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Abstract

Legged robots excel in navigating challenging natural environments, such as steep

obstructions or wide gaps in the ground. Apart from rough terrain, they may

confront unexpected impact forces during their leaping gaits. While facing exter-

nal disturbances, legged robots should maintain and restore their stability while

completing their gaits. External disturbances and body orientation errors should

be identified. Appropriate actions have to be taken to restore the balance of the

robot and provide advantageous landing circumstances.

This dissertation examines the robot body orientation errors during the flight

phase and first offers a unique posture control method that uses reinforcement

learning to build reference trajectories for a quadrupedal robot with waist joints

during a long jump flight phase. Then, another novel algorithm for posture recov-

ery is provided, this time based on angular momentum. The same algorithm is

altered to account for perturbations in the flying phase caused by a push on the

robot’s body. We describe a push recovery method that uses angular momentum

to build reference trajectories for the long jump. This work also contains a more

detailed angular momentum-based reference generating approach for posture re-

covery. Real-time centroidal dynamics computation is employed in this second

technique.

These approaches provide reference trajectories for the waist and rear hip joints

of the quadrupedal robot in order to acquire the desired orientation of the robot



in the air. PID joint position control is used to track reference trajectories. The

robot model used in the calculations is comprehensive since each component of

the robot’s body—the leg links and three torso portions—is represented by in-

dividual parameters. The suggested techniques for trajectory creation are com-

putationally efficient, making them suited for use in real-time applications. The

proposed posture control and push recovery approaches are tested on the model of

a quadrupedal robot during the flight phase of a long jump via simulations. The

findings reveal that the proposed methods are accurate in terms of angular position

and angular velocity regulation and can achieve successful landing postures.
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Özet

Bacaklı robotlar, dik engelleri veya zeminde geniş boşlukları olan zorlu doğal

arazilerde hareket etmek için kullanışlı özelliklere sahiptirler. Engebeli arazil-

erde hareket etmenin zorluklarının yanı sıra, sıçrama hareketleri sırasında bek-

lenmedik darbelerle karşılaşa- bilirler. Dışarıdan gelen denge bozabilecek etkil-

erle maruz kalırken planlanan hareketlerini tamamlamalı, dengelerini korumalı ve

düzeltebilmelidirler. Harici darbeler veya vücut yönelim hataları tespit edilebilmeli

ve robotun dengesini yeniden sağlamak ve optimum iniş koşullarını sağlamak için

uygun önlemler alınmalıdır.

Bu tezde ilk olarak uçuş aşaması sırasında robot gövdesindeki yönelim hatalarını

düzeltmek üzerinde durulmaktadır. Bel eklemlerine sahip dört bacaklı bir robo-

tun gerçekleştirdiği uzun atlamada tamamen havada olduğu süre için referans

yörüngeleri oluşturulmakta, bu amaçla destekli öğrenme tekniği kullanılarak yeni

bir vücut konumu kontrol yöntemi sunulmaktadır. Ardından, açısal momentuma

dayalı bir yöntem kullanılarak, bozulan vücut konumunun düzeltilmesine gidilmek-

tedir. Ayrıca, aynı algoritma yardımı ile robotun gövdesine uçuş aşamasında

isabet eden bir itme darbesinin neden olduğu düzensizliklerin giderilmesi için

çevrimiçi referans yörünge oluşturan bir itme kurtarma yöntemi sunulmaktadır.

Tezde açısal momentuma dayalı ikinci bir robot yörüngesi düzeltme tekniği de

geliştirilmektedir. Bu teknik atalet değerlerini gerçek zamanlı hesaplaması açısından

ilk önerilen yöntemle farklılıklar içermektedir.



Bu yaklaşımlar robotun havada istenen oryantasyonunu elde etmek için dört ba-

caklı robotun bel ve arka kalça eklemleri için referans yörüngeler üretmektedir.

Referans yörüngelerini takip etmek için PID eklem konum kontrolü uygulanmak-

tadır. Hesaplamalarda kullanılan robot modeli, robotun gövdesinin her bir bileşenini

yani bacak parçaları ve üç gövde kısmı kütle değeri ile temsil edildiğinden kap-

samlıdır. Yörünge oluşturma için önerilen teknikler hesaplama açısından verim-

lidir ve bu da onları gerçek zamanlı uygulamalarda kullanıma uygun kılmaktadır.

Önerilen algoritmalar, uzun bir atlayışın uçuş aşaması sırasında dört bacaklı bir

robotun simülasyonu ile test edilmiştir. Bulgular, yöntemlerin açısal konum ve

açısal hızı düzenlemede etkili olduğunu ve uygun bir iniş pozisyonu sağlayabildiğini

ortaya koymaktadır.
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Chapter 1

Introduction

Popular images that come to mind when people hear the word ‘robot’ are Star

Wars’ C3PO and R2D2, the Jetsons’ Rosie, and Disney’s Wall-e. They are all

intelligent human-inspired machines created to serve humans, and this definition

of robot purpose is not far from reality. The term ‘robot’ originated in the 1920s

and was initially used to refer to a sort of slave; robots are often defined by their

ability to undertake tedious, strenous, or dangerous activities in place of people

[23].

In a more recent definition, the Robot Institute of America describes a robot as

“a reprogrammable, multipurpose manipulator intended to move material, com-

ponents, tools, or specialized equipment through several programmed movements

to execute a variety of tasks [24].” As technology advances rapidly, so does our

understanding of the notion of robots. Nowadays, robots can sense their envi-

ronment, think logically using a variety of inputs, and act on the physical world

[23].

Although the first modern robot examples are industrial robots, popular robot

images are all in the form of humans. The area of designing human or animal-like

robots is called biologically inspired robotics. We turn to nature for kinematic

arrangements in biologically inspired robotics because, in comparison to present

robots, animal behavior is exceptionally adaptable and resilient in the face of

1
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environmental contingencies. Biological inspiration can help robots gain degree

of adaptability and durability similar to animals. Biological inspiration may be

sourced by various elements of animals, including their behavioral manners, physi-

cal and nervous system structure. In the 1950s, advances in technology resulted in

constructing a diverse array of electromechanical devices meant to simulate biolog-

ical processes and systems. Elsie and Elmer, W Gray Walter’s robotic ”tortoises”

are perhaps the most well-known and immediately related to early bio-robotics

[25]. His tortoises were tiny mobile robots encased in a tough shell. The robots

were propelled by steerable motorized wheels and equipped with a headlamp, a

light, and a touch sensor that reacted to contact with the shell. Between the mid-

1980s and the mid-1990s, modern bio-inspired robots started to emerge. Rodney

Brooks’ [26] study on behavior-based robotics was a defining moment in this era.

Although the work was not closely focused on biology, Brooks proposed that non-

trivial and adaptive behavior might be formed in a robot via the relationship

between basic control hardware and its environment, validating his thesis with

robots performing tasks such as insect-like walking. Another contribution is the

study on hopping and legged robots by Raibert [27]. It underlined the critical

role of energetics in animals’ dynamic balance and movement. Furthermore, in

1990 Arkin [28] created a schema-based control scheme for reactive robots. Hirose

[29] produced a variety of snake-like motion patterns and manipulators based on

research on the serpentine motion. Beer et al. [30] constructed several hexapod

robots relying directly on the body structure and neurological control of walking

cockroaches and stick insects.

Legged robots make one of the concentration areas in bio-inspired robotics. De-

pending on the application, robots can have one,[31],[32],[33] two,[34] four,[35]

six,[36], [37] legs. Bipedal and quadrupedal robots are some of the most often

employed structures of legged mobility in bioinspired robotics. In terms of speed,

the two superior robots to date are the Rhex robot [36] and Cheetah [38].

This thesis is interested in mammal-like machines such as quadrupedal robots.

Since mammals possess an incredible capacity to plan and execute complex be-

haviors suited for the environment and task at hand, they are an excellent inspiring
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point for robotics research. They can jump over a gap in the terrain or change

their orientation rapidly in a case of perceived danger. While animals can navigate

rugged terrains effectively, nature-inspired robots must plan and execute dynamic

actions to negotiate challenging landscape. Legged robots are well-suited for uti-

lization in hazardous natural scenes.

In this thesis, reference generation algorithms for the flying phase of a quadruped

robot performing a long jump are presented. We first inspect the reinforcement

learning (RL) technique for the posture recovery problem. Then an angular mo-

mentum approach is created for posture control and push recovery scenarios. Fi-

nally, a more comprehensive angular momentum-based algorithm with real time

centroidal dynamics computation is proposed for posture control of quadrupedal

robots during the flying phase of a long jump.

1.1 Motivation and Objectives

Legs provide substantial capability for crossing uneven terrain, especially steep ob-

stacles or wide terrain gaps. Along with challenging terrain, robots may encounter

unanticipated impact forces when executing leaping gaits. External disturbances

include being pushed by other robots or live beings, colliding with trees or rocks,

and being struck by objects. When conducting their gaits in an irregular natural

environment or the absence of contact points, legged robots must effectively retain

and reestablish their stability in the face of external effects. External disturbances

should be detected quickly, and necessary actions should be taken to maintain the

robot’s balance and to create a posture suitable for landing. Hence, a posture con-

trol algorithm may significantly improve the functionality of a quadrupedal robot.

Managing robot’s balance and posture when free-flying or performing gaits with

vitally stable sections is a challenging problem. Due to the absence of contact

points, these scenarios require balance or posture control techniques.
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1.2 Contributions

We propose novel reference generation approaches for in-air stabilization of robots

that lack ground contact in the flight phase of a long jump. We concentrate on a

quadruped robot with waist joints. These approaches are:

• A reference generation strategy based on RL for posture control,

• A reference generation strategy based on angular momentum for posture

control,

• A reference generation strategy based on angular momentum for push recov-

ery, and

• A reference generation strategy based on angular momentum with real time

centroidal dynamics computation for posture control.

The RL-based approach generates reference curves for the waist joints of the

quadrupedal robot in order to achieve the proper roll and pitch orientation in

the air. Proper orientation is described as suitable to achieve final posture before

landing.

The first angular momentum approach builds reference curves for the quadru-

pedal robot’s waist and rear hip joints in order to obtain the appropriate roll pitch

and yaw orientation in the air.

The angular momentum approach discussed secondly provides references for a

small set of generalized coordinates and speeds that need another small set of

coordinates and speeds (such as the orientation of the robot in flight) to reach

a specified reference value swiftly and stably at the conclusion of the flight. We

discretize and linearize the continuous time rate of change equation for angular

momentum in order to provide a minimum set of linear equations for reference

trajectory construction. Because the angular momentum equations are linearized,

the reference generation approach may use an arbitrarily detailed robot model

with no influence on computing performance.



Introduction 5

These techniques are intrinsically more applicable than other prior models [21, 39]

since they do not need the addition of a gyroscope or a tail to the robot. The robot

model utilized in the computations is detailed, with each link of the robot, such

as the legs and three torso pieces, represented as a separate mass. Additionally,

these approaches for creating the trajectories are computationally efficient and can

be employed in real-time applications. The proposed approaches are implemented

in the simulation of a quadruped robot in the flight phase to validate posture

recovery and push recovery methods.

1.3 Roadmap of this Dissertation

This introduction chapter discusses bioinspired robotics, legged robots, our mo-

tives and contribution goals. Past contributions are emphasized.

The following chapters discuss balance control for quadruped robots in detail and

reference generation mechanisms for push and posture recovery operations.

Chapter 2 presents the background information and related work. This chapter

is divided into three main sections. In the first section, machine learning strate-

gies employed on legged robots are covered. This section is organized according

to the different tasks achieved by learning techniques: Collision detection, ter-

rain classification, path planning, motion planning, and posture recovery. The

second section reviews the literature on balance and posture control strategies

implemented on quadrupedal and bipedal robots. The last section introduces the

angular momentum approaches employed in balance and posture control problems.

This section of Chapter 2 is more comprehensive than previous ones since this field

is closely related to the thesis. This section has three subsections: Bipedal robots,

quadrupedal robots, and miscellaneous robots.

Chapter 3 describes articulated quadruped robot parameters. Simulation model

of the quadruped robot, simulation and motion parameters and the control frame-

work used in following chapters are described.
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In Chapter 4, the learning-based posture control method for the quadruped robot

during the flight phase of a long-jump is introduced. First, the methodology of this

RL based reference generation approach is described. Secondly, the method is em-

ployed in a simulation environment, and results are presented. Lastly, simulation

results and methodology are discussed.

Chapter 5 introduces the first reference generation method based on the angular

momentum approach. This method is applied for posture recovery scenarios with

and without the presence of external disturbance. The organization of this chapter

is similar to the previous one. The methodology is described, simulations are

performed with the quadruped robot during the in-air phase of a long jump, and

methods and simulation results are discussed.

Chapter 6 is about a mathematically more complex angular momentum algo-

rithm for posture control. This method is more detailed since there are fewer

assumptions and a more detailed dynamics computation than in previous chap-

ters. First, the methodology of this approach is introduced and application on

a spined quadrupedal robot during the flight phase of a long-jump is discussed.

Then, simulation results are presented. Lastly, simulation results and the perfor-

mance of the algorithm are discussed.

Chapter 7 presents the overall conclusion of this dissertation, and possible future

work is discussed.



Chapter 2

Background and Related Work

2.1 Machine Learning Strategies

2.1.1 Collision Detection

Machine learning algorithms provide an intuitive and generalizable approach for

achieving a more stable motion for quadrupedal robots. Collision detection is

one of the tasks that quadrupedal robots can perform using learning techniques.

Collisions with the ground or self-collisions while conducting leg action are vital

concerns in these scenarios. These impacts may cause the robot to lose balance and

tumble, posing a chance of damage or significantly slowing the robot’s progress

toward the desired point. Some examples of machine learning approaches for

achieving collision detection tasks are presented in this subsection.

Doshi et al. [40] offer a method for identifying collision-free swing-foot trajec-

tories for walking gait rugged terrain. Rather than recreating swing trajectories

and testing for collisions along with them, the method employs machine learning

algorithms to predict if a swing trajectory is collision-free. Supervised learning is

employed to develop a classifier to predict collisions utilizing terrain data collec-

tion.

7
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Marco et al. [41] make three contributions to this field. They first provide a

new Bayesian optimization framework with unknown constraints. This framework

tackles the issue of learning with crash constraints by transferring the modeling

effort associated with robot failures to the constraint and reducing failures during

learning. Next, they offer a unique single-output Gaussian process for categorized

regression with the constraint capable of handling hybrid data (discrete labels

and actual values) and consider the constraint threshold as a hyperparameter,

eliminating the requirement for expert knowledge.

Schperberg et al. [42] present an online path planning architecture in their study

which expands the model predictive control (MPC) formulation to account for

future position uncertainties. This allows for more secure navigation in congested

situations. Their method incorporates an object detection process with a recurrent

neural network that implies the covariance of state estimations at each step of the

short time horizon of the MPC. The recurrent neural network algorithm is trained

on robot and landmark positions are obtained by inertial odometry utilizing cam-

era pictures and inertial measurement unit readings. They employ a trained deep

learning algorithm combined with a feature extractor to recover the 3D centroid

and radius bounds of surrounding obstacles to identify and extract their positions

for avoidance.

2.1.2 Terrain Classification

Terrain classification is another task that quadrupedal robots can perform using

learning techniques. Terrain categorization is critical for legged robot control since

it enables the robots to adapt to the changing environment. This modification can

be facilitated by providing data on the surface material or fundamental qualities

such as stiffness. Specific gaits are better suited to different terrains. Therefore,

a robot should be capable of switching gaits in response to a change in terrain.

Some examples of machine learning approaches for achieving terrain classification

tasks are presented in this subsection.
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Degrave et al. [43] determine which sensors provide the most valuable data on the

landscape. They experiment with various combinations of sensors often found on

robots and assess the effectiveness of supervised or unsupervised machine learning

approaches. They also determine which machine learning algorithms are most

effective in classifying the landscape utilizing these sensors and which attributes

are required for the techniques to operate.

In a different study [44], two different sensors are integrated to boost robustness.

The oscillation power characteristic of the x, y, and z accelerometer dimensions

provide higher-level data, while other aspects explain how much the paw sensors

are stimulated by ground contact during movement. The constructed feature

vectors are fed into machine learning algorithms and many classifiers are evaluated

to determine which performs the best.

A difficulty in providing rapid posture adaptation across various terrains is the

need for adaptive motor control. In order to overcome this problem, a distributed-

force-feedback-based response with online learning is presented in [45]. It blends

force sensor feedback, reflexes and learning to provide adaptive motor instructions

in collaboration with central pattern generators (CPG). The learning approach

is based on a primary neural network that utilizes a rapid dual integral learner’s

online modulation of plastic synapses.

Kim and Lee propose a quadruped robot gait adaptation strategy based on ter-

rain classification and gait optimization for adaption on various surfaces [46]. A

classification technique is employed to learn the adaption surfaces and a particle

swarm optimization approach is utilized to optimize a locomotion parameter on

each surface. After learning and optimizing, the classifier identifies the surface, and

an optimum gait parameter is picked for adaption depending on the classification

result.

Another solution to the terrain classification issue is proposed by Li et al. [47].

They develop a foothold determination model and establish its parameters by ex-

pert advising. The topographical elements affecting robot’s stability are identified

and then a foothold determination model is developed that takes both terrain
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attributes and kinematic constraints into account. A support vector machine is

employed to learn model parameters, and the training data is stored in the simu-

lation platform together with the topographical properties of candidate footholds

and their rank orders.

Kolter et al. offer a hierarchical apprenticeship learning approach in [48], enabling

the algorithm to receive isolated suggestions at various hierarchical levels of the

control task. This method extends the applicability of the apprenticeship learning

model to more challenging fields. This method is applied for quadruped mobility

across rugged terrain.

Yao et al. [49] offer a hierarchical terrain-aware control system that combines

deep reinforcement learning (DRL) and optimum control for high-level planners

and low-level controllers. The global altitude map of the terrain provides visual

information to the DRL, which utilizes it to identify the needed footholds for

the robot’s leg swings and body position. In order to maintain balance, optimal

control determines the torque of the joints in the standing legs.

There are still difficulties in ensuring the motion stability of DRL-based robots’

locomotion, particularly on rugged terrain. Achieving posture stability and agile

movement pose challenges. In order to address this problem, Zhang et al. [50]

propose a terrain-aware teacher-student regulator that incorporates a risk assess-

ment network. During the training stage, the risk assessment network analyzes

the risk associated with previous observations or the present state and guides the

policy’s update, supporting the policy in picking more appropriate actions and

avoiding dangerous ones. The controller receives a real-time altitude map as vi-

sual input, allowing it to comprehend the terrain and generate higher-performance

locomotion.

2.1.3 Path Planning

Path planning is the process through which a legged robot plans a lengthy path

across recognized, potentially challenging terrain. Path planning is another task
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that quadrupedal robots can perform using machine learning techniques. One

application area for quadrupedal robots is transportation over irregular terrain.

This task needs path planning to maneuver the machine so that it takes a suitable

course. In this section, some examples of studies concentrated on this particular

task are presented.

Blum et al. [51] propose an RL approach based on a path planning and motion con-

troller training algorithm. The algorithm teaches a simulated quadruped robot to

respond to various commands and travel to designated areas using a combination

of observable goals and goal randomization during training. A customized reward

function is employed. They highlight two essential components of route planning

and motion control, namely, region enabled travel and multi-point travel. Region

enabled travel is the capacity to go to any site within a specified area. Multi-point

travel is the ability to travel to many locations sequentially.

Medeiros et al. [52] discuss a method for guiding a quadruped robot in such a

manner that it follows a course indicated by a collection of waypoints. Each leg

of the robot contains three servo motors. Steering is accomplished by rotating the

robot’s frontal axis, sustaining its frontal legs, with an additional servo motor. The

suggested route following algorithm begins by selecting a target point based on the

present location of the robot and two touchpoints of interest. The robot’s frontal

axis orientation is then altered to point in the direction of the target location. A

new reference point is chosen as the robot advances.

The primary objective of [53] is to demonstrate the application of a multiclass

learning approach to challenges involving robotic grasping and quadruped loco-

motion. From a machine learning perspective, these tasks exhibit an unexpected

fundamental similarity. In both situations, the desired policy entails complicated

scoring functions, yet expert operators may deliver demonstrations of desirable

behavior very inexpensively. Both issues offer many possible actions and may be

easily improved to find the ideal option.
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2.1.4 Motion Planning

Motion planning or gait planning is another task that quadruped robots can handle

using machine learning techniques. Quadrupedal robots should perform navigation

tasks like ascending stairs and traversing rough terrain. The fundamental robotic

locomotion challenge is to determine the optimal sequence of movements for the

robot to execute in order to reach its objective effectively. The motion planning

approach focuses on this problem. Approaches to overcome this challenge involve

changing between gaits, optimizing gait speeds or footholds and learning gaits

autonomously from the start. Some examples of studies on this particular task

are presented in this section.

Chernova and Veloso offer a method for walking gait optimization based on an

evolutionary approach in [54]. The gait optimization technique makes no effort to

estimate the gradient of the multidimensional space. This optimization method

improves walking gait robustness to parameter assessment noise and prevents early

converging to local optimum.

The purpose of [55] is to describe the planning and implementation of a coordina-

tion framework for quadruped walking robots capable of learning and performing

soccer-playing actions. The author designs a hybrid method that combines reac-

tive responses with deliberative thinking. Reactive behaviors translate location

data acquired from sensors directly into actions. Fuzzy logic controllers are uti-

lized for encoding adaptive behaviors to provide real-time and optimal control

performance. A two-stage learning strategy is employed to keep the fuzzy logic

regulators adaptable to complicated scenarios.

DeFazio and Zhang employ RL to quadruped locomotion in [56], addressing diffi-

culties of learning efficiency and style definition for quadruped motion. The usage

of incentive machines alleviates the problems. Reward machines provide task def-

inition employing human-designed automata over linear temporal logic formulae,

allowing the specification of a wide variety of locomotion behaviors. Additionally,



Background and Related Work 13

reward machine methods have been created to maximize learning efficiency using

available human knowledge.

Ishii et al. [1] design a simple quadruped robot with one degree of freedom (DOF)

legs (Figure 2.1) and their goal is implementing different gaits to examine the

implications of mechanical components to gait pattern transitions. They develop

an experimental system capable of extracting and integrating movement-related

feature quantities from sensor data collected online across several devices. They

build a technology that allows them to obtain latent movement information from

locomotion patterns using machine learning.

Figure 2.1: The quadruped robot with one DOF legs [1].

Two gait transition models for a four-legged robot are developed in [57] using

gait kinematics. The training and generalization capabilities of a cerebellar design

articulation regulator neural network are next investigated in learning gait tran-

sitions. Two gait transfer models (change between two periodic gait patterns and

shift between periodic gait patterns) and a continuous follow the leader motion

pattern are explored. These nonlinear models necessitate heuristic methods or

parallel solution of many nonlinear equations.
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Another study on gait transition is [58]. The purpose is to provide a novel intel-

ligent control strategy for rapid four-legged robot bounding and galloping gaits.

The controller can learn the leg touchdown orientations and foot thrusts neces-

sary to achieve the appropriate sprinting height and speed in a single stride. The

controller is trained using basic principles based on the heuristic understanding of

quadruped kinematics.

Shao et al. provide a method for training a fundamental control strategy to enable

a four-legged robot to perform various gaits in [59]. Two distinct stages are the

bridge between the gait reference generator and the regulation policy that defines

the quadrupedal movement. The quadruped robot, guided by these phases, dis-

plays locomotion by the created gaits, such as walking, trot, pace, bounding, and

transitions between them.

Kalakrishnan et al. [60] demonstrate a control framework for high-speed quadruped

motion across rugged terrain. They approach the task by breaking it down into nu-

merous subsystems, each of which is subjected to learning, planning, optimization

and regulation techniques in order to achieve robust, rapid locomotion. The control

strategy is distinguished by several features, including a system that learns opti-

mal foothold decisions from expert demonstrations using terrain layouts, a body

reference optimizer depending on the zero moment point (ZMP) stability analysis,

and a floating-base inverse dynamics regulator that, when combined with force

control, enables reliable, compliant mobility over unanticipated obstacles.

The purpose of [61] is to present findings on the policy gradient method in training

a stable, rapid gait. The experiments employ an objective function that priori-

tizes stability and head movements compensation. The policy gradient method

discovers a stable stride with a negligible speed penalty in both situations.

Sato et al. [62] present a technique for CPG controller acquisition employing a mix

of GA and RL. The three-step approach is capable of learning adaptive controllers.

They demonstrate that the quadrupedal robot can adjust to new surroundings only

via sensory input and oscillator connections. This finding implies that learning by
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trial and error can be conducted after identifying the right CPG coefficients. This

is advantageous for adapting robots to new environments.

Tan et al. offer a method for automating the design of agile locomotion processes

via DRL principles in [63]. The system can create the quadruped movement from

scratch. Additionally, users may specify reference values to assist the learning pro-

cess when additional control over the learned gait is required. Control rules are

developed on a physics model and then implemented on actual robots. Simulation-

trained rules often do not translate to the actual world. [63] closes this gap between

reality and simulation by enhancing the simulator and developing solid regulations.

They improve simulation quality by identifying the system, creating an accurate

actuator model, and modeling delay. They develop resilient controllers by random-

izing physical settings, introducing perturbations, and condensing the observation

space.

Zhang et al. propose a neural network design for managing quadruped robots in

[64]. The system is built of two networks: One for motion prediction and another

for gating framework. The motion prediction system calculates the current frame’s

robot state at each stage using the previous frame’s state and the user-supplied

control signals. The gating system dynamically adjusts the scores of the motion

prediction system by choosing and combining specialized networks. Due to the

additional flexibility, the system may acquire consistent expert values for a wide

variety of non-periodic/periodic actions using unstructured motion capture data.

Additionally, users are relieved of executing sophisticated phase labeling in various

gaits.

2.1.5 Posture Recovery

Posture recovery is the task of achieving the desired angular position of the robot

body during performing a gait when the angular position of the robot body is

different from the desired one. It is another task that legged robots can perform
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using learning techniques. Due to the lack of a ground connection, balance regu-

lation during legged robot locomotion is crucial for navigating challenging static

or dynamic environments. Since there is a lack of contact points for certain gait

phases, such as in jumping, body orientation control is essential for motion stabil-

ity. Posture control is the main issue handled in this thesis; some other examples of

approaches below handle the same issue for quadrupedal or bipedal robots. How-

ever, they all have ground contacts and therefore they do not apply to long-jump

tasks.

2.1.5.1 Quadrupedal Robots

Agrawal et al. offer a system in [65] centered on posture adjustment for stable

quadruped motion across uneven terrain. Stability is achieved by using stable pos-

tures throughout gait transitions, chosen depending on the environment, foothold

reachability, and gait sequence. They evaluate posture by utilizing value functions

that mimic stability and kinematic factors. The value functions are created by

learning using regression approaches, which reduce the need for extra sensors and

computing for posture assessment.

In addition, Gay et al. [66] provide a framework for learning a model-free feedback

controller for motion and balance regulation of a quadruped robot traversing chal-

lenging terrain. They employ a neural network to describe sensory input inside

the CPG dynamics after designing an open-loop gait stored in a CPG. This neural

network receives sensory input from a camera or a gyroscope and learns its weights

unsupervised.

Kertesz and Turunen [2] construct a machine learning model that can distinguish

four states of a Sony AIBO robot (Figure 2.2): Usual, pick-up, fall over, and

pushed. A deep neural network classifier using these predictors achieves 98 percent

accuracy on a new dataset. Actual trials on the robot demonstrate the practical

usage of the classifier with real-time computational efficiency.
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Figure 2.2: Sony AIBO robot [2].

The purpose of [67] is to examine the dynamic postural balance optimization and

regulation of four-legged robots with compliant and flexible joints when external

forces are perturbed. They begin by developing a limited dynamic model of joints

for robots. They build a reduced-order dynamic model that considers the robot’s

relationship with the environment through numerous contacts. A dynamic force

distribution approach based on a quadratic objective function is proposed to de-

termine the optimal contact forces required to cope with an external wrench. A

fuzzy logic based adaptive controller for compliant and flexible joints for four-

legged robots is presented to suppress uncertainties in the robot’s and actuator’s

dynamics. The proposed framework combines techniques of dynamic surface con-

trol and fuzzy learning algorithms.

Another solution for quadruped robot push recovery based on RL is proposed in

[68]. This technique utilizes a reduced model of a quadruped robot to minimize the

dimensionality of the action and state-space for the RL system and then improves

the efficiency by employing the simplified robot model’s previous knowledge. This

technique may offer a foot placement estimation to the quadruped robot through-

out the learning phase, allowing it to regain equilibrium while being pushed.
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2.1.5.2 Bipedal Robots

Machine learning is a widely employed balance and push recovery strategy for

bipedal robots. Ferigo et al. [69] use model-free DRL to learn a broad and resilient

humanoid push-recovery policy in a simulation setting. The approach is verified

on the iCub humanoid and aims for high-dimensional bipedal robot control. Fast

learning of many robust actions by the same policy, encompassing the full-body, is

possible with reward components that include expert knowledge on bipedal robot

control.

Several bio-inspired approaches are modeled using the Dynamical Movement Prim-

itives (DMP) [70]. The DMP, which comprises a series of differential equations,

provides a unified parameterized representation for modeling a motion strategy,

resulting in a strategy model that can be solved using machine learning techniques.

The learning process for the DMP modeled bio-inspired methods is performed in

this study by using stochastic policy gradient RL and imitation learning indepen-

dently. Furthermore, using Gaussian process regression, impact recovery tactics

may be developed using the DMP model’s invariance qualities. As a result, an

adaptive online push recovery control approach is realized.

Semwal and Nandi [71] collect humanoid push recovery data using an accelerometer

sensor. Human push recovery by fusing data at the feature level using a physics

toolbar accelerometer is studied through the experiments. The subjects for the

experiments are selected as right handed and left handed. Pushes are induced

from behind with closed eyes to observe the motor action and open eyes to observe

learning-based reactive behaviors. A learning vector quantization-based classifier

is developed to identify the coordination between various pushes and hip and knee

joints. Semwal et al. utilize a deep neural network to categorize different types of

pushes, and the total accuracy is 89.28 percent [72]. The first classifier is based on

a feed-forward back-propagation neural network, whereas the other is based on a

deep neural network. Small, medium, moderately high, and high pushes are used

to test and assess the suggested deep neural network-based classifier.
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Seo et al. [73] suggest that a push recovery controller is composed of an inertia

measuring unit sensor component, a high-level recovery regulator, and a low-level

recovery regulator. The linear velocity and angular velocity are measured by the

inertia measurement unit sensor and sent to the high-level push recovery regulator.

Based on the stability region, the high-level push recovery regulator determines the

low-level push recovery regulator’s strategy. The RL method’s Deep Q-Network

results in an increased the stability region. The low-level push recovery regulator

involves the ankle, hip and step techniques. The actuators for each method exam-

ined by the linear inverted pendulum model (LIPM) are regulated based on the

analysis.

A viable hierarchical push recovery approach applied to various bipedal robots

is described by Yi et al. in [3]. The system comprises low-level controllers that

conduct basic, biomechanically driven push recovery measures and a high-level

regulator that integrates the low-level controllers based on sensory information

and the present state of the robot. RL is employed to modify the control scheme

to improve the robot’s stability under various external effects. The controls are

implemented and learned through a physical simulation on the Darwin-HP bipedal

robot platform (Figure 2.3) In a different study, Yi et al. describe an alternate

method for stabilizing the walking of a position-controlled bipedal robot challeng-

ing terrain [74]. They assess the inclination of the surface utilizing swing foot

dynamics and sensors and then train an adaptive terrain model employing an

online learning method. A hierarchical push recovery regulator rejects perturba-

tions caused externally and modeling errors by modulating three biomechanically

driven push recovery regulators per current estimated condition. They also focus

on learning in a high-level push recovery technique, employing simulated robot

models with various degrees of complexity and then a real robot [75]. They dis-

cover a shared low-dimensional technique for high-level push recovery from state

trajectory data gathered using several models and a real robot. Push recovery can

be efficiently learned online from a limited range of experiments on a real robot.
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Figure 2.3: The hierarchical push recovery controller scheme [3].

2.2 Balance and Posture Control Strategies

Legged robots need balance and posture control strategies while performing dy-

namic gaits or being subjected to external disturbances such as an external push.

There are studies on posture control and dynamic gaits with ground contact [4, 5,

76, 77, 78]. They do not apply however to long-jump tasks.

2.2.1 Quadrupedal Robots

A reference trajectory generating approach for a quadruped robot for pacing gait

on a horizontal plane is presented in [76]. The method is based on the LIPM

and the ZMP stability criterion. It presents ZMP reference trajectories for pace

employed for the generation of quadruped robot center of mass (COM) references.

Preview control is applied. Inverse kinematics is used to calculate reference posi-

tions of leg joints with the COM trajectory.

Asadi et al. [77] present a Cartesian CPG-based regulator for gait creation and

transition between gaits. The suggested method generates rhythmic signals using
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nonlinear linked oscillators . A programmable excitation signal can change these

patterns by correspondingly altering the frequency, magnitude, and coupling vari-

ables among oscillators. The length of the step, frequency of swing and stance

periods of all legs, relative timing between the legs, and order of leg lifts may all

be modified smoothly based on these differences, notably the length of gait tran-

sition. Then, using the data from the CPG controller, trajectories of swing legs

along the x and z-axes are determined. The footprints of legs are used to design

the reference ZMP route. After that, the center of gravity (COG) trajectories are

determined via a preview servo controller.

Di Carlo et al. [4] demonstrate how MPC can calculate ground reaction forces

(GRF) for quadrupedal locomotion. The robot dynamics of Cheetah (Figure 2.4)

are reduced to be formulated as a convex optimization problem while still captur-

ing the system’s complete 3D characteristics. Reaction force planning issues are

created and solved utilizing the simplified model. The quadruped robot is capable

of robust movement at various speeds despite having a simpler model.

Figure 2.4: The MIT Cheetah 3 quadruped robot [4].

In [78], it is investigated how to generalize algorithms that provide balance for one

leg to operate machines with many legs. When multilegged systems operate with

gaits that employ supporting legs one at a time, the generalization is relatively

straightforward. Multilegged running may be controlled using one-leg algorithms
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for specific gaits. In order to further expand the method to gaits that employ the

legs in pairs (pace, bound, and trot), the idea of a virtual leg is presented.

A trajectory generation method and an active compliance control technique for a

hydraulically actuated quadruped robot HyQ (Figure 2.5) is proposed by Ugurlu

et. al. [5]. Techniques are combined in a framework to generate trot-walking mo-

tion cycles. First, a center of pressure (COP) based trajectory generator generates

viable and balanced motion trajectories. For symmetrical locomotion patterns, ini-

tial conditions are set individually, ensuring that references are smoothly coupled

in position, velocity, and acceleration, independent of the support phase. The

active compliance regulator, which is utilized in tandem, ensures adequate joint

displacement and force regulation.

Some of the studies that are focusing on posture control under external distur-

bances are presented below.

Figure 2.5: The quadruped robot HyQ [5].
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The primary/secondary gait method is offered as a mechanism of gait creation

for both straight and circular body trajectories [79]. The main gait is a set of

leg transfers with adjusted foot kinematic constraints in response to obstacles,

whereas the secondary gait is a dynamic gait created to change the foot position.

The main gait is created by considering the following constraints: Stability, kine-

matics, sequential, and surrounding constraints. The impact of the impediment

on primary gait metrics changes them. Regardless of the motion mode, all limi-

tations and obstacle effects are stated by a single set of equations. The suggested

technique allows for the efficient generation of free gait while considering body

trajectory planning.

A flying trot gait control system is developed to increase the quadruped robot’s

dynamic motion capacity in [80]. The robot can accomplish a steady flying trot

movement by planning the motion of the torso and transferring it to the feet.

In order to achieve stability under external disturbances, the motion controller is

employed based on the spring-loaded inverted pendulum concept. The suggested

approach can shift between trot and flying trot gaits, with the flying trot gait

improving the speed of the robot and the trot gait providing robustness.

A push recovery framework is presented in [81] to recover the stability of the robot

in the face of unknown external perturbations. The entire body dynamic model is

employed for calculations in order to improve the robot’s ability to restore its pos-

ture by utilizing all of the DOF. The posture controller is designed to calculate the

main body’s proper acceleration. After the disturbance, it is estimated to restore

the robot to a target location. Regarding the stability and friction parameters,

desired acceleration is chosen. An optimization model is designed to determine

body acceleration, with stability and friction as constraints.

In another study, Khorram and Moosavian present a balance controller for a

quadruped robot that will regain its posture stability in the face of external forces

[82]. Posture stability is accomplished by creating a model of the quadruped robot

traveling across both flat and irregular terrains. Proportional-derivative (PD) con-

trol is suggested to calculate the appropriate accelerations to bring the robot back
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into balance. A disadvantage of the method is that, these accelerations can cause

the robot to become unstable and cause the stance feet to slip. As a result, the

maximum acceptable accelerations are computed using an optimization procedure.

The requirements that assure the robot’s stability and prevent stance foot slipping

are the restrictions of the optimization issue. The preferred optimization technique

is a real-time linear least-squares based method.

2.2.2 Bipedal Robots

One of the balancing strategies employed on bipedal robots is hip and ankle ap-

proach. A study that classifies different sorts of pushes introduces a push detector

and provides control techniques for dealing with constant powerful pushes that

occur while walking gait is described in [83]. Due to biological and biomechanical

studies, more efficient procedures, such as a hip and ankle approach or a bent-knee

strategy, can be adapted to biped control systems. A push recovery regulator is

suggested, generating required torques and regulating joint positions to regulate a

bipedal robot.

A control scheme and a push recovery controller for a bipedal robot walking are

developed in [84]. The bipedal robot and the algorithm are subjected to various

types of pushes in order to modify the walking stage and maintain walking in

a simulation environment. This work discusses feature selection strategies for

predicting hip, ankle, and knee joint push recovery. The algorithm is trained to

utilize K-Mean classification and crouch data.

Stephens utilizes basic humanoid-specific models to large-scale push recovery [6].

The author builds analytic decision surfaces, which are functions of reference points

like the COM and COP, that forecast whether or not a fall is unavoidable. Three

recovery strategies, namely ankle torques, internal joint movement, and taking a

step are explored (Figure 2.6).

In [85], a three-mass inverted pendulum model (Humanoid Open Architecture

Platform) is constructed, and the model’s efficacy is justified using the a simulation
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Figure 2.6: The three balance techniques [6]. The COM is represented by the
green dot, the COP by the magenta dot, and the GRF by the blue arrow. 1.
Balancing the COP (”Ankle Strategy”) 2. CMP Balancing (also known as the

”Hip Strategy”) 3. Take a step outside.

environment. It is created as a testbed for advanced push recovery procedures for

the Humanoid Open Architecture Platform robot. This model’s functionality is

broad and extendable to any three mass models. In order to confirm that the

proposed model is valid, the ankle strategy approach was employed.

Kamioka et al. [86] present a strategy for re-planning steps and time and loco-

motion mode, including walking, running, and hopping. The locomotion mode

re-planning technique uses parallel computation and a rating system with a new

cost function. Push recovery studies are conducted in order to validate the strat-

egy, which involved pushing in the forward and lateral directions in walking gait.

A humanoid walking trajectory generation technique with push recovery that can

be planned online is described by Shafiee et al. in [87]. The suggested approach

is particularly well suited to control systems in which the Divergent-Component-

of-Motion is pre-planned. It includes a step adapter to change the planned tra-

jectories and ensure push recovery. The step adapter creates new coordinates and

timings for the next step assuming that the bipedal robot is in a single support

state. The step adapter is active during single support phases. However, the

suggested torque control system considers single and double support phases. The
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concept behind the step adapter’s design is to use an exponential interpolation

of the time-variable ZMP trajectory to establish both final and initial Divergent-

Component-of-Motion step values. This method enables the push recovery task

to be recast like a Quadratic Programming problem, which may be solved online

using optimizers.

The planning of stepping movements is extended to bipedal robots having force

controlled limbs (such as the Sarcos humanoid robot (Figure 2.7)) in [7]. Push

Recovery MPC is a linear MPC that does step planning. A basic model and a

specified objective function and constraints are utilized to obtain this model. Force

control is employed to add feed-forward joint torques.

Figure 2.7: The humanoid robot Sarcos [7].

Urata et al. present a novel online walking trajectory development approach in

[88]. In order to adjust the placements of foot-steps sequentially, this approach

utilizes a limited version of the preview controller. Foot-step generation to alter
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walking position and velocity with a slight delay, push recovery under undeter-

mined external force, and incorporation of full-body dynamics bipedal robot model

in trajectory development are among advantages of this technology.

A fuzzy dynamic gait pattern generator that enables a teen-sized bipedal robot

to develop an appropriate gait pattern in real-time when impacted by an unantic-

ipated force is presented in [8] by Wu and Li. The ideal ZMP is used to design

the COM’s trajectory in traditional gait pattern generators, and a cycloid creates

steps. On the other hand, pre-planned gait patterns cannot deal with unforeseen

conditions, particularly when the robot is confronted with an unknown force. As a

result, they develop a dynamic gait pattern generator that uses the Virtual Force

LIPM to alter the COM’s trajectory and detects balance by calculating the ZMP’s

trajectory employing eight high-precision load cell pressure sensors attached to

the robot’s soles. They use a fuzzy controller with an accelerometer and pres-

sure sensors to respond immediately to environmental influences and develop an

appropriate gait pattern. When the robot is unexpectedly pushed, it replaces its

present walk with a pre-planned gait pattern. The fuzzy controller generates the

recovery gait simultaneously, with proper strides and inclination angles to soften

the impact. The proposed approach is tested on David Junior II (Figure 2.8), a

teen-sized bipedal robot.

Another balance control strategy for a biped robot is proposed in [89]. This work

involves adjusting COM position with the assistance of the correct foot positioning

technique in response to external disturbance. The proposed method detects the

robot’s current posture and stability state using sensory information and recovers

the robot’s posture and balance in the event of an external push by placing the

robot’s feet in the proper direction. The foot placement is done using one of

the alternate or rescue trajectories previously stored in its memory. Sagittal and

lateral recovery trajectories are designed for transitions from the present trajectory

to the recovery trajectory.

A balancing control strategy is described in [90] for compliantly adjusting the COM

location and torso orientation of a bipedal robot. When an unknown external



Background and Related Work 28

Figure 2.8: Humanoid robot David Junior II [8]. (a) An accurate representa-
tion of the robot. (b) The structure of the robot. c) The arrangement of the

joints.

perturbation disturbs the robot’s posture, the controller that maintains both the

position and orientation calculates the desired force and torque required to restore

the posture. This force and torque are then applied at predetermined contact sites

using a constrained optimization algorithm that aims to achieve the desired force

and torque while reducing contact forces.

The capture point (CP) idea is used to create and propose a control strategy [9].

Rather than depending on position control, as most CP strategies do, the proposed

strategy produces references for the iCub (Figure 2.9) robot’s momentum based

torque controller, extending its ability to respond to external perturbations while

preserving the benefits of torque regulation when engaging with the environment.

Hodgins and Raibert describe a control algorithm to make a bipedal robot do

forward flips [91]. The approach is based on several steps. First, they adjust

the pitch rate to maximize flight time. In order to convert horizontal speed to

vertical speed, legs are extended forward. They modify the initial pitch torque

for take-off. Legs are shortened after take-off to increase pitch rate. Reducing

energy in the landing phase is achieved by reducing thrust and using an attitude
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control algorithm. The method is nature-inspired, and mentioned steps are based

on human knowledge of the mechanism of the flip movement.

Figure 2.9: iCub humanoid robot [9].

The virtual leg model is provided as the essential contribution in [10] for recovering

the NAO humanoid robot (Figure 2.10) from external force effects. The control

purpose is to absorb the external force and restore the robot’s original configu-

ration. A PD controller is employed for joint torque control to fulfill the control

goal. Webots validates the performance of these methods and the model. In each

case study, an impulsive force of varying magnitudes is delivered on NAO’s torso.

Finally, a novel fuzzy logic-based regulator for impact recovery is introduced [92].

The fuzzy inference system requires two inputs (the force and the direction of the

motion), which are fuzzified before being subjected to a series of rules, after which
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Figure 2.10: NAO bipedal robot [10].

the result is defuzzified and converted back to a crisp value. They utilize fuzzy

rules to recreate the model in an unknown environment. The fuzzy logic-based

controller can forecast if the robot will bounce back or fall and implements the

required push recovery technique. The architecture is organized hierarchically.

The first fuzzy inference system detects small, medium, and large forces in roll

and pitch effects on the body. These are the input parameters used by the second

fuzzy inference system to decide upon the push recovery approach that will be

employed, and the robot will be able to recover from a push or a fall.
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2.3 Balance and Posture Control Strategies with

Angular Momentum Approach

Angular momentum is an important variable in balance and posture stability anal-

ysis and control for legged robots. Angular-momentum-based approaches are also

implemented in this thesis for posture control and push recovery purposes. Some

works in the literature utilize the angular momentum approach for balance and

posture control. Some of them are listed in this section. However, they do not

apply to long-jump scenarios (the main problem in this thesis) where there is no

ground contact.

2.3.1 Quadrupedal robots

SCOUT, a basic mechanical design for a quadruped robot with only one DOF per

leg, is suggested in [93]. Despite its mechanical simplicity, the initial prototype

SCOUT-1 can walk, turn, and climb a step. The dynamic operation focuses on

controlled momentum transfer is the basic principle. A momentum transfer occurs

when a leg contacts the ground, leading to step changes in linear and angular

velocities. The idea of conservation of angular momentum concerning the impacted

toe is used to determine these changes.

Chung et al. [94] provide a posture stabilization approach for creating a steady trot

gait. A foot positioning approach is designed to create steady locomotion. The

step planning technique uses conservation of the angular momentum to attain the

postural stability of the quadruped robot. The trotting gait can be regarded as a

virtual humanoid gait since the diagonal legs contact and depart simultaneously.

The stepping point that provides the robot’s stability is found by employing a

dynamic model of a humanoid gait.

Mita and Ikeda [95] introduce the notion of variable constraint control and demon-

strate how to implement it. The main contributions of their work are the expres-

sion of constraints with equations of motion and integrating a differential equation
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to develop the control methodology that embodies these limitations as decoupled

motions. They propose that the movements of the COG of the overall robot and

angular momentum around COG, and the position of the foot provide the objective

restrictions in the touchdown phase of gaits such as running and jumping.

Ugurlu et al. [11] propose a control system for quadruped robot RoboCat-1 (Figure

2.11) leaping and trotting over challenging terrain that is actively compliant and

balanced. Two control schemes are created in order to demonstrate such move-

ment abilities: active compliance control (force feedback) and angular momentum

control (gyro sensing). Using Jacobian and admittance blocks, the first regulator

yields the joint displacements due to the error of GRF as an output. These joint

displacements are inputs of the second controller (local servo controller), together

with position restrictions, allowing the robot to complete the assigned motion in

an actively compliant way.

Figure 2.11: a) Quadruped robot RoboCat-1. b) CAD model of RoboCat-1
[11].

Control algorithms for a quadruped standing leap over uneven topographical obsta-

cles are explored in [96], [97]. Simple open loop leg forces are utilized to eliminate

the robot’s significant linear and angular momentum upon landing. In order to

choose foot touchdown angles, real time simulation is performed. Landing param-

eters are estimated based on the simulation employing a simplified quadrupedal

robot model. Leg forces at take-off are calculated by the symmetry principle and

compared to those expected during landing.
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The balance recovery of quadruped robots performing trotting gait is the sub-

ject of [12]. Because of the dynamical nature of this gait, the robot is treated as

a humanoid robot, with two cross legs of the robot represented as a virtual leg

(Figure 2.12). The virtual model is simplified to a 2-D LIPM with a flywheel.

Furthermore, by constructing a two-dimensional CP estimator, the required po-

sitions for the COP of the legs for regaining the desired posture of the robot are

computed using the idea of CP for the two-legged model. The rotating motion of

the two-legged robot’s body and non-contact limbs is employed to produce angular

momentum around the COM of the robot. The use of an MPC changes footstep

positions and produces a new walking gait pattern. Modified joint positions of the

virtual humanoid robot model are then converted back to joint angle values of the

actual quadruped robot model.

Figure 2.12: The three distinct dynamic gaits (trot, pace, bound) utilize pairs
of legs and their virtual leg counterparts [12].

Lee et al. [98] offer a closed-loop full-body controller that regulates angular mo-

mentum about COM for quadruped robots. The joint torque caused by contact

with the ground is calculated using the torque sensor data and the inverse dynam-

ics equations. They propose a technique and full-body control criteria for gaits

that employ two or fewer legs in contact with the ground. A centroidal moment

pivot trajectory is developed based on this technique, which includes the angular
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momentum rate of change translated from the observed joint torque to maintain

the balance of the robot. A push recovery approach that relies on CP dynamics

synthesized of a mechanism for foothold generation and linear momentum is also

applied by the controller.

A foot placement estimator is presented in [99] to assist a quadrupedal robot to

regain stability. The robot can stabilize its posture by taking extra steps. The

approach provides a practical strategy to calculate step positions for the quadruped

robot utilizing angular momentum.

2.3.2 Bipedal Robots

ZMP is one of the tools widely employed in literature for posture control and push

recovery purposes. A capturability-based walking stability control is presented in

[100]. Moving ZMP in the support polygon, landing location adjustment, landing

time modification, angular momentum control, and fall detection and control are

the five tactics included in the suggested approach. The ZMP is calculated so that

after the double support phase, the CP approaches the location of the supporting

foot. In order to avoid falling, the torque around the COG is generated using body

inverse kinematics with angular momentum restrictions.

Luo et al. [13] suggest feedback and feed-forward controls to create a bipedal robot

walking trajectory generator based on a five-mass with angular momentum model

for Renbo humanoid robot (Figure 2.13). This method intends to reduce modeling

error and improve frequency characteristics resulting from nonminimum phase

nature. In order to decrease modeling error and improve walking performance,

the suggested method concentrates on angular momentum contributions from arm

and leg rotation. It can counteract abrupt change of the natural ZMP reference

related to frequency properties in the nonminimum phase control system with pole-

zero cancelation and a series approximation approach. Based on the suggested

model, a humanoid robot can verify and demonstrate the bipedal robot walking

pattern generator. In an earlier study, Luo et al. [101] also present a method for
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humanoid robots for disturbance rejection and push recovery. Maintaining walking

gait stability and preventing falling are the main objectives. The approach they

employ to manipulate ZMP uses the angular momentum created by reaction mass.

The torque concentration among the response mass is calculated in a biomimetic

manner to cope with disturbance. When external disturbances are eliminated, the

balance recovery process starts with online adjustment of the walking gait pattern,

which involves angular momentum for adaptive trajectory development.

Figure 2.13: RENBO humanoid robot [13].

The stability control of a humanoid robot is demonstrated utilizing three mass

modeling (Figure 2.14) and the ZMP criteria [14]. Because predictive control strat-

egy and real-time implementation are harder to achieve, a predictive proportional-

integral-derivative (PID) controller is proposed for tracking references. In order to

decrease modeling mistakes, the system is simulated using three mass points (the

torso’s, the right leg’s and left leg’s COMs) and angular momenta.
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Figure 2.14: Three-mass model of the bipedal robot in the sagittal plane [14].

An MPC and CP-based push recovery algorithm is proposed in [102]. The ankle,

hip, and stepping techniques are three approaches that are employed for balance

improvement. There are various situations in which a humanoid robot cannot step.

In this case, regaining equilibrium by regulating the torso’s angular momentum

or the ZMP is critical. While modulating the centroidal moment pivot and the

ZMP, a single MPC technique guides the CP to the desired location. As a result,

the purpose of the suggested algorithm is to control the CP using the centroidal

moment pivot while the CP is outside of the support polygon and the ZMP when

the CP is within.

[15] aims to offer a method for creating viable and dynamically stabilized ZMP-

based COM trajectories for bipedal robots. The ZMP approach in the spherical co-

ordinate frame is employed in order to fully leverage its features since this method

allows to efficiently mix internal angular momentum rate change components with

inertial force terms. Bipedal walking tests on the humanoid robot MARI-3 (Figure

2.15) are conducted in order to test the proposed method. Consequently, they cre-

ated repeated, continuous, and dynamically stabilized walking cycles with minimal
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unfavorable torso angles. Furthermore, since the robot’s inertial characteristics are

known, the ZMP error diminishes.

Figure 2.15: Bipedal robot model and spherical coordinates of MARI-3 [15].

Luo and Chatila [103] present a five-mass angular momentum approach to model

a bipedal robot to decrease modeling errors and increase ZMP stability. In order

to assess the collision stage, they create the safe bound investigation and a state

estimator for the COM. In order to ensure a stable walking gait, the safe bound

test is utilized. A state estimator for the COM is employed to assess whether or

not the external disturbance is complete.

Various pendulum models are used to simplify the bipedal robot models and repre-

sent the robot as a point mass. Simulations of a basic planar biped robot walking

to the capture region and employing angular momentum to regain stability fol-

lowing a push are presented in [104]. This work proposes a computing method

for CPs and the capture region, the area on the ground where a bipedal robot

must walk to come to a complete halt. The intersection of the capture region

and the support base determine which method the robot should use to stop in a

particular scenario effectively. The calculation of the capture region is achieved

by using simpler walking models. They explain a method to compute accurate

capture region solutions for this model by extending the LIPM to incorporate a

flywheel body.
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Rebula et al. [105] propose a method for generating CP by learning offsets from

the CP calculated by the LIPM, which models a humanoid robot as a point mass

with a constant height. A 3D bipedal robot simulation with 12 lower body DOF,

distributed mass, and articulated joints is used to test this approach. Compared

to employing the LIPM without a learning algorithm, resilience to disturbances is

enhanced when utilizing the learning algorithm.

The LIPM with angular momentum is employed in [106] to create a posture recov-

ery approach based on stepping strategy (hip and ankle strategy). In the stepping

strategy, the duration and number of each step are significant. In addition, a

stepping-out approach is offered for the posture recovery process, which brings

vertical COM motion into consideration.

Whitman et al. [107] propose a LIPM dynamics-based modification for a wide

range of controllers. A simple model and a change of variables are used to lever-

age the connection between COM and angular momentum dynamics. In order to

create complete body torques, appropriate COM and torso accelerations are used.

A change of variables to control COM unaffected by upper body angular accel-

erations is employed. They employ upper body rotation and COP modulation

as alternative tools of the controller, allowing us govern with both upper body

rotation and COP modulation. Simulated stance and walking studies show that

enhanced control authority improves resilience to external forces.

The reaction mass pendulum model, a 3D version of the well-known reaction wheel

pendulum, is introduced in [108]. The response mass pendulum approach improves

the previous models by compactly capturing the robot’s centroidal angular mo-

mentum through its rigid body inertia. This model presents an overview of legged

robot dynamics, particularly rotational motions, leading to a straightforward set

of control rules.

Kasaei et al. [109] offer a walking gait trajectory generation technique that con-

siders push recovery. The algorithm is organized in a hierarchical framework that

attempts to conceal the intricacies of dynamic walking motion. They improve the

LIPM-Plus-Flywheel by considering the angular momentum around the COM to
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alleviate the COM’s height limitation. This improvement creates room for a more

natural motion and more steady walking motion.

The method of angular momentum control and the inverted pendulum model based

on the virtual mass ellipsoid (Figure 2.16) to recover from orientational push are

suggested in [16]. These approaches have three primary characteristics: They can

recover push during walking gait, are suited for irregular terrains and eliminate

the constant COM height and constant centroidal angular momentum limitations.

Figure 2.16: Inverted pendulum model with virtual-mass-ellipsoid [16].

A middle ground between a complicated, whole body dynamic model comprising

every connection and actuator of the robot and a substantially simplified represen-

tation of the robot as a point mass is investigated in [110]. While the fundamental

dynamics of bipedal robots are complex, the development of angular momentum

and the COM position is significantly more straightforward. They arrive at an

approach with simpler dynamics while still having the extensibility required to

handle kinematic constraints. Robot COM and angular momentum estimated

from joint trajectories to match the centroidal dynamics is also required for the

algorithm.

A high-dimensional model of the humanoid robot (Figure 2.17) may be simplified

during a turn to a lower number of primary components that contribute to the spin
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angular momentum about the COM is demonstrated in [17]. Separating various

tasks is one of the method’s limitations, and proposed enhancements utilizing

Bayesian principal component analysis are discussed.

Figure 2.17: A high-dimensional model of the humanoid robot was used to
estimate the spin angular moment about the COM. The model features 38 DOF
externally and 32 DOF internally, 12 for the legs, 16 for the arms, and six for

the remainder of the body [17].

The purpose of [18] is to develop generic stability criteria by studying the under-

lying physics of rotational stability of multi-body systems. The rate of change

of a robot’s centroidal angular momentum, as the physical quantity conveying its

stability information, is the research subject. Three control techniques for biped

robot stability recapture that exploit the robot’s rate of change in centroidal an-

gular momentum are presented. A derived condition for free walking on horizontal

ground refers to a location on a robot’s foot surface where the entire GRF would

have to operate so that the robot’s rate of change in centroidal angular momen-

tum equals zero. The resulting GRF, denoted by R, flows through the COM,

represented by G, as shown in Figure 2.18. As a result, rate of change in angular

momentum is zero, and the robot is rotationally stable. The GRF produces a

non-zero net moment about the COM in Figure 2.18. Therefore, the robot has a

propensity to fall over. The rate of change of angular momentum would be zero if
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we laterally shifted the GRF to act along a new line of action going through the

COM, and the robot would be stable. The contact point of the ground and the

shifted GRF are shown at point A in Figure 2.18.

Figure 2.18: This diagram depicts the basis of stability analysis based on
the rate of change of a robot’s centroidal angular momentum and presents the

notion of the angular momentum point with zero rate of change [18].

In [111], a motion-embedded COM Jacobian algorithm with angular momentum

resolution is used to provide a walking algorithm for bipedal robots. The angular

momentum equation is only employed for upper body motion determination in this

technique, and no additional subject variables are used. Whole body cooperative

motion is accomplished with walking restrictions defined by motion embedded

COM Jacobian.

Chang et al. [112] propose a push-recovery approach for stabilizing the robot in

the face of external disturbances. COG angular momentum regulator, COG state

estimator, and stepping control are integral to the the technique, which alters

the COG and swing leg trajectories in real time. The COG angular momentum

regulator regulates the dynamics of the COG as an impedance system using the

centroidal-moment-pivot criteria and feedback from a Kalman filter based COG
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state estimator. The stepping control chooses the best balancing reply before the

robot’s reactions to external disturbances.

A balance control technique for a bipedal robot standing on one leg is presented

in [113]. First, the regulation of a contact torque acting from the robot’s foot to

the earth’s surface is addressed. They also stress the relevance of back drivability

of the contact torque controller. It is demonstrated that a two-DOF feedback

controller produces a satisfactory outcome in this regard. Second, a novel balance

control concept is presented based on direct feedback of total angular momentum

and COG location.

A bipedal robot whole-body motion method that results in predefined total lin-

ear and angular momentum values is proposed in [19]. A linear equation that

calculates a robot’s overall momentum based on its physical properties, such as

base link and joint velocities, is created. Constrains that are between legs and

environment are also taken into account. A pseudo-inverse of the inertia matrix

determines whole body motion from a particular momentum reference. Kicking

and walking movements are tested on the HRP-2 humanoid robot (Figure 2.19).

The angular momentum created by the lower body movement of a bipedal robot

is estimated in [114], and the torso and arm rotations are planned in such a way

to counteract the lower body angular momentum. A bipedal robot upper-body

mechanism that resembles the human arm length and mass characteristics is also

constructed. The humanoid robot achieves angular momentum adjustment in the

yaw direction while it is in the air.

A biologically inspired walking control technique that explicitly controls the sys-

tem’s angular momentum is provided in [115]. They calculate the distribution of

angular momentum across the human body using human kinematic locomotion

data at slow and self-selected walking speeds. According to principal component

analysis, three angular momentum primitives describe 99 percent of the walking

variables for the sagittal plane body rotations. The findings reveal that the an-

gular momentum primitives are unaffected by walking speed. A morphologically

accurate humanoid model walking in the sagittal plane to represent human walking
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Figure 2.19: HRP-2 humanoid robot [19].

in the single support phase is used. The desired gait motion has minimum pre-

determined specifications. The resultant joint kinematics model is qualitatively

similar to human gait data, suggesting that invariant angular momentum primi-

tives in bipedal robot control might be crucial for establishing biological realism in

legged robots and prosthetics. The angular momentum primitives architecture cis

successful in gait synthesis, allowing the controller of a bipedal robot or powered

limb prosthesis to adjust stride length and walking pace conveniently.

In [20], a model-based and efficient link-to-link distance computation method is

proposed for robots. In order to prevent collisions, the findings are put into the

inverse kinematics null space term, which is based on LIÉGEOIS’ redundancy res-

olution methodology. A unique strategy for reducing vertical angular momentum

for a walking humanoid robot is also suggested. This method employs arm motion.

The approach may be coupled with the suggested collision avoidance strategy be-

cause it also works in null-space. Finally, findings from simulations and trials with

the robot Lola (Figure 2.20) are presented with the suggested methodologies.
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Figure 2.20: The humanoid robot Lola. Photo and kinematic structure of the
robot system [20].

Several push forms are examined, and a controller for dealing with a sudden push

on a bipedal robot during a walking gait is proposed in [116]. The controller

senses a push, simultaneously determines the robot’s required step locations to

recover from the impact, and computes the joint motion needed to balance the

robot effectively. Balance and posture control strategies are based on angular

momentum.

In another work, Adiwahono et al. present a control system for bipedal robot

walking and a push recovery. When the robot is subjected to an impact force, the

algorithm adjusts the walking phase to keep the robot walking while taking the

constraints into consideration [117].

Two methods for disturbance rejection are discussed in [118]. The first method is

a disturbance observer and PI controller combination that extends the divergent

component of motion and CP tracking controllers. Employing the error of momen-

tum rate-of-change, transient disturbances are computed. An optimization-based

divergent component of motion dynamics is provided for more substantial distur-

bances. The method employs a quadratic algorithm to obtain the appropriate

step position and GRF. The optimization allows for the design of the angular mo-

mentum rate of change algorithm to assist shortening the length of the recovery
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process.

Hosseinmemar et al. [119] offer a closed-loop feedback controller for a bipedal robot

with an accelerometer and gyroscope to balance the robot during walk and recover

from external disturbances. Three balancing methods are investigated regarding

humanoid robots: COP, centroidal moment pivot, and stepping strategy. In order

to study recovery from impacts, experiments are conducted with three closed-

loop feedback controller configurations: Employing only the gyroscope, only the

accelerometer and a combination of both sensors. In order to classify pushes of

varying strengths, each sensor is discretized into four distinct domains.

A multi-level postural control integration problem on a bipedal robot is discussed

in [120]. Hyon et al. provide a comprehensive perspective of postural stability,

including ankle and hip strategies. They employ two converters for required ground

response force to whole-body joint torque. Due to the joint redundancy, an angular

momentum controller is also proposed to regulate the internal movements. This

article shows that replacing COM feedback with local joint stiffness improves the

stability of the bipedal robot for specific rapid maneuvers.

Kojio et al. present a step modification strategy that considers the available

moving range in [121]. Stable posture is achieved even on steps where the available

moving range is strongly constrained. The proposed approach alters the step

location, the step time and angular momentum. The available moving range is

expressed as convex polygons. This allows gait characteristics to be determined

analytically.

In [122], linear equations of motion for the location of the COP and the rate of

change the angular momentum about COM are obtained linear. This is achieved

by considering that the bipedal robot is following a predefined reference trajectory

for the height of COM. MPC is utilized to solve for control inputs across a receding

horizon. This yields reference trajectories for the COP and the rate of change of

angular momentum about the COM.
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Lee and Goswami describe a stability approach that manages the robot’s linear

and angular momenta [123]. The goal of the controller is to achieve the desired

momentum. Which allows regulation of the posture of the bipedal robot. This

technique works on uneven terrains and varying frictional characteristics at each

contact between foot and ground by directly calculating the GRF and COP at sup-

port foot to obtain the appropriate momentum. In case the robot is not achieving

the necessary linear and angular momentum values simultaneously, the controller

prioritizes linear momentum at the expense of angular momentum.

The focus of [124] is to manage lateral plane disturbances and integrate them with

a planar direction method. The humanoid robot is balanced in a walking gait

employing different recovery techniques. Moving a leg or turning the torso are

employed as angular momentum generators.

Angular momentum of a humanoid robot is utilized in [125] to achieve push re-

covery. In order to alleviate the disturbance and achieve posture stability, the

proposed approach actively creates angular momentum references depending on

the magnitude of the force and direction of the push. The reference of the angular

momentum about COM is created by first computing angular momentum around

COM for counterbalancing the push, then for decreasing angular momentum to

stop the bipedal robot and finally for posture recovery to return to the desired

posture reference.

A reactive stepping regulator for bipedal robot posture recovery is proposed in

[126]. The regulator is based on momentum and can assist the robot in regaining

equilibrium with or without taking another step by carefully managing linear and

angular momentum combinations. The desired stepping position is determined by

modeling the robot as a wheel. Arriving at the desired position causes the wheel

to stop completely. The period of a step may be calculated from the position of

the reference point.
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2.3.3 Miscellaneous Robots

One of the tools for manipulating the angular momentum of a robot is adding

a tail to the structure of the robot. Machairas and Papadopoulos [39] investi-

gate the posture stability and control of robots with tails for the flight phases of

dynamic quadruped gaits. The dynamics of a robot body whose posture is regu-

lated by a spinning tail are represented employing a two-body template. Model

based controllers are developed with the differential equations for a tail and a re-

sponse wheel. The differential geometry of the system depends on initial angular

momentum. The tail and the reaction wheel are compared for performance and

fundamental steps and equations for selecting essential parameters in the design

of such systems are suggested.

Xiaoyun et al. [21] propose a robot with a three DOF tail (Figure 2.21). A

stabilizing mechanism based on the tail and the concept of angular momentum

conservation is proposed. The balancing mechanism works with the sudden rota-

tion of the tail in the same coordinate axis of the fall causes the robot body with

the angular momentum in the opposite direction. The tailed robot can recover its

posture to its initial position and prevent tipping over after a significant distur-

bance by using an angular momentum strategy and employing PD controller with

a feedforward term.

The angular momentum approach can also be employed on robots lacking contact

with the ground. Examples are space robots. The angular momentum control

of the combined system after catching the object in orbit is investigated in [80].

The contribution of this study is the development of a regulated electromagnetic

damper compatible with a space robot’s joint and a combined angular momentum

control approach depending on the damping joint. The kinematics equations of

the robot base, manipulators with damping joints, and target spaceship are de-

veloped with the Kane technique. A framework for the electromagnetic damper is

developed, and output characteristics of the damper are evaluated using analytical

equations. This approach reduces the spin-axis angular momentum of the robot

base while softening the impact.
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Figure 2.21: Robot with 3 DOF tail [21].

Nohmi et al. [127] discuss a space robot system consisting of a spaceship and a

robot attached to it via a cord. The attached robot moves away from the spaceship

wing with known tether tension regulation approaches in the gravitational field.

Link movement of the attached robot, on the other hand, is challenging since

the momentum is not conserved because of the existence of external forces. This

study concentrates on attached robot momentum regulation in particular. They

demonstrate that the proper motion of the cable attachment site can regulate the

attached robot’s rotational momentum. A control approach is presented for the

attached robot link motion divided into two tasks: End-effector motion and cable

attachment site motion.

A genetic algorithm is employed by Tang and Chen to handle the challenge of

nonholonomic trajectory planning for a free floating space robot platform with

two arms in [128]. The mathematical framework of the model for control system

design is constructed by utilizing the space robot system’s linear and angular mo-

mentum conservation. The control strategy for the system is investigated, and a
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genetic algorithm is employed to achieve optimal control parameters. The sug-

gested optimum motion planning technique can achieve desired angular positions

of the base attitude and arm joints by regulating the motion of the arm joints.

Ikeda et al. [129] present a control approach called variable constraint control for

regulating the posture of free flying robots like space robots subject to angular

momentum conservation. A holonomic constraint is employed on the nonholo-

nomic system, called a control constraint. The original constraint is replaced by

a holonomic constraint. The integrals of these constraint functions act as con-

stant manifolds. Then, they regulate zero dynamics variables while preserving the

control constraints.

Gupta et al. [130] present a method for a quadrotor with variable pitch propellers

to increase the rate of change of thrust creation for active maneuvering. In com-

bination with the momentum approach, the blade element approach is utilized to

calculate aerodynamic loads, which are necessary for constructing the dynamics

model of the quadrotor. In addition, a nonlinear controller designed for trajec-

tory tracking via dynamic inversion. Three loops are used in the controller. The

outer loop computes the translation dynamics in order to create thrust, pitch, and

roll angle references necessary to attain a specific state or trajectory. The inner

loop optimizes the rotational dynamics to produce necessary angular velocities by

utilizing the references produced in the outer loop.

Mita et al. [131] derive an analytical solution for a two-link free flying robot to

regulate the initial angular momentum condition. They demonstrate a mathemat-

ical solution to the issue of time optimum control. Simple closed loop control law

equations are obtained. It is also shown that the problem results in a particular

optimum control issue depending on the initial conditions.

The angular momentum approach can also be employed to robots lacking contact

with the ground almost always during their gait cycles. Hopping robots (Figure

2.22) make examples in this category. A hopping motion controller structure is

suggested in [22]. In order to disperse the torque load of motors, the hopping

robot presented in this study includes a parallel link topology. The controller
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building blocks offered are collision relief control, hopping attitude and velocity

control utilizing conservation of angular momentum, and equipment control for the

touchdown. The first controller uses the compliance control to reduce the collision

force during touchdown. The second controller has two parts for velocity and

attitude of the motion. By using the conservation of kinetic energy, the velocity

command is generated in hopping velocity control. The order for hopping attitude

control is obtained from the variation in posture during the airborne phase. The

next touchdown is planned by equipment control for landing.

Figure 2.22: Sagittal plane of the hopping robot [22].

In another study with the angular momentum approach walking gait stabilizers

for general legged robots are investigated. Powell and Ames [132] propose stabiliz-

ing underactuated walking robots. Employing continuous time control and hybrid

system models that record impacts during footstrike, the regulator stabilizes the

transmission of angular momentum from one leg to another. Angular momentum

conservation upon contact enables the precise calculation of the angular momen-

tum transfer function that depends on the stride length of the robot and vertical

COM velocity right before foot contact. Reference trajectories for the step length

of the legged robot and vertical COM coordinate can be computed.
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Finally, in [133], a general method is proposed for creating dynamically stable

gaits for legged robots. A walking pattern generator that can generate a stable

COM trajectory by using angular momentum on difficult terrain conditions is

presented. The solver is sufficient enough to serve as an MPC. In addition, a

contact planner is employed to generate the contact pattern from a simulation of

the system and the desired posture. The algorithm then computes a stable walking

gait pattern, and inverse kinematics is utilized to generate a dynamically stable

full body trajectory. This approach is efficient enough to design a step while the

previous step is performed.

2.4 Contributions of This Thesis

Machine learning strategies for quadrupedal robots are categorized into collision

detection, terrain classification, path planning, motion planning and posture re-

covery subjects. Since posture recovery is the main concentration of this thesis,

the literature survey on posture recovery is expanded to bipedal and quadrupedal

robots. Although many studies are proposing machine learning methods for legged

robots, gaits with no ground contact (such as a long jump) are not studies in the

research surveyed in Section 2.1. Posture recovery methods mentioned Section 2.1

depend on ground contact points or stepping strategies in order to balance the

posture of the robot.

Balance and posture control strategies without machine learning or angular mo-

mentum approaches for bipedal and quadrupedal robots are surveyed as well. The

main concentration of these studies is balancing legged robots under external dis-

turbances or performing dynamic gaits. Running and walking gaits are considered

in Section 2.2. Therefore, ground contact forces are available for posture control.

Studies on balance and posture control strategies with the angular momentum

approach are investigated in the literature. Since this topic is highly related to

this thesis, this section is expanded on quadrupedal, bipedal and miscellaneous

robots. Similar to Section 2.2, the studies on posture control with the angular
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momentum approach for bipedal and quadrupedal robots include ground contact

points. For miscellaneous robots, when ground contact is absent, adding a tail to

the robot system is used to balance the robot. Other approaches include adding a

cord or a damper to the robot to control the posture of a space robot or utilizing

propellers.

This thesis focuses on the posture control of legged robots with no ground contact

and without additional mechanical apparatus to manipulate angular momentum

of the system.



Chapter 3

System Modeling and Control

Methods

3.1 Floating-Base Multi-Body Dynamics

In order to characterize the motion of floating base systems, the concept of gener-

alized coordinates is employed. In this approach, system kinematics and dynamics

are defined in terms of n-dimensional vector functions.

θ =

θg
θj

 , (3.1)

where

θg =
[
x y z α β γ

]T
. (3.2)

Here x, y and z are unactuated robot positions with respect to world coordinate

frame x, y and z axes (3.1), α, β and γ are underactuated robot orientation angles

about world coordinate frame x, y and z axes and θj represents actuated joint

positions (front and rear spine joints (θb and ϕb) and leg joints). The front torso

component serves as the base of the robot. The location and orientation of this

robot base are specified in terms of the underactuated floating base coordinates

53
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relative to the world frame. Accordingly, equations of motion are expressed as,

M(θ) θ̈ + C(θ, θ̇) +G(θ) = ST τ, (3.3)

where M(θ) ∈ Rn×n denotes the inertia matrix, C(θ, θ̇) ∈ Rn×1 represents the

Coriolis and centrifugal forces, G(θ) ∈ Rn×1 stands for the gravitational effect,

and S ∈ Rn−6×n denotes the selection matrix of the actuated joints. The selection

matrix S distinguishes between actuated and unactuated floating base coordinates.

The vector of actuated joint torques is denoted by τ ∈ Rn−6×1.

FRONTREAR

Figure 3.1: The full-body quadruped’s frame positions. The x, y, and z axes
are shown by red, green, and blue arrows, respectively.

3.2 Quadruped Robot Simulation Environment

3.2.1 Quadruped Body Kinematics

The quadruped robot model features a total of 20 DOF, with three DOF in each

leg and two DOF in the spine. The remaining six DOF belong to the floating-

base in three-dimensional space. Leg joints are rotational. Each leg has a hip

adduction/abduction joint, as well as hip and knee flexion/extension joints. Figure

3.2 provides an example. Three distinct body sections and two joints are used to
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generate dynamic spine motion (Figure 3.3). The quadruped’s full-body frame

positions are shown in Figure 3.1.

Figure 3.2: The robot leg’s kinematic layout and frame positions. The x, y,
and z axes are shown by red, green, and blue arrows, respectively.

FRONTREAR

Figure 3.3: The robot body’s kinematic layout and frame positions. The x,
y, and z axes are shown by red, green, and blue arrows, respectively.

Coordinate transformation matrices for the front and hind body frames are as

follows:

B
Bm

T =


cos(θb) − sin(θb) 0 − lb1

2

0 0 −1 0

sin(θb) cos(θb) 0 0

0 0 0 1

 , (3.4)

Bm
Br

T =


0 0 1 −lb2

sin(ϕb) cos(ϕb) 0 0

− cos(ϕb) sin(ϕb) 0 0

0 0 0 1

 . (3.5)
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Here θb is the pitch angle of the front spine joint and ϕb is the roll angle of the

rear spine joint. lb1 is lenght of the front body and lb2 stands for the lenght of the

middle body (Table 3.1).

Table 3.1: Simulation parameters.

Simulation Parameters

Definition Symbol Value (Unit)

Body (Front-Middle-Rear)

Lenght lb1, lb2, lb3 0.4− 0.2− 0.4 (m)

Height hb1, hb2, hb3 0.15− 0.15− 0.15 (m)

Width wb1, wb2, wb3 0.6− 0.6− 0.6 (m)

Mass mb1, mb2, mb3 20− 10− 20 (kg)

Leg (Upper - Lower)

Lenght lul, lll 0.4− 0.4 (m)

Height hul, hll 0.06− 0.06 (m)

Width wul, wll 0.1− 0.1 (m)

Mass mul, mll 5− 5 (kg)

Gravitational acceleration g 9.81 (kgm/s2)

Sampling time ts 0.0005 (s)

3.2.2 Orientation Representation

The following procedure is used to represent the angular position of the robot

body in three-dimensional space. Given that the orientation of the robot body

has three DOF, three principal rotations are employed to describe orientation.

A rigid body’s orientation may be defined as the orientation of a fixed reference

frame attached to the robot body. A mapping matrix between the world frame and

the frame connected to the quadruped robot’s main body can be defined. Three
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sequential rotations around the world frame are chosen to describe the robot’s

body orientation. These are roll, pitch, and yaw rotations. Finding a mapping

matrix between the Euler angle rates and the robot body’s angular velocity is

critical for the building of a 3D robotic simulation environment. The mapping

matrix is calculated as in [134]:


α̇

β̇

γ̇

 = E−1 B
WR WwB, (3.6)

Here, BwW is angular velocity of robot body with respect to world coordinate

frame. α̇, β̇ and γ̇ are angular velocities of the robot body along x, y and z axes

respectively. E is the matrix that maps the body’s angular velocity with respect

to the body frame to the Euler angle rates. B
WR is rotation matrix between world

coorditane frame to body coordinate frame.

E−1 B
WR =


1 sin(α) sin(β)

cos(β)
− cos(α) sin(β)

cos(β)

0 cos(α) sin(α)

0 − sin(α)
cos(β)

cos(α)
cos(β)

 . (3.7)

When the pitch angle (β) equals 90 or 270 degrees, the mapping matrix is singular.

However, these values are unlikely to be reached in quadruped motion. A negligible

overflow number might be introduced to avoid singularity.

3.2.3 Quadruped Body Dynamics

The Lagrangian technique is used to generate the dynamic equations of a quadruped

robot. This technique makes use of the Euler-Lagrange equations, which are de-

rived by the kinetic and potential energy of the system. The difference between

the kinetic and potential energy of a system is defined as the Lagrangian function

for the purpose of creating dynamic equations.

L (θ, θ̇) = K(θ, θ̇)− U(θ). (3.8)
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In (3.8), L denotes Lagrangian function, K and U stand for the kinetic and

potential energy terms of the system, respectively. The equations of motion of

a quadruped robot with generalized coordinates (θ ∈ Rn) and a Lagrangian are

formulated as,
d

dt

∂L

∂θ̇i
− ∂L

∂θi
= Fi ; i = 1...n, (3.9)

where F denotes all external forces and torques operating on the body and linkages

of the quadruped robot. The size of the generalized joint coordinates column vector

is denoted by n. When Euler-Lagrange equations are applied to a quadruped robot

and equations of motion are organized in the manner specified in (3.3), the inertia

matrix (M(θ)), external forces (F ), Coriolis and centrifugal forces (Ci(θ, θ̇)), and

gravitational force (Gi(θ)) are calculated as in [134]:

M(θ) =

j∑
s=1

JT
s (θ) Ms(θ) Js(θ), (3.10)

Ci(θ, θ̇) =
n∑

j,k=1

(
∂Mij

∂θk
− 1

2

∂Mkj

∂θi

)
θ̇j θ̇k; i = 1...n, (3.11)

Gi(θ) =
∂U

∂θi
i = 1...n, (3.12)

F = ST τ. (3.13)

Here, Js represents link jacobian matrices and Ms is the matrix of inertia of the

robot link.

3.3 Control of the Quadruped Robot

In this chapter, a classical PID control rule based on joint space dynamics was pro-

posed. In order to track generated references torque control method is employed.

Torque (τ) in Equation 3.3 is calculated as

τ = Kp e+Ki

∫ t

0

e dt+Kd ė, (3.14)
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where e is angular position error obtained by e = θref − θact, θref is reference

angular position and θact is actual angular position of the robot joint. Kp, Ki and

Kd are proportional, integral and derivative gains of the PID controller (Table

3.2). These gains are obtained by trial and error method.

Table 3.2: Control Parameters

Kp Ki Kd

Spine joints 1000 20 700

Leg joints 1000 10 800



Chapter 4

Learning-Based Posture Control

of a Quadruped Robot in the

Flight Phase of a Long Jump

Reinforcement learning is the process by which a machine learns what to do - how

to translate events to actions - in order to maximize a numerical reward signal.

The learner is not taught which actions to do; rather, it must determine which

activities provide the greatest reward via trial and error [135].

This section describes a novel reference generation strategy based on RL for in-

air stabilization of robots without ground contact sites during the flight phase

of a long jump. This approach generates reference curves for the quadrupedal

robot’s waist joints in order to achieve proper orientation in the air. First, the

methodology of this approach is presented. Then the proposed posture control

approach is demonstrated in a simulation environment. Finally, discussions are

presented.

60
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4.1 The Methodology of the Reinforcement Learn-

ing Algorithm

The RL-based posture recovery algorithm is divided into two sections: The agent,

which includes the policy and learning algorithm and the environment, consisting

of the robot controller and robot plant. The agent is the one who makes deci-

sions based on the potential for reward. The term “policy” refers to an agent’s

method for maximizing reward. The environment is the world with which the

agent interacts. The aim of the agent is to choose the ideal course of action for the

environment (robot) based on the reward function and observation of the environ-

ment’s condition. The reward function is a motivational mechanism that informs

the agent which actions are correct and which are incorrect. The agent needs

inputs in the form of error and body orientation angles such as pitch (α) and roll

(β) (Figure 4.1). The reward function is defined as follows

R(sk) = −(ek)
2. (4.1)

Figure 4.1: Overview of posture recovery algorithm.

Here, R represents the reward function, s is the state, k is the state index and

e stands for the robot’s orientation error relative to the world coordinate frame

(Figure 4.2). The objective of the algorithm is to decrease orientation error. Roll

and pitch orientation angles are assigned to be zero degrees in landing. A Q-table

and a policy function are constructed. A Q-table is a straightforward look-up table

in which the maximum projected future rewards for each action are calculated.

The table contains information on the orientation of the robot, joint numbers,
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actions, and rewards. The motion is characterized by two waist joint positions,

as illustrated in Figure 4.2. For the table, the exploration of action space and

orientation space is discretized. Roll and pitch angle space is defined in increments

of ten degrees from zero to forty degrees. The action space is specified as −0.286

to 0.286 degrees (−0.005 to 0.005 radians) in increments of 0, 057 degrees (0.001

radians). Table 4.1 illustrates the Q-table’s structure. The number of training

runs required to fill the Q-table is 220, since ten orientation angles of the robot

body (five distinct pitch angles and five distinct roll angles) are examined with

eleven distinct actions for two joints.

FRONTREAR

Figure 4.2: Robot model for simulation. θb is front spine joint angle, ϕb is rear
spine joint angle and α (roll) and β (pitch) are body orientation angles about

the world coordinate axes (red and green axes).

Table 4.1: Q-table for posture recovery algorithm.

Column 1 Column 2 Column 3 Column 4

Robot orientation angles Waist Joints Actions Rewards

(α, β) (θb, ϕb) (∆θ, ∆ϕ) (R(s))
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After calculating reward values for the discretized orientation space, the continuous

orientation space is handled by a policy function. Due to the roll and pitch angles,

two distinct movements are necessary. The roll angle policy function is as follows,

∆θ = [(∆θ1 (θ2 − |α|)) + (∆θ2 (|α| − θ1))]
|α|
α

1

θ2 − θ1
. (4.2)

Here, α denotes the current orientation of the robot along the robot’s x-axis (roll

angle) and ∆θ is the best action. θ1 and θ2 are the two closest roll values found in

the Q-table. ∆θ1 is the optimal action for θ1, while ∆θ2 is the optimal action for

θ2. Due to the rotation’s symmetry, if the ideal action for a particular roll angle is

∆θ, the optimal action for the negative of that roll angle is −∆θ. As a result, this

equation also takes into account negative orientation space. For example, if the

robot’s starting roll angle is −35 degrees, the closest roll angles to the absolute

value of this number at the Q-table are 30 and 40 (θ1 and θ2) degrees. Then, for

30 degrees, the most awarded action is ∆θ1 for the rear spine joint, and for 40

degrees, the most rewarded action is ∆θ2. Similarly, the policy function for pitch

angle is as follows,

∆ϕ = [(∆ϕ1 (ϕ2 − |β|)) + (∆ϕ2 (|β| − ϕ1))]
|β|
β

1

ϕ2 − ϕ1

. (4.3)

Here, β denotes the current orientation along the robot y-axis (pitch angle) and

∆ϕ is the best action. ϕ1 and ϕ2 are the closest existing roll values on Q-table.

∆ϕ1 is the optimal action for ϕ1 and ∆ϕ2 is the optimal action for ϕ2. Because

simulations are conducted using a realistic robot model, the robot’s joint torque

and joint position constraints prevent speeds from changing the orientation in

the air by more than forty degrees within a realistic flight period. Therefore, if

the robot’s orientation is more than 40 degrees, the optimal case is to repeat the

procedure for 40 degrees. Finally, the angular position references for spine joints

are determined using the following formulae.
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θb(T ) = θb(T − 1) + ∆θb, (4.4)

ϕb(T ) = ϕb(T − 1) + ∆ϕb. (4.5)

θb denotes the angular position of the front spine joint, whereas ϕb denotes the

back spine joint. T is the time step. While ∆θb and ∆ϕb denote the optimal action

values. Along with the action value, the spine joint that will perform that action

is also selected to maximize reward from the Q-table.

4.2 Simulation Results

Training simulations are used to construct a Q-table (Table 4.1). The number

of training required to fill the Q-table is 220, since 10 distinct body orientation

angles are examined, each having eleven distinct movements for two joints. Figure

4.3 illustrates eleven training results. The training set in question is for when the

angular position of the robot body along the x-axis is 20 degrees and the actions

for distinct ∆ϕb values vary between 0.286 and −0.286 degrees (-0.005 and 0.005

radians).

The three steps of the quadruped jumping gait are takeoff, flight, and landing.

During the takeoff phase, the velocity in the x and z axes relative to the world

coordinate frame is set to 5 m/s. The location of the quadrupedal robot as a con-

sequence of the initial velocities is depicted in Figure 4.4. The flight lasts around

one second. In order to model an unstable takeoff, the initial body orientations α

and β are adjusted to 15 and −25 degrees, respectively. These numbers have been

selected purposefully to demonstrate how the learning process works for orienta-

tion angles other than those in the training set and for negative orientation angles.

For both α and β, the reference body orientations are set at zero degrees. As in-

dicated earlier, the extrapolated joint coordinates are θb and ϕb, which correspond
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Figure 4.3: The angular position of the robot about world coordinate frame
x-axis. Training results for 20 degrees. ϕb (rear spine joint angle) actions are

presented. The red line is optimal action to take.

to the front spine joint angle and rear joint angle, respectively (Figure 4.2). The

reference values generated are applied to the spine joints and the references are

tracked using a simple PID controller. The computed references and the actual

joint coordinates of the spine joints can be seen in Figures 4.5 and 4.6. Accord-

ing to the findings presented in Figure 4.5 and Figure 4.6, the PID controller is

successful for tracing reference values. Throughout the flight period, the roll and

pitch angles of the quadrupedal robot with respect to the world coordinate frame

are presented in Figure 4.7. The intended final value is 0 for all angular positions.

Additionally, posture recovery for body orientation is around 94 percent when the

device is underactuated. Various initial roll and pitch body orientations are simu-

lated; posture recovery is around 94 percent between −35 and 35 degrees. Outside

of these values, orientation correction is approximately 30 degrees. The landing

orientation of the robot is demonstrated to improve as it approaches the desired

landing point.
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Figure 4.4: Linear positions of the quadrupedal robot along the x-axis (blue),
y-axis (red), and z-axis (yellow).

4.3 Discussion

This study proposes a RL algorithm for generating reference trajectories for free-

flying robots. This reference generation approach is employed on a free-flying

quadrupedal robot in a simulation environment. Reference trajectories are gener-

ated for the front and rear spine joints for control of landing angular positions of

the robot about the x and y axes of the world coordinate frame.

The method does not take any action on the body yaw angle (about z-axis of the

world coordinate frame). This omission is acceptable since the yaw angle has no

influence on the stability of the landing. Controlling roll and pitch angles is critical

in this application because they have a significant effect on the landing stability

of quadrupedal robots.

The primary interest in the study is to bring the front trunk block (termed as the

body in this work) to a desired orientation. However, this process can move rear

legs or body portions into locations not suitable for certain landing scenarios. The
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Figure 4.5: Front spine joint (pitch) actual position (blue) and reference po-
sition (red) with posture recovery algorithm.

landing posture of the middle and rear body parts and rear legs can be constrained

depending on particular landing situations. They are, however, just constrained

by joint space limits in this study.

In order to track generated references, a PID controller is employed. According

to simulation data, the algorithm correctly recovered around 94% of the angular

positions throughout the flight period. The learning-based reference generation

strategy is applicable to any free-flying robot in order to improve flight and landing

stability.
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Figure 4.6: Rear spine joint (roll) actual position (blue) and reference position
(red) with posture recovery algorithm.

Figure 4.7: Angular positions (roll and pitch) of the quadrupedal robot about
the world coordinate frame x-axis (blue) and y-axis (red) with posture recovery

algorithm.



Chapter 5

Reference Trajectory Generation

Using Angular Momentum for

Posture Control of Free Flying

Robots

This section presents a reference trajectory generation strategy for posture control

of free-flying robots based on angular momentum. No physical modifications such

as a tail or a gyro carried out on the system. This section is divided into three

subsections: the methodology of the posture control algorithm, simulation results

and discussion.

5.1 The Methodology of the Posture Control Al-

gorithm

The trajectory generation algorithm uses the desired and actual body angular

position and velocity values as inputs. These variables are assumed to be accessi-

ble. Since the workspace is three-dimensional, three equations can be formulated.

69



Reference Trajectory Generation Using Angular Momentum for Posture Control
of Free Flying Robots 70

Three joints are chosen to adjust the overall angular momentum of the robot body

in order to reach the desired angular position in the flight stage of a long jump.

The expression for discretized angular momentum is

L(t+∆t)− L(t) = τ ∆t, (5.1)

where L(t) is angular momentum as expressed in the robot coordinate frame (Fig-

ure 5.1) and t is time. τ stands for the torque acting on the quadrupedal robot at

time t. ∆t is the time step in discretization, τ can be calculated as

τ = rCOM M g, (5.2)

where rCOM denotes the location of the robot COM in the robot coordinate frame.

M is the robot’s total mass, and g is the gravitational acceleration. The angular

momentum at time t may be obtained using

L(t) = Ib × ωb(t). (5.3)

Here, Ib represents the moment of inertia of the total robot body with respect

to the robot coordinate frame. ωb(t) is the angular velocity of the robot body.

Angular momentum at time t+∆t can be expressed as

L(t+∆t) = Ib × ωb,d(t+∆t) + Ii × ωi(t+∆t). (5.4)

The desired angular velocity of the robot body is ωb,d. The angular velocity of a

chosen robot joint is ωi and Ii is the moment of inertia of the moving robot limb

due to the chosen robot joint. The moment of inertia of various parts of the robot

are computed as

Icx =
1

12
m (l2y + l2z), (5.5)
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Icy =
1

12
m (l2x + l2z), (5.6)

Icz =
1

12
m (l2x + l2y), (5.7)

where Icx, Icy, and Icz are the moment of inertia values about the x, y, and z

axes, respectively, at the COM of the rectangular prism describing the robot body

component (Figure 5.2). m is the mass of the part. lx, ly and lz are length of the

part with respect to their coordinate axes.

Figure 5.1: Quadruped robot model for simulation. θb is front spine joint
angle (pitch) about corresponding blue axis, ϕb is rear spine joint angle (roll)
about the corresponding blue axis and θulrr, θullr are rear hip joint angles about
corresponding blue axes. α, β, and γ are body orientation angles about the

world coordinate axes (red, green, and blue axes).

The parallel axis theorem is utilized to determine the moment of inertia with

respect to robot coordinate axes:

Ii = Ici mi di
2. (5.8)

The moment of inertia of the ith body component is Ii, the mass of the ith body

component is mi and the distance between the axes is denoted by di. When

determining the moment of inertia for the middle torso component around the y-

axis, for example, first Icy is computed around y1c, which is the y-axis through the
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Figure 5.2: Quadruped robot model for the moment of inertia computations.
COM1 is the COM of the middle torso component, COM2 is the COM of
the rear torso component and COM3 is the COM of the rear leg. The robot
coordinate frame axes are shown with three different colors (red for x-axis, green

for y-axis, and blue for z-axis).

COM of the body part, and then Ii is computed using the parallel axis theorem.

di is the distance between y1c and the y-axis of the robot coordinate frame, as

shown in Figure 5.2.

Since roll, pitch, and yaw angles of the robot body (α, β, and γ), must be con-

trolled, three joint angles are selected as action variables to construct a trajectory.

As a result, the three orientation angles are controlled by three independent fac-

tors. The two spine joint angles θb, ϕb, and the two rear leg joint angles θullr,

θulrr are the joint variables employed. For maximal precession of the total angular

momentum around the z-axis of the robot’s coordinate frame, rear leg joint angles

are constrained to be equal in magnitude and opposite in direction. As a result,

they can be considered as if they were one independent variable. Because the

principal inertial axes of these joints are in the y, x, and z directions, they are

chosen. Selected joint angles are assumed to have impact on just their respective

primary inertial axes to simplify computations and reduce computing time. For

example, changes in θullr are thought to affect solely angular momentum around

the z-axis. The following equations are found by computing the moment of inertia

values and combining equations (5.1), (5.2), (5.3), and (5.4).
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ϕ̇b =
τx ∆t+ Ib,x ωb,x(t)− Ib,x ωb,d,x(t+∆t)

Ii,x
, (5.9)

θ̇b =
τy ∆t+ Ib,y ωb,y(t)− Ib,y ωb,d,y(t+∆t)

Ii,y
, (5.10)

θ̇ullr =
τz ∆t+ Ib,z ωb,z(t)− Ib,z ωb,d,z(t+∆t)

Ii,z × 2
. (5.11)

The angular velocities of spine joints are denoted by ϕ̇b and θ̇b. The torque compo-

nents operating on the quadrupedal robot about the x, y, and z-axes, respectively,

as stated in the robot coordinate frame are τx, τy, and τz. The angular velocities

of the rear leg joints are represented by θ̇ullr. The angular velocity components of

the robot body in the robot coordinate frame are ωb,x, ωb,y, and ωb,z. The mo-

ment of inertia components of the complete robot body with respect to the robot

coordinate frame, about the x, y, and z-axes, are denoted by Ib,x, Ib,y and Ib,z.

The desired angular velocities of the robot body about the x, y, and z-axes in the

same coordinate frame are ωb,d,x, ωb,d,y, and ωb,d,z. The desired angular velocities

and torque components can be computed using the formulas

ωb,d,x(t+∆t) =
αd − α

∆t
, (5.12)

ωb,d,y(t+∆t) =
βd − β

∆t
, (5.13)

ωb,d,z(t+∆t) =
γd − γ

∆t
, (5.14)

and

τx = rCOM
x M g, (5.15)
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τy = rCOM
y M g, (5.16)

τz = rCOM
z M g. (5.17)

The desired roll, pitch, and yaw angles are αd, βd, and γd, respectively.

5.2 Simulation Results

5.2.1 Simulation Results Without External Disturbance

After reference trajectories are computed with the posture control algorithm, ob-

tained trajectories are applied in quadrupedal robot simulation. Simulations are

carried out in the MATLAB & Simulink platform. Parameters of the robot model

used in the simulation are given in Table 3.1. Locomotion parameters are presented

in Table 5.1.

Table 5.1: Locomotion parameters for posture control method.

Locomotion Parameters

Definition Symbol Value (Unit)

Take-off velocity about x-axis vx 5 (m/s)

Take-off velocity about y-axis vy 0 (m/s)

Take-off velocity about z-axis vz 5 (m/s)

Roll - Pitch - Yaw vz π/6− π/6− 0 (rad)

Flight phase tf 1 (s)
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In order to generate a jumping scenario, take-off velocity is set to 5 m/s at x and z-

directions. The resultant motion has a one-second flight phase. Figure 5.3 shows

the linear positions of the robot during a leap. The position control algorithm

computes front and rear spine joint trajectories, as well as trajectories for the

right and left hip adduction/abduction joints. In order to track the resulting joint

reference trajectories, traditional independent joint PID position control is used.

Figure 5.3: Linear positions of the quadrupedal robot performing jumping
gait, components along the x-axis (blue), y-axis (red), and z-axis (yellow).

The reference and actual positions of the front spine joint can be seen in Figure

5.4. Figure 5.5 presents the actual and reference positions of the rear spine joint.

Figures 5.6 and 5.7 show the actual positions and reference trajectories of the right

and left hip adduction/adduction joint positions.

Roll, pitch, and yaw angles of the quadrupedal robot with respect to the world

coordinate frame can be seen in Figure 5.8. The desired angular position for the

robot to attain is selected to be zero radians around the x, y, and z-axes.
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Figure 5.4: Front spine joint (body pitch joint) actual position (blue) and
reference position (red) with posture control algorithm.

5.2.2 Simulation Results With External Disturbance

This subsection presents a different application of posture recovery algorithm.

The method is applied for reference trajectory generation for push recovery of

free-flying robots.

Unlike in Section 5.2.1 in (5.1), τ does not depend solely on gravity but also

disturbance torque acting on the robot. The duration, magnitude and timing of

the disturbance torque due to external impacts are unknowns. In an exact model

the torque terms (τx, τy and τz) also include disturbance torque components. In

addition, disturbance torques acting on the robot are assumed to change angular

velocity components ωb,x, ωb,y, and ωb,z; therefore, the algorithm includes these

disturbances to calculate angular velocities of spine joints ϕ̇b and θ̇b and hip joints

θ̇ullr.

Generated trajectories under disturbance effects are simulated. Locomotion pa-

rameters are presented in Table 5.2.
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Figure 5.5: Rear spine joint (body roll joint) actual position (blue) and refer-
ence position (red) with posture control algorithm.

Take-off velocity is set at five m/s in the x and z axes to produce a jumping sce-

nario—a one-second flying phase results from the motion. Figure 5.9 depicts the

quadrupedal robot in a virtual environment. Figure 5.10 shows the quadrupedal

robot’s linear locations during a leap. At 0.2, 0.5, and 0.8 seconds after take-off,

disturbances are created and applied to the robot model. In the robot coordinate

frame, various disturbance torques are applied around the x, y, and z-axes, re-

sulting in an equal increase in angular acceleration around these axes (see Figure

5.11). The applied torques around the x, y, and z-axes are 28.7 Nm, 76.6 Nm,

and 102 Nm, respectively.

The algorithm computes front and rear joint trajectories, as well as right and left

hip adduction/abduction joints trajectories. In order to track the resultant joint

reference trajectories, again traditional PID control is employed. In Figures 5.12

to 5.15, calculated joint reference trajectories and actual joint angles are presented.

The reference and actual locations of the front spine joint are shown in Fig. 5.12.

The PID controller is quite successful in that the errors are smaller than 0.002
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Figure 5.6: Rear right hip joint actual position (blue) and reference position
(red) with posture control algorithm.

rad. Figure 5.13 presents the actual and reference positions of the rear spine joint.

Figures 5.14 and 5.15 present the actual positions and reference trajectories of the

right and left hip adduction/adduction joint positions, respectively.

The roll, pitch, and yaw angles of the robot with respect to the world coordinate

frame can be seen in Figure 5.16. The intended angular position for the robot to

attain after the external disturbance is selected to be zero radians along the x, y,

and z-axes. Maximum inaccuracy is roughly 0.009 rad around the x-axis, 0.001

rad along the y-axis, and 0.0005 rad around the z-axis, according to the results.

Identical disturbances are applied on the quadrupedal robot model without a push

recovery mechanism in order to demonstrate the effect of the method. The angular

velocity around the x-axis with and without this technique can be seen in Figure

5.17. The angular velocity of the robot rises in the absence of the push recovery

mechanism, eventually settling at 0.2 rad/s. When the push recovery method is

turned on, however, the angular velocity does not exceed 0.2 rad/s, and instead

falls to a value near 0 rad/s.
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Figure 5.7: Rear left hip joint actual position (blue) and reference position
(red) with posture control algorithm.

Similarly, without the push recovery mechanism, angular velocity along the y-axis

approaches 0.2 rad/s since angular accelerations are identical. It peaks to 0.05

rad/s when applying the method and converges to zero after 0.2 seconds (Figure.

5.18). Finally, angular velocity around the z-axis is presented in Figure 5.19 with

and without the push recovery technique. Angular velocity does not increase up

to 0.2 rad/s when applying the technique, and settles to around zero rad/s in 0.1

seconds, as it did in prior findings.

5.3 Discussion

This section provides a novel posture control algorithm for legged robot jumping

gaits for the flight phase. Angular momentum variables are used in the control

process. Parts of the robot body (legs and torso pieces) are modelled with an

independent mass.
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Figure 5.8: Angular positions (roll, pitch, and roll) of the quadrupedal robot
around the world coordinate frame x-axis (blue), y-axis (red), and z-axis (yel-

low) with posture control algorithm.

The model is detailed, taking into account individual link masses, and it is com-

putationally efficient enough to be employed in real-time applications.

When the front spine joint moves, two torso components, and two leg components

move with it. As a result, the front body joint moves a mass of 50 kg (middle

body is 10 kg, rear body is 20 kg and each leg is 10 kg), while the rear spine joint

moves a mass of 40 kg. The rear leg joints, on the other hand, move 20 kg for two

legs. The performance of controlling angular position around the z-axis is weaker

than the x and y-axes because the moment of inertia is a function of mass, and

rear leg joints are chosen to regulate angular position around the z-axis.

In the flight phase of a long jump, the suggested posture control method is tested

in a simulated environment, including initial body orientation conditions. The

technique achieves minor orientation errors, indicating that it is feasible and ap-

propriate for implementation as a posture control method for free-flying robots.
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Table 5.2: Locomotion parameters for push recovery method.

Locomotion Parameters

Definition Symbol Value (Unit)

Take-off velocity about x-axis vx 5 (m/s)

Take-off velocity about y-axis vy 0 (m/s)

Take-off velocity about z-axis vz 5 (m/s)

Initial body orientation angles (Roll - Pitch - Yaw) vz 0− 0− 0 (rad)

Flight phase tf 1 (s)

Disturbance torque around x-axis 28.7 (Nm)

Disturbance torque around y-axis 76.6 (Nm)

Disturbance torque around z-axis 102 (Nm)

Finally, the suggested method is also tested in a simulated environment including

external disturbances. The technique achieves is successful in orientation reference

tracking, again validating that it is suitable for implementation.
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Figure 5.9: Quadrupedal robot model in simulation environment.
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Figure 5.10: Linear positions of the quadrupedal robot performing jumping
gait along the x-axis (blue), y-axis (red), and z-axis (yellow).

Figure 5.11: Angular accelerations of the quadrupedal robot around the x-
axis (blue), y-axis (red), and z-axis (yellow) with push recovery mechanism.
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Figure 5.12: Front spine joint (body pitch joint) actual position (blue) and
reference position (red) with push recovery mechanism.

Figure 5.13: Rear spine joint (body roll joint) actual position (blue) and
reference position (red) with push recovery mechanism.
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Figure 5.14: Rear right hip joint actual position (blue) and reference position
(red) with push recovery mechanism.

Figure 5.15: Rear left hip joint actual position (blue) and reference position
(red) with push recovery mechanism.
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Figure 5.16: Angular positions (roll, pitch, and roll) of the quadrupedal robot
around the world coordinate frame x-axis (blue), y-axis (red), and z-axis (yel-

low) with push recovery mechanism.
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Figure 5.17: Angular velocity around the x-axis, the blue line shows results
with the push recovery mechanism, the red line is results without push recovery

mechanism.
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Figure 5.18: Angular velocity around the y-axis, the blue line indicates results
with the push recovery mechanism, the red line is results without push recovery

mechanism.
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Figure 5.19: Angular velocity around the z-axis, the blue line shows results
with the push recovery mechanism, the red line is results without push recovery

mechanism.



Chapter 6

Reference Trajectory Generation

Using Angular Momentum with

Real-time Centroidal Dynamics

Computation for Posture Control

of Free Flying Robots

A novel reference generation approach based on angular momentum for in-air sta-

bilization of robots that lack ground contact sites during certain gait phases is

considered in this chapter. This technique provides references for a small set of

generalized coordinates and speeds that need another small set of coordinates and

speeds (such as the orientation of the robot in flight). The aim of the approach is

to reach a specified reference value swiftly and in a stable way at the end of flight.

Compared to chapter 5, this algorithm computes the inertias of each robot link in

real time at each time step of the simulation. The continuous time rate of change

equation for angular momentum is discretized and linearized. A minimum set of

linear equations for reference trajectory construction is obtained. This technique

is more applicable than techniques involving the addition of a gyroscope or a tail

90
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to the robot. As with the methods in the previous chapter, the proposed algo-

rithm and the resulting program make use of a precise model of the robot in a

computationally efficient way that is suitable for real-time. Because the angular

momentum equations are linearized, the reference generation approach utilizes an

arbitrarily detailed model of the robot with no influence on computing perfor-

mance. A fast and reliable approach is proposed to desired reference orientation

parameters for landing employing the suggested method during the jumping phase

of a quadrupedal robot.

6.1 The Methodology of the Posture Control al-

gorithm

6.1.1 General Framework

In classical Lagrangian dynamics, a mechanical system can represented as a point

in a 2N + 1-dimensional phase space composed of N generalized coordinates θi,

N corresponding generalized speeds θ̇i (i = 1...N), and one time coordinate t.

For simple external forces, the Lagrangian equations of motion are first order in

time derivatives [136]. The corresponding discrete-time version of the equations of

motion requires just two lowest-order time slices, one at (say) time t and another

at time t+∆t, where ∆t is the time step size. Thus, the discretized equations of

motion require a total of 4N generalized coordinates and speeds (2N at time t and

another 2N at time t + ∆t), necessitating the solution of 4N independent equa-

tions. For a mechanical system, the number of equations might be massive, even

analytically unsolvable. In reality, however, many of these generalized coordinates

and speeds are either known explicitly (through sensor data, for example) or are

restricted by construction or by external forces. For instance, the quadrupedal

robot flight phase model utilized in the following sections has N = 17. However,

sensors monitor the generalized coordinates and speeds at time t, and the COM
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motion may be isolated from the rest of the problem, making the problem consid-

erably more tractable. There are just a few (potentially extremely complicated)

equations of motion remaining to solve.

This chapter proposes a technique for solving the remaining equations of motion.

The solution would provide the unknown values of a specific subset of generalized

coordinates and speeds at time t+∆t, pushing all of the generalized coordinates

and speeds closer to their reference values at the end of flight. The strategy is

based on the assumption that all generalized coordinates and speeds at time t

(corresponding to 2N of the 4N variables) are known from sensor data. The

method attempts to solve for a small number n < N of generalized coordinates

(or, equivalently, generalized speeds) at time t + ∆t, if (i) the remaining 2N −

n generalized coordinates and speeds are given by a known trajectory function

and (ii) all generalized coordinates and speeds are determined self-consistently,

i.e., the generalized speed θ̇i i is related to the change in generalized coordinates

via θ̇i(t + ∆t) = (θi(t+∆t)− θi(t))
∆t

. The remaining n equations are then linearized

by Taylor expanding the unknown coordinates or speeds at time t + ∆t around

their values at time t, retaining only terms of first order. Thus, the problem is

simplified to a linear set of n-rank equations. Hence given the desired trajectory

of the remaining coordinates, the trajectory of a limited number of coordinates

is constructed. The application of this strategy is constrained by the piecewise

applicability of Taylor expansion to trajectory functions. As a result, ∆t must

be less than the Taylor expansion’s radius of convergence. This constraint would

necessitate that the time slices in the simulation are small enough, possibly leading

to a greater number of simulation cycles. Since the number of slices to compute in

a given time is increased, this condition would require fast computing for real-time

applications.

The collection of generalized coordinates and speeds to solve for, and hence the

value of n, are determined by the task at hand. In the example provided in

this work, the goal is to ensure that the quadrupedal robot’s total orientation

in three-dimensional space at the conclusion of the flying phase, approaches a

specific reference orientation. Thus, the corresponding generalized coordinates are
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the three (n = 3) orientation angles between the robot body coordinates and the

world coordinates. (Specifically, the body roll, pitch, and yaw angles are employed.

See Figure 5.1) The corresponding equation of motion obtained via Lagrangian

mechanics utilizing these generalized coordinates is simply the equation of motion

for the system’s total angular momentum, defined as dL⃗
dt

= τ⃗ , where L⃗ denotes the

total angular momentum of the robot and τ⃗ stands for the the external torque

acting on the robot [136]. Due to the fact that this is a three-dimensional vector

equation, we have n = 3 equations to solve for the three unknowns. It should

be noted that the conventional parallel axis method for computing the moment

of inertia tensor Iij does not yield a simple solution in this case, simply because

our robot model contains numerous joints that can rotate in any direction and

the axes around which the rotation occurs are not parallel [137]. As a result, this

approach is not ”simpler” to compute than the conventional integration method

explained in (6.12) and (6.13).

In order to design a system trajectory in which the final body orientation ap-

proaches a reference set of angles, the following equation is employed as a starting

point:

dL⃗(t)

dt
= τ⃗(t),

L⃗(t) → L⃗(θj(t), θ̇j(t) | j = 1...N).

(6.1)

Here θj(t) and θ̇j(t) are generalized coordinate and speed vectors. L⃗ and τ⃗ are the

total angular momentum and torque vectors, respectively. N is the total number

of generalized coordinates. Following that, (6.1) is discretized in time:

L⃗(t+∆t)− L⃗(t) = τ⃗ ∆t, (6.2)

In (6.2), t is the time at which discretization takes place. After linearizing Equa-

tion 6.2, the resultant equation has a maximum rank of three. This enables the

identification of n = 3 unknown parameters. It is expected that at time t + ∆t,
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N − n = N − 3 coordinates and speeds may be extrapolated from their values at

time t:

θj(t+∆t) = fj({θi(t), θ̇i(t) ; i = 1 . . . N}),

θ̇j(t+∆t) = gj({θi(t), θ̇i(t) ; i = 1 . . . N}).
(6.3)

Here the label j denotes extrapolated coordinates and speeds that range from 1 to

N−3. fj and gj are known trajectory functions corresponding to the desired phase

space trajectory. fj and gj must be self-consistent for the functions gj to reflect

the time derivative of the generalized coordinates specified by fj. At this point,

2N out of 4N variables are known from sensor data, and 2(N − n) more variables

may be extrapolated straightaway via Equation 6.3. 2n = 6 more equations are

required to get a unique solution. A potential simplification is to assume that the

extrapolation functions are dependent on the coordinate or speed:

θj(t+∆t) = fj({θi(t), θ̇i(t); i = j}),

θ̇j(t+∆t) = gj({θi(t), θ̇i(t); i = j}),
(6.4)

where the labels j of the extrapolated coordinates and speeds range from 1 to

N − 3 (without sacrificing generality). The following study chooses a linear and

self-consistent form for fj and gj:

θj(t+∆t) = θj(t) +
θrefj − θsensj

NT − nt

,

θ̇j(t+∆t) =
θrefj − θsensj

(NT − nt) ∆t
.

(6.5)

Here, θrefj is the reference for generalized coordinates, θsensj represents sensor data

for generalized coordinates at time t, NT is the total number of steps, and nt =

0...NT − 1 stands for the current time step. All θj(t), θ̇j(t) for j = 1...N and

θj(t + ∆t), θ̇j(t + ∆t) for j = 1...N − 3 are known at this point. Following that,

(6.2) is discretized as
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L⃗({θk(t+∆t), θ̇k(t+∆t)})− L⃗({θk(t), θ̇k(t)}) = τ⃗ ∆t, (6.6)

where k ∈ {N − 2, N − 1, N}. For simplicity, just the reliance on θk and θ̇k are

retained here. Self-consistency requires that these generalized coordinates and

speeds have a first-order relationship:

θk(t+∆t) = θk(t) + dθk,

θ̇k(t+∆t) =
θk(t+∆t)− θk(t)

∆t
=

dθk
∆t

.
(6.7)

In (6.7), k has one of the following values: N − 2, N − 1, or N . dθk is a small

increment in the coordinate θk from time t to time t+∆t. While the second line of

(6.7) seems to include six new equations, the first line merely specifies the unknown

dθk’s. As a result, three equations must still be solved to get the values for these

three unknowns. The vector equation (6.6) includes these three equations.

Additional simplification is achieved by linearizing the angular momentum at time

t+∆t. The first term in (6.6) is expressed in dθk up to first order as:

L⃗({θk(t+∆t), θ̇k(t+∆t)}) ∼= L⃗({θk(t) + dθk,
dθk
∆t

})

∼= L⃗({θk(t), 0}) +
N∑

k=N−2

dθk

(
∂L⃗({θk(t) + dθk,

dθk
∆t

})
∂dθk

)
dθk=0

.
(6.8)

It is important to note that, with the exception of dθk’s in the last line of (6.8),

every quantity has a known value. Once the configuration, generalized coordinates,

and generalized speeds of a robot are known, it is expected that the angular

momentum may be determined easily.

In order to complete the equation of motion, the term on the right hand side of

(6.6), denoted by τ⃗∆t, must be determined as well. Internal torques cancel out

due to Newton’s third law, and the net torque applied to a robot in the air is due

to gravity. (Note that the L⃗ in dL⃗(t)
dt

denotes the total angular momentum in world

coordinates). Therefore



Reference Trajectory Generation Using Angular Momentum with Real-time
Centroidal Dynamics Computation for Posture Control of Free Flying Robots 96

τ⃗(t) = r⃗COM(t) × F⃗g, (6.9)

where r⃗COM(t) denotes the COM coordinates at time t. F⃗g = mtotal g⃗ with the

total mass mtotal of the system. g⃗ denotes the gravitational acceleration. r⃗COM(t)

may be determined from the sensor data for a robot with a particular configuration

{θ(t), θ̇(t)}. As a result, τ⃗(t)∆t can also computed at this stage.

Finally, by combining (6.6), (6.7) and (6.9) the component of the equation of

motion related to angular momentum may be written as follows:

N∑
k=N−2

∂L⃗i

∂dθk

∣∣∣∣∣
dθk=0

dθk = τ⃗i(t) ∆t+ Li(t)− Li(θk, 0). (6.10)

This is a linear three-dimensional vector equation in which Ai,k × dθk = Bi with

the three unknown dθk’s. Thus, one may define (6.10) in matrix form with regard

to the x, y, and z components of the angular momentum vector as Ai,k×dθk = Bi,

where i = x, y, z. Explicitly,


AN−2,x AN−1,x AN,x

AN−2,y AN−1,y AN,y

AN−2,z AN−1,z AN,z



dθN−2

dθN−1

dθN

 =


Bx

By

Bz

 . (6.11)

Solving for {dθN−2, dθN−1, dθN} completes the creation of a self-consistent trajec-

tory for time t + ∆t. It should be emphasized that all computations up to this

point are performed using basic arithmetic functions, and (6.11) requires the so-

lution of a 3× 3 linear system. As a result, it is believed that the computation of

dθk’s, and hence the robot’s trajectory from t to t + ∆t, will be rapid enough to

be employed in a real-time application.

6.1.2 Application on a quadrupedal robot

In this section, the linearized angular momentum approach of trajectory gener-

ation described above is applied to a quadrupedal robot. A linear approach is
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utilized to determine the reference value of a generalized coordinate. The pur-

pose of trajectory generation is to achieve the desired overall body orientation of

a quadruped robot in the air. In order to simplify the computation of angular

momentum, all of the robot’s linkages are assumed to have uniform stick shapes,

except for the rear body, which is assumed to be a uniform plane. Figure 5.1

illustrates the concept of a quadruped robot used to compute angular momentum.

Parameters of the robot model used in the simulation and reference generation

algorithm are given in Table 3.1.

Table 6.1 contains nomenclature for robot leg coordinates. The legs of the robot

have 12 DOF while the spine have two DOF. θb and ϕb are the generalized co-

ordinates for spinal joints. Along with generalized leg coordinates, the robot has

three general orientation coordinates denoted by the letters α, β, and γ, which

correspond to roll, pitch, and yaw angles, respectively (Figure 5.1). Also, the

robot has three position coordinates along x, y and z axis of the world coordinate

frame. Therefore, the robot has a total of 20 generalized coordinates. However,

the initial position coordinates and initial velocity values are known, therefore the

position and velocity for the center of robot coordinate axis at any time can be

trivially calculated. The remaining number of generalized coordinates to be con-

sidered is N = 17. Hence, this model has 4N = 68 unknowns, which correspond

to generalized coordinates at time t, speeds at time t, coordinates at time t+∆t,

and speeds at time t+∆t. Generalized coordinates and speeds are known at time

t by sensor data; hence, 2N = 34 unknowns remain.

Extrapolation is performed on the spine joint coordinates θb, ϕb, and the leg co-

ordinates θulrr, θullr (Figure 5.1). However, since the equation of motion contains

three components, a maximum of three unknowns can be extrapolated. θulrr and

θullr are constrained to have identical magnitude and opposite sign in order to

apply maximum precession of the total angular momentum around the z-axis of

the robot’s coordinate frame. The remaining unknowns are assumed to be ap-

proaching to the reference value of the coordinate (see (6.5)) via a known function

(linearly, in our case). Assuming all robot parts have uniform density, the angular

momentum of one-dimensional robot parts is computed as
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Table 6.1: Leg Coordinate Names

Front Rear

Right
Upper

θulrf
Upper

θulrr

ϕulrf ϕulrr

Lower θllrf Lower θllrr

Left
Upper

θullf
Upper

θullr

ϕullf ϕullr

Lower θlllf Lower θlllr

L⃗1(t) =
∑
l

ml

∫ 1

s=0

(
r⃗l(s, t)× ˙⃗rl(s, t)

)
ds, (6.12)

where ml denotes the mass of the robot component with the index l. r⃗l(s, t) tracks

the spatial coordinates of the robot component identified by the same index. s

is a positive integer between 0 and 1. r⃗ is computed using joint positions and

leg dimensions. For a two-dimensional body component, the equation for angular

momentum becomes

L⃗2(t) = m

∫ 1

s1=0

∫ 1/2

s2=−1/2

(
r⃗(s1, s2, t)× ˙⃗r(s1, s2, t)

)
ds1 ds2, (6.13)

where s1 and s2 are normalized line segments along the two dimensions of the

component.

The total angular momentum is defined as L⃗ = L⃗1 + L⃗2. In order to find the RHS

of (6.6) as determined by (6.9), r⃗COM(t) must be obtained. It can be computed

in the following expression:

r⃗COM(t) =

∑
l ml r⃗l

(
s = 1

2
, t
)∑

l ml

. (6.14)
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6.1.3 Generalized Rotation Matrices

Rotation matrices are widely employed for angular momentum calculations. When

the parameters of a rotation matrix change by small amounts, one can simplify the

functional form of this change by Taylor-expanding the rotation matrix around

the original value of the changing parameter and keeping only up to the first-

order terms. This linearizes the dependence on the change in the parameter.

Generalized rotation matrices (GRM) introduced in this section and used in the

trajectory generation code is a tool to simplify these calculations. Moreover, all

the parameters and time dependence used to compute the angular momenta are on

the rotation matrices: One multiplies the rotation matrix (or the time-derivative

of the rotation matrix) by the constant and known home-position of the various

components to calculate the position and velocity vectors of the robot components,

from which one can calculate the angular momentum.

In this work, the rotation matrices used can depend on many parameters (the

angular degrees of freedom, {θi ; i = 1...N}). Only a small number (three in this

case, θN−2, θN−1 and θN) will be linearized, as explained in the previous sections.

When θi change by a small amount θi → θi+dθi (i = N−2, N−1, N), the rotation

matrix also changes as below.

R(θN−2 + dθN−2, θN−1 + dθN−1.θN + dθN)

= R(θN−2, θN−1, θN) +
∂R(θN−2, θN−1, θN)

∂θN−2

dθN−2

+
∂R(θN−2, θN−1, θN)

∂θN−1

dθN−1 +
∂R(θN−2, θN−1, θN)

∂θN
dθN

+ O(2). (6.15)

Here, the dependence of the rotation matrix on θi(i = 1...N − 3) is suppressed

for convenience. The form of the linearized rotation matrix in (6.15) is condensed

to a GRM. A GRM has 4 components, each of which is a 3×3 matrix. The first

component is the zeroth order term in (6.15) and the next three components are
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the three first-order terms. The GRM corresponding to the rotation matrix in

(6.15) can be written as:

GRM(R) =

[
R(θN−2, θN−1, θN),

∂R(θN−2, θN−1, θN)

∂θN−2

,

∂R(θN−2, θN−1, θN)

∂θN−1

,
∂R(θN−2, θN−1, θN)

∂θN

]
≡
[
R(0), R(1), R(2), R(3)

]
. (6.16)

We note for subsequent use that not only the rotation matrices, but also the

linearized form of their time derivatives can be written as a GRM.

The addition of two GRMs corresponding to rotation matrices R1 and R2 yields

another GRM as follows:

GRM(R1 +R2) = GRM(R1) +GRM(R2)

=
[
R

(0)
1 , R

(1)
1 , R

(2)
1 , R(3)1

]
+
[
R

(0)
2 , R

(1)
2 , R

(2)
2 , R

(3)
2

]
=
[
R

(0)
1 +R

(0)
2 , R

(1)
1 +R

(1)
2 , R

(2)
1 +R

(2)
2 , R

(3)
1 +R

(3)
2

]
. (6.17)

This result can be verified using (6.15) and (6.16).

The GRM of the product of two rotation matrices R1.R2 is given by

GRM(R1.R2) =
[
R

(0)
1 , R

(1)
1 , R

(2)
1 , R(3)1

]
.
[
R

(0)
2 , R

(1)
2 , R

(2)
2 , R

(3)
2

]
=
[
R

(0)
1 .R

(0)
2 , R

(0)
1 .R

(1)
2 +R

(1)
1 .R

(0)
2 ,

R
(0)
1 .R

(2)
2 +R

(2)
1 .R

(0)
2 , R

(0)
1 .R

(3)
2 +R

(3)
1 .R

(0)
2

]
. (6.18)

In order to obtain this result, one starts from (6.15) and multiplies two matrices

as usual, keeping track of the order of multiplication and keeping only the terms

up to first order in dθi (i = N − 2, N − 1, N).

We also introduce the concept of a generalized vector (GV), which is used to keep

track of the result of the application of a 3×3 rotation matrix on a 3×1 vector.

The resulting form is an ordered 4-tuple of 3×1 vectors. (In the following as well
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as in the computational work, a GV may sometimes be condensed into a single

3×4 matrix, formed by the concatenation of the components of the GV.) The

generalized vector corresponding to the product of a generalized rotation matrix

GRM(R) by a vector c⃗ = [cx, cy, cz]
T is defined as

GV (R . c⃗) ≡ GRM(R) . c⃗

=
[
R(0), R(1), R(2), R(3)

]
. c⃗

≡
[
R(0). c⃗, R(1). c⃗, R(2). c⃗, R(3). c⃗

]
. (6.19)

The multiplications in the last line of (6.19) are ordinary multiplications between

a 3×3 matrix and a 3×1 vector. This definition follows naturally from (6.15).

The usefulness of the generalized vector concept is limited to keeping track of

the multiplication between a matrix and a vector. While the GV notion in itself

does not provide any simplifications and shortcuts, it is handy where GRMs are

involved.

The addition of two GVs to yield a 1× 4 vector and cross product of two GVs to

yield another GV are given below.

GV1 = c⃗
(0)
1 + c⃗

(1)
1 dθN−2 + c⃗

(2)
1 dθN−1 + c⃗

(3)
1 dθN

GV2 = c⃗
(0)
2 + c⃗

(1)
2 dθN−2 + c⃗

(2)
2 dθN−1 + c⃗

(3)
2 dθN

GV1 +GV2 = c⃗
(0)
1 + c⃗

(0)
2 + (c⃗

(1)
1 + c⃗

(1)
2 )dθN−2 + (c⃗

(2)
1 + c⃗

(2)
2 )dθN−1 + (c⃗

(3)
1 + c⃗

(3)
2 )dθN

GV1 ×GV2 = c⃗
(0)
1 × c⃗

(0)
2 + (c⃗

(0)
1 ×+c⃗

(1)
2 + c⃗

(0)
2 ×+c⃗

(1)
1 )dθN−2

+ (c⃗
(0)
1 ×+c⃗

(2)
2 + c⃗

(0)
2 ×+c⃗

(2)
1 )dθN−1

+ (c⃗
(0)
1 ×+c⃗

(3)
2 + c⃗

(0)
2 ×+c⃗

(3)
1 )dθN . (6.20)

Here, GV1 and GV2 are two arbitrary GVs and c⃗
(n)
m is mth column vector of nth

GV. The results in (6.20) can again be verified by using (6.19) and keeping terms

up to first order in dθi.
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6.1.4 Tree Structure

In computer science, a tree is a highly generic and efficient data structure that

resembles a natural tree. It is composed of an ordered collection of connected

nodes in a connected graph, where each node has a maximum of one parent node

and zero or more ordered children nodes. If a node has zero children, it is called a

leaf. There must always be a single ‘top level’ node referred to as the root. Then,

given a node, any node on the subsequent ‘down’ level that is related to it through

a branch is child of the node. In contrast, the node on the level above a non-root

node is linked to the provided node (through an edge) is its parent [138]. Every

non-root node has a single unique parent, and a root node has no parent.

The tree structure is employed in this algorithm to simplify calculations. This

method involving the tree structure is applicable to legged robots since all links

are physically attached to a previous link like a tree (see Figure 6.1). Each nodes

in the tree structure correspond to robot links. The root node is the origin in the

robot coordinate system, which is attached to the front body link in our system.

The parent node-child node hierarchy is mapped to how the robot components are

attached to each other. The leaf nodes (or the end nodes) are the lower legs in the

quadrupedal robot considered. Just as in a tree data structure, each non-root node

has a unique parent node but can have multiple child nodes. In the quadrupedal

robot case, this means each robot part is attached to a single other robot part

towards the origin, but it can have multiple parts attached to it when going away

from the origin (see Figure 6.1).

The tree structure keeps the calculations relatively straight forward, mapping the

calculated quantities to the robot structure. The tree structure shortens com-

putations since all data from parent node is calculated and stored. In this way

there is no need to calculate them again to obtain the data of the child node. For

example, the overall rotation matrix related to a lower leg part is the product

of the child node of the overall rotation matrix of the upper leg part attached

(the parent node) times the rotation matrix describing just the lower leg part in

its coordinate system. Similarly, the derivatives of the rotation matrices can also
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be calculated and stored in the same manner: Consider the time derivative of a

rotation matrix R, given by dR
dt
. In order to calculate this derivative we need to

know partial derivatives of the rotation matrix with respect to joint angles such

as ∂R
∂θ1

, ∂R
∂θ2

, ∂R
∂θ3

to ∂R
∂θN

since joint angles are time dependent. Here, N is the total

number of robot joint angles and body orientation angles, which for our case is

equal to the number of DOF. Therefore, applying chain rule:

d

dt
R(θ1(t), θ2(t)...θN(t)) =

∂R

∂t
+

∂R

∂θ1
θ̇1 +

∂R

∂θ2
θ̇2 +

∂R

∂θ3
θ̇3 + ...+

∂R

∂θN
˙θN . (6.21)

Here, we note all θ̇(t)s are known from sensor data. θ̇N−2,N−1,N(t+∆t) are approx-

imated as
dθN−2,N−1,N

∆t
for the joint angles that are chosen to generate trajectory and

other joint angles θ̇1,...,N−3(t+∆t) have reference trajectories assigned to them and

they are calculated as θref−θsens

T−t
. θref is the reference angle, θsens is sensor data, T

is total time steps and t is current time step. When tree structure is employed to

calculate derivatives of rotation matrices these computations become simpler.

In the following paragraphs, we exemplify the usage of tree structure by calcu-

lating the rotation matrices and their time derivatives of a lower front leg piece.

Derivative of a front lower leg rotation matrix (Rlllf ) is calculated by multiplying

rotation matrices for robot body orientation angles (R(α), R(β) and R(γ)) two

upper leg rotation matrices (R(θullf ), R(ϕullf )) and a lower leg rotation matrix

R(θlllf ).

Rllf = R(α)R(β)R(γ)R(θulf )R(ϕulf )R(θllf ). (6.22)

Terms up to R(θllf ) will be called Rupper in the text to follow. When chain rule is

applied,
dRllf

dt
=

dRupper

dt
R(θllf ) +Rupper

dR(θllf )

dt
, (6.23)

where dRupper

dt
and Rupper are known at the time of this computation since the

results for the upper leg node were obtained before and stored for the node for

the upper leg piece. R(θllf ) is known since its argument is acquired from sensor

data. Therefore the only derivative that needs to be computed is
dR(θllf )

dt
. When
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constructing node data such as rotation matrices or the derivative of rotation

matrices, parent node information is used to simplify and shorten calculations

(Figure 6.2).

Figure 6.1: Tree structure example for legged robots, O denotes the origin of
the tree

Figure 6.2: Tree structure example for the articulated quadruped robot and
node names.

The tree structure used in the algorithm has 12 nodes (Figure 6.2). First node is

origin (O), this is defined at origin of the robot coordinate axis, then front body

(FB) and middle body (MB) nodes are children of the origin. Left front upper

leg (ULLF) and right front upper leg (ULRF) are children of the front body. Left
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front lower leg (LLLF) is child of left front upper leg and right front lower leg

(LLRF) is child of right front upper leg and so on. This tree structure is employed

for every tree that is created.

The reference trajectory generation computation ultimately requires the calcula-

tion of angular momentum at time t and t + ∆t. While all of this data could

be stored in a single tree, it is convenient to store these two sets of data stored

in separate trees. One general property of a tree structure utilized here is the

ability to clone the tree or to create a second but empty tree isomorphic to the

first one. Furthermore, again for convenience, we create six homomorphic trees

for each time slice, namely the quadruped tree, the angular momentum tree, the

positions tree, the derivative of positions tree, the GRM tree and the derivative

of the GRM tree. All trees are built to calculate these variables for all 6× 2 = 12

nodes. For time t, quadruped tree collects link lenghts, masses, joint angles, ref-

erence values, home position, rotation axes for joints and origin data. GRM tree

takes quadruped tree as input and calculates all nodes GRM matrices. Derivative

GRM tree takes input as quadruped tree and GRM tree to calculate derivative of

GRM martices for each node. Positions tree takes GRM tree and quadruped tree

as input and calculates positions of each node with respect to world coordinate

frame. Derivative positions tree takes input as derivative GRM tree, positions tree

and quadruped tree and calculates velocities of each node. Finally angular mo-

mentum tree takes input as position tree, derivative positions tree and quadruped

tree and calculates angular momentum of each node. For time t+∆t, quadruped

tree takes input as quadruped tree for time t. GRM tree takes quadruped tree for

time t and quadruped tree for time t+∆t as input and calculates all nodes GRM

matrices for time t+∆t. Derivative GRM tree takes input as quadruped trees for

time t and time t + ∆t and GRM tree for time t + ∆t to calculate derivative of

GRM matrices for each node at time t + ∆t. Positions tree takes GRM tree at

time t +∆t and quadruped tree at time t +∆t as input and calculates positions

of each node with respect to world coordinate frame at time t + ∆t. Derivative

positions tree takes input as derivative GRM tree at time t+∆t, positions at time

t + ∆t tree and quadruped tree at time t + ∆t and calculates velocities of each
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node at time t+∆t. Finally angular momentum tree takes input as position tree

at time t+∆t, derivative positions tree at time t+∆t and quadruped tree at time

t+∆t and calculates angular momentum of each node at time t+∆t.

Home position of a node means starting position of a link and it calculates as;

ph(node) = Rupper(t)


xh

yh

zh

 , (6.24)

where ph is home position, Rupper is upper nodes rotation matrix and xh, yh and zh

are home position or origin at time t. When xh, yh and zh are zero this means that

the link is positioned at the ending position of previous link. Angular momentum

of a link is calculated as

L⃗(t) = ml

∫ 1

s=0

(
r⃗l(s, t)× ˙⃗rl(s, t)

)
ds, (6.25)

where integration boundaries are link starting and ending positions which are

calculated by positions tree. ml denotes the mass of the link with the index l.

r⃗l(s, t) tracks the spatial coordinates of the robot component identified by the index

l, computed by GRM tree and home position. ˙⃗rl(s, t) is calculated by derivative

GRM tree and home position. r⃗l(s, t) and ˙⃗rl(s, t) are in GV notation as r⃗l(s, t) =

GRM(l) ph(l) and ˙⃗rl(s, t) = dGRM(l) ph(l). Here, GRM(l) is GRM matrix of lth

node and ph(l) is home position of lth node, dGRM(l) is the derivative of GRM

matrix for node l. Finally, at time t and time t + ∆t there is a tree function to

sum all the node values so total angular momentum is calculated. The angular

momentum data at nodes is kept in GV format. Therefore,

L⃗total(t) =
∑
j

L⃗j = [c0(t); c1(t); c2(t); c3(t)] = [c0(t);A(t)], (6.26)

where, j is an index that runs over nodes of the angular momentum tree, L⃗j is the

angular momentum of jth node, L⃗total(t) is total angular momentum at time t,

ci’s are column vectors of the matrix and A is a matrix created by concatenating
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last three column vectors.

L⃗total(t+∆t) =
∑
j

L⃗j(t+∆t)

= [c0(t+∆t); c1(t+∆t); c2(t+∆t); c3(t+∆t)]

= [c0(t+∆t);A(t+∆t)], (6.27)

where, j is an index that runs over nodes of the angular momentum tree at time

t + ∆t and L⃗j(t + ∆t) is the angular momentum of jth node at the time slice,

L⃗total(t+∆t) is total angular momentum at time t+∆t, ci’s are column vectors of

the matrix and A(t+∆t) is a matrix created by concatenating last three column

vectors. Then (6.6) becomes a linear equation with 3 unknowns as dθN−2, dθN−1

and dθN .

A(3×3)


dθN−2

dθN−1

dθN

 = b⃗, (6.28)

where A is a 3×3 matrix, which is calculated as A(t+∆t)−A(t) and b⃗ is a vector

computed as τ∆t − (c0(t + ∆t) − co(t)). Therefore the desired changes in angles

(dθi, i = N − 2, N − 1, N) needed for the reference trajectory generation can be

computed by multiplying inverse of matrix A with b⃗.

6.2 Simulation Results

Three stages comprise the quadruped jumping gait: take-off, flight, and landing.

For the take-off phase, the velocity in the x and z directions relative to the world

coordinate frame is set to 5 m/s. The subsequent shift in the robot’s location is

seen in Figure 6.3. Due to the increased beginning velocity, the flight duration is

reduced to around 1 seconds. In order to simulate an unstable takeoff, the initial

body angles α, β, and γ are set to 20, 20, and 0 degrees, respectively. As previ-

ously stated, the extrapolated joint coordinates are θb, ϕb, and θulrr, θullr, which
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correspond to the front spine joint angle, rear joint angle, and rear legs’ adduc-

tion/abduction joint angles, respectively. On the chosen joints, generated reference

values are applied. A basic PID controller is utilized to track the references. In

Figures 6.4, 6.5, 6.6 and 6.7, generated references and actual joint coordinates for

these angles can be seen. The rear leg angles in Figure 6.6 and 6.7 demonstrate

that the required reference is greater than the joint angle limit. The joint angles

are saturated at 50 degrees in our simulation program as a measure in order to

avoid link to link collisions, which constitute problems in real-world applications.

The results demonstrate that the PID controller is capable of tracking reference

values accurately.

Figure 6.3: Quadruped robot position in x (red line), y (blue line) and z
(yellow line) axes with respect to world coordinate frame.
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Figure 6.4: Front spine joint angular positions (blue line is actual angular
position, red line is reference angular position).

Figure 6.5: Rear spine joint angular positions (blue line is actual angular
position, red line is reference angular position).
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Figure 6.6: Right rear leg’s adduction/abduction joint angular position (blue
line is right leg’s actual angular position, red line is right leg’s reference angular

position)
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Figure 6.7: Left rear leg’s adduction/abduction joint angular position (blue
line is left leg’s actual angular position, red line is left leg’s reference angular

position)

The roll, pitch, and yaw angles of the robot as expressed in the world coordinate

frame during flight can be seen in Figure 6.8. For all angular positions, the in-

tended final value is 0. However, since joint angles are limited, yaw angle control

performance is less than roll and pitch angles. Additionally, the error value for

yaw angle is approximately 7 degrees. Additionally, angle recovery for roll and

pitch angles is roughly 93% in 0.5 seconds when the system is underactuated. Be-

cause the ideal landing position is nearly achieved, the robot’s landing stability is

improved.
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Figure 6.8: Quadruped robot roll (blue line), pitch (red line), and yaw (yellow
line) angles with respect to world coordinate frame.

Since, this approach is more detailed than previous methods, simulations are car-

ried out with higher the take-off velocity in the x and z directions relative to the

world coordinate frame. The velocities are set to 10 m/s. As a result, the flight

time increased to 2 seconds. Figure 6.9 presents resulting positions of the robot.

Figures 6.10, 6.11, 6.12 and 6.13 show generated references and actual joint coor-

dinates for θb, ϕb, and θulrr, θullr. Finally, The robot roll, pitch, and yaw angles

can be seen in Figure 6.14. Figure 6.14 presents that this method is applicable to

jumps with higher take-off velocities.
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Figure 6.9: Quadruped robot position in x (red line), y (blue line) and z
(yellow line) axes with respect to world coordinate frame.

Figure 6.10: Front spine joint angular positions (blue line is actual angular
position, red line is reference angular position).
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Figure 6.11: Rear spine joint angular positions (blue line is actual angular
position, red line is reference angular position).
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Figure 6.12: Right rear leg’s adduction/abduction joint angular position (blue
line is right leg’s actual angular position, red line is right leg’s reference angular

position)
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Figure 6.13: Left rear leg’s adduction/abduction joint angular position (blue
line is left leg’s actual angular position, red line is left leg’s reference angular

position)
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Figure 6.14: Quadruped robot roll (blue line), pitch (red line), and yaw (yellow
line) angles with respect to world coordinate frame.

6.3 Discussion

This chapter proposes a strategy for generating reference trajectory for selected

joints of free-flying robots that is based on angular momentum. Similar to previous

chapters, additional tail or gyroscope does not required for this approach. Three

joint angles are selected as a reference for controlling the robot’s landing angular

positions. These are two quadruped spine angles and a rear leg angle. However,

this approach is different from Chapter 5. In Chapter 6, moment of inertia values

of the links are computed beforehand and they are assumed to be constant during

the flight time. In this chapter, moment of inertia is obtained for every simulation

cycle. This approach eliminates some of the assumptions made in the previous

chapter and decreases modeling errors.

These angular positions are computed by using linearization, GRM matrices and

tree structures. Linearization is made in order to shorten computation time and
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made method applicable to real-time applications. GRM matrices are employed to

track unknowns and to create final linear equations. Tree structure is utilized since

it is very similar to legged robot structure. In addition to that this structure is

applicable on any machines that has hierarchical connections between links. Tree

structure cannot be employed machines that has loops since in a tree structure

every child can have only one parent.

Initial yaw angle for robot body is selected as 0 degrees. Due to the design of

the selected quadrupedal robot, where the rear legs have substantially less mass

than the body, it is more difficult to influence the quadruped’s yaw angle. The

principal axis near the x direction has the smallest eigenvalue and the one near the

z direction has the larger eigenvalue. Hence, the ability of manipulating angular

position around z-axis is more difficult than x- and y-axes. This is an acceptable

constraint, since the yaw angle has no direct effect on landing stability. Because roll

and pitch angles have a considerable effect on the landing stability of quadrupedal

robots, regulating these angles has a greater significance in this application area.

The program retrieved nearly 93% of the body’s angular positions throughout

flying time, according to simulation data. Owing to the underactuated nature of

the system due to the absence of ground contact points, the reference generation

approach may considerably increase the flight and landing stability of legged robots

and any free-flying robot.

Additionally, similar to previous chapters, this method makes use of joints that

are already present in robot mechanics. Because no additional components are

required to provide flight stability, this method provides a potential for weight

and cost reduction for legged jumping robots.



Chapter 7

Conclusion and Future Work

This dissertation describes novel posture and push recovery algorithms for the

long-jump flying phase of an articulated-body quadrupedal robot. The method-

ologies are applied to the robot in a simulation environment. Our methodology is

compared with the literature in this chapter, our simulation results are evaluated,

and future studies are proposed.

This thesis presents a toolbox of techniques for orientation manipulation for flight

phase. This is where it contrasts the literature on legged locomotion considering

ground contact as the primary orientation and balance control tool. Most pos-

ture control research has been on legged robot gaits such as walking, running,

bounding, and trotting. The unifying characteristic of these gaits is that they all

generate contact with the ground. As a result, ground contact forces are often

planned to ensure the legged robot’s motion stability and posture. Another often-

used technique is step-planning to prevent falling. However, this technique is not

applicable when ground contact is not present. Finally, extra tail or gyro-type

components are added to robot bodies in the literature to create postural stability

using an angular momentum technique. While this is a bio-inspired technology,

the inclusion of components increases the cost and weight of the robots. We offer

methods for orientation control applicable to robots that are not in touch with the

ground without extra components. These algorithms use joints that are already

119



Conclusion and Future Work 120

present in robot mechanics. Because no additional components are required to

provide flight stability, the cost and weight of flying robots are reduced.

According to simulation data, the created reference generation system, based on

RL, correctly restored around 94 percent of the angular body positions around

roll and pitch angles throughout the flight period. The approach provides joint

position reference trajectories for the quadrupedal robot’s waist joints in order to

achieve the off-ground robot’s desired orientation.

The simplistic posture and push recovery method is based on angular momentum

variables. We derive reference trajectories for a quadrupedal robot waist and rear

hip joints during the flight phase of a long jump. The approach provides reference

trajectories for the quadrupedal robot’s waist and rear hip joints in order to achieve

the required orientation of the off-ground robot. In the simulation environment,

computed trajectories are applied to the robot. When used for posture control

scenarios, this method recovers 94 percent roll angle, almost 100 percent pitch

angle, and has a yaw angle inaccuracy of 3 degrees. When applied to the push

recovery scenario, it is seen that in the absence of the orientation control system,

the robot’s angular velocity rises and then settles at 0.2 rad/s after a disruption.

In comparison, when the orientation control method is active, the angular velocity

does not exceed 0.2 rad/s but instead declines to near 0 rad/s.

The posture recovery method that computes centroidal dynamics real-time is

based on angular momentum and is used to compute reference trajectories for

a quadrupedal robot with waist and rear hip joints during the flight phase of

a long jump. In this method, moment of inertia values of the robot links are

obtained real-time in each simulation cycle. The approach provides reference tra-

jectories for the quadrupedal robot’s waist and rear hip joints in order to achieve

the required orientation of the off-ground robot. In the simulation environment,

computed trajectories are applied to the robot. According to simulation data, the

algorithm recovered roughly 97 percent of the body’s roll angle and 93 percent

of its pitch angle during the flight, and the yaw angle inaccuracy is 8 degrees.

Due to the system’s underactuated state with the lack of ground contact points,
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the reference generation strategy can significantly improve the flight and landing

stability of any free-flying robot.

In future studies, the learning algorithm may be improved by using neural net-

works; in other words, deep reinforcement learning can be used to regulate posture.

Additionally, the entirety body joints may be used for posture control to reduce

the amount of time required to balance the robot and boost the effectiveness of

these techniques. Because the developed algorithms are computationally efficient

for real-time applications, they may be deployed on a physical quadrupedal robot.
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Açısı Kontrolörleri P, PI, PID ve Optimize Edilmiş PID’nin Performans
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