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ABSTRACT

PRIMITIVE PRIME DIVISORS IN THE CRITICAL ORBIT OF POLYNOMIAL
DYNAMICAL SYSTEMS

MOHAMED WAFIK MAHMOUD HASSAN ELSHEIKH

Mathematics, Master Thesis, JULY 2022

Thesis Supervisor: Assoc. Prof. Mohammad Sadek

Keywords: dynamical systems, periodic point, p-adic dynamics, primitive prime
divisors, critical orbit

Let fd,c(x) = xd + c ∈Q[x], d≥ 2. We write fn
d,c for fd,c ◦fd,c ◦ · · · ◦fd,c︸ ︷︷ ︸

n times

. The critical

orbit of fd,c(x) is the set Ofd,c
(0) := {fn

d,c(0) : n≥ 0}.

For a sequence {an : n≥ 0}, a primitive prime divisor for an is a prime dividing an

but not ak for any 1≤ k < n. A result of H. Krieger asserts that if the critical orbit
Ofd,c

(0) is infinite, then each element in Ofd,c
(0) has at least one primitive prime

divisor, except possibly for 23 elements. In addition, under certain conditions, R.
Jones proved that the density of primitive prime divisors appearing in any orbit of
fd,c(x) is always 0.

Inspired by the previous results, we display an upper bound on the count of primitive
prime divisors of a fixed iteration fn

d,c(0). We also investigate primitive prime divisors
in the critical orbit of fd,c(x) ∈K[x], where K is a number field. We develop links
between the existence of a primitive prime divisor in the critical orbit and the
periodicity of the critical orbit of the reduction of fd,c in the residue field of K
modulo the primitive prime divisor. Consequently, under certain assumptions, we
calculate the density of primes that can appear as primitive prime divisors of fn

2,c(0)
for some c ∈Q. Furthermore, we show that there is no uniform upper bound on the
count of primitive prime divisors of fn

d,c(0) that does not depend on c. In particular,
given N > 0, there is c ∈Q such that fn

d,c(0) has at least N primitive prime divisors.
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ÖZET

POLİNOM DİNAMİK SİSTEMLERİN KRİTİK YÖRÜNGESİNDEKİ İLKEL
ASAL BÖLENLER

MOHAMED WAFIK MAHMOUD HASSAN ELSHEIKH

Matimatik, Yüksek Lisans Tezi, TEMMUZ 2022

Tez Danışmanı: Doç. Dr. Mohammad Sadek

Anahtar Kelimeler: dinamik sistemler, periyodik nokta, p-adic dinamik, ilkel asal
bölenler, kritik yörünge

fd,c(x)=xd + c ∈ Q[x] ve d ≥ 2 olsun. fd,c ◦fd,c ◦ · · · ◦fd,c︸ ︷︷ ︸
n kez

için fn
d,c yazalım. fd,c(x)

fonksiyonunun kritik yörüngesi Ofd,c
(0) := {fn

d,c(0) : n ≥ 0} kümesidir. {an : n ≥ 0}
dizisi için, an’in ilkel bir asal böleni an’i bölen, ancak 1≤ k <n için herhangi bir ak’yı
bölmeyen bir asal bölendir. H. Krieger’in bir sonucu, eğer Ofd,c

(0) kritik yörüngesi
sonsuzsa, Ofd,c

(0) içindeki her elemanın, muhtemelen 23 eleman hariç, en az bir
ilkel asal bölene sahip olduğunu iddia eder. Ek olarak, belirli koşullar altında, R.
Jones, fd,c(x) herhangi bir yörüngede görünen ilkel asal bölenlerin yoğunluğunun
her zaman 0 olduğunu kanıtladı.

Önceki sonuçlardan esinlenerek, sabit bir fn
d,c(0) yinelemesinin ilkel asal bölenlerinin

sayısı üzerinde bir üst sınır gösteriyoruz. Ayrıca fd,c(x)∈K[x] kritik yörüngesindeki
ilkel asal bölenleri araştırıyoruz, burada K bir sayı cismidir. Kritik yörüngede ilkel
bir asal bölenin varlığı ile ilkel asal bölen K modülünün kalıntı alanındaki fd,c azal-
masının kritik yörüngesinin periyodikliği arasında bağlantılar geliştiriyoruz. Sonuç
olarak, belirli varsayımlar altında, bazı c∈Q için fn

2,c(0)’ın ilkel asal bölenleri olarak
görünebilen asal sayıların yoğunluğunu hesaplıyoruz. Ayrıca, fn

d,c(0)’ın c’ye bağlı ol-
mayan ilkel asal bölenlerinin sayısında tek tip bir üst sınır olmadığını gösteriyoruz.
Özellikle, N > 0 verildiğinde, öyle bir c∈Q vardır ki, fn

d,c(0) en az N ilkel asal bölene
sahiptir.
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Chapter 1

INTRODUCTION

Let K be a field, and let fd,c(x) = xd +c∈K[x]. We denote the nth iterate of fd,c by
fn

d,c(x) for n≥ 0, where f0
d,c(x) = x and fn

d,c(x) = fd,c(fn−1
d,c (x)). We also denote the

orbit of a0 ∈K by O(a0), where O(a0) := {fn
d,c(a0) : n≥ 0}. The orbit of 0 is called

the critical orbit of fd,c(x). We now assume that K is a number field with a ring of
integers R. Let p be a prime ideal in R with the corresponding discrete valuation νp,
then p is called a primitive prime divisor of fn

d,c(a0) if fn
d,c(a0) ̸= 0, νp(fn

d,c(a0))> 0,
and νp(f t

d,c(a0)) = 0 for all 1≤ t < n.

The primitive prime divisors of the critical orbit of polynomials of the form fd,c(x)
have been extensively studied in the literature. The critical orbit of fd,c(x) ∈ Z[x]
was investigated in [10]. If the orbit is finite, we only need to check finitely many
iterates to fully study the primitive prime divisors. In [10, Lemma 8], it was proven
that the critical orbit is infinite for all fd,c(x) ∈ Z[x] except for three cases, c = 0;
c = −1 and d is even; or c = −2 and d = 2. In [10, Theorem 3], it was shown that
when the critical orbit is infinite, then there is at least one primitive prime divisor
of fn

d,c(0) for all n≥ 2 when c=±1 and for all n≥ 1 otherwise.

These results were later generalized by H. Krieger in [19], to fd,c(x) ∈Q[x]. For the
critical orbit, it was observed that when c= a

b ∈Q, where a,b ∈ Z, gcd(a,b) = 1 and
b≥ 2, then fn

d,c(0) = an

bdn−1 , where an ∈ Z and gcd(an, b) = 1. This means that when
c ̸∈ Z, the critical orbit is always infinite. Therefore, it was shown in [19, Theorem
1.1] that for all n≥ 1, there is at least one primitive prime divisor of fn

d,c(0) except
possibly for 23 values of n. Moreover, it was proved in [19, Theorem 1.3] that, unless
d is even and c ∈ (−2

1
d−1 ,−1), for all n > 2, fn

d,c(0) has at least one primitive prime
divisor.

These results give an insight into the lower bound of the number of primitive prime
divisors of fn

d,c(0). For the upper bound, we used some of the results in [19] to give
an elementary upper bound in Theorem 4.23. Although the bound is an elementary
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bound, it raises the question if a uniform bound that does not depend on the value
of c might exist or not. However, we show that the answer is negative. This is due
to the following result, which can be found as Corollary 5.10 in Chapter 5.

Theorem 1.1. Let d be a positive integer and U = {(ni, ti)}mi=1 be a finite set of
pairs of positive integers. Then there exists an integer c such that fni

d,c(0) has at
least ti primitive prime divisors for each 1≤ i≤m.

This implies that fixing the degree d≥ 2 and the iteration n≥ 1, there is a polynomial
of the form fd,c(x) for some c ∈ Q such that fn

d,c(0) has arbitrarily many primitive
prime divisors. This means that the upper bound on the count of primitive prime
divisors must depend on the value of c. Corollary 5.10 along with [17, Theorem
3.3] also give rise to Corollary 5.12 which gives a method to construct polynomials
fd,c(x) ∈ Z[x] such that the Galois group of the splitting field of fn

d,c(x) is maximal.

Another direction of studies has been conducted to calculate the density of primes
appearing as primitive prime divisors in an orbit. R. W. K. Odoni, in [23, Theorem
2], proved that for the polynomial f(x) = x2−x+1 ∈Q[x], and denoting the set of
primes appearing as primitive prime divisors for fn(a0) for some n≥ 0 and a0 ∈Q
by P (f,a0), the density of the set P (f,2) in the set of all primes is 0. Furthermore,
in [23, Section 8], it was observed that changing a0 to any other value such that
{0,1}∩O(a0) = ∅, yields the same result.

Later, these results were generalized by R. Jones in [17]. He proved that for
some families of polynomials, including f(x) = x2− kx+ k for k ∈ Z and x2 + k

for k ∈ Z\{−1}, the density of primes in P (f,a0) for any a0 ∈ Z is zero, see [17,
Theorem 1.2]. Moreover, denoting the set of primes dividing some elements in the
set {g ◦fn(a0)}n≥0 by P (g,f,a0), in [17, Theorem 1.1], it was proven, under certain
assumptions on f,g ∈ Z[x], that for any a0 ∈ Z, the density of P (g,f,a0) is 0.

In [13], the latter results were generalized, under certain condition on the field K

and the polynomial fd,c(x) ∈ K[x]. More precisely, the density of primitive prime
divisors in the orbit of any a0 ∈K under the iterates of fd,c(x) ∈K[x] was proved
to be zero, see [13, Theorem 1].

Inspired by these studies, we investigate the density of the set P of primes that can
appear as primitive prime divisors for fn

d,c(0) for some c ∈ Q. We also note that
in [17, Theorem 3.3], the value of νp(fn

d,c(0)) was crucial for studying the structure
of Galois groups attached to the splitting fields of the iterations of fd,c(x). This
motivates studying the density of the set PT of primes that can appear with certain
powers T as primitive divisors of fn

d,c(0) for some c∈Q. In fact, the difference P \PT

for any T is finite, according to Corollary 4.9. For the case d= 2, conditional results
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on the densities of P and PT are given in Theorem 5.3. In general, we have a partial
answer that gives rise to the following theorem that can be found as Theorem 5.7
in Chapter 5.

Theorem 1.2. For all d ≥ 2 and n ≥ 1, there are infinitely many primes p such
that, there is c ∈Q such that p is a primitive prime divisor of fn

d,c(0).

To prepare for the proofs of the mentioned results, in Chapter 2 we state the main
definitions and concepts about arithmetic dynamical systems. We also introduce
some tools to help us in their study. After that, we introduce the notation of
primitive prime divisors in integer sequences with definitions and some previous
results for different integer sequences. We then talk about some related studies on
those divisors in dynamical systems. Lastly, we talk briefly about post-critically
finite polynomials in order to later investigate them and link them to our work.

In Chapter 3, we consider dynamical systems over a non-archimedean local field K

with a ring of integers R and discrete valuation ν. We also denote the residue field of
R by k with the reduction of a point r ∈R denoted by r̃, and similarly the reduction
of a polynomial fd,c(x) ∈ R[x] denoted by f̃d,c(x). With these notations, we study
the relation between the orbit of a point r ∈ R under the iterations of fd,c(x) and
the corresponding orbit of r̃ ∈ k under the iterations of f̃d,c(x). For the case that
r̃ is strictly preperiodic for f̃d,c(x), we relate the orbit type of r and r̃, and for the
case where r = 0 and 0 is periodic for f̃d,c(x), we obtain similar relations.

In Chapter 4, we work over a number field K with a ring of integers R and a prime
ideal p. The localization at p of K and R are denoted by Kp and Rp with the residue
field kp. The reduction of a point r ∈ Rp and a polynomial fd,c ∈ Rp[x] in kp are
denoted by r̃ and f̃d,c. Fixing t≥ 1, we show that, except for finitely many primes,
if a prime p can appear as a primitive prime divisor for fn

d,c(0) for some c ∈Q, then
p can appear as a primitive prime divisor for fn

d,c(0) with νp(fn
d,c′(0)) = t for some

c′ ∈Q.

We then use the tools of Chapter 4 to obtain a conditional one-to-one correspondence
between the polynomials of the form fd,c(x) in Zp[x] with periodic critical orbit, and
the polynomials of the form fd,c(x) in Fp[x] with periodic critical orbit. Lastly, we
move to the field Q and use the results from [19] to give an elementary upper bound
on the count of primitive prime divisors of fn

d,c(0).

In Chapter 5, we investigate the densities of the sets P and PT . We first simplify
the problem of finding these densities in the first section by replacing these sets with
sets of primes p such that a certain polynomial has a root in Fp. After that, we
use the previous results developed in Chapter 4 to give a conditional result on the
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aforementioned density, with a full description of that density, for d= 2 in Theorem
5.3. For the general case, we also give an unconditional partial answer in Lemma 5.6,
that the density is never 0, which leads to Theorem 5.7 talking about the existence of
infinitely many primes that can appear as primitive prime divisors of fn

d,c(0) for some
c ∈ Q. This leads to Theorem 5.8, which briefly describes a constructive method
to choose c such that certain powers of arbitrarily many primes appear in certain
iterations, and Corollary 5.10 implying that there is no uniform bound on the count
of primitive prime divisors of fn

d,c(0) that does not depend on c. We conclude by
merging the result from Corollary 5.10 with [17, Theorem 3.3] to find c such that
fn

d,c(x) has the Galois group of maximal order, which is 22n−1.

We would like to remark that all the computations in this thesis are done using
Mathematica [15] and MAGMA [5].
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Chapter 2

Preliminaries

In this chapter, we work to lay the ground for our work. We give a brief about
dynamical systems over different fields and rings along with important results from
the literature that will help explain the direction of our work and give insights into
our setup. We also introduce the notion of primitive prime divisors with a small
survey of earlier results relating to different integer sequences. After that, we show
how this notion relates to dynamical systems with some known results. We also
discuss post-critically finite polynomials in brief to later introduce a connection
between those, and primitive prime divisors in critical orbits.

2.1 Dynamical systems

We start by defining a dynamical system. The following definitions can be found in
[24, p. 1] with change of some notations for the purpose of unifying the notations
in our work.

Definition 2.1. [24, p. 1] A dynamical system is a set S together with a self map
f : S→ S that allows iterations. The nth-iterate of f is

fn = f ◦f ◦ · · · ◦f︸ ︷︷ ︸
n times

.

By convention, f0 is the identity map, i.e., f0(x) = x.
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Definition 2.2. [24, p. 1] For a given point x0 ∈ S, the (forward) orbit of x0 under
the map f is the set

Of (x0) =O(x0) = {fn(x0) : n≥ 0}.

Definition 2.3. [24, p. 1] The point x0 ∈ S is called a periodic point under f ,
if there exists an integer n > 0 such that fn(x0) = x0. The orbit of x0 is called a
periodic orbit.

An integer n such that fn(x0) = x0 is called a period of x0. The smallest such integer
n is called the exact period of x0. We also say that the point x0 has period type (0,n).

Definition 2.4. [24, p. 1] The point x0 ∈ S is called a preperiodic point under f ,
if there exists an integer m≥ 0 such that fm(x0) is periodic, i.e., x0 is preperiodic
if Of (x0) is finite. The orbit of x0 is called a preperiodic orbit. If m ̸= 0, then the
point x0 is called a strictly preperiodic point.

The least such integer m is the tail length of the orbit, whereas the exact period of
fm(x0) is the eventual period. If the orbit of x0 has a tail length m and an eventual
period n, then we say that s has a period type (m,n).

Definition 2.5. [24, p. 1] The sets of periodic and preperiodic points of f in S are
denoted by

Per(f,S) = {x0 ∈ S : fn(x0) = x0 for some n≥ 1}

PrePer(f,S) = {x0 ∈ S : fn+m(x0) = fm(x0) for some n≥ 1,m > 0}

= {x0 ∈ S :Of (x0) is finite}.

We write Per(f) and PrePer(f) when the set S is fixed.

From now on, following the notations of [24], we identify the set S as a local field
K, with a normalized discrete valuation ν, an algebraic closure K, and a ring of
integers R. The maximal ideal of R is denoted p and the residue field k :=R/p.

Working inside a field allows us to use the following definition, which will be useful
in many calculations.

Definition 2.6. [24, p. 19] Let x0 ∈K be a periodic point of exact period n for f .
Then the multiplier f at x0 is defined by

λx0(f) := (fn)′(x0)

6



We note that this means

λx0(f) :=
∏

0≤i≤n−1
f ′(f i(x0))

We denote the reduction of f(x) modulo the maximal ideal p by f̃ . We write a
rational function f(x) = F (x)

G(x) with F (x),G(x) ∈R[x]. We also take the lowest form
such that gcd(F,G) = 1 in K[x], and at least one of the coefficients of F (x) or G(x)
is a unit in R, that is, it has a valuation equal to 0.

We say that a rational map written as above has good reduction modulo p if
gcd(F̃ , G̃) = 1 in k[x].

Theorem 2.7. [24, Theorem 2.21] Let f :K→K be a rational function with degree
d≥ 2 defined over a local field K with a non-archimedean absolute value |.|ν . Assume
that f has good reduction, let P ∈K be a periodic point of f . Define the following
quantities:

n The exact period of P for the map f.
m The exact period of P̃ for the map f̃ .
s The order of λ

f̃
(P̃ ) in k∗. (If λ

f̃
(P̃ ) is not a unit, then s=∞)

p The characteristic of k.

Then n has one of the following forms:

n=m, n=ms, n=mspe

For our work, we will be especially interested in the polynomial maps of the form
fd,c(x) = xd + c. We also note that for this family of polynomials, there is only
one critical point, i.e., a point x0 such that f ′

d,c(x0) = 0, that is, the point x0 = 0.
Throughout this thesis, we will give special attention to the orbit of 0 under fd,c(x).

For the family of polynomials fd,c(x), we can see that

λx0(fd,c) := dn
∏

0≤i≤n−1
(f i

d,c(x0))d−1

If x0 = 0, then f0
d,c(0) = 0 and so, λ0(fd,c) = 0.

2.2 Dynatomic polynomials

7



While searching for periodic points of f(x) ∈K(x) of period n, we note that these
are the zeros of the polynomial fn(x)− x. However, if we want to only look for
points with exact period n, we need to exclude the points of exact period dividing
n.

The dynatomic polynomials are defined as follows [24, Section 4.1]

ϕn(x) :=
∏
t|n

(f t(x)−x)µ( n
t ).

Where µ is the Möbius function defined by µ(1) = 1 and

µ(pe1
1 . . .per

r ) =

(−1)r if e1 = · · ·= er = 1

0 otherwise

We note that the roots of the dynatomic polynomials are periodic points of period n,
but not necessarily exact period n. For that, we denote the roots of the dynatomic
polynomials to be points of formal period n.

Although from the definition of the polynomial, it might not be clear that it is
actually a polynomial. However, we refer to the following theorem:

Theorem 2.8. [24, Theorem 4.5] Let f(x) ∈K(x) be a rational function of degree
d≥ 2. For each P ∈K, let

aP (n) := OrdP (fn(x)−x) a∗
P (n) := OrdP (ϕn(x))

Then

(a) ϕn(x) ∈K[x], or equivalently,

a∗
P (n)≥ 0 for all n≥ 1 and P ∈K.

(b) Let P be a point with exact period m and multiplier λ(P ) = (fm)′(P ). Then
P has a formal period n (i.e., a∗

P (n) > 0) if and only if one of the following
happens:

(i) n=m.

(ii) n=ms and λ(P ) is a primitive sth root of unity.

8



(iii) n = mspe, λ(P ) is a primitive sth root of unity, K has characteristic p,
and e≥ 1

Part (a) of the previous theorem tells us that the dynatomic polynomial is, in fact, a
polynomial. The second part shows the connection between points of formal period
n and exact period m. In fact, if λ(P ) is not a root of unity, then P has a formal
period n if and only if P has an exact period n.

For the special family fd,c(x) = xd + c, we give a special notation for ϕn to be ϕd,n.
Also, since we have just one coefficient, we can take this coefficient into account of
the dynatomic polynomial in order to study the family of polynomials fd,c(x) for a
fixed d≥ 2. So we work with

ϕd,n(x,c) :=
∏
t|n

(f t
d,c(x)−x)µ( n

t )

Since we are especially interested in the point x0 = 0, we take the polynomial eval-
uated at x= 0 to be

Gd,n(c) = ϕd,n(0, c) :=
∏
t|n

(f t
d,c(0))µ( n

t )

We note that by the Möbius inversion, we get that

fn
d,c(0) =

∏
t|n
Gd,t(c).

Remark 2.9. As we saw in the previous section, if 0 is periodic, then λ0(fd,c) = 0.
This means that λ is not a root of unity. This implies that 0 can have formal period
n if and only if 0 has exact period n.

The polynomial Gd,n(c) is called the Gleason polynomial. However, the definition
of the Gleason polynomial is not entirely consistent in the literature. For example,
some works define this polynomial similarly but starting with dynamical systems
attached to polynomials of the form axd + 1 [6] instead of xd + c [2]. We note
that even the irreducibility of these polynomials has not been proven yet. In [7,
Conjecture 1.4], it has been conjectured that for d = 2, G2,n(c) is irreducible over
Q[c] for all n ≥ 1. Although many studies have been carried out in this direction
even before formalizing the conjecture in the mentioned article, this appears to be
a long-standing question with no proofs yet, even for the simplest case with d= 2.
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2.3 Primitive Prime Divisors

We now move on to another concept, which will be linked to the dynamical sys-
tems in our work. We start in the first subsection by definitions and previous work
in different setups to get an understanding of this concept. After that, we con-
sider results from literature on the primitive prime divisors of orbits of polynomial
dynamical systems.

2.3.1 Definition and Previous Results

We start by defining a primitive prime divisor in an integer sequence as follows:

Definition 2.10. For an integer sequence {a1,a2, . . .}, a prime p is said to be a
primitive prime divisor of an, if

a. p|an, and

b. p ∤ ak for all 1≤ k < n

First, we introduce an elementary example to illustrate what this definition means.

Example 2.11. Let {an : n≥ 1} be a sequence in which

a1 = 1, a2 = 2, a3 = 3, a4 = 6.

2 is a primitive prime divisor for a2,

3 is a primitive prime divisor for a3.

However, a4 does not have any primitive prime divisors.

With this example comes the definition of the Zsigmondy set.

Definition 2.12. For an integer sequence {a1,a2, . . .}, the set

Z({ai}) := {n : an has no primitive prime divisors}

is called the Zsigmondy set attached to the sequence {ai}.

Example 2.13. For the sequence in Example 2.11, one has 4 ∈ Z({n}).

10



Primitive prime divisors have been studied extensively in literature. Two of the
sequences that have been heavily investigated are the Lucas and Lehmer numbers
defined as follows:

Definition 2.14. [4] A Lucas pair is a pair (α,β) of algebraic integers such that
α+β and αβ are non-zero coprime rational integers with α

β not a root of unity. For
a Lucas pair, one defines the corresponding Lucas numbers by

un = un(α,β) = αn−βn

α−β
, n= 0,1, . . .

Definition 2.15. [4] A Lehmer pair is a pair (α,β) of algebraic integers such
that, (α+β)2 and αβ are non-zero coprime rational integers with α

β not a root of
unity. For a Lehmer pair, one defines the corresponding Lehmer numbers by

ũn = ũn(α,β) =


αn−βn

α−β If n is odd
αn−βn

α2−β2 If n is even

A famous example of these numbers is the famous Fibonnaci sequence.

Example 2.16. Let α= 1+
√

5
2 and β = 1−

√
5

2 , then α+β = 1 ∈ Z and αβ =−1 ∈ Z
with gcd(α+β,αβ) = 1.

So, (α,β) is a Lucas pair with a corresponding Lucas numbers

un =

(
1+

√
5

2

)n
−
(

1−
√

5
2

)n

√
5

which is the famous Fibonnaci sequence.

Remark 2.17. If we choose for example, α =
√

5+1
2 and β =

√
5−1
2 , then α+β =

√
5 ̸∈ Z. In this case, (α,β) is not a Lucas pair. However, one can check that (α,β)

is a Lehmer pair.

The primitive prime divisors of Lucas and Lehmer numbers have been intensively
studied in literature.

Theorem 2.18. [8] For α,β ∈ R, un(α,β) has at least one primitive prime divisor
for n > 12.

Theorem 2.19. [25] For α2,β2 ∈ R, ũn(α,β) has at least one primitive prime di-
visor for n > 30.

Theorem 2.20. [4] For α,β ∈C, un(α,β) and ũn(α,β) have at least one primitive
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prime divisor for n > 30.

We will now shed some light on studies related to dynamical systems.

2.3.2 Primitive Prime Divisors in Orbits of Dynamical Systems

Given a dynamical system, one can ask about the primitive prime divisors in an
orbit of a point.

Given a map f(x) ∈K(x) and a point a0 ∈K, the orbit of a0 can be thought of as
the sequence {an : n≥ 0}, where an = fn(a0). Note that, for the search of primitive
divisors, we have to ignore the zero elements of the sequence if they existed. From
now on, the Zsigmondy set of Of (a0) is denoted by Z(f,a0).

To study primitive prime divisors, the sequence should be infinite. For the family
of polynomials that are of special interest to us, fd,c(x) = xd +c, there is one critical
point (x0 = 0). The orbit of this critical point has been investigated in many studies.
For example, taking c ∈ Z, the following was proven in [10].

Lemma 2.21. [10, Lemma 8] Let fd,c(x) = xd +c∈Z[x] be a polynomial with d≥ 2.
Then 0 is a preperiodic point if and only if exactly one of the following cases is true:

(1) c= 0.

(2) c=−1 and d is even.

(3) c=−2 and d= 2.

This means, that for the search of primitive prime divisors in the critical orbit of
fd,c(x) ∈ Z[x], these three cases can be excluded. The following theorem can be
found in [10, Theorem 3].

Theorem 2.22. Let fd,c(x) = xd + c ∈ Z[x] be a polynomial with d≥ 2. If 0 is not
a preperioidc point (i.e. is a wandering point), then

(1) If c=±1, then fn
d,c(0) has a primitive prime divisor for all n≥ 2.

(2) If c ̸=±1, then fn
d,c(0) has a primitive prime divisor for all n≥ 1.

This study was focused on fd,c when c∈Z. When c∈Q, similar results were obtained
in [19]. For c= a

b ∈Q with gcd(a,b) = 1, it can be easily shown that fn
d,c(0) = an

bdn−1 ,
for some an ∈Z with gcd(an, b) = 1. Consequently, one can see that if 0 is preperiodic
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for fd,c(x), then b=±1, i.e., c∈Z. This means that Lemma 2.21 lists all polynomials
fd,c(x) with a preperiodic orbit of 0.

For the primitive prime divisors of the critical orbit of these functions, we can look at
the sequence of integers {an}, where fn

d,c(0) = an

bdn−1 . For this sequence, as mentioned
before, the Zsigmondy set is denoted by Z(fd,c,0). In [19], this set was studied and
the following result was proved.

Theorem 2.23. [19, Theorem 1.1] Let fd,c(x) = xd +c∈Q[x] be such that the critical
orbit is infinite. Then #Z(fd,c,0)≤ 23.

We can look at the previous theorem from a different angle. We can say that in
the critical orbit of fd,c(x), excluding 23 elements, the lower bound on the count of
primitive prime divisors in an iteration is 1. This gives rise to our first question:

Question 2.24. Let fd,c(x) = xd +c such that the critical orbit is infinite. Let n≥ 2
be an integer, Is there an upper bound on the count of primitive prime divisors of
fn

d,c(0)?

We would like to make a few remarks about the results of [19]. The integer 1
lies in Z(fd,c,0) if and only if c = ±1. This means that a prime divisor p was
considered primitive for fd,c(0) when either p|a or p|b. However, in [13], a prime
ideal q was considered to be a primitive prime divisor for fn

d,c(0) if νq(fn
d,c(0)) > 0.

Since the denominator in this orbit is growing in power without additional divisors,
this inconsistency in the definition is only affecting n= 1.

The bound 23 in Theorem 2.23 is not affected whether the prime divisors of b are
considered to be primitive divisors or not. This is due to the following result, where
M(c) denotes an integer such that, for all n >M(c), n ̸∈ Z(fd,c,0).

Theorem 2.25. [19, Theorem 1.3] Let fd,c(x) = xd + c with d ≥ 2 and c = a
b ∈ Q.

If d is odd, or d is even, and c ̸∈ (−2
1

d−1 ,−1), then we can take M(c) = 2.

This means that the maximal bound 23 can only be attained, if possible, when
c ∈ (−2

1
d−1 ,−1). For this range, one must have |a| > |b|. This means that |a| ≠ 1.

So, there is at least one prime p such that p|a.

Another question that was studied in literature is about the density of primes that
appear in the orbit. One of these studies is introduced in [13]. First, we summarize
some definitions from that study. Denoting a number field K with algebraic closure
K, and a ring of integers R, a prime ideal q ⊂ R is said to divide Ofd,c

(a0) where
a0, c ∈K, if there is n ≥ 0 such that fn

d,c(a0) ̸= 0 and νq(fn
d,c(a0)) > 0. The author

defines the set Pfd,c
(a0) := {q⊂ R : q divides Ofd,c

(a0)}. With this set, the density
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of the prime divisors of the orbit is defined by

D(Pfd,c
(a0)) := limsup

x→∞

#{q ∈ Pfd,c
(a0) :N(q)≤ x}

#{q ⊂R :N(q)≤ x}

where N(q) denotes the norm of the ideal q. With these notations and with MK

denoting the set of places of K, the following was proved:

Theorem 2.26. [13, Theorem 1] Let K be a global field that contains a primitive
dth root of unity, and let fd,c(x) = xd + c. Suppose c ∈K, Ofd,c

(0) is infinite, and
one of the following holds:

(1) There exists a non-archimedean place ν ∈ MK such that |c|ν < 1, and the
residue characteristic of ν is prime to d; or

(2) d is prime and for j ≥ 0, f j
d,c(z) = g1(z) . . .gt(z) with each gi irreducible and

none of ±gi(fd,c(0)),gi(f2
d,c(0)),gi(f3

d,c(0)), . . . is a dth power in K.

Then D(Pfd,c
(a0)) = 0 for any a0 ∈K.

To elaborate, if we study fd,c(x)∈Q[x], we can take K =Q(ζ) where ζ is a primitive
dth root of unity and c ∈Q\{0,−1,−2}. Condition (1) in this case translates to: if
there is a prime p such that νp(c) > 0 and p ∤ d. In this case, D(Pfd,c

(a0)) = 0 for
any a0 ∈Q (in general, with a0 ∈Q(ζ)).

Fixing d≥ 2, under some technical conditions, the density of primitive prime divisors
in an orbit Ofd,c

(a0) is 0. This raises our second question.

Question 2.27. Fixing d≥ 2, n≥ 1, a0 ∈K. What is the density of the primes in
the set {p : p is a primitive prime divisor of fn

d,c(a0) for some c ∈K}?

Another study related to primitive prime divisors in orbits was done in [17]. Denot-
ing Hn(f,g) := Gal(Kn/Kn−1), where Kn is the splitting field of g ◦fn. Hn(f,g) is
said to be maximal if Hn(f,g)∼= (Z/2Z)deg(g◦fn−1). The following was proved:

Theorem 2.28. [17, Theorem 3.3] Let f,g ∈R[x] with f(x) = ax2 + bx+ c, and let
γ be the critical point of f(x). Suppose that g ◦ fn is irreducible for all n ≥ 1. If
n ≥ 2 and there is a prime p ⊂ R such that νp(g(fn(γ))) is odd, νp(g(fm(γ))) = 0
for all 1≤m< n and νp(2a) = 0, then Hn(f,g) is maximal.

In the above theorem, setting g as the identity map and f(x) = f2,c(x) = x2 +c where
−c is not a square in Q. It follows that fn

2,c(x) is irreducible for all n ≥ 1, see [9,
Corollary 5]. In this case, Theorem 2.28 asserts that finding an odd primitive prime
divisor p for fn

2,c(0) for which νp(fn
2,c(0)) is odd implies that Hn(f2,c,g)∼= (Z/2Z)2n−1 .

In particular, there is a link between the forward orbits of polynomials and the
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behaviour of the Galois group of the iterates.

The condition on the power of the primitive divisor gives rise to the following ques-
tion.

Question 2.29. Fixing d≥ 2, n≥ 1, a0 ∈K. What is the density of primes in the
set

{p : p is a primitive prime divisor of fn
d,c(a0), and νp(fn

d,c(a0)) is odd for some c∈K}?

Fixing an integer t≥ 1, How about the following set

{p : p is a primitive prime divisor of fn
d,c(a0), and νp(fn

d,c(a0)) = t for some c∈K}?

2.4 Post-Critically Finite Polynomials

In this section, we discuss Post-Critically Finite (PCF) polynomials. Previous results
about those polynomials will be discussed in general settings, as well as in p-adic
fields, which will be of great interest to us.

Definition 2.30. [1, Definition 1.1] A polynomial f is post-critically finite (PCF)
if the orbit of each critical point is finite.

PCF polynomials are of interest to us in finite and p-adic fields. That is because of
the definition of primitive prime divisors, we can see that for fd,c(x), p is a primitive
prime divisor for fn

d,c(0) is equivalent to saying that 0 is periodic with exact period
n for the reduction of the polynomial fd,c(x) in Fp.

Some studies have shed light on PCF polynomials. In [20], there is a complete
classification of all PCF quadratic polynomials defined over Q. Similarly, in [1],
there is a similar classification of PCF cubic polynomials. We say that two maps
f,g are conjugates if there exists a linear map h(x) = ax+ b ∈ K[x] such that,
g = h ◦ f ◦h−1. With this, the conjugacy class of f ∈ K(x) is the set of all maps
g ∈K(x) such that, g,f are conjugates. The authors proved in [20, Theorem 1] that
there are exactly 12 conjugacy classes of PCF quadratic polynomials defined over
Q. Similarly, in [1, section 1], it was shown that there are 15 conjugacy classes of
PCF cubic polynomials defined over Q.
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A polynomial with one critical point is called a unicritical polynomial. For the
unicritical polynomials with d = 2, f2,c(x) = x2 + c, the periodic and preperiodic
critical orbits were studied separately in [21]. For the preperiodic case,

Theorem 2.31. [21, Theorem 1.1] Let p ≥ 3 and consider the critical orbit for
f2,c(x) = x2 +c, c ∈ Zp. If for the reduction of f2,c(x) in Fp[x]

(
f̃2,c(x)

)
, 0 is strictly

pre-periodic with orbit type (m,n), with m> 0, then for f2,c(x) = x2 +c∈Zp[x] either
0 has orbit type (m,n) over Zp or there exists some k ≥ 1 and r|(p−1) (or possibly
r = p if p= 3) in Z such that

(1) 0 has orbit type (m,n) (mod pi) for all i≤ k, and

(2) 0 has orbit type (m,rn) (mod pj) for all j > k.

Otherwise, 0 has an infinite orbit in Zp, with orbit type (m,ni) (mod pi) for all i≥ 1,
where ni is the length of the cycle in which 0 lands when its orbit is calculated (mod
pi).

For the periodic case:

Proposition 2.32. [21, Proposition 2.4] Let p≥ 3 and consider the critical orbit of
f2,c(x) = x2 +c, c∈Zp. If for the reduction of f2,c(x) in Fp[x]

(
f̃2,c(x)

)
, 0 is periodic

with exact period n, then for f2,c(x) = x2 + c ∈ Zp[x] either 0 is periodic with exact
period n or 0 has an infinite orbit in Zp with orbit type (mi,n) (mod pi) for all i≥ 1.

In the next chapter, we will study the results in the thesis [21] and give a general-
ization of the results mentioned.
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Chapter 3

PCF Unicritical Polynomials over Local Fields

In this chapter, fd,c(x) = xd + c ∈ R[x] for d ≥ 2 with R being the ring of integers
of a non-archimedean local field K with discrete valuation ν corresponding to the
unique maximal ideal p. The algebraic closure of K is denoted by K, and the residue
field of R with respect to the unique maximal ideal p is denoted by k = R/p with
characteristic p. We denote the reduction of a point r ∈ R modulo p by r̃ and the
reduction modulo pt by r+pt. Similarly, the reduction of a polynomial f(x) ∈R[x]
modulo p[x] is denoted by f̃(x) and the reduction modulo pt[x] by f(x)+pt[x]. The
units of R are denoted by R∗ with k∗ = R∗/p, where a unit in R is a point r such
that ν(r) = 0.

With this notation, we study the connection between the orbit structure of a point
r ∈R under the iterations of fd,c(x)∈R[x], and the orbit structure of r̃ ∈ k under the
iterations of f̃d,c(x)∈ k[x]. Since k is a finite field, the orbit of r̃ must be preperiodic.
So, given the orbit type of r̃, we investigate the orbit structure of r. We divide the
study into two sections. First, we study the case where the orbit of r̃ is strictly
preperiodic, i.e, the tail length of the orbit of r̃ under the iterations of f̃d,c is not 0.
After that, we limit our scope to the critical orbit, and we continue by investigating
the case that 0̃ is periodic under f̃d,c(x).

3.1 Unicritical Polynomials with a strictly preperiodic orbit

We fix d≥ 2, c ∈R, and r ∈R. Assuming that the orbit of r̃ under f̃d,c(x) is strictly
preperiodic in k, we investigate the orbit of r under fd,c(x). In particular, we are
interested in whether the orbit is infinite or finite. In the case where the orbit of r
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under fd,c is finite, we show that there are finitely many possibilities for the orbit
type of r.

First, we introduce the following lemma that will be used throughout the rest of
this section.

Lemma 3.1. Let fd,c(x) = xd +c ∈R[x] where ν (d) = 0. Let r ∈R be such that r̃ is
a strictly preperiodic point of f̃d,c(x) in the residue field k. Then, if (mt,nt) is the
period type of r+pt in R/(pt) for fd,c(x)+pt[x], then fnt

d,c(x)+pt+1[x] behaves as a
linear function around fmt

d,c (r)+pt+1 in R/pt+1, i.e, for y ∈ pt

(
fnt

d,c

(
fmt

d,c (r)+y
)
−fmt

d,c (r)
)

+pt+1 = λy+ b+pt+1

where b ∈ pt and λ= ∂f
nt
d,c(x)
∂x |x=f

mt
d,c (r).

Proof. Let (mt,nt) be the period type of r+pt in R/(pt). Let l = fmt
d,c (r) ∈R.

Define g : pt/pt+1 → R/(pt+1) where g(y) = (fnt
d,c(l + y) − l) + pt+1. Write

fnt
d,c(x) =

dn∑
i=0
ai ·xi With adn = 1

Note that l is a fixed point for fnt
d,c(x)+pt[x] in R/(pt), i.e,

dn∑
i=0
ai · li = l+ b for some

b ∈ pt. Let λ= ∂f
nt
d,c(x)
∂x |x=l =

dn∑
i=1
ai · i · li−1. So working in R/(pt+1) we get that,

(fnt
d,c(l+y)− l)+pt+1 =

dn∑
i=0
ai · (l+y)i− l+pt+1

Since k ≥ 1 then, y2 ∈ p2k ⊆ pt+1. This means that (l+ y)i +pt+1 = li + i · li−1 · y+
pt+1. Hence,

(fnt
d,c(l+y)− l)+pt+1 =

dn∑
i=0
ai · (li + i · li−1 ·y)− l+pt+1

= (
dn∑
i=0
ai · li− l)+

dn∑
i=1
ai · (i · li−1 ·y)+pt+1

= b+y ·
dn∑
i=1
ai · i · li−1 +pt+1

So,
g(y) = (fnt

d,c(l+y)− l)+pt+1 = b+λ ·y+pt+1
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Remark 3.2. With the notations of the previous lemma, if l = fm
d,c(r), f

nt
d,c(l) = l+ b

where b ∈ pt, and g : pt/pt+1→R/(pt+1) where g(y) = (fnt
d,c(l+y)− l)+pt+1, then

Im(g)⊆ pt/pt+1. This means that the iterates of g(y) are well defined.

Proof. As shown in the previous lemma, g(y) = λy+ b+pt+1. Since y,b ∈ pk, then
λy+ b ∈ pk.

Using the previous lemma, we can now show that, under certain conditions, if r̃ is
strictly preperiodic for f̃d,c(x) in k with tail length m > 0, then r+ pt is strictly
preperiodic for fd,c(x)+pt[x] in R/pt with tail length m for all integers t≥ 1.

Lemma 3.3. Let fd,c(x) = xd +c∈R[x] Where ν (d) = 0. Let r ∈R be such that r̃ is
a strictly preperiodic point of f̃d,c(x) in the residue field k with period type (m,n). If
ν(λ) = 0 where λ= ∂fn

d,c(x)
∂x |x=fm

d,c(r) is the multiplier of fm
d,c(r), then r+pt is strictly

preperiodic with period type (m,nt) for fd,c(x)+pt[x] for all t≥ 1 and some nt ≥ 1.

Proof. For t= 1, the period type is (m,n) by the hypothesis of the lemma.

Let r+pt be a strictly preperiodic point in R/pt with period type (m,nt). It is clear
that since R/pt+1 is a finite field, r will remain preperiodic. We want to show that
the tail length is mt+1 =m.

Since mt+1 ≥m, it suffices to show that fm
d,c(r)+pt+1 is periodic in R/pt+1.

In same notations as last lemma, we can write

l = fm
d,c(r), f

nt
d,c(l) = l+ b where b ∈ pt, g(y) = (fnt

d,c(l+y)− l)+pt+1 = λy+ b+pt+1.

Looking at the iterates of 0 in g, we get {0, b+pt+1, b(1 +λ) +pt+1, b(1 +λ+λ2) +
pt+1, . . .}.

If λ = 1 then (1+λ+ . . .︸ ︷︷ ︸
p−times

) = p where p is the characteristic of k. This means that

(1+λ+ . . .︸ ︷︷ ︸
p−times

) ∈ p and since b ∈ pt, then gp(0) = 0+pt+1

If λ ∈ R∗ \ {1}, then there is a positive integer s such that λs + p = 1 + p. So,
gs−1(0) = b(1+λ+ · · ·+λs−1)+pt+1 = b · 1−λs

1−λ +pt+1 = 0+pt+1.

Claim: gα(0) = (fα·nt+m
d,c (r)−fm

d,c(r))+pt+1 for any α≥ 1.
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The proof of the claim is by induction. For α= 1, it’s trivial. Assume that it is true
up to α = α0.

gα0+1(0) = g(gα0(0))

= g((fα0·nt+m
d,c (r)−fm

d,c(r))+pt+1)

= (fnt
d,c[f

m
d,c(r)+{fα0·nt+m

d,c (r)−fm
d,c(r)}]−fm

d,c(r))+pt+1

= (fnt
d,c(f

α0·nt+m
d,c (r))−fm

d,c(r))+pt+1

= (f (α0+1)·nt+m
d,c (r)−fm

d,c(r))+pt+1.

So if α is the period of 0 under the iterates of g, then

(f (α)·nt+m
d,c (r)−fm

d,c(r))+pt+1 = pt+1.

Reordering the equality,

f
(α)·nt

d,c (fm(r))+pt+1 = fm
d,c(r)+pt+1.

Or in other words,

fm
d,c(r)+pt+1 is periodic for fd,c(x)+pt+1 in R/pt+1.

Corollary 3.4. Let fd,c(x) = xd + c ∈ R[x] where ν (d) = 0. If 0̃ is a strictly prepe-
riodic point of f̃d,c(x) in the residue field k with period type (m,n), then 0 + pt is
strictly preperiodic with period type (m,nt) for fd,c(x) + pt for all t ≥ 1 and some
nt ≥ 1.

Furthermore, for any r ∈R such that r̃ is a strictly preperiodic point of f̃d,c(x) in the
residue field k with period type (α,β), r+ pt is a strictly preperiodic of fd,c(x) + pt

with period type (α,βt) for all t≥ 1 and some nt ≥ 1.

This corollary is a direct consequence of the fact that λ = dnt
nt−1∏
i=0

(fm+i
d,c (r))d−1.

If ν(λ) ̸= 0 then either ν (d) > 0 contradicting the hypothesis of the statement or
ν
(
(fm+i

d,c (r))
)
> 0 for some 0 ≤ i ≤ nt− 1 which means (fm+i

d,c (r)) ∈ p. But in this

case, f̃d,c
m+i(r̃) = 0̃ is a periodic point for f̃d,c(x) again contradicting the hypothesis.

With the tail length not changing, we can now use [24, Theorem 2.21] to prove that
there are finitely many possibilities for the period type of the lifted point.

Theorem 3.5. Let fd,c(x) = xd +c ∈R[x], where ν (d) = 0. Let r ∈R be such that r̃
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is a strictly preperiodic point of f̃d,c(x) in the residue field k with period type (m,n)
and ν(λ) = 0 where λ= ∂fn

d,c(x)
∂x |x=fm

d,c(r) is the multiplier of fm
d,c(r), then r has infinite

orbit in R, or r has orbit type (m,l) where l= n, l= ns or l= nspe for s= Ordk∗(λ)
and 0≤ e ∈ Z

Proof. Let r̃ be preperiodic with period type (m,n) in k. As seen in Lemma 3.3,
r cannot be periodic in R. If r doesn’t have an infinite orbit, then it must be
preperiodic with tail length m.

If the period type of r in R is (m,l), then fm
d,c(r) is a periodic point with period l in

R and its reduction f̃d,c
m(r̃) is periodic with period n in k. By [24, Theorem 2.21],

we have l = n, l = ns, or l = nspe.

The previous result is for a non-archimedean local field K. Taking K = Qp, we
obtain the following corollary.

Corollary 3.6. Let fd,c(x) = xd + c ∈ Zp[x], where p be a prime such that p ∤ 6d. If
r̃ is strictly preperiodic for the reduced function f̃d,c(x) over the residue field Fp with

period type (m,n) and multiplier λ= ∂fn
d,c(x)
∂x

′
|x=fm(r) ∈Z∗

p, then either r has infinite
orbit in Zp or r has orbit type (m,l) where l = n or l = ns for s= Ordp(λ)|p−1.

Proof. In the case of K = Q and p ∤ 6, [24, Theorem 2.28] implies that l = nspe

cannot occur. This is because the ramification index for any prime in the rational
field is 1. Therefore,

pe−1 ≤ 2
p−1 < 1

Where the second inequality is due to p ∤ 6, that is, p > 3.

This corollary directly implies the period-type result mentioned in [21, Theorem 1.1]
about preperiodic orbits in the case d = 2 and r = 0 with the exception of p = 3.
The theorem by Mullen gives more information about the change of the eventual
period. Namely, in the case that the eventual period is of the form ns, there is an
integer α such that 0 +pt has the period type (m,n) for t < α and the period type
(m,ns) for t≥ α.

3.2 Unicritical Polynomials with a periodic critical orbit
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In this section, we only consider the critical orbit of fd,c(x). Starting with a unicrit-
ical polynomial with a periodic critical orbit in k and a lift of the polynomial in R,
we show that there are only two possibilities for the critical orbit in R.

To do this, we prove that for the tail length must be 0. This is done in two steps.
First, limiting the possibilities for the tail length. Then, we show that none of these
possibilities can occur.

Before that, we show in the following lemma that the eventual period must remain
n where n is the exact period of 0.

Lemma 3.7. Let fd,c(x) = xd +c ∈R[x], where ν (d) = 0. If 0̃ is periodic for f̃d,c(x)
in k with exact period n then 0 in R has infinite orbit or period type (m,n) for some
m ∈ Z≥0.

Proof. If 0 is not a wandering point, then for some m, fm
d,c(0) is periodic. We want

to show that the period of fm
d,c(0) is n. Assume fm

d,c(0) has exact period l Let k ≥ m
n .

Then, fkn
d,c(0) is also periodic with exact period l.

Since 0̃ is periodic in the residue field with period n, then the reduction f̃d,c
kn(0̃) in

k is 0̃ which has period n. By [24, Theorem 2.21], l = n, l = ns or l = nspe, where
s = Ordk∗(λ). But fkn

d,c(0)|∂f l(x))
∂x |x=fkn(0) = λ. So, the multiplier is λ ∈ p. This

means that s = Ordk∗(λ) =∞. i.e. l = n or l =∞ contradicting the assumption
that 0 is not a wandering point.

With the eventual period, we prove that the valuation of the difference between
f l+n

d,c −f l
d,c does not change within one cycle.

Lemma 3.8. Let fd,c(x) = xd + c ∈R[x], where ν (d) = 0.

If 0̃ is periodic for f̃d,c(x) in k with exact period n then for all m≥ 1 and 0< a≤ n,
we have

(1) ν
(
fmn+a

d,c (0)−f (m−1)n+a
d,c (0)

)
= ν

(
fmn+1

d,c (0)−f (m−1)n+1
d,c (0)

)
.

(2)
(
fmn

d,c (0)−f (m−1)n
d,c (0)

)
divides

(
fmn+1

d,c (0)−f (m−1)n+1
d,c (0)

)
.

Proof. The proof of (1) is by induction on a. For the case a= 1, it is the hypothesis.

Assuming that (1) is true for some a, 0 < a < n, we prove the statement for a+ 1.
Since in k, 0̃ is periodic with period n, then set β := (fmn+a

d,c (0)−f (m−1)n+a
d,c (0)) ∈ p,

i.e, fmn+a
d,c (0) = f

(m−1)n+a
d,c (0) + β. Let α ≥ 1 be an integer such that β ∈ pα and

β ̸∈ pα+1.
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Also, since n ∤ ((m−1)n+a) and 0̃ has exact period n in k then, f̃d,c
(m−1)n+a(0̃) ̸= 0̃,

i.e, f (m−1)n+a
d,c (0) ̸∈ p.

Now, looking at the difference

fmn+a+1
d,c (0)−f (m−1)n+a+1

d,c (0)+pα+1

=
[
fmn+a

d,c (0)
]d
−
[
f

(m−1)n+a
d,c (0)

]d

+pα+1

=
[
f

(m−1)n+a
d,c (0)

]d

+β ·d ·
[
f

(m−1)n+a
d,c (0)

]d−1
−
[
f

(m−1)n+a
d,c (0)

]d

+pα+1

= β ·d ·
[
f

(m−1)n+a
d,c (0)

]d−1
+pα+1,

where the second identity is due to the fact that
[
fmn+a

d,c (0)
]d

=[
(f (m−1)n+a

d,c (0)+β)
]d

, and that β2 ∈ pα+1.

Since df (m−1)n+a
d,c (0)d−1 ̸∈ p. And β ∈ pα but β ̸∈ pα+1 then,

fmn+a+1
d,c (0)−f (m−1)n+a+1

d,c (0) ∈ pα

but
fmn+a+1

d,c (0)−f (m−1)n+a+1
d,c (0) ̸∈ pα+1,

which implies that

ν
(
fmn+a+1

d,c (0)−f (m−1)n+a+1
d,c (0)

)
= ν(β) = ν

(
fmn+a

d,c (0)−f (m−1)n+a
d,c (0)

)
.

For the second part of the statement, we write f
(m−1)n
d,c (0) = t1 and(

fmn
d,c (0)−f (m−1)n

d,c (0)
)

= t2. So,

fmn+1
d,c (0)−f (m−1)n+1

d,c (0) =
[
f

(m+1)n
d,c (0))

]d

−
[
fmn

d,c (0)
]d

= (t1 + t2)d− td1

=
d∑

i=1

(
d

i

)
ti2t

d−i
1

= t2 ·
d∑

i=1

(
d

i

)
ti−1
2 td−i

1 .

Concluding the proof.
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Now, we show that if the orbit is strictly preperiodic, then the tail length must be
of the form mn+1 for some integer m≥ 1.

Corollary 3.9. Let fd,c(x) = xd + c ∈ R[x], where ν (d) = 0. If 0̃ is periodic for
f̃d,c(x) in k with exact period n then 0 in R has infinite orbit, periodic with period
n or preperiodic with period type (mn+1,n) for some integer m≥ 1.

This will be used to prove Theorem 3.10 by only showing that a tail length of the
form mn+1 is not possible.

Proof. Assume that 0 is strictly preperiodic with period type (mn+a,n) for some
m ∈ Z≥0 and a, 0 < a ≤ n. This means that f (m+1)n+a

d,c (0)−fmn+a
d,c (0) = 0, i.e.,

ν
(
f

(m+1)n+a
d,c (0)−fmn+a

d,c (0)
)

=∞. By Lemma 3.8 part (1), we have

ν
(
f

(m+1)n+1
d,c (0)−fmn+1

d,c (0)
)

=∞.

Hence, f (m+1)n+1
d,c (0)− fmn+1

d,c (0) = 0, implying that fmn+1
d,c (0) is periodic in R. If

a > 1, we get a contradiction since mn+ 1 <mn+a and fmn+1
d,c (0) is periodic. So,

a= 1.

It remains to assume m= 0, that is, assume that the period type of 0 is (1,n). This
means that fn+1

d,c (0) = fd,c(0) = c, i.e.,
(
fn

d,c(0)
)d

+ c = c. This implies fn
d,c(0) = 0,

which contradicts the assumption that 0 is strictly preperiodic. Therefore, m ≥
1.

The previous lemma allows us to limit the possibilities for the preperiodic tails that
we will investigate in order to prove the following theorem.

Theorem 3.10. Let fd,c(x) = xd + c ∈ R[x], where ν (d) = 0 and p > d where
char(k) = p. If 0̃ is periodic for f̃d,c(x) in k with exact period n then either 0 is
periodic in R with exact period n or it has an infinite orbit.

Proof. We want to show that the tail length mn+ 1 mentioned in previous lemma
is not possible. Now we assume that the tail length is mn+1.

Similar to the proof of Lemma 3.8, let fmn
d,c (0) = t1 with ν (t1) = α1. Now

f
(m+1)n
d,c (0)−fmn

d,c (0) = t2 with ν (t2) = α2.
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Then

ν
(
f

(m+1)n+1
d,c (0)−fmn+1

d,c (0)
)

= ν
(

(f (m+1)n
d,c (0))d−fmn

d,c (0)d
)

= ν
(
(t1 + t2)d− td1

)
= ν

 d∑
i=1

(
d

i

)
ti2t

d−i
1

 .
Since p > d, we have p ∤

(
d
i

)
for any 1 ≤ i ≤ d. This means that,

ν
((

d
i

)
ti2t

d−i
1
)

= iα2 +(d− i)α1. Assume α1 ̸= α2. If ν
((

d
i

)
ti2t

d−i
1
)

= ν
((

d
j

)
tj2t

d−j
1

)
then, iα2 +(d− i)α1 = jα2 +(d− j)α1 implying that i= j.

With the non-archimedean valuation, we get,

ν

 d∑
i=1

(
d

i

)
ti2t

d−i
1

 = min
1≤i≤d

(
ν

((
d

i

)
ti2t

d−i
1

))
= min

1≤i≤d
(iα2 +(d− i)α1)

̸= ∞.

So, f (m+1)n+1
d,c (0)− fmn+1

d,c (0) ̸= 0. So, for the tail length to be mn+ 1, we must
have that α1 = α2 =: α. We have that fn

d,c(fmn
d,c (0)) = f

(m+1)n
d,c (0). In other

words, fn(t1) = t1 + t2. Write fn
d,c(x) =

dn−1∑
i=0

ai · xdi with a0 = fn
d,c(0), so we get

fn
d,c(t1) = a0 +

dn−1∑
i=1

ai · tdi
1 , i.e,

t1 + t2−
dn−1∑
i=1

ai · tdi
1 = a0.

By the non-archimedean properties, we get that ν (a0) = ν
(
fn

d,c(0)
)
≥ α.

If ν
(
fn

d,c(0)
)

=∞, then 0 is periodic. Since the assumption is that mn+ 1 is the
tail length, then ν

(
fn

d,c(0)
)
̸=∞. Checking the following difference,

ν
(
fn+1

d,c (0)−fd,c(0)
)

= ν
(
fn

d,c(0)d
)

= d ·ν
(
fn

d,c(0)
)
≥ dα > α.

As seen in Lemma 3.8, ν
(
fmn+n

d,c (0)−fmn
d,c (0)

)
= ν

(
fmn+1

d,c (0)−f (m−1)n+1
d,c (0)

)
.

This means that ν
(
f2n

d,c(0)−fn
d,c(0)

)
= ν

(
fn+1

d,c (0)−fd,c(0)
)
> α.
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Also, as seen in the second part of Lemma 3.8, we have that

[fmn
d,c (0)−f (m−1)n

d,c (0)] divides [fmn+1
d,c (0)−f (m−1)n+1

d,c (0)],

i.e,
ν
(
fmn+1

d,c (0)−f (m−1)n+1
d,c (0)

)
≥ ν

(
fmn

d,c (0)−f (m−1)n
d,c (0)

)
.

This implies that

ν
(
f

(m+1)n
d,c (0)−fmn

d,c (0)
)
≥ ν

(
fmn

d,c (0)−f (m−1)n
d,c (0)

)
.

By induction, it follows that for all m≥ 1,

ν
(
f

(m+1)n
d,c (0)−fmn

d,c (0)
)
> α.

This is a contradiction because α is defined by ν
(
f

(m+1)n
d,c (0)−fmn

d,c (0)
)

for some
m≥ 1.

We remark that if K = Qp and d= 2, then this was proved in [21, Proposition 2.4].
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Chapter 4

Primitive Prime Divisors and Periodic Orbits

For this chapter, K will denote a number field, with an algebraic closure K and a
ring of integers R. A prime ideal in R is denoted p and induces the discrete valuation
νp. The localization of K with respect to the valuation νp is denoted Kp with a ring
of integers Rp and the residue field kp :=Rp/p. Recall that the reduction of the point
r ∈Rp modulo p is denoted by r̃, and the reduction of the polynomial f(x) ∈Rp[x]
modulo p is denoted by f̃(x). Similar to [13], we consider a prime p to be a primitive
prime divisor for fn

d,c(0) if νp(fn
d,c(0))> 0, and for all 1≤ l < n, νp(f l

d,c(0)) = 0.

In this chapter, we show some connections between the existence of a primitive prime
divisor p for fn

d,c(0) and the periodicity of the critical orbit of the reduction of fd,c(x)
in kp. With this connection, for any integer r ≥ 1, we build methods to construct
a polynomial such that νp

(
fn

d,c(0)
)

= r. These methods will be used in the next
chapter to link Question 2.27 with Question 2.29. We then use the tools developed
in this chapter together with Chapter 3 to develop a one-to-one correspondence
between PCF polynomials of the form fd,c(x) in Fp[x] and the PCF polynomials of
the form fd,c(x) in Zp[x].

At the end of the chapter, we answer Question 2.24 by giving an elementary upper
bound on the count of primitive prime divisors of fn

d,c(0) for some d≥ 2, n≥ 1 and
c ∈Q. This bound gives rise to an additional question that will be answered in the
following chapter.

4.1 Polynomial dynamical systems modulo prime powers
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We establish in the following proposition a link between primitive prime divisors
in the critical orbit of a certain polynomial fd,c(x) ∈K, and the periodicity of the
critical orbit of the reduction of fd,c(x) modulo those primes.

Proposition 4.1. The critical orbit of fd,c(x) = xd +c∈K[x] has a primitive prime
divisor p for fn

d,c(0) such that νp
(
fn

d,c(0)
)
≥ t for some integer t ≥ 1 if and only if

the reduced polynomial fd,c(x)+pt has periodic critical orbit with exact period n.

This follows directly from the definition of the primitive prime divisor and the defi-
nition of the exact period of an orbit.

Proof. First, we note that νp(c) ≥ 0. Otherwise, assuming νp(c) = α < 0, we have
that fd,c(0) = c, and assuming νp(fn

d,c(0)) = β ≤ α gives us that νp
((
fn

d,c(0)
)d
)

=
dβ ≤ dα < α. Then by the non-archimedean properties of νp, we have

νp
(
fn+1

d,c (0)
)

= νp

((
fn

d,c(0)
)d

+ c
)

= min(dβ,α)

= dβ

< α.

So, if p is a primitive prime divisor of fn
d,c(0), then νp(fn

d,c(0)) > 0 implies that
νp(c) ≥ 0. On the other hand if 0 is periodic for fd,c(x) +pt, then 0 is periodic for
f̃d,c(x) which implies that c̃ is well defined. This means that we can say that fd,c(x)
is well defined in Rp[x] for p being either a prime such that p is a primitive prime
divisor fn

d,c(0), or p being a prime such that fd,c(x) + p has periodic critical orbit
with exact period n.

With this, we first assume that p is a primitive prime divisor of fn
d,c(0) with

νp(fn
d,c(0))≥ t then for all 1≤ l < n, νp(f l

d,c(0)) = 0, i.e, fn
d,c(0)+pt = 0+pt, and for

all 1≤ l < n, f l
d,c(0)+pt ̸= 0+pt concluding the periodicity.

On the other hand, if 0 is periodic with exact period n for fd,c(x)+pt, then fn
d,c(0)+

pt = 0+pt, and for all 1≤ l < n, f l
d,c(0)+pt ̸= 0+pt. So, νp(fn

d,c(0))≥ t, and for all
1≤ l < n, νp(f l

d,c(0)) = 0, which finishes the proof.

This connection gives a different way of looking at the primitive prime divisors. This
leads to the following result.

Theorem 4.2. Let c0 ∈K be such that p is a primitive prime divisor for fn
d,c0

(0).

If νp
(
fn

d,c0
(0)
)
> 2νp

(
∂fn

d,c(0)
∂c |c=c0

)
, then there is a unique c0 ∈ Rp such that the

following occur:
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(1) νp (c0− c0)> νp

(
∂fn

d,c(0)
∂c |c=c0

)
≥ 0.

(2) The point 0 is periodic with exact period n for fd,c0(x) ∈Rp[x]

In particular, νp (c0− c0) = νp
(
fn

d,c0
(0)
)
−νp

(
∂fn

d,c(0)
∂c |c=c0

)
.

Proof. That p is a primitive prime divisor for fn
d,c0

(0) means that f̃n
d,c0

(0) =

0̃. Also, since νp
(
fn

d,c0
(0)
)
> 2νp

(
∂fn

d,c(0)
∂c |c=c0

)
, it follows by Hensel’s

lemma [18, Theorem 6.28], that there’s a unique c0 ∈ Rp such that
νp (c0− c0)≥ νp

(
fn

d,c0
(0)
)
−νp

(
∂fn

d,c(0)
∂c |c=c0

)
and fn

d,c0
(0) = 0 ∈ Rp. We also have

that νp (c0− c0) = νp
(
fn

d,c0
(0)
)
−νp

(
∂fn

d,c(0)
∂c |c=c0

)
.

Since c̃0 = c̃0, then f̃ t
d,c0

(0) = f̃ t
d,c0

(0) for all integers t ≥ 1. Since p is primitive
for fn

d,c0
(0), we have that for any t < n, f̃d,c0

t(0) = f̃d,c0
t(0) ̸= 0̃. This implies that

f t
d,c0

(0) ̸= 0 ∈Rp, i.e, 0 has exact period n for fd,c0(x) ∈Rp[x].

Example 4.3. Fix K =Q, d= 2, c0 = 1, p= 5, n= 3. We have that 5 is a primitive
prime divisor for f3

2,1(0). We also have that,

ν5(f3
2,1(0)) = 1> 0 = 2 ·ν5

(
∂f3

2,c(0)
∂c

|c=1

)
.

By Theorem 4.2, there is c0 ∈ Z5 such that, c0 ≡ 1 mod 5, and f3
2,c0(0) = 0 ∈ Z5,

i.e, c0 = 1+5t0 for some t0 ∈ Zp and f3
2,1+5t0(0) = 0.

For comparison with the next example, we calculate that t0 = 3 + 25t1 for
some t1 ∈ Z5, This means that c0 = 16 + 125t1. Working modulo 125, then,
f3

2,16(0)≡ 0 mod 125.

We also give another example to show that it is not always true that we can lift the
value of c0 as mentioned in the theorem. For that, we check an example with the
hypothesis of the statement not satisfied. In that example, we can see for any value
close to c0, that is, c0 = c0 +p · t where t∈Zp, we get νp(fn

2,c0(0))≤ νp(fn
2,c0(0)). This

means that νp(fn
2,c0(0))<∞, and so 0 is not periodic of period n for fn

2,c0(0).

Example 4.4. Fix K = Q, d= 2, c0 = 3, p= 13, n= 5. the prime 13 is a primitive
prime divisor for f5

2,3(0). We see that ν13(f5
2,3(0)) = 1, and ν13

(
∂f5

2,c(0)
∂c |c=3

)
= 1.

We can see that for any t0 ∈ Z13, f5
2,3+13t0(0) ̸≡ 0 mod 132, which implies that

f5
2,3+13t0(0) ̸= 0 ∈ Z13. The value of t0 only need to be checked modulo 13.

For simplification, we need to introduce the following definition.
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Definition 4.5. [12, p. 610] Let f(x) = xn +an−1xn−1 + · · ·+a0 ∈K[x] such that
α1,α2, . . . ,αn ∈K are the roots of f(x) in the algebraic closure of K. The discrimi-
nant of f(x) is defined by

Discx(f(x)) =
∏
i<j

(αi−αj)2.

Furthermore, Discx(f(x))∈K, and Discx(f(x)) = 0 if and only if f(x) has a repeated
root in K.

We note that if f(x) is a monic polynomial with integer coefficients, then the dis-
criminant is an algebraic integer. Since f ∈ Z[x], then Discx(f) ∈Q is an algebraic
integer implying that Discx(f) ∈ Z.

We remark that the Gleason polynomials Gd,n(c) are monic polynomials with integer
coefficients by [3, Corollary 3.4]. Thus, we can talk about Discc(Gd,n(c)) as an
integer.

To replace the condition that νp
(
fn

d,c0
(0)
)
> 2νp

(
∂fn

d,c(0)
∂c |c=c0

)
in Theorem 4.2 by a

simpler one, we introduce the following lemma.

Lemma 4.6. Let p be a primitive prime divisor for fn
d,c0

(0), then

νp

(
∂fn

d,c(0)
∂c

|c=c0

)
> 0 implies that Discc(Gd,n(c)) ∈ p

where Gd,n(c) := ϕd,n(0, c) is the Gleason polynomial.

Proof. Note that p is a primitive prime divisor for fn
d,c0

(0) means that 0 is periodic
for f̃d,c0(x) in kp with exact period n. As mentioned in Remark 2.9, the point 0 has
formal period n if and only if 0 has exact period n. This implies that c̃0 is a root of
G̃d,n(c), that is, G̃d,n(c̃0) = 0.
Now consider the derivative of fn

d,c(0) = ∏
t|n
Gd,t(c) as follows.

∂fn
d,c(0)
∂c

=
∑
t|n

∂Gd,t(c)
∂c

∏
k|n
k ̸=t

Gd,k(c)

Since G̃d,n(c̃0) = 0 and Gd,n(c0) divides each term except when t= n then,

∂f̃d,c
n(0)

∂c
|c=c̃0 = ∂G̃d,n(c)

∂c
|c=c̃0

∏
k|n
k ̸=n

G̃d,k(c̃0)
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Since p is primitive to fn
d,c(0), we have that G̃d,k(c̃0) ̸= 0 for any k < n. So, we get

that,
∂f̃d,c

n(0)
∂c

|c=c̃0 = 0 if and only if ∂G̃d,n
n(0)

∂c
|c=c̃0 = 0

Since G̃d,n(c̃0) = 0, then

∂f̃d,c
n(0)

∂c
|c=c̃0 = 0 if and only if c̃0 is a repeated root of G̃d,n implying that Discc(G̃d,n(c)) = 0.

This means that Discc(Gd,n(c)) ∈ p, concluding the proof.

Remark 4.7. The converse of the previous lemma does not hold in general. For
example, G2,3(c) = c3 +2c2 +c+1≡ (c+8)2(c+9) mod 23. From the factorization,
we can see that 23|Discc(G2,3). In addition, we can see that 23 is a primitive prime
divisor for f3

2,−9(0) but 23 ∤ ∂f3
2,c(0)
∂c |c=−9.

This lemma leads to a simplification of the condition in Theorem 4.2 as follows.

Corollary 4.8. Let c0 ∈K be such that p is a primitive prime divisor for fn
d,c0

(0).
If Discc(Gd,n(c)) ̸∈ p, then there is a unique c0 ∈Rp such that the following occur:

(1) νp (c0− c0)> 0.

(2) The point 0 is periodic with exact period n for fd,c0(x) ∈Rp[x].

Furthermore, νp (c0− c0) = νp
(
fn

d,c0
(0)
)
.

This is a direct consequence since p being a primitive prime divisor for fn
d,c0

(0)
implies that νp(fn

d,c0
(0)) > 0, and by Lemma 4.6, Discc(Gd,n(c)) ̸∈ p implies that

νp

(
∂fn

d,c(0)
∂c |c=c0

)
= 0. So, the conditions of Theorem 4.2 are satisfied.

As seen in Example 4.3, we can find values of c such that specific powers of p divide
fn

d,c(0). Indeed, we introduce the following corollary.

Corollary 4.9. Let c0 ∈K be such that p is a primitive prime divisor for fn
d,c0

(0).
If Discc(Gd,n(c)) ̸∈ p, then, for any integer r ≥ 1, there is cr ∈ Rp such that p is a
primitive prime divisor for fn

d,cr
(0) and νp(fn

d,cr
(0)) = r.

Proof. This is a direct consequence of Corollary 4.8. If νp(fn
d,c0

(0)) = r, then we are
done. Assume νp(fn

d,c0
(0)) ̸= r. Let c0 be as in Theorem 4.8, and cr ∈ K be such

that νp(cr−c0) = r. By the choice of cr, we have c̃r = c̃0 = c̃0. This means that cr is
a point such that p is a primitive prime divisor of fn

d,cr
(0). This means that there is

a unique lift of cr, such that νp(cr− cr) > 0, and fd,cr = 0. Since the lift is unique,

31



we have cr = c0. Again, by Corollary 4.8, we get that

r = νp(c0− cr) = νp(cr− cr) = νp(fn
d,cr

(0)),

concluding the proof.

Let r ≥ 1 be an integer, Corollary 4.9 implies that except for finitely many primes,
once we know that a prime p can appear as a primitive prime divisor of fn

d,c0
(0) for

some c0 ∈K, there is another value c1 ∈K for which p is a primitive prime divisor
of fn

d,c1
(0), and νp(fn

d,c1
(0)) = r.

Example 4.10. Fix d = 2, c = 1,p = 5, and n = 3. We find that 5 is a primitive
divisor for f3

2,1(0) with ν5(f3
2,1(0)) = 1 and ν5

(
∂f3

2,c(0)
∂c |c=1

)
= 0. One can see that

for c2 =−9, 52||f3
2,−9(0) where f2,−9(x) = x2−9.

Theorem 4.11. Fix an integer d ≥ 2, and {pi} a finite set of distinct primes. If
there is a set of K-rational numbers {ci} such that pi is a primitive prime divisor for
fni

d,ci
(0) and νpi(f

ni
d,ci

(0)) = ki for some ni ≥ 1 and ki ≥ 1. Then, there exists c ∈ R
such that, for all pi,

(1) νpi(f
ni
d,c(0)) = ki, and

(2) pi is a primitive prime divisor for fni
d,c(0).

Proof. This is a simple corollary of the Chinese remainder theorem [16, Theorem
5.33]. Taking an element c ∈ R such that c+ pki+1

i = ci + pki+1
i , and noting that

νp(fn
d,c(0)) = r where p is primitive to fn

d,c(0) if and only if 0 is periodic for fd,c(x)+pr

but 0 is not periodic for fd,c(x)+pr+1, gives the required proof.

4.1.1 Special case K = Q

For Theorem 4.2, we also give an alternative proof for the case that K = Q with
a constructive proof similar to the proof of Hensel’s lemma, but specialized to the
polynomial fd,c(x) ∈Q[x,c]. This gives insight on how to choose c ∈ Z such that we
get a specific power of p. For the alternative proof, we start by the following lemma.

Lemma 4.12. [11, Lemma 3.7] Let fd,c(x) = xd + c ∈ Q[x,c] and a ∈ Q, then we
have ∂fn

d,c(a)
∂c = 1+∑n−1

j=1 (dn−j∏n−1
i=j (f i

d,c(a))d−1)
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Proof. By induction. For n= 1, it is trivial.
Assume it’s true for k ≤ n then

∂fn+1
d,c (a)
∂c

=
∂(fn

d,c(a))d

∂c
+1

= 1+d · (fn
d,c(a))d−1 ·

∂fn
d,c(a)
∂c

= 1+d · (fn
d,c(a))d−1 · (1+

n−1∑
j=1

(dn−j
n−1∏
i=j

(f i
d,c(a))d−1))

= 1+
n∑

j=1
(dn+1−j

n∏
i=j

(f i
d,c(a))d−1).

This leads to the following lemma.

Lemma 4.13. Let fd,c(x) = xd +c and g(x) = fd,c+tpk1 = xd + c+ tpk1 where k1 ≥ 1.
Then

gn(0)≡ fn
d,c(0)+ tpk1

∂fn
d,c(0)
∂c

mod p2k1 .

Proof. For n= 1, it is trivial. Assuming the statement is true for l ≤ n, then

gn+1(0) = [gn(0)]d + c+ tpk1

≡
[
fn

d,c(0)+ tpk1
∂fn

d,c(0)
∂c

]d

+ c+ tpk1 mod p2k1

=
fn

d,c(0)+ tpk1

1+
n−1∑
j=1

(dn−j
n−1∏
i=j

(f i
d,c(0))d−1)

d

+ c+ tpk1

≡
[
fn

d,c(0)
]d

+d(fn
d,c(0))d−1tpk1

1+
n−1∑
j=1

(dn−j
n−1∏
i=j

(f i
d,c(0))d−1)

+ c+ tpk1 mod p2k1

= fn+1
d,c (0)+ tpk1

1+d(fn
d,c(0))d−1

1+
n−1∑
j=1

(dn−j
n−1∏
i=j

(f i
d,c(0))d−1)


= fn+1

d,c (0)+ tpk1
∂fn+1

d,c (0)
∂c

.

With these two lemmas, we can prove the following.

Theorem 4.14. Let fd,c0(x) = xd + c0 ∈ Q[x] and p is a prime such that p is a
primitive divisor for fn

d,c0
(0). Let k1 = νp

(
fn

d,c0
(0)
)
, and k2 = νp

(
∂fn

d,c(0)
∂c |c=c0

)
. If

k1 > 2k2, then there exists a unique integer t such that
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(1) 1≤ t≤ p−1,

(2) p is a primitive prime divisor for fn
d,c0+tpk1−k2 (0), and

(3) pk1+1 | fn
d,c0+tpk1−k2 (0).

Furthermore, for all integers r ≥ 1 such that r > 2k2, there is a p-adic integer tr ∈
pk2+1Zp such that for the polynomial fd,c0+tr(x) ∈ Z[x], p is a primitive divisor for
fn

d,c0+tr
(0), and pr || fn

d,c0+tr
(0).

Remark 4.15. We will also see in the proof that tr ∈ pk2+1Zp is unique mod
pr−k2, and tr+1 ≡ tr mod pr−k2. Due to that, we notice that the sequence
{tk1 , tk1+1, tk1+2, . . .} is a Cauchy sequence in the local ring Zp. This gives
the convergence of this sequence to an element t∞ ∈ Zp. The uniqueness of
tk1+i mod pk1−k2+i, and the fact that t∞ ≡ tk+i mod pk1−k2+i gives also the
uniqueness of t∞ ∈ Zp. This implies the special case of Theorem 4.2 when K = Q.

Proof. Let ∂fn
d,c(0)
∂c |c=c0 = s ·pk2 , and t≥ 1 be an integer. By Lemma 4.13, we have

fn
d,c0+tpk1−k2 (0)≡ fn

d,c0(0)+ tpk1−k2
∂fn

d,c(0)
∂c

|c=c0 mod p2(k1−k2) ≥ pk1+1

Since pk1 || fn
d,c0

(0), we can divide by pk1 to get

fn
d,c0+tpk1−k2 (0)

pk1
≡
fn

d,c0
(0)

pk1
+ t ·pk1−k2 · s ·pk2

pk1
≡
fn

d,c0
(0)

pk1
+ ts mod p

Solving for t to get
fn

d,c0+tpk1−k2 (0)

pk1 ≡ 0 mod p, we find the unique solution

t≡−fn(0)
pk1 s−1 mod p. So, p |

fn

d,c0+tpk1−k2 (0)

pk1 or pk1+1 | fn
d,c0+tpk1−k2 (0).

For the second part of the statement, Let r > 2k2, and ∂fn
d,c(0)
∂c |c=c0 = s ·pk2 . We

then follow an algorithm to find tr. The algorithm is recursive and depends on the
initial value c0. Due to that, we will denote the output by tr(c0).

(1) Set k1 = νp(fn
d,c0

(0)).

(2) Compare r with k1

(a) If r < k1, return tr(c0) = lpr−k2 where l ̸≡ 0 mod p.

(b) If r = k, return tr(c0) = lpr−k2where l ̸≡ −fn(0)
pk1 s−1 mod p.

(c) If r > k, set l ≡ −fn(0)
pk1 s−1 mod p and return

tr(c0) = lpk1−k2 + tr(c0 + lpk1−k2).
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We need to show that this algorithm is effective, terminates and gives the desired
value of tr ∈ pk2+1Zp. We also note in each case that the value of tr is unique modulo
certain powers of p, which implies the uniqueness of the final output mod pr−k2 . We
now check the three cases separately.

Case 1 (r < k1): By Lemma 4.13, we first assume 2ν(tr)≥ r+1, then

fn
d,c0+tr

(0) ≡ fn
d,c0(0)+ trsp

k2 mod pr+1.

Since k1 > r, then k1≥ r+1 and so fn
d,c0

(0)≡ 0 mod pr+1. We want pr||fn
d,c0+tr

(0).
So, we substitute fn

d,c0+tr
(0) = βpr such that p ∤ β. We then look at the following.

βpr = trsp
k2 mod pr+1,

i.e,
tr = βs−1pr−k2 mod pr+1.

taking βs−1 = l, we get the desired result and terminate. We note that indeed
2ν(tr) = 2(r−k2) > r+ 1. For the uniqueness, we note that under the assumption
that 2ν(tr) ≥ r+ 1 of the solution, tr must be divisible by pr−k2 , i.e., the solution
is uniquely determined to be 0 mod pr−k2 . On the other hand, to check if there is
another solution, we assume that 2ν(tr)< r+1, and we get

0≡ 0+ trsp
k2 mod p2ν(tr).

This means that
ν(tr)≤ k2,

contradicting the choice of tr ∈ pk2+1Zp.

Case 2 (r = k1): Similar to case 1, by Lemma 4.13, we first assume 2ν(tr) ≥ r+ 1
then,

fn
d,c0+tr

(0) ≡ fn
d,c0(0)+ trsp

k2 mod pr+1.

Since k1 = r, then fn
d,c0

(0)≡ αpr mod pr+1 for some α not divisible by p. We want
pr||fn

d,c0+tr
(0). So, we substitute fn

d,c0+tr
(0) = βpr such that p ∤ β. We then look at

the following.

βpr = αpr + trsp
k2 mod pr+1,
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i.e.,
tr = (β−α)s−1pr−k2 mod pr+1.

taking (β − α)s−1 = l, we get the desired result and conclude. Again, 2ν(tr) =
2(r− k2) > r+ 1. For the uniqueness, with the assumption that 2ν(tr) ≥ r+ 1, tr
must be divisible by pr−k2 , that is, the solution is uniquely determined to be 0 mod
pr−k2 . Similarly, we assume that 2ν(tr) < r+ 1. This means that both the desired
fn

d,c0+tr
(0) and the original fn

d,c0
(0) are divisible by p2ν(tr). So, again

0≡ 0+ trsp
k2 mod p2ν(tr).

With
ν(tr)≤ k2,

we get the same contradiction.

Case 3 (r > k1): For this case, we make use of the first part of the theorem. We
choose the unique value l≡−fn(0)

pk1 s−1 mod p, which gives rise to the unique value
lpk1−k2 mod pk1−k2+1. We also note that fd,c0+lpk1−k2 ≡ fd,c0 mod pk2+1. This

means that
∂fn

d,c0+lpk1−k2 (0)
∂c |c=c0 ≡ s ·pk2 mod pk2+1. On the other hand, as seen

in the first part of the proof, pk1+1|fn
d,c0+lpk1−k2 (0). This means that the conditions

for the initiation of the algorithm are met for fn
d,c0+lpk1−k2 (0).

In case 3, we also note that if the algorithm gives a unique value tr(c0) mod pr−k2

when r−k1 ≤ e, then for r−k1 = e+ 1, we get a unique l mod p by the algorithm
and a unique tr(c0 + lpk1−k2) mod pr−k2 by induction. Then, it is simple to show
that lpk1−k2 + tr(c0 + lpk1−k2) is a unique lift mod pr−k2 . Also, cases 1 and 2 give the
basis of the induction where the unique lift is achieved with r−k1 ≤ 0, concluding
the proof.

4.2 Correspondence between PCF polynomials in Fp and Zp

In this section, we use Theorem 4.2 to give conditions that allow a one to one
correspondence between polynomials fd,c(x) ∈ Fp[x] with periodic critical orbit and
polynomials fd,c(x) ∈ Zp[x] with periodic critical orbit.

Theorem 4.2 along with Theorem 3.10 lead to the following result.
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Theorem 4.16. Let d ≥ 2 be a positive integer, p > d be a prime integer, and
1≤ n≤ p be a positive integer such that the following holds.

For all c ∈ Fp, if 0 is periodic with exact period n for fd,c(x) ∈ Fp[x], then
c is a simple root of fn

d,c(0) ∈ Fp[c]. (∗)

Then there is a one-to-one correspondence
fd,c(x) ∈ Fp[x] with
periodic critical orbit

of exact period n

←→


fd,c(x) ∈ Zp[x] with
periodic critical orbit

of exact period n


Moreover, for n > p, there are no polynomials of the form fd,c(x) ∈ Zp[x] with peri-
odic critical orbit of exact period n.

Proof. We assume that 1≤ n≤ p. The proof comes from setting K = Q in Theorem
3.10, and Theorem 4.2. First, we define the map ι : Fp→ Zp, where ι(c0) = t0 ∈ Zp

such that, 0 ≤ t0 ≤ p− 1, and t̃0 = c0. We also denote the set of polynomials in
Fp[x] with periodic critical orbit of period n by An, and the corresponding set of
polynomials in Zp[x] by Bn.

With this notation, condition (∗) means that if c0 ∈ Fp is a root of fn
d,c(0) ∈ Fp[c],

where n is the exact period of 0 under the iterations of fd,c0(x) ∈ Fp[x], then
∂fn

d,c(0)
∂c |c=c0 ̸= 0. This means that for fd,ι(c0)(x) ∈ Zp[x] has p as a primitive prime

divisor of fn
d,ι(c0)(0) with νp

(
∂fn

d,c(0)
∂c |c=ι(c0)

)
= 0. So Theorem 4.2 can be applied

to get a unique value c1 ∈ Zp such that νp(c1− ι(c0)) > 0, and 0 is periodic for
fd,c1(x) ∈ Zp[x]. The condition that νp(c1− ι(c0)) > 0 implies that c̃1 = ˜ι(c0) = c0.
With this, we define the map ψ :An→Bn, where ψ(fd,c0(x)) = fd,c1(x), with c0 and
c1 are as above.

Let c0 ∈ Fp, where fd,c0 ∈An. Assume that ψ(fd,c0(x)) = fd,c1(x) and ψ(fd,c0(x)) =
fd,c2(x). Then c̃1 = c0 = c̃2 and 0 is periodic with exact period n for both fd,c1(x)
and fd,c2(x). By the uniqueness given in Theorem 4.2, we get that c1 = c2. So, ψ is
a well defined map.

Let fd,c0(x),fd,c3(x)∈An with ψ(fd,c0(x)) =ψ(fd,c3(x)) = fd,c2(x). Then we get that
c0 = c̃2 = c3, i.e, ψ is injective.

Let fd,c1(x) ∈ Bn. Then 0 is periodic with exact period m for ˜fd,c1(x) = fd,c̃1(x),
where m|n. By Theorem 3.10, since p > d, we have that m = n, i.e, fd,c̃1(x) ∈ An.
So, ψ is surjective.
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For the case that n > p, if fd,c1(x) ∈Bn, then again by Theorem 3.10, ˜fd,c1(x) ∈An.
However, the orbit length in Fp can not have a length n> p. Thus, Bn is empty.

Corollary 4.17. Let d ≥ 2 be a positive integer and p > d be a prime integer such
that the following holds.

For all c ∈ Fp, if 0 is periodic with exact period n for fd,c(x) ∈ Fp[x] for
some n≥ 1, then c is a simple root of fn

d,c(0) ∈ Fp[c]. (∗∗)

Then there is a one to one correspondence fd,c(x) ∈ Fp[x] with
periodic critical orbit

←→
 fd,c(x) ∈ Zp[x] with

periodic critical orbit


Proof. This is a direct corollary of Theorem 4.16. Since for each n≥ 1, there is a one
to one correspondence between An and Bn, we get the one to one correspondence
between ∪

1≤n≤p
An and ∪

1≤n≤p
Bn, where each union is a disjoint union.

Remark 4.18. For d= 2, the first 50 prime numbers were tested for the condition
in Corollary 4.17 using Mathematica and was found to be satisfied for 47 of these
primes. An example of the other three primes is the prime 13 illustrated in Example
4.4.

The condition of the previous can be relaxed using Lemma 4.6 as follows.

Corollary 4.19. Let d be a positive integer and p > d be a prime integer such that,
p ∤ Discc(Gd,n(c)) for any n≤ p. Then there is a one to one correspondence

 fd,c(x) ∈ Fp[x] with
periodic critical orbit

←→
 fd,c(x) ∈ Zp[x] with

periodic critical orbit


Proof. This follows by noting that for all 1≤ n≤ p, if p ∤ Discc(Gd,n(c)), then con-
dition (∗∗) follows.

This also means that, if the conditions on p are satisfied, we can find all polynomials
with periodic critical orbit in Zp by checking finitely many values of c in Fp and then
lifting each value uniquely by Corollary 4.8.

In both Corollary 4.17 and Corollary 4.19, we have strong conditions for strong
results. However, the condition can be made simpler with a simpler result as follows.
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Corollary 4.20. Let d be a positive integer and p > d be a prime integer. Then, for
all n≤ p, if p ∤ Discc(Gd,n(c)), then there is a one to one correspondence


fd,c(x) ∈ Fp[x] with
periodic critical orbit

of exact period n

←→


fd,c(x) ∈ Zp[x] with
periodic critical orbit

of exact period n


Moreover, for n > p, there are no polynomials of the form fd,c(x) ∈ Zp[x] with peri-
odic critical orbit of exact period n.

Proof. Similar to the proof of Corollary 4.19, this follows by noting that for all
1≤ n≤ p, if p ∤ Discc(Gd,n(c)), then condition (∗) follows.

We conclude this section by an example for the one to one correspondence using
Corollary 4.19.

Example 4.21. For d= 3 and p= 5,

Discc(G3,1(c))≡ 1 ̸≡ 0 mod 5

Discc(G3,2(c))≡ 1 ̸≡ 0 mod 5

Discc(G3,3(c))≡ 1 ̸≡ 0 mod 5

Discc(G3,4(c))≡ 1 ̸≡ 0 mod 5

Discc(G3,5(c))≡ 4 ̸≡ 0 mod 5

So, in order to find functions of the form f3,c(x) ∈ Z5[x] such that, 0 has a periodic
orbit, it suffices to find those in F5[x]. This means we only check 0≤ c≤ 4. In F5[x],

c= 0, f3,0(0) = 0 =⇒ 0 has orbit type (0,1)

c= 1, f4
3,1(0) = 0, and f2

3,1(0) = 2 ̸= 0 =⇒ 0 has orbit type (0,4)

c= 2, f2
3,2(0) = 0, and f3,2(0) = 2 ̸= 0 =⇒ 0 has orbit type (0,2)

c= 3, f2
3,3(0) = 0, and f3,3(0) = 3 ̸= 0 =⇒ 0 has orbit type (0,2)

c= 4, f4
3,4(0) = 0, and f2

3,4(0) = 3 ̸= 0 =⇒ 0 has orbit type (0,4)

This means that there are exactly 5 polynomials of the form f3,c(x)∈ F5[x] such that,
0 is periodic. By Corollary 4.19, we get that there are exactly 5 polynomials of the
form f3,c(x) ∈ Z5[x] such that, 0 is periodic.

Note that, although, in general, we don’t have a one to one correspondence for
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functions with 0 being preperiodic, we can see that there are no such polynomials
in Z5[x]. This is due to Theorem 3.10.

The contra-position of Theorem 3.10 tells us that if 0 has a strictly preperiodic orbit
for f3,c(x) in Z5[x], then 0 is not periodic for f3,c(x) in F5[x]. Since this does not
happen in F5[x] for any 0≤ c≤ 4, we get that there are no polynomials of the form
f3,c(x) ∈ Zp[x] such that 0 is preperiodic. This means that there are exactly 5 PCF
polynomials in Zp[x] of the form f3,c.

4.3 Rough bounds for the count of primitive prime divisors

For this section, we only work over K = Q. We give an elementary upper bound on
the count of primitive prime divisors to answer Question 2.24. This will be give an
insight to direct us in the next chapter.

We use notations as in [19] defining fn
d,c(0) = an

bdn−1 where an, b are integers. Let
ϱd(n,c) be the number of primitive prime divisors of an and ω(an) be the total
number of prime divisors of an.

Lemma 4.22. If c≤−2 and d is even then, log2 |c| ≤ log2 |fn
d,c(0)| ≤ dn−1 log2 |c|.

Proof. The proof is by induction. For n = 1, it is clear. Assume the statement is
true for n, then

|fn
d,c(0)|d ≥ |c|d ≥ |c|=−c implies that |fn

d,c(0)|d + c≥ 0.

This means that

log2 |fn+1
d,c (0)| = log2 |fn

d,c(0)d + c|

≤ log2(fn
d,c(0)d)

= d log2 |fn
d,c(0)|

≤ d ·dn−1 log2 |c|

= dn log2 |c|.
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Since c≤−2, we get that log2 |cd−1 +1|= log2(|c|d−1−1)≥ log2(2d−1−1)≥ 0. So,

log2 |fn+1
d,c (0)| = log2 |fn

d,c(0)d + c|

≥ log2 |cd + c|

= log2 |c(cd−1 +1)|

= log2 |c|+log2 |cd−1 +1|

≥ log2 |c|.

Theorem 4.23. Let fd,c(x)∈Q[x] be a polynomial with infinite critical orbit. Then,
ϱd(n,c)≤Bd(n,c) where

Bd(n,c) :=



dn−1 log2 |a1| c≤−2 and d is even

dn−1(3+ log2 |b|)−1 −2< c <−2
1

d−1 and d is even

(dn−1−1) log2 |b|+log2 |a1| −2
1

d−1 < c < 0 and d is even

(dn−1−1)( 1
d−1 +log2 |b|)+ log2 |a1| 0< c < 1; or −1< c < 0 and d is odd

dn−1( 1
d−1 +log2 |a1|)− 1

d−1 c≤ 1; or c≤−1 and d is odd

In general, ϱd(n,c) ≤ dn−1(3 + log2h
(

a1
b )
)

+ log2 |a1|, where h denotes the height
function

(
h
(

a
b

)
=max(|a|, |b|)

)
.

Proof. It is clear that ϱd(n,c)≤ ω(an)≤ log2 |an|. So for an elementary bound, it is
enough to bound log2 |an|. For c ≤ −2 and d being even, we have by Lemma 4.22
that

log2 |an|−dn−1 log2 |b|= log2 |fn
d,c(0)| ≤ dn−1 log2 |c|

log2 |an| ≤ dn−1 log2 |a1|.

For −2< c <−2
1

d−1 and an even d, we use [19, Proposition 5.8].

log2 |an|−dn−1 log2 |b|= log2 |fn
d,c(0)| ≤ (3dn−1−1)

implying that,
log2 |an| ≤ dn−1(3+ log2 |b|)−1

For −2
1

d−1 < c < 0 with an even d, [19, Lemma 3.1, Proposition 5.7] imply that
|fn

d,c(0)| ≤ |c|. So,

log2 |an| ≤ dn−1 log2 |b|+log2 |a1|− log2 |b|= (dn−1−1) log2 |b|+log2 |a1|
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For an odd d, if c < 0, then it is clear that fn
d,c(0) = −fn

d,−c(0). So, it is enough to
prove the remaining for positive c.

For 0< c < 1, by [19, Lemma 5.5] (with C(n) = c in the notation of the [19]),

log2 |an| ≤ dn−1 log2 |b|+
dn−1−1
d−1 +log2 |a1|− log2 |b|= (dn−1−1)( 1

d−1 +log2 |b|)+log2 |a1|

Last case is c≥ 2. Using same [19, Lemma 5.5] but with C(n) = cd
n−1 in the notation

of [19],

log2 |an| ≤ dn−1 log2 |b|+
dn−1−1
d−1 +dn−1(log2 |a1|− log2 |b|) = dn−1( 1

d−1 +log2 |a1|)−
1

d−1

Theorem 4.23 shows us a bound that depends on the degree d, the iteration number
n, and the value of c. The dependency on d and n seems reasonable, even though
the bound might not be optimal. However, the dependency on c raises the following
question.

Question 4.24. Fix d ≥ 2 and n ≥ 1, is there a uniform bound on the count of
primitive prime divisors in fn

d,c(0), ϱd(n,c), that doesn’t depend on the value of c?

For the case n= 1; or n= 2 and d is even, choosing c= p1 · · · · ·pr; or c= p1 · · · · ·pr−1
respectively gives us r primitive prime divisors in fn

d,c(0). So, the bound must depend
on c for these two cases. However, for other values of n, the answer is not as trivial.
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Chapter 5

Density Questions on Critical Orbit

In this chapter, we work on polynomials with rational coefficients. First we tackle
Question 2.27 by reducing the question from the density of primes that can appear
in the critical orbit to the density of primes such that the Gleason polynomial
has a root modulo those primes. This allows us to use the Frobenius density
Theorem to measure the density. We also note that Corollary 4.9 links the answer
of Question 2.27 to Question 2.29. That is, the density of the primes in the set
{p : p is a primitive prime divisor of fn

d,c(a0), and νp(fn
d,c(a0)) = t for some c ∈K}

does not depend on t. Moreover, this density is the same as the one of the set
{p : p is a primitive prime divisor of fn

d,c(a0) for some c ∈K}. This means that the
density in Question 2.29 is the same as the density in Question 2.27. So, it suffices
to calculate one of these densities in this chapter. After that, we use the results
from the density along with Corollary 4.11 to answer Question 4.24.

5.1 Frobenius’ Density and Possible Primes in the Critical Orbit

We start by linking our question to the Frobenius density Theorem. First we recall
Question 2.27.

Question 5.1. Fixing d ≥ 2, n ≥ 1, Let K be a number field,
and a0 ∈ K. What is the density of the primes in the set {p :
p is a primitive prime divisor of fn

d,c(a0) for some c ∈K}?

We take a simpler case where K = Q and a0 = 0. In this case, we are interested in
the set {p : p is a primitive prime divisor of fn

d,c(0) for some c ∈Q}.
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As seen in Proposition 4.1, we see that the latter mentioned set is the same as the set
{p : The critical orbit of fd,c(x) ∈ Fp[x] is periodic with exact period n for some c ∈ Fp}.

As seen in Remark 2.9, for the critical orbit, i.e, the orbit of the point x = 0, x
has formal period n if and only if x has exact period n. So, we look at the set
{p : The critical orbit of fd,c(x) ∈ Fp[x] is periodic with formal period n for some c ∈ Fp}.
This, by the definition of the formal period, is the same as
{p : There exists c ∈ Fp such that G̃d,n(c) = 0}. In other words, we need to
look for primes p such that G̃d,n(c) has a linear factor in Fp. Therefore, we will
need the Frobenius’ Density Theorem.

Theorem 5.2. [14, Theorem 9.15] The kronecker density Dk of the primes p for
which f(x)≡ 0 ( mod p) has exactly k incongruent integral solutions mod p equals
the fraction of elements of the Galois group of f that fix exactly k of its roots.

We note that this is a special case of the Frobenius’ Density Theorem, [14, Theorem
9.20], which in turn is a direct consequence of the Chebotarev’s Density theorem
[22, p. 545].

In the notations of Theorem 5.2, the set {p : There exists c ∈ Fp such that G̃d,n(c) = 0}
has a density that is equal to the fraction of the elements of the Galois group of
Gd,n(c) that fix at least one root. We denote the splitting field of Gd,n(c) by Kd,n,
and with that, the fraction that we are interested in, denoted by the Fixed Point
Proportion, FPPd,n, is as follows:

FPPd,n = #{σ ∈Gal(Kd,n/Q) : σ fixes at least one root of Gd,n(c)}
#Gal(Kd,n/Q) .

5.2 Galois Group and Primitive Divisors

In this section, we use the connection developed in the previous section to calculate
the density of possible primitive prime divisors. First, we give special results when
d= 2.

5.2.1 d= 2
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To calculate the density, we start by investigating the Galois group structure. For
that purpose, we used MAGMA. The code is attached in Appendix A along with
screenshots of the output. In that code, we calculate the Galois group of G2,n(c) for
1≤ n≤ 11. We also calculate D2,n := degc(G2,n(c)) = ∑

t|n
2t−1µ

(
n
t

)
. Comparing the

size of the Galois group of G2,n(c) with the size of SD2,n = D2,n!, we get that the
Galois group of G2,n(c) is isomorphic to SD2,n for all 1≤ n≤ 11. However, due to the
exponential growth of the degree of G2,n(c), and due to the capabilities of MAGMA
software, we were unable to calculate the Galois group when n > 11. Furthermore,
we remind the reader that the irreducibility of G2,n(c) over Q[c] was conjectured in
[7, Conjecture 1.4] for all n≥ 1, however, no proof has yet been established.

Due to the output of our MAGMA calculations, we have the following conditional
result.

Theorem 5.3. Let K2,n be the splitting field of G2,n(c). If Gal(K2,n/Q) ∼= SD2,n,
then the density FPP2,n is given by

FPP2,n =
D2,n∑
i=1

(−1)i+1

i! .

Proof. With the assumption in the theorem that Gal(K2,n/Q)∼= SD2,d
, the problem

reduces to the density of elements of SD2,n that fix at least one element in the
set {1, . . . ,D2,n}. The following is a simple combinatorial argument for the count.
We have D2,n elements to choose one to fix and with each fixed element we get
D2,n−1 elements to freely permute. That’s

(
D2,n

1

)
·(D2,n−1)!. Removing the double

count when two elements are fixed gives the second term of the count (−
(

D2,n
2

)
·

(D2,n−2)!) with a similar argument. Continuing in the same way, we get the count
nT := #{σ ∈Gal(K2,n/Q) : σ fixes at least one root of Gd,n(c)} to be

nT =
(
D2,n

1

)
·(D2,n−1)!−

(
D2,n

2

)
(D2,n−2)!+

(
D2,n

3

)
(D2,n−3)!+ ...+(−1)D2,n+1

(
D2,n

D2,n

)
(0)!

=
D2,n∑
i=1

(−1)i+1
(
D2,n

i

)
(D2,n− i)!

=
D2,n∑
i=1

(−1)i+1 D2,n!
i!(D2,n− i)!

(D2,n− i)!

=D2,n!
D2,n∑
i=1

(−1)i+1

i! .

So that means that FPP2,n = nT
D2,n! =∑D2,n

i=1
(−1)i+1

i! .
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Remark 5.4. If Gal(K2,n/Q)∼= SD2,n for all n large enough, then

lim
n→∞FPP2,n = 1− 1

e
, and

|FPP2,n−1+ 1
e
| ≤ 1

(D2,n +1)! ≤
1

2n−2! for n≥ 2.

Proof. The limit is a direct consequence of the fact that ex =∑∞
i=0

xi

i! .

The first inequality comes from the series being an alternating series. So, this
inequality comes from the error term of the alternating series. For The second
inequality, for n ≤ 4, it can be checked with straightforward computations. For
n > 4, we have n−2> n

2 so,

D2,n =
∑
m|n

µ( n
m

)2m−1

≥ 2n−1−
∑

m|n & m̸=n

2m−1

≥ 2n−1−
n
2∑

m=1
2m−1

≥ 2n−1−
n−2∑
m=1

2m−1

= 2n−1−
n−3∑
m=0

2m

= 2n−1− (2n−2−1)

≥ 2n−1− (2n−2)

= 2n−2.

5.2.2 d≥ 2

Remark 5.5. We tried to check if there is a similar pattern for fd,c(x) with d > 2.
However, our computations did not show an obvious pattern in Gal(Kd,n/Q).

The assumption on the Galois group in Theorem 5.3 seems to be specific to only
degree d = 2. Also, the assumption seems far fetched to be proven given that even
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the irreducibility is only conjectured. However, for any d≥ 2, the following result is
unconditional.

Lemma 5.6. For all d≥ 2 and n≥ 1,

FPPd,n > 0.

Proof. This is because of the fact that Gal(Kd,n/Q) ≤ SDd,n
, and there is at least

one element in Gal(Kd,n/Q) fixing at least one root of Gd,n(c), namely the identity
element. This means that

FPPd,n = #{σ ∈Gal(Kd,n/Q) : σ fixes at least one root of Gd,n(c)}
#Gal(Kd,n/Q) ≥ 1

Dd,n! > 0.

Theorem 5.7. For all d ≥ 2 and n ≥ 1, there are infinitely many primes p such
that there is c ∈Q such that p is a primitive prime divisor of fn

d,c(0).

Proof. As seen in Section 5.1, the density of primes p such that there is c ∈Q such
that p is a primitive prime divisor of fn

d,c(0) is equal to FPPd,n. Since FPPd,n > 0,
the count of these primes is infinite.

5.3 Polynomials with Arbitrarily Many Primitive Divisors

In this section, we use the result of Theorem 5.7 to answer Question 4.24. First, we
introduce the following theorem.

Theorem 5.8. Fix integers d≥ 2 and m≥ 1. For 1≤ i≤m, let

(1) ni be distinct positive integers,

(2) ti be positive integers,

(3) (ki,1,ki,2, . . . ,ki,ti) be ti-tuples of positive integers.

Then there exists an integer c such that for each 1≤ i≤m and 1≤ j ≤ ti, there is
a prime pi,j such that pi,j is a primitive prime divisor for fni

d,c(0) and pki,j

i,j ||f
ni
d,c(0).
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Proof. As mentioned in Theorem 5.7, there exists infinitely many primes p that can
appear as a primitive prime divisor in iteration ni. Let the set of these primes be
Sni . We also let the finite set of primes dividing Discc(Gd,ni

(c)) be Tni .

Setting Pni := Sni \Tni , we define the following sets by a recurrence relation.

A1 ⊂ Pn1 with |A1|= t1, and B1 = A1

And for 2≤ i≤m

Ai ⊂ Pni \Bi−1 with |Ai|= ti, and Bi =Bi−1∪Ai

By construction of the sets, it is clear that Bm is a set of distinct rational primes.

Also, Bm is the union of the disjoint sets Ai’s where |Ai|= ti. Now we find the set
of constants {c} that correspond to the set of primes Bm that we use in Theorem
4.11.

Let Ai = {pi,j}ti
j=1. For each pi,j ∈ Ai ⊂ Pni , we have that pi,j can appear as a

primitive prime divisor in iteration n. That is, there exists ci,j,0 such that pi,j is a
primitive prime divisor for fni

d,ci,j,0
(0).

Since pi,j ̸∈ Tni , then pi,j ∤ Discc(Gd,ni
(c)). By Corollary 4.9, there exists an integer

ci,j,1 such that pi,j is a primitive prime divisor for fni
d,ci,j,1

(0), and p
ki,j

i,j ||f
ni
d,ci,j,1

(0).

We now set Ci = {ci,j,1}1≤j≤ti , and C =
m
∪

i=1
Ci.

For the set of primes Bm, the set of C satisfies the hypothesis of Theorem 4.11. So,
using the aforementioned theorem, we get the desired constant c.

The proof gives an explicit description of how to construct polynomials with the
desired property. In what follows, we discuss the details of an explicit example.

Example 5.9. Fix d= 2 and m= 3. For 1≤ i≤ 3, let ni, ti, and (ki,1,ki,2, . . . ,ki,ti)
be as follows.

Set n1 = 2, t1 = 3, and (k1,1,k1,2,k1,3) = (29,17,5),

n2 = 3, t2 = 2, and (k2,1,k2,2) = (8,3),

n3 = 4, t3 = 1, and (k3,1) = (21).
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We first check the primes that divide the discriminants. That is the sets

T2 = ∅, T3 = {23}, and T4 = {23,2551}.

We can now find some of the primes in S2,S3, and S4. Instead of checking each
prime to see if it can appear in a specific iteration, we can instead check the primes
appearing as primitive divisors in iterations of some polynomials, and then we can
use the primes appearing in their critical orbits. For example,

f2
2,1(0) = 2, f3

2,1(0) = 5, and f4
2,1(0) = 2 ·13.

This means we can use p1,1 = 2 with c1,1,0 = 1. Using Corollary 4.9, we get c1,1,1 =
229−1.

Continuing in the same manner, we can get,

A1 = {2,3,7} with C1 = {229−1,317−1,75−1}

A2 = {5,19} with C2 = {326391,4866}

A3 = {13} with C3 = {198396633106433791392520}

Using Theorem 4.11, we obtain that c may be chosen as follows.

c≡ 24351981847787737533052341852056330671894786203451391

mod 40010031061893159449171265710098679720076040470528000000000.

Verifying the result using Mathematica software, we can see that for

f(x) := f2,24351981847787737533052341852056330671894786203451391(x),

we get,
229||f2(0), 317||f2(0), 75||f2(0)

58||f3(0), 193||f3(0)

1321||f4(0)

with each of the mentioned primes being a primitive prime divisor for the corre-
sponding iteration.

Theorem 5.8 gives an answer to Question 4.24 in the following corollary.

Corollary 5.10. Let d be a positive integer and U = {(ni, ti)}mi=1 be a finite set of
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pairs of positive integers. Then there exists an integer c such that fni
d,c(0) has at least

ti primitive prime divisors for each 1≤ i≤m.

Proof. This is a direct consequence of 5.8 by choosing all constants ki,j to be equal
to 1.

Corollary 5.10 implies that by fixing the degree d and the iteration n, we can con-
struct a polynomial of the form fd,c(x) for some c∈Q such that fn

d,c(0) has arbitrarily
many primitive prime divisors. This implies that the upper bound of the count of
primitive prime divisors of fn

d,c(0), see Theorem 4.23, can not be independent from
c. So, the answer to Question 4.24 is negative. There can not be a uniform bound
that does not depend on c.

Example 5.11. For d= 2 and U = {(3,33)},
We can do similar calculations as in the last example to reach that,

c≡ 13443222075617361812453920142397689133847531746492684885069771

mod 70321927694409533965768410131069970323274232658951676172460495.

So, defining

f(x) := f2,13443222075617361812453920142397689133847531746492684885069771,

and verifying using Mathematica, we can find that

70321927694409533965768410131069970323274232658951676172460495|f3(0),

where this divisor is a square free number with 33 prime factors. Each of these
factors is a primitive prime divisor for f3(0). Note that Corollary 5.10 implies that
there are at least these 33 primitive prime divisors, but they are not necessarily the
only such primes. In fact, one may see that there are exactly 37 primitive prime
divisors for this specific iteration.

Corollary 5.10 along with Theorem 2.28 gives rise to the following result.

Corollary 5.12. Let d = 2, and m ≥ 1. There exists an integer c such that the
splitting field of fm

d,c(x), denoted by Fm, has Galois group Gal(Fm/Q) of order 22m−1.

Proof. For 1 ≤ i ≤ m, choose ni = i, ti = 1, and (ki,1) = (1). Then by Theorem
5.8, there is an integer c such that, for all 1 ≤ i ≤ m, there is a prime pi such
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that pi||f i
d,c(0). Using Theorem 2.28, we get that for all 2≤ i≤m, Gal(Fi/Fi−1)∼=

(Z/2Z)2i−1
.

Since there is a prime p1 such that p1||f(0), then −c is not a square in Q. So, fd,c(x)
is irreducible with Gal(F1/Q)∼= (Z/2Z).

By induction, for 2 ≤ i ≤ m, assuming Gal(Fi−1/Q) has order 22i−1−1,
and knowing that Gal(Fi/Fi−1) ∼= (Z/2Z)2i−1

, we can use the fundamen-
tal theorem of Galois theory [12, p. 574, Theorem 14] to see that
Gal(Fi/Q)/Gal(Fi−1/Q)∼= Gal(Fi/Fi−1)∼= (Z/2Z)2i−1

. This directly concludes the
order.

We conclude with the following example.

Example 5.13. Fix d= 2 and m= 29. Using Corollary 5.12, and using the calcu-
lations mentioned in Corollary 5.10, we find that for the polynomial

f(x) = x2 +1168184310110489945509811544546782641527527693907326,

f29(x) has Galois group with order 2229. This is because, with

{pi}1≤i≤29 := {2,3,5,13,11,29,19,31,43,101,59,47,67,61,97,89,

83,107,113,149,137,127,173,191,197,181,223,157,229},

we get that pi is a primitive prime divisor of f i(0) with pi||f i(0).
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APPENDIX A

MAGMA Code for calculating the Galois group of Gd,n(c)
1 P< c >:= PolynomialAlgebra ( Rationals ());
2

3 f:= func <x|x^2+c>;
4

5 h:= function (n)
6 t:=0;
7 for i in [1..n] do
8 t:=f(t);
9 end for;

10 return t;
11 end function ;
12

13 g:= function (n)
14 t := 1;
15 t2 := 1;
16 for i in Reverse ( Divisors (n)) do
17 if (0 gt MoebiusMu (n div i)) then
18 t2 := t2 * h(i);
19 else
20 t := t * h(i)^( MoebiusMu (n div i));
21 end if;
22 end for;
23 t := t div t2;
24 return t;
25 end function ;
26 timenow := Realtime ();
27 timediff :=0;
28 for i in [1..11] do
29 G:= GaloisGroup (g(i));
30 deg := 0;
31 for j in Divisors (i) do
32 deg := deg + MoebiusMu (i div j) * 2^(j -1);
33 end for;
34 timediff := Integers ()!( Realtime () *1000) -Integers ()!( timenow *1000) ;
35 days := timediff div ((3600000*24) );
36 hours := timediff div (3600000) -days *24;
37 minutes := ( timediff div (60000) )-days *24*60 - hours *60;
38 seconds := Real( timediff /1000) -days *24*3600 - hours *3600 - minutes *60;
39 print " Iteration ", i, ":";
40 print " Difference in order with S_", deg ,": ", (Order(G) -

Factorial (deg));

54



41 print "";
42 print " Galois Group: ", GroupName (G), " with order ", Order(G);
43 print "";
44 print " Execution time: ", days , " days , ", hours , " hours , ",

minutes , " minutes and ", ChangePrecision (seconds ,3) , " seconds .
";

45 print "";
46 print "";
47 print "";
48 print "";
49 timenow := Realtime ();
50 end for;
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Screenshots of the results
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