
ACCELERATING LATTICE-BASED CRYPTOSYSTEMS

by
KEMAL DERYA

Submitted to the Graduate School of Engineering
in partial fulfilment of

the requirements for the degree of Master of Sciences

Sabancı University
July 2022

Kemal Derya 2022 ©

All Rights Reserved

ABSTRACT

ACCELERATING LATTICE-BASED CRYPTOSYSTEMS

KEMAL DERYA

ELECTRONICS ENGINEERING M.S. THESIS, JULY 2022

Thesis Supervisor: Prof. Erkay Savaş

Keywords: NTT, PQC, Polynomial Multiplication, Parametric, Hardware

Lattice-based cryptography has become important over the last couple of years since
it gives resistance against quantum attacks that disable current security systems.
The polynomial multiplication process is the most time-consuming operation in
lattice-based cryptosystems. Number Theoretic Transform (NTT) facilitates effi-
cient polynomial multiplication that is needed for key generation, encryption, and
decryption operations. A design needs to offer configurability to work with differ-
ent NTT parameters, as this would be an asset for developing different versions of
the basic design for different cryptosystems. This thesis introduces a configurable
design that can generate unified and parametric NTT-based polynomial multipliers.
This design supports a broad range of parameters of lattice-bassed cryptosystems,
specifically post-quantum cryptography (PQC) schemes. The unified butterfly unit
composes the critical block of the design, and it can perform NTT and inverse
NTT operations. Unique application areas need different performance goals, and
this unit plays a critical role in accomplishing them. The design uses the num-
ber of butterfly units as input to achieve specific area and throughput demands
and gives an optimized NTT-based polynomial multiplier hardware as output. For
scheme parameters, the design offers run-time configurability. Additionally, it pro-
vides compile-time configurability for throughput and area demands. As far as we
know, this design constitutes the the first NTT-based polynomial multiplier with
run-time and compile-time configurability options. The advanced configurability
options slightly affect the area and timing results, as indicated by the implemen-
tation results. This design has different sub-blocks, such as integer multiplier and
reduction unit, and we present the design philosophy of each sub-block with the
configurability and performance results.

iv

ÖZET

LATTICE TABANLI KRIPTO-SISTEMLER HIZLANDIRICISI

KEMAL DERYA

ELEKTRONİK MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, TEMMUZ 2022

Tez Danışmanı: Prof. Dr. Erkay Savaş

Anahtar Kelimeler: NTT, PQC, Polinom Çarpması, Parametrik, Donanım

Kafes-tabanlı şifreleme, güncel güvenlik sistemlerini etkisiz kılan kuantum
saldırılarına karşı savunma sağladığı için, son yıllarda önemli hale geldi. Polinom
çarpma işlemi kafes-tabanlı kriptosistemlerde en çok zaman harcanan operasyon-
dur. Sayılar Teorisi Dönüşümü (NTT) anahtar üretimi, şifreleme ve şifre çözme
operasyonları için gerekli olan polinom çarpma işlemini kolaylaştırmaktadır. Bir
tasarım farklı NTT parametreleriyle çalışabilmesi için konfigurasyona ihtiyaç duy-
maktadır. Böylece eldeki basit dizayn değerli bir nitelik kazanarak farklı kriptosis-
temler için farklı bir şekilde geliştirilebilir. Bu tez konfigure edilebilir bir tasarım
sunarak birleşik ve parametrik NTT-tabanlı polinom çarpıcısı üretmektedir. Bu
tasarım kafes-tabanlı kriptosistemlerinin, özellikle kuantum-sonrası kriptosistem-
lerinin (PQC), geniş bir aralıkta parametrelerini desteklemektedir. Birleşik kele-
bek ünitesi tasarımın önemli bir bloğunu oluşturmaktadır ve NTT ve ters-NTT
operasyonlarını gerçekleştirmektedir. Özgün uygulama alanları farklı performans
hedeflerine ihtiyaç duymaktadır ve kelebek ünitesi bunun gerçekleşmesinde önemli
bir rol oynamaktadır. Sunulan tasarım belirli alan ve çıktı ihtiyaçlarını karşılamak
için kelebek ünitesinin sayısını girdi olarak kullanır ve optimize edilmiş NTT-tabanlı
polinom çarpıcısını çıktı olarak verir. Şema parametreleri için dinamik olarak konfig-
urasyon ve alan ve çıktı ihtiyaçları için derleme anında konfigurasyon sunulmaktadır.
Bildiğimiz kadarıyla, bu tasarım dinamik ve derleme anında konfigure edilebilir
NTT-tabanlı ilk polinom çarpıcısıdır. İleri seviye konfigurasyon seçenekleri alan ve
zaman sonuçlarını, uygulama sonuçlarında görüleceği üzere, çok az etkilemektedir.
Bu dizayn tamsayı çarpıcısı ve indirgeme ünitesi gibi alt bloklara sahiptir ve her bir
alt bloğun dizayn felsefesi konfigurasyon ve performans sonuçlarıyla sunulmaktadır.

v

ACKNOWLEDGEMENTS

I am very grateful to the very great people that I have encountered throughout my
master’s journey. To begin with, I would like to thank my ex-supervisor Dr. Erdinç
Öztürk for his support and the experience that he shared with me throughout my
master’s studies. I am very thankful to him for the resources that he created.
Without his support, I would not be able to complete my master studies. Lastly, I
am very pleased for the opportunities that he gave for my career in the future.

I also want to thank my supervisor Dr. Erkay Savaş for his support during the last
stage of my master studies. His knowledge and experience have become my guidance
throughout my master studies. The opportunity of working with him always gave
me special feelings.

I would like to thank the members of the jury committee of my master thesis defense,
Dr. Ayhan Bozkurt and Dr. Sıddıka Berna Örs Yalçın for their valuable time and
comments on my work.

I would like to thank my friends in the Crytography and Information Security Group
(CISEC) at Sabanci University for their support throughout my studies. In partic-
ular, I am very grateful to Ahmet Can Mert for his great efforts for my studies.

I would like to thank my friends Can, Enes, Alişah, Şeyma and others for their
valuable support. I enjoyed every single moment I spent with them throughout my
studies.

I want to express my thanks to my family, especially my mother Kadriye and my
father Ömer. I am certainly sure that I would not accomplish anything that I have
done until today without their support. From the bottom of my heart, I want to
thank my family for their unconditional support.

Lastly, I would like to thank Sabanci University and the Scientific and Technologi-
cal Research Council of Turkey (TÜBİTAK) for the scholarship opportunities that
they have provided. This work was supported by TÜBİTAK under Grant Number
118E725.

vi

To Lina and Alya

vii

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

1. INTRODUCTION . 1
1.1. Related Works . 4
1.2. Our Contribution . 7

2. BACKGROUND . 10
2.1. Notation . 10
2.2. Lattice-based Cryptography . 11
2.3. NTT-based Polynomial Multiplication. 12

3. OUR WORK . 19
3.1. Word-level Montgomery Modular Multiplier Unit . 19
3.2. Unified Butterfly Unit . 26
3.3. Configurable Memory Control and Overall Design . 29

4. RESULTS AND COMPARISON . 36
4.1. Prior Works . 36
4.2. Implementation Results and Comparison . 38

5. CONCLUSION . 42

BIBLIOGRAPHY. 43

viii

LIST OF TABLES

Table 1.1. Security Levels of Cryptographic Schemes . 1
Table 1.2. NTT-friendly Lattice-based Post-Quantum Cryptosystems 4
Table 1.3. Configurability of Works in the Literature . 5

Table 4.1. Prior Works . 36
Table 4.2. Implementation Results . 38
Table 4.3. Resource Utilization of Sub-Blocks . 39

ix

LIST OF FIGURES

Figure 3.1. 32-bit Integer Multiplier Unit . 20
Figure 3.2. Reconfigurable Word-level Montgomery Reduction Unit 24
Figure 3.3. Unified Butterfly Unit . 27
Figure 3.4. Overall Design. 30
Figure 3.5. NTT Memory Access Pattern for n = 16 with two Butterfly

Units . 31
Figure 3.6. INTT Memory Access Pattern for n = 16 with two Butterfly

Units . 31
Figure 3.7. Address Scheduling for Kyber (v2) Coefficient-wise Multipli-

cation . 33

Figure 4.1. Area vs Latency for n={256,512,1024} with Different Number
of Butterfly Units (BU) . 40

x

1. INTRODUCTION

Current public cryptosystems have become vulnerable to quantum computers since
the development of the quantum computers showed significant progress. Integer
factorization and computing discrete logarithms are the hard problems for the cur-
rent cryptosystems. Shor’s algorithm has shown that it is possible to break public
cryptosystems by solving these hard problems with a quantum computer (Shor,
1994).

Table 1.1 Security Levels of Cryptographic Schemes

Crypto Scheme Key Size Security Levels (in bits)
Classical Computing Quantum Computing

RSA-1024 1024 80 0
RSA-2048 2048 112 0
ECC-256 256 128 0
ECC-384 384 256 0
AES-128 128 128 64
AES-256 256 256 128

Table 1.1 (Mavroeidis, Vishi, Zych & Jøsang, 2018) states the security levels of
common cryptosystems against classical and quantum computing. RSA and ECC
algorithms show no resistance against quantum attacks i.e., 0 bit security level.
The security level of AES algorithms falls by half with quantum computing. It is
inevitable to switch to quantum-resistant cryptosystems in the near future. The
National Institute of Standards and Technology (NIST) recently initiated a stan-
dardization process for quantum-resistant key-encapsulation and digital signature
schemes, which are often referred to as post-quantum cryptography.

Lattice-based cryptography has emerged as one of the most promising cryptographic
constructions for post-quantum cryptography as it is based on a set of hard math-
ematical problems, which are conjectured to be resistant to attacks by quantum
computers. Five out of the seven remaining candidates in the third round of the

1

Algorithm 1 Algorithm of Karatsuba Multiplication
Input: A(x),B(x) ∈Rq

Input: 2a = n,a ∈Zq

Output: A(x) ·B(x) ∈Rq

1: A= A1xn/2 +A0,B =B1xn/2 +B0
2: Z0 = A0B0
3: Z1 = (A0A1)(B0B1)
4: Z2 = A1B1
5: return Z2x2 +((Z1−Z0−Z2)xn/2 +Z0

NIST standardization process are lattice-based cryptographic schemes (Chen, Jor-
dan, Liu, Moody, Peralta, Perlner & Smith-Tone, 2016).

Polynomial multiplication is the most time-consuming operation in lattice-based
cryptosystems. Feasible implementations of lattice-based cryptosystems need to
have efficient polynomial multipliers (Pöppelmann & Güneysu, 2014). There are
methods for polynomial multiplication such as schoolbook multiplication, Karatsuba
multiplication, and NTT-based multiplication.

The schoolbook multiplication method is a traditional way to multiply two polyno-
mials. A(x) and B(x) are polynomials with degree of n−1.

(1.1) A(x) =
n−1∑
i=0

ai ·xi,B(x) =
n−1∑
i=0

bi ·xi

The output C(x) = A(x)B(x) can be calculated as

(1.2) C(x) =
n−1∑
i=0

xi ·
n−1∑

j+k=i

ajbk

This method uses n2 multiplication operations with (n−1)2 additions. Thus, it has
complexity of O(n2).

Karatsuba multiplication method offers divide-and-conquer algorithm for polyno-
mial multiplication. Alg. 1 has complexity of O(nlog2 3) which results in better
complexity than the schoolbook method.

Furthermore, the number-theoretic transform (NTT) is a popular method utilized
in the lattice-based cryptosystems to reduce the complexity of multiplication in the
polynomial rings,

2

(1.3) Rq = Zq[x]/ϕ(m)

where the coefficient modulus q and the degree of the cyclotomic polynomial

(1.4) ϕm(x) = xn +1

n, are referred to as the scheme parameters.

NTT reduces complexity to O(n logn) (Mert, Karabulut, Ozturk, Savas & Aysu,
2020). When the polynomial multiplication in Rq is performed using NTT, the
efficiency of the NTT operation determines the performance of the cryptosystem to
a great extent. Since NTT method offers the least complexity, we opt to use it for
polynomial multiplication operation.

Different application areas have different performance criteria to be fulfilled. IoT im-
plementations need area-optimized design since they are implemented on resource-
poor microdevices and rely less on throughput. On the other hand, cloud cen-
ters require high throughput rates with strict timing needs, and they need to be
optimized performance-wise (Nejatollahi, Dutt, Ray, Regazzoni, Banerjee & Cam-
marota, 2019).

While it stays a vital goal to design polynomial multipliers efficiently for different
applications, it is also crucial to have a configurable design to yield to the power,
area, and throughput requirements. The configurability feature of these design
parameters is specified as compile-time configurability (CTC).

Different PQC schemes operate using different scheme parameters, and it is pos-
sible to use the same hardware for different schemes without recompiling it. This
design aspect is referred to as run-time configurability (RTC). Furthermore, the
PQC schemes have different levels of security by using different scheme parameters.
By run-time configurability for different scheme parameters, it is possible to adjust
dynamically to different PQC schemes and the security level of the same scheme.
An NTT multiplier, which can work with various n and q values that appeared in
various PQC schemes without recompilation, is referred to as RTC.

The core processing unit in an NTT multiplier is the butterfly circuit, which can
take different forms such as Cooley-Tukey (CT) and Gentleman and Sande (GS)
designs (Chu & George, 1999). An NTT multiplier that features a butterfly unit

3

(BU), which implements both CT and GS is referred to as a unified multiplier. It
enables the implementation of NTT and inverse NTT (INTT) in the same circuit
efficiently. An NTT-based multiplier that can be recompiled with a different number
of BUs for throughput or time-area efficiency is referred to as CTC.

Table 1.2 NTT-friendly Lattice-based Post-Quantum Cryptosystems

Cryptosystem n log2(q) q Operation NIST Round Support
CRYSTALS-Kyber (v1) 256 13 7681 KEM 2,3 ✓
CRYSTALS-Kyber (v2) 256 12 3329 KEM 2,3 ✓
NewHope-512 512 14 12289 KEM 2 ✓
NewHope-1024 1024 14 12289 KEM 2 ✓

CRYSTALS-Dilithium 256 23 8380417 DS 2,3 ✓
Falcon-I 512 14 12289 DS 2,3 ✓
Falcon-II 1024 14 12289 DS 2,3 ✓
qTESLA-q-I 1024 29 343576577 DS 2 ✓
qTESLA-q-III 2048 30 856145921 DS 2 –

KEM: Key Encapsulation DS: Digital Signature

Table 1.2 shows the PQC schemes that support NTT-based polynomial multiplica-
tion method. They operate on different scheme parameters for different operations.
Thus, they offer different security levels. In our work, we offer support for all PQC
schemes except qTESLA-q-III scheme.

Our motivation can be summarized as follows. We want to optimize the polynomial
multiplication operation which is the drawback of lattice-based cryptosystems. We
opt to use NTT-based multiplication method since it offers the best complexity.
Additionally, we want to support as many as scheme parameters so that different
PQC schemes can be used on the same hardware i.e., RTC. Moreover, we want to
design a hardware that is suitable for different application areas that have different
performance requirements i.e., CTC.

1.1 Related Works

Lattice-based cryptosystems for different platforms require diverse area, power,
and timing specifications. To meet these requirements, various implementations
of NTT and NTT-based polynomial multiplication operations have been developed.
The works in (Alkim, Evkan, Lahr, Niederhagen & Petri, 2020; Fritzmann, Sharif,
Müller-Gritschneder, Reinbrecht, Schlichtmann & Sepulveda, 2019; Fritzmann, Sigl

4

& Sepúlveda, 2020; Seiler, 2018) offer software implementations that support run-
time configurability; therefore, they can operate on different lattice-based algo-
rithms.

Seiler (Seiler, 2018) enhanced the NTT operation on Intel processors with AVX2
instruction set while others (Alkim et al., 2020; Fritzmann et al., 2019; Fritzmann
et al., 2020) focused on hardware/software co-design on RISC-V architecture with
instruction set extensions. CPUs offer a limited number of computing units that
limit the level of parallelization. As a result, CPUs cannot offer more performance
for timing requirements since NTT involves multiply-accumulate operations that
can be parallelizable; therefore, hardware implementations that can offer more par-
allelization have gained more importance.

Table 1.3 Configurability of Works in the Literature

Work Platform n q BU

(Yaman et al., 2021) Virtex-7 Fixed Fixed Fixed256 12-bit

(Xing & Li, 2021) Artix-7 Fixed Fixed Fixed256 12-bit

(Mert et al., 2019) Virtex-7 Fixed Constant Fixed1024 32-bit

(Fritzmann et al., 2020) RISC-V RTC RTC Fixedup to 1024 up to 32-bit

(Fritzmann & Sepúlveda, 2019) 65 nm RTC RTC Fixedup to 1024 up to 16-bit

(Mert et al., 2020) Virtex-7 RTC RTC Fixedup to 4096 up to 32-bit

(Banerjee et al., 2019) 40 nm RTC RTC Fixedup to 2048 up to 24-bit

(Fritzmann et al., 2021) Artix-7 RTC RTC Fixedup to 4096 up to 39-bit

(Roy et al., 2014) Virtex-6 CTC CTC Fixedup to 512 up to 13-bit

(Wang et al., 2020) Artix-7 CTC CTC Fixedup to 2048 up to 30-bit

(Mert et al., 2020) Virtex-7 CTC CTC CTCup to 4096 up to 60-bit

(Tan et al., 2020) 32 nm CTC CTC CTCup to 4096 up to 71-bit
This Virtex-7 RTC RTC CTCWork 256 to 1024 12-bit to 30-bit

Those in (Xing & Li, 2021; Yaman et al., 2021) offer designs specifically for Ky-

5

ber (v2) schemes. They have fixed scheme parameters with fixed number of BU.
Therefore, they do not offer RTC or CTC.

The design in (Mert et al., 2019) offers configurability option for q parameter that
is only suitable for 32-bits prime q values. It has fixed number of BU. Thus, it does
not offer CTC.

The work in (Fritzmann et al., 2020) offers RISC-V extensions for NTT operations
that support different scheme parameters. Even though it offers RTC for scheme
parameters, it is not possible to configure for area and throughput at the compile-
time.

The architecture in (Fritzmann & Sepúlveda, 2019) is impelemented on 65-nm plat-
form. It supports different scheme parameters. Thus, it has RTC. On the other
hand, it does not have CTC for area and throughput.

The design in (Mert et al., 2020) offers NTT accelerator for different scheme pa-
rameters. As a result, it does have RTC. However, it is not possible to tune it into
different area requirements i.e., no CTC suppport.

A crypto-processor is implemented in (Banerjee et al., 2019) on 40-nm platform.
This work supports different scheme parameters with RTC. However, it does not
offer CTC for area and throughput requirements.

The work in (Fritzmann et al., 2021) offers instruction set extensions for PQC. In
this work, NTT hardware supports different scheme parameters, therefore it has
RTC. On the other hand, it is not possible to adjust the throughput rate.

The crypto-processor in (Roy et al., 2014) offers CTC for scheme parameters that
only supports specific set of parameter after the compilation. The throughput rate
of this architecture is fixed. Thus, it does not have CTC.

The work in (Wang et al., 2020) proposed hardware architecture for Tesla PQC
scheme with support for multiple scheme parameters. Nevertheless, this design does
not provide RTC since it only offers configurability for scheme parameters at the
compile-time. Additionally, it does not adjust the throughput rate i.e., no CTC for
area requirements.

Moreover, HLS implementations (Mert et al., 2020; Nguyen, Dang & Gaj, 2019,2)
for configurable NTT architectures have room for optimizations. These designs can
be optimized for design parameters by using RTL since it is not possible to have the
most optimized design by using HLS.

We offer a unique design to maximize the optimization opportunities. This de-

6

sign offers run-time(RTC) and compile-time(CTC) configurability options for NTT-
friendly PQC schemes that used in NTT-based polynomial multiplier hardware. The
proposed desing offers CTC for throughput and area (i.e., the number of computing
units), and RTC for scheme parameters(n and q).

The current designs in the literature are shown in Table 1.3 in terms of configurability
options. If the stated work only operates on a single parameter, the aforementioned
parameter is referred to as a fixed parameter. If the stated work only operates within
a constant range, i.e., constant ⌈log2(q)⌉ bit-size, the parameter is referred to as a
constant parameter. The table contains only two designs that provide configurability
at the compile-time for the area and performance (Mert et al., 2020; Tan et al., 2020).

The architecture in (Tan et al., 2020) supports a wide range of scheme parameters
for homomorphic encryption. On the other hand, the work in (Mert et al., 2020)
is only capable of the NTT operation. Moreover, the work in (Riazi, Laine, Pelton
& Dai, 2020) supports scheme parameters ,q from 109 to 438 bits and n from 4096
to 32768, for homomorphic encryption and is not listed in Table 1.3. Our work
targets lattice-based PQC schemes with small parameters and optimized designs.
Therefore, the work in (Riazi et al., 2020) is not comparable with our work. Lastly,
the architectures in (Mert et al., 2020; Riazi et al., 2020; Tan et al., 2020) do not
provide run-time configurability for scheme parameters.

1.2 Our Contribution

The proposed design introduces a configurable polynomial multiplier that is capa-
ble of performing NTT, INTT, and NTT-based polynomial multiplication opera-
tions. The architecture specifically utilized for NTT-friendly PQC schemes includ-
ing CRYSTALS-KYBER (Kyber) with old and new versions (Bos, Ducas, Kiltz,
Lepoint, Lyubashevsky, Schanck, Schwabe, Seiler & Stehlé, 2017; Lyubashevsky
& Seiler, 2019), NewHope-512/1024 (Alkim, Ducas, Pöppelmann & Schwabe,
2016), CRYSTALS-DILITHIUM (Dilithium) (Ducas, Kiltz, Lepoint, Lyubashevsky,
Schwabe, Seiler & Stehlé, 2018), Falcon-I/II (Fouque, Hoffstein, Kirchner, Lyuba-
shevsky, Pornin, Prest, Ricosset, Seiler, Whyte & Zhang, 2018), and qTESLA-q-
I (Alkim, Barreto, Bindel, Longa & Ricardini, 2019).

Moreover, the proposed architecture can also perform operations for other NTT-
friendly lattice-based cryptosystems with coefficients up to 30 bits and ring degree

7

between 256 and 1024. Thus, In SABER scheme (D’Anvers, Karmakar, Roy &
Vercauteren, 2018), NTT operations can be utilized with three prime moduli as
shown by Fritzmann et al. (Fritzmann et al., 2020). SABER PQC scheme can
be performed on the proposed design without any modification. Our architecture
offers cryptographic flexibility that can be beneficial for many other algorithms.
It is possible to utilize some PQC scheme with different settings on this proposed
architecture even though they did not make it to the final round of NIST’s contest
for standardization (i.e., NewHope) or they have been modified (i.e., Kyber (v1)).

Moreover, it is possible to scale this architecture to support other lattice-based
applications such as homomorphic encryption. Ring degree, n, can be utilized to
other applications rather than proposed PQC schemes to NIST’s process. On this
work, we only introduce the implementations that only suitable for PQC schemes
since the homomorphic encryption applications go beyond the scope of this work.

Hardware implementations of lattice-based cryptosystems can be generated by using
the intermediate blocks that generated by the proposed architecture. Thus, we
deeply analyze each block and give a detailed summary of their functionalities.

We list our contribution in this work as follows:

• We propose an optimized FPGA implementation of configurable architecture
of NTT-based polynomial multiplier for lattice-based cryptosystems.

• We introduce a modular multiplier block that utilizes run-time configurable
word-level Montgomery multiplication technique. This unit can perform oper-
ations on coefficients that up to 30-bits. While this unit utilizes incomplete
arithmetic (Yanik, Savas & Koc, 2002), it should be also noted that word-level
Montgomery algorithm is utilized to decrease the complexity of NTT operation
with NTT-friendly primes.

• We introduce the essential processing element in our design as a unified butter-
fly unit. This unit is capable of performing CT and GS butterfly operations.
To perform NTT, INTT, and NTT-based polynomial multiplication opera-
tions, this unit can be configured at run-time.

• It is possible to configure the number of butterfly units at the compile-time to
tune the throughput level of the proposed architecture. Moreover, the occupied
area of the design can be configured. Thus, this architecture can be applied to
different applications that operate on different circumstances by using CTC
feature.

• We propose a configurable memory control unit that can read coefficients from

8

BRAMs of FPGA devices. Moreover, it can also write cofficients to BRAMs
and this unit assures that the memory units operate with the processing ele-
ments properly. It is possible to change the state of the architecture among
NTT, INTT, and NTT-based polynomial multiplicaton operations since this
unit controls the state of the overall design. This unit can be utilized to per-
form with different number of butterfly units on different polynomials with
degree between 256 and 1024.

• We present a code sample that includes the proposed design on the Github
repository (https://github.com/kemalderya/pqc-param-ntt). It should be
noted that hardware-based NTT designs may not be found as open-source
designs. To help the future developers in this area, this open-source hardware
can be useful. Furthermore, the proposed architecture can be integrated into
other researchers design by adjusting a single parameter to fix tje performance.

The sections of this work is explained as follows. In Section II, the background in-
formation is introduced. Section III proposes the hardware architecture. Section IV
introduces the implementation results with comparison the prior works. Section V
concludes the paper.

9

https://github.com/kemalderya/pqc-param-ntt

2. BACKGROUND

This chapter introduces the notation used in this work and the background informa-
tion about lattice-based cryptography and NTT-based polynomial multiplication.

2.1 Notation

The ring Zq uses q as the modulus and modular addition and modular multiplication
are defined on the ring with integers in [0, q). The unique irreducible polynomial
is represented by ϕm(x) which is the cyclotomic polynomial. ϕm(x) = xn + 1 forms
the cyclotomic polynomial where n is a power of two. The polynomial ring reduced
with ϕm(x) over Zq is represented by Rq = Zq[x]/ϕm(x). The coefficients in Zq of
the polynomials are reduced with ϕm(x). The degree of the ring is referred to as n
in our terminology.

The lowercase letters (i.e., a) represent the integers and the boldface lowercase let-
ters (i.e., a or a(x)) represent the polynomials. The polynomial a in the NTT
domain is represented by a (i.e., a = NTT(a)). Let a←Rq and a←Dµ,σ repre-
sent polynomial a is uniformly sampled from Rq and the distribution Dµ,σ with
mean µ and std. dev. σ. Finally, · represents the integer multiplication. × repre-
sents the polynomail multiplication. The NTT-domain multiplication operation is
represented by ⊙.

10

2.2 Lattice-based Cryptography

The security of current cryptosystems is based on the hardness of the underlying
mathematical problems such as integer factorization problem. Current computer
systems are not capable of solving these problems in polynomial time. However, it
is shown that quantum computers can break some of the current cryptosystems by
solving these problems in polynomial-time by Shor’s algorithm (Chen et al., 2016).

In the recent years, the progress in the quantum computers has increased and the
interest in PQC has risen on both academical and industrial ends. Thus, cryp-
tographic systems such as lattice-based cryptography (Alkim et al., 2019,1; Ducas
et al., 2018) and code-based cryptography (McEliece, 1978) are among PQC schemes
that proposed to fit for this purpose. Lattice-based cryptographic schemes are said
to be more useful, straightforward, and parallelizable than other schemes (Chen
et al., 2016). They can provide security even under worst-case occasions.

The Learning with Errors (LWE) problem underlies the most of the lattice-based
cryptosystems. By using a sequence of random linear equations on s, the LWE
problem aims to find a secret s ∈ Zn

q (Regev, 2010).

(2.1)

14s1 +15s2 +5s3 +2s4 ≈ 8 (mod 17)

13s1 +14s2 +14s3 +6s4 ≈ 16 (mod 17)

6s1 +10s2 +13s3 +1s4 ≈ 3 (mod 17)
...

6s1 +7s2 +16s3 +2s4 ≈ 3 (mod 17)

These equations can be solved with the Gaussian elimination algorithm if there is no
error additive introduced. When there is an error additive, the Gaussian elimination
algorithm amplifies the error so it is not possible to solve the equations. As a result
the equations become significantly difficult to solve with the error additive (Regev,
2010).

It is possible to reduce the LWE problem into easier variants. LWE problem needs
to have larger key size because it needs n vectors Zn

q . If we use n samples from Zn
q ,

we can have O(n) elements from Zn
q , instead of O(n)2. The ring, Zq[x]/ϕ(m) can be

used instead of Zn
q which allows us to perform fast Fourier transform on the vectors.

Thus, the problem now requires smaller key with faster computation (Regev, 2010).
11

The equation

(2.2) b = a×s+e (mod q)

formulates the R-LWE problem. a, b ∈ Rq form the public parameters. The secret
key is referred to as s ∈Rq. The error polynomial is formulated by e←D0,σ in Rq

where zero mean and (a small) σ standard deviation is used for normal distribution
of the coefficients.

Ring-LWE (R-LWE) used in NewHope (Alkim et al., 2016) and Module-LWE (M-
LWE) used in Kyber (Bos et al., 2017; Lyubashevsky & Seiler, 2019) are variants of
LWE problem that offer superior performance.

The search problem and the decision problem are two hard problems of R-LWE.
The search problem uses the given pair (a,b) to find the value s. The decision
problem aims to differentiate between the pair (a,b) and a random pair sampled
from a uniform distribution over Rq. On the other hand, M-LWE problem utilizes
matrices of ring elements (i.e., polynomials in Rq) rather than the ring elements of
R-LWE (D’Anvers et al., 2018).

2.3 NTT-based Polynomial Multiplication

Discrete Fourier transform can be utilized on integers defined over Rq =
Zq[x]/ϕm(x). This approach makes polynomial multiplication operation faster since
NTT simplifies fast convolutions over polynomials. NTT of a n−1 degree

(2.3) a(x) =
n−1∑
i=0

ai ·xi

polynomial defined over Rq can be represented by a n−1 degree polynomial

(2.4) a(x) =
n−1∑
i=0

ai ·xi

12

defined over Rq in NTT domain. Eqn. 2.5 is used for calculating the coefficients ai.

(2.5) ai =
n−1∑
j=0

aj ·ωi·j (mod q) for i= 0,1, ...,n−1

Eqn. 2.5 computes the coefficients in the NTT domain, ai, by using ai, the coef-
ficients in the polynomial domain with a degree of n. Thus, this computation is
occasionally referred to as n-point NTT.

The twiddle factor of NTT operation, a primitive n-th root of unity constant, needs
to satisfy the conditions ωn ≡ 1 (mod q), ωi ̸= 1 (mod q) ∀i < n and q≡ 1 (mod n).
In inverse NTT (INTT) operation, ω−1 ∈ Zq is used instead of ω. Moreover, the
coefficients after the last step of INTT operation need to be multiplied by n−1 in
Zq.

There are different algorithms for NTT operations namely, iterative NTT algorithm,
Cooley-Tukey (CT) butterfly based NTT, and the unified forward NTT algorithm.

The iterative NTT algorithm operates on subsets of pairs of coefficients and itera-
tively combines them. This method can be used to process the subsets in sequential
indices. Alg. 2 shows the iterative NTT algorithm. NTT operation consists of 4 parts
where first index values are calculated. Then, the corresponding memory addresses
are read. Later, the butterfly operations are performed. Lastly, the coefficients are
written into the memory.

Moreover, Alg. 3 shows the NTT algorithm based on CT butterfly. This algorithm
takes the input polynomial in natural order and it produces the output polynomial
in the bit-reversed order. It also takes the twiddle factor in the bit-reversed order.
In order to perform polynomial multiplication operation by using this algorithm, GS
butterfly needs to be used on the output polynomial that is in bit-reversed order.
As a result, two separate butterfly configurations needs to be implemented which
increases the occupied hardware of the architecture.

The last method for NTT operation is called the unified forward NTT algorithm
as shown in Alg. 6. This method eliminates the need for zero-padding and pre-
processing operation.

In regular NTT algorithms, the coefficients of the input polynomials need to be
padded with 0 to perform NTT-based polynomial multiplication operation for any
random n values. At the last step of the multiplication, the resulting polynomial
needs to be reduced to the degree of n−1.

13

Algorithm 2 Iterative NTT Algorithm (Longa & Naehrig, 2016)
Require: A(x) ∈Zq/(xn +1)
Require: primitive n-th root of unity ω ∈Zq,n= 2l

Ensure: A(x) = NT T (A) ∈Zq/(xn +1
1: for i= 1; i= l; i++ do
2: m= 2l−i

3: for (j = 0; j < (2i−1−1); j++) do
4: for k = 1; k =m−1; k++ do
5: ie = 2 · j ·m+k
6: io = 2 · j ·m+k+m
7: iw = 2i−1 ·k
8: U ← A[ie]
9: V ← A[io]

10: W ← ωiw (mod q)
11: E← (U +V) (mod q)
12: O← (U −V) ·W (mod q)
13: A[ie]← E
14: A[io]←O
15: end for
16: end for
17: end for
18: return A(x)

A technique called negative wrapped convolution can be used to eliminate the
padding and reduction operation. ϕm(x) must be in the form of xn + 1 and the
input polynomial needs to be multiplied with the powers of ψ which called pre-
processing operation.

The constant ψ which is a primitive 2n-th root of unity should satisfy the conditions
ψ2n ≡ 1 (mod q), ψi ̸= 1 (mod q) ∀i < 2n and q ≡ 1 (mod 2n). CT butterfly design
can be utilized to merge the pre-processing operation with NTT operation. Roy et
al. introduced merged forward NTT operation (Roy et al., 2014) to perform this
technique.

Furthermore, INTT operation can be performed in two ways; INTT based GS but-
terfly algorithm and the unified inverse INTT algorithm. INTT based GS butterfly
algorithm, shown in Alg. 4, takes the input polynomial in bit-reversed order and it
produces the output polynomial in natural order. It also takes the twiddle factor in
the bit-reversed order.

To eliminate the reduction operation at the end of Alg. 4, the output polynomial
needs to be multiplied with the powers of ψ−1 which called post-processing opera-
tion. A related method is proposed by Pöppelmann et al. to merge post-processing
operations with INTT for merged inverse NTT operation (Pöppelmann, Oder &
Güneysu, 2015). Alg. 7 shows the unified inverse NTT algorithm to implement this

14

Algorithm 3 NTT Algorithm based on CT butterfly (Longa & Naehrig, 2016)
Require: a(x) ∈Zn

q , in natural order
Require: q ≡ (mod 2n),n= 2l

Require: a precomputed table ψrev ∈Zn
q powers of ψ in bit-reversed order

Ensure: a←NT T (a), in bit-reversed order
1: t= n
2: for m= 1; m< n; m= 2m do
3: t= t/2
4: for (i= 0; i < m; i++) do
5: j1 = 2 · i · t
6: j2 = j1 + t−1
7: S = ψrev[m+ i]
8: for (j = j1; j ≤ j2; j++) do
9: U = a[j]

10: V = a[j+ t] ·S
11: a[j] = U +V (mod q)
12: a[j+ t] = U −V (mod q)
13: end for
14: end for
15: end for
16: return a

method.

It is possible to combine these technique by using two different butterfly structures.
Thus, the computational complexity is decreased by eliminating the pre-processing
and post-processing operations. This approach is utilized in this work. NTT-based
polynomial multiplication operation is performed as shown in Eqn. 2.6. n-point
merged NTT and INTT operations are represented by NTTn and INTTn.

(2.6) c = INTTn((NTTn(a)⊙NTTn(b)))

It is possible to utilize both CT and GS butterfly formations in a unified design with
the minimum amount of hardware (e.g., area and latency) as it will be discussed in
the following chapters.

NTT-based polynomial multiplication operation over Rq can be performed with
q ≡ 1 (mod n) instead of q ≡ 1 (mod 2n) (Lyubashevsky & Seiler, 2019). This
method eliminates the pre-processing and post-processing operations as proposed
by Lyubashevsky et al..

The Kyber scheme is utilized this method. Thus, it is optimized by reducing one bit
from coefficients for the integer computations (i.e., q reduced from 7681 to 3329).
Therefore, the NTT/INTT operations are updated (Bos, Ducas, Kiltz, Lepoint,
Lyubashevsky, Schanck, Schwabe, Seiler & Stehlé, 2018). Kyber (v1) and Kyber
(v2) are referred to as the Kyber scheme with old and new parameters. Kyber (v2)

15

Algorithm 4 INTT Algorithm based on GS butterfly (Longa & Naehrig, 2016)
Require: a(x) ∈Zn

q , in bit-reversed order
Require: q ≡ (mod 2n),n= 2l

Require: a precomputed table ψ−1
rev ∈Zn

q powers of ψ−1 in bit-reversed order
Ensure: a← INT T (a), in natural order

1: t= 1
2: for m= n; m> 1; m=m/2 do
3: j1 = 0
4: h=m/2
5: for (i= 0; i < h; i++) do
6: j2 = j1 + t−1
7: S = ψ−1

rev[h+ i]
8: for (j = j1; j ≤ j2; j++) do
9: U = a[j]

10: V = a[j+ t]
11: a[j] = U +V (mod q)
12: a[j+ t] = (U −V) ·S (mod q)
13: end for
14: j1 = j1 +2t
15: end for
16: t= 2t
17: end for
18: for j = 0; j < n; j++ do
19: a[j] = a[j] ·n−1 (mod q)
20: end for
21: return a

scheme differs from Kyber (v1) in the NTT-based multiplication operation. Kyber
(v1) uses 256 degree-0 polynomials for the NTT opeation. It needs 256 modular
multiplication operation for the coefficient-wise multiplication operation.

On the other hand, Kyber (v2) utilizes NTT operation with 128 degree-1 polyno-
mials. Algorithm 5 shows the coefficient-wise multiplication operation in the NTT
domain with 128 polynomial multiplications over Zq[x]/(x2−ωi) where i depends
on the position of coefficients.

Algorithm 6 and Algorithm 7 show the unified merged NTT and merged INTT
algorithms for NTT-friendly schemes. The bit-reversel operation on b-bit integer a
is represented by br(a,b). NTT/INTT operation is chosen by fd where 2 is used
for Kyber (v2) and 1 for other schemes.

16

Algorithm 5 Algorithm of Multiplication in the NTT domain for Kyber
(v2) (Lyubashevsky & Seiler, 2019)
Input: a(x),b(x) ∈Rq in bit-reversed order
Input: ω ∈ Zq

Output: c(x) ∈Rq in bit-reversed order
1: for (i= 0; i < 128; i++) do
2: a0,a1, b0, b1← a[2i],a[2i+1],b[2i],b[2i+1]
3: c[2i]← (a0 · b1 +a1 · b0) mod q
4: c[2i+1]← (a1 · b1 ·ωbr(i,7)+1 +a0 · b0) mod q
5: end for
6: return c

Algorithm 6 Unified Forward NTT Algorithm
Require: a(x) ∈Rq, in natural order
Require: n,q,ω ∈ Zq (or ψ ∈ Zq)
Require: fd ∈ {1,2} (final degree)
Ensure: a(x) ∈Rq, in bit-reversed order

1: k, l,v = 1,(n/2), log2(n/fd)
2: while (l ≥ fd) do
3: for (s= 0; s < n; s= j+ l) do
4: w,k = ωbr(k,v) (mod q),k+1
5: for (j = s; j < (s+ l); j++) do
6: t= a[j+ l] ·w (mod q)
7: a[j+ l] = a[j]− t (mod q)
8: a[j] = a[j]+ t (mod q)
9: end for

10: end for
11: l = l/2
12: end while
13: return a

17

Algorithm 7 Unified Inverse NTT Algorithm
Require: a(x) ∈Rq, in bit-reversed order
Require: n,q,ω−1 ∈ Zq (or ψ−1 ∈ Zq)
Require: fd ∈ {1,2} (final degree)
Ensure: a(x) ∈Rq, in natural order

1: k, l,v = 0,fd, log2(n/fd)
2: while (l ≥ (n/2)) do
3: for (s= 0; s < n; s= j+ l) do
4: w,k = ωbr(k,v)+1 (mod q),k+1
5: for (j = s; j < (s+ l); j++) do
6: a[j+ l] = a[j]+a[j+ l] (mod q)
7: a[j] = a[j]−a[j+ l] (mod q)
8: a[j+ l] = a[j+ l] ·w (mod q)
9: end for

10: end for
11: l = 2 · l
12: end while
13: for (i= 0; i < n; i++) do
14: a[i] = a[i] ·n−1 (mod q)
15: end for
16: return a

18

3. OUR WORK

In this chapter, we start explaining the polynomial multiplier in details by start-
ing from the word-level Montgomery modular multiplier that utilizes incomplete
arithmetic. In hierarchical order, we introduce our core unit, unified butterfly unit,
which implements both the CT and GS butterfly operations. Lastly, we introduce
the configurable memory control unit with the overall design.

3.1 Word-level Montgomery Modular Multiplier Unit

In this section, we present our modular multiplier unit in details. In our design, the
modular multiplier unit utilizes two units: (i) a 32-bit integer multiplier (Fig. 3.1)
and (ii) a word-level Montgomery modular reduction unit (Fig. 3.2) that provides
configurability for scheme parameters on NTT-friendly primes.

The word-level Montgomery technique proposed in (Mert et al., 2019) and the in-
complete arithmetic technique utilized in (Yanik et al., 2002) are used in the run-time
configurable word-level Montgomery modular reduction unit. This unit can oper-
ate on a broad range of scheme parameters thanks to RTC. It uses fixed word size
for Montgomery multiplication. Thus, compared to the other designs in the litera-
ture (Mert et al., 2020), it occupies less hardware with low complexity. It utilizes 8
DSP blocks and depending on the modulus size, it uses up to five clock cycles.

Fig. 3.1 (Derya, Mert, Öztürk & Savaş, 2022) shows the integer multiplication oper-
ation on the coefficients of the input polynomials. This unit is capable of performing
up to 32 bits, i.e., it computes d = a · b, where a,b < 232 and d < 264. Integer mul-
tiplication operation starts with dividing the input coefficients into two parts. The
results that contain upper and lower 16-bits of the inputs are multiplied on four DSP
blocks of FPGA. After registering the results, a 32-bit carry save adder is used to

19

Figure 3.1 32-bit Integer Multiplier Unit
add them. Finally, the integer multiplier unit generates the multiplication result by
concatenating the carry-save adder result with the upper and lower 16-bit parts of
DSP multiplication result. This unit registers the multiplication result at the end.
Thus, it has two clock cycle latency.

On the reduction side, there are various methods such as Barrett reduction and
Montgomery reduction. Various methods offers different optimizations.

Alg. 8 shows the Barrett reduction operation. Barrett reduction uses approximate
values on the integers. It also performs initial multiplication of 2k-bits by k-bits.
This results in more expensive operation compared to Montgomery reduction. To
eliminate approximation and the expensive multiplication operation, we opt to use
Montgomery reduction operation.

Eqn. 3.1 shows the regular Montgomery reduction algorithm. It takes d = a · b as
input and calculates

(3.1) c= d ·R−1 (mod q)

for k = ⌈log2(q)⌉, where R = 2k and q′ = q−1 (mod R). The operation in Eqn. 3.4
is divided into w-sized parts as proposed in (Mert et al., 2019). This technique
reformulates R as R′ = 2w for w-sized operations. Therefore, if the word size is

20

Algorithm 8 Barrett Reduction (Barrett, 1987)
Input: p,b≥ 3
Input: k = ⌊logb⌋p
Input: 0≤ z < b2k

Input: µ= ⌊b2k/p⌋
Output: z (mod p)

1: q← ⌊⌊z/bk−1⌋ ·µ/bk+1⌋
2: r← z (mod bk+1)− q ·p (mod bk+1)
3: if r < 0 then
4: r← r+ bk+1

5: end if
6: while r ≥ p do
7: r← r−p
8: end while
9: return r

used as w ≤ log2(2n), q′ = q−1 (mod 2w) becomes -1. As a result, d · q′ (mod R)
operation can be performed with 2’s complement. Lastly, the reduction operation
reduces 2k-bit input d to k-bit output d ·R−1 (mod q) by repeating the w-sized
reduction operation L= ⌈ k

w⌉ times.

Fig. 3.2 shows the word-level Montgomery reduction unit and it can perform reduc-
tion operation on different parameters with run-time configurability. A technique
called negative wrapped convolution is used for the NTT-friendly primes that satisfy
Eqns. 3.2-3.3. The reduction operation is performed with smaller words that has w
as the word size, as presented in (Mert et al., 2019).

(3.2) q ≡ 1 (mod 2n)

(3.3) q = qH ·2w +1 where w = log2(2n)

(3.4) c= d+ q · (d · q′ (mod R))
R

The iteration count for w-sized operation depends on the word size (w). The modular
reduction operation is affected by the word size (w) in performance-wise (i.e., larger
w is used to achieve fewer number of iterations). This work aims to support a
broad range of parameters and it performs polynomial multiplication operation for
n values between 256 and 1024. It is possible use different word sizes for various
schemes that use different n values. This approach needs to be performed with

21

Algorithm 9 Word-Level Montgomery Reduction Algorithm
Input: d= a · b (2K-bit integer)
Input: w = 8 (word size)
Input: L= ⌈K+2

w ⌉ (iteration count)
Input: q (K-bit integer, q = qH ·2w +1)
Output: c= d ·R−1 (mod q), R = 2w·L (mod q)

1: T = d
2: for (i= 0; i < L; i++) do
3: T1H = T ≫ w
4: T1L = T (mod 2w)
5: T2 =−T1L (mod 2w)
6: Cin = T2[w−1] ∨ T1L[w−1]
7: T = T1H +(qH ·T2[w−1 : 0])+Cin

8: end for
9: c= T

10: return c

similar computations.

The design in (Mert et al., 2020) utilizes each n value with different w values as
a simple solution to this design requirement. Therefore, it needs more logic area
to support configurability while increasing the hardware complexity. To eliminates
these drawbacks, this work uses a fixed word size. The smallest scheme parameters,
supported by this work, are n = 256 with q = 13 · 28 + 1 for Kyber (v2) scheme.
Therefore, w is fixed as 8. Algorithm 9 shows the word-level Montgomery reduction
algorithm.

The resources of FPGA board can perform multiply-and-accumulate operation x ·y+
z+ cin. One for each 2’s complement unit, OR gate, and DSP block can be used to
implement each w-sized reduction step as indicated by the steps 5-7 of Algorithm 9.
Thus, this approach is used in this work to implement one w-sized reduction step. L
times w-sized reduction steps is required to complete the reduction operation. The
iteration count also dictates the number of DSP blocks in this work.

As shown in the work (Mert et al., 2019), an extra subtraction operation after the
reduction operation is needed to obtain a result in the interval [0, q). It is possible
to get rid of the extra subtraction operation at the end by using a method called
incomplete arithmetic in the Montgomery reduction operation.

The regular modular arithmetic requires the integers to be in the range [0, q). If a
value becomes larger than or equal to the modulus q, it needs to be reduced to stay
in the interval [0, q). Incomplete arithmetic technique (Yanik et al., 2002) is used to
eliminate the reduction operation at the end. This technique gives an opportunity
to work on the integers with word-level operations. Thus, the bit-level operations

22

that slow down the operation are not required anymore. As a result, the integers are
in the interval [0,2k+1) instead of [0, q) to work with the modular arithmetic units.

This design requires the inputs and output of the Montgomery reduction operation
(a, b, and c) to be in the interval [0,2k+1). This ensures that Montgomery reduc-
tion unit to work flawlessly with no extra subtraction at the end of the operation.
Additionally, R needs to be at least 2k+2 to assure the correctness of the operation.
These values are replaced into Eqn. 3.4 to show that the output should be in the
interval [0,2k+1). Eqns. 3.5-3.6 come up with this result. Algorithm 9 show that
the word-level Montgomery reduction requires R to be 2w·L where L is ⌈k+2

w ⌉.

(3.5) c <
d+ q · (d · q′ (mod R))

R
= 22k+2 +2k ·2k+2

2k+2

(3.6) c <
22k+2 +22k+2

2k+2 = 22k+3

2k+2 = 2k+1

The size of coefficient modulus (k) is the only parameter that sets the iteration
count (L) since the word size (w = 8) is fixed. This design can perform operation
on integers that at most k = 3 ·8−2 = 22 bits where the iteration count is 3. In this
case, it cannot support Dilithium and qTESLA-q-I schemes. In order to work with
integers up to k = 4 ·8−2 = 30 bits, L is determined as 4. This also determines the
number of DSP blocks in the modular reduction unit as 4. There is no need to use
extra DSP blocks if the parameter set requires the iteration count less than 4 (i.e.,
k = 16). The correct output is given by the output multiplexer.

Fig. 3.2 (Derya et al., 2022) shows the run-time configurable word-level Montgomery
reduction unit. To improve the critical path, DSP blocks are registered. In total,
this unit uses four DSP blocks and it has three clock cycles of latency.

The result or one of the inputs of Algorithm 9 needs to be multiplied by R to get rid
of the extra multiple of R−1 from the result. This work utilizes the second approach.
The twiddle constants ω/ω−1 and ψ/ψ−1 are multiplied by R=2w·L before the start
of the operation. GitHub repository of this work includes a Python script that shows
the steps of the word-level Montgomery reduction algorithm with sample inputs. It
can be used to understand better the algorithm.

An efficient modular reduction units are implemented on hardware mainly in three
ways: (i) shift and add method, (ii) Montgomery reduction and (iii) Barrett re-
duction. The work in (Liu, Seo, Roy, Großschädl, Kim & Verbauwhede, 2015) uses

23

Figure 3.2 Reconfigurable Word-level Montgomery Reduction Unit
a modulus q in special form that is suitable for the shift and add method. On the
other hand, the Montgomery and Barrett reduction methods can be used efficiently
on random q values. It is also possible to use pre-computed reduced values in a
table. The works in (Mert, Ozturk & Savas, 2020; Sinha Roy, Turan, Jarvinen, Ver-
cauteren & Verbauwhede, 2019) uses a table-based modular reduction to perform
the operation step by step by sliding a window on the table. This method is mainly
used for very large q values.

The work in (Yaman et al., 2021) uses a fixed modulus q = 3329 from Kyber
(v2) scheme. Its modular reduction unit uses a similar approach from Zhang et
al. (Zhang, Yang, Chen, Yin, Wei & Liu, 2020). There is no need to convert the
coefficients from Montgomery domain. The modular reduction operation does not
use any multiplier unit since it only operates on a fixed modulus. Therefore, it does
not offer any configurability options.

Moreover, the modular reduction unit in (Xing & Li, 2021) utilizes a fixed q = 3329
value. Barrett reduction is utilized in this unit. However, it does not have any
configurability options. Similarly, the design in (Xin, Han, Yin, Zhou, Yang, Cheng
& Zeng, 2020) uses the Barrett reduction in the modular reduction unit. It operates
on q values up to 16-bit. It offers a limited operating window compared to our design

24

while offering RTC.

A fixed word size (w = 11) is used in the design of (Mert et al., 2019). It supports
the interval 22 < ⌈log2(q)⌉ ≤ 33 for k while utilizing 3 DSP units. Since w is fixed,
it does not offer RTC for q values.

The work in (Mert et al., 2020) utilizes the word-level Montgomery reduction method
while offering CTC for n, k, and w. These parameters are fixed at the design time.
Therefore, the number of DSP blocks is fixed. As a result, once the design is
compiled, it does not offer run-time configurability for scheme parameters. At the
run-time, it only performs operations on a single parameter. Thus, it uses less
hardware resources. However, it offers less configurability options compared to our
design.

Moreover, the work in (Wang et al., 2020) uses a modulus with a constant bit-size
while employing the regular Montgomery reduction method. While offering CTC
and less hardware complexity, it does not offer RTC for scheme parameters.

The work in (Mert et al., 2020) offers RTC for modular multiplication unit. It
employs the word-level Montgomery reduction method while the word size w is
chosen with respect to Eqns. 3.2-3.3. It is possible to change the word size (w) at
the run-time with the implemented additional control hardware. As a result, it uses
more area resources than our design while offering comparable level of configurability.
It is not possible to change the number of DSP blocks. Therefore, once the design
is compiled, it can only work with a certain set of coefficient size.

Furthermore, the design in (Banerjee et al., 2019) utilizes the Barrett reduction
algorithm while offering RTC for different q values with the control signals. The
usage of area resources for this unit is high since it employs various reduction unit
for each q value.

In the literature, there are different modular multiplier unit concepts available for
different circumstances. As shown in our design, the occupied hardware resources
increases for a reconfigurable concept. This paves a way to leverage its potentials
for configurability while showing a negligible increase in the area resources.

25

3.2 Unified Butterfly Unit

The butterfly operations for NTT/INTT can be performed by using CT and GS
butterfly configurations on the proposed unified butterfly unit (BU) respectively.
It is possible to configure this unit at the run-time between CT and GS butterfly
configurations. Fig. 3.3 (Derya et al., 2022) shows the proposed butterfly unit which
consists one unit of modular adder, modular subtractor, and word-level Montgomery
modular multiplier.

The output values of the proposed unit need to be configured with respect to the
operation, NTT or INTT. even and odd output values can be configured by the
control input ct iat the run-time. even output is calculated as a+b ·w (mod q) and
a+ b (mod q) for NTT/INTT operations respectively. odd output is computed as
a− b ·w (mod q) and (a− b) ·w (mod q) for NTT/INTT operations. Furthermore,
w input value is used for twiddle factors that are needed for the operations. It
becomes a power of ω/ω−1 for Kyber (v2) schemes and ψ/ψ−1 for the other schemes
in NTT/INTT operations respectively.

Based on the scheme parameters, the word-level Montgomery modular multiplier
unit can be configured to have clock cycle latency between 2 and 5. The iteration
count, L, dictates the latency. As a result, the output values, even and odd, have to
be calculated at the same time. To make it possible, different delay paths utilizing
extra registers (Fig. 3.3 depicts 2cc, 3cc, 4cc, 5cc) are used. The delay path is
selected by the control signal i which is chosen by the iteration count L of the
word-level Montgomery reduction unit.

Eqn. 2.6 shows the coefficient-wise multiplication for the polynomial multiplication
operation. The proposed butterfly unit can be utilized to perform it. In GS config-
uration, odd output is calculated as (a− b) ·w (mod q). It possible to set a and w

inputs as the input operands of a ·w (mod q) operation and b input needs to be set as
zero. In this design, this approach is used to perform coefficient-wise multiplication.

Algorithm 5 shows the coefficient-wise multiplication algorithm for Kyber (v2)
scheme which differs from the other schemes. The modular arithmetic operations
of this algorithm can be performed by modular adder and modular subtractor units
that use add and sub as outputs respectively. In Kyber (v2) scheme, two degree-1
polynomials in the NTT domain need to be multiplied in coefficient-wise. This step
of the algorithm is performed in GS configuration as explained earlier. Intermediate
values, a0 · b0, a0 · b1 a1 · b0 and a1 · b1, are generated for the next steps. At the

26

Figure 3.3 Unified Butterfly Unit
Step 3 of Alg. 5, the modular adder of the butterfly unit is used to perform modular
addition. To perform Step 4, the butterfly unit is used in CT configuration to get
a+b ·w (mod q) output. To utilize it, a is used as a1 ·b1. w is used for the power of
the twiddle factor and b is used for a0 · b0 as input. In this work, the NTT domain
multiplication of the Kyber (v2) scheme is utilized by using this method.

In the literature, the butterfly operations are mainly utilized in three methods: (i)
only the GS configuration (Mert et al., 2020; Mert et al., 2019,2), (ii) only the CT
configuration (Roy et al., 2014) and (iii) unified GS and CT configurations (Banerjee
et al., 2019; Wang et al., 2020; Xin et al., 2020; Xing & Li, 2021; Yaman et al., 2021).
Using only CT or GS configuration requires pre-processing and post-processing pro-
cedures for the NTT-based polynomial multiplication operation. As a result, this
bring about additional 2n modular multiplication operations for polynomial degree
of n.

Section 2 explains that pre-processign and post-processing operations can be elimi-
nated by utilizing merged NTT and INTT operations with a unified GS-CT butterfly
unit. Subsequently, unified GS-CT configuration needs extra control circuits to uti-
lize both configurations. Therefore, this configuration results in higher hardware
complexity and area usage with respect to the configurations with only GS or CT.

The work in (Yaman et al., 2021) uses a unified butterfly unit to implement the

27

butterfly operations. It can be configured to perform operations of NTT, INTT,
and coefficient-wise multiplication. Nonetheless, it can only perform operations
using Kyber (v2) scheme parameters. After INTT operation, the coefficients need
to be multiplied by n−1 (mod q). These multiplications are eliminated by using a
method from Zhang et al. (Zhang et al., 2020).

Furthermore, the work in (Xing & Li, 2021) uses the same method to implement
the butterfly operations. These works utilize optimizations for Kyber (v2) scheme.
Still, they lack the support for any other scheme since their arithmetic units are
utilized for the fixed data length.

The architecture in (Mert et al., 2019) utilizes the butterfly unit with only the
GS configuration. It uses same amount of modular arithmetic units as our design.
Due the control hardware that our design has, it can offer more configurability
opportunities. Moreover, the work in (Mert et al., 2020) uses only GS configuration
for the butterfly operations. The data length of the design is set at the compile-time.
Thus, it does not offer RTC for scheme parameters as our design offers.

Furthermore, the butterfly unit in (Mert et al., 2020) has seven clock cycle of latency
for even and odd outputs while employing only GS configuration. Therefore, the
latency of the unit does not depend on the scheme parameters. Whereas, our design
utilizes different delay paths with fewer clock cycles. Lastly, the work in (Roy
et al., 2014) utilizes only CT configuration for the butterfly unit. Thus, it has less
hardware complexity with respect to our design. As a result, it does not have the
configurability capabilities that our design has.

The butterfly unit in (Wang et al., 2020) utilizes the unified CT and GS configuration
method. The data length of the architecture is fixed at the compile time. Thus,
it does not offer support for any other parameter at the run time. Moreover, the
butterfly unit in (Banerjee et al., 2019) uses the unified butterfly operations method
while employing one extra modular adder and modular subtractor compared to our
design.

Furthermore, the work in (Xin et al., 2020) utilizes the same approach with one
extra modular operator units. In our work, we employ the same method with
less hardware sources. In the literature, different methods are utilized to perform
polynomial multiplication operations. We observe that the as the design becomes
more configurable, it also has more hardware complexity.

28

3.3 Configurable Memory Control and Overall Design

Algorithms 6-7 show the NTT/INTT algorithms which performs the calculations
on the loop structures. Each operation can be parallelized by unrolling the each
loop. Therefore, it is possible to adjust the throughput by changing the number
of the butterfly units. In this design, it is possible to set the number of BUs at
the compile time. The number of BUs cannot exceed n/2 and it has to be power-
of-two. After taking the number of BUs, the hardware with the required logical
blocks is generated by the proposed work. Fig. 3.4 (Derya et al., 2022) shows that
each butterfly unit takes two BRAMs (BRAM 0 and BRAM 1) to store the input
coefficients. One BRAM unit (BRAM TW) is utilized to store the pre-computed
values of the twiddle factors (primitive 2n-th root of unity).

Our work utilizes a compile-time control unit for generating the needed control
signals for the architecture. Depending on the scheme parameters and the number
of BUs, it produces necessary read and write address values for BRAMs. The ring
size, n, determines the generated address values for BRAMs. The depth of input
coefficients BRAM is 512/BU. Twiddle BRAM uses a depth of ∑i=9

i=0 2min(512/BU,i)

where BU is the number of BUs. Each BRAM address has 32-bit data length.

NTT/INTT algorithms uses log2(n) stages for PQC schemes, except Kyber (v2)
where they have log2(n)−1 stages. In each stage, n/2 butterfly operations need to
be performed. After each stage, single NTT operation can be divided into smaller
NTT operations by utilizing divide-and-conquer method. The first stage starts with
n-point NTT operation. After the first stage, two n/2-point NTT operations can
be performed on the coefficients. This method proposes an efficient way to schedule
the address scheme which can support various ring sizes. This approach is utilized
recursively after each stage. Therefore the size of NTT operation becomes in half.

An additional register is used for odd output of the butterfly unit. The NTT algo-
rithm performs writing into the same BRAM block in consecutive clock cycles. This
extra register is used to write consecutive outputs. Furthermore, contrary to the
NTT operation, smaller INTT operation are merged into larger ones for the INTT
operation. The address scheduling of the INTT operation is in the reverse order of
NTT operation.

For the first log2(n)− log2(BU)− 1 NTT stages, two kinds of address values are
generated for BRAMs. In each consecutive clock cycle, the control unit select the
different type of the adress value. One of the address values starts with 0 and

29

Fi
gu

re
3.

4
O

ve
ra

ll
D

es
ig

n

30

Figure 3.5 NTT Memory Access Pattern for n= 16 with two Butterfly Units

Figure 3.6 INTT Memory Access Pattern for n= 16 with two Butterfly Units
increments in every two clock cycles. Similarly, the other one increments in the
same way. However, it starts with n/(2log2(BU)+s+2) where s is the number of the
current NTT stage. As a result, the difference between them stays fixed. Until the
latter type of address becomes n/(2 · BU)− 1, the control unit generates these two
types of address values. Moreover, the other NTT stages use only one type address
value that starts with 0 and increments in every clock cycle to n/(2 ·BU)−1.

Fig. 3.5 (Derya et al., 2022) shows the memory address scheduling for NTT operation
of a desing with n as 16 and two BUs. Before the NTT operation, BRAMs are loaded
with the input coefficients in a suitable way to start the operation. Fig. 3.5 shows
that the operation starts with the coefficients pairs of 0th-8th and 1st-9th. For the
first two stages, there is a data collusion while writing the coefficients into BRAMs.
The coefficients from the same BU need to be written into the same BRAM. This
problem is solved by reading the coefficients in an alternating order from BRAMs
i.e. 0,2,1,3 instead of 0,1,2,3. The additional register of odd output is used during
these stages.

The data collusion disappears after the first two stages and the memory read schedule
increments in every clock cycle, i.e., 0,1,2,3. The control signals are used to store the
coefficients into different BRAMs than they used to be before the NTT operation.
This data reordering ensures that the coefficients are stored in the correct BRAM
for NTT operation.

Fig. 3.6 (Derya et al., 2022) shows the memory address scheduling for INTT op-
eration of a design with n as 16 and two BUs. Coefficient-wise multiplication is
performed before INTT operation. As it can be seen from the Fig. 3.5, the last

31

stage of NTT operation orders the coefficients in BRAMs with coefficient pairs that
are suitable to INTT operation. As a result, there is no need for data reordering
before INTT operation.

In the first stage, the memory read schedule increments in every clock cycle, i.e.,
0,1,2,3. On the next two stages, data collision occurs as there are coefficients that
needs to be written into same BRAM block in the same clock cycle. To overcome
this problem, the memory read schedule is performed in alternating order i.e. 0,2,1,3
instead of 0,1,2,3. As used in NTT operation, the extra register for odd output is
used during these stages.

For the last stage, there is no data collision. Thus, the memory read schedule is
performed in incremented order i.e. 0,1,2,3. To sum up, INTT memory access
pattern is the reverse of NTT memory access pattern.

The address scheduling for the coefficient-wise multiplication operation is directed
by the control unit. The input coefficients are stored in address values between 0
and 512/BU in BRAM blocks. The butterfly units take coefficients from BRAMs
with respect to the address signals produced by the control unit. The butterfly unit
is used in GS configuration to perform coefficient-wise multiplication operation. The
inputs are set as the first operand, the second operand, and zero for a, w and b,
respectively.

Fig. 3.7 shows the address schedule of Kyber (v2) coefficient-wise multiplication.
Kyber (v2) scheme utilizes different algorithm for the coefficient-wise multiplication
operation and it uses different address scheduling. Algorithm 5 shows that there
needs to be modular multiplication and addition operations in Steps 3-4. The nec-
essary modular multiplication operations are performed and the results are stored
in BRAMs. On the next step, Step 3-4 of Algorithm 5 are performed using the
butterfly units.

In the literature, there are two methodologies used to utilize NTT-based polyno-
mial multipliers: (i) an independent hardware accelerator (Mert et al., 2020; Mert
et al., 2019,2; Yaman et al., 2021) and (ii) a sub-block unit in a cryptographic hard-
ware (Banerjee et al., 2019; Roy et al., 2014; Wang et al., 2020; Xin et al., 2020;
Xing & Li, 2021). Independent hardware accelerators are implemented on FPGAs
to utilize their high-performance blocks.

Compared to sub-block units, they show superior performance since sub-block units
are utilized on low-constrained devices. There needs to be a host processor for the
sub-block NTT multiplier to operate. They focus on low power rather than high
performance. Thus, they are implemented on the low-constrained devices.

32

Fi
gu

re
3.

7
A

dd
re

ss
Sc

he
du

lin
g

fo
r

K
yb

er
(v

2)
C

oe
ffi

ci
en

t-
w

ise
M

ul
tip

lic
at

io
n

33

The architecture in (Yaman et al., 2021) proposes a hardware accelerator for Kyber
(v2) scheme with NTT-based polynomial multiplication. The overall design concept
of the design is similar with our work. It utilizes BRAM blocks for storing input
coefficients and it uses recursive NTT method with a control unit to perform NTT
operations. The control unit uses a similar address scheduling as our work. However,
it can only perform operations on Kyber (v2) scheme. Therefore, it does not have
any support for other schemes. Algorithm 5 is used with pipeline optimizations for
the coefficient-wise multiplication operation. Compared to the design in (Yaman
et al., 2021), our work offers more configurability options for other schemes by
utilizing a negligible amount of more resources while having similar performance
results. Additionally, our work offers CTC to adjust the throughput rate.

Furthermore, the design in (Mert et al., 2019) uses a similar approach to implement
the NTT-based polynomial multiplication. It utilizes a fixed number of BRAM block
and butterfly units. As a result, it does not have CTC capabilities on the design. It
does not have any support for Kyber (v2) scheme while employing a similar address
scheduling method to perform the operations. We use somewhat more hardware
resources while offering more configurability opportunities.

The work in (Mert et al., 2020) proposes a hardware accelerator with a fixed number
of butterfly units and BRAM blocks with a similar overall design. Thus, it is not
possible to adjust the throughput rate with no CTC capabilities. On the other hand,
the control unit in (Mert et al., 2020) can be used for different scheme parameters. It
generates control signals with respect to the parameter set. It utilizes large amount
of multiplexers while employing run-time support for the scheme parameters. The
control unit in our work uses the control unit with more efficiency by using arithmetic
operations on small multiplexers to generate control signals. Our work has a similar
performance results on selected parameter sets while having more configurability
capabilities with support for Kyber (v2) scheme.

Furthermore, the design in (Mert et al., 2020) offers CTC for design parameters that
sets the number of building block at the compile-time. Thus, it is possible to adjust
the parallelism to set the throughput rate. While using a similar address pattern
with our design, the control unit in (Mert et al., 2020) is utilized for a unique set of
scheme parameter. Thus, it does not offer RTC for scheme parameters. Compared
to the design in (Mert et al., 2020), we utilize more hardware sources to offer more
configurability capabilities.

The design in (Xing & Li, 2021) utilizes NTT framework to implement operations
for Kyber (v2) scheme. NTT-based multiplier is used as a sub-block that uses two
butterfly units with 2 RAM blocks. This design does not have RTC for scheme

34

parameters and CTC for design parameters. By using more hardware source, we
offer more configurability capabilities compared to the design in (Xing & Li, 2021).

Moreover, the work in (Banerjee et al., 2019) implements a crypto-processor for PQC
with configurability options. While performing NTT operations, it uses out-of-place
NTT structure that requires the coefficients of the input and output polynomials
to be stored on different memory units. Compared to the work in (Banerjee et al.,
2019), we use same memory units for storing the input and output polynomials at
the same time.

A hardware for PQC is introduced in the work (Wang et al., 2020) that uses NTT-
based polynomial multiplication approach. The memory access pattern is optimized
to have two butterfly operations simultaneously. Two units of memory blocks are
used to store input polynomials, and two memory blocks are utilized to store twiddle
factors. The control unit is compiled once for a unique set of scheme parameters.

Moreover, the work in (Roy et al., 2014) employs a similar approach for the control
unit by using different number of memory blocks. Compared to those designs, our
unit has RTC for the control unit. Therefore, it is possible to use it on different
scheme parameters. Overall, it is possible to say that as the configurability of the
design increases, the hardware complexity of the overall design increases.

35

4. RESULTS AND COMPARISON

In this chapter, firstly, we give discussion about the prior works in the literature.
Then, we present our implementation results and make comparison with respect to
the works in the literature.

4.1 Prior Works

Table 4.1 Prior Works

Design Platform n ⌈log2(q)⌉ LUT/FF/DSP/BRAM Freq. Latency (Clock Cycles)
(mm2 for ASIC) (MHz) NTT INTT P.M.

(Banerjee et al., 2019)† 40 nm CMOS
256 13

0.28 72
1289

– –512 14 2826
1024 14 6155

(Mert et al., 2020) Virtex-7

256 23 888 / – / 7 / 5

125

1096

– –

5K / – / 56 / 12 200

512 14 537 / – / 3 / 5.5 2340
2.5K / – / 24 / 12 324

1024 14 575 / – / 3 / 11 5160
17.1K / – / 96 / 48 200

(Fritzmann et al., 2020)∗† Zynq-7000
256 12

2.9K / 170 / 9 / 0 45
1935 1930

–512 14 8169 8684
1024 14 18537 20171

(Fritzmann & Sepúlveda, 2019)† UMC 65 nm
256 13

0.329 25
2056

– –512 14 4616
1024 14 10248

(Yaman et al., 2021)∗ Spartan-6 256 12 985 / 444 / 1 / 5 138 904 904 3359Artix-7 948 / 352 / 1 / 2.5 190

(Fritzmann et al., 2021)∗† Artix-7
256

– 2.4K / 1.9K / 7 / 4.5 153
3584

– –512 8192
1024 20480

(Mert et al., 2020) Virtex-7 1024 28 1K / 1K / 7 / 2 125 5290 – –16K / 14K / 56 / 24 490

(Greconici et al., 2020)∗ Cortex-M3
256 12

– / – / – / – 16
10819 12994

–256 23 19347 21006
1024 14 77001 93128

(Mert et al., 2020)† Virtex-7
256

16 39.6K / – / 224 / 96 150
104

–
288

512 153 468
1024 249 815

P.M.: Polynomial Multiplication; a: 1 BU; b: 8 BUs; c: 32 BUs; ∗: supports Kyber (v2); †:
supports multiple n and q at run-time.

In the literature, PQC schemes are implemented efficiently on both hardware and
36

software platforms. Table 4.1 shows the prior works in the literature. These works
support a wide range of scheme parameters with different configurability capabilities.

An ASIC implementation of a custom crypto-processor that supports different
scheme parameters for Round 2 candidates of NIST’s competition is presented in
the work (Banerjee et al., 2019). The architectures in (Mert et al., 2020,2) utilizes
CTC for design parameters to accelerate NTT operation. While the work (Mert
et al., 2020) offers RTC for scheme parameters, the architecture (Mert et al., 2020)
only supports a fixed set of scheme parameters.

The design in (Fritzmann et al., 2020) introduces implementations for lattice-based
PQC schemes on ASIC and FPGA platforms that supports different scheme param-
eters. Furthermore, a power optimized NTT accelerator is implemented on ASIC
platform for different PQC schemes in the work (Fritzmann & Sepúlveda, 2019).

The architecture in (Yaman et al., 2021) introduces optimizations for a polynomial
multiplier on FPGA platform for the Kyber (v2) scheme with no support for RTC
and CTC.

The architecture in (Fritzmann et al., 2021) utilizes a NTT multiplier and presents
set extensions on RISC-V instructions for different PQC schemes. Moreover, Kyber
(v2), Dilithium, and NewHope schemes are implemented on Cortex-M3 platform in
the work (Greconici et al., 2020).

Furthermore, the design in (Mert et al., 2020) utilizes RTC for scheme parameters
while employing NTT-based accelerator. Lastly, the work in (Seiler, 2018) introduces
optimizations for AVX2 implementation on the NTT operations of Kyber (v1) and
NewHope schemes. Also, the work in (Alkim et al., 2020) proposes the ISA extension
on RISC-V for Kyber (v2) and NewHope schemes.

37

4.2 Implementation Results and Comparison

Table 4.2 Implementation Results

Design Platform n ⌈log2(q)⌉ LUT/FF/DSP/BRAM Freq. Latency (Clock Cycles)
(mm2 for ASIC) (MHz) NTT INTT P.M.

Ours∗†

Virtex-7 256a 12 2128 / 1144 / 8 / 3 174 922 1184 3812
256a 13 1052 1314 3680

Artix-7 256a 23 2119 / 1058 / 8 / 3 117 1052 1318 3688
512a 14 2334 2854 8072

32 nm 1024a 14 0.053 462 5152 6182 17506
1024a 29 5162 6195 17552

Virtex-7 256b 12 11K / 5422 / 64 / 12 186 138 176 572
256b 13 156 197 550

Artix-7 256b 23 11K / 5182 / 64 / 12 140 156 198 552
512b 14 318 391 1100

32 nm 1024b 14 0.353 416 672 812 2296
1024b 29 682 819 2320

Virtex-7 256c 12 61K / 17K / 256 / 48 167 84 101 306
256c 13 95 112 319

Artix-7 256c 23 63K / 18K / 256 / 48 126 103 121 345
512c 14 126 141 428

32 nm 1024c 14 2.205 416 192 233 658
1024c 29 202 244 690

P.M.: Polynomial Multiplication; a: 1 BU; b: 8 BUs; c: 32 BUs; ∗: supports Kyber (v2); †:
supports multiple n and q at run-time.

Table 4.2 shows the implementation results of our work with comparisons to the
other works in the literature. The implementation results are obtained from
Vivado 2019.1 tool that synthesized Verilog codes on Xilinx Virtex-7 FPGA
(xc7vx690tffg1761-2) and Artix-7 FPGA (xc7a200t-2fbg676c) with default settings.
Our hardware implementation utilizes 2128 LUTs, 8 DSPs, 3 BRAMs units for area
optimized implementation approach that consists of only one butterfly unit. The
clock frequency of the area-optimized design is 174 MHz on Virtex-7 FPGA. Addi-
tionally, an ASIC implementation of our design on a 32 nm standard cell library is
presented in Table 4.2 excluding on-chip memory with different number of butterfly
units.

Table 4.2 shows that the resource usage is increased as the number of butterfly
units is increased for all three platforms. As a result, the latency in clock cycles is
decreased. Moreover, the number of clock cycles is heavily depended on the ring
size, n. As the q bit-size is increased from 12 to 23 in the same ring size, 256, the
number of clock cycles in latency is more or less similar. As the ring size is increased
to 512 and 1024, the number of clock cycles in latency is dramatically increased.

Table 4.3 shows the resource usage of each sub-block on Virtex-7 and Artix-7 FPGA
38

platforms. As it can be seen, the synthesis results on both platforms show similar
resource utilization for each sub-block. The performance differs in the clock speed
as Table 4.2 shows. Virtex-7 platform offers more clock speed than Artix-7 platform
as shown by the synthesis results of our design.

Table 4.3 Resource Utilization of Sub-Blocks

BU Block Virtex-7 Artix-7
LUTs/FFs/DSPs/BRAMs

1

Overall 2128/1144/8/3 2119/1058/8/3
⌊Mem. Con. 786/263/0/0 775/263/0/0
⌊But. Unit 703/474/8/0 705/488/8/0
⌊Mod. Mul. 239/186/8/0 241/100/8/0

8

Overall 10973/5422/64/12 10908/5182/64/12
⌊Mem. Con. 1358/422/0/0 1358/422/0/0
⌊But. Unit 7529/3400/64/0 7461/3160/64/0
⌊Mod. Mul. 1926/1096/64/0 1918/856/64/0

32

Overall 61731/17846/256/48 63032/18182/256/48
⌊Mem. Con. 7410/1457/0/0 7738/1466/0/0
⌊But. Unit 46553/10728/256/0 47459/11096/256/0
⌊Mod. Mul. 7680/1512/256/0 7690/1835/256/0

Fig. 4.1 shows the relation between area and latency for our hardware accelerator
with a different number of BUs. It is easy to configure this work into different
applications that needs different area-performance requirements since it is possible
to change the throughput rate with only one parameter. For instance, a fast NTT
multiplier is needed for a high performance application or multiple SHA3 blocks.
To make a useful comparison, it is needed to compare the designs that target the
same platform with identical scheme parameters. Thus, we present an estimate
comparison in this section, not an ideal one.

Our ASIC implementation in one BU configuration shows superior performance with
higher clock frequency and fewer clock cycles while employing low area usage com-
pared the crypto-processor Sapphire (Banerjee et al., 2019). Moreover, the designs
in (Mert et al., 2020,2) introduces introduces polynomial multipliers with compile-
time support without run-time support. Our hardware with different number of
BUs uses negligible amount of more resources while having comparable performance
results compared the works in (Mert et al., 2020,2). Therefore, it is reasonable to
say that both RTC and CTC options can be supported with no performance as our
hypothesis claims.

The architecture in (Fritzmann et al., 2020) offers RTC with one butterfly unit on

39

Figure 4.1 Area vs Latency for n={256,512,1024} with Different Number of But-
terfly Units (BU)
Zynq-7000 platform. On the same parameter sets, our one BU design utilizes lower
resources on Virtex-7 and Artix-7 platforms while having higher clock frequency
with lower number of clock cycles for NTT and INTT operations.

The ASIC implementation in (Fritzmann & Sepúlveda, 2019) employs RTC for dif-
ferent scheme parameters with one butterfly unit. Our ASIC implementation with
one BU employs lower area usage with higher clock frequency and lower number
of clock cycles on same the parameter sets. It is good to bear in mind that 32-nm
library offers more performance compared to UMC 65-nm library.

The work in (Yaman et al., 2021) shows a slightly better performance in Kyber (v2)
scheme compared to our work. However, contrary to our design, it lacks the support
for other PQC schemes. As a result, supporting multiple PQC schemes with CTC
& RTC options shows an increase in the resource utilization.

The architecture in (Fritzmann et al., 2021) has one butterfly unit with RTC for
different scheme parameters. Compared to our design in Artix-7 platform, it has
more clock speed while having more number of clock cycles in NTT operation. On
the other hand, our Virtex-7 result on the same parameter sets has more clock speed
with fewer number of clock cycles.

The design in (Greconici et al., 2020) offers NTT and INTT operations for different
scheme parameters on Cortex-M3 platform. Our implementation results on three
platforms offer more clock speed with lower number of clock cycles. It should be
noted that we have not implemented our design on micro controller as the work

40

in (Greconici et al., 2020).

Our 32 butterfly unit configuration shows a similar performance compared to the
NTT-based polynomial multiplier in (Mert et al., 2020). Even though the work
in (Mert et al., 2020) has RTC on scheme parameters, it does not offer CTC and
support for Kyber (v2) scheme. The resource utilization of the work in (Mert et al.,
2020) is lower than our design. However, it does not scale to other scheme parameters
as our design does. Thus, it does not have the configurability capabilities of our
work.

41

5. CONCLUSION

In this thesis, we propose a configurable NTT-based polynomial multiplier architec-
ture with high level of optimizations that operates on NTT-friendly PQC schemes.
We introduce an architecture that offers compile-time configurability (CTC) for
latency and area (i.e., the number of unified butterfly units) and run-time config-
urability (RTC) for the scheme parameters (i.e., n and q). Additionally, we show
the design approach differences between our work and the proposed work in the
literature and specifically highlight the configurability capabilities of each work.

The proposed hardware targets the NTT-friendly lattice-based PQC schemes that
have ring sizes between 256 and 1024 and coefficient bit-size up to 30 bits. It can
perform modular operations including NTT, INTT, and NTT-based polynomial
multiplication. Thus, the design is capable of adjusting the correlation between
latency and area by modifying a single parameter. It is applicable to different
platforms that target an accelerator for lattice-based PQC schemes.

We compare our implementation results that consists of different configurations of
the design on both FPGA and ASIC platforms. Table 4.2 shows the comparison with
respect to the state-of-art implementations in the literature. It is shown that our
design shows similar efficiency in latency against other architectures. The proposed
architecture supports run-time configurability for different scheme parameters while
accelerating a broad range of lattice-based PQC schemes. To support unique design
requirements on different platforms, the compile-time configurability support for
the trade-off between area and latency can be utilized. As far as we know, there is
no other architecture that supports both. This configurability options are utilized
without an impact on the latency while employing a negligible rise on the resource
utilization.

This research is supported in part by the by The Scientific and Technological Re-
search Council of Turkey under Grant Number 118E725.

42

BIBLIOGRAPHY

Alkim, E., Barreto, P. S., Bindel, N., Longa, P., & Ricardini, J. E. (2019). The
Lattice-Based Digital Signature Scheme qTESLA. IACR Cryptology ePrint
Archive, 2019, 85.

Alkim, E., Ducas, L., Pöppelmann, T., & Schwabe, P. (2016). Post-quantum key
exchange—a new hope. In 25Th {USENIX} security symposium ({USENIX}
security 16), (pp. 327–343).

Alkim, E., Evkan, H., Lahr, N., Niederhagen, R., & Petri, R. (2020). ISA Extensions
for Finite Field Arithmetic - Accelerating Kyber and NewHope on RISC-V.
Cryptology ePrint Archive, Report 2020/049. https://eprint.iacr.org/
2020/049.

Banerjee, U., Ukyab, T. S., & Chandrakasan, A. P. (2019). Sapphire: A Configurable
Crypto-Processor for Post-Quantum Lattice-based Protocols. IACR Trans. on
CHES, 17–61.

Barrett, P. (1987). Implementing the rivest shamir and adleman public key encryp-
tion algorithm on a standard digital signal processor. In Odlyzko, A. M. (Ed.),
Advances in Cryptology — CRYPTO’ 86, (pp. 311–323)., Berlin, Heidelberg.
Springer Berlin Heidelberg.

Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J. M.,
Schwabe, P., Seiler, G., & Stehlé, D. (2018). CRYSTALS-Kyber: a CCA-
secure module-lattice-based KEM. In IEEE Euro S&P, (pp. 353–367).

Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J. M.,
Schwabe, P., Seiler, G., & Stehlé, D. (2017). CRYSTALS – Kyber: a
CCA-secure module-lattice-based KEM. Cryptology ePrint Archive, Report
2017/634. https://eprint.iacr.org/2017/634.

Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner, R., & Smith-Tone,
D. (2016). Report on post-quantum cryptography.

Chu, E. & George, A. (1999). Inside the FFT black box: serial and parallel fast
Fourier transform algorithms. CRC press.

Derya, K., Mert, A. C., Öztürk, E., & Savaş, E. (2022). Coha-ntt: A configurable
hardware accelerator for ntt-based polynomial multiplication. Microprocessors
and Microsystems, 89, 104451.

Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., &
Stehlé, D. (2018). Crystals-dilithium: A lattice-based digital signature scheme.
IACR Trans. on CHES, 238–268.

D’Anvers, J.-P., Karmakar, A., Roy, S. S., & Vercauteren, F. (2018). Saber: Module-
lwr based key exchange, cpa-secure encryption and cca-secure kem. Cryptology
ePrint Archive, Report 2018/230. https://ia.cr/2018/230.

Fouque, P.-A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., & Zhang, Z. (2018). Falcon: Fast-Fourier
lattice-based compact signatures over NTRU. Submission to the NIST’s post-
quantum cryptography standardization process.

Fritzmann, T., Beirendonck, M. V., Roy, D. B., Karl, P., Schamberger, T., Ver-
bauwhede, I., & Sigl, G. (2021). Masked accelerators and instruction set ex-
tensions for post-quantum cryptography. Cryptology ePrint Archive, Report

43

https://eprint.iacr.org/2020/049
https://eprint.iacr.org/2020/049
https://eprint.iacr.org/2017/634
https://ia.cr/2018/230

2021/479. https://ia.cr/2021/479.
Fritzmann, T. & Sepúlveda, J. (2019). Efficient and Flexible Low-Power NTT for

Lattice-Based Cryptography. In 2019 IEEE Int. Symposium on HOST, (pp.
141–150).

Fritzmann, T., Sharif, U., Müller-Gritschneder, D., Reinbrecht, C., Schlichtmann,
U., & Sepulveda, J. (2019). Towards reliable and secure post-quantum co-
processors based on risc-v. In 2019 Design, Automation Test in Europe Con-
ference Exhibition (DATE), (pp. 1148–1153).

Fritzmann, T., Sigl, G., & Sepúlveda, J. (2020). Risq-v: Tightly coupled risc-v
accelerators for post-quantum cryptography. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 239–280.

Fritzmann, T., Sigl, G., & Sepúlveda, J. (2020). RISQ-V: Tightly Coupled RISC-
V Accelerators for Post-Quantum Cryptography. IACR Trans. on CHES,
2020 (4), 239–280.

Greconici, D. O. C., Kannwischer, M. J., & Sprenkels, D. (2020). Compact dilithium
implementations on cortex-m3 and cortex-m4. Cryptology ePrint Archive,
Report 2020/1278. https://ia.cr/2020/1278.

Liu, Z., Seo, H., Roy, S. S., Großschädl, J., Kim, H., & Verbauwhede, I. (2015). Ef-
ficient ring-lwe encryption on 8-bit avr processors. In International Workshop
on Cryptographic Hardware and Embedded Systems, (pp. 663–682). Springer.

Longa, P. & Naehrig, M. (2016). Speeding up the number theoretic transform
for faster ideal lattice-based cryptography. Cryptology ePrint Archive, Paper
2016/504. https://eprint.iacr.org/2016/504.

Lyubashevsky, V. & Seiler, G. (2019). NTTRU: Truly Fast NTRU Using NTT.
IACR Trans. on CHES, 2019 (3), 180–201.

Mavroeidis, V., Vishi, K., Zych, M. D., & Jøsang, A. (2018). The impact of quantum
computing on present cryptography. ArXiv, abs/1804.00200.

McEliece, R. J. (1978). A Public-Key Cryptosystem Based On Algebraic Coding
Theory. Deep Space Network Progress Report, 44, 114–116.

Mert, A. C., Karabulut, E., Ozturk, E., Savas, E., & Aysu, A. (2020). An extensive
study of flexible design methods for the number theoretic transform. IEEE
Transactions on Computers, 1–1.

Mert, A. C., Karabulut, E., Öztürk, E., Savaş, E., Becchi, M., & Aysu, A. (2020). A
Flexible and Scalable NTT Hardware : Applications from Homomorphically
Encrypted Deep Learning to Post-Quantum Cryptography. In 2020 DATE,
(pp. 346–351).

Mert, A. C., Ozturk, E., & Savas, E. (2019). Design and implementation of a fast
and scalable ntt-based polynomial multiplier architecture. Cryptology ePrint
Archive, Report 2019/109.

Mert, A. C., Ozturk, E., & Savas, E. (2020). Low-latency asic algorithms of modular
squaring of large integers for vdf evaluation. IEEE Transactions on Computers,
1–1.

Mert, A. C., Öztürk, E., & Savaş, E. (2020). Fpga implementation of a run-time
configurable ntt-based polynomial multiplication hardware. Microprocessors
and Microsystems, 78, 103219.

Nejatollahi, H., Dutt, N., Ray, S., Regazzoni, F., Banerjee, I., & Cammarota, R.
(2019). Post-quantum lattice-based cryptography implementations: A survey.
ACM Comput. Surv., 51 (6).

44

https://ia.cr/2021/479
https://ia.cr/2020/1278
https://eprint.iacr.org/2016/504

Nguyen, D. T., Dang, V. B., & Gaj, K. (2019). A high-level synthesis approach
to the software/hardware codesign of ntt-based post-quantum cryptography
algorithms. In 2019 International Conference on Field-Programmable Tech-
nology (ICFPT), (pp. 371–374).

Nguyen, D. T., Dang, V. B., & Gaj, K. (2020). High-Level Synthesis in Imple-
menting and Benchmarking Number Theoretic Transform in Lattice-Based
Post-Quantum Cryptography Using Software/Hardware Codesign. In Rincón,
F., Barba, J., So, H. K. H., Diniz, P., & Caba, J. (Eds.), Applied Recon-
figurable Computing. Architectures, Tools, and Applications, (pp. 247–257).,
Cham. Springer International Publishing.

Pöppelmann, T. & Güneysu, T. (2014). Area optimization of lightweight lattice-
based encryption on reconfigurable hardware. In 2014 IEEE Int. Symp. on
Circuits and Systems, (pp. 2796–2799).

Pöppelmann, T., Oder, T., & Güneysu, T. (2015). High-performance ideal lattice-
based cryptography on 8-bit ATxmega microcontrollers. In International Con-
ference on Cryptology and Information Security in Latin America, (pp. 346–
365). Springer.

Regev, O. (2010). The learning with errors problem (invited survey). In 2010 IEEE
25th Annual Conference on Computational Complexity, (pp. 191–204).

Riazi, M. S., Laine, K., Pelton, B., & Dai, W. (2020). Heax: An architecture for
computing on encrypted data. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’20, (pp. 1295–1309)., New York, NY, USA. As-
sociation for Computing Machinery.

Roy, S. S., Vercauteren, F., Mentens, N., Chen, D. D., & Verbauwhede, I. (2014).
Compact Ring-LWE Cryptoprocessor. In Batina, L. & Robshaw, M. (Eds.),
Cryptographic Hardware and Embedded Systems – CHES 2014, (pp. 371–391).,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Seiler, G. (2018). Faster AVX2 optimized NTT multiplication for Ring-LWE lattice
cryptography. Crypto. ePrint Arch., Report 2018/039.

Shor, P. (1994). Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th Annual Symposium on Foundations of Computer
Science, (pp. 124–134).

Sinha Roy, S., Turan, F., Jarvinen, K., Vercauteren, F., & Verbauwhede, I. (2019).
Fpga-based high-performance parallel architecture for homomorphic comput-
ing on encrypted data. In 2019 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), (pp. 387–398).

Tan, W., Case, B. M., Hu, G., Gao, S., & Lao, Y. (2020). An ultra-highly parallel
polynomial multiplier for the bootstrapping algorithm in a fully homomorphic
encryption scheme. Journal of Signal Processing Systems, 1–14.

Wang, W., Tian, S., Jungk, B., Bindel, N., Longa, P., & Szefer, J. (2020). Pa-
rameterized hardware accelerators for lattice-based cryptography and their
application to the hw/sw co-design of qtesla. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2020 (3), 269–306.

Xin, G., Han, J., Yin, T., Zhou, Y., Yang, J., Cheng, X., & Zeng, X. (2020). VPQC:
A Domain-Specific Vector Processor for Post-Quantum Cryptography Based
on RISC-V Architecture. IEEE Trans. on Circuits and Systems I: Regular
Papers, 67 (8), 2672–2684.

45

Xing, Y. & Li, S. (2021). A compact hardware implementation of cca-secure key
exchange mechanism crystals-kyber on fpga. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2021 (2), 328–356.

Yaman, F., Mert, A. C., Öztürk, E., & Savaş, E. (2021). A hardware accelerator
for polynomial multiplication operation of crystals-kyber pqc scheme. In 2021
Design, Automation Test in Europe Conference Exhibition (DATE), (pp. 1020–
1025).

Yanik, T., Savas, E., & Koc, C. K. (2002). Incomplete reduction in modular arith-
metic. IEE Proceedings - Computers and Digital Techniques, 149 (2), 46–52.

Zhang, N., Yang, B., Chen, C., Yin, S., Wei, S., & Liu, L. (2020). Highly Efficient
Architecture of NewHope-NIST on FPGA using Low-Complexity NTT/INTT.
IACR Trans. on CHES, 2020 (2), 49–72.

46

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Related Works
	Our Contribution

	BACKGROUND
	Notation
	Lattice-based Cryptography
	NTT-based Polynomial Multiplication

	OUR WORK
	Word-level Montgomery Modular Multiplier Unit
	Unified Butterfly Unit
	Configurable Memory Control and Overall Design

	RESULTS AND COMPARISON
	Prior Works
	Implementation Results and Comparison

	CONCLUSION
	BIBLIOGRAPHY

