthogonal turn-milling
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operations. The total cutting forces generated by the minor cutting edges of all contributed
teeth can be calculated by integrating the discrete elements along the engagement length

at the angular position of ¢ within the CWE as follows;
AT EIC)
E™(g) = Z f dE(@;)dl, p=xyz (3.34)
=1 7u1e))
where lj,l((p j) =R; — lm(<p j) and [, ((p j) = R, are the engagement boundary of minor
edge at angular position of ;.

The total instantaneous cutting forces imposed on the tool body and produced by both side
and minor cutting edges is obtained by the superposition of both forces in TCS coordinate

system (X1 Yy Zy frame) as follows;

E@=FE@®+E(¢$), p=xyz (3.35)

Workpiece

Figure 3.19: Representation of differential forces imposed on side and minor cutting

edges in tangential, feed, and radial directions.

Note that the angular position ¢ in Equation (3.35) is an arbitrary angle. However, the
unit pulse function for each cutting edge should be checked to make sure that ¢ is within

the CWE and immersion angles.

As the cutting forces are calculated, spindles' torque and power requirements can also be
calculated using the cutting forces. Unlike conventional milling operation, in turn-milling

operation and tool spindle, the torque and power predictions must be considered at the
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process planning stage. The torque value imposed on the tool spindle T; (N. m) and cutting

power P, (W) are calculated as below;
T (¢p) = Rt(FtS(¢) + th(qb))
P (¢) = QT (¢)

where R, is tool radius, Q; is the tool spindle speed, F(¢) and F/™(¢) are the total

(3.36)

tangential force imposed on the tool for all teeth within the CWE generated by side edge

and minor edge, respectively.

The torque from the workpiece spindle T,, (N.m) and the corresponding power B,, (W)

can also be calculated by;
Tw(¢) = Rwﬁx(d))
Pw(d)) = QwTw(d))

(3.37)

where R, is the workpiece radius, Q,, is the workpiece spindle speed, and F,(¢) is the
total cutting forces generated by both side and minor cutting edges in X direction, which

is calculated in Equation (3.35).

3.7. Experimental Verification of Cutting Force Model

The proposed force model of the orthogonal turn-milling process has been verified in this
section. The cutting force verifications are carried out on aluminum alloy Al7075-T6
cylindrical workpiece. Two different cutters are used for experiments, a solid carbide end
mill and inserted milling tool, and the specifications are given as follows. The cutting
forces are measured using Kistler 9123C rotary dynamometer, as seen in Figure 3.20. The
cutting force data were collected using DAQ systems. The cutting force coefficients were
calculated using orthogonal-to-oblique transformation from the orthogonal data for the
given tool geometry and workpiece material using Equation (3.28). The orthogonal
database for Aluminum alloy A17075-T6 and uncoated WC tool are given in Appendix A:
Orthogonal databases, Table Al.

The cutting experiments can be conducted on Mori Seiki NTX2000 CNC mill-turn (Figure
3.20a) and DMG Mori DMU monoblock75 (Figure 3.20b) machining centers. In the first

experimental setup, as shown in Figure 3.20a, an additional extension must be added due
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to the difference in spindle adaptor interfaces. Due to the extension length, the tool tip
experiences excessive runout. In order to eliminate the runout, the cutting force
measurements are performed on DMG Mori DMU machining center, in which the spindle

adaptor of the machine tool and spindle are both SK40.

In the first set of measurements, a WC standard end mill with four flutes, having 16mm
diameter, 7° rake, and 38" helix angle, is selected. The minor edge has a rake angle of 5°
and zero oblique angles. The cutting conditions are given in Table 3.3. Note that f; is the
nominal feed per tooth value at the tool tip; however, it varies along the tool axis because
of the kinematics of the process (See Equation (3.6)). D, is the diameter of workpiece
before cut. The cutting parameters for experimental verification of the cutting forces with

a solid end mill are given in Table 3.3.

. Rotar
e Y

= Dynamometer =

.

Figure 3.20: Experimental setup for cutting force measurement in orthogonal tur-milling

a) Mori Seiki NTX 2000, b) DMG Mori DMU Monoblock 75.

Table 3.3: Cutting conditions for cutting force measurement experiments in turn-milling.

Exp. Q; Qu e fe a,, a, F D1
(rpm)  (rpm)  (mm)  mm/Grev.tooth)  (mm/rev) (mm) ("/in)  (mm)

1 3600 5 2 0.15 4 3.5 40 143
2 3600 5 5 0.15 4 3.5 40 143
3 3600 5 7 0.15 4 3.5 40 143
4 3600 10 5 0.31 4 3.5 40 143
5 3600 5 5 0.15 8 3.5 40 143
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Figure 3.21: Verification of cutting forces in turn-milling with the standard tool for the

given conditions in Table 3.3.

55




The simulation and experimental results are shown in Figure 3.21, comparing the resultant
force, axial force, and tool torque. Expl. — Exp3. are performed at different eccentricity
values with similar other parameters. As expected, by increasing the eccentricity, the
engagement of the minor edge is decreased, and hence the axial forces are reduced. In
Exp.4, the workpiece rotational speed is increased, which causes an increase in nominal
feed per tooth value. In order to keep the radial depth of cut similar to Exp.2, the linear
feed value is increased. Moreover, in Exp.5, the effect of radial depth of cut is investigated
by increasing the linear feed value and keeping the workpiece rotational speed similar to

Exp.2.

It is seen that workpiece rotational speed has a major effect on the axial force magnitude.
According to Figure 3.21, there is a good agreement between the cutting force simulations
and experiments. The relatively high error occurs in Exp.4 and Exp.5, where the maximum
cutting forces increased due to the increased workpiece rotational speed and radial depth
of cut, respectively. The maximum error occurs in Exp.5 with 7.5% for resultant force and

12.5% for the torque values.

3.8. Analyzing Cutting Forces in Orthogonal Turn-Milling

According to the cutting force results given in the previous section, it is seen that while
the eccentricity and radial depth of cut varies, the average axial force has a relatively
smaller variation compared to resultant forces. Depending on the tool geometry, with the
minor edge engagement increase, the axial forces resulted from the minor edge increase.
According to equations (3.18) and (3.19), the engagement length of the minor edge can be
changed by the radial depth of cut, eccentricity, and tool radius. In order to discuss the
effect of these, maximum resultant force, maximum torque, and maximum axial cutting
forces are plotted with respect to eccentricity and radial depth of cut. For this purpose, the
simulations are performed for a case study for a roughing operation of a Ti4Al4V
cylindrical part with 300 mm diameter, an indexable milling tool with 63 mm diameter, 8
cutting teeth, and 12.7 mm minor edge length. The axial depth of cut is determined as

a, = 3mm, with cutting speed V; = 60m/min, and workpiece rotational speed is taken
as ,, = 1 rpm. The insert grades are selected with respect to the feed per tooth and

cutting speed.
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Figure 3.22: variation of resultant force and torque by eccentricity and radial depth of

cut.

Figure 3.22 demonstrates the effect of eccentricity and feed per workpiece revolution on
torque and resultant force. It is seen that the torque and resultant forces have an
approximately linear relationship with the parameters. As the a,,, increases the both torque
and resultant force also increases linearly, similar to the conventional milling operation.
Although the eccentricity also affects the torque and resultant force because of change in
CWE (as seen in Figure 3.22), the magnitude of the variation is relatively small compared
to the effect resulting by a,,. Therefore, it can be concluded that the resultant force and
torque mostly depend on the radial depth of cut rather than eccentricity, and due to the
linear relationship, there is no conflicting effect and hence, can be eliminated from the

parameter selection procedure.

The total axial force in the tool axis direction (Z7) in TCS (workpiece radial direction
(Xy) in WCS) is plotted in Figure 3.23 with respect to eccentricity and feed per workpiece
revolution (a,,). Since the direction of axial forces resulting from the minor edge and side
edge are opposite (Figure 3.19), the direction of the total axial force changes depending
on the CWE variation based on the eccentricity and a,,. In other words, as the engagement
of the minor edge increases (depending on the eccentricity and stepover), the axial forces
result from the minor edge in —Z direction exceeds the axial forces generated from the
side edge (in +Z direction) and therefore, the total axial force is dominated by the axial
force of the minor edge. Note that the total axial force distribution given in Figure 3.23
depends on the rake and oblique angle of the edges of the tool. Since higher axial forces
(radial force in WCS) cause deflection on the slender flexible workpieces as well as on
the thin-walled cylindrical parts causing dimensional errors [115,116], it is crucial to

select the parameters that result in lower axial forces in the orthogonal turn-milling
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process. The simulations given in Figure 3.23 allow the selection of eccentricity and
stepover combinations based on the desired range of the axial forces. In Figure 3.23, an
arbitrary range in the vicinity of zero axial forces is colored specifically in green for better

visualization and distinguishing.

One can select the eccentricity-stepover pair based on minimum axial force using the
simulations in Figure 3.23; however, this is not a sufficient parameter selection criterion.
According to the parameter selection procedure proposed by Berenji et al. [24], the

allowable stepover is limited with respect to eccentricity to avoid cusp formation.

The authors showed that lower eccentricity values require a lower radial depth of cut to
provide the sufficient engagement boundary for the minor edge to cut the material at two
consequent rotations of the workpiece (stepovers). Therefore, the maximum stepover with
respect to eccentricity for the tool and workpiece geometries used in this case study is
plotted and merged with the total axial force distribution plot. It is proven that, for a
specific eccentricity, the stepover values above the critical value, shown as a solid black

line in Figure 3.23, cause cusp formation [24].
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Figure 3.23: Total axial force variation by eccentricity and radial depth of cut.

This criterion limits the parameter selection based on axial force. It is deduced that
although there are lower axial force regions (point A), the surface quality will be
deteriorated due to cusp formation, which requires an additional operation. For similar
MRR, Point B's parameters can be selected with a slight change in axial cutting forces.
However, for the minimum axial force criterion, the parameters of Point C can be selected

by sacrificing the MRR.
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As a result, in orthogonal turn-milling in order to have better surface quality and control
the exerted forces and torque values, process planning based on the simulation is required

for efficient cutting, especially in the machining of hard-to-cut materials

3.9. Summary

This chapter presents detailed modeling of orthogonal turn-milling kinematics. The
definition of cutting parameters such as feed per tooth, stepover, and feed rate are different
from conventional machining operations. An analytical model is proposed for uncut chip
geometry for both side and minor cutting edges of the milling tool during orthogonal turn-
milling operation. The effect of eccentricity on chip geometry formed by the side edge
and the minor edge is shown through simulations. Based on the proposed uncut chip
model, the relation between the eccentricity and stepover is discussed, and its effect on
surface quality is modeled. The experimental validations proved that using the proposed

relation cusp-free surface and enhanced MRR can be achieved simultaneously.

The static cutting forces are calculated based on the proposed chip geometry and cutting
parameter relations. The proposed mechanics model of orthogonal turn-milling is
validated throughout experiments against different cases. Having validated the proposed
model, a parameter solution discussion was made with the axial forces' objective. The total
axial force variation with respect to eccentricity and stepover is presented to select suitable

parameters to reduce axial forces while cutting slender and flexible parts.
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4. DYNAMICS AND STABILITY OF TURN-MILLING OPERATION

4.1. Overview

Turn-milling operations require simultaneous rotation of tool and workpiece spindles and
translational motion of tool spindle in three-dimensional Cartesian coordinates (X, Y, Z).
In turn-milling operations, the workpiece is mounted on the chuck with constant rotational
speed. The tool is mounted on the spindle with constant rotational speed and has three
translational motions. The resulting kinematics of the orthogonal turn-milling operation
cause a complex chip thickness, cutting forces, and hence, cutting dynamics compared to
conventional milling and turning operations. In this regard, the uncut chip geometry
generated by the side and minor cutting edges of the tool and the resulting cutting forces
have been modeled and verified in Chapter 3. It is deduced that the parameter selection
highly depends on the tool and workpiece geometry, process kinematics, and the uncut

chip geometry, which influence the cutting mechanics, surface quality, and productivity.

Furthermore, the improper selection of cutting parameters such as workpiece and tool
spindle speeds, cutting depth, eccentricity, and feed rate can cause self-excited,
regenerative chatter vibrations, leading to poor surface finish and excessive cutting forces,
tool and spindle failure. This chapter aims to develop a predictive model for the orthogonal
turn-milling process stability to find chatter-free conditions to avoid costly trial
experiments. The dynamic chip geometry and cutting forces are modeled based on the

previous chapter's proposed process kinematics and mechanics models.

The dynamics of the orthogonal turn-milling process are modeled as a multi-degree
freedom system having multi-dimensional chatter vibrations. In order to obtain the
stability diagrams, the delayed-differential equations of the dynamic system are solved in
discrete-time domain by considering the time-varying delay caused by the system’s
kinematics. The results are compared with frequency domain solutions and validated on a

turn-milling machining center for various conditions and materials.
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4.2. Dynamic Chip and Cutting Forces in Orthogonal Turn-Milling Process

In orthogonal turn-milling operations, the uncut chip thickness on the side edge (h) and
on the minor edge (h,,) are different due to the kinematics of chip generation during the
process. The total uncut chip thickness imposed on each edge consists of static and
dynamic parts [117]. The static part (h%) corresponds to the constant feed movement of
the tool and the dynamic part (h%) is due to the self-excited displacements of the cutter
and/or workpiece under the effect of the regeneration mechanism. Figure 4.1 shows the
dynamic system in orthogonal turn-milling operations. In this system, the cutter and
workpiece are assumed to be flexible, each with three degrees of freedom. It is assumed
that the dynamic system experiences vibrations in two lateral (x, y) and axial (z) directions
in TCS. As shown in Figure 4.1, due to the vibration of the cutter and workpiece, the tooth
j of the cutter removes the modulated chip thickness left by the vibration marks of tooth
j — 1, in addition to the static chip load. The total chip thickness imposed on the side

cutting edge of the tool can be written as:

hd(p;,z) = Axsin;(z) + Ay cos ¢;(2) + f;sing;(z) 4.1)

Similarly, the total chip thickness, including the dynamic and static parts for minor edge,

is formulated as follows;

hd (@), k) = Az + B (9}, 1) 4.2)

Ax, Ay, and Az are related to dynamic chip thickness and are defined as the relative
displacements of the workpiece and cutter to each other in x, y, and z directions,

respectively, and can be formulated as below:
Ax = [(x,(8) — x.(t = 1)) = (3, (&) — %, (t = T))]
Ay = [(ye(®) =yt = D)) = (W (®) = 3o (t = D)] (4.3)
Az = [(z.(t) — z.(t = 7)) — (2, () — 2, (t = D))]

where x.,y. and x,,,y, and z.,z,, are the cutter and workpiece displacements in the
current tooth pass at time t in the x, y, and z directions at the specific angular position of
tooth j at height z of side edge and length [ of the minor edge. T stands for the tooth passing

period which is used to define the cutter and workpiece displacements left on the surface
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by the tooth j — 1 at time t — 7 at the same point. Hence, the delay of the system is equal

to 7.

Vibration marks
from tooth j-1

x(t—1), ¥yt -1
x(®),y(t)

Vibration marks
from tooth j-1 l

A-A Section Cutting tool ~—___

Vibration marks Z
left by tooth j-1 T

Vibration marks
left by tooth j

Figure 4.1. Dynamic chip generation.

The angular position of the discrete element on the side edge at height z on tooth j is

(P]'(Z) = Qtt+j¢p -

tany;
Rt

z, where (); is the rotational speed of cutter (rad/s), ¢, =

27 /N is the constant pitch angle for standard milling tools and y; is the helix angle of the

tooth j. The angular position of the minor edge is defined by ¢; = Q;t + j¢,. The

corresponding immersion boundaries for angular positions of each edge are given in

Section 3. Note that in equations (4.1) and (4.2), the static chip load terms are h® =
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fi sin ¢;j(z) and hfn((pj,l) are neglected in the stability analysis since they do not
contribute to regenerative dynamic chip generation mechanisms.

Similar to the approach used in static cutting force calculation, the engagement lengths
on the side and minor edges of the tool are divided into a number of small elements. The

differential dynamic milling forces in x, y, and z directions subjected to side cutting edge

on tra coordinates are shown in Figure 4.1. The differential tangential (dF; ;) radial
(dF;? ;) and axial (dF; ;) cutting forces exerted on the side cutting edge on tooth j for an

infinitesimal axial element thickness of dz can be formulated as;

dFs (). 2)

Kic Ax
dFyy(¢52) 0 = ?C}[sinqu cos ; OJ{ﬁy}g(@(Z))cz(qu(z),z) dz (4.4)
ac VA

dr; j(¢;.2))

The K., K,. and K, . are the tangential, radial, and axial cutting force coefficients,

respectively, which are defined in Section 3.6 and Equation (3.28). Further, the function
g ((j) j (Z)) is unit pulse functions which determines whether the tooth is in cut or out of

the cut, and similarly, q(q.’) i (Z),Z) determines if the axial element is within the
engagement boundaries. The detailed formulations are given in Section 3.6, Equation
(3.27). The differential dynamic cutting forces in tra coordinates in Equation (4.4) can be
resolved in the TCS coordinates by using the transformation matrix given in Equation

(3.29). The differential cutting forces in tool coordinate system can be expressed as;

dFy; (¢j'z) —cos¢j(z) —sing;j(z) 0 dFts,j((pj'Z)
dF;;(¢5,2) ¢ =| sing;(z) —cosg;(z) 0|{dF;(;.2) (4.5)
dF;; (¢;.2)), 0 0 Uar;;(¢5.2))

The differential dynamic milling forces exerted on the side edge are integrated within the

element i with a height of dz, for j* flute as follows;

Zit+1
{m (o}, = | ar (@2, dzs p =32 @6

Z;
The dynamic cutting forces for each infinitesimal element on the minor edge with a length

of d!l in radial distance from the tool center 3, in tra coordinates can be formulated as
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aF(ont))  (Keeloy i) A
dF (9, 1) t = { Kre(05 1) 1[0 01] {Ay}@(%) dl 4.7)
dF (@) ) 4 Kac(@j, i) Az

Note that the cutting force coefficients corresponding to each element along the minor
edge are a function of the element’s radial distance (l;) and angular position (¢;) because
the cutting speed is different for each element. Moreover, the function g(go j) is unit pulse
function which determines if the element on the minor edge of tooth j at the angular

position of ¢; is in cut or not.

The tangential, radial, and feed forces acting on each element on the minor edge can be

transformed to TCS coordinates using the transformation given in Equation (3.33).

dFH (@) L)
AFf (@) ) (4.8)
dF:vr;((p]' lk) d

dFy; (@), i)
ary (9, )
dFz; (e b)),

—cosp; 0 sing;
sing; 0 cosg;
0 1 0

As discussed in Section 3.5, the milling tools with minor edge approach angle would
cause undesirable surface quality in orthogonal turn-milling operation. Therefore, stability

analyses are performed for tools with a,,, = 0 (See Figure 3.13).

Note that, in this study, the eccentricity value is predefined in stability analysis. Hence,
the engagement boundaries of the minor edge at each angular position are known (see
Figure 3.6). As a result, the total dynamic cutting forces resulting from the regeneration
in z direction subjected to the minor edge (Az) at each angular position must be summed
up with the dynamic cutting forces resulting from the element i by the regeneration in x,

and y directions.

The total dynamic cutting forces on the minor edge of tooth j at the angular position of ¢;

can be calculated by integration of all elements with length dl within the engagement

boundary as:
12(e;))
F,ﬁ(q)) = j o) (—Ktc(goj, lk) cos@; — Krc(goj, lk) sin goj) Az g(wj) dl
Lj1(e;
] 4.9
U.2(ej)
FJ’,Z-((p) = j ) (—Ktc(goj, lk) sing; — Krc(goj, lk) cos (pj) Az g((p]-) dl
L,1(e;
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1j2(e;)

@) = | Kooy l)az gle) d
U 1(p;

where [; 1 (¢;) and [; , (@) are the engagement boundary of the minor edge at the angular

position of ¢; (see Section 3.3.2).

The total dynamic forces in TCS can be obtained by the superposition of the dynamic
forces generated from dynamic chip thicknesses exerted on both side and minor cutting
edges of the tool (superposition of Equations (4.6) and (4.9)). The explicit form of

dynamic cutting forces in x, y and z direction is show as follow;
Zn+1
Fyj(¢,p,n) = f (=K cos¢; — Ky sing;)(Ax sin ;
Zn
+ by cos¢y) ¢ (9;(2)) a4 (,(2)) dz
.2(e))
+ f (—Kee(@j, i) cos @;
l

j1(e;)

— Krc((pj, lk) sin (pj) Az g(wj) dl

E, (¢, p,n) = j nH(KtC sin ¢; — Ky cos ¢>j)(Ax sin ¢;

’ (4.10)

+Aycos¢;) g (¢j (Z)) a (¢j(Z)) dz
12(e;)) _

+ Jlj,l((pj) (—Ktc(goj, lk) sin @;

— Krc((pj, lk) cos <pj) Az g(¢j) dl

Fs@om = [ Kee (dxsing; + dycos 6 ¢(6,() 4 (/) az

y.2(ej)
[ kel b8z gl0)
1j1(e;)

Note that, since the cutting force coefficients of dynamic cutting forces generated by the
minor edge vary along the engagement length, the integral cannot be executed explicitly.

In other words, the cutting force coefficients related to the minor edge are functions of
engagement length and angular position (Kpc(goj, lk)). As an alternative, the average

cutting force coefficients along the engagement length at each angular position of ¢; can
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be used. Since the engagement length is different at each angular position, the average
cutting force coefficients will only be a function of the rotation angle (I?pc (@ ])) After

the integration and expanding trigonometric formulations, equation (4.10) is simplified as

follows;

Fas(b0,m) = — 3 [(Keesin 29 + Koo (1
— cos2¢;)) Ax™ g;(t,2)q;(t, z) 6z
+ (Kee(1 + cos 2¢);) + Ky sin 2¢;)Ay™g(t, 2)g,;(t, z) 5z]
+ (—Kec(@;) cos 9; — Kre(@;) sing;) Az g (o)) L(g;)

Fyj(¢,0,n) = %[(Ktc(l — cos 2¢);) — Kyesin2¢;)Ax™ g;(t, 2)q,;(t, 2) 8z (4.11)

+ (Ktc sin2¢; — Krc(l + cos Zq,')j)) Ay"g;(t,z)q;(t, 2)62]
+ (=Kec(@)) sing; — Kre(9)) cos 9;) Az g (o)) 1(e))

dFy (¢, o,n) = Ky sin; Ax™ gj(n)q;(n)dz
+ Ko Ay"gi(t,2)q(t,2) 6z — Kre(@;)Az g(o;) (@)

where 6z =z, — 2y, z =16z, gj(2) = g ((j)j(z)), aj(z) =g (qu(z),z). Ax, Ay,
and Az are the elemental displacement of the cutter and workpiece for the considered axial
element n on the side edge of flute j and the rotation angle of ¢; in the Xr, Y and Z;
directions, respectively. It is to be noted that [(¢;) is the total engagement length of the
minor edge of j tooth at each angular position of ¢ ; which is previously defined in

Equation (3.19). As a result, the differential dynamic cutting forces can be written in

terms of directional coefficients as follows,

deJ (t‘ Z, l) Oxx,j (t' Z) axy,j(t' Z) Az, j (t’ l) AX(t)
dFy,j (t, Z, l) = ayx,j(t, Z) (Iyy’j(t, Z) ayZ,j(t' l) Ay(t)
dFZ,j (t, Z, l) d azx,j (t, Z) azy,j (t; Z) azz,j (t; l) AZ(t) (4 12)

{deT,ly,z(t)}d = [DCj,Z,n(t)]{Ax,y,Z(t)}

The directional force coefficients which relate the dynamic milling forces and the dynamic

displacements at three directions are defined as;
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Ay, jn () = —%[Ktc sin2¢; + Kfc(l — CcoSs 2¢j)]gj(z)4j(z)6z
axy'jn(t) = _%[Ktc(l + cos 2¢)]) + KfC sin Z(p]]g](Z)Cl,](Z)(SZ
Uz j1(t) = [—Kec(@)) cos @j — Koo (9;) sing;] g¢(@;) (@)

Ay, jn(t) = %[Ktc(l — COS 2¢j) — Ky sin 2¢j]gvj(z)%j(z)52

Qyy,in(8) = 2 [sin 2¢5; — Kre(1 + cos 2)]g(2)a(2) 6z (4.13)

@y 1(t) = [~Kee(@;) sing; — Koo (9;) cos ;]g(0;)1(9))
azx,jn(t) = [Kgc sin ¢]] g»j(Z)%j(Z)(SZ
azy,jn(t) = [Kac cos ¢j]g’j (Z)@j(z)(SZ

0 (0) = —[Kre(0))] 9(0;) U0))

The elemental directional coefficients of dynamic forces given in Equation (4.13) are time
varying according to the angular position of the tooth j within the engagement boundaries.
The directional coefficients will be used in stability analysis in the following section. In
this study, similar to milling, the stability of the system is studied for different rotational
speeds of the tool and axial depth of cuts. Since the feasible eccentricity range is limited
due to surface generation aspects, it cannot be taken as a defining parameter in chatter
stability. Therefore, the eccentricity which defines the engagement of minor edge will be
identified prior to stability analysis based on process kinematics and surface quality
considerations. As a result, whether the axial engagement of the tool at the side cutting
edge is a; or a,, the engagement and hence, the regenerative dynamic forces resulting
from the minor edge are constant at similar eccentricity for both cases. In equation (4.12)
the elemental regenerative forces resulting from the minor edge are integrated along the

minor edge at time ¢, as follows;

axx,jn(t) axy,jn(t) fl’ilaxz,jl(t)
[DCj,z(t)] = ayx,jn(t) ayy,jn(t) fllilayz,jl(t) = (4.14)

k
azx,jn(t) azy,jn(t) flzlazz,jl(t)
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axx,jn (t) axy,jn (t) axz,j (t)
ayx,jn (t) ayy,jn (t) ayz,j (t)
azx,jn (t) azy,jn (t) azz,j (t)

{F .z () }d = [D Cjn (t)] {Ax.y,z}

4.3. Varying Time Delay Model in Turn-Milling Process

According to the kinematics of the orthogonal turn-milling operation and the cutting
geometry (See Section 3.3), it is shown that any discrete element on the tool axis
experiences individual radial feed and angular displacement in a tooth passing period. This
phenomenon affects the feed value of each element along the tool axis in static cutting
force calculation. Similarly, the rotational motion of workpiece and the circular tool
trajectory in turn-milling will affect the regeneration mechanism and formation of the

dynamic chip thickness, and hence, dynamic forces.

Based on the process kinematics and cutting geometry of orthogonal turn-milling process,
the simultaneous rotational motion of workpiece and tool produce a phase shift between
the waves imprinted on the workpiece surface, resulting in a varying time delay in the
regenerative chip formation mechanism. Comak et al. [43] discretized the tool and
workpiece rotational rigid body motion in Cartesian coordinate system and calculated the
phase difference by using coordinated of the surface point generated by each tooth at each
time interval. This study uses a quasi-static approach to evaluate the phase difference

between the waves imprinted on the surface by the two subsequent teeth [46].

At discrete time instant i (i*" time interval At), the axial element z on j* tooth leaves a
surface point P® = P; ; at angular position P° =¢; j(z), as shown in Figure 4.2. As the
workpiece rotates at a constant speed and the tool moves in a helical feed direction, after
one tooth passing period (7,) at time instant i + 1, the next immediate tooth j + 1 arrives
at point P* = P, j+1 at angular position P = piyq, j+1(2). However, the dynamic chip
thickness and the corresponding delay must be calculated between the surface points in
the static chip direction, which is shown as POP*. The next immediate tooth j + 1 arrives
at point P* at angular position ¢* (¢* # ¢, ;). Hence, there is a phase shift between the

surface marks left by two subsequent teeth on current and previous modulations. This
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phase shift means that the time interval t that tooth j + 1 arrives at point P* is different
than the tooth passing period t,. The phase difference at time instant i is shown by «; in

Figure 4.2, and can be defined as;

a; = ¢° —¢* (4.15)
At the time interval 7, the displacement of the tool due to workpiece rotational motion

and linear feed is equal to TL ft(z) where f;(z) is defined in Equation (3.6).
0

t+ At

Figure 4.2. Phase difference representation.

By applying the trigonometrical relations (law of sines) stated in [46], the phase difference

can be calculated as;

%ft(z) cos(Ox+;)
Rt

(4.16)

a;(z) =

The total varying time delay in the regeneration mechanism (7; ;) can be calculated by
the superposition of the time delays contributed by the phase angle («;) and the nominal

tooth passing period (7) as follows;

_ . o _ 2m  tfi(z)cos(¢i+6x)
TlJ(Z) - TO 'Qt o N.Qt TORtQt (417)
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By combining Equation (3.6) and (4.17), it follows that;

2mR; cos 6,

N [Qthcosﬁx + Q,, (RW —a,+ a(Z)) cos(6y + ¢i)]

7, (2) = (4.18)
According to Equation (4.18), it is deduced that the varying time delay resulting from the
workpiece rotation depends on the spindle speed and radius of the workpiece and tool. As
the workpiece speed increase, the phase difference at each angular increment increases,
leading to a lower time delay. This phenomenon affects the regeneration mechanism and
hence, the stability limits. Furthermore, since the feed values for each axial element along
the tool are different due to the workpiece radius, the phase difference, and hence overall
delay will vary along the tool engagement. It is also worth mentioning that, at similar
workpiece and tool speeds, the time varying delay and its average are different for
different workpiece diameters. Therefore, unlike conventional milling, where the time
delay is constant and equal to the tooth passing period (t = t;), in turn-milling process
the time delay varies at each angular position of the tool (each time instant) caused by the
rotational motion of the workpiece and is not equal to the tooth passing period (7; ; # 7).
The time delays not only are distributed along the tool axis but also vary at each time
instant within the engagement. This phenomenon brings more complexity to the solution
of stability. Due to the time-marching nature of the semi-discretization method (SDM)
[118] in discrete-time domain, it is the best solution method to capture the variations
resulting from time-varying and distributed delays in orthogonal turn-milling stability. As
a result, in turn-milling process, the varying time delay approach must be employed in

order to include the effect of speed and radius ratios in stability diagram calculations.

The behavior of varying time delays for different conditions is investigated in the
following diagrams. In Figure 4.3, the time delay values are normalized by the tooth
passing period (7,) and depicted for different conditions. For case (a) in Figure 4.3, it is
deduced that as the spindle speed ratio (r5) decreases which means higher workpiece
spindle speed the time delay variation is increasing which affect the stability of the
process. The second comparison is depicted in Figure 4.3 (b) shows that as the ratio of
tool and workpiece diameter decreases the variation of time delay will be close to tooth

passing period [46].
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Figure 4.3. Comparison of time delay variation; a) for different speed ratio, b) different

diameter ratio, c) different depth of cut

The third diagram shows the variation of delay amplitude along the depth of cut. It is
shown that the variation amplitude is lowest at the tooltip (1, = 0) compared to the axial
element with r, = 1. Based on the simulation given in Figure 4.3, if the workpiece spindle
speed is slow, which is mainly used in machining of large-scale parts in turn-milling
operations, the total time delay will be close to the tooth passing period, and the time delay
will be approximately equal to that of the regular milling operation. However, for
applications requiring lower cutting speeds (lower tool rotational speed), as the workpiece
rotational speed increases, the time delay in turn-milling deviates from tooth passing

period and the system's dynamics will be different from the regular milling operation.

4.4. Dynamics of Orthogonal Turn-Milling Process in Time Domain

During orthogonal turn-milling operation, the tool and workpiece can have flexibilities in

all three dimensions, as shown in Figure 4.4.
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The displacements Q (s) caused by the cutting force F(s) imposed on the structure can be

expressed as follows;
{Qp (S)}4vx1 - {q)p(s)}4-vx4v{Fp (S)}4vx1 b t,w (4'19)

where the subscript v represents the number of contact points along the engagement
length of the flexible tool and flexible workpiece [119]. Depending on the turn-milling
configuration, for both flexible tool and workpiece, if the contact area is large multiple
contact points (v > 1) can be used. However, if the depth of cut is small or the workpiece
is rigid in tool’s flexibility directions the lumped dynamics (v = 1) approach is employed

[43].

Springs and

Figure 4.4: Structural flexibilities in orthogonal turn-milling operation.

Subscript p defines the equations that corresponds to tool (t) or workpiece (w). The
Equation (4.19) with on contact point can be written for flexible tool and workpiece in

three directions as follows;

Q¢ =|[Pyx Pyy Pyz| (B¢, pit,w (4.20)
Qz P cI)zx (Dzy (Dzz P Fz P

The measured transfer functions are given as;
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_ 1
,(s) = Uy (Is? + 20,@n,5 + @3,)  Up, pit,w (4.21)

where Tan,xm.y) is identity matrix, Wn,, ) is diagonal natural frequency, and
memp

(_p (X is damping ratio matrices for m, number of identified flexible modes of the
pXMp

tool or workpiece. U(3><mp) is the mass normalized mode shape matrix of tool and

workpiece at the cutting location as defined in Equation (4.22). The mode shape matrix

and diagonal natural frequency and damping ratio matrices are given as follows:

ux,l,p ux,z,p ux,m,p
U, = {%vipg {Yv2pg ... {Yymp , pit,w

uz,l,p uz,Z,p uz,m,p 3xmy,

Wny o 0 0

0 0 Wy
zp myXmy
Gp O 0

Gb=10 Gp O ,pit,w

0 0

where each column is the mode shape vector representing the relative displacement of the
cutting point in three directions in corresponding coordinate system, when the structure
vibrates in the corresponding mode. The equation of motion of each structure can be

converted into the time domain as:
0, + zz_pwnp(')(t) +ak Q) =F, ptw (4.23)

It 1s to be noted that the dynamic displacements and dynamic forces are defined in TCS
in the previous sections. The frequency response functions and the mode shapes evaluated
for workpiece in MCS must be transformed into TCS. In orthogonal turn-milling case, the
FRF of the workpiece in X, direction in MCS is aligned with X in TCS, Y}, is aligned in

X direction, and Z,, in Y}, direction, as shown in Figure 4.4.

The physical dynamic displacements can be transformed into modal space using the

transformation given in [119]:

{Qp(t)}(gxl) = [Up](3xmp) {Fp(t)}(mpxl) (424)

73



where U, is the mode shape vector of the structure and I'(t) is the modal displacement
vector in modal space. By substituting the equation (4.24) into Equation (4.23) the
equation of motion for tool and workpiece in time domain and modal space can be given
as:

[y () + ZthntFt(t) + wnzrt(t) = U[F™(t)

(4.25)

B () + 28, @, Ly (8) + @y, T (8) = —ULF™()

where U, and U,, represent the mass normalized mode shape matrices of the tool and
workpiece, respectively. Note that the cutting forces generated at the cutting zone between
tool and workpiece act on both with the same magnitude but in the opposite direction
[117], as given in Equation (4.25). The following equation can be obtained by unifying

the explicit equations in Equation (4.25) into matrix form in modal space;

[ (1) ZEtw_nt 0 I, () wnt Ft(t) Ul | .
I{l:w(t)} " [ 0 Z(_Wa)_nw] {Fw(t)} [ wnw } [ ]F () (4.26)

w(t) Uy
In Equation (4.26), it is required to define the elemental cutting forces in modal space.

Therefore, the elemental cutting forces are given in Equation (4.12) must be transformed
from physical to modal space. For this purpose, the relative displacement between the tool

and workpiece in the time domain can be written as follows;

{Q(0)} = {Q:(O)} — {Qu(®)} (4.27)

According to the dynamic chip calculation during regeneration mechanics in Equation

(4.3), the dynamic displacement can be defined in TCS as follows;

Ax

Ay
Az

D(t) = =[Q(® - Q(t — ;)] (4.28)

where {Q(t)} and {Q (t — TL-J-)} are the relative displacements between tool and workpiece

at the present time (t) and one delay period (7; ;) before.

By substituting the Equations (4.27) and (4.28) into (4.24), the dynamic displacements

can be obtained as follows;

D(t) = [(UT(t) = UL () = (UeTe(t = 71) = U T (¢ — 7)) (4.29)

By substituting equation (4.29) into Equation (4.12), the following formulation can be
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obtained for the elemental dynamic cutting forces in modal space:
F ()} = [DGO] (UL (O = Uy Ty (©) = (UeTe(t = 705) = UnTu(t = 7))]  (4.30)

where [DC;(t)] refers to the cutting force directional coefficients given in Equations

(4.12) and (4.13). Combining the Equation (4.30) and (4.27) gives the generalized

dynamics of turn-milling process in modal space as;
; { f() } N [Zf}w—nt 0 ] {r}(t)} [wnt ] rt(t)}
L () 0 20,0, | (L) @, | T ()

g aon- ({0} - {rri((i_—?;]}))b

Equation (4.31) represents the coupled equation of motion of tool and workpiece by

(4.31)

taking the dynamic cutting forces that resulted during turn-milling operation into account.

4.5. Stability of Orthogonal Turn-Milling Process

In the previous sections, the dynamic chip thickness, dynamic forces, and the dynamic
model of turn-milling are presented by taking the dynamics of the tool and workpiece into
account. In order to solve the stability of orthogonal turn-milling dynamics, discrete-time
domain and frequency domain approaches are proposed in this section. The results and

comparisons of both approaches are discussed in Section 4.6.

4.5.1. Stability Analysis in Discrete-Time Domain

In this section, the stability of turn-milling process is studied using the Semi-discretization
method (SDM) proposed by Insperger and Stepan [39]. This method allows the delayed
differential equation to be discretized in discrete time intervals within a period by
linearizing the time domain simulation of the vibrating system. This method discretizes
the delayed terms within a period of the system only while keeping the non-delayed states
unchanged. It has been shown in Section 4.3 that, unlike regular milling operation, the
time delay varies in time during turn-milling operation. By integrating the varying time
delay which is obtained in Equation (4.18) with the dynamic equation of motion of turn-

milling process in modal space, the following formulation is obtained:
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HE@}+ [ {FO} + DIF©} = FOT©} - {T(t - 1)},

{f(t)} _ {Ft(t)} (4.32)
Lo ()41
The coefficient matrices stated in Equation (4.32) are as follows:
20w, 0 w2 0
= 2 = P 1
0 ZwanW MM 0 Wy, MXM
(4.33)

UT
[FC(t)mxm = [_UtT] [pc;t.2)] U, —U,] ~M=my +m,

where m; and m,, are the number of modes of tool and workpiece, respectively.

Note that, the varying time delay is periodic at the tooth passing period 7; ; = 7; ;(t) =
7;,j—1(t + To). The subscript i refers to time instant, and subscript j refers to tooth number
for each axial element. Note that, since the time delay varies in time within the cutting
limits, depending on the delay resolution, several delays can be generated in the system
[43]. In this regard, special milling tools such as variable-pitch, variable-helix, serrated,
and crest-cut tools also introduce discrete and distributed time delays during the cutting
due to their particular geometry, which affects the local pitch angle of each element
[61,77,120,121]. While the time delay with a regular milling tool (equal-pitch) in milling
operation is constant and is equal to the tooth passing period (7;), the time delay at each
discrete interval (iAt) and axial height (z) in turn-milling is different and time varying
but periodic at tooth passing period. In order to apply semi-discretization, the principal
period (rotational period) of the system T is divided into 7 discrete time intervals.

At == (4.34)

m

where m is an integer and known as the principal period resolution, and At is the time
interval. The number of delays can be changed by the tool geometry, process kinematics,
and process configurations. The delay resolution defines the number of discrete points
within the delay as can be calculated as follows;

Ty j (2) B)

1j(z) = mt( AL + 5 (4.35)

where int denotes the integer-part function, and p is the order of the Lagrange polynomial

for the approximation of the delayed term [118]. As stated in detail by Insperger and
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Stepan [39,118], while other approaches of SDM approximate the delayed terms of the
system by piecewise constant delays over each discretization step, higher-order methods
approximate the delayed terms by higher-order polynomials of time t. In other words, in
higher-order SDM, the time-periodic coefficients are approximated by piecewise constant
ones, and the delayed terms are approximated by a linear combination of the
corresponding discrete delayed values of the delayed state g, while the non-delayed terms
are left in their original form. In this study, the updated first order semi-discretization

method (SDM) is used where p = 1 in equation (4.35) [39].

Note that, since the time delay 7; ; is varying at each discrete time interval in turn-milling,
the period resolution 7 and delay resolution 7;; are not equal. However, since the
principal delay is equal to tooth passing frequency in conventional milling, the delay
resolution and period resolutions are equal. The number of unique delays () in the system
with the particular delay label of 7; ; is represented by Np.

r = unique (ri,j(z)) ;i=1,,m;j=1,- ,N;z=n.dz

(4.36)

Np = size(r)

In the semi-discretization method, the system period is divided into m time intervals (At),
and over each interval, the delayed differential equation (DDE) is turned into an ordinary
differential equation (ODE) which the analytical solution can be obtained. In this regard,
the dynamic equations are represented in the state-space form a first order ODE by using

the time-periodic coefficient matrices [39];

@} = LO®Y+BO{q(t - 7,2} (437)

where the coefficient matrices can be defined as

3

]ZMXZM

NG) 0 I
{Q(t)}:{f(t)}; L® = [[F_C(t)]—[D] —[C]
(4.38)
0

0
B =| |
( ) _[FCT’(t)] 0 2MX2M
{q(t)} represents the modal states of the coupled tool-workpiece system at time t, which

is defined by the modal displacements I'(t) and modal velocities f(t) of the coupled tool-

workpiece system. The coefficient matrices L(t) and B(t) are periodic at tooth passing
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period. {q (t — Ty (Z))} is the modal states with time-varying delays (Ti, j (Z)) which are
periodic in the tooth passing period, as well. In equation (4.38), the coefficient matrix B(t)
consist of matrix [FC,.(t)], in which, the directional coefficients are grouped according to
their delay values based on their delay label. This is because matrix B(t) is multiplied by
the state vector that contains delayed states, and it only encompasses the directional

coefficients of the elements with unique delays with label r.

[FC.()] = [—UJT@] [i f i[DCj(t,z)]dz [, -u,] (4.39)
j=10

On the other hand, the matrix [FC(t)] in coefficient matrix L(t) corresponds to the
transient part of the equation, which is not affected by the delays. In other words, [FC(t)]
has the contributions of all the directional coefficients active with the cut, regardless of

their delay label, as follows;

Np

[FC(O)] = ) [FC.(0)] (4:40)

r=1
where Nj is the number of unique delays contribute to the coupled system. The time-
periodic coefficient matrices (L, R) and varying time delay (Ti_ j (Z)) are averaged within
each discrete time interval At, t € [t;, t;;1) as given below;

tiya Liya Liv1

1 1
Li = A_tf L(t)dt ; Bi,r = A_t,f Rr(t)dt ’ Ti,j = f Tj(Z)dt (441)
t; t

ti
where r = 1,2, ..., Np. According to the theory of SDM, the delayed state is defined by
the discretization steps. Having introduced the discretization steps (discrete points), the
delayed states {q (t — Ty (z))} are approximated as a weighted sum of the two

neighboring delayed states q(t;_,) and q(t;_,,1) as follows (See Figure 4.5);

q (t - Ti,j(Z)) = Bia@® q(ti—r,) + Bip(®) q(ticr,+1) (4.42)
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Figure 4.5: Approximation of the delayed states by time-varying weights using 1% order

Lagrange polynomial approximation [39].

Note that, since the time delay 7; ; varies within the time period of the system; hence the

neighboring delays vary as well. Consequently, the weights are given in equation (4.42)

also vary within the time period and can be calculated as;

Tij + (i—Tl’ + 1)At—t

t— (l - Ti)At - Tij
At ’

A (4.43)

ﬁi,a(t) =

Bip(t) =

The discrete state weights hold the following conditions; f,, = [0,1] € Rand S;, +
Bip = 1.

As a result, the state space equation (4.37) can be expressed as below for each discrete

time interval t € [¢t;, t;4q) fori =0,1,---,m —1;

{q)} = Li{q(t)} + Z B;, [3b,i{Q(ti—ri} + .Ba,i{q(ti—ri+1)}] (4.44)

Ti=1

The solution over one discrete time step is;

Np
{qis1} = Pilqi} + Z(Rr,i,b{ql'—r} + Ry ialqi—r+1}) (4.45)
r=1

where
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Pi — eLiAt

rta 0 At T, (4.46)

At

S —1;; + At

Rrip = J. —l'i ” — eLit=9)gsB,
0

Assuming that the time periodic coefficient matrix L; is invertible (L;L;* =), the

equation (4.46) is calculated as;

Ryiq= (L‘ + — (L‘ —(ryj — (= DAL )L (I - eLiAf)> B,;

(4.47)
1
Rr,i,b = <_LLT1 + E (_Li_z + (Ti.j - riAt)L?l)(I — €LiAt)> B,
Or in a short form;
Ryiq = (eLiAt - I)Lngr,iﬁa,i
(4.48)

R.ip = ("2 — DL7'B, By

From equations (4.42) and (4.45), the discrete map for one discrete time interval can be

written as;

{Zis1} = [Gi]{z} (4.49)
where
z; = i Gzt o Qimy1 Qir]” (4.50)

is augmented state vector which encompasses the current state and states a delay before.
The coefficient matrix G; in equation (4.49) which links the states at time t to the next

time interval i + 1, reads;

1 r—1 T; Tomax

! ! ! '

[P;| 0 0 0] 0| 0 0 Rejq Regp O 0
ITo 0 0 o100 0 0 0 0 0 (4.51)

Gi=|o0|1 0 0 +Zlo 0 0 0 0 0 0

0lo .. 1 0 0 0 0 .. 0

According to equation (4.45), the matrices R, ;, and R, ;, are located at the (r; — 1)th
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)th

and (7;)""* columns and upper right block of the transition matrix, respectively.

Note that, the transition matrix must build according to the maximum number of unique
delays of the system (rmax = max(rl-, j)), and the number of total degrees of freedom of
the system (M) (See equation (4.33)). As a result, the dimensions of the augmented system
are (2Mnyqy + 2M) X (2M 10y + 2M).

The stability of the system is solved by evaluating the eigenvalues of the monodromy
(transition) matrix [W] [39,118]. This matrix is formed by expressing the equation (4.49)

at m number of intervals within the system’s principal period T, as follows [39,118];
{2} = [PHzo} v [¥] = Gpu1Gp—z - G1Gy (4.52)

The stability of the linear periodic system in equation (4.52) can be solved by Floquet
theory [39]. According to Floquet theory, the linear periodic system will be unstable if the
modulus of any of the characteristic multipliers (eigenvalues) (¢) of the monodromy
matrix is greater than unity, unstable if the modulus is less than unity, and critically stable

of the modulus is equal to unity [39,118].

<1 stable
|ull] = [¥]| =0 ~ |u|l=4=1 critically stable (4.53)
>1 unstable

In the semi-discretization method, the stability must be searched iteratively at different
spindle speeds and depth of cuts to find the stability lobes. Note that, for larger period
resolution m, the time interval At decreases, leading to higher accuracy of the solution,
especially at lower spindle speeds where the vibration wavelength is small. However, for
smaller time intervals, the number of maximum delay resolutions increases, causing
matrices with larger dimensions and lower computational speed. Therefore, the period
resolution must be selected carefully to avoid inaccurate stability lobe prediction or

unnecessary computational costs.

4.5.2. Stability Analysis in Frequency Domain

In this section, the zero-order approximation (ZOA) method proposed by Budak and
Altintas [117,122] for milling is used to model the stability of orthogonal turn-milling
process in the frequency domain. The stability model is based on the dynamic chip

thickness and dynamic milling forces given in Section 4.2 and the dynamics of orthogonal
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turn-milling introduced in Section 4.4.

In this method, the time-varying elemental directional coefficient matrix [D Cin (t)] given
in equations (4.12), (4.13), and (4.14) for n'* element on j* tooth, which is periodic at
spindle rotation frequency and varies within the immersion angles, expanded into the

Fourier series [111,117]. The Fourier expansion series are given as follows;
[DGn(®] = B2 w[DC e, [DC,] = 7 J, [DGa@®]e ot dt (4.54)

where w, is tooth passing frequency, and T is tooth passing period. If the higher order of
harmonics are considered (r > 0), the stability can be solved using the multi-frequency
approach [117], which also has high computation time due to the long numerical
calculations. Therefore, by using the zero-order term in the Fourier series, only the average
component (constant term) of the Fourier series is retained (zero number of harmonics
(r = 0)). By substituting w;t = NO the Fourier expansion can be written in the angular

domain as the detailed calculations are given in [117].

[DCJ(')n] _ Zifeex.j.n[chln(e)]de ;6 = d)]’(pj (455)

T Gst.j,n

In orthogonal turn-milling since the angular position and the immersion angles of the
elements on the side edge and the minor edges are different, the zero-order Fourier
expansion is taken according to their particular angular increment parameter (¢;, @;).
Definition of ¢; and ¢; are given in equations (3.25) and (3.32), respectively. By

substituting the equation (4.14) into (4.55), we have;

[ ¢ex, jn ¢ex, jn ex:J
f st'].r]l axx,jn(¢) d¢ f St'].r]l axy,jn(¢)d¢ f(:fst,jj Az, j (p)de
¢ex, jn ¢ex, in ex:J
[DCP] = 2| o iy jn (D) D [ gy (D) [ty (0)dep (4.56)
¢ex, jn ¢ex, in ex:J
" Qo (@) A [ gy ju (@) dp [z ()
-agx,jn(e) agy,jn(g) agz,j (9)

1
[DCj(.)n] ~ a?fx,jn(e) a?/yrjn(e) agz,j(e) ;0= ¢]" g

_a(z)x,jn (9) agy,jn (9) agz,j (9)

By substituting the equation (4.56) into (4.12), the elemental cutting forces can be

calculated as;
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dF,(t) = [pC,]{ay
dE,(t) Az

dF.(t) Ax
{ } (4.57)
From equation (4.20) it is known that the displacements of the system in Laplace domain

can be expressed as;

Ay(s) (= [Pyx(s) Pyy(s) Py.(s)|{F(S) (4.58)

{AX(S)} D () Cny(S) Dy, () E.(s)
Bz(s)) [ ®yx(s)  Pzy(s)  Dz(s)[ (E(s)

where the elemental dynamic chip thickness vectors in time domain are defined in
equation (4.3). The regenerative dynamic chip thickness in time domain in equation (4.3)

is transformed in Laplace domain as follows;

Ax(s) x(t)
Ay(s)p =[1-e @)y (@) (4.59)
Az(s) in z(t)

Based on the dynamic chip thickness formulation and considering the equal but opposite
direction force that occurred between tool and workpiece, the transfer function matrix in
equation (4.58) can be written as the summation of the FRFs of the tool and workpiece

[117].
[®4q] = [Pgql, +[Paql ;0 =272 (4.60)

where t and w refer to tool and workpiece, respectively. Note that, in the ZOA frequency
domain method, the time-varying characteristic of the delay in orthogonal turn-milling is
neglected. However, in the formulations (See equation (4.59)), the general case is given.
Time delay can be variable between subsequent teeth and along the cutting edge caused
by edge geometry in special tools such as variable-pitch variable-helix, serrated, or crest-
cut tools. Recently, Farahani et al. [66] and Bari et al. [123] employed the varying delay
approach to predict the stability of serrated tools in the frequency domain by using the
normalized average delay. In this section, the standard end mills with regular pitch
variation are used, and the time delay for each tooth at the tooltip is equal to the tooth
passing period (t = T). However, due to the kinematics of the turn-milling operation, the
time delay also varies along the tool axis due to the increase in linear speed of workpiece.
In addition, as given in equation (4.18), the delay varies at each instantaneous immersion

angle (by time). In ZOA approach, the average time delay within the immersion boundary
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is considered for all the teeth for at each height z.

The delay term in this section is given in a general form of 7;(z) to be able to include the
delay variations at each tooth and elemental height. This type of delay distribution can be
seen in special tools such as variable-helix, variable-pitch, serrated and crest-cut tools. For
the case of standard tools employed in orthogonal turn-milling, the average delay within
the immersion boundaries is equal for all the teeth at the tooltip. However, the average

delay varies along the tool axis.

By substituting the equations (4.58) and (4.59) into equation (4.57) and switching from
the Laplace domain to the frequency domain by considering (s = iw,), the elemental

dynamic force equilibrium or orthogonal turn-milling with standard end mills gives;

dF, dF,
dF, peloct = [1 — e @t [DCY, |[@(iw)]{ dFy ¢ ei@ct (4.61)
dF, dF,

Equation (4.61) gives the elemental dynamic cutting forces of nt* axial element on side
edge on j" tooth in addition to the forces generated from the minor edge by the tooth j.
As mentioned previously, the engagement of the minor edge, which is defined by the
stepover and eccentricity, is established prior to stability analysis concerning surface
quality and part accuracy. Therefore, the dynamic cutting forces resulting from the minor
edge are constant regardless of the number of elements (depth of cut) at the side edge. In
order to obtain the stability limit (critical depth of cut on side edge) all the elements in the
cut have to be coupled and considered simultaneously. In this regard, it is proposed to sum
the elemental dynamic forces acting on each element on the side edge to evaluate the total
lumped dynamic cutting forces in x, y, and z directions [124,125]. Furthermore, elemental
forces contributed by all teeth within the cutting boundary must be considered in stability
calculations. The lumped dynamic cutting forces acting on the side edges of all teeth are
added to the dynamic cutting forces acting on the minor cutting edges of all teeth. By
writing the equation (4.61) for all elements and summing up, the zero-order dynamic

model of turn-milling can be written as;

dF, dF,
dF, { eivet = [1 - e @] [[A;] + [4,]][@ (0] | dF, { etoet (4.62)
dF, dF,

where [A] is the summation of dynamic forces of all axial elements on side edges of all
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contributed teeth as follows;

m 1 a;?x,jn (¢) agy,jn (¢) 0
z % aj(;x,jn (¢) agy,jn (¢) 0 (4'63)
1n=1 agx,jn (¢) agy,jn (¢) 0

Mz

~.
1l

where m is the number of axial elements. [A4,] refers to the dynamic forces resulted from

the minor edges of all contributed teeth;

N 1 0 0 axz]((p)
] = =10 0 b, () (4.64)
= o 0 ad

As a result, the characteristic equation of the dynamics of the turn-milling in frequency

domain can be written as:
E(wc) = det[[1] - [1 — e @][[4,] + [4,]][® ()] (4.65)

As a result, in order to find the critically stable depth of cut where the system begins to
vibration at chatter frequency of w, it is required to solve the roots of the characteristic

equation in the equation [38]. If A is expressed as follows;

A =[] = [1- e @i@][[4,] + [4,]] (4.66)
Then the roots of the characteristic equation can be found as;

E(w:) =0 - det[[]] — Al®(iw)]] =0 (4.67)

Since the system may have multiple and distributed delays, and due to the mathematical
limitations that directional coefficient matrices introduce, derivation of an explicit and
analytical solution for the critical stable depth of cut a;;;,,, from A, using the eigenvalue
problem (as given in for milling operation with regular tools [38,117]) is not possible
[123]. Instead, the Nyquist stability criterion is used to identify the critical stable depth of
cut a;;,, at different tool rotational speeds. In this method, at a fixed tool’s rotational speed
(Q;) and stepover (a,,), the axial depth of cut is increased by elements §z until the critical
stable depth of cut is achieved [56]. Note that, in this method, the workpiece rotational
speed and eccentricity are also fixed for each iteration. In the Nyquist stability criterion,
the Nyquist plot of the characteristic equation (IE (wc)) 1s mapped onto a complex plane

for a range of frequencies encompassing the tool's and workpiece's natural frequencies.
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The system is unstable if any root of the characteristic equation creates a clockwise
encirclement of the origin on the complex plane. The details of the solution procedure of

the Nyquist stability criterion are given in Appendix B: Nyquist Stability Criterion.

4.6. Simulation and Experimental Verifications of Stability Model

The proposed chatter stability models in discrete-time and frequency domains are verified
through experiments in this section. The orthogonal turn-milling experiments were
verified using different tools and workpiece materials in different cutting conditions. The
experiments were performed on Mori Seiki NTX 2000 mill-turn machining center. The
confirmation experiments are performed for three cases with different tools and workpiece

flexibility, material, and dimensions.
e Casel:

In the first case, the tool has a significant flexible structural dynamic compared to the
workpiece. The experimental turn-milling set-up using an end mill is shown in Figure 4.6.
The chatter identification is performed using both sound measurement and surface quality

inspection.

Figure 4.6: Experimental set-up for chatter identification in orthogonal turn-milling

cutting tests.
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The workpiece is Aluminum alloy Al17075 with 114 mm diameter and 200 mm length.
The employed tool is a four-fluted WC regular end mill with 12 mm diameter, 70 mm
stick out, 8° rake, and 38° helix angles. The cutting force coefficients for the above-

mentioned tool-workpiece material pair are given in Appendix A: Orthogonal databases.

The tool and workpiece FRFs are measured by impact test using a modal hammer and
miniature accelerometer, as shown in Figure 4.7. The accelerometer shown in Figure 4.7
is PCB 352A73, and the modal hammer is Endevco model 2301. The modal parameters
and the FRF plots in the frequency domain are given in Figure 4.8 and Table 4.1,

respectively.

Figure 4.7: Impact testing experimental set-up for Case 1.

The modal analysis and the modal parameter identifications were conducted using
CutPro® [126]. Note that, as mentioned in Section 4.4 and illustrated in Figure 4.4, the
measured FRFs of the workpiece in MCS must be transformed into TCS to be used in the

stability model.

In the present section, the given directions for both the tool and workpiece are transformed
to TCS for simplicity. The tool is considered rigid in Z; direction. The stability lobe
diagrams for orthogonal turn-milling are calculated using semi-discretization (SDM) and
zero-order approximation (ZOA) methods as stated in Sections 4.5.1 and 4.5.2 for the
given tool and workpiece FRF and cutting force coefficient in this section and illustrated

in Figure 4.9. It is seen that there is a close agreement between the stability lobes
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calculated by SDM and ZOA methods.

Table 4.1. Modal parameters of tool and workpiece for Case 1.

Modal
o Frequency ] )
Direction Modes () Damping (%) Stiffness
zZ
(N/m)
1 1015 3.38 4.66¢e7
Xr
2 2073 2.74 3.29¢6
Tool
1 1037 3.9 3.14e7
Yr
2 2057 1.29 2.63e6
1 253.23 4.57 5.16e7
Xr 2 349 2.82 5.41e7
3 620 3.08 1.69¢8
Workpiece Yr 1 1853.5 0.97 1.46€9
1 243 4.09 5.89¢7
Zr 2 321.6 4.59 9.33e7
3 555 23 1.26e8
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Figure 4.8: Tool and workpiece FRFs for set-up in Case 1.

In order to validate the proposed model and the resulting stability diagrams, several cutting

tests at different tool spindle speeds and depth of cuts are performed, as shown in Figure
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4.9. During the test, the workpiece spindle speed was constant at (0, = 5 rpm and the
eccentricity was e = 2 mm. During the tests, the sound signals were acquired using
G.R.A.S. 40AO microphone. Based on the sound spectrum using Fast Fourier
Transformation (FFT) of the acquired sound signal and the visual inspections of the cut
surface by an optical camera, the tests were categorized as stable, unstable, and marginally

stable.
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Figure 4.9: Stability diagram for Case 1 with Q,, = 5rpm, and e = 2 mm.

If the FFT of the sound signal was dominated by the spindle or tooth passing frequency
and/or its harmonics, the test was classified as a stable cut. The chatter case or unstable
cut is classified when the spectrum of the sound signal is dominated by frequencies close
to one of the system's natural frequencies or its harmonics other than the tooth passing and

its harmonics.

The cases in which the chatter is not entirely developed and the FFT of the sound
encompasses both tooth passing frequency and its harmonics as well as the chatter
frequencies with relatively close amplitudes, are classified as marginally stable as
transition regions from stable cut to chatter. In Figure 4.10, the tooth passing frequency is
shown by wr, its nt"® harmonic by wr,,, and the chatter frequency by w,. According to the

sound spectrum and the cut surface photos given in Figure 4.10, it is evident that test A is
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stable since only the first harmonic of tooth passing frequency of 370 Hz (at 5600 rpm) is

dominant in its sound FFT.
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Figure 4.10: Sound spectrums and surface photos for stable and unstable points.

Similarly, test C is also classified as stable since its sound spectrum consists of the tooth
passing frequency of 410 Hz (at 6150 rpm) and its next two harmonics. On the other hand,
as seen in sound FFTs of tests B and D, the dominant frequency peak, i.e., the chatter
frequency (w,), is close to the most flexible mode of the system, which is the tool’s second
mode in this set-up (See Figure 4.8 and Table 4.1). Furthermore, according to the surface
photos, the chatter marks are visible on the machined surfaces for tests B and D. Based on
these justifications, tests B and D can be classified as unstable (chatter), which is
consistent with the predictions.

While the stability lobes are validated for Case 1 with an eccentricity of 2 mm, the stability
lobe comparison for the maximum eccentricity for the tool with a 12 mm diameter is
illustrated in Figure 4.11.

As seen in Figure 4.11, while the absolute stability limit is 0.4 mm for e = 2 mm, it
increases by 0.1 mm as the eccentricity is increased to e = 6 mm. It is to be mentioned

that, the validation tests were also performed for the case e = 6 mm.
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Figure 4.11: Stability comparison for conditions in Case 1 at two different eccentricities.

However, since the absolute stability limit difference is small and considering the
marginally stable cases at the vicinity of absolute stability limits, the validation
experiments are similar to the one given for the case of e = 2 mm. The negligible variation
of stability lobes and absolute stability limits between these two conditions is due to the
small tool diameter in this case and hence, shorter engagement of the minor edge. On the
other, since the workpiece diameter to tool diameter ratio is considerably high, the uncut
chip volume variation is low (See Section 3.4). It is previously mentioned that, as the
diameter ratio increases, the orthogonal turn-milling mechanics and dynamics become
more similar to the milling process. It is due to the fact that, as the diameter ratio is high,
which means that the tool radius is much smaller than the workpiece ratio, eccentricity

variation (e,,4, = R;) does not result in considerable uncut chip geometry alteration.
e Case2:

In previous cases, the employed tools were standard end mills in which the minor edge
length is near the tool radius or slightly shorter than the tool radius. According to the
discussions in Section 3.5 regarding the model for allowable stepover for different
eccentricities given in equation (3.23) and the corresponding simulation in Figure 3.16, it
1s deduced that for tools with a long minor edge (such as end mills) there is no limitation
for stepover at various eccentricities. In other words, the stepover can be selected as any

value while eccentricity is between m < e < R, — m (See Section 3.3.2). However, turn-
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milling is mostly performed for roughing operations using face-milling tools where the
minor edges on the inserts are smaller than the tool radius, and there is an offset distance
between the insert and tool center. In this case, the proposed model in Section 3.5 and
given in equation (3.23) must be used to select the proper eccentricity and stepover pair

to prevent cusp formation, threaded surface, and undesired uncut chip geometry.

In this regard, the proposed stability model for orthogonal turn-milling is validated using
a four-fluted face milling tool. The milling tool is Ceratizit A491.50.R.04-09 with a
diameter of 50 mm, and a cutting edge angle of 90° (zero minor edge approach angle).
The employed inserts are SNHU-type inserts with [, = 9.1 mm cutting edge length and

suitable coating for steel machining. The experimental setup is shown in Figure 4.12.

P T

TR T

) Spindle |- -

Figure 4.12: Experimental set-up for Case 2.

In Case 2, it is aimed to simulate the stability of a flexible face milling tool during
orthogonal turn-milling. This situation can happen in machining a large-scale crankshaft
where a longer tool holder is required for turn-milling the main journals. In this regard, a
Haimer 40.326.32 tool holder with an overhang length of 200 mm is selected. The
workpiece material is AISI 1045, with an initial diameter of 100 mm and 130 mm length
from the clamping surface. The orthogonal data for the tool and material pair is given in
Appendix A: Orthogonal databases. Due to the availability of the holder, the experiments
were performed on DMG Mori DMU75 5-axis machine tool.
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Figure 4.13: Measured FRFs of tool and workpiece employed in experiments of Case 2.

Table 4.2: Modal parameters of tool and workpiece employed in Case 2.

Modal
o Frequency ) )
Direction Modes (12) Damping (%) Stiffness
z
(N/m)
1 259 1.51 4.32¢8
Xr 2 404 2.19 5.56e6
3 1488 1.38 1.32¢8
Tool
1 297 0.12 2.46¢€9
Yr 2 415 3.63 5.82e6
3 1501 1.29 1.22e8
1 240 1.88 2.08e8
Xw(Zr)
2 468 2.44 3.688e7
Workpiece 1 279 3.78 4.95¢8
Yy (X7)
2 505 1.85 4.82e7
Zyw(Yr) 1 1134 1.15 7.41e8

Note that, since the orthogonal turn-milling operation is performed in a 5-axis machining

center and the machine coordinates are different from a mill-turn center, for compatibility

with the previously-mentioned formulations, the stationary workpiece coordinate system

i1s given, which corresponds to the MCS in mill-turn center in Figure 4.12. For this
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configuration, the measured FRFs and the modal parameters for the workpiece and tool

are given in Figure 4.13 and Table 4.2, respectively.

According to discussions presented in Section 3.5, for a face milling tool with a minor
edge length of [, = 9.1 mm in which there is an offset distance between the tool center
and inserts, the allowable stepover (a,,) and eccentricity must be selected using equation
(3.23). The allowable stepover with respect to the eccentricity for the given tool in Case 2
is illustrated in Figure 4.14. In order to investigate the stability of the system given in Case
2, three points are selected, as shown in Figure 4.14. Points A and B are selected to

demonstrate the effect of eccentricity on tool engagement and stability limit.

Dt=50 mm, lt=9.1mm

40

Allowable Range

) [mm]

20
15
10

0 5 10 15 20 25
Eccentricity (e) [mm)]

Feed per Workpiece rev. (a

Figure 4.14: Allowable feed per workpiece revolution (stepover) with respect to

eccentricity for the tool employed in Case 2.

Point C is selected to investigate the stability at higher stepover values. This is important
as in orthogonal turn-milling, in order to achieve comparable MRR with the conventional
turning process, higher stepover (a,,) must be selected. Both conditions I and II have the

stepover value of a = 8 mm (16% of D;). The eccentricity of condition [ is e¢; = 4

Wi
mm, and for condition II is e;; = 19 mm. The corresponding stability diagrams for both
points I and II are illustrated in Figure 4.15. Based on the cutting inserts' allowable feed
per tooth values, the workpiece spindle speed is selected as Q,, = 5 rpm. The stability
lobes are simulated in a tool spindle speed range that fits in the allowable cutting speed

range of the given inserts. Based on the simulated stability lobes, cutting tests have been
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performed at different tool spindle speeds and depth of cuts to validate the simulated
stability diagrams at conditions I and II shown in Figure 4.14. The chatter detection was

performed through sound spectrum and surface quality analyses.

As seen in Figure 4.15, the stability simulations are presented using ZOA and SD methods.
According to the results, it is seen that both simulations have a good and close agreement.
All the simulations were run on a PC having Intel ® Core ™ 17 4.0 GHz Central
Processing Unit (CPU) and 16 GB of Random Access Memory (RAM). For both methods,
the axial element height is dz = 0.1 mm and spindle speed interval is ds = 5 rpm during
iteration. While the period resolution is taken as 7 = 240 in semi-discretization method,
the frequency resolution in the Nyquist stability criterion approach is taken as 1 Hz. For
the given conditions above, the SDM simulation takes about ~ 2 hours, and the ZOA
method using the Nyquist stability criterion takes approximately ~5 minutes to achieve

the simulation results illustrated in Figure 4.15.
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Figure 4.15: Stability diagrams and validations for Case 2 at two different eccentricities.

(Conditions I and II in Figure 4.14).

Based on the simulation times and the discussions given in Section 4.3, the simulation
time increases if the delay variation is high, and hence, the dimensions of matrices are

larger due to the high number of unique delays. Therefore, if the spindle ratio (Q;/Q,,)
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is high (very low workpiece spindle speed compared to tools rotational speed), and the
tool is a regular tool with equal pitch angles; the time delay varies neither by the time-
varying nature of the process nor by the tool geometry, and the computational time is
relatively lower. Moreover, the ZOA approach proposed in this study is more

computationally efficient than the SDM.

The stable and unstable cases in Figure 4.15 are indicated as circles and cross marks,
respectively, with colors corresponding to stability diagrams. According to the
experimental verifications, chatter is observed at point A while the tool spindle speed is
930 rpm, at 2 mm depth of cut, and eccentricity is 4 mm. The chatter frequency of w, =
418 Hz is visible at vicinity of the most flexible mode of the system, which is the tool’s
natural frequency in this case (see Figure 4.16). The tooth passing frequency of wy = 62

Hz and its harmonics are also visible in sound spectrum.
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Figure 4.16: Sound Spectrum of the chatter experiments for Case 2.

However, the peak amplitude of the chatter frequency and its combination with tooth

passing frequency (w; = w. + kwr, k = 0,1,2,--+, k) are higher than the w and close to
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its higher harmonics (Figure 4.16A). A similar phenomenon is seen in Point C, as shown
in Figure 4.16. The cutting test is performed at Qs = 930 rpm, a,, = 1.5 mm withe = 19
mm eccentricity. As expected, the system chattered at 418 Hz, although the peak
amplitudes of the tooth passing frequencies are approximately close to that of chatter
frequencies. The chatter frequencies at different spindle speeds are illustrated in Figure
4.18.The sound spectrums of experiments B and D are given in Figure 4.16. The
experiments were performed at (0, = 1020 rpm at two different depths of cuts and
eccentricities. Both spectrums show only tooth passing frequency with higher harmonics
visible. According to the chatter frequency plot in Figure 4.18, for the current system, at
arotational speed of 1020 rpm, the corresponding frequency must be around 432 Hz, while
no FFT peaks were observed at the related sound spectrums of experiments B and D

around 432 Hz.

Furthermore, the chatter and stable conditions are verified by inspection of the cut surface.

The surface samples for stable and unstable cases are shown in Figure 4.17.
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Figure 4.17: A sample surface photo for chatter (left) and chatter-free (right) conditions.

The chatter marks on the surface of the workpiece reveal that the chatter occurred at point
A, as shown in Figure 4.17 left, while by increasing the spindle speed to 1020 rpm at an

eccentricity of 4mm, the chatter marks disappear because of a stable cut.

The stability lobes are simulated using ZOA and SDM approaches for the eccentricity and
stepover values of condition III indicated in Figure 4.14. It is seen that, similar to
conventional milling operation, as the stepover (feed per workpiece revolution) increases,
the absolute stability limit decreases. Despite the lower absolute stability limit of condition

II1, the MRR is slightly higher than both conditions I and II due to the higher stepover.
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Considering the stable depth of cuts inside the stability pockets, a,, = 2 mm is achievable
as a stable cutting while the step over is a,, = 8 mm (conditions I and II). On the other
hand, at condition III, where the stepover is a,, = 25 mm, the maximum stable depth of

cut is 0.8 mm.
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Figure 4.18. Chatter frequencies at different spindle speeds for Case 2.
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Figure 4.19: Stability lobes and validations for the system in Case 2, condition III in

Figure 4.14.
However, by comparing the MRR of I, II, and III, it is deduced that due to the higher
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stepover of condition III, its MRR is 25% higher than conditions I and II. As a result, it is
favorable to select condition III in orthogonal turn-milling in terms of productivity and

machining cost.

4.7. Effect of Process Parameters on Stability of Orthogonal Turn-milling

Due to the simultaneous rotation of tool and workpiece in orthogonal turn-milling, which
leads to simultaneous engagement of both minor and side cutting edges of the milling tool,
additional parameters compared to conventional milling and turning are included in the
process kinematics, mechanics, and dynamics. The effect and significance of these
additional parameters are discussed in Section3 in terms of surface quality and cutting
forces. However, these parameters are needed to be analyzed from process dynamics and
chatter stability points of view. In the previous section, the effect of eccentricity is shown
through simulations and validated by cutting experiments. Although some conclusions
regarding the effect of eccentricity and stepover on process stability can be drawn by
comparing the stability lobes in points I, II, and III shown in Figure 4.14, it is difficult to
predict the stability behavior of the system at each combination of e and a,,. This is due
to the fact that the stability of orthogonal turn-milling mainly depends on the chip load
and the amount of force produced by the engagement. The chip volume and the CWE
engagement do not follow a linear relationship based on eccentricity or engagement length
of the minor edge. The CWE and uncut chip geometry show different results at a particular

eccentricity but different tool and workpiece diameter combinations.

It is believed that at the process planning stage, based on the dynamics properties and the
allowable ranges of eccentricity and stepover, the absolute stability limit of the system
must be evaluated, as shown in Figure 4.20. Note that, Figure 4.20 is generated at a
constant spindle speed of 1, = 930 rpm to obtain the absolute stability limit of the system
at the given speed. Therefore, based on the cutting strategy, one can select the proper
eccentricity and stepover according to Figure 4.20, aiming stable depth of cut with cusp-
free surface quality. Furthermore, after selecting the chatter-free condition, the axial forces

during stable cutting must be selected and considered using the graph in Figure 3.23.
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Figure 4.20: Absolute stability limit map for Case 2 at the allowable range of

eccentricity and stepover.

Another important parameter that affects the orthogonal turn-milling process stability is
the workpiece rotational speed. As discussed in Section 4.3 and the simulations given in
Figure 4.3, by increasing the rotational speed of the workpiece (decreasing the ratio of
s = Q.:/Q,,) the phase shift between the surface marks left by two subsequent teeth on
current and previous modulations increases. This phenomenon causes the time-varying
delay in orthogonal turn-milling, affecting stability behavior. Due to varying time delays
within the engagement boundaries and distributed delays along the tool axis within the
CWE, the semi-discretization method can capture the impact of variable delays on process

stability [40,65].

As seen in Figure 4.21, increasing the workpiece rotational speed shifts the stability lobe

toward lower tool speeds due to the alteration in time delay [43,46].

It is known that a higher rotational speed of the workpiece increases the MRR by
increasing the linear feed rate. At the same time, the feed per tooth value both at side and
minor cutting edges will be increased drastically, which must be considered in terms of
cutting tool or insert feasibility at the resulted feed values. In addition, it is seen that the
stability lobes are also shifted toward lower speeds which may cause unstable cutting

without considering the effect of spindle speed [43].
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Figure 4.21: Effect of delay variation caused by workpiece rotational speed on stability

lobes.

4.8. Summary

In this chapter dynamic and stability model of orthogonal turn-milling process is
presented. The dynamic chip thickness and dynamic cutting forces are modeled as a
function of vibrations between the tool and workpiece imposed on both side and minor
edges of the tool in three directions. The time delay which alters the regeneration
mechanism is modeled based on the kinematics of the process. It is shown that, due to the
kinematics of the orthogonal turn-milling process, the tool experiences different time
delays along its axis. Furthermore, the workpiece rotational speed alters the regenerative
dynamic chip formation mechanism by altering the resulted time delay. Based on the
obtained varying time delay, the stability of orthogonal turn-milling process is solved in
discrete-time, and frequency domains using semi-discretization and zero-order
approximation approaches, respectively. The proposed stability solutions are validated by
experiments using standard end mills and face milling tools. The simulations discuss and
represent the effects of different parameters such as workpiece rotational speed and

eccentricity, considering their feasibility.
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S. IMPLEMENTATION OF SPECIAL TOOLS IN TURN-MILLING

5.1. Overview

The previous sections present detailed predictive models for the mechanics and dynamics
of the orthogonal turn-milling process using standard milling tools. However, special
(irregular) end mills with irregular pitch and/or helix angles have been a focus of interest
both in industry and academia for decades. It has been previously proved that milling tools
with nonconstant pitch and/or helix angles can suppress chatter during machining and
enhance productivity, especially when machining hard-to-cut materials [61,73,127]. In
addition to variable-pitch and variable-helix tools with straight cutting edge geometry,
serrated and crest-cut tools are also categorized as special end mills. Unlike standard end
mills, special geometries (serration geometries or wavy shapes) along the cutting edges of
serrated and crest-cut tools result in significant enhancements in process mechanics and

stability [77,120]. Different types of special tools are shown in

Variable-pitch Variable-helix Serrated Crest-cut

Figure 5.1. Different types of special tools.

In this regard, the serrated and crest-cut tools are implemented in orthogonal turn-milling
operations to investigate their effect on cutting forces and process stability. Firstly, the
mechanics of both tools during orthogonal turn-milling is discussed and validated through
experiments. Next, the stability of crest-cut tools in orthogonal turn-milling is discussed

based on the previous findings.
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5.2. Mechanics of Special Tools in Turn-milling

5.2.1. Serrated Tools

Due to the existence of serrations, the chip load distribution along the engagement varies
in serrated tools leading to higher stability and lower cutting forces in roughing operations.
The performance of a serrated tool depends on the serrations' geometry, the serration
profile's amplitude, and phase shift between the profiles [65,120]. Optimized geometry of
serration profiles can lead to higher stability limits due to the disturbance in the
regenerative mechanism provided by distributed varying time delays, irregular chip
thicknesses, and missed-cut effects [68,123]. As a result, it is important to use serrated
tools in turn-milling operations to achieve higher performance. The proposed uncut chip
model for orthogonal turn-milling can be adaptable for special geometry end mills such
as serrated tools. This section presents the uncut chip thickness of serrated tools and the
kinematics of orthogonal turn-milling. For serrated cylindrical end mills, the angular

position of axial element i of tooth j is defined as:

5 =)~ 7 4 g, 5.1)

where ¢; is the angular increment of reference tooth j, y; is the helix angle of the tooth
th p.(j) is the angular position of the tooth j with respect to the first edge, provided that
the angular position of the first tooth as the reference tooth is assumed to be zero and can

be calculated by;

pt(]) = Zu 1Pu (5-2)

where p,, is the pitch angle of the tooth w. It is obvious that the variable helix and variable
pitch tools can also be modeled using a similar approach. In order to determine the uncut
chip area, the tool-workpiece interference areas for each axial element are calculated based
on the model proposed by Tehranizadeh et al. [68]. In the elemental chip area calculation
of serrated tools in turn-milling operation, it is considered that the differential areas are
not intersecting, and the chip area direction makes the chip thickness perpendicular to the

element’s edge.

While integrating the serrated tools chip geometry model, due to the workpiece's rotation,
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the workpiece's surface shape, which is generated by the previous teeth on the side cutting
edge of the tool, is affected by the feed per tooth at each axial element. In order to calculate
the uncut chip area, the workpiece surface must be calculated for each axial element (i)

and angular position of tooth j as follows;

0

W(i,j, ¢;) = max min {Rim + — Cigzgl‘é’zs(e )-(Rw —ay,+ i.dz)}
t X

(5.3)

_( k=) ifk=j>0) , _
m_{k_HM ifk—jso} fk=12..,N
where R;,, is the local radius of the element which is different for each axial element due
to the wavy flank face of the serrated tools. The local radius definition depends on the
serration wave type, such as sinusoidal, circular, or trapezoidal, as shown in Figure 5.2
[68]. The geometrical parameters of each serration type are specific, and hence, the

geometrical relations of the local radius R;,,, (which is a tool geometry property) is specific

for each serration type and can be found in [68] in detail.

The uncut chip thickness (the area between the tool and workpiece) for each axial element
at each angular position depends on the serration type (R;; is different for each serration
type) is calculated by;
h(i,j, i) = Rij — W (i J, i) (5.4)
Further geometrical operations are performed in order to avoid the intersection of the
chip areas as defined by Tehranizadeh et al. [68]. The evaluated uncut chip thickness in
equation (5.4) is substituted with equation (3.26) for cutting force calculations. The

engagement of axial elements is updated at each angular position according to the

engagement boundary given in equation (3.11).

A3

Ay Az /
1

R,

R
b) <)

A
WL

Figure 5.2: Parameter definition for different serration type; a) trapezoidal, b) circular, c)

sinusoidal
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Note that calculation of the instantaneous depth of cut and entry and exit angle of each
axial element on serrated tools in turn-milling is performed by substituting the equation
(5.1) into equations (3.12) and (3.13), respectively. Furthermore, the transformation of the
elemental forces in tra coordinate system into TCS are performed according to the axial
and angular immersion angles of the serrated tool, which the formulations are adopted
from [64,68]. Finally, the cutting forces resulting from the tool's serrated side edge and
the tool's minor edge are summed according to the mechanics of turn-milling given in

Section 3.

The proposed force model of the orthogonal turn-milling process has been verified in this
section. The cutting experiments are on Mori Seiki NTX2000 CNC mill-turn. The cutting
force verifications are carried out on aluminum alloy Al7075-T6 cylindrical workpiece
and two types of solid WC end mills; standard and serrated end mills. The tool parameters
are given in Table 5.1. The schematic representation of the parameters for trapezoidal
serration waves is given in Figure 5.2(a). The cutting forces are measured using Kistler

9123C rotary dynamometer, as shown in Figure 5.3.

Serrated tool

Rotary
Dynamometer

Figure 5.3: Cutting force measurement set-up for orthogonal turn-milling using serrated

tools.
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Table 5.1: Serrated tool geometrical parameters

Cutting . .
. . Cutting angles . Serration parameters
Tool Type Diameter (mm) angles of side . Serration type
of minor edge (mm)
edge
as = 11° a, = 3°
Standard 16 - -
¥s = 38° Ym =0
L1=0.7, L2=0.3, A=0.5,
p— o p— o j— j— o
a; =5 an =5 ) a; = S = 30°,
Serrated 16 Trapezoidal
ys = 38° Ym =0 Ri=R;=R3=
R4 =03
Exp. 1
1200
1000 *, oo &
= £
= Z
8 °
— 2 %
=
N =
Q.
<
8}
0 60 120 180 240 300 360
Angular position (deg)
—Resultant - Sim. (Serrated)  ---Resultant - Exp. (Serrated) Anglar position (deg)
——Fz - Sim. (Serrated) -=--Fz - Exp. (Serrated) ——Torque - Sim. (Serrated) -=--Torque - Exp. (Serrated)
«+++Resultant - Sim. (Standard) - --<Fz- Sim. (Standard) «««+Torque - Sim. (Standard)
8
7
—6
- £
g gs
@ o4
2 E
(\! S g 3
o, =2
S 1
4} 0
Angular Position (deg) Anglar Position (deg)
——Resultant - Sim. (Serrated) ---Resultant - Exp. (Serrated) .
---Fz- Exp. (Serrated) —Fz- Sim. (Serrated) ——Toque - Sim. (Serrated) ---Torque - Exp. (Serrated)
++<-Resultant - Sim. (Standard) -« * - Fz - Sim. (Standard) ****Torque - Sim. (Standard)
Exp.3
1400 9
8
E 7
z 2 6
b s
g s
("? 2 g3
(o8 gz
o 1
4| 0
Angular Position (deg) Angular position (deg)
—Resultant - Sim. (Serrated) ---Resultant - Exp. (Serrated) - G o }
——Fz- Sim. (Serrated) ---Fz- Exp. (Serrated) Torque - Sim. (Serrated) Torque - Exp. (Serrated)
«+«<Resultant - Sim. (Standard) -+ +Fz - Sim. (Standard) ****Torque - Sim. (Standard)

Figure 5.4: Verification of cutting forces in turn-milling with standard tool for the given

conditions in Table 5.2.
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Table 5.2: Cutting conditions for cutting force measurement experiments of serrated tool

in turn-milling.

a
Exp. (r%rtn) (T%Yn) (o) o ooty e (mm) (mml/cmm) (lr)n"r”nl)
1 3979 3 2 0.14 3 10 24 102
2 3979 8 4 0.17 3 10 24 122
3 3979 8 4 0.19 6 5 48 132

The cutting force confirmation for serrated end mills in orthogonal turn-milling is given
in Figure 5.4. The cutting parameters for the experiments and simulations are listed in
Table 5.2. The cutting force simulations with the same cutting parameters for standard end

mills with similar geometrical parameters (See Table 5.1) are presented in Figure 5.4.

It is shown that the proposed model can predict the cutting forces and torque values for
serrated tools in orthogonal turn-milling operation in good agreement. The difference
between the simulation and experimental results for axial forces is negligible. It is evident
that using the serrated end mills decreases the resultant force and torque due to the
reduction in effective contact length along with the cutting depth [64]. According to the
results in Figure 5.4, the serration geometry of the tools affected the resultant forces and
torque more than the axial forces. As a result, the application of serrated tools will increase
the stability limits significantly not only due to the decrease in the cutting forces but also
by disturbing the regeneration in dynamic chip formation, leading to a substantial increase

in MRR during roughing with turn-milling [64,68].

5.2.2. Crest-cut tools
Crest-cut end mills have sinusoidal wavy rake faces leading to varying local helix angles
along the cutting edges. In addition, the sinusoidal wave on each tooth has a phase shift

with the subsequent tooth’s wave, resulting in a varying local pitch angle along the cutting

edges between consecutive teeth (Figure 5.5¢). Crest-cut tools are shown in Figure 5.5.
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A-A Section

10mm

Figure 5.5: Crest-cut tools, (a) detailed view of wavy edges, (b) Discretized
representation of tool along its axis, (c) Representation of varying pitch angles on a

sample axial element [77].

In order to calculate the cutting forces using crest-cut end mills, the tool geometry must
be primarily modeled to obtain the uncut chip thickness. For this purpose, similar to
regular tools, the crest-cut tools are discretized into m number of disc elements, as shown
in Figure 5.5b. This is required since each tooth's local pitch, helix, and oblique angle on
each disc element is different. The detailed and profound definition of the tool geometry
and local helix angles are defined by Tehranizadeh et al. [77]. In this study, the geometric
formulations of the crest-cut tools are not included and adopted from [77]. Using the
geometrical model of crest-cut tools, the angular position of each point (gﬁn' j) in polar
coordinate can be obtained. n refers to number of an element along tools axis on j* tooth.
Therefore, the local pitch angle at n*" disc element between the jt* and (j + 1) teeth is

calculated by;
APj(z) = Pnj+1— Pn,j (5.5)

Note that some parameters may be represented with different notations in order to have

consistency with the previous sections.

The local pitch variation along the tool axis for standard, variable-pitch, and crest-cut tools
is depicted in Figure 5.6b. The unfolded view of the cutting edges in Figure 5.6a shows
the local pitch angle of two points at an elevation z, on j** and (j + 1)*" teeth. It is seen
that, because of the wavy edge shape, the local pitch angles on the crest-cut tool are too
different from the ones on standard or even variable-pitch tools. In Figure 5.6, A; stands
for wave amplitude, A; for wavelength, and y; for helix angle on tooth j.
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Figure 5.6: Representation of pitch variation for three different tool types; a) Unfolded
comparison of chip variation and cutting edges for three tool types, b) representation of

local pitch variation of each tool along its axis [128].

Considering that the angular position of the tool within a full revolution is ¢, the angular

position of element n on j* tooth can be defined as;

d)n,j =¢+ (ﬁn,j (5.6)
The first step of adopting crest-cut tools in orthogonal turn-milling is the calculation of
uncut chip thickness. Based on the uncut chip thickness definition in orthogonal turn-
milling given in Section3.3 and the uncut chip thickness definitions explained in [77], the
feed per tooth value for crest-cut tools during orthogonal turn-milling is achieved as;

_ (‘T’n,j+1_‘7’n,j)
ftj(z) - Qt COS(gx) COS(B) QW(RW - ap + a(Z)) (57)

where a(z) is the elevation of disc n from the tooltip (a(z) = n * dz). f, ; represent the
amount of feed that each disc element on tooth j travels during a tooth passing period. It
is to be noted that the effect of rotational speed ratio on feed per tooth value is also true
for crest-cut tools. However, contrary to standard tools, the amount of increase of feed per
tooth for each tooth is different because of varying local pitch angles between consecutive
teeth. According to the explanations given in Section 3.2, by transforming the feed per
tooth vector to FCN' coordinate system, the uncut chip thickness at each angular position

of the tool can be calculated by;
ha,j (qbn,j) = ft]. (2).cos . sin(¢n,j) (5.8)

Note that, to find the immersion boundaries using crest-cut tools, the formulation given

in Section 3.3.1 is sufficient. These formulations provide the overall boundaries of the
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engagement of the workpiece and the tool. However, due to the wavy edge shape on crest-
cut tools and varying local helix and pitch angles, the engagement of each disc element
will be different. This phenomenon is controlled by the binary function g(qbn, j) which is
equal to 1 when the disc element n on j¢* tooth is in cut ((,‘bst SPn; < d)ex), and is equal
to 0 otherwise. The instantaneous depth of cut at each angular position can be calculated
by substituting the angular position of the first disc element on each tooth (equation (5.6))

into equation (3.11) ;

(o) = R - (Resin(o) - )’ - (Rw — ay) (5.9)

Note that the mechanics of minor edges in crest-cut tools are identical to that of standard
tools. However, in order to achieve better surface quality, the approach angles must be
zero (a,, = 0). The cutting force calculations are performed using the formulations given
in Section 3.6. The elemental forces for each disc element at each tooth are calculated
according to its varying chip load and engagement. Then the exerted forces on the side
edge and minor edge are summed to obtain the total cutting forces at each angular position

according to its engagement boundaries.

The proposed cutting force model for crest-cut tool implementation is validated through
experiments. The experiments were conducted on Mori Seiki NTX 2000 mill-turn
machining center. The tool employed in experiments is an uncoated WC crest-cut end mill

manufactured by Karcan® cutting tool company. The geometric parameters of the crest-

cut tool are listed in Table 5.3. The wave shapes are identical at every tooth with a % rad

shift, successively.

Table 5.3: Parameters of the crest-cut tool used in experiments.

) ) Pitch angle
Tool Dia. No. of flutes Nominal helix angle
distribution Wave Shape (mm)
(D) (mm) (V) (¥;) (deg)
(deg)
12 4 38 83-97-83-97 A =025A4;=4

The workpiece material is Al17075-T6 alloy with a 90 mm diameter. The cutting force

simulations and experiments are performed at the conditions given in Table 5.4. The
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resulted cutting forces during experiments were measured using Kistler 9123C rotary
dynamometer. The orthogonal database for the tool-workpiece pair used in orthogonal-to-
oblique transformation is given in Appendix A: Orthogonal databases. Note that, since the
local helix (oblique) angle of each element varies along the tool axis, the cutting force
coefficients are updated for each axial disc element based on the particular oblique angle

and instantaneous feed per tooth during force predictions.

Table 5.4: Cutting parameters for cutting force experiments in turn-milling with crest-cut

tools.
Exp. -Qt Qw e ft a,, ap mmF D wl
(rpm) (rpm)  (mm)  mm/Gev.tooth) (mm/rev) (mm) (""/my)  (mm)
1 4770 9 4 0.1 3 10 27 90
2 4770 15 4 0.17 3 10 45 90
3 4770 9 4 0.1 6 10 54 90
4 4770 9 2 0.1 1.5 10 13.5 90

As seen in Figure 5.7, there is an acceptable agreement between the force predictions and
measurements. According to the simulation and measurement results, it is seen that, unlike
conventional mill tools, the resulted forces from crest-cut tools are distorted due to the
presence of wave edges on the side cutting edges of the tool. The phase shift between the
waves on each edge creates a different chip thickness for each axial element on each tool.
Moreover, each axial element on each tooth has particular immersion angles (entry and
exit angles). Therefore, unlike standard tools, the resulted cutting forces are non-periodic
in all feed, cross-feed, and axial directions. This phenomenon is also confirmed by

Tehranizadeh et al. [77] during three-axis milling by crest-cut tools.

In addition, by comparing the cutting force results for crest-cut tools in Figure 5.7, for
serrated tools in Figure 5.4, and standard end mills in Figure 3.21, it is deduced that crest-
cut tools produce smoother cutting forces in the axial direction (). This phenomenon can
decrease the harmonic excitations in axial direction where the workpiece is flexible in the

axial direction of the tool.
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Figure 5.7: Verification of cutting forces in turn-milling with crest-cut tool for the given

conditions Table 5.4.

5.3. Stability of Special Tools in Turn-milling

After validating the predicted cutting forces generated by crest-cut tools in orthogonal
turn-milling operation in Section 5.2, the stability model of the process can be developed.
While implementing the special tools like serrated, crest-cut, etc., the dynamics of the
process do not change, and the model given in Section 4.4 governs. Due to the wavy shape
on the cutting edges, the engagement boundaries along the tool axis change for each tooth
by employing crest-cut tools. This leads to unequal chip thickness distribution along the
cutting edges for each tooth. In addition, the variation in engagement boundaries of teeth
at a specific height causes a varying delay between the subsequent teeth. This delay
variation is also distributed along the tool axis due to the phase shift between the waves
on each tooth [74,77]. The variation in engagement boundaries is discussed in Section
5.2.2. As aresult, in order to implement the crest-cut tool in the orthogonal turn-milling
model, it needs to calculate the varying and distributed time delay caused by both tool
geometry and process kinematics. Next, the stability of the crest-cut tools in orthogonal
turn-milling is solved in discrete-time and frequency domains, which are described in

Sections 4.5.1 and 4.5.2, respectively.
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5.3.1. Calculation of time delay in crest-cut tools used in orthogonal turn-milling

Given that, the local pitch angle varies for each disc element along the tool axis between
the consecutive teeth, the constant tooth passing period governing in standard tools does
not hold for every element in crest-cut tools. Therefore, the period between the

engagement of j* and (j + 1)®" teeth on n** element (z = n.dz), depends on the local
pitch angle between these teeth (A(ﬁ j (Z)) and rotational speed of tool (;), which can be

calculated as;

Apj(2)
Q

To(n,j) = (5.10)

In order to add the effect of rotation of the workpiece and calculate the varying time delay
in orthogonal turn-milling using crest-cut tools, equations (5.10) and (5.5) must be

combined with (4.17) as given below;

i _ Ap@ ft;(2) cos(¢+6x)

. a
Tij (z) = TO(n’]) B -Q_t Q¢ To(M, )Rt

(5.11)

By substituting equation (5.7) into equation (5.12), the varying time delay of nt" element
at height (z = n.z) on j tooth of a crest-cut tool used turn-milling operation can be

obtained as follows;

AP j(Z)R¢ cos Oy
QthC059x+QW(RW—ap+a(Z)) cos(Ox+¢;)

7(2) = (5.12)

As discussed in Section 4.3, the workpiece rotation will decrease the delay, particularly
for each element along the tool axis. As a result, the effect of different parameters such as
speed and diameter ratios of tool and workpiece on varying delay in crest-cut tools are

similar to that of the standard tool, as shown in Figure 4.3.

5.3.2. Stability solutions

Having updated the cutter-workpiece engagement boundaries (entry and exit angles,
instantaneous depth of cut, and the varying time delay for crest-cut tools in turn-milling,
one can solve the process stability using the explanations and models given in Section 4.
One of the solution methods for this problem is the semi-discrete time marching method

which is described in Section 4.5.1. The stability lobes can be obtained by substituting the
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delay formulation obtained for crest-cut tools in equation (5.12) in SDM model in Section
4.5.1. However, as discussed previously, semi-discrete time marching methods are
computationally costly and time-consuming. As an alternative to reduce the computational
cost, the ZOA method in the frequency domain is employed to simulate the stability lobes

for orthogonal turn-milling operation using crest-cut tools.

In orthogonal turn-milling using crest-cut tools, the time delay is different for each axial
disc element on each tooth caused by varying local pitch angles. For instance, for a four-
fluted crest cut tool with 12 mm diameter, a nominal helix angle of 38°, the nominal pitch
angle of 90°, and wave properties of A; = 6mm, A; = 1 mm, the local pitch variation along
the tool axis for each tooth is illustrated in Figure 5.8. For a disc element at level z = 2
mm, the pitch angle distribution for each tooth is A@p; = 100°, Ap, = 94.5°, Ap; =
66.8°, A@p, = 98.7°. An illustration of a discrete element and local pitch angle distribution

is given in Figure 5.5.
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Figure 5.8: Local pitch angle variation for each tooth on crest-cut tool (4; = 6mm, 4; =

1 mm) vs. the standard tool.

As a result, at a constant rotational speed, the time delay of each tooth of this disc element
is different and proportional to the corresponding pitch angle. Moreover, according to
equation (5.12), this delay varies at each instantaneous angular position. The varying time
delay of each tooth of the above-mentioned tool at a rotational speed of 1000 rpm is shown

in Figure 5.9.
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Figure 5.9: Delay variation of different teeth of the crest-cut tool at level z = 2 mm.

Since it is not possible to consider the time-varying delay in the ZOA method, the average
value of the delay for each tooth at each disc element within the engagement boundary is
considered. According to Figure 5.9, the average time delays of each tooth at z = 2 mm
are; 71(2) = 0.0168 sec, 7,(2) = 0.0158 sec, 73(2) = 0.0112 sec, 74(2) = 0.0166 sec.
Therefore, each tooth of a disc element has a specific averaged-delay value denoted by
7j(2).

Based on the discussions made in Section 4.5.2, the zero-order dynamics model of

orthogonal turn-milling with crest-cut tools in the frequency domain becomes;
E(wc) = det|[1] = [1 — e T @][[4,] + [4,]][@(iwo)] (5.13)

where [A;] and [A,] are the summation of zero-order Fourier transform of the time-
varying directional coefficients for all teeth and levels, corresponding to side and minor

cutting edges, respectively.

N m 1 2x,jn(¢) agy‘jn(qb) 0
ZZ§ yen(@)  ayyjn($) 0

)

)

j=1n=1 agx,jn (¢) agy,jn (¢) 0
(5.14)
N 0 0 ay,(p)
z] =D =10 0 b, ()
=10 0 ap,;(e)
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Due to the existence of multiple time delays 7;(z) cased by varying pitch angles along
the tool axis at each tooth, there is no explicit solution for the characteristic equation to
obtain the stable critical depth of cut, as proposed in [38]. In order to find the critical stable
depth of cut at a fixed tool speed, the axial depth of cut is increased by increments of dz,

and the stability is detected by Nyquist stability criterion (See Appendix B: Nyquist
Stability Criterion).

The simulations are performed based on the FRF measurements of the tool and workpiece
using an impact test. For this purpose, a crest-cut tool produced by Karcan® cutting tool
company is clamped on a Mori Seiki NTX 2000 mill-turn machining center. The stability
limits are compared between crest-cut and standard tools for comparison purposes. The

geometric parameters of the tools are given in Table 5.5.

Table 5.5: The geometric parameters of the tools.

) ) ) Pitch angle
Tool Dia.  No. of flutes ~ Nominal helix
Tool Type distribution Wave Shape (mm)
(D) (mm) (V) angle (¥;) (deg)
(deg)
Crest-cut (CC) 12 4 38 90-90-90-90 A =14;=6
Standard (ST) 12 4 38 90-90-90-90 -

The tools are clamped with a stick-out length of 55 mm, and clamping torque of 140 N.m.

The modal parameters of the tools are given below:

35 %1077 Workpiece FRF 6 X 107 Tool FRF
Workpiece FRF XM (ZT) : Standard XX
3 Workpiece FRF Y (X,) | { 5 —-—‘(S:tandard )\g
i | rest-cut
= Workpiece FRFZ _(Y,) )
251 MoT 4' E !"| === Crest-cut YY
—2 '
z | ~4r m
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Figure 5.10: FRF measurements of the workpiece and the tools (in Table 5.5) used in

this section.
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The workpiece is A17075-T6 workpiece with 114 mm diameter clamped on the chuck, as
shown in Figure 4.6. According to Figure 5.10, it is seen that the FRFs of the workpiece
are 10 times more rigid than the tool. The modal parameters of the workpiece are given in
Table 4.1, since the identical workpiece is used for both experiments. The modal
parameters acquired from the FRFs for the standard and crest-cut tools (Figure 5.10) are

listed in Table 5.6.

Table 5.6: Modal parameters of the standard and crest-cut tools.

o Frequency . h40d31
Tool Direction (Hz) Damping (%) Stiffness
(N/m)
XX 2801 2.29 4.32¢e6
Crest-cut (CC)
YY 2809 2.05 4.75e6
XX 2933 3.12 5.21e6
Standard (ST)
YY 2941 2.04 5.06e6
SDM -CC Z0OA - CC SDM -ST =sussss ZOA - ST
10 ' ' ' ' '

Depth of Cut[mm]

5000 5500 6000 6500 7000 7500

Spindle Speed rpm

Figure 5.11: Stability lobe comparison of crest-cut (CC) and standard (ST) milling tools
listed in Table 6.1 with modal parameters listed in Table 6.2. a,, = 10% D¢, Q,, =5

rpm, e = 16% D,
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Based on the FRF measurements of the tools and their geometrical parameters, the
stability lobes are predicted in discrete-time and frequency domains. The cutting force
coefficients used in stability predictions are given in Appendix A: Orthogonal databases
for the uncoated WC tools and Al7075-T6 workpiece material. The stability lobes are
simulated for step over of a,, = 0.1D;, workpiece speed ,, = 5 rpm, and eccentricity of

e = 16%Dt

According to Figure 5.11, it is seen that using crest-cut tools, the absolute stability limits
are increased in comparison to that of the standard end mills, which is previously reported
and confirmed by Tehranizadeh et al. [77]. Furthermore, there is good agreement between
the stability lobes using SDM and ZOA approaches. The slight deviation between the
SDM and ZOA simulations for crest-cut tools is caused by the existence of distributed
delays along each edge. Since the delays are average within the engagement boundaries
which are specific for each element, the ZOA approach shows lower accuracy. However,
the location of lobes and the absolute stability limits between the two methods is in an
acceptable error range. The accuracy can be increased by increasing the frequency
resolution and step for spindle speed and depth of cut iterations, which leads to higher
computational costs. For all the simulations given in Figure 5.11, the iteration interval for
spindle speed is 30 rpm, and for depth of cut, the interval is 0.1 mm. The period resolution
in SDM is 180, and the frequency interval in the ZOA method is 1 Hz. The simulation
time for the crest-cut tool using SDM takes approximately 110 minutes, while using the
ZOA approach reduces the simulation time to 16 minutes. The simulation time for a
standard tool using SDM is about 78 minutes, and using ZOA is 13 minutes,
approximately. It is evident that using the ZOA approach decreases the simulation time
and hence, computational cost drastically. It is observed that using crest-cut tools and
adding multiple delays into the solution increase the simulation time compared to standard

tools.

According to the stability lobes in Figure 5.11, there is an additional lobe within the speed
range of 5000-8000 rpm [129]. By considering the chatter frequency representation in
Figure 5.12, it is deduced that there is an added lobe effect around 6500 rpm. Although
there is a slight shift between the crest-cut and standard tool simulation because of the
difference in their natural frequencies, the existence of chatter frequencies at the

corresponding speeds confirms the phenomenon.
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Figure 5.12: Chatter frequency vs. spindle speed for the stability diagrams in Figure
5.11.

Since the radial immersion is low (16% D;)The process is highly intermittent. Therefore,
the periodic cutting forces and the directional coefficients regarding angular positions
become narrow (semi-impulse). While expanding intermittent types of forces into the
Fourier series, higher harmonics are included. Therefore, the chatter frequency is
influenced by the higher number of harmonics. In other words, the higher number of
harmonics of the directional coefficients associated with tooth passing frequency is
included in the chatter frequency of the system. In low-immersion cases, a higher number
of harmonics of tooth passing frequency contributes to chatter is called flip bifurcation
[130,131]. In flip bifurcation, in the cutting force spectrum, the harmonic of tooth passing

frequency kwr, and the half of tooth passing frequency as well as its odd harmonics
2k + 1) % can be observed (k is an integer). As the spindle speed varies, the tooth

passing frequency changes, and so does its harmonics. The higher harmonics of the tooth
passing frequency shift the transfer function to higher frequencies. When the transfer
function of higher harmonics coincides with the transfer function associated with the
system's natural frequency, the stability solution is affected, and chatter frequency is
observed near the natural frequency. Therefore, while scanning the possible chatter
frequencies, the transfer functions with harmonics of the tooth passing frequency in the

vicinity of the natural mode frequency fold to the region of natural frequency. Hence, if
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the frequency of the harmonic lies in the frequency region of (1 —Qw, < w. <

(1 + ) w, flip bifurcation occurs [129].

In our case study, the simulations do not see the flip bifurcation frequencies and the added
lobe for the standard tool. This is due to the fact that the radial immersion, large helix
angle, and pitch angle variation affect the periodicity of the cutting forces and directional
coefficients. Flip bifurcations mostly happen in highly intermittent cases. In this regard,
due to the intermittent engagement of crest-cut tools caused by wavy edge shapes, large
number of imposed delays, and highly varying pitch angles along the tool axis, the cutting
forces become nonperiodic and more intermittent at low immersions compared to a
standard tool. Therefore, added lobes exhibit at rotational speeds where the harmonics of

tooth passing frequency is near to the natural mode.

In our case study given in Figure 5.11, at 6170 rpm, the tooth passing frequency is wr =
411.3 Hz. Therefore, the 7" harmonic of tooth passing frequency is in the region of natural
mode ®(kwr) = ®(w,),k = 7. Therefore, the 7" harmonic with 2879 Hz, which is
within the above-mentioned frequency region, is the flip bifurcation chatter frequency.
This value can be validated in Figure 5.12, while the chatter frequency of the standard tool

at a speed of 6170 rpm is much higher than that of the crest-cut tool.

It is to be noted that the experimental validation for chatter tests is missing in this section.
The highly stable cuts are observed at a larger depth of cuts at the predicted unstable
region. This is believed that the straight portion of crest-cut tools increases the process of
damping even at higher speeds. The small clearance angle of (y; = 2°,y, = 8°) of the
straight portion is the most important reason that causes process damping [132].
Furthermore, a high rate of tool wear has been observed during the chatter experiments,
which shows a considerable immersion of the flank face of the tool. Further experimental
investigation and process damping analysis will be the future research direction in this

regard.

5.4. Summary

In this chapter, the predictive model for mechanics of the orthogonal turn-milling process
is updated to be able to predict the cutting forces while cutting with serrated and crest-cut

tools. The uncut chip geometry and cutter-workpiece engagement model in orthogonal
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turn-milling are updated specifically for serrated and crest-cut tools. The calculated
cutting forces are verified with experiments using a rotary dynamometer for different
cutting parameters. Next, stability of crest-cut tools in turn-milling operation is predicted.
The varying time delay in orthogonal turn-milling is combined with the distributed delay
resulting from the wavy edge geometry of crest-cut tools. The stability problem using
variable time delays is solved using the semi-discretization method. Moreover, the
stability of turn-milling with crest-cut tools is solved in the frequency domain for the first
time in the literature. The resulting stability lobes for crest-cut tools are compared to

standard tools and discussed.
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6. APPLICATION OF SPECIAL TOOLS IN THIN-WALLED

STRUCTURES

6.1. Overview

Having seen the advantages of crest-cut tools in milling and turn-milling in previous
section, it is aimed to investigate the stability and performance of these tools in more
challenging conditions like machining of thin-walled structures with hard-to-cut materials.
A simple thin-walled structure is selected as a preliminary study before complex structures
such as turbine blades or thin-walled tubes. It is known that lower cutting speeds are
preferred when machining these materials due to the low machinability of hard-to-cut
materials. As a result, deeper stability pockets that exist at high cutting speeds cannot be
achieved. Variable pitch tools can be used at low cutting speeds to suppress chatter
vibrations [133]. However, due to the existence of multiple dominant modes and varying
IPW dynamics, their use in milling thin-walled parts does not always provide a
satisfactory solution for chatter suppression. Crest-cut tools, on the other hand, provide
chatter suppression capability over a wider frequency and speed range [77] and can be
highly effective for suppressing chatter in milling thin-walled parts. This superior
capability of crest-cut tools is due to their special geometry, which has to be designed
considering important modes and IPW dynamics of thin-walled structures. Therefore,
crest-cut end mills are proposed as a solution for improving the stability of the process in
milling thin-walled structures. In this study, the varying IPW dynamics of thin-walled
plates are modeled using FE, considering the element removal. For the first time in the
literature, a stability map of the whole plate is generated for different tool geometries
based on the IPW dynamics. According to the obtained stability map of each tool, different
cutting strategies are explored, surface finish quality maps are derived, and compared in
terms of cycle time and chatter-free surface area. The proposed simulations are validated
through experiments. Both simulations and experiments confirm the superiority of crest-
cut tools over variable-pitch and standard end mills, and the results show that these tools

can be utilized as a robust solution against changes in [IPW dynamics of thin-walled parts.
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6.2. In-Process Dynamics of Thin-Walled Structures

As structures become more flexible or thinner, the effect of removed material during
machining becomes more prominent, leading to significant variation in IPW dynamics
and, therefore, stability limits. This section presents the procedure used for modelling
material removal in thin-walled structures through FE analysis. In the implemented
approach, the dependency of the IPW dynamics prediction procedure on the stability
limits, and thus iterations and long simulation time, are eliminated. For this purpose, the
unmachined flexible plate is meshed using 3D cubes with an element size of 0.6 mm. The
elements from the meshed structure are removed, similar to the mass removal during the
machining cycle (See Figure 6.1). The in-process FRFs are obtained at five different CLs
along the feed direction (U) for each elemental depth along the plate height (7). Note that

the element height in Figure 1 is exaggerated for better visualization.

Figure 6.1: Illustration of element removal and FRF calculation points.

Points P, ,, in Figure 6.1 represent IPW FRF identification points on the plate. The points
P, ., are the FRF identification points on the tip of the uncut plate, Level 0. The next FRF
identification locations are one element lower (Level 1), which are identified by removing
the elements at that level which are shown as P; ,,. Since the material is removed at each
step, the FRFs of the points with the same coordinates from the previous step are updated.
For instance, at point P, ,, two FRFs are identified, upper limit and lower limits. The lower
limit Plllzis the FRF of current state, and the upper limit P}, is the updated FRF of point
Py, which has the same coordinate. The same procedure is repeated for Level 2 by
removing the elements in Level 1. Similarly, the FRF of point Pll,z is updated as P, to
include the effect of material removal (See Figure 6.1). This procedure helps to identify

the IPW FRF of any CL located between the upper and lower limits using interpolation.
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Figure 6.2 shows the natural frequency and peak amplitude of each point on the plate for
the first and second modes by updating the FRFs due to the material removal effect for a
Ti6Al4V plate with the dimension of 40x65%3 mm. In the following simulations, the
element size is kept equal to a radial depth of cut (0.6mm) to prevent excessive simulation

time in FE analysis.
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Figure 6.2. Variation of IPW dynamics; a) First, and b) Second natural frequency; c)
First, and d) Second mode FRF peak amplitudes.

According to the results in Figure 6.2, both the plate's natural frequency and IPW FRFs
vary drastically for both modes along the plate length and height directions, requiring
multi-mode stability analysis. This scheme helps identify the FRF of any CL on the plate
for evaluating stability limit considering the material removal effect. Note that, the
damping ratios employed in simulations are identified from hammer tests at different plate
locations considering the IPW dynamics scheme. In Figure 6.3, experimental and FE
results at two points and levels on the plate are presented. In Figure 6.3 (a), measurements
and predictions at two points (corner and middle) along the feed direction at the tip of the
uncut plate are illustrated. Figure 6.3 (b) shows the results for the same corresponding
points in the feed direction at level 54 (27mm in plate depth from the free end) after the
material is removed up to this level. The maximum difference between predicted and

simulated natural frequencies is less than 4%.
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Figure 6.3. Validation of IPW dynamics at different levels.

6.3. Design Procedure of Special End Mills

The variable-pitch and crest-cut tools offer a significant possibility to attain high stability
limits by tuning their geometry to a certain spindle speed [57,61,77]. In this study, the
geometry of the tools is optimized considering the desired spindle speed of 2123 rpm
(corresponds to 80m/min for 12mm tool diameter (D, )). Two different variable-pitch tools
with alternating pitch variations are designed to suppress chatter for each mode of the
plate with the method presented in [57].

*

AP =1rw—t for even N
Cc
(6.1)
APznz—:NTil for odd N

where Qf is spindle speed (rps), w, is chatter frequency, and N is the number of teeth. In
order to consider the changes in chatter frequency due to the presence of pitch variation,
an iterative method presented by Comak et al. [61] is used to find optimum pitch angles.
According to the natural frequencies of the part and the desired spindle speed (2123 rpm),
VP1 and VP2 tools (Table 6.1) are selected to suppress chatter. These tools are designed
considering the average value of the first and second modes of the plate in its most flexible
zone (0-20 mm in the V direction), 1590Hz, and 2550Hz, respectively. The presence of
multi modes with varying frequencies due to IPW dynamics causes different chatter
frequencies at different cutting points on the part. As variable pitch end mills are designed
for a target chatter frequency and spindle speed, they lose their effectiveness in machining

of thin-walled parts.

On the other hand, crest-cut end mills can suppress chatter in wider frequencies and speed
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ranges due to the wavy edges resulting in continuous pitch variations in the cutting zone.
In order to determine the optimum crest-cut wave shape for a target spindle speed, the
procedure presented in [77] is applied. The simulations are performed considering the
average value of the first mode of the plate in its most flexible zone (0-20 mm in the V'
direction). However, as crest-cut tools introduce multiple delays, their effectiveness is not
limited to the specified frequency as they can perform effectively in wider ranges. Figure

6.4 shows that the crest-cut tool (CC in Table 6.1) with 1mm edge wave amplitude (A)

and 6mm edge wavelength (1) shows superior stability at 2123 rpm.
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Figure 6.4: Stability of crest-cut end mill with different shapes at 2123 rpm.

Table 6.1: Geometrical parameters of end mills.

Type D, N Vs Pitch A A
ST [90°-90°-90°-90°] - -
CcC . [90°-90°-90°-90°] Imm 6mm

VP1 E ~ 3 [88°-92°-88°-92°] - -

[88.75°-91.25°-
VP2 88.75°-91.25] ) )

6.4. Machining Stability of Thin-Walled Parts Using Special End Mills

After the tools are designed considering the frequency ranges for different modes of the
plate, the stability limits are calculated using the semi-discretization method (SDM)

[70,77].

Using SDM, each point's stability limit along the tool path is obtained according to the

126



varying IPW dynamics described in Section 6.2. The resulting stability limits varying in
feed (U) and plate depth (V) are illustrated for different tool types in Figure 6.5. Note that
each tool's stability limits corresponding to 80m/min are calculated. According to Figure
6.5, it is seen that the crest-cut tools represent the best stability performance when
compared to the other tools since the low-stable-depth region (red) is narrow and the high-
stable-depth region (blue) is considerably large. Further, the variation of stability limits in
feed direction is negligible since crest-cut tools can suppress chatter in a more
comprehensive range of frequencies [77]. The stability limits for the VP1 tool at the
middle of the plate are higher compared to the edges, as expected since this tool was
designed to suppress chatter around the first bending mode of the plate. VP2 was tuned
according to the chatter frequencies in the vicinity of the second mode of the plate.
However, the stability is limited by the first mode of the plate, and thus the changes in the
feed direction are not significant. As expected, the worst stability map with considerably

low stability limits belongs to the standard tool.
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Figure 6.5. The stability limit distribution on plate considering IPW dynamics.

Once the stability maps are evaluated (Figure 6.5), several cutting strategies can be
applied. These strategies involve different schemes of selecting the step down based on
the stability maps. The most conservative strategy (STG1) has varying stepdown using
the minimum stability limit of each pass. In the second strategy (STG2), the stepdown is
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chosen as the average of the stability limit in the feed direction (U), which also varies
along the plate height. The third strategy (STG3) uses a constant stepdown for the whole
plate based on the average of all stability limits evaluated in feed (U) and axial (V)
directions. In STG4, the plate is divided into constant zones of 5 mm height, where the
stepdown is taken as the average stability limit within that zone. In STGS, the stepdown
value for all tools is defined according to that of the crest-cut tool to evaluate their
performance. Finally, in STG6, the plate is divided into constant stepdown values, the
most practical cutting strategy used with all tools. In order to evaluate the strategies in
terms of productivity, the number of passes (NP) is calculated according to the stepdown

value of each case.

Table 6.2: The number of passes and chatter-free area percentages.

Standard Crest-cut VP1 VP2
NP CFAP NP CFAP NP CFAP NP CFAP
STG1 258 100 57 100 159 100 146 100
STG2 212 36 55 87 49 44 134 58
STG3 204 57 43 69 68 63 164 56
STG4 202 37 53 65 46 37 130 52
STGS 57 11 57 100 57 31 57 36
STG6 100 47 100 83 100 70 100 52

Here, the Relative Stability Index (RSI), the ratio of the local stability limit at a point to
the stepdown value, is used to represent the chatter condition related to the surface finish
quality (SFQ). Then, the SFQ map is obtained based on the local RSI values over the
workpiece surface, where darkening in color represents the transition from a stable to an
unstable condition. For instance, the SFQ map for STGS5 is shown in Figure 6.6.
Furthermore, based on the SFQ map, the chatter-free area percentages (CFAP) are
calculated using the image intensity histogram method as listed in Table 6.2. Low values
of CFAP mean higher workpiece area with poor surface finish requiring further processing
such as polishing. From Table 6.2, it can be clearly seen that STG1 results in the highest

machining time since the most conservative depth of cut is used to generate a completely
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chatter-free surface. Nevertheless, the crest-cut tool’s productivity is five times higher
than the standard and three times higher than the variable-pitch tools in STG1. STG2
offers a significant decrease in machining time for VP1 due to the severe variations of the
stability limit along the feed direction (See Figure 6.5). Since variable stepdown can be
time-consuming in CAM programming, a constant stepdown, which is the average of all
point stability limits is used in STG3. While a slight improvement is seen with standard
and VPI1 tools, the relative improvement with the crest-cut tool is lower compared to the
previous strategies due to the averaging effect. In STG4, due to the averaging effect, the
CFAP is lower when compared to the other strategies. In STGS, the performance of all
tools is compared in terms of stability limits with the crest-cut tool, which shows superior

performance in all strategies.
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Figure 6.6. Surface finish quality map predictions for STGS.

Figure 6.6 shows that, while the crest-cut tool shows a fully chatter-free surface as
expected, other tools produce a drastically poor surface finish as they cannot compete with
the high stability limits of the crest-cut tool. In many cases, during industrial applications,
a constant stepdown is used in many cases for CAM programming convenience. This

constant stepdown value is usually selected based on the programmer’s experience and
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tool-proving test results. This issue is considered in STG6, where a constant stepdown
value of 0.4 mm is used all around the part. The SFQ maps together with the actual
machined surfaces for this strategy are shown in Figure 6.7. According to the maps, the
crest-cut tool offers higher CFAP compared to the other tools. As also illustrated in Figure
6.7, there is a good agreement between the SFQ maps and the surface finish obtained in
the milling tests. The darker areas in the SFQ map represent a very poor surface finish,
whereas the points in the light-colored areas indicate a much better surface finish.
According to the results, the area with chatter marks is distributed on 50% and 17% of
plate height for VP1 and crest-cut tools, respectively. This means crest-cut tools require

lower time for additional processing to remove the chatter area.
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Figure 6.7: Surface finish quality maps for STG6 and verifications.

6.5. Summary

In this chapter, the simulations and experiments show the effectiveness of crest-cut tools
compared to variable-pitch tools in machining thin-walled structures. The in-process

workpiece dynamics are calculated using the FE method. The material removal effect is
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simulated by removing elements in the cut direction, and the FRFs are updated for any
cutter location on the part surface. Based on the workpiece dynamics, the tuned variable-
pitch and crest-cut tools are selected according to their stability limits. The surface finish
quality maps are obtained and compared for 5 different cutting strategies with different
stepdown values. It is deduced that crest-cut tools improve performance since the chatter-

free area percentage is higher than standard and variable pitch tools in all the strategies.
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7. EFFECT MACHINE TOOL DYNAMICS ON CUTTING STABILITY

7.1. Overview

The most influential and effective factor in the determination of the stability of a system
is the dynamics of the tool and workpiece. Identifying each component's frequency
response function (FRF) is vital to understanding how each component reacts to the
exciting forces. However, a tool is usually clamped to the spindle with a tool holder in a
machining system. As a result, the frequency response function at the tooltip is influenced
by the tool-holder-spindle assembly. In addition, in turn-milling operation, the workpiece
is also clamped to a chuck-spindle assembly. Hence, the spindle and its structural dynamic
properties influence the dynamics of the tool and workpiece drastically. The main
components of a regular spindle can be listed as; a shaft supported by some sets of
bearings, rotor and stator, housing, cooling system, and drawbar system. Each component
will affect the performance and feasibility of the spindle in different aspects like dynamics,

thermal growth, speed limitations, and dimensions.

A predictive model for spindle dynamics allows the designers and engineering to develop
a high-performance spindle according to different operational conditions like high
rotational speeds and various types of loadings. The identification of dynamic properties
of a shaft-bearing system is previously performed by Ozsahin et al. [134] through modal
testing. However, the identified dynamic properties are regardless of the bearing location

and specifications.

This chapter presents an analytical approach to predicting the spindle tip and tooltip
dynamics by implementing the bearing dynamics model into the spindle-shaft model
based on receptance coupling. The dynamics of the assembly are investigated at different
speeds and preloading conditions through simulations and verified with the experiments.
The sensitivity analysis is performed for the machine tool spindle for improved rigidity
and cutting stability. In addition, the dynamics of the clamped workpiece are also modeled
using inverse receptance coupling to identify the contact dynamics. The proposed results

are verified via experiments.
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7.2. Predictive Model for Spindle Dynamics

7.2.1. Speed-dependent bearing dynamics model

In this section, a modified bearing model is presented considering the rotational speed
effects and the centrifugal force effect of the inner ring proposed by de Mul [135] for
angular contact ball bearing (ACBB). This model is an improved version of Harris’s

model [85,136], which facilitates analytical calculations.

Figure 7.1: Forces and moments in a cartesian coordinate system for angular contact ball bearing

[137].

The coordinate system representation to model the dynamic characteristics of an ACBB
is given in Figure 7.1. The bearing stiffness is calculated based on the displacement against
the external force and moment with respect to the center point of the inner ring of the
bearing. The relationship between linear forces and moments (shown in Figure 8.1) and
the translational and rotational displacements are modeled through coupling components.
Such a coupling component appears mainly due to the contact angle between the balls and
inner and outer rings of ACBB. Depending on the bearing arrangements, these

components have the most important influence on the characteristic variations [87].

Figure 7.2. demonstrates a free-body diagram expressing the contact reaction force and
the centrifugal force by the inner and outer rings and the friction force applied to the

contact point due to the gyroscopic moment for an arbitrary rotating element.
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Figure 7.2: Contact, centrifugal, and friction forces acting on a ball [137].

In Figure 7.2., the coordinates x and r represent the axial and radial directions,
respectively. In addition, Q; and Q, are the contact forces between the inner and outer
rings, and «; and «, stand for the contact angles for the inner and outer rings, respectively.

The centrifugal force F, of the ball is expressed as follows.
Fe = 5mydmw} (7.1)

In equation (7.1), m,, d,,, and w, are the balls’ mass, bearing pitch diameter, and
rotational speed, respectively. Also, the gyroscopic moment m, can be obtained by the

following equation.
my = %mezwbwr sin(Bp) (7.2)

Here, D is the diameter of the ball, and w, and S, are the ball's speed and the angle

between the ball's rotation axis and the bearing axis, respectively.

The contact force between the ball and the inner and outer rings is assumed as follows

from the Hertzian contact theory.

Q; = Ki5‘1'5 Qe = Ke(sel'5 (73)
i

Here, §; and §, stand for the amount of deformation between the inner ring and the ball
and the outer ring and the ball, respectively, and K; and K, are the corresponding load-
displacement proportional coefficients, which can be determined using the Hertzian
contact ratio calculated from the bearing radius of curvature. The following equilibrium

equation can be obtained from the free-body diagram in Figure 7.2.
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Q; cos(a;) — Q. cos(a,) + F. — %(li sin(a;) — A, sin(a,) =0
(7.4)

Q; sin(a;) = Qe sin(ae) — % (4; cos(a;) — A cos(ae) = 0

where A; and A, represent the support ratios of the inner and outer rings to the gyroscopic
moment. In a high-speed spindle, the contact force applied to the outer ring is relatively
high; thus, it can be assumed that the outer race control mode is a rolling motion based on
the outer ring, leaving A, = 2, otherwise 4; = 1, = 1.

The equilibrium equation for the entire bearing in the global coordinate system can be

written as follows [137];
(F}+ 30 [1y]) (@ = 0 (7.5)

Here, Z is the number of balls, {F} is an external force vector applied to the bearing, and

{Qi}; is a vector obtained from the contact force between the j th rotating element and the
inner ring in the x coordinate direction. Furthermore, [Td)]j is a transformation matrix

between the coordinates center of the inner ring curvature radius and the global
coordinates. Both equations (7.4) and (7.5) are non-linear, and solved as a set of equations

to obtain the stiffness matrix.

The bearing stiffness matrix is obtained from equation (7.5) as follows [137];

o{F} T [0{Q;};
= [@ ==, | a{u}]] 7] (7.6)
where,

{FY={F,, F, E, M, M,}'
71.7)

T

{6}={8x' 8y: 82 Yar Vy}
Force matrix {F} in equation (7.6) consists of the contact forces between the rotating
elements and the inner ring associated with the transformation matrix. Therefore, the
resultant stiffness matrix can be easily calculated using all imposed forces and resulting

translational and rotational displacements, as given in equations (7.6) and (7.7).

Based on the theories mentioned earlier, a speed-dependent bearing dynamics model
program has been developed by our project partner Prof. Seon Wook Hong’s research

group at Kumoh National Institute of Technology in South Korea. By employing this
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program, Hong et al. [137] presented the influence of the ACBB on high-speed spindle
dynamics using the bearing model and finite element method (FEM). Next, the provided
program by our partner was integrated with the spindle dynamics model given in Section
7.2.2. Therefore, a predictive model is developed for the calculation of speed-dependent

spindle dynamics.

The program is able to calculate bearing stiffness values under different preload values
and different geometric parameters of bearing, as listed in Table 7.1. All the parameters
that are effective in calculating the speed-dependent stiffness matrix of a bearing are given

in Table 7.1 and illustrated in Figure 7.3.

o

Figure 7.3: Geometric parameters of an ACBB.

Table 7.1: Bearing parameters definition.

B Width
Outer Ring Diameter
d Inner Ring Diameter
dm Pitch Diameter
D, Ball Diameter
a Initial Contact Angle
fi 2r;/Dy) Inner Curvature Ratio
fo (21r,/D,) Outer Curvature Ratio
Z Number of Balls

The developed model provides all translational and rotational stiffness values and the

cross-coupled stiffness values as given in equation (7.8).
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(kox  kxy ey Kxo,  Kxoy ]
kyx kyy kyz ky@x ky@y
[K] = kzx kzy kzz kzex kzey (78)
ko.x koyy ko2 koo, ke,
ko,x Koy Ko,z keye, koo,

In equation (7.8), the diagonal elements of the stiffness matrix are required and used in
the analytical spindle dynamics model and FE model. The stiffness matrix components in
equation (7.8)depend on the axial and radial preload magnitudes. Shin et al. [87] showed

that these four stiffness terms (kxgy, kgyx, kg.y, Kye,) are the only dominant off-diagonal

terms if there is no external radial load and only axial preload is applied. Similarly, in all
the analysis in our studies the radial preload is not applied into our design. For zero radial
preload, the following components of the stiffness matrix becomes negligible in bearing

matrix calculation, and hence can be considered as zero [87,135,138].

kyy = Kxz = kxg, = kyx = kyg, = Kyz = kpx = kzy = kz0, = K79, = Kg,x = 19)

ko.z = ke,0, = ko,y = ko, = kg6, =0
Depending on the bearings' arrangement, the cross-coupling components' sign changes
[87]. As a result, in our case study, for angular contact ball bearing without the radial
preloading, the diagonal and off-diagonal components of the stiffness matrix have real
values and will be included in the simulations. However, the main dynamic characteristic
of the bearing is based on the diagonal terms and translational and rotational stiffness
components. In this regard, bearing stiffness values are simulated with respect to
important varying inputs such as rotational speeds and preload to understand their effect
on bearing stiffness and hence, system dynamics. Figure 7.4 shows the effect of rotational
speed on the radial, axial and rotational stiffness for a case study bearing with constant
preload. For the simulations in Figure 7.4 and Figure 7.5, SKF 7009 CE/HCP4BGV275
bearing with 250N axial preload at zero rpm rotational speed is selected as a case study.
It 1s seen that higher speed decreases the radial stiffness drastically while having a slight
effect on the axial stiffness. On the other hand, the rotational (moment) stiffness decreases
until a specific speed increases gradually. Increasing rotational speed decreases the
relative axial displacement between the inner and outer rings for the bearing under
constant pressure preload. Moreover, the contact angle between the ball and the inner ring

is increased, and the contact angle between the ball and the outer ring is reduced. As a
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result, bearing stiffness decreases as the rotational speed increases [107].
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Figure 7.4: Simulation of translational and rotational stiffness with respect to rotational speed.

Figure 7.5 shows the effect of axial preload on the radial and moment stiffnesses. It is
deduced that increasing the axial preload will increase the bearing stiffness; however, it
has been previously proved that the generated heat will also be increased by preload,

which is a deteriorating parameter in bearing performance and life [139,140].
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Figure 7.5: Simulation of translational and rotational stiffness with respect to axial preload.

7.2.2. Analytical Modeling of the Shaft-Bearing Assembly in a Spindle

In order to develop the fully analytical model for the spindle shaft-bearing assembly, the
shaft is divided into subcomponents where the dynamics of each component are calculated
using the analytical solution of the Timoshenko beam, and the subcomponents are coupled
using the receptance coupling method to evaluate the dynamics of the whole structure. In
this regard, the receptance functions of a subcomponent at the free-free condition at
endpoints (points 1 and 2, as shown in Figure 7.6) are derived using the analytical solution

of Timoshenko beam theory. The receptance functions relate the transverse displacements
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and bending rotations at points 1 and 2 with the forces and moments applied at the

corresponding points.

Figure 7.6: Uniform subcomponent beam with free-free end conditions

The transverse displacement w(x, t) and bending rotation (x, t) equations of a uniform
beam due to harmonically applied force from Timoshenko beam solution are obtained as
a function of mass-normalized eigenfunctions of transverse displacement ¢,.(x) and
bending rotation ¢, (x) [95]. The receptance functions that relate the transverse

displacements and harmonic forces are denoted as ij and the receptance functions that

give information between the bending rotation and harmonic forces are shown as Njk, and

defined as:
= _fi= _f
Hj = y_j’ Nj = 9_’; (7.10)

where y and 6 represent the linear and angular displacements at point j, respectively. f
is the harmonic force applied at point k and is defined as;
fi = Foe'®t (7.11)

Similarly, the receptance functions which relate the transverse and rotational
displacements at point j with the harmonic moment at point k are defined as;

[ Mk p _ Mk
Li =55 Pie =75, (7.12)

Where m,, is the harmonic moment applied on point k and can be defined as:
my, = Mye'®t (7.13)

Assuming that the structural damping of the component has the loss factor of y, the
receptance functions can be defined as a function of transverse and bending eigenfunctions

in frequency domains as follows;
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ij =y> M (714)

r=0 (1+ip) wi-w?

]ij =y> M (715)

r=0 1+ wi-w?

Ly = Sy 2o (7.16)

(1+iy)wi-w?

13jk =y> M (7.17)

=0 (1+ip)w2—w?
Considering the subcomponent in Figure 7.7, j = 1,2 and k = 1,2.

The above-mentioned receptance functions must be evaluated for endpoints of a single
segment for the sufficient number of modes. In order to obtain the FRFs of the multi-
segment beam, the receptance functions of the segments at free-free conditions must be s

coupled.

Considering a beam C with two segments, A and B, as shown in Figure 7.7, the receptance

matrices for each subsegment can be written as follows:

_ [[Au]  [Arz] _ [[B11] [Bi2]
=G el er= (e ) (7.18)

Where each submatrix includes the receptance functions of the corresponding segment at

endpoints as follows;

A A HE IB
m =[_J g ] B;; =[_f J ] ajk =12 (7.19)
ol =ws m) Pl =1wg o

'
C
Figure 7.7: Rigid coupling of two uniform beams.

By holding the individual displacement-force and displacement-moment equilibriums for

beam segments A and B by taking the continuity and combability relations at the
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connection point, the receptance matrix of the beam C by coupling the receptance matrices

of segments A and B can be written as follows [141];
-1
[C11] = [A11] - [A12][[A22] + [311]] [A21]

[C12] = [A12][[A22] + [311]]_1[312]
(7.20)

[C21] = [B1][[Az2] + [Bu1]] ™ [Asi]

[sz] = [Bzz] - [321][[A22] + [B11]]_1[B12]

Considering a spindle shaft with segments that have different diameters and lengths, one
can calculate the FRF of the shaft at endpoints under free-free conditions. However, the
spindle shaft is supported by the bearings at certain bearing locations and has contact with
the specific element. This implies that the bearing can be coupled with the spindle shaft

as springs and dampers (See Figure 7.8).

Figure 7.8: Coupling bearings with shaft receptance using structural modification.

It is to be noted that the receptance coupling allows the computation of endpoint
receptances only. Hence, the effect of bearing dynamics must be imposed on the system
dynamics by including the receptance of the endpoint of the segment in which the bearing

is located (See Figure 7.8).

The dynamics of bearings are coupled with the shaft dynamics using the structural
modification technique proposed by Ozgiiven [142]. In this method, the unmodified
system's receptance matrix and the modification's properties (bearing stiffness and
damping) are coupled using the displacement-excitation equilibriums. According to
Equations (7.18), (7.19), and (7.20) the receptance of the two-segment beam C is obtained

as follows;
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HC1C1 LC1C1 HC1C2 LC1C2
NC1C1 PC1C1 NC1C2 PC1C2
C]l= 7.21
[ ] HC2C1 LC2C1 HCZCZ LC2C2 ( )
NC2C1 PC2C1 NCZCZ PCZCZ

In order to apply the structural modification, the equation (7.21) must be rearranged in

the following manner;

HC1C1 HC1C2 LC1C1 LC1C2
HC2C1 HCZCZ LC2C1 LC2C2
Il = 7.22
[ C] NC1C1 NC1C2 PC1C1 PC1C2 ( )
NC2C1 NCZCZ PC2C1 PCZCZ

Let [D] be the dynamic structural modification matrix that includes the rotational,
translational, and rotational-translational cross stiffness and damping information of the

corresponding bearings.

0 0 0 0
0 K 0 K
_ y yo
[D] = o 0 0 0 (7.23)
0 Koy 0 K
where;
K, =k, +iwc,
(7.24)

Kg = kg + iO)Cg
K,, and Ky are the translational and rotational complex stiffness expressions, respectively.

The parameters k,, and kg are the translational and rotational stiffness values, respectively,

which are obtained by the speed-dependent bearing stiffness model presented in Section
7.2. ¢, and ¢y are the translational and rotational damping coefficients, respectively, which

are obtained from calibration with experimental measurements.
In structural modification technique, the translational stiffness k., is replaced by the radial

stiffnesses Kyy, Ky, [%] obtained by the model given in Section 7.2.1. This parameter

modifies the H., ¢, term in the receptance matrix of the shaft segment, which is the transfer
function for harmonic force and radial displacement. Further, rotational stiffness kg in
matrix [D] is the calculated moment stiffnesses

modification replaced by

N. . . . . .
ko6, kgygy [ﬁ] discussed in Section 7.2.1. This term modifies the Py, receptance

relates the harmonic moment and the bending rotation of the corresponding shaft.
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In order to increase the accuracy of our simulations, the cross-stiffness parameters, which
are appeared as off-diagonal stiffness values in equation (7.8), are also considered. The
off-diagonal (cross) stiffness parameters obtained from the bearing model are substituted

by the K, components in modification matrix [D] to modify the receptance functions

Ncoco and Leoc,. Note that, as described previously, these functions relate the harmonic
radial forces and moment rotations and harmonic moments with radial displacements,
respectively. The corresponding damping coefficients for translational and rotational
modification terms in equation (7.24) are calibrated with the experimental data in terms
of the peak amplitudes of the modes. Further, the signs of the off-diagonal terms for front
and rear bearings are different. Since the configuration of the existing spindle is “double
O-configuration,” the off-diagonal terms for front bearings, which are positive bearings,
are negative. The off-diagonal terms are positive for rear bearings (negative bearings)
[87]. Note that the negative and positive configuration of the bearings on the spindle
depends on the shaft-bearing coordinate systems, contact angle directions, and locations
on the shaft. (See reference [87]). Having formed the modification matrix based on the
bearing dynamics, the receptance matrix of the modified system (I%) by integrating the

analytically obtained bearing stiffnesses can be calculated by;
[r¢] = [[1] + [e). [D1] . [re] (7.25)

The FRF of the modified structure can be drawn from the [Fc'n] which represents the
relation between the harmonic excitation force and the translational displacements. After
the application of the procedure as mentioned earlier for the first bearing, the dynamic of
the other segments can be coupled to the present segment (in which the first bearing is
mounted) using receptance coupling until the segment in which the other bearing is
connected. The structural modification is applied for each segment that the bearing is
connected to, and then the next shaft segment is coupled to the endpoint of the modified
segment. This procedure continues until all the segments of the spindle shaft is coupled,

and the overall shaft-bearing system is modeled.

7.2.3. Experimental Verification

The experimental results for FRF measurements are provided by our project partner using

the existing spindle in their laboratory. The FRF measurements are performed on the
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spindle shaft tip using the proper impact hammer and accelerometer, as shown in Figure

7.9 schematically.

Accelerometer

Figure 7.9. Schematic representation of FRF measurement setup.

In order to simulate the FRF of the existing spindle, the CAD assembly model of the whole
spindle as well as the CAD model of the shaft and bearing specifications are provided by

our partner.

Front bearings
\
/ \ T

Spindle tip ‘ ;
\ ‘ \

\
\

Figure 7.10: CAD model of the spindle-bearing system.

The shaft dynamics are modeled by applying receptances coupling techniques by dividing
the shaft into segments with specific diameters, as explained in detail in Section 1.3. The
bearings dynamic effect is added by applying the structural modification method. The
dimensions of the shaft segments are given in Table 7.2. Note that segment number starts
from the shaft tip and segment 1 corresponds to the first segment on the spindle shaft tip.
The front bearings are located on segments 6 and 8, and the rear bearings are on segments

15 and 17, as shown in Table 7.2. The spindle shaft is made of alloyed steel with Elastic

modulus E = 210 GPa, density p = 7810 %, and Poisson ratiov = 0.3.
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Table 7.2: Dimensions of the spindle shaft.

Spindle shaft dimensions

Segment

1 2 3 4 5 6 7 8 9 100 1 12 13 14 15 16 17 18
number

Length 1,5 s 6 145 20 16 16 16 5 7 158 984 21 15 13 9 13 128
(mm)

Outer

Diameter 30 30 30 32 615 45 55 45 45 51 415 26 415 37 30 40 30 30
(mm)

Inner 25.0

Diameter 30 2 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8
(mm)

The properties of the bearings used in the existing spindle are provided by our project

partner, and listed in Table 7.3.

Table 7.3: Properties of the bearings in the existing spindle of Partner 2.

Outer

Contact

Inner

Outer

Axial

Ball Dia.  Pitch Dia. Bore Dia. ~ Width Number Ball
(mm) (mm) Dia. (mm) (mm) Angle Curvature Curvature of Balls Preload material
(mm) (deg) ratio ratio : N)
Front 7.14 60 75 45 16 15 0.54 0.53 21 158 Ceramic
Bearings
Rear 635 425 55 30 13 15 0.53 0.53 17 158 Ceramic
Bearings

After entering the bearing properties and the shaft dimensions into the integrated program,

the bearing translational and rotational stiffnesses are calculated and are coupled with the

shaft dynamics. The resulted bearing stiffness values are given in Table 7.4.

Table 7.4: Calculated bearing stiffness and identified damping coefficients for idle state.

Translational Rotational
) Rotational ~ Cross rotational- . .
Translational damping damping
Stiffness translational
Stiffness (N/.m) ) coefficient coefficient
(N.m/rad) stiffness (N/rad)
(N.s/rad) (N.m.s/rad)
Front
1.95¢8 14941 -1.6716¢6 650 1.8
Bearings
Rear
) 1.62¢e8 6563 1.006e6 400 1
bearings
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The damping coefficients are calibrated according to the experimental results and listed
in Table 7.4. The final simulations and the experimental results are compared in Figure
7.11. As seen in Figure 7.11, the first dominant mode with the highest FRF peak amplitude
is taken into account. It is seen that the experimental results, the natural frequencies of the
first mode have 8% deviation for X and Y directions. The error between the X and Y
direction can be due to the clamping condition of the whole spindle, spindle housing, and
other fastening parts mounted on the spindle. According to Figure 7.11, it is deduced that
the experimental and simulation results are in good agreement in terms of first natural
frequency. The is a 15% error in the second natural frequency between the simulation and
experimental results. However, since the first mode is dominant, the effect of the second
mode on overall spindle rigidity is negligible. To investigate the effect of rotational speed
on spindle dynamics, the tip point FRF of the spindle-bearing assembly is calculated at

various spindle speeds using the analytical model and speed-dependent bearing model.

4 x10 ‘ . . . . .
Exp. X dir.
3.5 Exp. Y-dir. |-
Simulation

2.5

Magnitude(G(w)) [m/N]

500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

(=

Figure 7.11: Comparison of the experimental and simulation results of FRFs at idle state.

The simulations are performed for the bearings and shaft geometry of the existing spindle,
which is indicated in Table 7.2 and Table 7.3. In this approach, the fully-analytical
angular-contact bearing stiffness matrix model is integrated with the above-mentioned
receptance coupling and structural modification model to evaluate the speed-dependent
frequency response functions. Figure 7.12 shows the variation of FRF of the spindle tip

concerning the rotational speed. It has been previously shown that the rotational speed
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will decrease the bearing stiffnesses. This is evident in the magnitude variation of the first
mode and its natural frequency, as shown in Figure 7.12. Higher rotational speeds decrease
the overall bearing stiffnesses, increasing the FRF magnitude and decreasing the first

natural frequency.
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Figure 7.12: Variation of first mode frequency and FRF amplitude for different rotational speed

using the analytical approach.

In order to identify the effect of the rotational speed on spindle FRF, the FRF
measurements are performed on the spindle shaft tip after a sufficient time of rotation at
the specific speed, as listed in Table 7.5. Firstly, the spindle FRF is measured at an idle
state (Condition 1). Then for each condition spindle is rotated at the defined operation
time. The spindle operated at each condition for approximately 5 minutes, allowing the
spindle bearings to reach stable thermal conditions. At the end of each operation, the

spindle stopped, and the FRF measurements were performed on the shaft tip.

Table 7.5: Conditions for speed variation experiments.

Operation Time Rotational speed
Condition .

(min) (rpm)
1 Approx. 5 mins 0
2 Approx. 5 mins 5000
3 Approx. 5 mins 10000
4 Approx. 5 mins 15000
5 Approx. 5 mins 20000
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The experiments are performed by the project partner and results are depicted in Figure
7.13. For idle state (zero speed), the comparison between the experiments and the
simulations are quite similar, as depicted in Figure 7.11. For other rotational speeds, the
comparisons are given in Figure 7.14. It is seen that up to 10K rpm, there is a small

different between the experimental and simulation results, which can be neglected.

X107 FRF

X-axis

0rpm
e 5,000 rpm
10,000 rpm
e 15,000 rpm
20,000 rpm

Magnitude (m/N)

Y-axis

0rpm
= 15,000 rpm
10,000 rpm
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.V -

0 0.5 1 1.5 2 25 3 35 L
Frequency (kHz)

Figure 7.13: FRF measurements at different rotational speeds.

However, despite the simulation results in which the bearing stiffness and natural
frequencies are decreasing at higher speeds, experimental results show that by increasing
rotational speed, bearing stiffnesses are increased, leading to a decrease in peak FRF
amplitudes. This phenomenon could be because the simulations consider the in-situ
dynamics of the rotating bearing. For FRF measurements, the spindle is stopped, and the
measurements are performed on a stationary shaft. In other words, the friction, gyroscopic
forces, and contact angles of the bearing are affected drastically by the rotational speed
increase, which affects the bearing and shaft dynamics. However, in the present
experiments, the spindle is rotated at a certain amount of operational time to provide
sufficient time for the thermal stability of the bearings. According to the experimental
results in Figure 7.13, it is seen that the frequency change is not significant, but despite the
simulation results, the FRF peak amplitude is decreasing. This conclusion can be drawn

that the only reason for FRF reduction is the decrease in the damping coefficient.
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Figure 7.14: Comparison of experimental and simulation FRFs at different rotational speeds. a)

at 10K rpm, b) at 15K rpm, ¢) at 20K rpm

7.2.4. Sensitivity Analyses of Spindle Parameters

Spindle dynamic performance is affected by several parameters. Variations in any of these
parameters produce notable changes in the FRF peak magnitudes and natural frequencies

of the structure, which are critical indicators of dynamic performance.

The analyses are based on the coupled-fully-analytical shaft-bearing model in Sections
7.2.1 and 7.2.2. Although the rigidity of a spindle can be affected by bearings’
specifications, this study only focuses on the parameters regarding the shaft-bearing
assembly, regardless of the bearings’ specifications in Table 7.1. For this analysis, two
important parameters are shortlisted for sensitivity checks owing to their potential benefits

in terms of structural rigidity.

7.2.4.1. Bearing Locations
This section aims to investigate the effect of spindle locations on spindle and tool point
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FRFs, as well as chatter stability of the process. This study is performed by varying the
location of the bearing pairs on the spindle shaft with respect to shaft tip and shaft end
(Figure 7.15). In this part, in a real spindle is considered as a case study adopted from [88].
The original dimensions of the shaft are given in Table 7.6 and illustrated schematically

in Figure 7.15

L3 L2 L1,

Rear bearings Front bearings

Figure 7.15: Schematics of the spindle and bearings.

Different spindle designs are studied by varying the L1 and L3 which correspond to the
front and rear bearing set locations measured from the shaft tip and end, respectively. Note
that, for the given spindle the front bearings are located on segments 2 and 3 and the rare

bearings are located on segments 10 and 11.

Table 7.6: Spindle dimensions with sub-segments

Seir(r)lf?nt sz;lrit)h Dglrlriier Dilzlllrlrllzf[er
(mm) (mm)
1 32 80 45
5 8 80 40
3 8 80 35
4 22 80 30
5 45 80 30
6 8 80 27
7 70 90 27
g 279 75 41
9 20 64 31
10 8 60 31
1 8 60 31
1 66 55 31

Although the bearing set locations can be varied in a limited amount because of the space
limitations on the shaft, their impact on FRF is important in terms of process stability and,

thus, productivity. According to the allowable ranges that the spindle design dictates, 30
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different cases are examined, and the respective FRFs are calculated. The most extreme
cases are chosen, and the corresponding FRFs are depicted in Figure 7.16. The spindle
design dimensions for these cases are given in Table 7.7. From simulation results, it can
be concluded that the peak spindle tip FRF decreases, i.e., its rigidity increases, when both
bearing sets are close to the spindle tip. On the contrary, the most flexible case is obtained
when both bearing sets are close to the spindle shaft end. The closer bearing sets to the
spindle tip reduces the amplitude of the vibration response at the spindle shaft tip, resulting
in a more rigid structure and lower FRF peak. Other combinations result in FRFs between

ones for Case 1 and Case 2.

Table 7.7 Spindle design dimensions for the most extreme cases.

L1 (mm) L2 (mm) L3 (mm)
Case 1 22 404 146
Case 2 62 464 46

Magnitude(G(w)) [m/N]

Fequency [Hz]

Figure 7.16: Calculated spindle tip FRFs for two different spindle designs in Table 7.7.

In order to have a better understanding of the effect of spindle dynamics on the machining
stability and productivity, the tooltip FRFs for both cases have been obtained by coupling
the tool-holder-spindle FRFs. The FRFs of the tool and holder is obtained using receptance
coupling as mentioned in 7.2.2. Furthermore, the elastic coupling at the tool-holder and

holder-spindle interfaces is also performed using the receptance coupling approach as
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described in [94,96]. Note that the tooltip FRFs for the given spindle were confirmed by
Ozsahin [88] by identifying the bearing dynamics and contact dynamics using hammer
tests and error minimization techniques and given in Appendix C: Tool-holder
Dimensions and Dynamic properties. The tool and holder dimension identified contact
parameters at the spindle-holder and holder-tool interface, and the identified bearing
dynamic for this case study are given in Appendix C: Tool-holder Dimensions and
Dynamic properties. As it can be seen from the FRFs given for both cases, The third mode,

which is dominated by the tool, is not affected by the spindle design.
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Figure 7.17: Calculated tool point FRFs for the two different spindle designs.

On the other hand, the first and the second modes are significantly affected by the spindle
design as they are related to the spindle and the holder, respectively. The stability diagrams
are calculated and compared based on the given tooltip FRFs for each case. It is shown
that different spindle dynamics cause a drastic change in the stability diagrams, as shown

in Figure 7.18.

It can be deduced that by keeping the tool and holder assembly identical, a spindle design
with flexible dynamics decreases the stability limit. As shown in Figure 7.18, the peak and

absolute limits are significantly reduced for case 2 due to flexible spindle dynamics.
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Figure 7.18: Stability diagrams based on the tool point FRFs of each case in Table 7.7.

7.2.4.2. Tail Length

The “tail” in a spindle refers to the length from the rare earing to the shaft end (indicated
as Lz in Figure 7.15. In this part, spindle dimensions given in 7.2.3 is taken as the case
study. Considering that the bearing locations are in the most rigid condition, the structural
analysis was performed by varying the tail length. The sensitivity check of the tail length
was initially performed by introducing small variations of 10 mm. However, these failed
to yield discernible results, indicating that small changes in the tail length are insignificant
in terms of dynamics and rigidity. Figure 7.19 shows the various simulations run for larger
variations in the tail length. The base value of the tail may be taken as 10mm. Several
simulations are performed for comparison purposes. The results may be split into below
70 mm and above 70 mm. For tail lengths shorter than 70 mm, it is observed that the
spindle becomes more rigid as peak FRFs slightly decrease while the natural frequencies
remain approximately the same. After 70 mm, the second mode shows splitting tendencies

as a third peak appears between the previous two.

It is observed that the peak FRF shows a decreasing trend with increasing tail length. At a
tail length of approximately 80 mm, the mode splitting phenomenon is observed at the
first mode. Initially, the two new peaks appear at a reduced magnitude. As the tail length
is further increased to 90 mm, one of the peaks rises sharply. This observation indicates
that there is the favorable region for the tail length where the mode splitting phenomenon

can be exploited to improve dynamic performance. As a result, considering the amplitude
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of both peaks of the first mode, it is seen that the tail length of 86 mm is the most rigid
case in terms of the average of the splitted modes peaks. Figure 7.15 shows that the first
mode splits into two peaks, the higher of which is 25% less in magnitude than the peak

for the original tail length.

The variation in each parameter is decided based on practical reasons such as physical

limitations of the assembly, product availability, and intuition.
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Figure 7.19: Spindle tip FRFs for different tail length.

7.3. Workpiece Dynamics

As another key factor in the stability of the process, workpiece dynamics must be
identified precisely in order to have an accurate stability prediction. While the dynamics
of a tool and spindle remain constant during the process, workpiece dynamics alter due to
the material removal effect. As the tool removes the material from the rotating workpiece.
The volume hence the mass of the workpiece, changes continuously. Therefore, the
dynamic response of the workpiece may vary continuously during the operations. This
variation also changes along the workpiece. This phenomenon is more effective in slender
and flexible geometries. Based on the dimensions of the workpiece, its dynamics can be

as flexible as or much more flexible than the tool-holder-spindle assembly. When the
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workpiece is clamped on the chuck, it can either be supported by the tailstock at the free
end or not, leading to different boundary conditions. In both cases, workpiece dynamics

and corresponding mode shapes exhibit different behaviors, affecting process stability.

Since it is not feasible and convenient to measure the in-process workpiece dynamics
during the cutting operation at each set-up, analytical approaches must be used to calculate

the FRFs.

In this chapter, in order to calculate the workpiece dynamics, receptance coupling [143]
to predict the workpiece dynamics. As mentioned in Section 7.2.2, the workpiece is
divided into subcomponents where the dynamics of each component are obtained using
the analytical solution of the Timoshenko beam (See Figure 7.7). Similar to the receptance
coupling of the subcomponents of the shaft explained in Section 7.2.2, each subcomponent
of the workpiece with a specific length and diameter is coupled as illustrated in Figure
7.20. By coupling beams of different diameters and lengths together, the receptance
matrices of main components of the shaft can be calculated as given in equation (7.20).
Obviously, the multi-segment components built this way will have free—free boundary
conditions. However, the workpiece as a beam is clamped to the chuck. This implies
adding dynamics of the chuck to the workpiece at the contact locations as springs and
dampers. Similar to the shaft modeling, the dynamics of the contact point between the
workpiece and chuck are included in the system by using the Structural Modification

approach [142].

Figure 7.20: subcomponents of a clamped workpiece.

Since the receptance coupling method allows the computation of end point receptances
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only, the clamping length (L3) (contact interface between the workpiece and jaws) is
divided into two substructures, as shown in Figure 7.21. As a result, in the cylindrical
workpiece shown in Figure 7.20, we have four effective segments instead of a three-
segmented beam. However, unlike structural modification in spindle-shaft assembly, in
this approach, the rotational stiffness, rotational complex damping, and the corresponding
cross terms (off-diagonal) terms are eliminated since the moment effect is neglected. As
a result, after rearrangement of the receptance matrix of the coupled segments I and II
illustrated in Figure 7.21, the structural modification matrix, which includes the

translational stiffness and damping information of the contact, can be written as follows;

0 0 00
0 K, 0 0

D] = y 7.26

DI={, 4 o o (7.26)
0 0 00

where K,, = ky + iwc,, is the translational complex stiffness expression, representing the

stiffness and damping at the workpiece-jaw interface.

jaw

k %L{Jc

chuck I

.
.

Workpiece

Figure 7.21: Addition of contact dynamics to the system by structural modification.

The modified receptance matrix of substructure 3 can be calculates by

[re] = [[] + [T). [D1] . [Te] (7.27)

where [I'¢] is the receptance matrix of coupled segments I and II of substructure 3. Having

obtained all the end point FRFs of a single segment beam by using sufficient number of
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modes in the summation term for each segment, one might now couple the required
number of free—free beams (substructures 1 and 2) to form the desired multi-segment

beam and find the endpoint FRFs of the workpiece at its tip using equation (7.20) [143].

Once the contact mechanics at jaws-workpiece interfaces are identified, one can identify
the in-process workpiece dynamics during material removal operation by only updating
the diameter and length of segments 1 and 2. Note that the workpiece in Figure 7.21 is
drawn for a simple case. However, more segments can be defined and coupled for tool

paths with several lengths and diameters.

The contact stiffness and damping identification are performed by error minimization
technique between the simulation and FRF measurement. For this purpose, first, a dummy
workpiece with a relatively short length is clamped to the chuck, and the FRF
measurements from the workpiece tip are conducted at X,, and Y;, directions. Then the
FRF of the dummy workpiece is calculated using the receptance coupling method. The
contact stiffness and damping at contact stiffness are found iteratively by minimizing the
error between simulated and measured FRFs. Note that, in this approach, it is assumed
that the clamping pressure of the hydraulic chuck is constant at each set-up. Furthermore,
the contact dynamics for each material are unique, and as the material of the workpiece

changes, the contact dynamic identification procedure should be repeated.

A cylindrical part is selected as a dummy workpiece with Al7075-T6 Aluminum alloy
with 60 mm in diameter and 116 mm in length. The clamping length is 40 mm. The

material properties of the dummy workpiece are given in Table 7.8.

Table 7.8: Material properties of A17075-T6.

. kg Young ] )
Density [—3] Poisson Ratio Loss Factor
m Modulus [GPa]

2710 71.6 0.33 0.0002
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Figure 7.22: Identified FRF simulations using error minimization in X and Y directions.

After performing the identification procedure which runs several iterations to minimize
the error between natural frequency and peak magnitude of the dominant mode of the
simulation and measurement, the identified contact translational stiffness and damping in

both directions are given as follows;

Table 7.9: Identified contact stiffness and damping at jaws-workpiece interface.

Translational stiffness Translational damping

N.s/m
[N /m] [N.s/m]
Xy Direction 1.112e9 6493
Yy Direction 1.5341e9 9593

The natural frequency of the system at X;,; direction is 1223 Hz, and in Y, direction is
1376 Hz. Another workpiece with similar material but different dimensions will be
simulated to confirm the identified contact dynamics. The simulations will be compared
with the experimental measurements. For this purpose, a workpiece with the dimension
represented in Figure 7.23 is used as a case study. The resulted simulations and

experiments are shown in Figure 7.24.
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Figure 7.23: Dimensions of the tested part.

According to the simulation results, it is deduced that the predicted natural frequency
values in both directions are in agreement. However, there is approximately 35%
difference in FRF magnitudes of X, direction and 50% difference in FRF magnitude in
Yy direction. In other words, the identified stiffness value affects the natural frequency
with high accuracy. However, the translational damping which affects the FRF magnitude
is identified with low accuracy. This can be caused by the clamping pressure variation at
different part diameters, which needs to be investigated more. In addition, including
rotational stiffness and damping may increase the accuracy of predictions but may
increase the computational time. This issue also needs to be investigated more deeply.
While there are other methods for the prediction of part dynamics, such as FEM, analytical
Euler-Bernoulli, and inverse receptacle coupling, further research is needed to compare
each method's accuracy and computational time when the effect of contact dynamics is

included.

XM Direction 6 YM Direction

== Experimental
== === Simulation B
O Simulation peaks

Experimental
== === Simulation
O Simulation Peaks | |

|®(w)] (m/N)
|®(w)| (m/N)

. e o ) e o
500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz) Frequency (Hz)

Figure 7.24: Comparison of predicted and simulation results of the part.
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7.4. Summary

This chapter presents a dynamic model for predicting the frequency response of spindle
and workpiece systems. The stability of a process drastically depends on the dynamic

responses of the spindle-holder-tool assembly and the workpiece dynamics.

In this regard, a predictive model for bearing dynamics is presented. The frequency
response function of the spindle shaft was also modeled using the receptance coupling
method. By coupling the dynamics of bearing and shaft, the dynamic response of the
spindle shaft tip is predicted and compared with experiments. Regarding rigidity, effective

parameters such as bearing locations and tail length are analyzed.

Finally, the workpiece dynamics and the contact stiffness at the clamping interface are
modeled using the receptance coupling method. The predictions are compared to

experimental measurements.
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8. CONCLUSIONS AND FUTURE WORKS

8.1. Conclusions and contributions

The contributions of the present thesis can be categorized under four main topics:
mechanics of turn-milling, stability of turn-milling, stability of special tools, and structural

dynamics of machine tools.

8.1.1. Mechanics of turn-milling

Exact chip geometry and mechanics of orthogonal turn-milling operation are presented.
Based on the proposed model, cutting force predictions for standard and serrated end mills
are presented and validated with experiments. It is shown that due to the simultaneous
rotation of tool and workpiece, the cutter-workpiece engagement is relatively complex and
additional cutting parameters are involved. As a result, the effect of each parameter on
uncut chip geometry and cutting forces is different compared to conventional turning or
milling. Therefore, it is vital to understand the process kinematics and mechanics in detail
to achieve correct process planning as well as proper surface quality, low energy
consumption, and high productivity. In this regard, specific contributions and conclusions

drawn from this study are listed as follows;

e Due to simultaneous rotation of tools and workpiece, both the side and minor
cutting edges of the tool are engaged during the chip removal operation. This
causes a significant change in cutting forces in feed, cross-feed, and axial
directions, which is important for process planning in terms of process mechanics

and dynamics.

e The ratio of the tool over workpiece rotational speeds affects the uncut chip
thicknesses generated by the side and minor cutting edges of the tool. As the ratio

decreases, the uncut chip thickness and hence, cutting forces and torque increase.

e Eccentricity drastically affects the uncut chip geometry resulting from the side

edge. The instantaneous depth of cut varies within the engagement boundaries, and
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the variation trend depends on the eccentricity. After a particular eccentricity

value, the engagement of the side edge decreases, leading to lower MRR.

The eccentricity alters the engagement boundaries of the minor edge. As the
eccentricity increase, the engagement of the minor edge decreases. The part
accuracy will be decreased for eccentricity values when the minor edge is not

engaged, leading to smaller CWE and lower MRR.

Parameter selection in turn-milling is more difficult owing to the existence of
additional and special kinematic and geometric conditions due to special

kinematics of the process resulted by simultaneously rotating tool and workpiece.

The relation between eccentricity and stepover was modeled based on tool and
cutting geometry. The effect of proper selection of these parameters on the surface
quality is demonstrated experimentally. It is shown that a slight change in the
eccentricity has a strong impact on the surface finish in turn-milling. However,
using the proposed model, productivity can be doubled without sacrificing the

surface quality.

The ratio of the tool over workpiece diameters influences the uncut chip geometry
as well as feed per tooth value. For constant tool radius and rotational speed ratios,

the maximum feed per tooth value also increases as the workpiece radius increases.

While eccentricity has a negligible effect on the torque and resultant force in
orthogonal turn-milling, stepover affects drastically. On the other hand, both
stepover and eccentricity significantly affect the axial force. Based on the
combination of eccentricity and stepover, the axial force magnitude and direction
can be altered drastically, which is a critical factor in the accuracy of flexible or

thin-walled parts.

A parameter selection procedure is proposed to select the proper eccentricity and
stepover pair while considering the axial force magnitude and direction, surface
quality with cusp prevention, and productivity. Minor edge length defines the
allowable range for eccentricity and stepover and hence, the magnitude of the axial

force for a specific pair of eccentricity and stepover. Higher productivities with
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lower axial forces are achievable for a longer minor edge.

The proposed model for cutting mechanics is confirmed for standard end mills, and the
influential parameters on part accuracy, productivity, and cutting energy are discussed.
This study's outcomes are significant for the development of new research possibilities in

turn-milling and the implementation of high-performance.

8.1.2. Dynamics and Chatter Stability of Turn-milling

The dynamics of orthogonal turn-milling in three dimensions are modeled and studied for
the first time in the literature. The dynamic chip thickness in feed, cross-feed, and axial
directions resulting from the side and minor edges of the tool are modeled, and
corresponding directional coefficients are formulated for the first time in the literature.
The machine tool’s structural dynamics are defined in modal space and coupled with the
tool's and workpiece's dynamic displacements. The varying time delay caused by
workpiece rotation is modeled using a novel approach. The stability of turn-milling
process is solved through coupled time-varying delayed differential equation by the semi-
discretization method in the discrete-time domain. The effect of varying time delays on
process stability at different workpiece speeds is demonstrated. Moreover, the stability of
turn-milling in the frequency domain is solved for the first time in the literature. The main

contributions and conclusions of this chapter are listed as follows;

e The simultaneous workpiece and tool rotational motion produces a phase shift
between the waves imprinted on the workpiece surface, resulting in a varying time
delay within the engagement boundaries in the regenerative chip formation
mechanism. This time delay depends on the ratio of tool and workpiece speeds,
the ratio of tool and workpiece diameters, number of teeth, and axial depth of cut.

e Since the linear speed varies along the workpiece diameter, the time delay at each
axial element along the tool is different. Therefore, a varying delay is distributed
along the tool’s axis even in turn-milling with standard tools. The delay at the
tooltip is the minimum.

e As the ratio of the workpiece to tool diameters (; = R,,/R;) increases, the time

delay also decreases since the amount of phase shift at the tooth passing period is
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higher due to the larger workpiece radius.

Increase in workpiece speed (decrease in 1z = ,/(Q,,), also increase the phase
shift, leading to a larger phase shift, and lower time required for the current tooth
to reach the surface point on the modulation left by the previous tooth, hence lower
time delay.

The stability prediction simulated in time and frequency domains showed good
agreement with chatter experiments. It is seen that for the cases with a very large
speed ratio (75) (low workpiece speed), and relatively small tool diameter in which
the effect of the minor edge is negligible, the stability lobes are close to the milling
process. The variation in eccentricity affects the stability lobes slightly while using
end mills in turn-milling. The variation in absolute stability limit is due to the
change in CWE resulting from eccentricity alteration.

The effect of eccentricity becomes more significant in turn-milling with inserted
tools. Due to the existence of offset distance between the tool center and inserts,
the eccentricity and stepover must be selected according to the minor edge length
and tool radius. Otherwise, cusps will be formed on the machined surface, and
undesired uncut chip geometries can be formed, leading to excessive forces.

An increase in eccentricity alters the absolute stability limit drastically because of
the change in CWE of both side and minor cutting edges. Furthermore, due to the
variation of chip distribution resulting from the side edge, the overall resultant and
axial forces change, affecting stability limits.

It is previously reported that lower eccentricities result in higher MRR and better
surface roughness. In this study, it is also experimentally verified that lower
eccentricities lead to higher absolute stability limits and hence, higher
productivity. However, the allowable stepover for lower eccentricities is limited.
As expected, larger radial immersions decrease the absolute stability limits.
However, by selecting the proper stable depth of cuts inside the lobes, higher MRR
can be achieved despite the lower absolute depth of cut compared to low
eccentricity cases.

High workpiece rotational speeds affect the regeneration system in turn-milling
because of the smaller time delay, leading to a shift in stability lobes toward lower
tool speeds. Neglecting the effect of varying time delay at different workpiece

speeds and the lobe shifting phenomenon may cause chatter vibrations and hence,
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tool and workpiece failure.
e The ZOA method exhibits approximately 20 times lower computational time in all
conditions than SDM. Considering the negligible discrepancies, using the ZOA

approach in predicting stability lobes in turn-milling is preferable.

The stability model of turn-milling operation for standard milling tools with regular
geometry is presented. The proposed model and results are essential to be considered at
the process planning stage to avoid poor surface quality, part accuracy, tool failure, and

low MRR.

8.1.3. Mechanics and Dynamics of Special Tools

Special tools are implemented in the turn-milling process. The mechanics and dynamics
of serrated and crest-cut tools are investigated during turn-milling operation. The
mechanics of turn-milling is upgraded to be able to adopt the particular CWE and uncut
chip thicknesses for serrated and crest-cut tools. The varying time-delay model of turn-
milling is also upgraded to calculate the distributed time delays along with the crest-cut
tools during turn-milling operation. While the system's stability is solved with SDM, the
ZOA method is used to calculate the stability of crest-cut tools for the first time in the

literature. Some findings are listed as follows;

e The application of serrated tools decreases the cutting forces and torque due to a
reduction in engagement distribution along with the cutting depth due to the
serrated edge geometry. The serrated tools cause a reduction in forces in feed and

cross-feed directions more than in axial direction.

e Turn-milling forces resulting from crest-cut tools are predicted and confirmed
with experimental results for the first time in the literature. Accurate cutting force
predictions are obtained considering cutter-workpiece engagement and local
cutting force coefficients. Unlike standard milling tools, crest-cut end mills
produce non-periodic cutting forces.

e Crest-cut tools produce significantly smooth axial cutting forces, which may be

beneficial in machining thin-walled pockets.

165



¢ Due to the local pitch and helix angle variation along the axis of crest-cut tools,
the entry and exit angles and the time delay are different for each element on each
tooth. Therefore, at any axial level, the average delay for each tooth is different.

e Since it is required to use average time delay for ZOA, the error between stability
lobes calculated by SDM and ZOA increased.

e (Considering that the computation time for crest-cut tools is higher than the
standard tools for both methods due to the higher number of delays, the ZOA
method stills offers a shorter computation time than SDM.

e Due to the high number of distributed delays imposed by crest-cut tools on the
dynamic system, the regeneration mechanism is disturbed, leading to higher
absolute stability limits.

e The wavy edge shapes on crest-cut tools increase the intermittence nature of
engagement due to the varying delay and local pitch angles. Therefore, especially
in lower-immersion engagements, the higher harmonics of the cutting forces can
be dominant, leading to flip bifurcation type of instability. As a result of higher
harmonics, added lobes were seen in the stability diagram of crest-cut tools, which
are significantly helpful in achieving higher productivity.

e C(Crest-cut tools also offer significant improvements in machining thin-walled
structures. Surface finish quality maps show that the crest-cut tool has superior
performance considering the surface quality and productivity. Variable pitch tools
may suppress chatter in one of the plate modes. Still, they lose their effectiveness
on different cutter-location points due to frequency variations of multiple modes
under mass removal effects. On the other hand, crest-cut tools provide much
higher stability limits in a wide frequency range with high robustness against
frequency variation.

e While calculating the stability of thin-walled structures, it is essential to include

in-process workpiece dynamics to obtain precise predictions.

Crest-cut tools exhibit superior advantages compared to standard and variable-pitch

tools in terms of process stability and productivity.
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8.1.4. Structural Dynamics of Machine Tools

As the main contributors to process dynamics and stability, having a predictive model for
dynamics of the spindle and workpiece systems is vital. Although the dynamic of the
workpiece and spindle-holder-tool assembly can be performed throughout experimental
impact hammer testing before the process, the in-process identification of their dynamic
behavior is impossible. In order to model the spindle under operational conditions at
different speeds, a predictive model is proposed. In this model, the dynamic model of the
bearings is coupled with the analytic shaft’s dynamic model based on receptance coupling.
Moreover, the workpiece dynamics were also modeled using a similar approach. The

conclusions are given as follows;

e The translational and rotational stiffnesses of the bearings have a decreasing
manner as the speed increases. However, they increase as the preload increases.

e During the validation of our model with experiments, it is observed that including
the cross-stiffness (off-diagonal terms) significantly increases predictions'
accuracy.

e As the rotational speed increases, the system's natural frequency decreases, and
the system becomes more flexible due to the reduction in stiffness. However, if
the other parameters like thermal effects are included, this trend could be altered.

e In a typical spindle, as the location of both bearing sets become closer to the shaft
tip, the system will have more rigidity and hence, more stability.

e The tail length of the spindle has an optimum length that exhibits lower FRF peak
amplitude as well as divided modes. The mass-damper effect of the shaft tail
improves the spindle rigidity; hence, less chatter vibrations and more productivity
can be achieved.

e In-process workpiece dynamics using receptance coupling show a good agreement
between experiments in terms of natural frequency. However, the required contact

damping varies from part to part at each set-up.
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8.2. Future Research Directions

Based on the presented mathematical models and the experimental validations, this thesis's
outcomes can be considered a validated foundation for future advanced research in turn-
milling technology. Although the proposed models can predict the process mechanics and
dynamics, several aspects can still be investigated. The further research potentials in turn-

milling, special tool technologies, and structural dynamics are listed as follows;

e Effects of minor edge geometrical parameters, such as hone radius, oblique angle,
clearance, etc., on surface quality, cutting temperature, and process damping can
be studied.

e The surface integrity of parts with hard-to-cut material machined using orthogonal
turn-milling and conventional turning can be examined and compared. The
residual stresses on the machine part can be obtained. The effect of eccentricity
and tool geometry can be influential during process planning and optimization to
achieve higher accuracy.

e A parameter optimization study can be carried out to investigate the best
parameters in turn-milling highly flexible parts such as long shafts or thin-walled
tubes to achieve improved productivity and surface quality and lower dimensional
errors.

e A specific tool for orthogonal turn-milling can be designed considering the minor
and side edge parameters for reduced cutting forces and improved productivity.

e The in-process workpiece dynamics of highly flexible parts can be considered in
the stability model of turn-milling. The varying stability limit can be added to the
global optimization problem as an additional constraint.

e Based on the calculated cutting forces, the temperature model must be
investigated. The temperature model can be used either in predicting tool wear or
predicting residual stresses. This study will help to fully benefit from turn-milling
technology’s advantages over conventional turning operations.

e Special tools like crest-cut and serrated tools can also be implemented in other
turn-milling configurations such as tangential and co-axial to investigate the
surface quality and stability.

e Process damping of special tools in turn-milling by considering the damping effect
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of both side and minor edges can be studied to benefit from its impact in machining
hard-to-cut materials.

The thermal model of the spindle can be combined with the proposed model to
capture the effect of generated heat on spindle dynamics. The optimized spindle
design can be obtained by considering the dynamic and temperature model at the

same time.
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APPENDICES

Appendix A: Orthogonal databases

e Al7075-T6 Alloy

Table Al: Orthogonal parameters for A17075-T6

T3 =297.1+ 11a,
Orthogonal parameters B'n =18.8+ 6.7h + 0.0076V, + 0.26a,
¢'s = 24.2 + 36.7h + 0.005V, + 0.3,

N N
Edge Force Coefficients Kie = 234— K, = 35.2—
mm mm

where 7' is shear stress (MPa), f',, is friction angle (deg), ¢’ shear angle (deg), a,, is
rake angle (deg), h is feed (mm), V, is cutting speed (m/min), K;, is edge force coefficient

in tangential, and K., is edge force coefficient in radial direction.
e AISI 1045 steel

Table A2: Orthogonal parameters for AISI 1045

T's = st(1) * exp(VC * St(Z)) +st(3) xh
Bln=rf@)exp(Vexf(2)) +f(3)+h
¢'s = sa(1) * exp(V, * sa(2)) + sa(3) * exp(hsa(4))
f = [33.753,-0.00123,—7.33]

sa =[10.342,0.001236,10.912,0.35]
st = [524.95,0.0005302, —21.72]

Orthogonal parameters

N N
Edge Force Coefficients Kie = 35— Ko = 42—
mm mm

where 7' is shear stress (MPa), ', is friction angle (deg), ¢’ shear angle (deg), a,, is

rake angle (deg), h is feed (mm), V, is cutting speed (m/min), K;, is edge force coefficient
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in tangential, and K., is edge force coefficient in radial direction.

Appendix B: Nyquist Stability Criterion

Considering a characteristic equation in general form of CH(s) = det[l + (J + Je St +
J)®(s)] = 0,A(s) = (J+Je St +]s), the stability analysis can be performed by
analyzing its Nyquist plot. Poles of the characteristic equation CH(s) are the poles of the
structure (®) which are all stable. Any unstable zero of the characteristic equation CH(s)
creates a clockwise encirclement of the origin of complex plane by Nyquist mapping of
the characteristic equation. Unstable zeros of the characteristic equation are unstable poles
of the system, as the characteristic equation appears in the denominator of the input-output

transfer functions in the closed loop system.

Therefore, it is sufficient to count the encirclements for mapping of the positive
imaginary axis. This is equivalent to replacing s with jw where w is a nonnegative real
number. It can be seen that A(jw) forms a spiral shape with varying diameter; the circling

is mostly due to the phase contribution of the complex exponential term.
e~ T® = cos(Tw) — i sin(Tw)

Nyquist plot of two stable and unstable time delay systems with similar transfer functions

are plotted in

Stable Unstable (Chatter)

Imaginary

Figure B1: Nyquist plots in complex plane for stable and unstable cases.

Although Nyquist contour is a continuous path, it is drawn using discrete frequencies on
a digital computer. In addition, the frequency response function of the system (CD(a))) is

also measured or simulated as a function of discrete frequencies. Therefore, the Nyquist
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contour is determined as a set of points. The frequency resolution is important to determine
correct stable or unstable cases. Lower frequency resolutions may result in incorrect
results. The unstable case in Figure B1 is plotted with lower frequency resolution. It is
seen that, with lower frequency resolution, the Nyquist contour does not encircle the origin

and the plot implies a stable condition. However, it is in fact an unstable condition.

Unstable (Chatter)

Imaginary

\

-0.5

Figure B2: Similar condition in Figure B1 with lower frequency resolution.
In order to detect stable or unstable conditions, the following algorithm is applied:

1. Select a range of frequency to be swept that covers the flexible modes of the

system with reasonable resolution Wi, < 6w < Wygy -
2. Set the counter (n = 1), and calculate CHO = CH (iw,,)
3. While w,, < Wy, do the following steps:

Calculate CH1 = CH(iwy41)

a. If CHO is in the third quadrant of complex plane (Re(CHO) <
0,Im(CHO) < 0), while CH1 is in second quadrant (Re(CH1) <
0,IM(CH1) = 0). The contour crosses the negative real axis (encircles the

origin) and the condition is unstable.

b. If CHO is in the third quadrant and CH1 is in the first quadrant, calculate
the approximate intersection point with the real axis using the two

consecutive points in each quadrant. A line interpolation can be used
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between these points. If the intersection point with real axis has a negative

part, then go to the step 4.

4. End.

Appendix C: Tool-holder Dimensions and Dynamic properties

Table C1: Holder segments and dimensions [88].

Outer Inner
Segment Length ) _
Diameter Diameter
No. (mm)

(mm) (mm)
1 26 63 21
2 34 50 21
3 24.5 50 25
4 17 44.5 25
5 6 63.5 25
6 3 56 25
7 6 63.5 25

Table C2: Tool segment dimensions [88].

Outer Inner
Segment Length . )
Diameter Diameter

No. (mm)
(mm) (mm)
1 20 16 0
2 25 20 0

Table C3: Contact parameters at the spindle-holder and holder-tool interfaces [88].

Translational | Rotational | Translational | Rotational
Stiffness Stiffness Damping Damping
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(N/m) (N.m/rad) (N.s/m) (N.m.s/rad)
Spindle -
holder 12.6x107 1x10° 170
interface
Holder -
tool 8x107 1.5x10° 100
interface

Table C4: Dynamic properties of bearings [88].

Translational Rotational Translational Rotational
Stiffness Stiffness Damping Damping
(N/m) (N.m/rad) (N.s/m) (N.m.s/rad)
Front bearing 1.45x106 3 83x10° 3500 10
Rear bearing 1.02x108 1.5x10° 1000 10
4 2107

Amplitude [m/N]

— Analytical Model
- = =Measured FRF

500

1000

Frequency [Hz]

2000

Figure C1: Calculated and measured tool point FRFs at idle state of the machine [88].
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