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ABSTRACT

PRIMITIVE PRIME DIVISORS IN THE CRITICAL ORBIT OF POLYNOMIAL
DYNAMICAL SYSTEMS

MOHAMED WAFIK MAHMOUD HASSAN ELSHEIKH
Mathematics, Master Thesis, JULY 2022

Thesis Supervisor: Assoc. Prof. Mohammad Sadek

Keywords: dynamical systems, periodic point, p-adic dynamics, primitive prime

divisors, critical orbit

Let fyc(x) = 2%+ ceQlx], d>2. We write fiefor facofaco---ofae The critical

n times

orbit of fyc(x) is the set Oy, (0) :={f7.(0):n > 0}.

For a sequence {a, : n > 0}, a primitive prime divisor for a,, is a prime dividing a,
but not a; for any 1 <k <n. A result of H. Krieger asserts that if the critical orbit
Oy d’c(O) is infinite, then each element in Oy d,C(O) has at least one primitive prime
divisor, except possibly for 23 elements. In addition, under certain conditions, R.
Jones proved that the density of primitive prime divisors appearing in any orbit of
fa,c(z) is always 0.

Inspired by the previous results, we display an upper bound on the count of primitive
prime divisors of a fixed iteration f; -(0). We also investigate primitive prime divisors
in the critical orbit of f;.(x) € K[z]|, where K is a number field. We develop links
between the existence of a primitive prime divisor in the critical orbit and the
periodicity of the critical orbit of the reduction of f;. in the residue field of K
modulo the primitive prime divisor. Consequently, under certain assumptions, we
calculate the density of primes that can appear as primitive prime divisors of f3'.(0)
for some ¢ € Q. Furthermore, we show that there is no uniform upper bound on the
count of primitive prime divisors of f}.(0) that does not depend on c. In particular,
given N > 0, there is ¢ € Q such that fc? .(0) has at least N primitive prime divisors.

iv



OZET

POLINOM DINAMIK SISTEMLERIN KRITIK YORUNGESINDEKI ILKEL
ASAL BOLENLER

MOHAMED WAFIK MAHMOUD HASSAN ELSHEIKH
Matimatik, Yiksek Lisans Tezi, TEMMUZ 2022

Tez Danigmani: Dog. Dr. Mohammad Sadek

Anahtar Kelimeler: dinamik sistemler, periyodik nokta, p-adic dinamik, ilkel asal

bolenler, kritik yoriinge

fic(x)=2+c € Q[r] ve d>2 olsun. fy.0 fg.0--0 fq. icin fie yazahm. f.(z)

n kez

fonksiyonunun kritik yoriingesi Oy, (0) := {ch(%) :n >0} kumesidir. {a,:n >0}
dizisi i¢in, a,’in ilkel bir asal boleni a,,’i bolen, ancak 1 < k < n i¢in herhangi bir ag’y1
bolmeyen bir asal bolendir. H. Krieger’in bir sonucu, eger Oy d7c(0) kritik yortingesi
sonsuzsa, Op, (0) icindeki her elemanm, muhtemelen 23 eleman harig, en az bir
ilkel asal bolene sahip oldugunu iddia eder. Ek olarak, belirli kogullar altinda, R.
Jones, fg.(x) herhangi bir yoriingede goériinen ilkel asal bélenlerin yogunlugunun
her zaman 0 oldugunu kanitladi.

Onceki sonuglardan esinlenerek, sabit bir f7.(0) yinelemesinin ilkel asal bolenlerinin
say1st fizerinde bir iist sir gosteriyoruz. Ayrica fac(x) € K|xz] kritik yoringesindeki
ilkel asal bolenleri aragtiriyoruz, burada K bir say1 cismidir. Kritik yoriingede ilkel
bir asal bolenin varlig: ile ilkel asal bolen K modiiliiniin kalint1 alanindaki f; . azal-
masinin kritik yortingesinin periyodikligi arasinda baglantilar geligtiriyoruz. Sonug
olarak, belirli varsayimlar altinda, bazi ¢ € Q icin f3'.(0)'m ilkel asal bélenleri olarak
goriinebilen asal sayilarin yogunlugunu hesapliyoruz. Ayrica, f7.(0)'m c’ye bagh ol-
mayan ilkel asal bolenlerinin sayisinda tek tip bir tist sinir olmédlglm gosteriyoruz.
Ozellikle, N > 0 verildiginde, éyle bir ¢ € Q vardir ki, fd .(0) en az N ilkel asal bélene
sahiptir.
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Chapter 1

INTRODUCTION

Let K be a field, and let fg.(x) = 2%+ c € K[z]. We denote the n'!" iterate of fa.c by
fio(x) for n >0, where fc(l)’c(x) =z and f7.(2) = fa.( ggl(x)) We also denote the
orbit of ag € K by O(ag), where O(ap) := {fj.(ao) : n > 0}. The orbit of 0 is called
the critical orbit of f.(z). We now assume that K is a number field with a ring of
integers R. Let p be a prime ideal in R with the corresponding discrete valuation v,
then p is called a primitive prime divisor of fj .(ao) if f7.(a0) # 0, vp(f7.(a0)) >0,
and Vp(f§7c(a0)) =0forall 1 <t<mn.

The primitive prime divisors of the critical orbit of polynomials of the form f; .(x)
have been extensively studied in the literature. The critical orbit of fy.(x) € Z[z]
was investigated in [10]. If the orbit is finite, we only need to check finitely many
iterates to fully study the primitive prime divisors. In [10, Lemma 8], it was proven
that the critical orbit is infinite for all fy.(x) € Z[z] except for three cases, ¢ = 0;
¢=—1and d is even; or ¢ = —2 and d =2. In [10, Theorem 3], it was shown that
when the critical orbit is infinite, then there is at least one primitive prime divisor
of f7.(0) for all n >2 when ¢ = +1 and for all n > 1 otherwise.

These results were later generalized by H. Krieger in [19], to f;.(x) € Q[z]. For the
critical orbit, it was observed that when ¢ = ¢ € Q, where a,b € Z, gcd(a,b) = 1 and
b>2, then fy.(0) = bd‘}lin_l, where a,, € Z and ged(ay,b) = 1. This means that when
c &€ Z, the critical orbit is always infinite. Therefore, it was shown in [19, Theorem
1.1] that for all n > 1, there is at least one primitive prime divisor of chlL, (0) except
possibly for 23 values of n. Moreover, it was proved in [19, Theorem 1.3] that, unless
d is even and c € (—Qﬁ,—l), for all n> 2, fi.(0) has at least one primitive prime

divisor.

These results give an insight into the lower bound of the number of primitive prime
divisors of fj.(0). For the upper bound, we used some of the results in [19] to give

an elementary upper bound in Theorem 4.23. Although the bound is an elementary
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bound, it raises the question if a uniform bound that does not depend on the value
of ¢ might exist or not. However, we show that the answer is negative. This is due

to the following result, which can be found as Corollary 5.10 in Chapter 5.

Theorem 1.1. Let d be a positive integer and U = {(n;,t;)}"; be a finite set of
pairs of positive integers. Then there exists an integer ¢ such that fgf:(()) has at

least t; primitive prime divisors for each 1 <1 < m.

This implies that fixing the degree d > 2 and the iteration n > 1, there is a polynomial
of the form f;.(z) for some ¢ € Q such that f7.(0) has arbitrarily many primitive
prime divisors. This means that the upper bound on the count of primitive prime
divisors must depend on the value of ¢. Corollary 5.10 along with [17, Theorem
3.3] also give rise to Corollary 5.12 which gives a method to construct polynomials
fac(x) € Z[z] such that the Galois group of the splitting field of fj () is maximal.

Another direction of studies has been conducted to calculate the density of primes
appearing as primitive prime divisors in an orbit. R. W. K. Odoni, in [23, Theorem
2], proved that for the polynomial f(z) =22 —2 +1 € Q[z], and denoting the set of
primes appearing as primitive prime divisors for f"(ag) for some n >0 and ap € Q
by P(f,ap), the density of the set P(f,2) in the set of all primes is 0. Furthermore,
in [23, Section 8|, it was observed that changing ap to any other value such that
{0,1}NO(ap) = 0, yields the same result.

Later, these results were generalized by R. Jones in [17]. He proved that for
some families of polynomials, including f(z) = 2? —kx +k for k € Z and 2? +k
for k € Z\ {—1}, the density of primes in P(f,ag) for any ag € Z is zero, see [17,
Theorem 1.2]. Moreover, denoting the set of primes dividing some elements in the
set {go f"(ao)}n>0 by P(g, f,a0), in [17, Theorem 1.1], it was proven, under certain
assumptions on f,g € Z[x], that for any ag € Z, the density of P(g, f,ap) is 0.

In [13], the latter results were generalized, under certain condition on the field K
and the polynomial fq.(z) € K[z]. More precisely, the density of primitive prime
divisors in the orbit of any ag € K under the iterates of fy.(x) € K|[x] was proved

to be zero, see [13, Theorem 1].

Inspired by these studies, we investigate the density of the set P of primes that can
appear as primitive prime divisors for fCZC(O) for some ¢ € Q. We also note that
in [17, Theorem 3.3], the value of v(f;.(0)) was crucial for studying the structure
of Galois groups attached to the splitting fields of the iterations of fj.(x). This
motivates studying the density of the set Pr of primes that can appear with certain
powers T as primitive divisors of fj'.(0) for some ¢ € Q. In fact, the difference P\ Pr

for any T is finite, according to Corollary 4.9. For the case d = 2, conditional results
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on the densities of P and Pr are given in Theorem 5.3. In general, we have a partial
answer that gives rise to the following theorem that can be found as Theorem 5.7
in Chapter 5.

Theorem 1.2. For all d > 2 and n > 1, there are infinitely many primes p such
that, there is ¢ € Q such that p is a primitive prime divisor of fg;c(()).

To prepare for the proofs of the mentioned results, in Chapter 2 we state the main
definitions and concepts about arithmetic dynamical systems. We also introduce
some tools to help us in their study. After that, we introduce the notation of
primitive prime divisors in integer sequences with definitions and some previous
results for different integer sequences. We then talk about some related studies on
those divisors in dynamical systems. Lastly, we talk briefly about post-critically

finite polynomials in order to later investigate them and link them to our work.

In Chapter 3, we consider dynamical systems over a non-archimedean local field K
with a ring of integers R and discrete valuation v. We also denote the residue field of
R by k with the reduction of a point » € R denoted by 7, and similarly the reduction
of a polynomial fg.(z) € R[x] denoted by f(;;(x) With these notations, we study
the relation between the orbit of a point » € R under the iterations of fy.(x) and
the corresponding orbit of 7 € k& under the iterations of fAdJc(x) For the case that
7 is strictly preperiodic for ]/‘;c(x), we relate the orbit type of r» and 7, and for the

case where =0 and 0 is periodic for fy.(x), we obtain similar relations.

In Chapter 4, we work over a number field K with a ring of integers R and a prime
ideal p. The localization at p of K and R are denoted by K and R, with the residue
field kp. The reduction of a point r € Ry and a polynomial f;. € Ry[z] in k, are
denoted by 7 and ]?;l;. Fixing t > 1, we show that, except for finitely many primes,
if a prime p can appear as a primitive prime divisor for f; .(0) for some ¢ € Q, then
p can appear as a primitive prime divisor for fj.(0) with w( fa ~(0)) =t for some

deq.

We then use the tools of Chapter 4 to obtain a conditional one-to-one correspondence
between the polynomials of the form fy () in Zy[z] with periodic critical orbit, and
the polynomials of the form fy.(x) in F,[x] with periodic critical orbit. Lastly, we
move to the field Q and use the results from [19] to give an elementary upper bound

on the count of primitive prime divisors of f7.(0).

In Chapter 5, we investigate the densities of the sets P and Pp. We first simplify
the problem of finding these densities in the first section by replacing these sets with
sets of primes p such that a certain polynomial has a root in F,. After that, we

use the previous results developed in Chapter 4 to give a conditional result on the
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aforementioned density, with a full description of that density, for d =2 in Theorem
5.3. For the general case, we also give an unconditional partial answer in Lemma 5.6,
that the density is never 0, which leads to Theorem 5.7 talking about the existence of
infinitely many primes that can appear as primitive prime divisors of f7.(0) for some
c € Q. This leads to Theorem 5.8, which briefly describes a constructive method
to choose ¢ such that certain powers of arbitrarily many primes appear in certain
iterations, and Corollary 5.10 implying that there is no uniform bound on the count
of primitive prime divisors of fj .(0) that does not depend on c¢. We conclude by
merging the result from Corollary 5.10 with [17, Theorem 3.3] to find ¢ such that

fd () has the Galois group of maximal order, which is 92" -1,

We would like to remark that all the computations in this thesis are done using
Mathematica [15] and MAGMA [5].



Chapter 2

Preliminaries

In this chapter, we work to lay the ground for our work. We give a brief about
dynamical systems over different fields and rings along with important results from
the literature that will help explain the direction of our work and give insights into
our setup. We also introduce the notion of primitive prime divisors with a small
survey of earlier results relating to different integer sequences. After that, we show
how this notion relates to dynamical systems with some known results. We also
discuss post-critically finite polynomials in brief to later introduce a connection

between those, and primitive prime divisors in critical orbits.

2.1 Dynamical systems

We start by defining a dynamical system. The following definitions can be found in
[24, p. 1] with change of some notations for the purpose of unifying the notations

in our work.

Definition 2.1. [24, p. 1] A dynamical system is a set S together with a self map
f:S— S that allows iterations. The n'-iterate of f is

fr=fofo-of.
| L —

n times

By convention, fO is the identity map, i.c., fO(x) = .



Definition 2.2. [24, p. 1] For a given point xo € S, the (forward) orbit of xo under
the map f is the set

Op(xz0) =O(w0) = {f"(x0):n=0}.

Definition 2.3. [24, p. 1] The point xo € S is called a periodic point under f,
if there exists an integer n > 0 such that f™(xg) = xg. The orbit of xq is called a

periodic orbit.

An integer n such that f"(xo) = ¢ is called a period of xo. The smallest such integer

n is called the exact period of xg. We also say that the point xo has period type (0,n).

Definition 2.4. [2/, p. 1] The point xo € S is called a preperiodic point under f,
if there exists an integer m > 0 such that f™(xq) is periodic, i.e., xq is preperiodic
if Of(wo) is finite. The orbit of xq is called a preperiodic orbit. If m # 0, then the

point xq s called a strictly preperiodic point.

The least such integer m is the tail length of the orbit, whereas the exact period of
f"™(xo) is the eventual period. If the orbit of zo has a tail length m and an eventual

period n, then we say that s has a period type (m,n).

Definition 2.5. [2/, p. 1] The sets of periodic and preperiodic points of f in S are
denoted by

Per(f,S) = {xzoe S: f"(xo) =0 for somen > 1}
PrePer(f,S) = {wg€S: "™ (xg) = f"(x0) for somen>1,m >0}
= {x0 € S:0¢(x0) is finite}.

We write Per(f) and PrePer(f) when the set S is fized.

From now on, following the notations of [24], we identify the set S as a local field
K, with a normalized discrete valuation v, an algebraic closure K, and a ring of
integers R. The maximal ideal of R is denoted p and the residue field k := R/p.

Working inside a field allows us to use the following definition, which will be useful

in many calculations.

Definition 2.6. [24, p. 19] Let xg € K be a periodic point of exact period n for f.
Then the multiplier f at xg is defined by

Aao (f) = (") (z0)



We note that this means

Awo(f):=TI F'(f'(x0))

0<i<n—1

We denote the reduction of f(x) modulo the maximal ideal p by f . We write a
rational function f(x) = ggg with F'(z),G(x) € R[x]. We also take the lowest form
such that ged(F,G) =1 in K|[z], and at least one of the coefficients of F'(z) or G(z)

is a unit in R, that is, it has a valuation equal to 0.

We say that a rational map written as above has good reduction modulo p if

ged(F,G) =1 in k[z)].

Theorem 2.7. [24, Theorem 2.21] Let f: K — K be a rational function with degree
d > 2 defined over a local field K with a non-archimedean absolute value |.|,. Assume
that f has good reduction, let P € K be a periodic point of f. Define the following

quantities:

n  The exact period of P for the map f.

m  The exact period of P for the map f.

s The order of /\}v(ﬁ) in k*. (If /\J';(ﬁ) is not a unit, then s = 00)
p  The characteristic of k.

Then n has one of the following forms:

n=nm, n=nms, n =msp°®

For our work, we will be especially interested in the polynomial maps of the form
faclz) = 2%+ ¢. We also note that for this family of polynomials, there is only
one critical point, i.e., a point xg such that fC'l’C(zo) =0, that is, the point x¢o = 0.
Throughout this thesis, we will give special attention to the orbit of 0 under fg.(z).

For the family of polynomials fg.(z), we can see that

Ao (fae) =d" T (fhelzo)™!

0<i<n-—1

If xg =0, then fc(l)jc(()) =0 and so, Ao(fg.c) =0.

2.2 Dynatomic polynomials
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While searching for periodic points of f(z) € K(z) of period n, we note that these
are the zeros of the polynomial f™(z) —xz. However, if we want to only look for
points with exact period n, we need to exclude the points of exact period dividing

n.

The dynatomic polynomials are defined as follows [24, Section 4.1]

tn
Where (1 is the Mobius function defined by p(1) =1 and

(=1)" ifeg=-=e=1

0 otherwise

We note that the roots of the dynatomic polynomials are periodic points of period n,
but not necessarily exact period n. For that, we denote the roots of the dynatomic

polynomials to be points of formal period n.

Although from the definition of the polynomial, it might not be clear that it is

actually a polynomial. However, we refer to the following theorem:

Theorem 2.8. [2/, Theorem 4.5] Let f(z) € K(x) be a rational function of degree
d>?2. For each P € K, let

ap(n) := Ordp(f"(z) — ) ap(n) :=Ordp(¢n (1))

Then

(a) ¢n(x) € Kz|, or equivalently,

ap(n) >0 foralln>1and Pe K.

(b) Let P be a point with exact period m and multiplier \(P) = (f™)'(P). Then
P has a formal period n (i.e., ap(n) >0) if and only if one of the following
happens:

(i) n=m.

(i) n=ms and N(P) is a primitive s root of unity.



(iii) n =msp®, N(P) is a primitive s™ root of unity, K has characteristic p,
and e>1

Part (a) of the previous theorem tells us that the dynatomic polynomial is, in fact, a
polynomial. The second part shows the connection between points of formal period
n and exact period m. In fact, if A(P) is not a root of unity, then P has a formal

period n if and only if P has an exact period n.

For the special family fq .(z) = 2%+ ¢, we give a special notation for ¢, to be Gdn-
Also, since we have just one coefficient, we can take this coefficient into account of
the dynatomic polynomial in order to study the family of polynomials fg.(z) for a
fixed d > 2. So we work with

San.0) = TI(F o) — 2y

t|n

Since we are especially interested in the point xg =0, we take the polynomial eval-
uated at z =0 to be

Gan(c) = dan(0,¢) == [(f5.(0)"%)

tln

We note that by the Mobius inversion, we get that

fie(0) = [[Gaq(o).

t|n

Remark 2.9. As we saw in the previous section, if 0 is periodic, then Ao(fa.c) = 0.
This means that X\ is not a root of unity. This implies that 0 can have formal period

n if and only if O has exact period n.

The polynomial Ggy(c) is called the Gleason polynomial. However, the definition
of the Gleason polynomial is not entirely consistent in the literature. For example,
some works define this polynomial similarly but starting with dynamical systems
attached to polynomials of the form az?+ 1 [6] instead of z¢+ ¢ [2]. We note
that even the irreducibility of these polynomials has not been proven yet. In [7,
Conjecture 1.4], it has been conjectured that for d =2, Gg(c) is irreducible over
Ql¢] for all n > 1. Although many studies have been carried out in this direction
even before formalizing the conjecture in the mentioned article, this appears to be

a long-standing question with no proofs yet, even for the simplest case with d = 2.



2.3 Primitive Prime Divisors

We now move on to another concept, which will be linked to the dynamical sys-
tems in our work. We start in the first subsection by definitions and previous work
in different setups to get an understanding of this concept. After that, we con-
sider results from literature on the primitive prime divisors of orbits of polynomial

dynamical systems.

2.3.1 Definition and Previous Results

We start by defining a primitive prime divisor in an integer sequence as follows:

Definition 2.10. For an integer sequence {ay,az,...}, a prime p is said to be a

primitive prime divisor of an, if
a. plan, and
b. ptag forall1<k<n
First, we introduce an elementary example to illustrate what this definition means.

Example 2.11. Let {a, :n > 1} be a sequence in which

alzl, a2:2, CL3:3, a4:6.

2 is a primitive prime divisor for as,

3 is a primitive prime divisor for as.

However, a4 does not have any primitive prime divisors.
With this example comes the definition of the Zsigmondy set.

Definition 2.12. For an integer sequence {ay,az,...}, the set
Z({a;}) :={n: ay has no primitive prime divisors}

is called the Zsigmondy set attached to the sequence {a;}.
Example 2.13. For the sequence in Example 2.11, one has 4 € Z({n}).
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Primitive prime divisors have been studied extensively in literature. Two of the
sequences that have been heavily investigated are the Lucas and Lehmer numbers

defined as follows:

Definition 2.14. [}/ A Lucas pair is a pair (o, ) of algebraic integers such that
a+ [ and af are non-zero coprime rational integers with % not a root of unity. For
a Lucas pair, one defines the corresponding Lucas numbers by

_an_ﬁn

Up = Up(a, 5) = P n=0,1,...

Definition 2.15. [// A Lehmer pair is a pair («,f) of algebraic integers such
that, (a+ B)% and af are non-zero coprime rational integers with % not a root of

unity. For a Lehmer pair, one defines the corresponding Lehmer numbers by

QB .
T I e A
32:g2 If n is even

A famous example of these numbers is the famous Fibonnaci sequence.

Example 2.16. Let a = # and B = 1_2\/5, thena+pf=1€Z and af=—-1€7Z
with ged(a+ 5,af) = 1.

So, (a, B) is a Lucas pair with a corresponding Lucas numbers
145\ _ (1=vB\"
(%2) - (57)

V5

Up =

which is the famous Fibonnaci sequence.

Remark 2.17. If we choose for example, o = @ and [ = @, then a4+ =
V5 & 7. In this case, (o, ) is not a Lucas pair. However, one can check that (., 3)

is a Lehmer pair.

The primitive prime divisors of Lucas and Lehmer numbers have been intensively

studied in literature.

Theorem 2.18. [8] For a, 5 € R, uy(«,3) has at least one primitive prime divisor
formn >12.

Theorem 2.19. [25] For o?,3? € R, up(a, ) has at least one primitive prime di-

visor for n > 30.

Theorem 2.20. [}/ For o, € C, up(«, ) and u,(a, 3) have at least one primitive

11



prime divisor for n > 30.

We will now shed some light on studies related to dynamical systems.

2.3.2 Primitive Prime Divisors in Orbits of Dynamical Systems

Given a dynamical system, one can ask about the primitive prime divisors in an

orbit of a point.

Given a map f(z) € K(x) and a point ag € K, the orbit of ap can be thought of as
the sequence {a, : n > 0}, where a,, = f"(ag). Note that, for the search of primitive
divisors, we have to ignore the zero elements of the sequence if they existed. From

now on, the Zsigmondy set of O¢(ag) is denoted by Z(f,ao).

To study primitive prime divisors, the sequence should be infinite. For the family
of polynomials that are of special interest to us, fg.(x) = 2%+ ¢, there is one critical
point (g =0). The orbit of this critical point has been investigated in many studies.

For example, taking c € Z, the following was proven in [10].

Lemma 2.21. [10, Lemma 8] Let fy.(x) = 2%+ c € Z[z] be a polynomial with d > 2.

Then 0 is a preperiodic point if and only if exactly one of the following cases is true:
(1) ¢=0.
(2) ¢=—1 and d is even.
(3) c=—2and d=2.

This means, that for the search of primitive prime divisors in the critical orbit of
fac(x) € Z]z], these three cases can be excluded. The following theorem can be
found in [10, Theorem 3].

Theorem 2.22. Let fy.(v) = 2%+ c € Z[x] be a polynomial with d > 2. If 0 is not

a preperioidc point (i.e. is a wandering point), then
(1) If c= =1, then fgf’c(()) has a primitive prime divisor for all n > 2.
(2) If c # 1, then fo’C(O) has a primitive prime divisor for all n > 1.

This study was focused on fg . when ¢ € Z. When ¢ € Q, similar results were obtained
in [19]. For ¢ = § € Q with ged(a,b) = 1, it can be easily shown that fj.(0) = bd?winflv

for some a,, € Z with ged(ay,b) = 1. Consequently, one can see that if 0 is preperiodic
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for f4.(x), then b= =1, i.e., c € Z. This means that Lemma 2.21 lists all polynomials
fa.c(x) with a preperiodic orbit of 0.

For the primitive prime divisors of the critical orbit of these functions, we can look at
the sequence of integers {a, }, where f7.(0) = bd‘,ﬂ—”_l. For this sequence, as mentioned
before, the Zsigmondy set is denoted by Z(fq.,0). In [19], this set was studied and

the following result was proved.

Theorem 2.23. [19, Theorem 1.1] Let fy.(x)=x%+c € Q[z] be such that the critical
orbit is infinite. Then #7Z(fq.,0) < 23.

We can look at the previous theorem from a different angle. We can say that in
the critical orbit of fy.(x), excluding 23 elements, the lower bound on the count of

primitive prime divisors in an iteration is 1. This gives rise to our first question:

Question 2.24. Let fq.(x) = z% 4 ¢ such that the critical orbit is infinite. Let n > 2

be an integer, Is there an upper bound on the count of primitive prime divisors of

fi:(0)7

We would like to make a few remarks about the results of [19]. The integer 1
lies in Z(fq.,0) if and only if ¢ = £1. This means that a prime divisor p was
considered primitive for f;.(0) when either pla or p|b. However, in [13], a prime
ideal q was considered to be a primitive prime divisor for f7.(0) if v4(f7.(0)) > 0.
Since the denominator in this orbit is growing in power without additional divisors,

this inconsistency in the definition is only affecting n = 1.

The bound 23 in Theorem 2.23 is not affected whether the prime divisors of b are
considered to be primitive divisors or not. This is due to the following result, where
M (c) denotes an integer such that, for all n > M (c), n & Z(fq.,0).

Theorem 2.25. [19, Theorem 1.3] Let fy.(z) =2%+c withd>2 and c= ¢ € Q.
If d is odd, or d is even, and ¢ & (—Qﬁ,—l), then we can take M (c) = 2.

This means that the maximal bound 23 can only be attained, if possible, when
1
c € (=231 —1). For this range, one must have |a| > |b|. This means that |a| # 1.

So, there is at least one prime p such that pla.

Another question that was studied in literature is about the density of primes that
appear in the orbit. One of these studies is introduced in [13]. First, we summarize
some definitions from that study. Denoting a number field K with algebraic closure
K, and a ring of integers R, a prime ideal q C R is said to divide Ofd’c(ao) where
ag,c € K, if there is n > 0 such that f7.(ao) # 0 and v4(f7.(ao)) > 0. The author
defines the set Py, (ag) :={q C R:q divides Oy, (ao)}. With this set, the density
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of the prime divisors of the orbit is defined by

. #{q € Py, (ao) : N(q) <z}
D(Py,,(ao)) := limsup A C R N <]

where N(q) denotes the norm of the ideal q. With these notations and with Mg
denoting the set of places of K, the following was proved:

Theorem 2.26. [13, Theorem 1] Let K be a global field that contains a primitive
d™ root of unity, and let faclz) = z?+c. Suppose c € K, Ofd,c(0> is infinite, and
one of the following holds:

(1) There exists a non-archimedean place v € Mg such that |c|, <1, and the

residue characteristic of v is prime to d; or

(2) d is prime and for j >0, fic(z) =q1(2)...g9:(z) with each g; irreducible and
none of g fae(0),gi(/3(0)).0:(f3(0)). .. is a d™ power in K.

Then D(Py, (ao)) =0 for any ag € K.

To elaborate, if we study fy.(x) € Q[z], we can take K = Q(() where ( is a primitive
d™ root of unity and ¢ € Q\ {0,—1,—2}. Condition (1) in this case translates to: if
there is a prime p such that v,(c) >0 and p{d. In this case, D(Py, (ag)) =0 for
any ag € Q (in general, with ag € Q(¢)).

Fixing d > 2, under some technical conditions, the density of primitive prime divisors

in an orbit Oy, (ag) is 0. This raises our second question.

Question 2.27. Fizingd>2, n>1, ag € K. What is the density of the primes in
the set {p:p is a primitive prime divisor of fy .(ao) for some c € K}?

Another study related to primitive prime divisors in orbits was done in [17]. Denot-
ing Hy(f,g) := Gal(K,,/K,—_1), where K,, is the splitting field of go f™. Hy,(f,g) is
said to be maximal if H,(f,g) = (Z/Qz)deg(gofnil). The following was proved:

Theorem 2.28. [17, Theorem 3.5] Let f,g € R[z] with f(x)=ax®+bzx+c, and let
v be the critical point of f(x). Suppose that go f™ is irreducible for all m > 1. If
n > 2 and there is a prime p C R such that vy(g(f™(7))) is odd, ve(g(f™(v))) =0
for all1 <m <n and vp(2a) =0, then H,(f,g) is mazimal.

In the above theorem, setting g as the identity map and f(r) = fa .(z) = 2%+ c where

—c is not a square in Q. It follows that f3 .(z) is irreducible for all n > 1, see [9,

Corollary 5]. In this case, Theorem 2.28 asserts that finding an odd primitive prime
2n—1

divisor p for f.(0) for which v;,(f3.(0)) is odd implies that Hy,(f2c,9) = (Z/2Z)° .

In particular, there is a link between the forward orbits of polynomials and the
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behaviour of the Galois group of the iterates.

The condition on the power of the primitive divisor gives rise to the following ques-

tion.

Question 2.29. Fixingd>2, n>1, ag € K. What is the density of primes in the

set
{p:p ds a primitive prime divisor of fq .(ao), and vy(fg.(ao)) is odd for some c€ K}?
Fizing an integer t > 1, How about the following set

{p :p is a primitive prime divisor of fg.(ao), and vy(fg.(ao)) =t for some c€ K}?

2.4 Post-Critically Finite Polynomials

In this section, we discuss Post-Critically Finite (PCF) polynomials. Previous results
about those polynomials will be discussed in general settings, as well as in p-adic

fields, which will be of great interest to us.

Definition 2.30. [1, Definition 1.1] A polynomial f is post-critically finite (PCF)

if the orbit of each critical point is finite.

PCF polynomials are of interest to us in finite and p-adic fields. That is because of
the definition of primitive prime divisors, we can see that for fy .(z), p is a primitive
prime divisor for f7.(0) is equivalent to saying that 0 is periodic with exact period

n for the reduction of the polynomial fg.(z) in [F).

Some studies have shed light on PCF polynomials. In [20], there is a complete
classification of all PCF quadratic polynomials defined over Q. Similarly, in [1],
there is a similar classification of PCF cubic polynomials. We say that two maps
f,g are conjugates if there exists a linear map h(x) = ax +b € K[z]| such that,
g=ho foh~!. With this, the conjugacy class of f € K(z) is the set of all maps
g € K(z) such that, g, f are conjugates. The authors proved in [20, Theorem 1] that
there are exactly 12 conjugacy classes of PCF quadratic polynomials defined over
Q. Similarly, in [1, section 1], it was shown that there are 15 conjugacy classes of

PCF cubic polynomials defined over Q.

15



A polynomial with one critical point is called a unicritical polynomial. For the
unicritical polynomials with d =2, fo.(z) = 22+ ¢, the periodic and preperiodic

critical orbits were studied separately in [21]. For the preperiodic case,

Theorem 2.31. [21, Theorem 1.1] Let p > 3 and consider the critical orbit for
fo.c(x) =22 +¢, c€Zy. If for the reduction of fac(z) in Fpylz] (ng/c(x)), 0 is strictly
pre-periodic with orbit type (m,n), withm >0, then for fa..(x) =2+ c € Zy[x] either
0 has orbit type (m,n) over Z, or there exists some k> 1 and r|(p—1) (or possibly
r=pifp=3)in7Z such that

(1) 0 has orbit type (m,n) (mod p*) for all i <k, and
(2) 0 has orbit type (m,rn) (mod p’) for all j > k.

Otherwise, 0 has an infinite orbit in Z,, with orbit type (m,n;) (mod p*) for alli >1,
where n; is the length of the cycle in which 0 lands when its orbit is calculated (mod
).

For the periodic case:

Proposition 2.32. [21, Proposition 2.4] Let p > 3 and consider the critical orbit of
fo.e(x) =2%+c, c € Zy. If for the reduction of fac(z) in Fpy[z] (chgv’c(x)), 0 is periodic
with ezact period n, then for fo.(x) = 1% +c € Zy[x] either 0 is periodic with exact

period n or 0 has an infinite orbit in Z, with orbit type (m;,n) (mod p*) for alli > 1.

In the next chapter, we will study the results in the thesis [21] and give a general-

ization of the results mentioned.
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Chapter 3

PCF Unicritical Polynomials over Local Fields

In this chapter, fq.(r) =29+ c € Rz] for d > 2 with R being the ring of integers
of a non-archimedean local field K with discrete valuation v corresponding to the
unique maximal ideal p. The algebraic closure of K is denoted by K, and the residue
field of R with respect to the unique maximal ideal p is denoted by k = R/p with
characteristic p. We denote the reduction of a point r € R modulo p by 7 and the
reduction modulo p’ by r+p?. Similarly, the reduction of a polynomial f(x) € R[z]
modulo p[z] is denoted by f(x) and the reduction modulo pt[z] by f(z)+p*[z]. The
units of R are denoted by R* with k* = R*/p, where a unit in R is a point r such
that v(r) =0.

With this notation, we study the connection between the orbit structure of a point
r € R under the iterations of fy .(x) € R[x], and the orbit structure of 7 € k under the
iterations of fAdTC(x) € k[z]. Since k is a finite field, the orbit of 7 must be preperiodic.
So, given the orbit type of 7, we investigate the orbit structure of r. We divide the
study into two sections. First, we study the case where the orbit of 7 is strictly
preperiodic, i.e, the tail length of the orbit of ¥ under the iterations of fAdTC is not 0.
After that, we limit our scope to the critical orbit, and we continue by investigating

the case that 0 is periodic under ﬁ;;(x)

3.1 Unicritical Polynomials with a strictly preperiodic orbit

We fix d > 2, c€ R, and r € R. Assuming that the orbit of 7 under J?C;;(I) is strictly
preperiodic in k, we investigate the orbit of r under fq.(x). In particular, we are

interested in whether the orbit is infinite or finite. In the case where the orbit of r
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under fy . is finite, we show that there are finitely many possibilities for the orbit

type of r.

First, we introduce the following lemma that will be used throughout the rest of

this section.

Lemma 3.1. Let f;.(z) = 2%+c € R[z] where v(d) =0. Let v € R be such that 7 is
a strictly preperiodic point of fdvc(x) in the residue field k. Then, if (mg,n¢) is the
period type of r+p' in R/(p') for fg.(x)+p'[z], then fau(x) +pt*tiz] behaves as a
linear function around fg?ct(r) +pttlin R/pttY e, fory cpt

(fg’tc(lectmw)_fd, (r ))ertﬂ Ay +b+pttt

where b € pt and \ = fax( )|$: IO

Proof. Let (my,n;) be the period type of r+p’ in R/(p?). Let | = fg? (r) € R.

Define ¢ : pf/pit! — R/(p'*!) where ¢g(y) = (f:ll,tc(l +y) =)+ pttt Write
d" .
fit(x) = X a;-z* With agn =1
b Z:0

d" .
Note that [ is a fixed point for fj%.(z) +pl[z] in R/(pY), ie, S a;-1' =1+ for some
1=0
bept. Let A= f ( Zaz i-1'"1. So working in R/(p'™!) we get that,
(fia+y) =D+ = Za (I+y) —1+p™!

Since k > 1 then, y? € p?* C pt*1. This means that (I+y) +ptl =0 i1y +
p!t1. Hence,

(fral+y) =) +p Tt = Zaz (i 1L y) — 14 ptt?
1=0

Zaz IF—1) +Zaz 1Ty pt

dn
=bty- > a;-i- 1 ptTt
=1

So,
9(y) = (fe(l+y) =D +p T =b+x-y+p™!
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Remark 3.2. With the notations of the previous lemma, if L = fi'.(r), fZZf:(l) =1+b
where b € pt, and g:pt/ptTt — R/(p') where g(y) = (fgell+y)=1) +ptTL then
Im(g) C pt/p!*t. This means that the iterates of g(y) are well defined.

Proof. As shown in the previous lemma, g(y) = Ay +b+p'*l. Since y,b € p*, then
My +bep”. O

Using the previous lemma, we can now show that, under certain conditions, if 7 is
strictly preperiodic for f;;(x) in k with tail length m > 0, then r +p’ is strictly
preperiodic for fy.(z)+p'[z] in R/p’ with tail length m for all integers ¢ > 1.

Lemma 3.3. Let fy.(z)=x%+c€ R[z] Where v(d)=0. Letr € R be such that 7 is
a strictly preperiodic poz’nt of EJC( ) in the residue field k with period type (m,n). If
v(A) =0 where A = afdc
preperiodic with pemod type (m,ng) for fac(x)+ptla] for allt>1 and some ny > 1.

]x £ () is the multiplier of f&?c(r), then r+pt is strictly

Proof. For t =1, the period type is (m,n) by the hypothesis of the lemma.

Let r+p! be a strictly preperiodic point in R/p? with period type (m,n;). It is clear
that since R/p'*! is a finite field, 7 will remain preperiodic. We want to show that

the tail length is myp1 =m

Since my1 > m, it suffices to show that f7.(r) +pttl s periodic in R/pttL.

In same notations as last lemma, we can write

L= fiu(r), fqt(l)=1+0bwhere bep', g(y) = (fit(l+y) =) +p" =y +b+p*l.

Looking at the iterates of 0 in g, we get {0,b-+p" ™1 b(14+X\) +p!THb(1+ A+ 22) +
pitt )

If A\=1 then (1+A+...) =p where p is the characteristic of k. This means that
—_———
p—times
: t ) — t+1
(I1+X+...) €p and since b € p*, then ¢g’(0) =0+p
p—times

If A€ R*\ {1}, then there is a positive integer s such that A*+p=1+p. So,
g TH0) = b1+ A+ AT 4 pttl = b L2204 ptHL = 0 ptHL

Claim: g*(0) = (fg, Ty )—f$c(r))+pt+l for any > 1.
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The proof of the claim is by induction. For o =1, it’s trivial. Assume that it is true

up to a = «ay.

g 0) = g(g™(0))
= g((fgom ™ () = fi () +p)

(FRL L) + L f50™ ™ () — ()} = £ () + ptH
= (fIL(f50m () — f(r) +pt !

(/3 “0“ T () — f(r) +pt T

So if a is the period of 0 under the iterates of g, then

(S0 () — fi () + pt T = ptHL,

Reordering the equality,

Or in other words,

fae(r) +p'* s periodic for fac(x) +ptin R/pttL

]

Corollary 3.4. Let fy.(z) =2+ c € R[z] where v(d) =0. If 0 is a strictly prepe-
riodic point of ﬁlvc(x) in the residue field k with period type (m,n), then 0+ p'
strictly preperiodic with period type (m,ng) for fac(x)+p' for all t > 1 and some
n¢ Z 1.

Furthermore, for any r € R such that v is a strictly preperiodic point of Jf‘“;c(x) in the
residue field k with period type (o, 3), r+pt is a strictly preperiodic of fac(2) +p!
with period type («, By) for allt>1 and some ny > 1.

This corollary is a direct consequence of the fact that A = d™ [] B ( fm“( )

If v(\) # 0 then either v(d) > 0 contradicting the hypothesis of the statement or
((me( ))) > 0 for some 0 <7 < mny— 1 which means (fmﬂ( )) € p. But in this

—~—m-+1i

case, fa. (7)) = 0 is a periodic point for fd,c( x) again contradicting the hypothesis.

With the tail length not changing, we can now use [24, Theorem 2.21] to prove that
there are finitely many possibilities for the period type of the lifted point.

Theorem 3.5. Let fy.(z)=x%+c€ R[], where v(d)=0. Let r € R be such that ¥
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is a strictly preperiodic point of ﬁ/c(as) in the residue field k with period type (m,n)

and v(A) =0 where A = 8%2(3;) ‘x:fén (r) 18 the multiplier of chc(T): then r has infinite

orbit in R, orr has orbit type (m,l) where l=n, l=ns orl=nsp® for s = Ordg«(\)
and 0<eecZ

Proof. Let 7 be preperiodic with period type (m,n) in k. As seen in Lemma 3.3,
r cannot be periodic in R. If r doesn’t have an infinite orbit, then it must be

preperiodic with tail length m.

If the period type of r in R is (m,[), then fgfc(r) is a periodic point with period [ in
R and its reduction Em(ﬁ is periodic with period n in k. By [24, Theorem 2.21],

we have [ =n, [=ns, or [ =nsp°. O

The previous result is for a non-archimedean local field K. Taking K = Q,, we

obtain the following corollary.

Corollary 3.6. Let fq ()= e Zp|z), where p be a prime such that p{6d. If

7 1is strictly preperiodic for the reduced function ]/"dvc(x) over the residue field Fy, with

) n /
period type (m,n) and multiplier A\ = f(g;(x) |m:f‘m(r) € Zy,, then either r has infinite

orbit in Zy, or r has orbit type (m,l) where l =n orl=mns for s = Ordy,(A\)|p—1.

Proof. In the case of K =Q and p{6, [24, Theorem 2.28| implies that [ = nsp®
cannot occur. This is because the ramification index for any prime in the rational
field is 1. Therefore,

2
p_

Where the second inequality is due to p16, that is, p > 3. O]

This corollary directly implies the period-type result mentioned in [21, Theorem 1.1]
about preperiodic orbits in the case d =2 and r = 0 with the exception of p = 3.
The theorem by Mullen gives more information about the change of the eventual
period. Namely, in the case that the eventual period is of the form ns, there is an
integer a such that 0+ p’ has the period type (m,n) for t < a and the period type

(m,ns) for t > a.

3.2 Unicritical Polynomials with a periodic critical orbit
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In this section, we only consider the critical orbit of fq.(x). Starting with a unicrit-
ical polynomial with a periodic critical orbit in £ and a lift of the polynomial in R,

we show that there are only two possibilities for the critical orbit in R.

To do this, we prove that for the tail length must be 0. This is done in two steps.
First, limiting the possibilities for the tail length. Then, we show that none of these

possibilities can occur.

Before that, we show in the following lemma that the eventual period must remain

n where n is the exact period of 0.

Lemma 3.7. Let fy.(v) =2+ c € Rlz], where v(d) =0. If 0 is periodic for f;;(l‘)
in k with exact period n then 0 in R has infinite orbit or period type (m,n) for some

mEZZO.

Proof. 1f 0 is not a wandering point, then for some m, fglc(()) is periodic. We want
to show that the period of f7%.(0) is n. Assume f;.(0) has exact period [ Let k> .

Then, C’fg(O) is also periodic with exact period .

Since 0 is periodic in the residue field with period n, then the reduction ﬁ;kn(ﬁ) in
k is 0 which has period n. By [24, Theorem 2.21], [ =n, [ = ns or [ = nsp®, where
s = Ordg«(\). But f52(0)|%|x:fkn(o) = \. So, the multiplier is A\ € p. This
means that s = Ordg«(\) = c0. ie. [ =n or [ = oo contradicting the assumption

that 0 is not a wandering point. O]

With the eventual period, we prove that the valuation of the difference between

f(lfzn — fé . does not change within one cycle.

Lemma 3.8. Let fy.(r) = 2%+ c € R[z], where v(d) =0.

If 0 is periodic for ﬁ;(x) in k with exact period n then for allm >1 and 0 < a <n,

we have

(1) v (g - 57700 0)) = v (S - £ ).
) () = £ ") divides (40 - £ (0)).

Proof. The proof of (1) is by induction on a. For the case a =1, it is the hypothesis.

Assuming that (1) is true for some a, 0 < a < n, we prove the statement for a+ 1.
Since in k, 0 is periodic with period n, then set 8:= (f"+(0) — fc(lT_l)n+a(0)) €p,
ie, g:‘fJ“a(O) = fgg_l)nJra(O) + (3. Let a@ > 1 be an integer such that g € p® and
B g poe—&-l‘
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Also, since nt ((m—1)n+a) and 0 has exact period n in k then, fy c(m 1)n+a(0) 40,

Le, fd”g 1n+a( 0) €p.

Now, looking at the difference
U A OR
= (o) )] e
— [féz—l)n+a<0)}d+5.d. [fc(iz—l)nm(o)]d

d—1
= Bed- [ e,

d

-1 d
_ {fc(lfz—l)n'*‘a(o)] ypotl

d
where the second identity is due to the fact that [fmm'a( )} =

d
{(fflfz_l)”“(O) + 6)] . and that 8% € potl.
Since dfé?j‘””*“(())d—l Zp. And B € p® but B & p*t! then,
fmn—l-cH—l( ) . fé’rgfl)nJraJrl (O) c ]Ja

but
frmtati(g) — prmm et ) g patt,

which implies that

() - gl ) = uB) = v () - £ 0)).

For the second part of the statement, we write fé’?il)n(O) = t; and

(7~ 18277)) = 12 So.

d
fe ) = g o) = i) = (o)
= (t1+1t9)1—1t4

d d\ . i
= Z(Z-)t%tfl

=1

d
= ¢ d ti—ltd—i
- 2 Z i 2 1 -

1=1

Concluding the proof.
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Now, we show that if the orbit is strictly preperiodic, then the tail length must be

of the form mn + 1 for some integer m > 1.

Corollary 3.9. Let fy.(x) = 2% +c € R[z], where v(d) =0. If 0 is periodic for
J?,ivc(x) in k with exact period n then 0 in R has infinite orbit, periodic with period

n or preperiodic with period type (mn—+1,n) for some integer m > 1.

This will be used to prove Theorem 3.10 by only showing that a tail length of the

form mn+1 is not possible.

Proof. Assume that 0 is strictly preperiodic with period type (mn+a,n) for some
m € Z>o and a, 0 < a <n. This means that fde ") — mnre0) =0, ie

(fdm+1 ") — fm”+a( )) = 00. By Lemma 3.8 part (1), we have

(A 0) = £ (0)) = ox.

Hence, fde)nH(O) — Z{LC”H(O) =0, implying that fmnﬂ( 0) is periodic in R. If
a > 1, we get a contradiction since mn+1 < mn+a and fm”H(O) is periodic. So,

a=1.

It remains to assume m = 0, that is, assume that the period type of 0 is (1,n). This
d

means that f"+1( ) = fa.c(0) =¢, ie., (fgf’c(O)) +c¢=c. This implies f7.(0) =0,

which contradicts the assumption that 0 is strictly preperiodic. Therefore, m >

1. O

The previous lemma allows us to limit the possibilities for the preperiodic tails that

we will investigate in order to prove the following theorem.

Theorem 3.10. Let fy.(z) = 2%+ c € R[z], where v(d) =0 and p > d where
char(k) = p. If 0 is periodic for fAdTC(x) in k with exact period n then either 0 is

periodic in R with exact period n or it has an infinite orbit.

Proof. We want to show that the tail length mn+ 1 mentioned in previous lemma

is not possible. Now we assume that the tail length is mn 4 1.

Similar to the proof of Lemma 3.8, let fi"(0) = {1 with v(t1) = 1. Now
fde (0) = f71(0) = to with v (t2) = ae.

24



Then

v (£ o) = p)) = v (G o) g o))
(

Since p > d, we have p{ (‘f) for any 1 <1 < d. This means that,
v ((?)tzztilﬂ) =iag+(d—i)oq. Assume o # an. If v ((‘Z)tét?*z) = y((?)tétf_j)
then, icg + (d —i)ay = jaa + (d — j)ag implying that i = j.

With the non-archimedean valuation, we get,

(2056) - ()

—  min (iag+(d—i
1g1£d(zoz2+( i)aq)

# 00.

So, fdm+1 nH( 0)— fm”+1( 0) # 0. So, for the tail length to be mn+ 1, we must
have that a; = az =: . We have that f7.(f7%'(0)) = fde (0). In other

n—1
words, f"(t1) = t1+t2. Write f}.(z) = X a; - % with ag = f7.(0), so we get
b ’[::0 b
n—1
fil.t)=ao+ X a; 1% ie,
’ i=1
dn—l
t1 4+t — Zai-tdz = ay.
i=1

By the non-archimedean properties, we get that v (ag) = v ( fgC(O)) > a.

If v (fa’ic(())) = 00, then 0 is periodic. Since the assumption is that mn+1 is the
tail length, then v ( fd C(0)) # 0o. Checking the following difference,

v (£ 0) = [0e(0) = v (J5(0)) = d-v (fi.(0)) > da> o

As seen in Lemma 3.8, I/(fm”+”( )—fm”(())) (fm”H( )—f(gjj_l)nﬂ(O)).
This means that v (fd,c( )= fi.0 )) =v (f”“( ) — fa.c(0 )) >«
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Also, as seen in the second part of Lemma 3.8, we have that
[F72(0) = fi7™(0)] divides [£7041(0) = £ 0)),

ie, V( gff“(o) _fg?—l)nﬂ(o)) >y (chcn(O) _fo(l:j_l)”(())) .

This implies that
v (500 - o) 2o (o) - 100" 0).
By induction, it follows that for all m > 1,
(F0) = £12(0)) > o

This is a contradiction because « is defined by v < fg(lmﬂ)n(O) — fgfc"(0)> for some

,C

m > 1. O

We remark that if K' = Q) and d = 2, then this was proved in [21, Proposition 2.4].
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Chapter 4

Primitive Prime Divisors and Periodic Orbits

For this chapter, K will denote a number field, with an algebraic closure K and a
ring of integers R. A prime ideal in R is denoted p and induces the discrete valuation
vp. The localization of K with respect to the valuation v} is denoted K with a ring
of integers Ry, and the residue field &y := Ry, /p. Recall that the reduction of the point
r € R, modulo p is denoted by 7, and the reduction of the polynomial f(x) € Rp[z]

modulo p is denoted by f(z). Similar to [13], we consider a prime p to be a primitive
prime divisor for f7.(0) if 14 (f7.(0)) > 0, and for all 1 <1 <n, I/p(fé7c(0)) =0.

In this chapter, we show some connections between the existence of a primitive prime
divisor p for f;7.(0) and the periodicity of the critical orbit of the reduction of f; .(z)
in ky. With this connection, for any integer r > 1, we build methods to construct
a polynomial such that ( fC’Z C(O)) =r. These methods will be used in the next
chapter to link Question 2.27 with Question 2.29. We then use the tools developed
in this chapter together with Chapter 3 to develop a one-to-one correspondence
between PCF polynomials of the form fg.(x) in Fp[z] and the PCF polynomials of
the form fq.(z) in Zp[z].

At the end of the chapter, we answer Question 2.24 by giving an elementary upper
bound on the count of primitive prime divisors of chlL, (0) for some d>2, n>1 and
¢ € Q. This bound gives rise to an additional question that will be answered in the

following chapter.

4.1 Polynomial dynamical systems modulo prime powers
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We establish in the following proposition a link between primitive prime divisors
in the critical orbit of a certain polynomial fg.(z) € K, and the periodicity of the

critical orbit of the reduction of fg.(x) modulo those primes.

Proposition 4.1. The critical orbit of f4.(x) = 2%+ c € K[z] has a primitive prime
divisor p for fZC(O) such that vy (fzc(0)> >t for some integer t > 1 if and only if

the reduced polynomial fq .(x) +p? has periodic critical orbit with exact period n.

This follows directly from the definition of the primitive prime divisor and the defi-

nition of the exact period of an orbit.

Proof. First, we note that vp(c) > 0. Otherwise, assuming v,(c) = o < 0, we have
d
that fq.(0) = ¢, and assuming v(f7.(0)) = 8 < a gives us that v ((fg’c(())) ) =

dB < da < a. Then by the non-archimedean properties of v, we have

w (F510) = v ((#10) +¢)
= min(df, )
= dp

< o.

So, if p is a primitive prime divisor of f7.(0), then vp(f7.(0)) > 0 implies that
vp(c) > 0. On the other hand if 0 is periodic for fq.(z)+p’, then 0 is periodic for
ﬁ;;(x) which implies that ¢ is well defined. This means that we can say that fg .(x)
is well defined in Ry[x] for p being either a prime such that p is a primitive prime
divisor f7.(0), or p being a prime such that fg.(z)+p has periodic critical orbit

with exact period n.

With this, we first assume that p is a primitive prime divisor of f7.(0) with
Vp(fic(0)) >t then for all 1 <l <mn, I/p(féjc(())) =0, 1ie, f7.(0) +pt =0+p’, and for
all 1 <1l <mn, fClLC(O) +p! £ 0+ p' concluding the periodicity.

On the other hand, if 0 is periodic with exact period n for fy.(z)+p’, then fie(0)+
pl =0-+p', and for all 1 <l <mn, fi (0)+p"#0+p". So, vp(f7.(0)) > ¢, and for all
1<l<n, up(fép(O)) = 0, which finishes the proof. O

This connection gives a different way of looking at the primitive prime divisors. This

leads to the following result.

Theorem 4.2. Let ¢ € K be such that p is a primitive prime divisor for fj . (0).

If v, (fczco(())) > 2u (af‘gz(o)]c_co), then there is a unique ¢y € Ry such that the

following occur:
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9]
(1) (@ —co) > vy (P42 ) 20

(2) The point 0 is periodic with exact period n for fqz(x) € Ry[x]

. —_— 8 C
In particular, vy (Co—co) = 14 (fc?,q) (0)) — Uy ( fdac( |e= co)

Proof. That p is a primitive prime divisor for ff}co( ) means that f;’i@(O) =
0. Also, since v, (fZCO(O)) > 21 (afdaz( lo— co) it follows by Hensel’s

lemma [18, Theorem 6.28], that there’'s a unique ¢ € R, such that
0
vy (Go—co) > 1y (f(’;’co(O)) — ( f%z( |e= 00> and fi;(0) =0 € Ry,. We also have

0
it o 5= 0) = (71, 0) =1 (D).

Since ¢y = ¢p, then f:’%%(()) = fElVCO(O) for all integers ¢t > 1. Since p is primitive
for fi.,(0), we have that for any t <n, ﬁ;;—ot(()) = ffdzot(O) #0. This implies that
fctlﬁ(O) #0€ Ry, i.e, 0 has exact period n for fyz(z) € Ry[x]. O

Example 4.3. Fixr K =Q, d=2, co=1, p=5, n=3. We have that 5 is a primitive
prime divisor for f§,1(0)~ We also have that,

3
(a0 =150 =205 (P20

By Theorem 4.2, there is ¢y € Zs such that, cg=1 mod 5, and fg’@(O) =0€Zs,
i.e, o = 1+ bty for some tg € Zy and f§71+5t0(0) =0.

For comparison with the mnext example, we calculate that to = 3+ 25t1 for
some t1 € Zs, This means that ¢y = 16 + 125t;.  Working modulo 125, then,
f316(0)=0 mod 125.

We also give another example to show that it is not always true that we can lift the
value of ¢y as mentioned in the theorem. For that, we check an example with the
hypothesis of the statement not satisfied. In that example, we can see for any value
close to cp, that is, ¢g = co+p-t where t € Z, we get v,(f35(0)) <vp(f3,(0)). This
means that v,(f3'z(0)) < oo, and so 0 is not periodic of period n for f3'z(0).

Example 4.4. Fir K=Q, d=2, co=3, p=13, n=2>5. the prime 13 23 a primitive
prime divisor for f35(0). We see that V13(f2573(0)) =1, and V13( el ’c 3) =1

We can see that for any to € Z13, f53,131,(0) 0 mod 132, which implies that
f5’73+13t0(0) %0 € Zy3. The value of ty only need to be checked modulo 13.

For simplification, we need to introduce the following definition.
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Definition 4.5. [12, p. 610] Let f(x) = 2" +ap—12™" 1+ +ag € K[z] such that
a1,q9,...,an, € K are the roots of f(z) in the algebraic closure of K. The discrimi-
nant of f(z) is defined by

Disc,(f(z)) = [ (i — o)™
1<J
Furthermore, Discy(f(x)) € K, and Disc,(f(z)) =0 if and only if f(x) has a repeated

root in K.

We note that if f(x) is a monic polynomial with integer coefficients, then the dis-
criminant is an algebraic integer. Since f € Z[x], then Disc,(f) € Q is an algebraic

integer implying that Disc,(f) € Z.

We remark that the Gleason polynomials G4, (c) are monic polynomials with integer
coefficients by [3, Corollary 3.4]. Thus, we can talk about Disc.(Ggp(c)) as an

integer.

To replace the condition that v, ( fgfco(O)) > 2vp (afdaz( |e= 00) in Theorem 4.2 by a

simpler one, we introduce the following lemma.

Lemma 4.6. Let p be a primitive prime divisor for f . (0), then

<0f§‘,c(0)
l/p r~e—

P ]C_C()) > 0 implies that Disc.(Ggn(c)) €p

where G p(c) == ¢q,(0,c) is the Gleason polynomial.

Proof. Note that p is a primitive prime divisor for fj . (0) means that 0 is periodic
for fqc,(x) in ky with exact period n. As mentioned in Remark 2.9, the point 0 has
formal period n if and only if 0 has exact period n. This implies that ¢j is a root of
G/dv,n(c), that is, é;n(éﬁ) =0.
Now consider the derivative of f7.(0) = [IGaz(c) as follows.

tin

ofg.(0)
de Z

tin

8Gdt

Hdk

k;ét

Since é; n(co) =0 and Gy (co) divides each term except when ¢ =n then,

Ofae (0) 3G an(c)
T|c:c~o e — = cog?[lGdk <o)
k#n
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Since p is primitive to f.(0), we have that G/Zk(Ea) =0 for any k <n. So, we get
that,

9Gan (0)

T oc ==

fac (0)

5o le=a 0

=0 if and only if

Since é;n(éﬁ) =0, then

-—n
afdgc(o)|c_c~0 =0 if and only if ¢y is a repeated root of Gf;n implying that DiscC(Gf;n(c)) =0.
This means that Disc.(G g (c)) € p, concluding the proof. O

Remark 4.7. The converse of the previous lemma does not hold in general. For
evample, Go3(c) =3 +2c2 +c+1=(c+8)%(c+9) mod 23. From the factorization,
we can see that 23| Disc.(Ga3). In addition, we can see that 23 is a primitive prime

3
divisor for f3_o(0) but 231 0%2(0) le=—9.

This lemma leads to a simplification of the condition in Theorem 4.2 as follows.

Corollary 4.8. Let co € K be such that p is a primitive prime divisor for fy . (0).
If Disce(Gan(c)) € p, then there is a unique ¢o € Ry such that the following occur:

(1) vy (@ — co) > 0.
(2) The point 0 is periodic with exact period n for fqz(x) € Ry[x].

Furthermore, vy (€ — co) = 14 (ft?,a) (O))

This is a direct consequence since p being a primitive prime divisor for fZCO(O)

implies that 14(fj,,(0)) > 0, and by Lemma 4.6, Disce(Gan(c)) ¢ p implies that

Up <W‘gf}(0)\6_co> =0. So, the conditions of Theorem 4.2 are satisfied.

As seen in Example 4.3, we can find values of ¢ such that specific powers of p divide

fdc(0). Indeed, we introduce the following corollary.

Corollary 4.9. Let cg € K be such that p is a primitive prime divisor for fc’ico(O).
If Disce(Ggn(c)) € v, then, for any integer r > 1, there is ¢, € Ry such that p is a
primitive prime divisor for f7 . (0) and vp(fg. (0)) =r.

Proof. This is a direct consequence of Corollary 4.8. If 14(fy,(0)) = r, then we are
done. Assume vp(fg,,(0)) #r. Let & be as in Theorem 4.8, and ¢, € K be such
that vy (c, —¢g) = r. By the choice of ¢, we have ¢, =¢y = cg. This means that ¢, is
a point such that p is a primitive prime divisor of f&f . (0). This means that there is

a unique lift of ¢, such that v,(¢; —¢,) >0, and fygz = 0. Since the lift is unique,
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we have ¢, = ¢y. Again, by Corollary 4.8, we get that

r= VP(E_ CT) = VP(Z_CT) - VP(fCTlL,cT(O))a
concluding the proof. O

Let » > 1 be an integer, Corollary 4.9 implies that except for finitely many primes,
once we know that a prime p can appear as a primitive prime divisor of f7 o (0) for

some cg € K, there is another value ¢; € K for which p is a primitive prime divisor
of [, (0), and 1 (fg, (0)) =7

Example 4.10. Fix d=2, c=1,p=5, and n=3. We find that 5 is a primitive
divisor for f{l(o) with 1/5(f§’1(0)) =1 and vy (af%2(0)|c:1> =0. One can see that
for co = —9, 52Hf5’7_9(0) where fa _g(z) = z2—9.

Theorem 4.11. Fiz an integer d > 2, and {p;} a finite set of distinct primes. If
there is a set of K-rational numbers {c;} such that p; is a primitive prime divisor for

v (0) and vy, (f3:.(0)) = k; for some n; > 1 and k; > 1. Then, there exists ¢ € R
such that, for all p;,

(1) vp,(f75(0)) = ki, and

(2) pi is a primitive prime divisor for f31(0).

Proof. This is a simple corollary of the Chinese remainder theorem [16, Theorem
5.33]. Taking an element ¢ € R such that ¢+ pFit! = ¢ +pfi+1, and noting that
vp(f7.(0)) =7 where p is primitive to f7.(0) if and only if 0 is periodic for fg.(z)+p"

2

but 0 is not periodic for fy.(z) +p"*1 gives the required proof. n

4.1.1 Special case K =Q

For Theorem 4.2, we also give an alternative proof for the case that K = Q with
a constructive proof similar to the proof of Hensel’s lemma, but specialized to the
polynomial fq.(x) € Q[x,c|. This gives insight on how to choose ¢ € Z such that we

get a specific power of p. For the alternative proof, we start by the following lemma.

Lemma 4.12. [11, Lemma 3.7] Let fy.(x) = 2%+ c € Q[z,c] and a € Q, then we

Ofg.la n—1¢n—jrmn— 7 -
have f‘ia’cc( ) _ 1+Z]-:11(d jHi:jl(fd,c(a))d D)
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Proof. By induction. For n =1, it is trivial.

Assume it’s true for k¥ <n then

affiia)  a(fy.(a)
9 Oc

= 1+d-(ffc(a)*

+1

0fq.(a)
80

= 1+d (fdc dl 1+Zdn]H fdc

Y (@ [T (@)™,
j=1 i=j

This leads to the following lemma.
Lemma 4.13. Let f;.(z) =2%+c and g(x) = f, cripht = x4 c+tp* where ky > 1.

Then o7 (0)
g"(0) = f7.0)+tp" =57= mod p*
(&

Proof. For n =1, it is trivial. Assuming the statement is true for [ < n, then

g"H0) = [g"(0)] +e+ph
I afm (019
= fgc(0)+tpk1fcgc< )] +c—i—tpk1 mod kal
’ C
- d
= | fac(0)+tph (HZ (" H (fa..0)" 1)) +etipt
L 1 =7
d n—1
= [f7.00)] +d(f7.(0)" eph (HZ (d" H (fi0) 1)) +e+tp" mod p*M
Jj=1 i=j
an( 0) + tp*t (1+d(fdc (1+Z (d" H (f5..(0) ))
) n+1(0>
n+1 ky ~Jdc
de (0)+tp g

With these two lemmas, we can prove the following.

Theorem 4.14. Let fq.,(v) = 1?4 ¢co € Qx] and p is a prime such that p is a

primitive divisor for fi . (0). Let k1 =1, (f(ZCO(O)>, and ko =1, (8%2(0) ’C—c0>. If
k1 > 2ks, then there exists a unique integer t such that
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(1) 1<t<p-—1,
(2) p is a primitive prime divisor for (0), and

(3) phitt | fczco+tpk1*k2 (0).

Furthermore, for all integers r > 1 such that r > 2ksy, there is a p-adic integer t, €

fn
d,co+tpk1—Fk2

PP 12, such that for the polynomial foe+, (%) € Zla], p is a primitive divisor for
fcrll,co—kt,« (0)7 and pr | | fZZCO‘i'tT (0>

Remark 4.15. We will also see in the proof that t, € pk2+1Zp s unique mod
p" R and t,41 =t mod p"*2. Due to that, we notice that the sequence
{tky  thy+1:tky+2,---} s a Cauchy sequence in the local ring Z,. This gives
the convergence of this sequence to an element to € Zy. The uniqueness of
trors mod pF1=R2Fand the fact that too = t)y; mod pF1=k2FT gives also the
uniqueness of too € Zyp. This implies the special case of Theorem 4.2 when K = Q.

8 n
Proof. Let f%Z(O) le=cy = 5-p*2, and t > 1 be an integer. By Lemma 4.13, we have
014.(0)
fc7l1700+tpk1*k2 (O> = fzco(o) +tp 1 QT|C:CO mod D (k1—Fk2) Zp 1

Since pF1 || fi¢,(0), we can divide by P to get

ch0+tpkrkz (0) _ f36,(0) . tophi—he g pk2 _ f7,(0)

+ts mod p

Pk - ph Pk -~ ph
. f(?c +t kl_k2(0) 3 i
Solving for ¢t to get —< ; T =0 mod p, we find the unique solution
n fn ki1 —k (0)
_ 0) — c 1=R2
t= —};T(l)s ' mod p. So, p| % or pF1tl | faﬁcojttpkl—@ (0).

afr (0
For the second part of the statement, Let r > 2ks, and f(fg’z( )|c:co =s-ph2. We

then follow an algorithm to find ¢,. The algorithm is recursive and depends on the

initial value ¢g. Due to that, we will denote the output by #,(co).

(1) Set k1 = vp{ 3, (0)):
(2) Compare r with ky
(a) If r < ki, return t,(co) = Ip" %2 where [£0 mod p.
(b) If r = k, return t,(co) = Ip"~*>where | # —%s’l mod p.
[0

(c)If r >k, set | = —st_l mod p and return

tr(co) = IpPM k2 -t (co + IpF1—h2).

—
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We need to show that this algorithm is effective, terminates and gives the desired
value of t,. € pk2+1Zp. We also note in each case that the value of ¢, is unique modulo
certain powers of p, which implies the uniqueness of the final output mod p"~*2. We

now check the three cases separately.

Case 1 (r < kjp): By Lemma 4.13, we first assume 2v(t,) > r+1, then

i, (0) = [ (0)+trsp™  mod p'™h.

Since k1 >r, then k1 > r+1andso f7, (0)=0 mod p't. We want p”| | fd cot,(0)-
So, we substitute f7 . ., (0) = Bp" such that p{ 8. We then look at the following.

Bp" =trsp™  mod prtY,

i.e,
ty=08s"p"*  mod prth.

taking Bs~! =1, we get the desired result and terminate. We note that indeed
2v(t,) =2(r — ky) > r+1. For the uniqueness, we note that under the assumption
that 2v(t,) > r+ 1 of the solution, ¢, must be divisible by p"~*2, i.e., the solution
is uniquely determined to be 0 mod p"~*2. On the other hand, to check if there is

another solution, we assume that 2v(t,) <r+1, and we get
0=0+t-sp" mod p*).

This means that
I/(tr) < k??

contradicting the choice of ¢, € kaHZp.

Case 2 (r = kp): Similar to case 1, by Lemma 4.13, we first assume 2v(t,) > r+1
then,

Fhenitn(0) = fi(0)+tpsp™  mod p".

Since ki =r, then f7 o(0)=ap” mod p"*1 for some « not divisible by p. We want
Pl g cy41,(0). So, we substitute fj . ., (0) = Bp" such that p{ 3. We then look at
the following.

Bp" = ap”+tsp™  mod pt
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ie.,
tr=(B—a)s p % mod ptt.

taking (8 —a)s~! =1, we get the desired result and conclude. Again, 2v(t,) =
2(r — ko) > r+1. For the uniqueness, with the assumption that 2v(t,) > r+1, t,
must be divisible by p"~*2. that is, the solution is uniquely determined to be 0 mod
p"~*2. Similarly, we assume that 2u(t,) < 7+ 1. This means that both the desired

2v(tr)

fdcg+t,(0) and the original f7 . (0) are divisible by p . So, again

0=0+t-sp" mod p*).

With
V(tr) < ko,

we get the same contradiction.

Case 3 (r > k1): For this case, we make use of the first part of the theorem. We

choose the unique value [ = —%3_1 mod p, which gives rise to the unique value

lpkl_k? mod pkl_k?H. We also note that f, cotlpfi—he = fdc, mod pk2+1. This

a n
fd,c0+lpk1*’“2(

0)
means that B le=cy = 5-p"  mod pk2t!

. On the other hand, as seen

in the first part of the proof, pk1+1|fg00+lpkl,k2 (0). This means that the conditions

for the initiation of the algorithm are met for 0).

fc’,l-l;CO‘i’lpkl_kQ (

In case 3, we also note that if the algorithm gives a unique value ¢,(¢p) mod pl ke

when r — k1 <e, then for r —k; = e+ 1, we get a unique [ mod p by the algorithm
and a unique t,.(co+ [p¥17*2) mod p"~*2 by induction. Then, it is simple to show
that [p"1=%2 ¢, (co+Ip* *2) is a unique lift mod p"~*2. Also, cases 1 and 2 give the
basis of the induction where the unique lift is achieved with r —k; <0, concluding
the proof. O

4.2 Correspondence between PCF polynomials in F, and Z,

In this section, we use Theorem 4.2 to give conditions that allow a one to one
correspondence between polynomials f; .(x) € F,[x] with periodic critical orbit and

polynomials fq.(x) € Z,[x] with periodic critical orbit.

Theorem 4.2 along with Theorem 3.10 lead to the following result.
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Theorem 4.16. Let d > 2 be a positive integer, p > d be a prime integer, and
1 <n <p be a positive integer such that the following holds.

For all c €T, if 0 is periodic with exact period n for f;.(x) € Fyz], then
c is a simple root of f;.(0) € Fy[c]. (%)

Then there is a one-to-one correspondence

fac(x) € Fplz] with fac(x) € Zplx] with
periodic critical orbit p <— § periodic critical orbit

of exact period n of exact period n

Moreover, for n > p, there are no polynomials of the form fq.(x) € Zp[x] with peri-

odic critical orbit of exact period n.

Proof. We assume that 1 <n <p. The proof comes from setting K = Q in Theorem
3.10, and Theorem 4.2. First, we define the map ¢: F, — Z,, where t(co) =ty € Z,,
such that, 0 <ty <p—1, and £y = ¢g. We also denote the set of polynomials in
[F,[z] with periodic critical orbit of period n by A, and the corresponding set of
polynomials in Z,[x] by B,

With this notation, condition (*) means that if co € F), is a root of f7},.(0) € F,[c],

where n is the exact period of 0 under the iterations of fi., (z) € Fplz], then

af‘g‘;(o) le=co # 0. This means that for fy,(.,)(z) € Zy[z] has p as a primitive prime

divisor of f;L(CO)(O) with v <8f‘g‘;(0)|c:L(CO)> = 0. So Theorem 4.2 can be applied

to get a unique value ¢; € Z, such that vp(c1 —u(cp)) > 0, and 0 is periodic for
fd.c,(x) € Zplz]. The condition that vy(c1 —¢(co)) > 0 implies that ¢1 = ¢(co) = co.
With this, we define the map 1 : A, = By, where ¥(fg.¢,(2)) = fa, (x), with cg and

c1 are as above.

Let cg € F, where f4., € Ay. Assume that ¢(fg¢, (%)) = fac (2) and ¥ (fgc, (7)) =
fdco(x). Then ¢1 = cop = ¢z and 0 is periodic with exact period n for both fg., (x)
and fq.,(x). By the uniqueness given in Theorem 4.2, we get that ¢; = 2. So, 1 is

a well defined map.

Let faco (@), facs(x) € Ap with ¥ (faco(®)) =9 (fa,e5(x)) = faco(x). Then we get that
co = C3 = c3, i.e, 1 is injective.

—_——

Let fqe (%) € Bn. Then 0 is periodic with exact period m for fq., (7) = fy5(2),
where m|n. By Theorem 3.10, since p > d, we have that m =n, i.e, f; 5 (z) € Ay,

So, v is surjective.
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For the case that n > p, if f; ., (z) € By, then again by Theorem 3.10, f4 ., (z) € Ay.
However, the orbit length in IF;, can not have a length n > p. Thus, B,, is empty. [

Corollary 4.17. Let d > 2 be a positive integer and p > d be a prime integer such
that the following holds.

For all c €T, if 0 is periodic with exact period n for f;.(v) € Fplz] for

some n > 1, then c is a simple root of f;.(0) € Fp[c]. (xx)

Then there is a one to one correspondence

{ faelx) € Fplz] with }<_> { fael) € Zyla)] with }

periodic critical orbit periodic critical orbit

Proof. This is a direct corollary of Theorem 4.16. Since for each n > 1, there is a one
to one correspondence between A, and B,, we get the one to one correspondence

between U A, and U B,, where each union is a disjoint union.
1<n<p 1<n<p

]

Remark 4.18. For d =2, the first 50 prime numbers were tested for the condition
in Corollary 4.17 using Mathematica and was found to be satisfied for 47 of these

primes. An example of the other three primes is the prime 13 illustrated in Example

4-4-
The condition of the previous can be relaxed using Lemma 4.6 as follows.

Corollary 4.19. Let d be a positive integer and p > d be a prime integer such that,

p1{Disce(Ggn(c)) for any n < p. Then there is a one to one correspondence

periodic critical orbit periodic critical orbit

{ faclx) € Fplz] with }H { faclx) € Zplz] with }

Proof. This follows by noting that for all 1 <n <p, if p{ Disc.(Ggx(c)), then con-
dition (k) follows. [

This also means that, if the conditions on p are satisfied, we can find all polynomials
with periodic critical orbit in Z,, by checking finitely many values of c¢ in F, and then

lifting each value uniquely by Corollary 4.8.

In both Corollary 4.17 and Corollary 4.19, we have strong conditions for strong

results. However, the condition can be made simpler with a simpler result as follows.
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Corollary 4.20. Let d be a positive integer and p > d be a prime integer. Then, for

all n <p, if p{ Disce.(Ggn(c)), then there is a one to one correspondence

fac(x) € Fplz] with fac(x) € Zplx] with
periodic critical orbit ; <— § periodic critical orbit

of exact period n of exact period n

Moreover, for n > p, there are no polynomials of the form fq.(x) € Zp[x] with peri-

odic critical orbit of exact period n.

Proof. Similar to the proof of Corollary 4.19, this follows by noting that for all
1 <n<p,if ptDisc.(Ggn(c)), then condition (x) follows. O

We conclude this section by an example for the one to one correspondence using

Corollary 4.19.

Example 4.21. Ford=3 and p=>5,
Discc(G3.1(c)) =1#£0 mod 5

Discc(G32(c)) =1#0 mod 5
Disc.(G33(c)) =120 mod 5
Disce(G34(c)) =120 mod 5

Disc.(G35(c)) =4 # 0 mod 5

So, in order to find functions of the form f3 .(x) € Zs[x] such that, 0 has a periodic
orbit, it suffices to find those in Fs[z]. This means we only check 0 <c¢<4. InFs[x],

c=0, f30(0) =0 = 0 has orbit type (0,1)

c=1, f§71(0) =0, and f?il(()) =20 = 0 has orbit type (0,4)
c=2, fig(()) =0, and f32(0) =2%#0 = 0 has orbit type (0,2)
c=3, f32’3(0) =0, and f33(0) =3#0 = 0 has orbit type (0,2)
c=4, f;}A(O) =0, and f§’4(0) =3#0 = 0 has orbit type (0,4)

This means that there are exactly 5 polynomials of the form fs .(x) € Fs5[z] such that,
0 is periodic. By Corollary 4.19, we get that there are exactly 5 polynomials of the
form f3 .(x) € Zs[x] such that, 0 is periodic.

Note that, although, in general, we don’t have a one to one correspondence for
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functions with 0 being preperiodic, we can see that there are no such polynomials
in Zs|x). This is due to Theorem 3.10.

The contra-position of Theorem 3.10 tells us that if 0 has a strictly preperiodic orbit
for f3.(z) in Zs[z], then 0 is not periodic for f3.(x) in Fs[z]|. Since this does not
happen in Fslz] for any 0 < c <4, we get that there are no polynomials of the form
f3.0(z) € Zplx] such that 0 is preperiodic. This means that there are exactly 5 PCF
polynomials in Zy[z] of the form fs .

4.3 Rough bounds for the count of primitive prime divisors

For this section, we only work over K = Q. We give an elementary upper bound on
the count of primitive prime divisors to answer Question 2.24. This will be give an

insight to direct us in the next chapter.

We use notations as in [19] defining f;.(0) = bd‘fﬁ_l

04(n,c) be the number of primitive prime divisors of a, and w(a,) be the total

where a,,b are integers. Let

number of prime divisors of a,.

Lemma 4.22. [f ¢ < =2 and d is even then, logy |c| <logy |fy.(0)] < d"log, |c|.

Proof. The proof is by induction. For n =1, it is clear. Assume the statement is

true for n, then
|fc7,c(0)|d > |¢|4 > |¢| = —c implies that |f£c(0)|d+c > 0.
This means that

logy |71 (0)] = logs| f7c(0) +¢]
< Togy(f3.(0)7)
= dlogy|fg.(0)]
< d-d" logy|c|
= d"logs|c|.
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Since ¢ < —2, we get that logs [¢? ! + 1| =logy(|c[?™! — 1) > logy (2471 —1) > 0. So,

logs| f751(0)] = logy|f.(0)"+¢|

logy |cd—|—c|

log [e(¢’ ! +1)]

log [e] +logy [ + 1]

AV

Y]

logy ||
Il

Theorem 4.23. Let fq.(x) € Q[z] be a polynomial with infinite critical orbit. Then,
0d(n,c) < By(n,c) where

d" og,|a1]| c< =2 and d is even
d" (3 +logy |b]) — 1 2 <c< 27T and d is even
Bi(n,c):=3 (d"~! —1)log, |b] +log, |a1]| —2TT < ¢ <0 and d is even

(d" 1 —1)(43 +1oga |b]) +logya1] 0<c<1;or—1<c<0 andd is odd

A" (A +1ogy [ar]) — 75 c<1;orc<—1andd is odd

In general, o4(n,c) < d”*1(3—|—log2h(%1)) +logy |a1|, where h denotes the height
function (h (%) =max (|al, |b|))

Proof. 1t is clear that ggq(n,c) <w(a,) <logs|ay|. So for an elementary bound, it is
enough to bound logy |a,|. For ¢ < —2 and d being even, we have by Lemma 4.22
that

logy |an| —d"ogy |b] =1logy | f7.(0)] < d"logy |c|

logy [an| < d"~logy |ay].

For —2 < ¢ < —2@T and an even d, we use [19, Proposition 5.8].
logy an| — "~ logy |b| = logy | f7,(0)] < (3"~ — 1)

implying that,
logy [an| < d"™1(3+logy [b]) — 1

For —Zﬁ < ¢ < 0 with an even d, [19, Lemma 3.1, Proposition 5.7] imply that
| f2.c(0)] <. So,

logy |an| < d" 'logy [b] +logy |a1| —logy |b] = (4"~ ' — 1) logy |b] +logs a1
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For an odd d, if ¢ <0, then it is clear that f7.(0) = —f7_.(0). So, it is enough to

prove the remaining for positive c.

For 0 < ¢ < 1, by [19, Lemma 5.5] (with C(n) = ¢ in the notation of the [19]),

n—1

d -1 1
7+1og2 |a1| —logy |b] = (d" ' — 1) (5— +logy |b]) +logy a1

l0g |an| < d"'log, [b]+ p i—1

Last case is ¢ > 2. Using same [19, Lemma 5.5] but with C'(n) = ¢ in the notation
of [19],

n—1

-1 1
logy an| < d"™ logy [b|+ ———+d" " (logy |a1] ~logy b]) = d" " (—— +logy a1 |)

b
d—1 d—1 d—1

]

Theorem 4.23 shows us a bound that depends on the degree d, the iteration number
n, and the value of ¢. The dependency on d and n seems reasonable, even though
the bound might not be optimal. However, the dependency on ¢ raises the following

question.

Question 4.24. Fixz d > 2 and n > 1, is there a uniform bound on the count of

primitive prime divisors in fZC(O), o4(n,c), that doesn’t depend on the value of c?

For the case n=1; or n=2 and d is even, choosingc=py----- Dr; OL C=1pp---- pr—1
respectively gives us r primitive prime divisors in f7.(0). So, the bound must depend

on ¢ for these two cases. However, for other values of n, the answer is not as trivial.
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Chapter 5

Density Questions on Critical Orbit

In this chapter, we work on polynomials with rational coefficients. First we tackle
Question 2.27 by reducing the question from the density of primes that can appear
in the critical orbit to the density of primes such that the Gleason polynomial
has a root modulo those primes. This allows us to use the Frobenius density
Theorem to measure the density. We also note that Corollary 4.9 links the answer
of Question 2.27 to Question 2.29. That is, the density of the primes in the set
{p:p is a primitive prime divisor of fj .(ao), and 14(fy.(ag)) =1 for some c € K'}

does not depend on t. Moreover, this density is the same as the one of the set
{p :p is a primitive prime divisor of fj.(ao) for some c € K}. This means that the
density in Question 2.29 is the same as the density in Question 2.27. So, it suffices
to calculate one of these densities in this chapter. After that, we use the results

from the density along with Corollary 4.11 to answer Question 4.24.

5.1 Frobenius’ Density and Possible Primes in the Critical Orbit

We start by linking our question to the Frobenius density Theorem. First we recall
Question 2.27.

Question 5.1. Fizing d > 2, n > 1, Let K be a number field,
and ap € K. What is the density of the primes in the set {p :

p is a primitive prime divisor of f} .(aog) for some c€ K}?

We take a simpler case where K = Q and ag = 0. In this case, we are interested in

the set {p: p is a primitive prime divisor of f7.(0) for some ¢ € Q}.
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As seen in Proposition 4.1, we see that the latter mentioned set is the same as the set

p: The critical orbit of f;.(x) € F,|x| is periodic with exact period n for some c € F,}.
: p p

As seen in Remark 2.9, for the critical orbit, i.e, the orbit of the point z =0, =
has formal period n if and only if x has exact period n. So, we look at the set
{p: The critical orbit of fy.(z) € Fp[z] is periodic with formal period n for some c € F,}.
This, by the definition of the formal period, is the same as
{p: There exists c € F,, such that GAdTn(c) =0}. In other words, we need to
look for primes p such that G—CZ n(c) has a linear factor in F),. Therefore, we will

need the Frobenius’ Density Theorem.

Theorem 5.2. [14, Theorem 9.15] The kronecker density Dy, of the primes p for
which f(z) =0 ( mod p) has exactly k incongruent integral solutions mod p equals

the fraction of elements of the Galois group of f that fix exactly k of its roots.

We note that this is a special case of the Frobenius’ Density Theorem, [14, Theorem

9.20], which in turn is a direct consequence of the Chebotarev’s Density theorem
[22, p. 545].

In the notations of Theorem 5.2, the set {p: There exists ¢ € F), such that é; n(c) =0}
has a density that is equal to the fraction of the elements of the Galois group of
Gan(c) that fix at least one root. We denote the splitting field of Gy ,(c) by Kgp,
and with that, the fraction that we are interested in, denoted by the Fixed Point

Proportion, FPP,,, is as follows:

PP, — #{o € Gal(Kg,,/Q) : o fixes at least one root of Gy, (c)}
e #Gal(Ky,n/Q) |

5.2 Galois Group and Primitive Divisors

In this section, we use the connection developed in the previous section to calculate

the density of possible primitive prime divisors. First, we give special results when
d=2.

5.2.1 d=2
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To calculate the density, we start by investigating the Galois group structure. For
that purpose, we used MAGMA. The code is attached in Appendix A along with
screenshots of the output. In that code, we calculate the Galois group of Ga 5, (c) for
1 <n <11. We also calculate Da,, := deg.(Gan(c)) = y2tty, (%) Comparing the

tn

size of the Galois group of Gg,(c) with the size of SDy,, = Da2n!, we get that the
Galois group of G 5,(c) is isomorphic to S Dy, forall 1 <n <11. However, due to the
exponential growth of the degree of G2 ,,(c), and due to the capabilities of MAGMA
software, we were unable to calculate the Galois group when n > 11. Furthermore,
we remind the reader that the irreducibility of G ,(c) over Q[c] was conjectured in

[7, Conjecture 1.4] for all n > 1, however, no proof has yet been established.

Due to the output of our MAGMA calculations, we have the following conditional

result.

Theorem 5.3. Let Ko, be the splitting field of Gon(c). If Gal(Ka,/Q) = Sp, .,
then the density FPPg,, is given by

Do, )

(1 i+1

FPPy, = 3 1)
i=1

2!

Proof. With the assumption in the theorem that Gal(Kz,/Q) = Sp, ,;, the problem
reduces to the density of elements of Sp, , that fix at least one element in the
set {1,...,D2}. The following is a simple combinatorial argument for the count.
We have Ds,, elements to choose one to fix and with each fixed element we get
Dy, — 1 elements to freely permute. That’s (Di’”) (D2, —1)!. Removing the double
count when two elements are fixed gives the second term of the count (—(D %”) .
(D25, —2)!) with a similar argument. Continuing in the same way, we get the count

ny :=#{o € Gal(Ky,,/Q) : o fixes at least one root of Gy ,(c)} to be

D D D D
nT=< 2’”)-(Dz,n—l)!—< 2’”><D2,n—2)!+< 2’”)(Dz,n—S)!+...+(—1)D2’”+1<D2’n
2n

1 2 3

D2 n
: D
i=1 L
D2 n
) Do
— 1 i+1 N D Y
Z;( ) Z'!(DQ’n—Zy( 2n 'l)
D2n -1
s _1>z-|-
= D2y Z il
=1 :
i+1
So that means that FPPg ,, = DT; = Z?jln (—1)' + -

Jo



Remark 5.4. If Gal(Ky,,/Q) = Sp,,, for all n large enough, then

. 1
nlgrolo FPPy,, =1— . and
|FPP 1+ 1\ < ! < ! f >2
—1+- or n>2.
2T S Dy 1) T 202 =
Proof. The limit is a direct consequence of the fact that e* = >, “Z’—,Z

The first inequality comes from the series being an alternating series. So, this
inequality comes from the error term of the alternating series. For The second
inequality, for n < 4, it can be checked with straightforward computations. For

n >4, we have n—2 > g so,

n. . _
Dy = ZM(E)Qm !

mn
> 27’L71 o Z 2m71
m|n & m#n
> 271—1 _ 2 2m—1
m=1
—2
> 271—1 _ K 2m—1
m=1
-3
m=0
_ 271—1 . (Qn—Q . 1)
> 2n—1 . (271—2)
— 27’L—2

5.2.2 d>2

Remark 5.5. We tried to check if there is a similar pattern for fq.(x) with d > 2.

However, our computations did not show an obvious pattern in Gal(Kg,,/Q).

The assumption on the Galois group in Theorem 5.3 seems to be specific to only

degree d = 2. Also, the assumption seems far fetched to be proven given that even
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the irreducibility is only conjectured. However, for any d > 2, the following result is

unconditional.

Lemma 5.6. For alld>2 and n>1,
FPP4, > 0.

Proof. This is because of the fact that Gal(Kg,/Q) < Sp,,, and there is at least
one element in Gal(K;,/Q) fixing at least one root of Gg,(c), namely the identity

element. This means that

FPP,. — #{o € Gal(Kg,,/Q) : o fixes at least one root of Gg,(c)} - 1
an = #Gal(Kd,n/Q) - Dd,n!

> 0.

]

Theorem 5.7. For all d > 2 and n > 1, there are infinitely many primes p such
that there is ¢ € Q such that p is a primitive prime divisor of f&fc(O).

Proof. As seen in Section 5.1, the density of primes p such that there is ¢ € Q such
that p is a primitive prime divisor of fCZC(O) is equal to FPPg,,. Since FPPg, >0,

the count of these primes is infinite. n

5.3 Polynomials with Arbitrarily Many Primitive Divisors

In this section, we use the result of Theorem 5.7 to answer Question 4.24. First, we

introduce the following theorem.

Theorem 5.8. Fix integers d>2 and m>1. For 1 <i<m, let
(1) n; be distinct positive integers,
(2) t; be positive integers,
(3) (ki1,ki2,... kiy;) be ti-tuples of positive integers.

Then there exists an integer ¢ such that for each 1 <i<m and 1 < j <t;, there is
a prime p; j such that p;j is a primitive prime divisor for f3(0) and pf’f||f§’c(0)
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Proof. As mentioned in Theorem 5.7, there exists infinitely many primes p that can
appear as a primitive prime divisor in iteration n;. Let the set of these primes be
Sn;- We also let the finite set of primes dividing Disc.(G g, (c)) be Ty, .

Setting Py, := Sy, \ Tp;, we define the following sets by a recurrence relation.

Al C Pnl with ‘A1| =11, and By = A

Andfor2<i<m

A; C Pni \Bz’—l with |Az| =t;, and B; = B;_1UA;

By construction of the sets, it is clear that B,, is a set of distinct rational primes.

Also, By, is the union of the disjoint sets A;’s where |A;| =t;. Now we find the set
of constants {c} that correspond to the set of primes By, that we use in Theorem
4.11.

Let A; = {p¢7j}§i:1. For each p; ; € A; C P,,, we have that p; ; can appear as a
primitive prime divisor in iteration n. That is, there exists ¢; jo such that p; ; is a

primitive prime divisor for fgiCijO(O).

Since p; j & Tn,, then p; ; { Disce(Ggp,(c)). By Corollary 4.9, there exists an integer

c;i,j,1 such that p;; is a primitive prime divisor for Z‘Cijl(O), and pl.szJHszcij 1(O).

We now set C; = {Ci,j,1}1<j<ti> and C' = TLrJllCZ
<< i

For the set of primes B,,, the set of C' satisfies the hypothesis of Theorem 4.11. So,

using the aforementioned theorem, we get the desired constant c.

[]

The proof gives an explicit description of how to construct polynomials with the

desired property. In what follows, we discuss the details of an explicit example.

Example 5.9. Fixd=2 and m=3. For1<i<3, letn;, t;, and (ki1,kiz2,...,kiz)

be as follows.
Setny =2, t1 =3, and (kl’l,klyg,kl’g) =(29,17,5),
ng =3, ta =2, and (/{2271,]@’2) = (8,3),

ny =4, t3=1, and (1{2371) =(21).
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We first check the primes that divide the discriminants. That is the sets
To =0, T3 = {23}, and Ty = {23,2551}.

We can now find some of the primes in So,S3, and Sy. Instead of checking each
prime to see if it can appear in a specific iteration, we can instead check the primes
appearing as primitive divisors in iterations of some polynomials, and then we can

use the primes appearing in their critical orbits. For example,
f22,1(0) =2, f§71(0) =5, and fil(o) —92.13.

This means we can use p11 = 2 with c110 = 1. Using Corollary 4.9, we get c111 =
229 1.

Continuing in the same manner, we can get,
Ay ={2,3,7} with C; = {2 —1,317 —1,7° —1}

Ay = {5,19} with Cy = {326391,4866}
As = {13} with C3 = {198396633106433791392520}

Using Theorem 4.11, we obtain that ¢ may be chosen as follows.
c = 24351981847787737533052341852056330671894786203451391

mod 40010031061893159449171265710098679720076040470528000000000.

Verifying the result using Mathematica software, we can see that for

f(.CE) = f2,24351981847787737533052341852056330671894786203451391 (33)7

we get,

22| £2(0), 3'7||£2(0), 7°[1£%(0)
5°(1£2(0), 19°]]£%(0)
1321 £(0)

with each of the mentioned primes being a primitive prime divisor for the corre-

sponding iteration.
Theorem 5.8 gives an answer to Question 4.24 in the following corollary.

Corollary 5.10. Let d be a positive integer and U = {(n;,t;)}1, be a finite set of
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pairs of positive integers. Then there exists an integer ¢ such that fgic(()) has at least

t; primitive prime divisors for each 1 <1< m.

Proof. This is a direct consequence of 5.8 by choosing all constants k; ; to be equal
to 1. 0

Corollary 5.10 implies that by fixing the degree d and the iteration n, we can con-
struct a polynomial of the form fq.(z) for some c € Q such that f;.(0) has arbitrarily
many primitive prime divisors. This implies that the upper bound of the count of
primitive prime divisors of fg’ .(0), see Theorem 4.23, can not be independent from
c. So, the answer to Question 4.24 is negative. There can not be a uniform bound

that does not depend on c.

Example 5.11. For d=2 and U ={(3,33)},

We can do similar calculations as in the last example to reach that,
c = 13443222075617361812453920142397689133847531746492684885069771

mod 70321927694409533965768410131069970323274232658951676172460495.

So, defining

f(:l?) = f2,134432220756173618124539201423976891338475317464926848850697717

and verifying using Mathematica, we can find that
70321927694409533965768410131069970323274232658951676172460495| £3(0),

where this divisor is a square free number with 33 prime factors. FEach of these
factors is a primitive prime divisor for f3(0). Note that Corollary 5.10 implies that
there are at least these 33 primitive prime divisors, but they are not necessarily the
only such primes. In fact, one may see that there are exactly 37 primitive prime

divisors for this specific iteration.
Corollary 5.10 along with Theorem 2.28 gives rise to the following result.

Corollary 5.12. Let d =2, and m > 1. There exists an integer ¢ such that the
splitting field of fif'.(x), denoted by Fyy,, has Galois group Gal(F, /Q) of order 92" -1,

Proof. For 1 <i <m, choose n; =1, t; =1, and (k;1) = (1). Then by Theorem

5.8, there is an integer ¢ such that, for all 1 <¢ < m, there is a prime p; such
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that piné?c(O). Using Theorem 2.28, we get that for all 2 <i <m, Gal(F;/Fi_1) =
z/22)% .

Since there is a prime py such that p1|| f(0), then —c is not a square in Q. So, fg ()
is irreducible with Gal(F}/Q) = (Z/2Z).

By induction, for 2 < i < m, assuming Gal(f;_1/Q) has order 22i_1_1,
and knowing that Gal(F;/Fi_1) = (Z/QZ)QPl, we can use the fundamen-
tal theorem of Galois theory [12, p. 574, Theorem 14] to see that
Gal(F;/Q)/ Gal(F;—1/Q) = Gal(F;/Fi—1) = (Z/QZ)QZ_l. This directly concludes the
order. O

We conclude with the following example.

Example 5.13. Fix d =2 and m =29. Using Corollary 5.12, and using the calcu-
lations mentioned in Corollary 5.10, we find that for the polynomial

flz)= 2% +1168184310110489945509811544546782641527527693907326,
f?(x) has Galois group with order 2% This is because, with

{pit1<i<o0 == {2,3,5,13,11,29,19,31,43,101,59,47,67,61,97, 89,
83,107,113,149,137,127,173,191, 197,181,223, 157, 229},

we get that p; is a primitive prime divisor of f(0) with p;||f*(0).
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APPENDIX A

MAGMA Code for calculating the Galois group of Gg,(c)

1 P< ¢ >:=PolynomialAlgebra(Rationals());

3 f:= func<x|x"2+c>;

5 h:=function(n)

6 t:=0;

7 for i in [1..n] do
8 t:=f(t);

9 end for;

10 return t;

11 end function;

13 g:= function(n)

14 t = 1;

15 t2 = 1;

16 for i in Reverse(Divisors(m)) do

17 if (0 gt MoebiusMu(n div i)) then
s t2 := t2 * h(i);

19 else

20 t := t * h(i) " (MoebiusMu(n div i));
21 end if;

22 end for;

23 t = t div t2;

24 return t;

25 end function;

26 timenow:= Realtime () ;

27 timediff :=0;

28 for i in [1..11] do

29 G:=GaloisGroup(g(i));

30 deg := 0;

31 for j in Divisors (i) do

32 deg := deg + MoebiusMu(i div j) * 27(j-1);
33 end for;

34 timediff :=Integers () ! (Realtime () *1000) -Integers () ! (timenow*1000) ;

35 days:= timediff div ((3600000%24)) ;
36 hours:= timediff div (3600000) -days*24;
37 minutes:= (timediff div (60000))-days*24*x60-hours*60;

38 seconds:= Real(timediff/1000)-days*24*3600-hours+*3600-minutes*60;

39 print "Iterationm ", i, ":";

10 print "Difference in order with S_", deg ,": ", (Order(G)

Factorial (deg));
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print nn .

print

print nmn .

print

minutes, "

n .
>

print nn .
print mnn .
print nmmn .

print mnan .

timenovw:

end for;

)

"Galois Group:

)

’
)
]

>

=Realtime () ;

"Execution time:

B

minutes and

GroupName (G), "

>

days,

ChangePrecision(seconds ,3), "

days,

with order

>

hours,

, Order (G);

hours,

H)

seconds .
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Screenshots of the results

Iteration 1 :
Difference in order with S_ 1 : 0

Galois Group: Cl with order 1

Execution time: 0 days, 0 hours, 0 minutes and 1.57 seconds.

Iteration 2 :
Difference in order with S 1 : 0

Galois Group: Cl with order 1

Execution time: 0 days, 0 hours, 0 minutes and 0.000 seconds.

Iteration 3 :
Difference in order with S 3 : 0

Galois Group: 53 with order 6

Execution time: 0 days, 0 hours, 0 minutes and 0.0200 seconds.

Iteration 4 :
Difference in order with 5_ &6 : 0

Galois Group: 56 with order 720

Execution time: 0 days, 0 hours, 0 minutes and 0.00999 seconds.

Iteration 5 :
Difference in order with 5_ 15 : 0

Galois Group: S15 with order 1307674368000

Execution time: 0 days, 0 hours, 0 minutes and 0.120 seconds.

Iteration 6 :
Difference in order with 5_ 27 : 0

Galois Group: S27 with order 10888869450418352160768000000

Execution time: 0 days, 0 hours, 0 minutes and 0.700 seconds.

Iteration 7 :
Difference in order with S_ 63 : 0

Galois Group: S63 with order 19826083154044400641161467083618981375447736902\
27268628106279599612729753600000000000000

Execution time: 0 days, 0 hours, 0 minutes and 7.84 seconds.

Iteration 8 :
Difference in order with 5_ 120 : 0

Galois Group: S120 with order 6689502913449127057588118054090372586752746333\
1380298102956713523016335572449629893668741652719849813081576378932140905525344\
08589408121859898481114389650005964960521256960000000000000000000000000000

Execution time: 0 days, 0 hours, 1 minutes and 22.9 seconds.
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Iteration 9
Difference in order with 5_ 252 : 0

Galois Group: 5252 with order 2044846242150228822847561620446453545273658548\
30301974733140854395874032768035589422258671078304827567167012994710393801148158\
4892698594287523178247211816724109883700996451372905507541113381204196195195435\
4602552934775737522106316625395829324060862622528287468179375458308423270020892\
1330261563050465069579042111765917781670636204387327004971416564536955446374888\
85642828961703689043347657156095316062717376867415895310398229305913€12697600000\
000000000000000000000000000000000000000000000000000000000

Execution time: 0 days, 0 hours, 29 minutes and 48.1 seconds.

Iteration 10 :
Difference in order with 5_ 495 : 0

Galois Group: 5495 with order 3983552793542744265330724639088913357445505892\
9474360918831440169865373173062205245987407819877230158625954248105449553737789\
4847542028791304536833110347982510406474482399963235957295292424605580229871166\
4785321420030964088354936445249913174074891823131488443414382315837518622467364\
1496062809972380056537780444997576203214305328732152335729333031277824713798129\
15611285259063620178165817040200013686425304401708218472339006972427900320373500\
2785254413781829786239119189698174151875946884617473825813834965557868606323611\
9130723929973173232037676743659319972210894275877710333185091850615091699690800\
77865167439908090961889355552004134069302180986869280980433623941260807503371676\
©497765574522576174251984125865283214736699007200752058050671833024509448597964\
4081447888376081078472943701147302371285456158635432103502841496876705880085878Y
1598837503612232779281356521173745791203565992056112674550583179528930967612423\
3865515678106534297500427631905101401638137736951936596960636275672496134536478\
§510720000000000000000000000000000000000000000000000000000000000000000000000000Y
000000000000000000000000000000000000000000000000

Execution time: 0 days, 6 hours, 40 minutes and 44.2 seconds.

Iteration 11 :
Difference in order with S_ 1023 : 0

Galois Group: 51023 with order 529153202740122781550480658660532689257964254\
2517591254377802998714072863352906839583145492320522057342850769977626765175117\
130525099486018168497395837128311605151640749656814228289346816107215934155828189\
4202878854799334379772146164605591004584311768763356713400354912861458704302535\
3988604774121957384488815334350765531767038401150472684884362520135291075808652\
9680218292072479184398367883814618253340953344838348116590682410315356650785771\
0269482367090193244541253842104528754017471490411529502796829370347046762713475\
0503732710934126548254324112606469599065416122296419019327457770948€95667031493\
0744183877708453303454006884985624699858698531969823316283964172620615693600575\
1628868615364283434725559752829897101374176198951839906827231520082796344066853\
2586462991572087657036120193037562444008411537273233649391927486015990968619885\
4097818807801238422877279008058853920103726274104070778648529718407958366862784\
©776322039172798663697894351092800601939189737834636450845353785962947523822152\
8465937269723393645412193288214417607258701068760280587160031733667005020231214\
89762632998810372301466711226335315543998170497597843406446144115311714401065517\
95534465158442479554576544411828664333814759007€7340770331439120009€76751631713\
3953717315414170120115759924624651708807100642361714206470034175997104382886567\
5166579085914452451555631352152941520180795422963819693105553618782701939441897\
03142453954907888547992257973869846318333201089537144816842406972755354196835481\
5973990808599247278073053283800796585956452073101150396595986872610591306582118\
5532143243421861401375513994025412570272022006325557772525066681742325904789126\
8164730317329203471678528209766910694874721360730784512550550605189054015988817\
0641941245481604897630560425441532223892558251008214928978014557615263636418604\
2000855311020951908425075295337407217023360780363101313301288712995394258294657\
5699389982380640060989406681914444689616912003575393614297124834038119030068410\
2695560632231002157601409840213736902045929598850817552454523203784017114350909\
4078406825549524638103863855860392453893491644441121609207867022307333052839357\
3249204036269448787317141008134648223290663159505708710130686367677607002405885\
3517922515502952496049700308960052541202342387415388395043007806672816018023215\
4098014969399838765363841894502985071447585190016285345473770322656171253311356\
0957529393142045433660260641984856580358752174080000000000000000000000000000000Y
0000000000000000000000000000000000000000000000000000000000000000000000000000000Y
0000000000000000000000000000000000000000000000000000000000000000000000000000000Y,
0000000000000000000000000000000000000000000000000000000000000000

Execution time: 2 days, 10 hours, 52 minutes and 35.1 seconds.
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