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ABSTRACT

MATHEMATICAL PROGRAMMING APPROACHES FOR TWO PROBLEMS
IN ENERGY SYSTEMS

BAHAR CENNET OKUMUŞOĞLU

INDUSTRIAL ENGINEERING M.S. THESIS, JUNE 2022

Thesis Supervisor: Asst. Prof. BURAK KOCUK
Thesis Co-Supervisor: Asst. Prof. BESTE BAŞÇİFTCİ

Keywords: Joint chance-constrained stochastic programming, condition-based
maintenance, power systems, mixed-integer nonlinear programming, mixed-integer

second-order cone programming, natural gas networks.

A wide variety of problems in energy systems can be formulated as mathematical
programs. In the first part of this thesis, we focus on the integrated maintenance
and operations planning problem in power systems, which is formulated as a mixed-
integer joint-chance constrained stochastic program. Due to the intractability of
the joint chance-constraint, we propose a cutting-plane method to obtain its exact
reformulation and derive its second-order cone programming based safe approxima-
tion. To solve this program, we propose a decomposition algorithm by exploiting
the features of the integer L-shaped method and introduce various algorithmic en-
hancements. We design an extensive computational study and demonstrate the per-
formance of the proposed approach with reliable and cost-effective maintenance and
operational schedules. In the second part of this thesis, we focus on the multi-period
natural gas storage optimization problem by considering the important aspects of
gas physics and switching status of active elements. Under steady-state conditions,
we formulate this problem as a nonconvex mixed-integer nonlinear program. We
propose mixed-integer linear and second-order cone programming relaxations of this
complex problem to obtain tight dual bounds. We design a computational study to
compare these formulations on different instances from the literature. Our results
demonstrate the computational efficiency of our approach and its ability to obtain
(near) globally optimal solutions in comparison with a global optimization solver.

iv



ÖZET

ENERJI SISTEMLERINDEN IKI PROBLEM IÇIN MATEMATIKSEL
PROGRAMLAMA YAKLAŞIMLARI

BAHAR CENNET OKUMUŞOĞLU

ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, HAZİRAN 2022

Tez Danışmanı: Dr. BURAK KOCUK
Eş Tez Danışmanı: Dr. BESTE BAŞÇİFTCİ

Anahtar Kelimeler: ortak şans kısıtlı rassal programlama, durum tabanlı bakım,
güç sistemleri, karma tamsayılı doğrusal olmayan programlama, karma tamsayılı

ikinci dereceden konik programlama, doğal gaz ağları.

Enerji sistemlerindeki birçok problem matematiksel programlama kullanılarak mod-
ellenebilir. Bu tezin ilk bölümünde, karma tamsayılı ortak şans kısıtlı rassal program
olarak modellenen güç sistemlerinde entegre bakım ve operasyon planlama problem-
ine odaklanılmıştır. Ortak şans kısıtının zorluğu nedeniyle, kesin gösterimi elde
etmek için kesen düzlem algoritması ve ikinci dereceden konik programlama temelli
güvenli yaklaşıklaması sunulmuştur. Bu programı çözmek için, tamsayı L-Şekil yön-
teminin özelliklerinden yararlanarak bir ayrıştırma algoritması önerilmiş ve çeşitli
algoritmik iyileştirmeler sunulmuştur. Önerilen yaklaşımların başarımı ve etkinlik
değerlendirmeleri yapılmış; bu yaklaşımların uygun maliyetli bakım ve operasyonel
planlamalar sağladığı gösterilmiştir. Bu tezin ikinci bölümünde, gaz fiziği ve aktif
ağ elemanlarının açma/kapama kararlarının ele alındığı çokdönemli doğal gaz depo-
lama problemine odaklanılmıştır. Kararlı hal koşulları altında, bu problem dışbükey
olmayan karma tamsayılı doğrusal olmayan bir program olarak modellenmiştir. Sıkı
eşiz sınırlar elde etmek amacıyla bu karmaşık problemin karışık tamsayılı doğrusal
ve ikinci dereceden konik gevşetmeleri önerilmiştir. Önerilen modeller, literatür-
den alınan farklı problem örnekleri kullanılarak karşılaştırılmış ve değerlendirmeleri
yapılmıştır. Önerilen yaklaşımların etkinliği ve (yakın) küresel çözümler elde etme
başarımı, küresel bir çözücü ile karşılaştırılarak gösterilmiştir.
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1. INTRODUCTION

The world’s increasing consumption has motivated the energy industry to perform
better system operations. While carrying out these operations, the need for their
reliability and security has introduced numerous challenges to the industry. Moti-
vated by the problems emerged from these challenges, the academic literature has
produced a great deal of research throughout the years. In this thesis, we aim to
contribute to the literature by approaching two energy system problems in different
aspects.

In the first part of this thesis, we focus on the short-term condition-based integrated
maintenance and operations planning problem in power systems. This problem plays
a key role in system operations under uncertainty as it helps system operators ensure
a reliable and secure power grid. In terms of uncertainty, the unexpected failures
of generators as well as transmission lines are considered in this problem. More-
over, a joint chance-constraint consisting of Poisson Binomial random variables is
introduced to account for failure risks. The resulting problem is a joint chance-
constrained stochastic mixed-integer program. Unfortunately, producing optimal
maintenance schedules from this program is quite challenging due to the intractabil-
ity of the joint chance-constraint as well as the exponentially many failures scenarios.

In the second part of this thesis, we focus on the multi-period gas storage optimiza-
tion problem in natural gas networks. This problem has become more important
to the industry with the recent advances in power-to-gas technologies. However,
it contains highly nonlinear and nonconvex aspects of the underlying gas physics
and gas losses as well as the switching status of active network elements. In view of
these aspects, it belongs to the class of nonconvex mixed-integer nonlinear programs.
Therefore, obtaining globally optimal solutions is not an easy task. In the recent
years, certain convex relaxations of various optimization problems in gas networks
have drawn attention by the academic literature to obtain tight dual bounds, and
further (near) globally optimally solutions based on the solutions produced by these
relaxations.
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The remainder of this thesis is organized as follows: In Chapter 2, we focus on the
short-term condition-based integrated maintenance and operations planning prob-
lem in power systems. In Chapter 3, we consider the multi-period gas network op-
timization problem. In each chapter, we review the relevant literature, and present
the mathematical formulations, the solution framework along with the results of the
extensive computational experiments. We conclude this thesis with final remarks
and future works in Chapter 4.
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2. A Joint Chance-Constrained Stochastic Programming Approach

for the Maintenance and Operations Scheduling Problem

2.1 Introduction

The competitive power industry has challenged the system operators with pro-
hibitive penalty costs to continue their operations uninterruptedly. A natural way to
avoid such interruptions with these penalties is scheduling maintenance for the sys-
tem components while leveraging their condition information. Such condition-based
maintenance increases the operational lifetime of the aging power grid; however,
ignoring power system capabilities when performing maintenance may cause large-
scale blackouts resulting in additional maintenance and operational costs (see, for
example Florida blackout in 2008 FRCC (2008)). Thus, the condition-based main-
tenance schedules for generators as well as transmission lines must be coordinated
with operational schedules in order to preserve the security of the power grid.

Maintenance schedules of generators and transmission lines have a great effect on
power generation as well as power flow. Still, obtaining optimal maintenance sched-
ules for generators has aroused considerably more interest than for transmission
lines in the power system literature (Canto, 2008; Conejo, Garcia-Bertrand & Diaz-
Salazar, 2005; Wu, Shahidehpour & Li, 2008). In transmission maintenance planning
problem, mathematical complexity ensues from the removal of transmission lines for
their unavailable periods due to maintenance, which results in a change in the net-
work topology. Besides, such removals may cause congestion in the power system
affecting the reliability and the security of the system. In this respect, the joint
optimization of generator and transmission line maintenance (hereafter referred to
as the integrated maintenance) planning problem becomes more critical in power
systems to ensure reliable system operations by capturing the complex nature of the
problem.

3



In the competitive power industry, cost-effective maintenance schedules and demand-
delivery under failure uncertainty have become more and more important. Recent
advances in grid modernization such as condition-monitoring are widely employed
to deal with this failure uncertainty (Basciftci, Ahmed, Gebraeel & Yildirim, 2018;
Yildirim, Sun & Gebraeel, 2016a). In condition-monitoring systems, sensors con-
nected to the power grid monitor the emerging health conditions of degrading system
components. These systems can be used as a basis for estimating the residual life-
time of the components by means of degradation signals obtained from real-time
sensor information. When scheduling maintenance, such condition-based informa-
tion on the underlying uncertainty avails system operators of correcting natural
causes from degradation and increasing the overall operational lifetime of the aging
power infrastructure.

Many optimization problems in power systems can be modeled as large-scale stochas-
tic mixed-integer programs (SMIPs) as they involve various uncertainties and risks
as well as a vast number of binary variables related to maintenance schedules, com-
mitment status of generators and switching status of transmission lines. In view of
handling uncertainties, building SMIP models with scenario-dependent variables and
constraints is the most prevalent approach. The SMIP models, even with a limited
number of scenarios, may become computationally demanding, and moreover, solu-
tions for these SMIPs given by the state-of-the-art solvers can be suboptimal. Thus,
these SMIP models necessitate developing novel decomposition-based solution algo-
rithms to achieve tractability. To handle risks, on the other hand, the SMIP models
can be built with chance-constraints. There are only a limited number of cases where
a chance-constraint is computationally tractable and whenever this is not the case,
it can be replaced with its safe approximation which imposes conservatism on the
underlying problem. Thus, it becomes critical to provide an equivalent description
of these chance-constraints whenever possible within the modeling process.

In this thesis, we study an integrated short-term condition-based maintenance
scheduling problem in coordination with operations planning by taking account of
unexpected failures of generators as well as transmission lines. We explicitly depict
the underlying failure uncertainty as a continuous stochastic degradation process and
utilize sensor-driven real-time information to estimate the remaining lifetime distri-
bution (RLD) of system components. Furthermore, we identify those system com-
ponents prone to failure within the planning horizon and construct failure scenarios
based on their estimated RLDs. Additionally, we propose a joint chance-constraint
for simultaneously restricting the total number of corrective maintenance occurring
due to unexpected failures for generators and transmission lines within the plan-
ning horizon along with its exact and safe representation approaches. We develop a

4



decomposition-based cutting-plane framework to efficiently solve the resulting large-
scale problem and obtain optimal condition-based daily maintenance schedules, and
hourly operational decisions. We validate these maintenance schedules by evaluat-
ing them over a larger size of failure scenarios over all system components under a
sample average approximation (SAA) approach.

This thesis makes the following contributions:

• We develop a stochastic optimization framework which combines the short-
term condition-based generator and transmission line maintenance, and op-
erations planning problems while explicitly considering the impacts of unex-
pected failures of generators as well as transmission lines on power system
operations. Our framework differs from the existing studies in considering
condition-based transmission line maintenance with generator maintenance.
By engaging real-time degradation-based sensor information in the elaborate
failure characterization under a Bayesian approach, we predict the RLDs of
generators and transmission lines, and identify a specific subset of these power
system components prone to failure within the planning horizon.

• To account for the failure uncertainty of both generators and transmission lines
in our stochastic optimization model, we generate failure scenarios based on
their estimated RLDs. We also introduce a joint chance-constraint to mitigate
the unexpected failure risks for generators and transmission lines. Because
of its intractability, we develop a cutting-plane method to obtain an exact
reformulation of the joint chance-constraint through a separation subroutine
and a set of improved cuts. Our solution framework leverages Poisson Binomial
random variables in this joint chance-constraint, which can be extended to
the settings under similar forms. Moreover, we derive a second-order cone
programming based safe approximation of this constraint.

• We develop a decomposition-based algorithm by improving the integer L-
shaped method with various algorithmic enhancements. We exploit the nice
and special structure of the scenario subproblems and introduce two concepts:
time-decomposability and status of system components. We benefit from these
concepts to decrease the total number of scenario subproblems solved and
moreover, generate various sets of stronger optimality cuts than the integer
L-shaped optimality cuts. We employ parallel computing to implement our de-
composition algorithm more efficiently and further present preprocessing steps
for identifying redundant transmission line constraints.

• We conduct a computational study with various modified IEEE instances to
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illustrate the computational efficiency of each algorithmic enhancement. We
also compare the proposed decomposition algorithm with an existing state-
of-the-art solver. For all instances, the underlying problem can be solved
orders of magnitude faster with the proposed decomposition algorithm than
this solver. Our computational study also shows that the proposed stochastic
framework provides 14−31% cost savings using both the exact reformulation
and safe approximation of the joint chance-constraint in comparison with the
deterministic model.

The remainder of our thesis is organized as follows. In Section 2.2, we review the rele-
vant literature. In Section 2.3, we describe the integrated short-term condition-based
maintenance scheduling with operations planning problem, the degradation signal
modeling and decomposition structure in detail. The solution methodology with
various algorithmic enhancements is presented in Section 2.4. The computational
experiments and extensive numerical results follow in Section 2.5. We conclude the
thesis with final remarks in Section 2.6.

2.2 Literature Review

In this section, we review the relevant power system literature on maintenance plan-
ning problem (Section 2.2.1), failure uncertainty (Section 2.2.2) and stochastic model
(Section 2.2.3). We explicate the contributions of this thesis in each section.

2.2.1 Maintenance Planning in Power Systems

Maintenance planning problem in power systems has been widely studied in the
literature (for a recent review, see Froger, Gendreau, Mendoza, Pinson & Rousseau
(2016)). This problem concerns both generators and transmission lines, and ideally
attempts to identify the unavailability of these components while ensuring a reliable
power grid. However, the majority of the existing studies have focused more on ob-
taining optimal maintenance schedules for generators subject to various operational
and network constraints (Basciftci et al., 2018; Canto, 2008; Conejo et al., 2005; Wu
et al., 2008; Yildirim, Sun & Gebraeel, 2016b) than for transmission lines (Abbasi,
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Fotuhi-Firuzabad & Abiri-Jahromi, 2009; Abiri-Jahromi, Fotuhi-Firuzabad & Ab-
basi, 2009; Lv, Wang & Sun, 2012; Marwali & Shahidehpour, 2000; Pandzic, Conejo,
Kuzle & Caro, 2012). This is because of the fact that the power network topology
will inherently change due to the maintenance actions for transmission lines, and this
varying network topology exceedingly influences the power generation and further
complicates the resulting problem.

The integrated maintenance problem can yield more cost-effective maintenance and
operational schedules; however, another source of complexity arises when coordinat-
ing the maintenance schedules for both generators and transmission lines. There-
fore, the integrated maintenance planning problem has attracted only very few re-
searchers in power systems. The coordination of generator and transmission line
maintenance schedules coupled with the security constrained UC is analyzed by Fu,
Shahidehpour & Li (2007) and Fu, Li, Shahidehpour, Zheng & Litvinov (2009). Op-
timization models in these works can be utilized both in vertically integrated and
restructured power systems. Geetha & Swarup (2009) coordinate integrated main-
tenance schedules with an acceptable level of reliability between independent actors
in restructured power systems. These studies do not account for the uncertainty
resulting from the unexpected failures of system components, which strongly affects
the maintenance planning problem. The study by Wang, Zhong, Xia, Kirschen &
Kang (2016) models the generators and transmission maintenance planning problem
incorporating N-1 security criterion; however, this deterministic model may provide
infeasible maintenance schedules when multiple failures of system components oc-
cur in the power system. Wu, Shahidehpour & Fu (2010) formulate an integrated
maintenance problem in coordination with the security-constrained UC consider-
ing various uncertainties including forced outages of generators and transmission
lines over a long-term planning horizon. They model these forced outage rates as a
Markov process by using predetermined constant failure characteristics, which may
not be a realistic assumption in a dynamic power network. Wang, Li, Shahideh-
pour, Wu, Guo & Zhu (2016) propose a similar approach to jointly optimize the
underlying problem with the security-constrained UC by updating outage scenarios
in an iterative manner. However, the authors neglect to consider the effects of these
scenarios on operations planning and do not leverage sensor-driven condition infor-
mation to identify critical system components prone to failure, which is imperative
for securing overall power system operations.

2.2.2 Failure Uncertainty in Power Systems
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Quantifying the failure uncertainty in power system operations has been instru-
mental in the maintenance planning problem. In order to achieve cost-effective
maintenance schedules and to ensure the reliability and the security of the aging
power infrastructure, the stochasticity arising from failures of system components
must be considered in real-time operations. Power system components depict degra-
dation symptoms over time from increasing wear and tear. This continuous degra-
dation process may eventually lead to unexpected failures resulting in unscheduled
shutdowns, congested transmission lines, voltage instability and sudden increase in
power demand. To extenuate the disruptive impacts of the failures of these system
components, many existing operational strategies such as N-1 contingency crite-
rion (Stott, Alsac & Monticelli, 1987) and reserve requirements, and maintenance
strategies such as periodic and manufacturer-recommended maintenance schedules
(Shahidehpour, Yamin & Li, 2002) are used in power systems. These deterministic
strategies remain as half measures and are not enough to improve the utilization of
the power grid and therefore, many energy companies have recently started to adapt
condition-monitoring techniques because of their potential benefits (for a compre-
hensive review, see Han & Song (2003)). In particular, these are widely employed
to estimate the RLDs of system components by tracking degradation of these com-
ponents using sensors in order to account for unexpected failures.

Although the failure uncertainty of system components has been considered in the
literature for modeling power system operations, most studies neglect component-
specific condition information and further assume that system components carry
constant failure characteristics over the planning horizon (Papavasiliou & Oren,
2013; Wu et al., 2010). As this approach becomes insufficient in capturing the con-
dition information of the components, a few studies recently consider the underly-
ing failure uncertainty by incorporating degradation-based approaches. Wang et al.
(2016) adopt a degradation-based model by extending the traditional hazard model
and dynamically updating failure characteristics of system components. Further-
more, a deterministic mixed-integer optimization model integrated with condition-
based sensor information is presented to obtain optimal maintenance schedules for
generators (Yildirim et al., 2016a,1). Recently, Basciftci, Ahmed & Gebraeel (2020)
propose a similar framework by leveraging time-varying load-dependency to ob-
tain condition-based maintenance schedules for a fleet of generators by presenting
a decision-dependent stochastic program to capture the RLDs of the components
depending on the operational decisions. Nevertheless, these studies either have
been conducted in a deterministic fashion and/or do not take into account scenario-
dependent failure uncertainty for both generators and transmission lines at the same
time. The optimization framework proposed by Basciftci et al. (2018) embodies
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sensor-driven condition-based information in the long-term generator maintenance
and operations planning problem considering only failure scenarios of generators;
however, the authors do not consider the failure uncertainty of transmission lines
and their effects on power system operations. The existing literature still lacks a uni-
fied framework for addressing the integrated condition-based maintenance planning
by considering the impacts of the sensor-driven failure uncertainty of both genera-
tors and transmission lines on power system operations. As this unified framework
becomes critical in ensuring cost-effective and reliable operations of the power sys-
tems, the complexities arisen from the integration of line maintenance decisions and
their failure possibilities need to be addressed by developing various stochastic op-
timization techniques, which consists a significant part of the contributions of this
study, that can also be extended to problem settings with similar structure.

2.2.3 Stochastic Programming Approaches in Power Systems

Stochastic programming arises as an important tool for modeling power system
operations under uncertainty. Many existing studies in the literature describe the
underlying uncertainties with a set of scenarios, i.e., a set of possible realizations of
random variables (Basciftci et al., 2018; Papavasiliou & Oren, 2013; Papavasiliou,
Oren & Rountree, 2015; Wu et al., 2008). Still, conventional methods may not be suf-
ficient to solve the resulting problem in a reasonable amount of time as the scenario
set can consist of an extremely large number of scenarios. As this set grows expo-
nentially fast in the size of the network components, solving large-scale problems in
power systems necessitates specialized decomposition techniques. Fortunately, the
majority of such large-scale problems in power systems can be intrinsically decou-
pled into many smaller problems, and then recast as two-stage stochastic programs
under suitable conditions. Van Slyke & Wets (1969) introduced the continuous L-
shaped method as a cutting plane technique to solve the two-stage stochastic linear
programs with recourse. A common criticism for this method is that the linear
programming duality cannot be readily applied when integer decisions exist in the
second-stage problems. In particular, SMIPs are known to have their combinatorial
challenges attributed to the non-convex (even discontinuous) nature of the expected
second-stage objective function. The integer L-shaped method, proposed by Laporte
& Louveaux (1993), can be applied to solve the two-stage mixed-integer stochastic
programs with pure binary first-stage decisions and mixed-integer second-stage de-
cisions. As this algorithm can be extendable to our problem setting, we propose a
decomposition-based algorithm in Section 2.4.1 by using the features of the integer
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L-shaped method to solve the integrated short-term condition-based maintenance
scheduling with operations planning problem. By exploiting the special structure
of this problem, we provide algorithmic enhancements which significantly decreases
the computational effort required to solve the second-stage problems, and derive
stronger optimality cuts than the integer L-shaped optimality cuts, which are in-
tegrated into our solution procedure implemented in a parallel fashion in Section
2.4.3.2.

Chance constraints are widely used in modeling power systems operations as they
are subject to various risks associated with many uncertainties (for a comprehensive
review, see Geng & Xie (2019)). Although chance-constraints have great impor-
tance for mitigating risks in power system operations, the feasible set defined by
a chance-constraint is in general nonconvex, and obtaining an exact representation
of such a constraint can be difficult even under the assumption of convexity. A
very well-known case in which such issues do not appear is when a random vari-
able associated with the chance-constraint follows a Gaussian distribution and the
probability level of the chance constraint is at least 0.5. In this case, the corre-
sponding feasible set can be represented as a second-order conic set (Nemirovski,
2012). Many studies in power systems follow this Gaussian assumption and obtain
such deterministic equivalents of the chance-constraints (Roald, Misra, Krause &
Andersson, 2017; Wu, Shahidehpour, Li & Tian, 2014). In practice, it may hap-
pen that the probability distribution of the random variable is not Gaussian and
such tractable representations may not be readily available. Whenever this is the
case, safe approximations can be obtained as an alternative, though conservative,
representations of the chance-constraints. Recently in maintenance planning liter-
ature, Basciftci et al. (2018) introduce a single chance-constraint consisting of the
sum of independent Bernoulli random variables, i.e., a Poisson Binomial random
variable. The authors ignore this useful information on the underlying distribution
and propose a deterministic safe approximation of the chance-constraint by using
Markov and Bernstein bounds. Joint chance-constraints are relatively more difficult
to handle than a single chance-constraint. Many studies in the literature reformu-
late the feasible set of the joint chance-constraint by using Bonferroni-based safe
approximation (Ozturk, Mazumdar & Norman, 2004; Xiong & Jirutitijaroen, 2013);
however, this safe approximation is likely to be overly conservative. Thus, for the
chance-constraints, there is a trade-off between searching for exact reformulations
or deriving safe approximations to provide their alternative representations.

To mitigate failure risks of generators and transmission lines, we introduce a joint
chance-constraint which restricts the total number of these system components un-
der corrective maintenance, which is an undesirable and costly maintenance in case

10



of an unexpected failure. Our joint chance-constraint consists of Poisson Binomial
random variables by leveraging the RLDs of the system components. In contrast to
the recent work by Basciftci et al. (2018) with a single chance-constraint, we exploit
the underlying distribution and propose an exact reformulation of the joint chance-
constraint in Section 2.4.2.1. Our proposed decomposition algorithm under exact
reformulation can be used for any two-stage joint chance-constrained stochastic pro-
gram with pure binary first-stage decisions and independent Poisson Binomial ran-
dom variables associated with this joint chance-constraint. Further, we investigate
the separation problem over the joint chance-constraint and develop a separation
subroutine within our decomposition algorithm. By exploiting the distributional
information on the Poisson Binomial random variables, we strengthen the cutting
planes which are generated within the separation subroutine. We propose an exact
reformulation of the joint chance-constraint under the assumption that a probability
oracle exists and computes the exact value of the probability of the non-convex joint
chance-constraint by using the knowledge on the distribution of the random vari-
ables in Section 2.4.2.1. Further, we investigate the separation problem over the joint
chance-constraint and use this probability oracle as a separation subroutine within
our proposed decomposition algorithm to check the feasibility of a given solution and
generate violated cover inequalities, if such an equality exists. This cutting-plane
method guarantees an exact solution but may show slow convergence and require
more computational effort as the size of the problem increases. To solve large-scale
instances, we also propose a second-order cone programming based safe approxi-
mation of the joint chance-constraint in Section 2.4.2.2. Without any assumption
on the underlying distribution of the independent random variables associated with
the joint chance-constraint, our decomposition algorithm under safe approximation
can also be extended to handle any two-stage joint chance-constrained stochastic
program with pure binary first-stage decisions.

2.3 Stochastic Optimization Model

In this section, we first describe the problem setting (Section 2.3.1) and present
the joint chance-constrained stochastic optimization model (Section 2.3.2). We ex-
plain how to characterize the underlying failure uncertainty by using degradation
signal modeling in detail in Section 2.3.3. We provide the compact formulation and
decomposition-based reformulation of our optimization model in Section 2.3.4.
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2.3.1 Problem Setting

In our study, we consider a power network N = (B,L), where B and L represent
the sets of buses and transmission lines, respectively (see, Figure 2.1). We denote
the set of generators linked to buses as G ⊆ B. In particular, G(i) denotes the set
of generators attached to bus i. We let δ+(i) and δ−(i) be the sets of outgoing
and incoming neighbors of bus i, respectively. We define G′ as the set of generators
which potentially need to be maintained, and G′′ as the set of generators which are
not scheduled for maintenance within the planning horizon due to their low failure
probabilities as detailed below. Similarly, we define the sets L′ and L′′ for represent-
ing the transmission lines requiring and not requiring maintenance, respectively. In
the remainder of this thesis, we use the term “component” to refer both generators
and transmission lines and let the set of components to be H = H′ ∪H′′, where
H′ = G′∪L′ and H′′ = G′′∪L′′. We explicitly specify the type of components with
subscripts when necessary.

Figure 2.1 9-bus instance.

The proposed stochastic optimization model incorporates the uncertainty in failure
times of system components. In addition to the introduced joint chance-constraint
that ensures the reliable operations of the system based on RLDs, we represent
the uncertainty in the optimization model with a finite set of scenarios, denoted
by K, where scenario k contains a possible realization of random failure time ξk

h

of component h. We also consider a finite set of maintenance periods, denoted by
T , and a finite set of hourly subperiods in each maintenance period, denoted by S.
Additionally, we define an extended planning horizon as T̄ = T ∪{|T |+1} for cases
in which components do not fail within the planning horizon. We identify subset H′
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based on the RLDs of system components. The main reason of this subset selection
is that scheduling all system components for short-term maintenance is impractical
and unnecessary in real-time power system operations. We explain how to obtain
a characterization on the RLDs in detail in Section 2.3.3. Here, we outline the
main steps for identifying subset H′. Suppose we are given a probability threshold
p̄fail ∈ [0,1] (e.g., p̄fail = 0.1). For component h ∈ H, we first obtain its failure
probability ph

fail within the planning horizon. If ph
fail ≥ p̄fail, we add component h

to set H′. After having identified the set H′, we sample failure scenarios for each
component h ∈H′ from its unique RLD based on the scenario generation procedure
proposed by Basciftci et al. (2018). If a component h does not fail within the
planning horizon under scenario k, we let ξk

h = |T̄ |. We note that the components in
H′ are assumed to enter maintenance at most once, whereas components belonging
to set H′′ are not scheduled for maintenance within the planning horizon since their
failure probabilities are negligible. In our solution evaluation scheme, however, we
assume that all components from set H may fail within the planning horizon.

2.3.2 Mathematical Model and Formulation

In this section, we first introduce the necessary notations for our optimization model.
In Table 2.1, we present the notation used for the decision variables and parame-
ters along with their definitions. The scenario-dependent decisions variables (also
parameters) are associated with the superscript k.

Next, we introduce the mathematical notation used in the formulation of the joint
chance-constraint. This constraint aims to restrict the number of generators and
lines that enter corrective maintenance with high probability. To this end, we let ζht

be a Bernoulli random variable which takes the value 1 if t ≥ ξh, and 0 otherwise,
where ξh represents the failure time of component h. Let us first define the following
quantities Ri(w) = ∑

t∈T̄ ζitwit for every i ∈ G and Rij(z) = ∑
t∈T̄ ζijtzijt for every

(i, j) ∈ L. Here, Ri(w) (Rij(z)) takes the value 1 if generator i ∈ G (transmission
line (i, j) ∈ L) enters the corrective maintenance within the planning horizon, and 0
otherwise. Further, we let EG(w) be the event that the total number of generators
under corrective maintenance is less than a predetermined threshold ρG as:

EG(w) =
{∑

i∈G
Ri(w)≤ ρG

}
.

Here, a component is considered to enter corrective maintenance if its scheduled
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Parameters
πk Probability of scenario k.
ξk

i Failure time of generator i in scenario k.
ξk

ij Failure time of transmission line (i, j) in scenario k.
τp

G (τ c
G) Predictive (corrective) maintenance duration of generators.

τp
L(τ c

L) Predictive (corrective) maintenance duration of transmission lines.
Cp

i (Cc
i ) Predictive (corrective) maintenance cost of generator i in period t.

Cp
ij(Cc

ij) Predictive (corrective) maintenance cost of transmission line (i, j) in period t.
Cg

i Generation cost of generator i.
Cn

i No-load cost of generator i.
Cs

i Start-up cost of generator i.
Cd

i Demand curtailment cost of generator i.
δmax

i (δmin
i ) Maximum (minimum) voltage angle at bus i.

pmax
i (pmin

i ) Maximum (minimum) power generation of generator i.
MUi(MDi) Minimum up (down) time of generator i.

RUi(RDi) Ramp up (down) rate of generator i.
f̄ij Maximum power flow along transmission line (i, j).
Bij Susceptance of transmission line (i, j).
dits Power demand of bus i in operational subperiod s of period t.
Mij Sufficiently large number for a flow constraint of transmission line (i, j).

Decision Variables
wit 1 if generator i enters maintenance in period t, and 0 otherwise.
zijt 1 if transmission line (i, j) enters maintenance in period t, and 0 otherwise.
δk

its Voltage angle at bus i in subperiod s of period t in scenario k.
qk

its Demand curtailed at bus i in subperiod s of period t in scenario k.
xk

its Commitment status of generator i in subperiod s of period t in scenario k.
pk

its Power generation of generator i in subperiod s of period t in scenario k.
uk

its 1 if generator i starts up in subperiod s of period t in scenario k, and 0 otherwise.
νk

its 1 if generator i shuts down in subperiod s of period t in scenario k, and 0 otherwise.
yk

ijts Switch status of transmission line (i, j) in subperiod s of period t in scenario k.
fk

ijts Power flow along transmission line (i, j) in subperiod s of period t in scenario k.

Table 2.1 Problem parameters and decision variables.

maintenance time is later than its time of failure. If the scheduled maintenance
time is before the time of failure, then the maintenance is considered as predictive
and prevents this undesirable failure event. We note that Ri(w) can take at most
the value 1, since the components can enter maintenance at most once within the
planning horizon. Furthermore, this event is defined over the set G to capture the
failure possibilities over all generators.

Similarly, we let EL(z) be the event that the total number of transmission lines
under corrective maintenance is less than a predetermined threshold ρL as:

EL(z) =
{ ∑

(i,j)∈L
Rij(z)≤ ρL

}
.

We define event EH(v) as the intersection of events EG(w) and EL(z). Also, we let
Ri(w) = ζi|T̄ | for i∈G′′ and Rij(z) = ζij|T̄ | for (i, j)∈L′′. Note that this is equivalent
to the assumption that component h ∈H′′ is not scheduled for maintenance within
the planning horizon.
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Now, we are ready to present the mathematical formulation of the joint chance-
constrained stochastic optimization problem:

min
∑
k∈K

πk
(∑

i∈G′

ξk
i −1∑
t=1

Cp
i wit +

∑
i∈G′

|T̄ |∑
t=ξk

i :ξk
i ̸=|T̄ |

Cc
i wit

)

+
∑
k∈K

πk
( ∑

(i,j)∈L′

ξk
ij−1∑
t=1

Cp
ijzijt +

∑
(i,j)∈L′

|T̄ |∑
t=ξk

ij :ξk
ij ̸=|T̄ |

Cc
ijzijt

)

+
∑
k∈K

∑
i∈G

∑
t∈T

∑
s∈S

πk(Cg
i pk

its +Cn
i xk

its +Cs
i uk

its)

+
∑
k∈K

∑
i∈B

∑
t∈T

∑
s∈S

πkCd
i qk

its(2.1a)

s.t. P(EG(w)∩EL(z))≥ 1−α(2.1b) ∑
t∈T̄

wit = 1 i ∈ G′(2.1c)

∑
t∈T̄

zijt = 1 (i, j) ∈ L′(2.1d)

For each scenario k ∈ K:

xk
its ≤ 1−

τp
G−1∑
e=0

wi(t−e) i ∈ G′, s ∈ S, t ∈ {1, . . . , ξk
i + τp

G −1},(2.1e)

xk
its ≤

ξk
i −1∑
t′=1

wit′ i ∈ G′, s ∈ S, t ∈ {ξk
i , . . . , ξk

i + τ c
G−1}(2.1f)

yk
ijts ≤ 1−

τp
L−1∑
e=0

zij(t−e) (i, j) ∈ L′, s ∈ S, t ∈ {1, . . . , ξk
ij + τp

L−1}(2.1g)

yk
ijts ≤

ξk
ij−1∑
t′=1

zijt′ (i, j) ∈ L′, s ∈ S, t ∈ {ξk
ij , . . . , ξ

k
ij + τ c

L−1}(2.1h)

zijt +yk
ijts = 1 (i, j) ∈ L′, t ∈ T , s ∈ S(2.1i) ∑

i′∈G(i)
pk

i′ts + qk
its−dits =

∑
j∈δ+(i)

fk
ijts−

∑
j∈δ−(i)

fk
jits i ∈ B, t ∈ T , s ∈ S(2.1j)

Bij(δk
its− δk

jts) = fk
ijts (i, j) ∈ L′′, t ∈ T , s ∈ S(2.1k)

Bij(δk
its− δk

jts)−Mij(1−yk
ijts)≤ fk

ijts

≤Bij(δk
its− δk

jts)+Mij(1−yk
ijts) (i, j) ∈ L′, t ∈ T , s ∈ S(2.1l)

− f̄ij ≤ fk
ijts ≤ f̄ij (i, j) ∈ L′′, t ∈ T , s ∈ S(2.1m)

− f̄ijy
k
ijts ≤ fk

ijts ≤ f̄ijy
k
ijts (i, j) ∈ L′, t ∈ T , s ∈ S(2.1n)

pmin
i xk

its ≤ pk
its ≤ pmax

i xk
its i ∈ G, t ∈ T , s ∈ S(2.1o)

xk
it(s−1)−xk

its +uk
its ≥ 0 i ∈ G, t ∈ T , s ∈ S(2.1p)

xk
its−xk

it(s−1) +νk
its ≥ 0 i ∈ G, t ∈ T , s ∈ S(2.1q)
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−RDi ≤ pk
its−pk

it(s−1) ≤RUi i ∈ G, t ∈ T , s ∈ S(2.1r)

xk
its−xk

it(s−1) ≤ xk
its′ i ∈ G, t ∈ T , s ∈ S, s′ ∈ {s+1, s+MUi−1}(2.1s)

xk
it(s−1)−xk

its ≤ 1−xk
its′ i ∈ G, t ∈ T , s ∈ S, s′ ∈ {s+1, s+MDi−1}(2.1t)

w ∈ {0,1}|G
′|×|T̄ |, z ∈ {0,1}|L

′|×|T̄ |(2.1u)

xk,vk ∈ {0,1}|G|×|T |×|S|,yk ∈ {0,1}|L
′|×|T |×|S|(2.1v)

uk
its ∈ [0,1] i ∈ G, t ∈ T , s ∈ S(2.1w)

δk
its ∈ [δmin

i , δi
max], qk

its ≥ 0 i ∈ B, t ∈ T , s ∈ S.(2.1x)

The objective function (2.1a) aims to minimize the expected total cost, which con-
sists of the expected maintenance costs of components and expected operational
costs. For each component h ∈H′ under each scenario k ∈K, we incur its predictive
maintenance cost if this component fails in that scenario, i.e., ξk

h < |T̄ |, and a main-
tenance is scheduled before its failure time; or this component does not fail, i.e.,
ξk

h = |T̄ |, and a maintenance is scheduled within the planning horizon. Otherwise,
its corrective maintenance cost is incurred for the first case and no cost is incurred
for the latter. The operational costs correspond to power generation, commitment,
start-up, and demand curtailment.

Constraint (2.1b) is a joint chance-constraint which holds with probability 1−α.
This constraint limits the total number of generators and transmission lines going
under corrective maintenance by predetermined thresholds ρG and ρL, respectively.
Constraints (2.1c) and (2.1d) imply that exactly one maintenance must be scheduled
within the extended planning horizon for every component. Constraints (2.1e) and
(2.1g) ensure that if a component undergoes a predictive maintenance, it becomes
unavailable until this predictive maintenance is completed whereas constraints (2.1f)
and (2.1h) ensure the unavailability of a component from its failure time until a cor-
rective maintenance is completed. On the other hand, constraint (2.1i) guarantees
that a transmission line is available unless it is under maintenance. Equation (2.1j)
represents the linearized power flow equations (Kirchhoff’s Current Law) for each
bus. Notice that heavily penalized power curtailment (qits) is further added to (2.1j).
This guarantees that we always obtain a feasible solution when the network fails to
provide sufficient power supply to meet total power demand, which is a common
practice in power systems. Equation (2.1k) is the power flow definition derived from
Ohm’s Law. When a transmission line is switched on (yk

ijts = 1), constraint (2.1l)
ensures that power flow is defined according to Ohm’s Law, otherwise both upper
bounds and lower bounds become redundant. Constraints (2.1m) and (2.1n) limit
the power flow for each transmission line whereas constraint (2.1o) limits the power
generation for each generator. Constraints (2.1p) and (2.1q) couple commitment
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status with start-up and shut-down variables, respectively. Constraint (2.1r) is the
ramping constraint which guarantees that the power generation difference between
consecutive hours does not exceed ramp-up and ramp-down limits. Constraints
(2.1s) and (2.1t) are the minimum up and down times restrictions for each genera-
tor. Constraints (2.1u), (2.1v), (2.1w) and (2.1x) are for binary and nonnegativity
restrictions. Note that binary start-up variables are relaxed to continuous variables
since they are associated with positive cost coefficients in (2.1a). Although this re-
laxation will expand the feasible region, it does not change the optimal value of our
stochastic optimization problem (see, O’Neill, Hedman, Krall, Papavasiliou & Oren
(2010)).

2.3.3 Degradation Signal Modeling

In this section, we explain our modeling framework for the RLDs of system compo-
nents under a Bayesian setting. A degradation signal progress has two main levels:
Phase I and Phase II (Gebraeel, 2006). Phase I is referred to as the “non-defective”
stage when a component does not show any sign of failure whereas Phase II is
known as the “defective” stage in which degradation signal of system components
aggressively deteriorates and results in failure when degradation signal reaches some
predetermined threshold Λ. When modeling failure uncertainty of system compo-
nents, we focus on the defective stage of their degradation signals.

In this thesis, we assume that we can identify degradation signal of each component
using real-time sensor information. Then, we model each degradation signal as a
stochastic continuous process and denote this process as D = {Dh(t) : t ≥ 0} with
Dh : R→ R given by

Dh(t) = υh +βht+σhW (t),(2.2)

where υh is the initial signal amplitude and βh is the linear drift parameter for
each h ∈ H. The independent stochastic parameters υh and βh of the degradation
signal model are presumed to follow some prior distributions which are assumed
to be the same across every population (i.e., generators and transmission lines).
The stochastic process W = {W (t) : t ≥ 0} is the standard Brownian motion with
W (0) = 0. We also assume that the standard deviation σh of degradation signal
of component h is known and constant over the planning horizon. Furthermore,
the standard deviation has the same value across every population. When the
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degradation signal level of a component exceeds the predefined threshold Λ, we
assume that it fails. In particular, we define the failure time of component h as the
first passage time, i.e., ξh = min{t≥ 0 : Dh(t)≥ Λ}.

Next, we estimate the RLDs by using Bayesian inference combining both degradation
signal model parameters and real-time condition-based sensor information. For every
h ∈H, we assume that the prior distribution of the initial signal amplitude is υh ∼
N (µ0,κ2

0) and the prior distribution of the linear drift is βh ∼ N (µ1,κ2
1). We let

Dh(ti
h) be the degradation signal level of component h at time ti

h. We define Di
h

as the increment between times ti
h and ti−1

h , given by Di
h = Dh(ti

h)−Dh(ti−1
h ) for

i = 2, . . . , tk
h with D1

h = Dh(t1
h) where tk

h, k ∈ Z+ is the random observation time of
the degradation signal of component h. Given the observed degradation signal data,
we can mathematically derive the posterior distribution of the initial amplitude υh

and the linear drift βh for every h ∈H with a closed form expression (Proposition 2
by Gebraeel, Lawley, Li & Ryan (2005)). By using the posterior distribution of the
drift parameter βh, we estimate the RLD of component h as in Proposition 2.1.

Proposition 2.1 Given the observed signal increments Di
h at time i = t1

h, . . . , tk
h

with prior parameters (υh,βh), and the predefined failure threshold Λ, the posterior
mean of the drift parameter of component h is given by:

µ′
h = (κ2

1
∑tk

h
i=1 Di

h +µ1σ2
h)(κ2

0 +σ2
ht1

h)−κ2
1(D1

hκ2
0 +µ0σ2

ht1
h)

(κ2
0 +σ2

ht1
h)(κ2

1tk
h +σ2

h)−κ2
0κ2

1t1
h

.(2.3)

Then, the remaining lifetime of component h at time tk
h follows the inverse Gaussian

distribution IG(t+tk
h|µ,λ) with shape parameter µ = Λ−

∑tk
h

i=1 Di
h

µ′
h

and scale parameter

λ = (Λ−
∑tk

h
i=1 Di

h)2

σ2
h

.

2.3.4 Decomposition of the Stochastic Optimization Model

In this section, we present a compact formulation of the joint chance-constrained
stochastic optimization model (2.1). For ease of notation, we let v be the decision
vector containing the elements vht corresponding to the maintenance decision of
component h ∈H′ in maintenance period t ∈ T̄ . Additionally, we define the binary
vector ηk consisting of commitment status, switch status and shut-down decisions
under scenario k, and the continuous vector ϕk denoting the demand curtailment,
voltage angle, power flow, power generation and start-up decisions under scenario
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k. We also let EH(v) be the intersection of EG(w) and EL(z) (introduced in Section
2.3.3). The compact formulation now can be stated as follows:

min
∑
k∈K

πk
(
a⊤ηk + b⊤ϕk + c⊤

k v)(2.4a)

s.t. P(EH(v))≥ 1−α(2.4b)

Av = l(2.4c)

Bkv +Dηk ≤ n k ∈ K(2.4d)

Fηk +Gϕk ≤ r k ∈ K(2.4e)

v ∈ {0,1}|H
′|×|T̄ |(2.4f)

ηk ∈ {0,1}(2|G|+|L′|)×|T |×|S| k ∈ K.(2.4g)

Next, we explain the correspondence between constraints in (2.4) and constraints in
(2.1). Constraint (2.4b) corresponds to the joint chance-constraint (2.1b) for which
we propose two different representation in Section 2.4.2. Constraint (2.4c) refers to
the maintenance constraints (2.1c) and (2.1d) restricting the total number of mainte-
nance schedules for each component within the planning horizon. Constraint (2.4d)
corresponds to the coupling constraints (2.1e) - (2.1i) between maintenance and op-
erational decisions. Constraint (2.4e) represents the operational constraints (2.1j) -
(2.1t) and domain restrictions (2.1w) and (2.1x). Constraints (2.4f) and (2.4g) cor-
respond to the binary restrictions (2.1u) and (2.1v) for maintenance decision v and
operational decision η, respectively. We introduce the set of feasible maintenance
decisions as V̂ = {v ∈ {0,1}|H′|×|T̄ | : (2.4b),(2.4c)}. We can then reformulate (2.4)
as a two-stage stochastic program given by:

min
v

{ ∑
k∈K

πk
(

c⊤
k v +Q(v,ξk)

)
: v ∈ V̂

}
,(2.5)

where Q(v,ξk) is the recourse function under scenario k defined as follows:

Q(v,ξk) = min
ηk,ϕk

{
a⊤ηk + b⊤ϕk : Dηk ≤ n−Bv,(2.6)

Fηk +Gϕk ≤ r,

ηk ∈ {0,1}(2|G|+|L′|)×|T |×|S|
}

.

The first-stage decisions correspond to the maintenance decisions and the second-
stage decisions correspond to the operational decisions. Note that the first-stage
decisions are restricted to be binary and the second-stage decisions are restricted to
be mixed-integer. We also denote the expected recourse function as Q(v,ξ) given
by ∑k∈K πkQ(v,ξk).
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Even with a small number of failure scenarios, the presented two-stage stochastic
program (2.5) can still be challenging to solve. Given a first-stage maintenance de-
cision v and a realization of random failure times ξk, we observe that maintenance
periods under scenario k become independent from each other. Fortunately, this
allows us to further decompose each scenario subproblem into smaller and indepen-
dent subproblems. We refer to this property as time-decomposability of scenario
subproblems. We can formulate each smaller scenario subproblem under scenario k

by replacing (2.6) with ∑t∈T Qt(v,ξk) where Qt(v,ξk) is defined as follows:

Qt(v,ξk) = min
ηk

t ,ϕk
t

{
a⊤

t ηk
t + b⊤

t ϕk
t : Dtη

k
t ≤ nt−Btv,(2.7)

Ftη
k
t +Gtϕ

k
t ≤ rt,

ηk ∈ {0,1}(2|G|+|L′|)×|S|
}

.

Before moving to the next section, let us first obtain an equivalent MIP formulation
for (2.5) by introducing an auxiliary variable θk for the recourse function Q(v,ξk)
for k ∈ K. Consider the following mixed-integer master problem:

min
v,θ

∑
k∈K

πk(c⊤
k v + θk)(2.8a)

s.t. v ∈ V̂(2.8b)

θ ≥ L(2.8c)

(v,θ) ∈Θ(2.8d)

Constraints (2.8c) are used to impose a lower bound on the recourse function. A
trivial lower bound on the recourse function Q(v,ξk) is zero since all cost coefficients
and their corresponding variables are nonnegative under scenario subproblem k.
However, one can obtain a valid (and possibly better) lower bound Lk on Q(v,ξk)
by solving the following linear program:

Lk = min
ηk,ϕk,v

{a⊤ηk + b⊤ϕk : Dηk +Bv ≤ n, Fηk +Gϕk ≤ r,(2.4c),v ∈ [0,1]|H
′|×|T̄ |},

(2.9)

under scenario subproblem k ∈ K. We refer to set Θ in constraint (2.8d) as the
set of optimality cuts added to the relaxed master problem until some iteration.
In particular, set Θ is called valid if for every v ∈ V̂ ,(v,θ) ∈ Θ implies that θk ≥
Q(v,ξk) for k ∈ K. Note that since (2.5) has relatively complete recourse, we are
not particularly interested in generating feasibility cuts which enforce the feasibility
of each scenario subproblem. Suppose that a valid and finite set of optimality cuts
Θ indeed exists for the joint chance-constrained stochastic program (2.5), (2.8) is
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then equivalent to (2.5). We can also obtain a different equivalent MIP formulation
for (2.5) by utilizing the time-decomposability of scenario subproblems. For this
purpose, we replace θk in (2.8a) with ∑

t∈T θk
t . Similarly, one can obtain a valid

lower bound Lk
t on Qt(v,ξk) by utilizing time-decomposability and solving (2.9)

under scenario k in maintenance period t.

We observe that set Θ may contain exponentially many constraints. Instead of
adding all of these cuts to the problem, it might be more practical to consider a
so-called relaxed master problem containing a small subset of Θ (possibly an empty
set). In the next section, we propose an iterative algorithm with various algorith-
mic enhancements where the relaxed master problem is solved until we obtain the
optimal solution to the two-stage joint chance-constrained stochastic program (2.5).

2.4 Solution Methodology

In this section, we first explain our decomposition algorithm to solve (2.5) and
explain various algorithmic enhancements in detail (Section 2.4.1). Two different
representations of the joint chance-constraint are explained in Section 2.4.2. The
set of optimality cuts used in our proposed algorithm are presented in Section 2.4.3.
We further present a prepossessing step to address the potential redundancy in
transmission flow limits in Section 2.4.4. Finally, we use a SAA approach within
the proposed decomposition algorithm to obtain statistical bounds on the true op-
timality gap in Section 2.4.5.

2.4.1 Decomposition Algorithm

We benefit from the features of the integer L-shaped method to develop a
decomposition-based algorithm (Algorithm 1) to solve our two-stage joint chance-
constrained stochastic program (2.5). Given a first-stage decision, solving many
similar mixed-integer scenario subproblems can be computationally expensive. We
propose an algorithmic enhancement to avoid this situation by exploiting the time
decomposability of scenario subproblems and identifying the “status” of system com-
ponents.
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Let us first devise a concept of status of system components, which is utilized in
our decomposition algorithm. This concept is used to characterize the availability
of system components. Given a feasible maintenance decision v ∈ V̂ , the status of
component h∈H′, denoted by uk

ht(v), takes a value of 1 if the corresponding compo-
nent is available in maintenance period t∈ T under scenario k ∈K, and 0 otherwise.
We corroborate this concept with a simplified instructive example. Consider our
stochastic optimization problem (2.1) under a single scenario with |G′| = |L′| = 1,
|T | = 4 and (τp

G , τ c
G , τp

L, τ c
L, ξ1

1 , ξ1
2) = (1,2,1,2,1,4). Suppose we are given a feasible

maintenance decision v = [0,1,0,0,0;0,1,0,0,0], which corresponds to the case where
the components enter maintenance in the second period and let these components
correspond to the generator and the transmission line, respectively. The status vec-
tor of component 1 is [0,0,1,1] as the scheduled predictive maintenance at period
2 is at a later period than its failure time at period 1. Thus, it is under corrective
maintenance and is unavailable for two consecutive maintenance periods. On the
other hand, the status vector of component 2 is [1,0,1,1] since the scheduled predic-
tive maintenance at period 2 prevents the failure at period 4, and this component
is only unavailable for one maintenance period. By combining these status vectors
of components, we obtain u1(v) = [0,0,1,1;1,0,1,1] where column t consists of the
status of components in maintenance period t for every t ∈ T . Now, suppose we are
given another feasible maintenance decision under the same single scenario problem
as ṽ = [0,0,1,0,0;0,0,0,1,0]. Similarly, we obtain u1(ṽ) = [0,0,1,1;1,1,0,1]. In the
remainder of this thesis, we let uk

t (v) denote the column t of uk(v) given maintenance
decision v for every k ∈ K and t ∈ T . Observe that u1

1(v) and u1
4(v) are the same

with u1
1(ṽ) and u1

4(ṽ), respectively. This implies that the components have the same
status for the first and fourth periods under this scenario for the solutions v and ṽ.
To generalize, decomposing a scenario subproblem into maintenance periods given
different feasible maintenance decisions may yield to some identical scenario sub-
problems depending on the availability of the components. Eventually, we exploit
this observation and adapt the concept of status in our decomposition algorithm.
This allows us to uniquely determine the nature of each scenario subproblem given
different feasible maintenance (first-stage) decisions.

Next, we explain our proposed decomposition-based algorithm to solve (2.5), which
is summarized in Algorithm 1. For representing the joint chance-constraint (2.4b),
this algorithm considers both an exact reformulation and a deterministic safe ap-
proximation, which are further explained in Section 2.4.2 in detail. When the exact
reformulation is used, Algorithm 1 employs a cutting-plane method over the joint
chance-constraint (2.4b) as follows: At the beginning of each iteration, we obtain
a maintenance decision v by solving the relaxed master problem (2.14). We call
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the separation subroutine RepresentChance(v) with input v to check whether this
maintenance decision is feasible with respect to (2.4b). When the infeasibility of v is
detected, a cutting plane is generated and added to set C. This separation subrou-
tine and violated cover inequalities are further explained in Section 2.4.2.1. When
the deterministic safe approximation is used, we always obtain a feasible mainte-
nance decision v ∈ V̂ since this approximation provides a conservative representation
of the joint chance-constraint. After obtaining a feasible maintenance decision v ∈ V̂
and failure uncertainty is revealed for every scenario, Algorithm 1 proceeds to the
second-stage. For storing the status vectors in period t, we define set Υt which
corresponds to the set of unique status vectors identified at that iteration. Also,
we define set Ψt to represent the set of all unique status vectors until termination
within Algorithm 1. After identifying the unique status vectors (Step 12) for every
maintenance period t∈ T , Algorithm 1 continues to solve only the subproblems with
these newly identified status vectors (Step 20). By restricting ourselves to set Ψt,
it suffices to solve ∑t∈T |Ψt| many scenario subproblems until termination, which
could be significantly less than the total number of scenario subproblems to be solved
throughout the algorithm. Finally, Algorithm 1 initializes OptimalityCut(v,ξ,L)
with input v,ξ and L to generate and add optimality cuts to set Θ in Step 27. Al-
gorithm 1 continues to iterate until a relative optimality gap within a tolerance ϵ is
achieved. The implementation of our decomposition-based algorithm is in parallel
in order to achieve computational efficiency. At the initialization of Algorithm 1
(Step 2), linear relaxations of the subproblems are solved to obtain lower bounds
on the objectives of these problems. Due to the independence of scenario subprob-
lems and time-decomposability, these subproblems are solved within a distributed
environment. Similarly, scenario subproblems corresponding to the unique status
vectors (Step 20) are solved to optimality with parallelization.

2.4.2 Reformulations of the Joint Chance-Constraint

In this section, we specify two different approximations of the joint chance-constraint
(2.4b). First recall the set of feasible maintenance decisions defined as V̂ = {v ∈
{0,1}|H′|×|T̄ | : (2.4b),(2.4c)}. We first obtain an approximation of V̂ by using
a probability oracle which provides the exact value of the left-hand side of the
joint chance-constraint (2.4b) and further, prove that this approximation is in fact
exact. However, this exact representation requires an exponential reformulation
of V̂ . Thus, we employ a cutting-plane method using the separation subroutine
RepresentChance(v) within Algorithm 1 to efficiently solve our two-stage joint
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Algorithm 1 Decomposition
Input: A,B,D,F,G,a,b,c, l,n,r, ϵ,Q : (v,ξ)→ R.
Output: ϵ-optimal solution v∗ and ϵ-optimal objective value c∗.

1: Set UB =∞,LB =−∞,Θ = C = ∅,Ψt = ∅ for all t ∈ T .
2: Compute the lower bound L of Q(v,ξ) (in parallel).
3: while LB/UB < 1− ϵ do
4: if the joint chance-constraint representation is exact then
5: Solve a relaxed master problem (2.14) to obtain a solution (v,θ).
6: flagFeasible← RepresentChance(v).
7: else
8: Solve a relaxed master problem (2.8) to obtain a feasible solution (v,θ).
9: flagFeasible← true.

10: if flagFeasible is true then
11: LB←max(∑k∈K πk(c⊤

k v +∑
t∈T θk

t ), LB).
12: Identify the status vector uk

t (v) ∈ {0,1}|H′| for (k,t) ∈ K×T .
13: Set Υt = Γt = ∅ for all t ∈ T .
14: for all (k,t) ∈ K×T do
15: if uk

t (v) ∈Ψt then
16: Find an index k̂ such that uk

t (v) = uk̂
t (v) ∈Ψt, and Γt← Γt

⋃{(k̂,k)}.
17: else
18: Υt←Υt

⋃{uk
t (v)}.

19: Υ̂← ⋃
t∈T Υt, and Ψt←Ψt

⋃Υt for all t ∈ T .
20: for all uk

t (v) ∈ Υ̂ (in parallel) do
21: Solve scenario subproblem (2.7) associated with uk

t (v) and obtain
Qt(v,ξk).

22: for all t ∈ T do
23: Qt(v,ξk̂)←Qt(v,ξk) for all (k̂,k) ∈ Γt.
24: c∗←∑

k∈K πk(c⊤
k v +∑

t∈T Qt(v,ξk)).
25: if UB > c∗ then
26: (UB,v∗)← (c∗,v).
27: Initialize OptimalityCut(v,ξ,L) and add the optimality cut to set Θ.
28: else
29: continue
30: return Optimal solution v∗ and optimal value c∗.
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chance-constrained stochastic program (2.5). Still, this cutting-plane method may
not be efficient as the number of components increases. To address this issue, we
also develop a second-order cone programming (SOCP) based deterministic safe
approximation of (2.4b).

2.4.2.1 Exact Reformulation

Suppose we are given a feasible maintenance decision v = (w,z) ∈ V̂ . Let us first
consider the quantity Ri(w) =∑

t∈T̄ ζitwit for every i∈ G as defined in Section 2.3.2.
Here, we calculate the failure probability for generators i ∈ G within the planning
horizon. Recall constraint (2.1c) in the joint chance-constrained stochastic opti-
mization model (2.1), that is, ∑t∈T̄ wit = 1 for i∈ G′. This implies that the quantity
Ri(w) is a Bernoulli random variable with the success probability P(ξi ≤ mi(w))
where mi(w) is the maintenance period in which a maintenance is scheduled for
generator i ∈ G′, and if no maintenance is scheduled, we let mi(w) be |T | for gen-
erator i ∈ G′. Recall also the following assumption that there is no maintenance
scheduled for generators i ∈ G′′, thus, we also let mi(w) be |T | for i ∈ G′′. Then,
the quantity Ri(w) is also a Bernoulli random variable with the success probability
P(ξi ≤ |T |) for i ∈ G′′.

Let us now consider the quantity Rij(z) = ∑
t∈T̄ ζijtzijt for every (i, j) ∈ L as de-

fined in Section 2.3.2. The similar results also hold for the transmission lines with
constraint (2.1d) in the stochastic optimization model. Therefore, the quantity
Rij(z) is a Bernoulli random variable with the success probability P(ξij ≤mij(z))
for (i, j)∈L′. Similarly, the quantity Rij(z) is also a Bernoulli random variable with
the success probability P(ξij ≤ |T |) for (i, j) ∈ L′′.

Next, we define the following random variables ζ̂G(w) = ∑
i∈G Ri(w) and ζ̂L(z) =∑

(i,j)∈L Rij(z) as the sum of independent Bernoulli random variables.

Remark 2.1 The random variables ζ̂G(w) and ζ̂L(z) follow Poisson Binomial
distributions with success probabilities {P(ξi ≤ mi(w)); i ∈ G} and {P(ξij ≤
mij(z)); (i, j) ∈ L}, respectively.

By Remark 2.1, we observe that the left hand-side expression of the joint chance-
constraint (2.4b) is equivalent to the following joint cumulative distribution function
of two Poisson Binomial random variables, i.e., P(ζ̂G(w)≤ ρG , ζ̂L(z)≤ ρL). By using
the independence of these two random variables, joint chance-constraint (2.4b) can
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be rewritten as:

P(ζ̂G(w)≤ ρG)P(ζ̂L(z)≤ ρL)≥ 1−α.(2.10)

Finally, we can recast V̂ as follows:

V̂ = {(w,z) ∈ {0,1}|G
′|×|L′| : (2.10),(2.4c)}.(2.11)

Next, we derive the exact representation of our joint chance-constraint (2.10). For
any maintenance decision v = (w,z), we first suppose that there exists a probability
oracle P(v) which recognizes v and provides the exact value of the left hand-side of
relation (2.10). We then introduce the index set N = {(h,t) : h ∈H′, t ∈ T̄ }. We call
a set C ⊆N a scheduling set if it satisfies the following property:

there exists a unique t(h) ∈ T̄ : (h,t(h)) ∈ C, for every h ∈H′.

In other words, this set includes a unique maintenance period for every component
from set H′. Let us consider the maintenance decision v(C) depending on a given a
scheduling set C ⊆N . Further, we call this set C a cover for V̂ if P(v(C)) < 1−α,
that is, v(C) /∈ V̂ .

Proposition 2.2 Given a cover C ⊆ N , the following set of cover inequalities is
valid for V̂:

∑
(h,t)∈C

vht ≤ |H′|−1.(2.12)

Proof 2.2 Let v̂ ∈ V̂. Assume for the sake of contradiction that ∑(h,t)∈C v̂ht ≥ |H′|.
Since ∑t∈T̄ v̂ht = 1 for every h ∈ H′, it must be that v̂ht = 1 for every (h,t) ∈ C.
Then contradiction follows immediately since P(v̂) < 1−α implies that v̂ /∈ V̂ .

We can ensure that at least one of the elements of the maintenance schedule defined
by the set C need to be rescheduled by simply using a cover inequality in (2.12). In
particular, if we find every valid cover inequality defined in (2.12) for every cover
which is a subset of N , we can obtain an equivalent formulation of V̂ . We show this
result in Proposition 2.3.

Proposition 2.3 Consider the following set:

V̂1 = {(w,z) ∈ {0,1}|G
′|×|L′| :

∑
(h,t)∈C

vht ≤ |H′|−1,(2.4c),(2.13)

∀C ⊆N s.t. C is a cover}.
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Sets defined in (2.13) and (2.11) are equivalent.

Proof 2.3 We only prove that V̂1⊆ V̂ by contraposition since the converse is proven
in Proposition 2.2. Let ṽ = (w̃, z̃) /∈ V̂ such that constraints (2.4c),(2.4f) hold for ṽ

but P(ζ̂G(w̃) ≤ ρG , ζ̂L(z̃) ≤ ρL) < 1−α. Then, there must exist at least one subset
C̃ ⊆N such that C̃ is a cover, which directly implies by definition that ṽ /∈ V̂1.

Unfortunately, set (2.13) requires finding an exponential number of valid inequalities
to obtain the feasible space for V̂ . In the remainder of this section, we address a
separation subroutine using the probability oracle P to check the feasibility status
of the current maintenance solution and further find valid cover inequalities, if such
equalities exist (see, for instance, Wu & Küçükyavuz (2019)). We first consider the
relaxed master problem of (2.8):

min{
∑
k∈K

πk(c⊤
k v + θk) : θ ≥ L, (v,θ) ∈Θ, v ∈ V̂ ∩C},(2.14)

where C is the set of cover inequalities generated and added to the relaxed master
problem until some iteration. Algorithm 1 starts with a possibly empty subset
of C. After obtaining a maintenance decision v̂ = (ŵ, ẑ) at the end of step 5, we
initialize the separation subroutine (Algorithm 2) which employs the probability
oracle P(v̂) to compute the exact value of the left hand-side of (2.4b) when v̂ is a
feasible maintenance decision. Algorithm 1 leaves the separation subroutine without
generating a valid inequality if the current solution is feasible. Otherwise, we define
a cover as C = ⋃

h∈H′{(h,t) ∈N : v̂ht = 1, t ∈ T̄ } and generate a cover inequality as
in (2.12) to separate the current solution from the set of maintenance decisions and
add the corresponding inequality to set C.

Next, we explain the monotonicity property of the probability oracle in the thesis.
Given any maintenance decision v, let us define the index set of components and
maintenance periods as follows:

I(v) =
⋃

h∈H′
{(h,t) : vht = 1, t ∈ T̄ }.

We say that P is monotonically non-increasing if any v′,v′′ pair has the following
property:

(h,t′)≤ (h,t′′) for (h,t′) ∈ I(v′), (h,t′′) ∈ I(v′′) and h ∈H′.

This implies that P(v′) ≥ P(v′′), i.e., P(ζ̂G(w′) ≤ ρG)P(ζ̂L(z′) ≤ ρL) ≥ P(ζ̂G(w′′) ≤
ρG)P(ζ̂L(z′′)≤ ρL). We state this property in Proposition 2.4.
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Proposition 2.4 Probability oracle P(v) is a monotonically non-increasing func-
tion in v.

The proof of Proposition 2.4 is given in Appendix A which leverages the fact that
the random variables have Poisson Binomial distribution as discussed in Remark
2.1. We use Proposition 2.4 to strengthen the formulation in (2.12). Without loss
of generality, we assume a pair of maintenance decisions v′ ̸= v′′ with the following
property:

there exists a unique h∗ and t′
∗ < t′′

∗ : (h∗, t′
∗) ∈ I(v′), (h∗, t′′

∗) ∈ I(v′′),

(h′, t′) = (h′′, t′′)

for (h′, t′) ∈ I(v′)\{(h∗, t′
∗)},

(h′′, t′′) ∈ I(v′′)\{(h∗, t′′
∗)}.

In other words, component h∗ is scheduled for maintenance in period t′
∗ under de-

cision v′, and it is scheduled for maintenance in a later period t′′
∗ than t′

∗ under
decision v′′. For each component h ∈H′ \{h∗}, maintenance schedules are the same
under both decisions. By Proposition 2.4, we have P(v′) > P(v′′). We observe that
if v′ is infeasible w.r.t. constraint (2.4b), i.e., P(v′) < 1−α, then clearly v′′ is also
infeasible w.r.t. constraint (2.4b). In particular, we observe that any other mainte-
nance plan for component h∗ in a later period than t′

∗ will lead to infeasibility. We
can extend this observation when multiple components have different maintenance
schedules under decisions v′ and v′′. Then, we can strengthen (2.12) as follows:
when an infeasible maintenance decision v is obtained within Algorithm 1 at some
iteration, we can generate a cover C as explained previously. Bearing in mind our
observation, we define a set E(C) depending on C as follows:

E(C) =
⋃

h∈H′
{(h,t) : t = t(h), t(h)+1, . . . , |T̄ | where (h,t(h)) ∈ C}.(2.15)

We call a set E(C) defined as in (2.15) an extended cover for V̂ if C is a cover. By
using this set, we can obtain stronger cover inequalities than (2.12). We state our
claim in Proposition 2.5.

Proposition 2.5 Given a cover C ⊆N , the following set of extended cover inequal-
ities is valid and stronger than the set of cover inequalities given by (2.12) whenever
E(C)\C ̸= ∅:

∑
(h,t)∈E(C)

vht ≤ |H′|−1.(2.16)
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Proof 2.5 By using Proposition 2.2 and Proposition 2.4, we have the proof of va-
lidity. To prove the strength of (2.16), suppose E(C) \C ̸= ∅ holds, then we have∑

(h,t)∈E(C) vht ≥
∑

(h,t)∈C vht since C ⊊ E(C). This completes the proof.

Finally, we present our separation subroutine (Algorithm 2) within Algorithm 1.

Algorithm 2 RepresentChance
Input: v,P : v→ R.
Output: true if v is feasible w.r.t. (2.4b), false otherwise.

1: Compute P(v).
2: if P(v)≥ 1−α then
3: return true
4: else
5: Generate and add the cover inequality of form (2.16) to set C.
6: return false

2.4.2.2 Deterministic Safe Approximation

As an alternative representation of the joint chance-constraint (2.4b), we propose an
SOCP-based safe approximation. The proposed safe approximation is an extension
of the deterministic safe approximation of a single chance-constraint by Basciftci
et al. (2018) by introducing two additional continuous variables and reformulating
V̂ as a second-order conic set by lifting it to a higher-dimensional space.

Proposition 2.6 The following system of equations provides a safe approximation
of the joint chance-constrained set V̂, i.e., any maintenance decision v satisfying
(2.17) and (2.4c) belongs to set V̂:

∑
i∈G

∑
t∈T̄

E[ζit]wit ≤ ρG(1− ᾱG)(2.17a)

∑
(i,j)∈L

∑
t∈T̄

E[ζijt]zijt ≤ ρL(1− ᾱL)(2.17b)

ᾱGᾱL ≥ 1−α(2.17c)

ᾱG , ᾱL ∈ [0,1](2.17d)

Proof 2.6 Consider V̂S = {(w,z) ∈ G′×L′ : (2.17),(2.4c)}. Note that by the inde-
pendence assumption, set V̂ is equivalent to:

V̂ = {(w,z) ∈ {0,1}|G
′|×|L′| :
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P(
∑
i∈G

∑
t∈T̄

ζitwit ≤ ρG)P(
∑
i∈L

∑
t∈T̄

ζijtzijt ≤ ρL)≥ 1−α, (2.4c)}

To show that V̂S ⊆ V̂, we let (w̃, z̃) ∈ V̂S . As proven in Basciftci et al. (2018),
we have P(∑i∈G

∑
t∈T̄ ζitw̃it ≥ ρG) ≤

∑
i∈G
∑

t∈T̄ E[ζit]w̃it

ρG
. By using (2.17a), we ob-

tain P(∑i∈G
∑

t∈T̄ ζitw̃it ≤ ρG)≥ ᾱG. Similarly, we also have P(∑i∈L
∑

t∈T̄ ζijtz̃ijt ≤
ρL) ≥ ᾱL. By combining these results with relations (2.17c) and (2.17d), we have
P(∑i∈G

∑
t∈T̄ ζitw̃it ≤ ρG)P(∑i∈L

∑
t∈T̄ ζijtz̃ijt ≤ ρL)≥ 1−α proving that (w̃, z̃) ∈ V̂.

In this formulation, the variables ᾱG and ᾱL are used to represent the probabilities
in the joint chance-constraint (2.10). Inequalities (2.17a) and (2.17b) are affine
and expectations are efficiently computable (since the random vector ζ consists of
Bernoulli random variables), also (2.17c) is an SOCP constraint so that the proposed
deterministic safe approximation of (2.1b) is convex and tractable. Note that this
approximation may be too conservative in some cases entailing an early maintenance
planning when α gets smaller.

2.4.3 Optimality Cut Families

In this section, we introduce various sets of optimality cuts which are generated
by OptimalityCut(v,ξ,L) in Algorithm 1. In Section 2.4.3.1, we specify the well-
known classical integer L-shaped optimality cuts introduced by Laporte & Louveaux
(1993). We introduce new optimality cuts by strengthening the classical integer L-
shaped optimality cuts in Section 2.4.3.2. We explain the rationale behind these
optimality cuts in detail and provide the proofs of their validity and strength.

2.4.3.1 Integer L-Shaped Optimality Cuts

The idea of the integer L-shaped method is to approximate the expected recourse
function by adding optimality cuts as the supporting hyperplanes of Q(v,ξ). These
cuts depend on a given maintenance decision v(r) ∈ V̂ at some iteration r and a
realization of the random vector ξ, and gradually reduce the feasible region defined
in the (v,θ)-space. We first introduce the index set at iteration r as Vh(v(r)) :=
{t ∈ T̄ : v

(r)
ht = 1} for every h ∈H′ and define Q(v(r), ξ) as the expected second-stage

value. Note that the set Vh(v(r)) is a singleton by constraints (2.1c) and (2.1d). The
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structure of the stochastic program with independent scenarios allows us to define
multi-cuts. Given a feasible maintenance decision v(r) ∈ V̂ , the classical integer L-
shaped optimality cut for subproblem k added to the master problem at the iteration
r is defined as:

(2.18) θk ≥ (Q(v(r), ξk)−Lk)
∑

h∈H′

( ∑
t∈Vh(v(r))

(vht−1)−
∑

t/∈Vh(v(r))
vht

)
+Q(v(r), ξk),

where Lk is a valid lower bound on the expected second-stage value of subproblem
k. We can also obtain the single-cut version of the optimality cut by summing over
all scenarios on both sides of the relation (2.18):
(2.19)∑
k∈K

θk≥
∑
k∈K

(Q(v(r), ξk)−Lk)
∑

h∈H′

( ∑
t∈Vh(v(r))

(vht−1)−
∑

t/∈Vh(v(r))
vht

)
+
∑
k∈K
Q(v(r), ξk).

For ease of notation, we will not carry the superscript (r) in the remainder of this
section.

2.4.3.2 New Optimality Cuts

Next, we introduce a new set of optimality cuts by adapting the multi-cut version
of the integer L-shaped optimality cut (2.18) to better approximate the expected
recourse function Q.

Proposition 2.7 Given a feasible maintenance decision v∗ ∈ V̂, the following set
of optimality cuts is valid and stronger than the classical L-shaped optimality cut
(2.18):

(2.20) θk ≥ (Q(v∗, ξk)−Lk)
∑

h∈H′

( ∑
t∈Vh(v∗)

vht−1
)

+Q(v∗, ξk).

Proof 2.7 Suppose we are given a maintenance decision v∗ ∈ V̂. We consider the
following quantity Qh := ∑

t∈Vh(v∗) vht. If Qh = 1 for every h ∈ H′, then the cut in
(2.20) becomes θk ≥Q(v∗, ξk). If Qh = 0 for some h ∈H′, then we have ∑h∈H′ Qh−
|H′| ≤ −1. In this case, the optimality cut (2.20) becomes redundant since θk ≥
Lk +A where A≤ 0. To prove the strength of the cut, we also consider the following
quantity Q̄h :=∑

t/∈Vh(v∗) vht such that Q̄h ∈ {0,1} for every h∈H′. Then, clearly we
have Qh− Q̄h−|Vh(v∗)| ≤ Qh−|Vh(v∗)| for every h ∈ H′. This implies that (2.20)
is stronger than (2.18).
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We obtain the single-cut version of (2.20) by summing over all scenarios on both
sides:

(2.21)
∑
k∈K

θk ≥
∑
k∈K

(Q(v∗, ξk)−Lk)
∑

h∈H′

( ∑
t∈Vh(v∗)

vht−1
)

+
∑
k∈K
Q(v∗, ξk).

Next, we explain how to derive even stronger optimality cuts than (2.20). The key
idea of deriving such optimality cuts is to identify a set of maintenance decisions
which will yield the same operational cost. Given a maintenance decision v∗ ∈ V̂ ,
we introduce the set Rk(v∗) as the set of all feasible maintenance decisions which
will have the same second-stage value under scenario k:

Rk(v∗) = {v ∈ V̂ : Q(v,ξk) =Q(v∗, ξk)}.

Further, we can define T̂ k
h(v∗) as the set of maintenance period indices of each

component h under scenario k such that maintaining component h in period t will
yield to the same operational cost for every t ∈ T̂

k
h(v∗):

T̂
k
h(v∗) = {t ∈ T̄ : ∃v ∈Rk(v∗) such that vht = 1}.

Proposition 2.8 Given a feasible maintenance decision v∗ ∈ V̂, the following set of
optimality cuts is valid and stronger than the set of optimality cuts given by (2.20):

(2.22) θk ≥ (Q(v∗, ξk)−Lk)
∑

h∈H′

( ∑
t∈T̂ k

h(v∗)

vht−1
)

+Q(v∗, ξk).

Proof 2.8 Given a maintenance decision v∗ ∈ V̂, consider the following quantity
Qh :=∑

t∈T̂ k
h(v∗)

vht. By constraint (2.4c), we know that Qh ∈ {0,1} for every h∈H′,
then the proof of validity follows as in Proposition 2.7. To prove the strength of the
cut, let the maintenance decision of component h under v∗ be in maintenance period
t′, which clearly implies that t′ ∈ T̂

k
h(v∗) for every k ∈ K and Vh(v∗) = {t′}. Then,

we have the following relation ∑
t∈T̂ k

h(v∗)
vht ≥

∑
t∈Vh(v∗) vht since Vh(v∗) ⊆ T̂ k

h(v∗)
holds for every k ∈ K. This implies that (2.22) is stronger than (2.20).

Given a maintenance decision v∗ ∈ V̂ , obtaining set Rk(v∗) for every k ∈ K might
be computationally expensive; however, in our setting, we can obtain a subset of
T̂

k
h(v∗) by identifying whether each component h∈H′ enters predictive or corrective

maintenance depending on decision v∗ and the failure times under scenario k. In
particular, if component h is scheduled for predictive maintenance under scenario k,
we define this subset as the period that this component is scheduled for maintenance.
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On the other hand, if component h enters corrective maintenance under scenario k,
this subset consists of all maintenance periods from the failure time of component
h to the end of the planning horizon.

Corollary 2.1 Given v∗ ∈ V̂ and a subset T̂ ′(v∗) ⊆ T̂ k
h(v∗), the following set of

optimality cuts is valid and stronger than the set of optimality cuts given by (2.20):

(2.23) θk ≥ (Q(v∗, ξk)−Lk)
∑

h∈H′

( ∑
t∈T̂ ′(v∗)

vht−1
)

+Q(v∗, ξk).

As before, we can obtain the single-cut version of (2.22) by summing over all sce-
narios on both sides:

(2.24)
∑
k∈K

θk ≥
∑
k∈K

(Q(v∗, ξk)−Lk)
∑

h∈H′

( ∑
t∈T̂ k

h(v∗)

vht−1
)

+
∑
k∈K
Q(v∗, ξk).

Next, we explain how to derive a different set of optimality cuts by exploiting the
status idea (explained in Section 2.4.1). We first provide an overview of the idea
on how to derive these alternative optimality cuts. After obtaining a maintenance
decision by solving (2.8), we observe that there is no coupling constraint between
maintenance periods in scenario subproblems. This allows us to obtain even smaller
subproblems by decomposing with respect to independent maintenance periods. We
refer to this property as time-decomposability of scenario subproblems before and
the formulation of these subproblems are introduced in (2.7). By using this property,
we can rewrite (2.20) in the following form:

(2.25) θk
t ≥ (Qt(v∗, ξk)−Lk

t )
∑

h∈H′

( ∑
t∈Vh(v∗)

vht−1
)

+Qt(v∗, ξk).

Recall that given a maintenance decision v∗, we define the status vector for main-
tenance period t, denoted by uk

t (v∗), representing the availability of all components
under scenario k. This property allows us to represent each scenario subproblem
with respect to their status vectors and as a consequence, we restrict ourselves to the
scenario subproblems such that corresponding status vectors are all unique. Given
a maintenance decision v∗, we first define T̃ k

ht(v∗) as the set of periods such that
maintaining a component h in period t will yield the same status uk

ht(v∗) under
scenario k:

T̃ k
ht(v∗) :=

{
t′ ∈ T̄ : ∃v ∈ V̂ such that vht′ = 1, uk

ht(v∗) = uk
ht(v)

}
.
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After identifying the status for component h ∈ H′ in maintenance period t ∈ T̄
(explained in Section 2.4.1), we can easily obtain a subset of T̃ k

ht(v∗) under each
scenario k ∈ K.

Proposition 2.9 Given a feasible maintenance decision v∗ ∈ V̂, the following set
of optimality cuts is valid:

(2.26) θk
t ≥ (Qt(v∗, ξk)−Lk

t )
∑

h∈H′

( ∑
t′∈T̃ k

ht(v∗)

vht′−1
)

+Qt(v∗, ξk).

Proof 2.9 The proof of validity is similar as in Proposition 2.8.

Corollary 2.2 Given v∗ ∈ V̂ and a subset T̃ ′(v∗) ⊆ T̃ k
ht(v∗), the following set of

optimality cuts is valid:

(2.27) θk
t ≥ (Qt(v∗, ξk)−Lk

t )
∑

h∈H′

( ∑
t′∈T̃ ′(v∗)

vht′−1
)

+Qt(v∗, ξk).

Remark 2.2 The set of optimality cuts in 2.26 neither dominates nor is dominated
by the set of optimality cuts in 2.22. Nevertheless, 2.26 is at least as strong as 2.22
if ∑t∈T Lk

t = Lk for every k ∈ K. We compare the computational times obtained by
these optimality cuts over an illustrative small instance. Our results indicate that
2.26 is empirically better than 2.22, which is evident from Table 2.3.

We conclude this section by proving the property of finite convergence of our de-
composition algorithm (Algorithm 1).

Proposition 2.10 Algorithm 1 converges in finitely many iterations.

Proof 2.10 We observe that there are only finitely many feasible first-stage deci-
sions since each maintenance decision is pure binary. In view of this observation
and the integer L-shaped algorithm, when the safe approximation of the joint chance-
constraint is used, we can add finitely many optimality cuts that lead to the conver-
gence of Algorithm 1 in finitely many iterations. When the exact representation of
the joint chance-constraint is used, we can add a finite number of violated cover
inequalities that can be identified through Algorithm 2 since this constraint includes
only the first-stage decisions.

2.4.4 Flow Limit Analysis
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Optimization problems in power systems may involve redundant transmission flow
limits. When this redundancy is identified and handled efficiently, computational
requirements for solving the optimization problem may potentially decrease. Given
a power demand vector d̄, the following relaxation of the operational subproblem
can be used to identify such redundancy:

max
f,y,x,δ,p,q,d

f∗
i′,j′(d̄)(2.28a)

s.t. qi ≤ di ≤ d̄i i ∈ B(2.28b) ∑
i′∈G(i)

pi′ + qi−di =
∑

j∈δ+(i)
fij−

∑
j∈δ−(i)

fji i ∈ B(2.28c)

Bij(δi− δj) = fij (i, j) ∈ L′′(2.28d)

Bij(δi− δj)−Mij(1−yij)≤ fij

≤Bij(δi− δj)+Mij(1−yij) (i, j) ∈ L′(2.28e)

− f̄ijyij ≤ fij ≤ f̄ijyij (i, j) ∈ L′(2.28f)

pmin
i xi ≤ pi ≤ pmax

i xi i ∈ G(2.28g)

y ∈ [0,1]|L
′|, x ∈ [0,1]|G|, δ ∈ [δmin, δmax], q ≥ 0.(2.28h)

In this formulation, the decision variables f,y,x,p,δ,q represent power flow, switch-
ing status of transmission lines, commitment status and power generation of gener-
ators, voltage angle and demand curtailment of buses, respectively. We also define
another continuous decision variable di which represents power demand for i ∈ B.
Constraint (2.28b) ensures that di remains feasible for the operational subproblems.
The remaining constraints are operational constraints implied by the power network.
We note that (2.28) is a relaxation of the original operational problem, since switch-
ing variables are considered as continuous and start-up, shut-down restrictions are
omitted by focusing the analysis on a single period.

Recently, Basciftci et al. (2018) solve a relaxation of the operational subproblem to
identify redundant flow limits by considering the peak demand of each bus within the
planning horizon. Their model (referred to as FlowModel-I in this thesis) is similar
to (2.28) when d̄ = [maxt∈T ,s∈S{dits}; i ∈ B]. By utilizing the time-decomposability
of operational subproblems, we improve their model (referred to as FlowModel-II )
by replacing d̄ with d̄t = [maxs∈S{dits}; i ∈ B] and solve (2.28) for every t ∈ T . Sim-
ilarly, we can easily improve this model (referred to as FlowModel-III ) by replacing
d̄ with the actual power demand in hourly subperiod s of maintenance period t, that
is, d̄ts = [dits; i ∈ B] and solve (2.28) for every t ∈ T and s ∈ S. Given a transmission
line (i′, j′) and power demand d̄, suppose we solve the linear program (2.28) and
obtain an optimal solution f∗

i′j′(d̄). If f∗
i′j′(d̄) is strictly less than f̄i′j′ , we ensure
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that flow upper limit corresponding for transmission line (i′, j′) will not be violated
which allows us to eliminate the corresponding constraint from the optimization
model (2.1). Otherwise, we impose this constraint for transmission line (i′, j′). Sim-
ilarly, we can also identify redundant lower flow limits by changing the objective
function of (2.28) with −fi′j′(d̄). To this end, the number of constraints that can be
eliminated depending on the choice of the demand parameter, and how many times
the corresponding model is solved.

2.4.5 Sample Average Approximation

Since the number of scenarios of our stochastic program grows exponentially fast
in the number of system components considered for maintenance, i.e., |T̄ ||H′|, solv-
ing this program becomes computationally more demanding as the instance size
increases. Thus, we solve this problem using the SAA algorithm (Algorithm 3).
In our setting, the set of training scenarios are generated over the components H′,
whereas the set of test scenarios are generated over the all set of components H to
evaluate the true performance of the proposed approach. We first generate SAA
replications of size M , each consisting of independent and identically distributed
(i.i.d.) failure scenarios of size N . We solve the corresponding SAA problem for
each replicate and obtain their optimal values and ϵ-optimal solutions. By averag-
ing these optimal values, we obtain the mean estimate for the true lower bound. We
later evaluate each ϵ-optimal solution over a sample size of N ′ with N ′ ≫ N and
choose the best candidate solution among all ϵ-optimal solutions by setting the cor-
responding objective value as the best upper bound estimate. In Step 8 and Step 10
of Algorithm 3, we construct the upper and lower statistical bounds, developed by
Mak, Morton & Wood (1999), to assess the quality of the optimal solution produced
by the SAA algorithm, respectively. These statistical bounds are used to construct
confidence intervals (CIs) for estimating the optimality gap between the optimal
value produced by Algorithm 3 and the optimal value of the true problem.

2.5 Computational Experiments
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Algorithm 3 SAA
1: Generate an i.i.d. failure scenario sample of size N ′ considering all system

components H.
2: for all i = 1, . . . ,M do
3: Generate an i.i.d. failure scenario sample of size N considering all system

components H′.
4: Solve ẑi

N = min
{

1
N

∑
k∈K πk

(
c⊤

k v +∑
t∈T Qt(v,ξk)

)
: v ∈ V̂

}
using Algorithm

1 and obtain ϵ-optimal solution v̂i
N .

5: Evaluate v̂i
N over N ′ scenarios: ẑi

N ′(v̂i
N ) = 1

N ′
∑N ′

k=1 πk(c⊤
k v̂i

N +∑
t∈T Qt(v̂i

N , ξk)).
6: Select the best candidate solution v̂∗ ∈ argmin{ẑ1

N ′(v̂1
N ), . . . , ẑM

N ′(v̂M
N )} and the

best upper bound estimate µ̂U = ẑN ′(v̂∗).
7: Calculate the variance estimate of the true upper bound estimate:

σ̂2
U = 1

N ′(N ′−1)

N ′∑
k=1

((
c⊤

k v̂∗ +
∑
t∈T
Qt(v̂∗, ξk)

)
− µ̂U

)2
.

8: Construct the approximate (1−α) level CI for the upper bound estimate as
µ̂U ± zα/2σ̂U .

9: Calculate the mean and variance estimates of the true lower bound estimate as
µ̂L and σ̂2

L as:

µ̂L = 1
M

M∑
i=1

ẑi
N and σ̂2

L = 1
M(M −1)

M∑
i=1

(
ẑi

N − µ̂L

)2
.

10: Construct the approximate (1−α) level CI for the lower bound estimate as
µ̂L± tα/2,M−1σ̂L.

11: Construct the approximate (1−α) level CI for the true objective value as (µ̂L−
tα/2,M−1σ̂L, µ̂U + zα/2σ̂U ).

To demonstrate the computational performance and efficiency of the proposed al-
gorithm, we conduct an extensive computational study on various modified IEEE
instances from MATPOWER (Zimmerman, Murillo-Sánchez & Thomas, 2011). In
Section 2.5.1, we explain the experimental setup in detail. In Section 2.5.2, we show
the computational efficiency of our algorithmic enhancements and sets of optimal-
ity cuts with parallelization in comparison with the state-of-the-art solver GUROBI.
We provide the statistical results on the true optimal value produced by the SAA
algorithm with different sizes of failure scenarios in Section 2.5.3. We evaluate the
quality of the maintenance schedules obtained by the proposed stochastic models in
Section 2.5.4. Lastly, we investigate the effects of the cardinality of the sets G′ and
L′ in Section 2.5.5.
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2.5.1 Experimental Setup

2.5.1.1 Instance Creation

For our joint chance-constrained stochastic program model, we consider a one-week
planning period with daily maintenance decisions and hourly operational decisions.
The planning horizon starts on a Monday at 00 : 00. We obtain the weekly electricity
consumption data available from the U.S. Energy Information Administration (EIA,
2020) since actual power demand parameters in standard IEEE instances are given
for an hourly period for each bus. We later use this data to generate a new power
demand dataset through normalization such that {dits; t∈ T , s∈S} follows a similar
trend for every i ∈ B. Since corrective maintenance is undesirable and unexpected,
it is more expensive and takes longer amount of time compared to predictive main-
tenance. Specifically, we assume that the maintenance durations are τp

G = τp
L = 1 and

τ c
G = τ c

L = 2 days. We also assume that maintenance cost for generators is a function
of generation cost and generation capacity. In particular, we let Cp

i = p̄ici|S| for
i ∈ G. Additionally, we let Cc

i = 3Cp
i for i ∈ G, Cp

ij = 0.1∑i∈G Cp
i /|G| and Cc

ij = 3Cp
ij

for (i, j) ∈ L. We have chosen the constant Mij sufficiently large for (i, j) ∈ L′

such that constraint (2.1l) becomes redundant when yk
ijts = 1. In particular, we

let Mij = Bij(δmax
i − δmin

j ) for (i, j) ∈ L′ (e.g., see Fisher, O’Neill & Ferris (2008)).
We choose the probability thresholds pG

fail = 0.1 and pL
fail = 0.2 for generators and

transmission lines, respectively. We then identify those system components prone
to failure within the planning horizon as explained in Section 2.3.1. For the com-
putational experiments subject to the joint chance-constraint (2.4b), the thresholds
ρG and ρL are set to 1 and max{1,⌊|L|/20⌋}, respectively. These experiments are
conducted with a probability level α = 0.1 of the joint chance-constraint. We report
the cardinality of the subsets of G and L, and the threshold parameters of the joint
chance-constraint for each instance in Table 2.2.

|G′| |G′′| |L′| |L′′| ρG ρL

9-bus 1 2 3 6 1 1
39-bus 4 6 4 42 1 2
57-bus 2 5 7 73 1 4

118-bus 4 15 9 177 1 9

Table 2.2 Cardinality of Sets and Threshold Parameters.
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We generate a dataset consisting of unique degradation signals due to the lack of
publicly available data to estimate the parameters of the prior distributions of υh

and βh for h ∈ H. In power systems, it is realistic to assume that generators are
more likely to fail than transmission lines (see, for example, Papavasiliou et al.
(2015)). Thus, we follow this assumption with our dataset. For simplicity, we
assume that the variance of υh and βh are indeed known and held constant over
the planning horizon for h ∈H. Therefore, we are only interested in estimating the
prior mean of υh and βh, denoted by µ0 and µ1, respectively. First, we focus on
estimating µ0 and µ1 among the set of generators. For that purpose, we generate
100 unique degradation signals. Let us label these degradation signals with an index
j where j = 1, . . . ,100. We assume that degradation signal j has the functional form
(2.2) with υj ∼ N (20,102) and βj ∼ N (5,0.32) and σj = 3 for j = 1, . . . ,100. The
degradation signal threshold Λ is set to 100. We observe degradation signal j at
discrete time points until a failure time ξj = {t : Dj(t)≥ 100, t≥ 0} for j = 1, . . . ,100.
We remind the reader that Di

j is defined as the increment of degradation signals
between times ti

j and ti−1
j for i = 2, . . . , ξj where D1

j = Dj(1), for j = 1, . . . ,100. We
find the point estimate of µ0 with ∑100

j=1 D1
j /100. To obtain the point estimate of

µ1, we first compute the prior mean estimate of βj as µ̂j = (∑ξj

i=1 Di
j −D1

j )/ξj for
j = 1, . . . ,100. Then, we find the point estimate of µ1 with ∑100

j=1 µ̂j/100. Eventually,
we obtain the prior mean estimate among the set of generators. Secondly, to estimate
µ0 and µ1 among the set of transmission lines, we follow a similar procedure after
generating 100 unique degradation signals with υj ∼N (15,52) and βj ∼N (3,0.32)
and σj = 1 for j = 1, . . . ,100. Finally, we obtain the prior mean estimates of the
stochastic parameters υh and βh of the degradation signal model for every h ∈H.

Next, we obtain the posterior distribution of the unknown parameters of υh and βh

for h∈H with a Bayesian approach given the recently observed real-time condition-
based information. For that purpose, we generate 100 unique degradation signals
with a random initial signal amplitude. For the sake of easier modeling, we assume
that these degradation signals were observed at some random discrete times. We
further assume that random observation time tk

h for component h follows a uniform
distribution on [1,(Λ−µ0)/(µ1 + 3κ1)]. This assumption implies that degradation
signal for component h ∈ H was observed when it had been drastically degrading
with a gradual linear drift. Under these assumptions, we obtain the posterior mean
of the drift parameter βh of form (2.3), which easily yields us to identify the RLD of
each component h ∈ H (Proposition 2.1). Consequently, we select set H′ by means
of RLDs as discussed in Section 2.3.1.
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2.5.1.2 Computational Setup

The code for each algorithm is written in Python using Spyder IDE. We use a 64-bit
computer with Intel Xeon W-2255 CPU with a 2.20 GHz processor and 32 GB of
memory space, running on the Windows operating system. The Gurobi Optimizer
(GUROBI) is used to solve the pure binary integer first-stage problem (2.5) and the
mixed-integer operational subproblems (2.6). To benefit from the decomposition
of the operational subproblems throughout the implementation, we employ Joblib
library for parallel computing. We use PoissonBinomial library (PyPI, 2020) as our
probability oracle. We allow GUROBI to use 20 threads for solving (2.5), however,
we set the number of parallel threads parameter Threads to 1 for solving (2.6)
when using parallelization. We use the relative optimality gap, %(UB−LB)/UB,
as a stopping criteria within Algorithm 1. For each computational experiment, the
relative optimality gap tolerance MIPGap is chosen as the same as the tolerance
parameter ϵ of Algorithm 1. Time limit for all experiments is set to 6 hours. The
wall-clock time for computational experiments is measured in seconds. Note that
each operational subproblem is solved to optimality within the tolerance ϵ.

2.5.2 Performance of the Proposed Algorithm

In this section, we illustrate the computational efficiency of the proposed algorithm
from three aspects. We first benchmark the performance of the proposed optimality
cuts and algorithmic enhancements against the standard integer L-shaped optimality
cut and the state-of-the-art solver GUROBI for different sizes of failure scenarios under
exact and approximate representations of the joint chance-constraint. Secondly, we
present the speedup of the proposed algorithm gained from parallel computing. We
conclude this section by comparing the performance of each FlowModel used for
transmission line flow analysis over different instances.

2.5.2.1 Benchmark of the Proposed Algorithm

We derive different sets of optimality cuts based on the integer L-shaped optimality
cuts (Section 2.4.3) and introduce various algorithmic enhancements such as time-
decomposability of scenario subproblems and status of system components (Section
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|K| intLS optCut optCut+ intLS∗ optCut∗ optCut∗
++ GUROBI Speedup

SPexact

50 2222.29 2139.21 871.66 232.13 123.04 11.29 2576.07 ×228.27

100 4184.08 4025.15 1884.74 400.89 256.71 18.00 5311.97 ×295.04

200 8165.64 7971.17 4235.76 772.62 604.62 29.30 16488.76 ×562.73

SPsafe

50 334.07 334.70 350.69 11.85 12.36 9.30 576.33 ×61.99

100 639.34 637.40 766.17 18.63 17.83 12.36 2007.75 ×162.45

200 1268.76 1270.58 1879.29 28.23 29.63 19.02 6155.00 ×323.65

Table 2.3 Computational Times for the 9-bus Instance.

2.4.1). By using both the exact representation (referred to as SPexact) and the
SOCP-based safe approximation (referred to as SPsafe) of the joint chance-constraint,
we compare them against each other over the illustrative 9-bus instance under failure
scenarios of size 50,100 and 200. When using GUROBI for SPexact, we first relax our
optimization model by removing the joint chance-constraint and obtain a solution
within the time limit. Then, we check the feasibility status of this solution with
respect to the joint chance-constraint with Algorithm 2. When this solution is
feasible, we conclude that it is indeed optimal. Otherwise, we discard this solution
from the set of feasible solutions by adding (2.16) to our optimization model and
resolve it by GUROBI. We investigate the differences between these optimality cuts
and algorithmic enhancements by setting the tolerance parameter ϵ to 10−2. Our
computational results are shown in Table 2.3 for the following cases of Algorithm 1:

• intLS: The set of classical integer L-shaped optimality cuts in (2.19).

• optCut: The set of improved optimality cuts in (2.21).

• optCut+: The set of improved optimality cuts in (2.24).

• intLS∗: The set of classical integer L-shaped optimality cuts in (2.19) with
time-decomposability of scenario subproblems and status of system compo-
nents.

• optCut∗: The set of improved optimality cuts in (2.21) with time-
decomposability of scenario subproblems and status of system components.

• optCut∗
++: The set of improved optimality cuts in (2.26) with time-

decomposability of scenario subproblems and status of system components.

• GUROBI: The state-of-the-art solver GUROBI.
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The “Speedup” column represents the speedup of optCut∗
++ against GUROBI. For

each scenario size, GUROBI is able to provide a feasible solution within the time
limit; however, its computational time is even larger than intLS. For SPexact, the
computational times under intLS and optCut increase linearly with the size of
scenarios whereas optCut+ reduces these computational times almost by half. Sur-
prisingly for SPsafe, intLS and optCut outperform optCut+ under different sets of
scenarios. The time-decomposability of scenario subproblems and status of system
components provide the most computational gain in both SPexact and SPsafe as
these algorithmic enhancements prevent many unnecessary resolves of scenario sub-
problems within Algorithm 1. Under these enhancements, optCut∗

++ outperforms
intLS∗ and optCut∗ for both exact and safe approaches. We observe that speedup
gains for SPexact are more than for SPsafe as the feasible region induced by the joint
chance-constraint is smaller in the latter, which reduces the effects of the optimality
cuts. Still, optCut∗

++ provides a substantial speedup compared to GUROBI for both
SPexact and SPsafe.

Based on our preliminary computations of the SAA method, we observe that we can
obtain maintenance and operational schedules within 2% optimality under failure
scenarios of size 50 and 100 (see Section 2.5.3). We extend our computational study
for all IEEE instances by setting the tolerance parameter ϵ to 10−4. In Table 2.4, we
investigate the computational efficiency of optCut∗

++ against GUROBI by reporting
the following metrics:

• # Iter: The number of iterations within Algorithm 1.

• Time: The time for solving the joint chance-constrained stochastic program
in seconds.

• Gap: The percentage relative optimality gap obtained within the 6-hour time
limit.

SPexact SPsafe

optCut∗
++ GUROBI optCut∗

++ GUROBI

|K| # Iter Time Gap Time Gap # Iter Time Gap Time Gap

9-bus 50 30 11.29 0.00 TL 0.08 21 10.02 0.00 736.25 0.00
100 31 18.00 0.00 TL 0.12 21 13.30 0.00 2931.43 0.01

39-bus 50 311 3610.20 0.00 TL 6.44 75 506.32 0.00 TL 0.72
100 348 7334.40 0.00 TL 30.63 73 598.75 0.00 TL 7.59

57-bus 50 329 2509.55 0.00 TL 0.24 393 2110.02 0.00 TL 0.07
100 364 7708.44 0.01 TL 0.29 386 3889.33 0.01 TL 0.16

118-bus 50 90 TL 3.80 TL 69.88 699 TL 0.79 TL 5.33
100 78 TL 4.35 TL NA 580 TL 1.55 TL NA

Table 2.4 Comparison of optCut∗
++ with GUROBI for Different Instances.
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The “TL” (under column “Time”) is used whenever the 6-hour time limit is reached.
The “NA” (under column “Gap”) is used if no feasible solution is found within the
time limit. According to Table 2.4, optCut∗

++ and GUROBI produce an optimal solu-
tion within the time limit for the 9-bus instance under SPsafe; however, optCut∗

++
attains these solutions in less than 20 seconds whereas the computational time of
GUROBI rapidly increases when 100 failure scenarios are used. For all instances,
optCut∗

++ outperforms GUROBI in terms of the percentage relative optimality gap.
For the 118-bus instance, GUROBI fails to produce a feasible solution within the time
limit under scenario size of 100 whereas optCut∗

++ produces a feasible solution for
both SPexact and SPsafe. Our computational study shows that optCut∗

++ has signif-
icant computational gains compared to GUROBI under both SPexact and SPsafe, and
can be used to produce high-quality feasible solutions for large-scale instances.

2.5.2.2 Parallel Computing

A significant property of Algorithm 1 is that the linear relaxations (Step 2) and the
second-stage problems (Step 20) can be solved in parallel. In order to demonstrate
the effect of parallelism within Algorithm 1, we solve the 9-bus instance with a
scenario size of 1000 by using the exact reformulation of the joint chance-constraint.
The results of our computational experiment are presented in Figure 2.2 with respect
to different number of threads.
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Figure 2.2 Speedup ratios with parallel computing.

Our empirical study indicates a sublinear growth in the parallel speedup ratios. We
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note that the data size of 9-bus instance is relatively small and the results are only
representative, nevertheless, the utilization of the parallel computing becomes more
apparent as the size of the problem increases.

2.5.2.3 Flow Limit Analysis

As a preprocessing step for Algorithm 1, we identify the redundancy in constraints
(2.1m) as explained in Section 2.4.4. We summarize the computational results in
Table 2.5 by reporting the following metrics:

• Time: The preprocessing time in seconds.

• UB: The redundancy ratio in the upper bound flow constraints.

• LB: The redundancy ratio in the lower bound flow constraints.

We note that we do not report 57-bus instance in Table 2.5 since all upper and lower
flow limits are redundant. The redundancy ratios under UB and LB columns are
given as follows:

• The redundancy ratio over |L′′| in FlowModel-I.

• The redundancy ratio over |L′′|× |T | in FlowModel-II.

• The redundancy ratio over |L′′|× |T |× |S| in FlowModel-III.

9-bus 39-bus 118-bus

UB LB Time UB LB Time UB LB Time

FlowModel-I 0.500 0.333 0.011 0.476 0.548 0.114 0.819 0.819 3.541
FlowModel-II 0.500 0.476 0.035 0.514 0.548 0.740 0.819 0.822 24.432
FlowModel-III 0.602 0.640 0.593 0.560 0.548 17.650 0.831 0.832 574.311

Table 2.5 Flow Limit Analysis.

Each FlowModel identifies redundacy less than a second for the 9-bus instance
whereas the differences between the preprocessing times become more evident as the
instance size increases. For 39-bus and 118-bus instances, the differences between
the redundancy ratios given by FlowModel-I and FlowModel-II remain almost iden-
tical. Thus, one can potentially consider the trade-off between the computational
effort and redundancy in the choice of FlowModel. As instance size increases, the
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difference between the redundancy ratios tends to decrease. Still, our computational
results show that FlowModel-III provides the best ratio within a reasonable time
limit for all instances. Therefore, we use FlowModel-III to identify such redundant
flow limits in the remainder of our computational experiments.

2.5.3 Sample Average Approximation Results

In this section, we present our computational results by solving the SAA problems of
the joint chance-constrained stochastic program by evaluating the obtained solutions
through Algorithm 3. For that purpose, we let M = 5, N ′ = 1000, N = 50 and
N = 100 with significance level of 0.05 of the SAA algorithm. We generate i.i.d.
samples for each replicate and solve them with Algorithm 1 for various IEEE test
instances. We remind the readers that the training scenarios are generated over the
set of components H′ whereas solutions are evaluated over the failure possibilities of
all components H. The resulting 95% CIs for the lower and upper bound estimates
(in 100.000$) are presented in Table 2.6. We also report the estimated optimality
gaps between the optimal value associated with the candidate optimal solutions
produced by the SAA method and the true optimal value in Table 2.6.

SPexact SPsafe

|K| CI of LB CI of UB Gap (%) CI of LB CI of UB Gap (%)

9-bus 50 (1.61, 1.64) (1.63, 1.64) 2.30 (1.64, 1.67) (1.66, 1.67) 2.03
100 (1.63, 1.64) (1.63, 1.64) 1.17 (1.64, 1.66) (1.66, 1.67) 1.65

39-bus 50 (31.50, 31.80) (31.69, 31.88) 1.21 (36.29, 36.41) (36.39, 36.47) 0.48
100 (31.65, 31.88) (31.69, 31.89) 0.72 (36.32, 36.38) (36.39, 36.47) 0.41

57-bus 50 (36.63, 36.79) (36.91, 37.02) 1.07 (36.72, 36.83) (36.97, 37.08) 0.98
100 (36.67, 36.78) (36.90, 37.02) 0.95 (36.74, 36.85) (36.97, 37.08) 0.93

118-bus 50 (5.48, 5.52) (5.53, 5.55) 1.22 (5.49, 5.52) (5.53, 5.55) 1.12
100 (5.50, 5.52) (5.53, 5.55) 0.86 (5.49, 5.51) (5.53, 5.55) 1.10

Table 2.6 SAA Results.

According to Table 2.6, the estimated gap decreases as the size of scenarios increases
for all instances, as expected. For the 9-bus instance, the scenario size of 100 reduces
the estimated gap significantly compared to the scenario size of 50 whereas this
reduction is less significant in other instances. Additionally, the estimated confidence
intervals are almost identical for the 118-bus instance for both SPexact and SPsafe.
The results of our computational study indicate that these sample sizes along with
the choice of the system components considered for maintenance are indeed large
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enough to obtain the corresponding tight bounds on the true optimal value of our
optimization model.

2.5.4 Model Comparison

In this section, we evaluate the quality of the maintenance schedules obtained from
the proposed stochastic models, SPexact and SPsafe, in terms of the average failures of
system components, maintenance and operational costs under 50 failure scenarios.
In order to quantify the effects of these schedules when the unexpected failures
are not considered, we compare the maintenance schedules of SPexact and SPsafe

with those of a deterministic model (DM), which assumes that none of the system
components will fail within the planning horizon. We evaluate each maintenance
schedule over failure scenarios of size 1000 and report the average failures in Table
2.7.

G′ L′ G′′∪L′′ JCC-Violation

(|G′|, |L′|) SPexact SPsafe DM SPexact SPsafe DM SPexact SPsafe DM SPexact SPsafe DM

9-bus (1,3) 0.014 0.014 1.000 0.254 0.000 1.390 0.043 0.000 0.000 0.417
39-bus (4,4) 0.559 0.022 3.075 0.335 0.000 3.950 0.095 0.097 0.003 1.000
57-bus (2,7) 0.010 0.010 1.894 0.190 0.000 6.067 0.259 0.000 0.000 0.999

118-bus (4,9) 0.064 0.062 3.798 0.340 0.091 6.776 0.124 0.006 0.006 1.000

Table 2.7 Average Failures under Stochastic and Deterministic Models.

The “JCC-Violation” column represents the total number of joint chance-constraint
violations under different maintenance plans by evaluating the number of com-
ponents entering corrective maintenance under each scenario against the desired
thresholds. For all instances, these violations are less than the probability level of
the joint chance-constraint for both SPexact and SPsafe; however, these are adversely
higher under DM as it does not consider the risks associated with the unexpected
failures. Furthermore, SPsafe provides a more conservative approach with less num-
ber of failures and lower violation of the joint-chance constraint, compared to the
SPexact approach. In Table 2.8, we also report the maintenance and operational
costs incurred under these different maintenance schedules.
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GM TLM Operations Cost Improv. (%)

(|G′|, |L′|) SPexact SPsafe DM SPexact SPsafe DM SPexact SPsafe DM SPexact SPsafe

9-bus (1,3) 0.32 0.32 0.91 0.04 0.05 0.06 1.28 1.30 1.39 30.67 29.52
39-bus (4,4) 2.73 2.42 5.88 0.26 0.22 0.64 28.80 33.79 35.91 25.08 14.14
57-bus (2,7) 3.78 3.78 10.09 1.13 1.20 2.95 32.05 32.05 31.98 17.89 17.74

118-bus (4,9) 1.13 1.12 3.07 0.22 0.22 0.49 4.20 4.19 4.26 29.07 29.05

Table 2.8 Cost Comparison of Stochastic and Deterministic Models.

The “GM” and “TLM” columns provide the generator and transmission line main-
tenance costs, respectively. The “Operations” column gives the operational costs.
All costs are reported in 100.000$. The “Cost Improv. (%)” represents the total
cost improvements in percentages achieved by stochastic models compared to the
deterministic model.

Table 2.7 shows that the average failures for G′ and L′ significantly decrease under
both SPexact and SPsafe as DM ignores the power system capabilities. Accordingly,
generator and transmission line maintenance costs obtained under these stochastic
methods are less than under those of DM for all instances. We also observe a slight
increase in the operational costs in the DM approach, except the 57-bus instance;
however, DM still incurs a higher total cost than SPexact and SPsafe. This is due
to the fact that the effects of the unexpected failures of system components on
power system operations are ignored in DM. Our computational study shows that
14−31% cost savings can be obtained under stochastic models in comparison with
DM. As a result, the coordination between maintenance and operational schedules
when considering the unexpected failures of system components yields significant
cost savings as well as less interruptions due to these failures.

2.5.5 Sensitivity Analysis

In this section, we examine the effects of different choices of sets G′ and L′ on
average failures, maintenance and operational costs under 50 failure scenarios. For
that purpose, we first select (pG

fail,p
L
fail) = (0.2,0.4) which decreases the cardinality

of these sets compared to the baseline setting; however, this selection of subsets
results in infeasibilities. This is because of the fact that components in H′′ are not
scheduled for maintenance within the planning horizon, which causes the violation of
the joint chance-constraint. Then, we analyze the effects of the size of sets G′ and L′

when (pG
fail,p

L
fail) = (0.01,0.02) that considers more components for maintenance.

We evaluate the maintenance schedules obtained by stochastic and deterministic
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models over 1000 failure scenarios, which are the same in Section 2.5.4. We report
the average failures and joint chance-constraint violations in Table 2.9.

G′ L′ G′′∪L′′ JCC-Violation

(|G′|, |L′|) SPexact SPsafe DM SPexact SPsafe DM SPexact SPsafe DM SPexact SPsafe DM

9-bus (2,3) 0.057 0.065 1.043 0.254 0.000 1.390 0.000 0.000 0.000 0.417
39-bus (5,5) 0.452 0.065 3.118 0.046 0.046 3.996 0.006 0.062 0.003 1.000
57-bus (3,10) 0.041 0.041 1.925 0.381 0.192 6.259 0.036 0.000 0.000 0.999

118-bus (5,10) 0.108 0.089 3.825 0.407 0.144 6.829 0.044 0.008 0.006 1.000

Table 2.9 Average Failures under Stochastic and Deterministic Models with Larger
H′.

We observe that the average failures of set G′ and L′ increase; however, this is an
expected result since more system components are under study for maintenance.
Table 2.10 demonstrates the maintenance and operational costs incurred when the
failure probability thresholds are decreased.

GM TLM Operations Cost Improv. (%)

(|G′|, |L′|) SPexact SPsafe DM SPexact SPsafe DM SPexact SPsafe DM SPexact SPsafe

9-bus (2,3) 0.32 0.32 0.91 0.04 0.05 0.06 1.28 1.30 1.39 30.67 29.52
39-bus (5,5) 2.52 2.42 5.88 0.22 0.22 0.64 29.73 33.79 35.91 23.47 14.14
57-bus (3,10) 3.78 3.78 10.09 1.13 1.20 2.95 32.05 32.05 31.98 17.89 17.74

118-bus (5,10) 1.13 1.12 3.07 0.22 0.22 0.49 4.20 4.19 4.26 28.98 29.05

Table 2.10 Cost Comparison of Stochastic and Deterministic Models with Larger
H′.

For 9-bus and 57-bus instances, increasing the sizes of sets G′ and L′ does not affect
the quality of the maintenance schedules for both SPexact and SPsafe as compared
to the results in Section 2.5.4. For the 39-bus instance under SPexact, we observe a
slight decrease in both generator and transmission line maintenance costs whereas
operational cost increases. On the other hand, there is a relatively small increase in
maintenance and operational costs for the 118-bus instance under SPexact. This is
because of the fact that large-scale instances cannot be solved to optimality within
tolerance as increasing the size of H′ increases the computational time required for
convergence of the solution algorithm as well. Nevertheless in all cases, there are
still significant cost savings compared to DM. We observe that although we take
less failure risks by decreasing probability thresholds, we might be overly cautious
which can result in higher operational costs.

2.6 Conclusions
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In this thesis, we study a short-term condition-based integrated maintenance plan-
ning problem in coordination with the power system operations by considering
the unexpected failures of generators as well as transmission lines. We formulate
this problem as a two-stage joint chance-constrained stochastic program. Under a
Bayesian setting, we obtain the RLDs of generators and transmission lines by using
their degradation-based sensor information. We consider a specific subset of these
components which are more prone to failure for scheduling maintenance and take the
effects of their unexpected failures into account based on their estimated RLDs. We
introduce a joint chance-constraint to mitigate the failure risk in the power network
by restricting the number of system components under corrective maintenance. We
develop a decomposition algorithm by improving the integer L-shaped method with
various algorithmic enhancements including derivation of stronger optimality cuts
by exploiting the underlying problem structure. This algorithm also includes a sep-
aration subroutine to provide an exact representation of the joint chance-constraint
by leveraging the Poisson Binomial random variables in this constraint. As an alter-
native approach, we also provide an SOCP-based safe approximation to represent
the joint chance-constraint which provides computational advantages for larger scale
instances, despite of its conservatism. Our computational experiments demonstrate
the efficiency of the proposed decomposition algorithm along with the improved cut
generation procedures and preprocessing steps which consistently outperforms the
state-of-the-art solver for all test instances. Finally, we highlight that our proposed
stochastic models can obtain 14− 31% cost savings against a deterministic model
since maintenance and operational schedules are coordinated in these models while
explicitly considering the effects of failure uncertainty on power system operations.
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3. Convex Relaxations for the Multi-period Natural Gas Storage

Optimization Problem

3.1 Introduction

Gas network optimization problems have been a great interest to the natural gas
industry due to their potential economic benefits (Wong & Larson, 1968). The
main aim of these problems is to determine the optimal nodal pressures and gas
flows through pipelines as well as to balance gas supply and demand with minimum
operational costs. In this respect, integrating gas storages into these problems has
become highly relevant and more important to the natural gas industry since the re-
cent advances in power-to-gas technologies allow for storing and transporting surplus
electrical power in gaseous form. While this form along with the contracted gas sup-
plies can be used to deal with supply and demand fluctuations, there remain certain
mathematical and computational challenges in the gas storage optimization prob-
lem: (i) due to their physical properties, some passive and active network elements
impose challenging constraints on the optimization model, such as the well-known
nonconvex pressure loss equations (“Weymouth” equations) governing the gas trans-
portation in pipes and resistors, and the nonconvex fuel consumption of compressors,
(ii) disjunctive formulations are needed for representing the direction of gas flow as
well as the switching decisions for active elements such as compressors and (control)
valves and, (iii) the injection and withdrawal rates of gas storages and the coupling
conditions of active elements necessitate the multi-period modeling of this prob-
lem. Due to its many inherent nonconvex and nonlinear features, the multi-period
gas storage optimization problem belongs to the class of nonconvex mixed-integer
nonlinear programming (MINLP) problems whose continuous relaxations are quite
challenging to solve to optimality.

There has been a wide literature devoted to the optimization problems in gas net-

50



works (for an recent review, see Ríos-Mercado & Borraz-Sánchez (2015) and refer-
ences therein). These problems are typically modeled as nonconvex MINLPs whose
simple cases are known be computationally and practically intractable within the
scope of current state-of-the-art global optimization solvers (Burer & Letchford,
2012). In the context of gas network optimization, Labbé, Plein, Schmidt & Thürauf
(2021) show that the feasibility problem of booking contracts in passive networks
can be solved in polynomial time; however, the existence of active network elements
such as compressors and (control) valves further complicate the problem. In par-
ticular, Humpola (2014) proves the NP-hardness of the gas network optimization
problem with active elements and switching decisions. In the literature, there are
more results on the hardness of different types of optimization problems in gas net-
works, see, e.g., Gross, Pfetsch, Schewe, Schmidt & Skutella (2019) and Schewe,
Schmidt & Thürauf (2020).

In order to solve these hard problems in gas networks, several studies have used
nonlinear optimization methods, such as sequential linear and quadratic program-
ming (de Wolf & Smeers, 2000; Ehrhardt & Steinbach, 2005), interior point methods
(Steinbach, 2007) and primal-relaxed dual decomposition methods (Wu, Lai & Liu,
2007). As these methods require a fixed network topology, the flexibility in chang-
ing the switching status of active elements is completely ignored. Some researchers
attempt to incorporate these switching decisions into nonlinear models by using
complementary constraints (Pfetsch, Fügenschuh, Geißler, Geißler, Gollmer, Hiller,
Humpola, Koch, Lehmann, Martin, Morsi, Rövekamp, Schewe, Schmidt, Schultz,
Schwarz, Schweiger, Stangl, Steinbach, Vigerske & Willert, 2015; Schmidt, 2015).
While being able to find locally optimal (feasible) solutions in reasonably short time,
these local methods provide only an upper bound on the objective value without
any quality guarantees of these local solutions.

The literature has also focused on various relaxations and approximations in order
to deal with the nonlinear and nonconvex aspects of gas physics, see, e.g., piece-
wise convex relaxations (Wu, Nagarajan, Zlotnik, Sioshansi & Rudkevich, 2017)
and Taylor approximation (Ordoudis, Pinson & Morales, 2019) of nonconvex con-
straints, convex approximations of cost functions (Babonneau, Nesterov & Vial,
2012; Wu, Ríos-Mercado, Boyd & Scott, 2000), or continuous relaxations of in-
tegrality (Andre, Bonnans & Cornibert, 2009; Zhang & Zhu, 1996) and domain
restrictions (Fügenschuh & Humpola, 2013; Wu et al., 2000). Many studies use the
McCormick envelopes for relaxing the bilinear terms in the nonconvex constraints,
see, e.g., Borraz-Sánchez, Bent, Backhaus, Hijazi & Hentenryck (2016), Wu et al.
(2017). Although this relaxation technique is quite standard in the literature, it
might lead to weak formulations when the variables have large bounds, which is in-
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deed the case for nodal pressure and gas flow in gas network optimization problems.
Piecewise linear approximations are also widely used in the literature to handle the
inherent nonlinearities by introducing binary variables (Martin, Möller & Moritz,
2006; Pfetsch et al., 2015; Wang, Yuan, Zhang, Zhao & Liang, 2018; Wu et al., 2017;
Zheng, Rebennack, Iliadis & Pardalos, 2010). The main advantage of these piece-
wise linearizations is that the resulting mixed-integer linear programming (MILP)
model can be readily given to the current state-of-the-art mixed-integer program-
ming solvers. Still, the high-resolution solutions produced by these approximations
require introducing “many” binary variables. In the existence of these variables along
with the switching decisions of active elements, these MILP formulations might be
prohibitively expensive within these solvers.

Recently, certain convex relaxations have attracted attention in the literature. In
particular, the mixed-integer second-order cone programming (MISOCP) and the
semidefinite programming (SDP) relaxations are used to obtain tight dual bounds.
In Borraz-Sánchez et al. (2016), an MISOCP relaxation model is constructed for
solving the gas expansion planning problem, which involves the switching status
for active network elements and simplified bidirectional compressor stations. He,
Shahidehpour, Li, Guo & Zhu (2018) formulate a two-stage robust model for the
operational problem in the integrated energy systems. They ignore active gas net-
work elements, and assume a radial gas network, which allows them to remove
the absolute value from the Weymouth equations. Under this unrealistic assump-
tion, they relax these equations into second-order cone constraints. More recently,
Schwele, Ordoudis, Kazempour & Pinson (2019) propose a similar MISOCP-based
outer-approximation of the region defined by the nonconvex Weymouth equation
including the bidirectional gas flow. Ojha, Kekatos & Baldick (2017) formulate an
SDP relaxation for the gas network operations problem, in which they exploit the
chordal extension of the sparse natural gas network. They tighten this convex relax-
ation by solving moment-based relaxation problems and applying the rank reduction
of the moment matrix via valid inequalities.

The optimization problems in gas networks include highly detailed nonlinear, non-
convex and discrete aspects as mentioned above. For this reason, several studies
in the literature make some simplifications or completely ignore some of these as-
pects. For example, some studies on the gas storage optimization problems over
a multi-period planning horizon do not consider the switching status of the active
network elements (Correa-Posada & Sánchez-Martín, 2015; Schwele et al., 2019), or
assume that there are no such elements in the gas network (He et al., 2018). While
these active elements along with their switching status are modeled in some of the
previous works, they assume that compressors do not incur losses in the network
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(Borraz-Sánchez et al., 2016; Burlacu, Egger, Groß, Martin, Pfetsch, Schewe, Sirvent
& Skutella, 2019; Schewe et al., 2020). Among the MISOCP relaxation approaches,
the strong formulations are neglected. For example, the convexification approach
by Schwele et al. (2019) uses weak relaxations for feasible region defined by the
Weymouth equations.

In this thesis, we focus on the multi-period gas storage optimization problem by
considering these aforementioned highly nonlinear and nonconvex aspects of the gas
physics and gas losses as well as the switching status of active network elements
such as compressors and (control) valves. We formulate this problem as a non-
convex MINLP, which has two types of nonconvexity: i) the Weymouth equations
for pipes and resistors, and ii) fuel consumption equations for compressors. Since
this class of optimization problems are hard to solve in general, we present different
mixed-integer convex relaxations based on the outer-approximations of the feasible
regions defined by (i) and (ii). Our convexification approaches use the polyhedral
and second-order cone representable (SOCr) outer-approximations of the noncon-
vex constraints. Moreover, we present a two-step solution framework based on these
mixed-integer convex relaxations, which derive (near) globally optimal solutions and
high-quality (locally) feasible solutions for congested gas networks. We demonstrate
the effectiveness of our framework on different GasLib instances from the literature.

The remainder of this chapter is organized as follows: Section 3.2 introduces the
physical and operational constraints in the multi-period gas storage optimization
problem along with its mathematical formulations. Section 3.3 and Section 3.4
present our proposed outer-approximations of the feasible regions defined by the
nonconvex constraints for compressors and passive elements, respectively. The two-
step solution framework is explained in Section 3.5. The results of our computational
study are presented in Section 3.6. Section 3.7 concludes this chapter with final
remarks.

3.2 Problem Formulation

In this section, we first describe the problem setting (Section 3.2.1), and explain the
constraints used in the gas network modeling along with the decision variables and
problem parameters (Section 3.2.2). Then, we present the mathematical formulation
(Section 3.2.3) and the MINLP formulation (Section 3.2.4) for the multi-period gas
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storage optimization problem.

3.2.1 Problem Setting

In our work, we consider an isothermal and stationary natural gas network G =
(N ,E), where N denotes the set of nodes, and E denotes the set of arcs. Figure 3.1
shows an example of a small-scale gas network (taken from Burlacu et al. (2019)).
The set N consists of the set Nsource of source nodes, the set Ninner of inner nodes
and the set Nsink of sink nodes. We let E = P ∪A where P and A denote the
set of passive and active elements, respectively. In our notation, we also let P =
P ′∪P ′′∪P ′′′, where these subsets denote the set of pipes, resistors and connections
(i.e., short pipes), respectively. Also, we split A into the set C of compressors, the
set V of control valves, and the set R of regular valves. For each arc (i, j), we
say that the direction of gas flow is positive if it goes from node i to node j, and
negative otherwise. We restrict ourselves to an idealized compressor station which
consists of a bidirectional single compressor unit (i.e., compressor). We assume that
all nodes are located horizontally (i.e., arcs are at the same height), and all arcs are
cylindrical. For each node i ∈ N , we define ∆+(i) := {j ∈ N : (i, j) ∈ A} as the set
of outgoing neighbors and ∆−(i) := {j ∈ N : (j, i) ∈ A} as the incoming neighbors
of node i. Also, we let ∆+

C (i) = {j ∈ N ,(i, j) ∈ C} and ∆−
C (i) = {j ∈ N ,(j, i) ∈ C}

as the sets of outgoing and incoming neighbors of node i, which are connected to
this node via a compressor. We assume that natural gas storage units (i.e., stores)
are installed at some nodes i ∈ N . We denote the set of natural gas stores linked
to node i as S(i)⊆N . Finally, T represents the set of periods within the planning
horizon.

3.2.2 Gas Network Modeling

In this section, we explain the operational and physical constraints of passive and
active elements. For more detailed explanations on these physical quantities and
gas network modeling, we refer the reader to the book by Koch, Pfetsch & Schewe
(2015). Each node i ∈ N is associated with a pressure variable pit for t ∈ T that
takes values from the interval [

¯
pi, p̄i]. The gas load at node i ∈N in period t ∈ T is

denoted by qit. For each period t∈T , the variable sjt ∈ [
¯
sj , s̄j ] represents the amount
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Figure 3.1 The GasLib-11 instance. Nsource = {S1, S2, S3}, Nsink = {T1, T2, T3},
Ninner = {N1, N2, N3, N4, N5}, C = {Cm1, Cm2}, R = {Vl1}, P is the set of un-
labeled arcs.

of natural gas (the store level) at store j ∈ S(i) linked to node i ∈ N , whereas the
gas injected and withdrawn from node i with rates η′

j and η′′
j are denoted by s′

jt

and s′′
jt, respectively. The gas withdrawals from store j are associated with supply

costs C−
j > 0. The variable fijt represents the gas flow through arc (i, j) ∈ E in

period t ∈ T . The gas flow through arc (i, j) ∈ E is between allowable lower and
upper flow limits denoted as

¯
fij and f̄ij , respectively. For each active element

(i, j) ∈ A, we consider its active and closed states. We model the switching status
of these network elements by using a binary variable xijt, which takes the value one
if the active element (i, j) is open in period t, and zero otherwise. Moreover, each
compressor (i, j) ∈ C is associated with binary start-up and shut-down variables uijt

and vijt, respectively. Whenever compressor (i, j) is turned on from off state, the
positive start-up cost Cup

ij is incurred.

Gas transportation in pipes is governed by the Euler equations, which are a system
of hyperbolic partial differential equations (e.g., see Osiadacz (1987)). Finding a
solution to this complex system is very hard. Thus, we simplify this system under
isothermal and stationary assumptions, which is a common practice in the gas net-
work literature. For each period t∈ T , we are then able to model the pressure losses
due to the internal friction during gas transportation through each pipe (i, j) ∈ P ′

with the very well-known nonlinear and nonconvex Weymouth equation:

(3.1) p2
it−p2

jt = wij |fijt|fijt (i, j) ∈ P ′, t ∈ T .

Here, the resistance coefficient wij is often called as the Weymouth coefficient. We

55



note that short pipes are artificial network elements which do not induce pressure
losses, i.e., wij = 0 for each (i, j) ∈ P ′′′.

Aside from the pipes, there are also different sources such as filter systems and
pressure regulators, which cause pressure losses in the gas network (Koch et al.,
2015). A resistor (i, j) ∈ P ′′ is used to represent such losses. Similar to pipes, the
Darcy–Weisbach equation (Finnemore & Franzini, 2002) is used to model these with
a small resistance coefficient wij for each t ∈ T in each resistor (i, j) ∈ P ′′:

fijt ≥ 0 =⇒ 2pit(pit−pjt) = wij |fijt|fijt

fijt < 0 =⇒ 2pjt(pit−pjt) = wij |fijt|fijt.

We note that the Darcy-Weisbach equation is also nonlinear and nonconvex. This
equation can be replaced with the Weymouth equation (see, e.g., Schmidt (2013))
by approximating the terms 2pit and 2pjt by pit +pjt:

(3.2) p2
it−p2

jt = wij |fijt|fijt (i, j) ∈ P ′′, t ∈ T .

In the gas network, active elements are used to control the gas flow and the pressures
of their adjacent nodes. For example, compressors are used to increase the pressure
of the incoming natural gas and transport it over long distances whereas control
valves are used to reduce this pressure between its adjacent nodes. For an open
active element, the compression ratio pjt/pit must lie between [

¯
rij , r̄ij ] if the gas flow

is in the positive direction. Otherwise, the ratio pit/pjt belongs to the same interval.
Whenever the active element is closed, the gas flow between node i and node j is
blocked and their nodal pressures are decoupled. These operational conditions are
summarized as follows:

xijt = 0 =⇒ fijt = 0 (i, j) ∈ A, t ∈ T(3.3a)

fijt ≥ 0,xijt = 1 =⇒ pjt

pit
∈ [

¯
rij , r̄ij ] (i, j) ∈ A, t ∈ T(3.3b)

fijt < 0,xijt = 1 =⇒ pit

pjt
∈ [

¯
rij , r̄ij ] (i, j) ∈ A, t ∈ T .(3.3c)

We assume that each active element (i, j) ∈ A is bidirectional (i.e.,
¯
fij ≤ 0 ≤ f̄ij).

Also, 1 <
¯
rij < r̄ij for each compressor (i, j) ∈ C, which results in a pressure increase

at node i (node j) in case of a positive (negative) gas flow. Similar to compressors,
we have 0 ≤

¯
rij < r̄ij < 1 for each control valve (i, j) ∈ V . On the other hand, we

assume that there is no pressure loss in valves (i.e., wij = 0), and thus, we have

¯
rij = r̄ij = 1 for each, (i, j) ∈R.

We assume that each compressor (i, j) ∈ C is a so-called turbo compressor. This
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type of compressors is associated with a special type of compressor drive (i.e., gas
turbines) which provides the necessary power to compress the gas. Whenever a
compressor (i, j) is active, its drive consumes the fuel gas directly taken from the
network with cost Cfc

ij . We denote the fuel gas consumption (i.e., gas loss) incurred
by each compressor (i, j) with the variable lijt for each period t ∈ T . These loss
variables depend on the direction of the gas flow, and some physical constants κ′

ij

and κ. Note that κ′
ij is a component-specific constant. For example, the loss of

compressor (i, j) depends on the compression ratio pjt/pit if the gas flow through
compressor (i, j) is positive. For each open compressor (i, j) ∈ C with positive gas
flow, the absolute difference between the pressure variables of node j and node i are
between its allowable lower

¯
δij and upper δ̄ij limits. We summarize these operational

conditions for compressors as follows:

xijt = 0 =⇒ fijt = 0, lijt = 0 (i, j) ∈ C, t ∈ T(3.4a)

fijt ≥ 0,xijt = 1 =⇒
pjt−pit ∈ [

¯
δij , δ̄ij ]

lijt = κ′
ij [(

pjt

pit
)κ−1]fijt

(i, j) ∈ C, t ∈ T(3.4b)

fijt < 0,xijt = 1 =⇒
pit−pjt ∈ [

¯
δij , δ̄ij ]

lijt = κ′
ij((

pit
pjt

)κ−1)fijt
(i, j) ∈ C, t ∈ T .(3.4c)

Finally, we consider the operational restrictions for each active element (i, j) ∈ A.
The minimum-up time restrictions ensure that whenever active element (i, j) is
turned on, it must remain open for at least MUij many periods. Similarly, the
minimum-down time restrictions impose that this network element remains closed
for at least MDij many periods whenever it is turned down. We also couple the start-
up and shut-down decisions with switching decisions for each compressor (i, j) ∈ C.
These operational conditions for active elements are given as follows:

xijt−xij(t−1) ≤ xijt′ (i, j) ∈ A, t ∈ T(3.5a)

t′ ∈ {t+1, . . . , t+MUij−1}

xij(t−1)−xij ≤ 1−xijt′ (i, j) ∈ A, t ∈ T(3.5b)

t′ ∈ {t+1, . . . , t+MDij−1}

xijt−xij(t−1) = uijt−vijt (i, j) ∈ C, t ∈ T(3.5c)

uijt +vijt ≤ 1 (i, j) ∈ C, t ∈ T .(3.5d)

We note that the switching decisions for compressors are analogous to generator
commitment decisions in the unit commitment problem in power systems.
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3.2.3 The Mathematical Formulation

We are now ready to present the mathematical formulation of the multi-period
natural gas storage optimization problem by using the physical and operational
constraints introduced in the previous section:

min
∑

(i,j)∈C

∑
t∈T

(Cfc
ij |lijt|+Cup

ij uijt)+
∑
i∈N

∑
j∈S(i)

∑
t∈T

Cwd
j s′′

jt

(3.6a)

s.t. qit =
∑

j∈S(i)
(s′

jt− s′′
jt)+

∑
j∈∆+(i)

fijt−
∑

j∈∆−(i)
fjit

(3.6b)

+
∑

j∈∆−
C (i)

lijt−
∑

j∈∆+
C (i)

ljit i ∈N , t ∈ T

sjt = sj(t−1) +η′
js

′
jt−η′′

j s′′
jt i ∈N , j ∈ S(i), t ∈ T(3.6c)

¯
sj ≤ sjt ≤ s̄j i ∈N , j ∈ S(i), t ∈ T(3.6d)

¯
pi ≤ pit ≤ p̄i i ∈N , t ∈ T(3.6e)

¯
fij ≤ fijt ≤ f̄ij (i, j) ∈ E , t ∈ T(3.6f)

xijt ∈ {0,1} (i, j) ∈ A, t ∈ T(3.6g)

uijt,vijt ∈ {0,1} (i, j) ∈ C, t ∈ T
(3.6h)

(3.1)− (3.5).

In this formulation, the objective function (3.6a) minimizes the total cost gas trans-
portation which has two main components: the operational cost for compressors,
i.e., the fuel gas consumption and start-up costs, and supply cost of gas stores. Con-
straint (3.6b) models natural gas flow balance by the conservation of mass at each
node. We note that a positive gas load (i.e., supply) is assigned for each i ∈Nsource

and a negative gas load (i.e., demand) is assigned for each i ∈Nsink. We let qit = 0
for each i∈Ninner. Constraint (3.6c) corresponds to the inventory balance equation
for the amount of the natural gas stored at each store. Constraints (3.6d), (3.6e)
and (3.6f) are the operational limit constraints for store level, pressure and flow vari-
ables, respectively. Constraints (3.6g) and (3.6h) represent the binary restrictions
for switching decisions for active arcs, and start-up and shut-down variables for com-
pressors, respectively. The additional physical constants and parameters describing
the gas physics are further explained in Appendix B.

58



3.2.4 MINLP Formulation

In the previous section, we introduce the mathematical formulation for our problem,
which cannot be directly given to an optimization solver. In this context, we provide
the MINLP formulation of formulation (3.6) by defining new variables in this section.
We first observe that one type of nonlinearity is in the form of p2

i −p2
j in equations

(3.1) and (3.2). In order to capture this, we define the squared pressure variable
πit ∈ [

¯
πi, π̄i] for each node i ∈ N and each period t ∈ T , where π̄i = (p̄i)2 and

¯
πi =

(
¯
pi)2. Still, pressure variables of neighbor nodes connected by compressors appear

linearly in constraints (3.4b) and (3.4c). Thus, we enforce the following two coupling
constraints p2

it = πit and p2
jt = πjt in our optimization model for each compressor

(i, j) ∈ C and each period t ∈ T . Then, we have the following system of nonlinear
and nonconvex equations:

πit−πjt = wij |fijt|fijt (i, j) ∈ P ′∪P ′′, t ∈ T(3.7a)

πit = p2
it,πjt = p2

jt (i, j) ∈ C, t ∈ T .(3.7b)

In order to linearize system (3.3), we define two binary variables x+
ijt ∈ {0,1} and

x−
ijt ∈ {0,1} for each active element (i, j) ∈A and each period t ∈ T . To be precise,

x+
ijt (x−

ijt) takes the value one if the gas flow direction for an open active element
(i, j) is positive (negative), and 0 otherwise. If an active element (i, j) is closed, then
x+

ijt = x−
ijt = 0 holds since the gas flow is not allowed through this network element.

We also let
¯
aij = (

¯
rij)2 and āij = (r̄ij)2. By using these variables, system (3.3) can

be linearized as

xijt = x+
ijt +x−

ijt (i, j) ∈ A, t ∈ T(3.8a)

πjt ≥ ¯
aijπit +(1−x+

ijt)(¯
πj−¯

aij π̄i) (i, j) ∈ A, t ∈ T(3.8b)

πjt ≤ āijπit +(1−x+
ijt)(π̄j− āij¯

πi) (i, j) ∈ A, t ∈ T(3.8c)

πit ≥ ¯
ajiπjt +(1−x−

ijt)(¯
πi−¯

ajiπ̄j) (i, j) ∈ A, t ∈ T(3.8d)

πit ≤ ājiπjt +(1−x−
ijt)(π̄i− āji¯

πj) (i, j) ∈ A, t ∈ T(3.8e)

¯
fijx

−
ijt ≤ fijt ≤ f̄ijx

+
ijt (i, j) ∈ A, t ∈ T(3.8f)

xijt ∈ [0,1],x+
ijt,x

−
ijt ∈ {0,1} (i, j) ∈ A, t ∈ T .(3.8g)

Here, the continuous relaxation of the switching decisions is used since their binary
nature is implied by constraint (3.8a) due to the fact that x+

ijt and x−
ijt are binary.

In order to linearize system (3.4), we first define new nonnegative variables
f+

ijt,f
−
ijt, l

+
ijt and l−ijt for each compressor (i, j) ∈ C and each period t ∈ T . If xijt = 0,
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all of these variables take the value zero. This ensures that there is no gas flow
through this compressor, which implies that there is no gas loss incurred by this
compressor. If xijt = 1, then at least one of f+

ijt and f−
ijt take the value zero, and

the loss incurred by this compressor is given by either l+ijt or l−ijt. For example, if
fijt ≥ 0, then f+

ijt, l
+
ijt ≥ 0 and f−

ijt = l−ijt = 0. The similar result also holds if fijt < 0.
Note that the direction of the gas flow also affects the compression ratio. Thus, we
also define the new variables p+

it ,p
−
it ,p

+
jt,p

−
jt, r

+
ijt, r

−
ijt and r′

ijt in order to represent
this ratio depending on the direction of the gas flow. We let xijtpit = p+

it + p−
it and

xijtpjt = p+
jt + p−

jt for each compressor (i, j) ∈ C and each period t ∈ T . These two
equations ensure that whenever a compressor is closed, both of the auxiliary pressure
variables take the value zero. On the other hand, either p+

it ,p
+
jt ≥ 0 or p−

it ,p
−
jt ≥ 0

holds for an open compressor. In order to model the gas losses and compression
conditions with these auxiliary variables, we define the following set:

L(
¯
p′,

¯
p′′, p̄′, p̄′′,κ′) :=

{
(p′,p′′, l,f,x,r,r′) : l = κ′(r′−1)f, l ≥ 0

r = p′′/p′

¯
p′x≤ p′ ≤ p̄′x

¯
p′′x≤ p′′ ≤ p̄′′x

}
.

Now, system (3.4) can be equivalently read as

fijt = f+
ijt−f−

ijt (i, j) ∈ C, t ∈ T(3.9a)

lijt = l+ijt− l−ijt (i, j) ∈ C, t ∈ T(3.9b)

xijtpit = p+
it +p−

it , xijtpjt = p+
jt +p−

jt (i, j) ∈ C, t ∈ T(3.9c)

xijtr
′
ijt = rκ

ijt (i, j) ∈ C, t ∈ T(3.9d)

rijt = r+
ijtx

+
ijt + r−

ijtx
−
ijt (i, j) ∈ C, t ∈ T(3.9e)

(p+
it ,p

−
jt, l

+
ijt,f

+
ijt,x

+
ijt, r

+
ijt, r

′
ijt) ∈ L(

¯
pi,

¯
pj , p̄i, p̄j ,κ

′
ij) (i, j) ∈ C, t ∈ T(3.9f)

(p−
jt,p

−
it , l

−
ijt,f

−
ijt,x

−
ijt, r

−
ijt, r

′
ijt) ∈ L(

¯
pj ,

¯
pi, p̄j , p̄i,κ

′
ij) (i, j) ∈ C, t ∈ T(3.9g)

pjt−pit ≤ δ̄ijx
+
ijt−¯

δjix
−
ijt(3.9h)

+(1−xijt)(
¯
pj− p̄i) (i, j) ∈ C, t ∈ T

pjt−pit ≥¯
δijx

+
ijt− δ̄jix

−
ijt(3.9i)

+(1−xijt)(p̄j−
¯
pi) (i, j) ∈ C, t ∈ T

0≤ f+
ijt ≤ f̄ijx

+
ijt (i, j) ∈ C, t ∈ T(3.9j)

0≤ f−
ijt ≤−¯

fijx
−
ijt (i, j) ∈ C, t ∈ T(3.9k)

¯
rij ≤ r+

ijt, r
−
ijt ≤ r̄ij (i, j) ∈ C, t ∈ T .(3.9l)

Here, constraints (3.9a) - (3.9d) are the consistency constraints which preserve the
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relations between original and auxiliary variables as explained above. We note that
the variable rijt can be projected out via simple substitution. Now, observe that all
the nonlinearity and nonconvexity arise from constraints (3.9c) - (3.9g) in the form
of quadratic terms, and also constraint (3.9d) in the form of an exponential term
with a fractional exponent (i.e., κ≈ 0.228).

Now, we are in a position to present an MINLP formulation of model (3.6):

min
∑

(i,j)∈C

∑
t∈T

(Cfc
ij (l+ijt + l−ijt)+Cup

ij uijt)+
∑
i∈N

∑
j∈S(i)

∑
t∈T

Cwd
j s′′

jt

(3.10a)

s.t.
¯
πi ≤ πit ≤ π̄i i ∈N , t ∈ T

(3.10b)

(3.6b)− (3.6d),(3.7)− (3.9).

Here, the absolute value |lijt| in (3.6a) is replaced with the nonnegative term l+ijt + l−ijt

since constraints (3.9j) and (3.9k) ensure that at least one of these auxiliary loss
variables take the value zero. We note that problem (3.10) is highly nonlinear and
nonconvex due to constraints (3.7) and (3.9). In the next section, we present different
mixed-integer convex relaxations for the MINLP formulation of the multi-period gas
storage optimization problem. In particular, we derive these relaxations by focusing
on the physical constraints for pipes, resistors and compressors. Throughout our
convexification scheme, we utilize McCormick envelopes (see, McCormick (1976))
for linearizing the bilinear term w = xy, which are given by the set

M(lx,ux, ly,uy) = {(w,x,y) ∈ R3 : w ≥ lyx+ lxy− lxly

w ≤ uyx+ lxy− lxuy

w ≤ lyx+uxy−uxly

w ≥ uyx+uxy−uxuy}.

3.3 Convex Relaxations for Compressors

In this section, we present an outer-approximation of the feasible region defined by
constraints (3.7b) and (3.9c) - (3.9g). In the remainder of this section, we drop t

indices for brevity. First, we introduce the following new variables for each com-
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pressor (i, j) ∈ C: R′
ij = xijr

′
ij ,R

+
ij = x+

ijr
+
ij and R− = x−

ijr
−
ij . We construct the exact

McCormick envelopes for these equations. We also introduce two new variables F +
ij

and F −
ij as F +

ij = f+
ij r′

ij and F −
ij = f−

ij r′
ij . We replace constraint (3.9d) by R′

ij = rκ
ij

and R′
ij = xijr

′
ij . Now, observe that equation R′

ij = rκ
ij defines a concave function

with the endpoints (
¯
rij ,¯

rκ
ij) and (r̄ij , r̄

κ
ij) in the (R′, r)-space. In order to obtain a

mixed-integer convex relaxation, we replace this nonconvex equality by its linear
underestimator:

R′
ij ≥mijrij− (mij¯

rij +
¯
rκ

ij)xij ,(3.11)

where mij := (r̄κ
ij−¯

rκ
ij)/(r̄ij−¯

rij). Finally, we introduce the following set which is
used as an outer-approximation of L:

L′(lr,ur, lp′ ,up′ ,κ′) :=
{
(p′,p′′, l,F,f,x,r) : l = κ′(F −f)

(p′′, r,p′) ∈M(lr,ur, lp′ ,up′)
}
.

Now, consider the following set of constraints:

πi ≥ p2
i ,πj ≥ p2

j (i, j) ∈ C(3.12a)

rij = R+
ij +R−

ij (i, j) ∈ C(3.12b)

(p+
i ,p+

j , l+ij ,F
+
ij ,f+

ij ,x+
ij , r

+
ij) ∈ L′(0,0, p̄i, p̄j ,κ

′
ij) (i, j) ∈ C(3.12c)

(p−
j ,p−

i , l−ij ,F
−
ij ,f−

ij ,x−
ij , r

−
ij) ∈ L′(0,0, p̄j , p̄i,κ

′
ij) (i, j) ∈ C(3.12d)

(R′
ij ,xij , r

′
ij) ∈M(0,1,

¯
rκ

ij , r̄
κ
ij) (i, j) ∈ C(3.12e)

(p+
i +p−

i ,xij ,pi) ∈M(0,1,
¯
pi, p̄i) (i, j) ∈ C(3.12f)

(p+
j +p−

j ,xij ,pj) ∈M(0,1,
¯
pj , p̄j) (i, j) ∈ C(3.12g)

(R+
ij ,x

+
ij , r

+
ij) ∈M(0,1,

¯
rij , r̄ij) (i, j) ∈ C(3.12h)

(R−
ij ,x

−
ij , r

−
ij) ∈M(0,1,

¯
rij , r̄ij) (i, j) ∈ C(3.12i)

(F +
ij ,f+

ij , r′
ij) ∈M(0, f̄ij ,¯

rκ
ij , r̄

κ
ij) (i, j) ∈ C(3.12j)

(F −
ij ,f−

ij , r′
ij) ∈M(0,−

¯
fij ,¯

rκ
ij , r̄

κ
ij) (i, j) ∈ C.(3.12k)

In this formulation, constraints (3.12e) - (3.12k) are the McCormick envelopes. Note
that the linearization in constraints (3.12e) - (3.12i) is exact. Moreover, the feasible
region defined by these constraints are polyhedral. Also, observe that constraint
(3.12a) represents the epigraphs of two parabolas in the space of (πi,pi) and (πj ,pj)
variables, respectively. It is straightforward to see that these are SOCr. Moreover,
these epigraphs are the convex hull of the set defined by constraint (3.7b). Then,
the set defined by constraints (3.11) and (3.12) is mixed-integer second-order cone
representable (MISOCr). Finally, we denote the projection of this set onto the
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original space as

Y := {(f̃, p̃, r̃, l̃, x̃) : ∃(R′,R+,R−,F +,F −) ∈ R5 : (3.11),(3.12)},(3.13)

where we denote p̃ij = (πi,πj ,pi,pj ,p
+
i ,p+

j ,p−
i ,p−

j ), r̃ij = (rij , r
′
ij , r

+
ij , r−

ij), f̃ij =
(f+

ij ,f−
ij ), l̃ij = (l+ij , l−ij) and x̃ij = (xij ,x

+
ij ,x

−
ij) by dropping (i, j) indices.

Proposition 3.1 The set Y forms an outer-approximation of the feasible region
defined by constraints (3.7b) and (3.9c) - (3.9g).

3.4 Convex Relaxations for Pipes and Resistors

In this section, we present different outer-approximations of the feasible region de-
fined by the nonconvex Weymouth equation (3.7a) with respect to the flow and
squared pressure bounds (3.6f) and (3.10b), respectively. We first let P̃ := P \P ′′′,
f := fij and π := πi− πj . For each passive element (i, j) ∈ P̃ , we now define the
following rectangle:

Rij := {(f,π) :
¯
αij ≤ f ≤ ᾱij ,

¯
βij ≤ π ≤ β̄ij},

where the bounds are defined as

¯
αij :=max

{
−

¯
fij ,−

√
π̄j−¯

πi

wij

}
ᾱij :=min

{
f̄ij ,

√
π̄i−¯

πj

wij

}

¯
βij :=max

{
−wij(

¯
fij)2,

¯
πi− π̄j

}
β̄ij :=min

{
wij(f̄ij)2, π̄i−¯

πj

}
.

For each passive element (i, j) ∈ P̃ , we concentrate on the following set defined by
equation (3.7a) over the rectangle Rij :

Xij := {(f,π) ∈Rij : π = wij |f |f}.

The red region in Figure 3.2 shows the rectangle Rij , whereas the blue curve shows
the set of (f,π) points defined by Xij . We now define the binary variable zij ∈ {0,1}
for each arc (i, j) ∈ P̃ , which takes the value one if the direction of the gas flow
through this arc is positive, and 0 otherwise.
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f

π

(ᾱij , β̄ij)

(
¯
αij ,

¯
βij)

Figure 3.2 The curve in the (f,π) space.

In the remainder of this section, we construct different sets which are used as outer-
approximations of X . We present these sets by dropping (i, j) indices, and explicitly
specify i or j indices whenever necessary.

Note that in some test instances, it is indeed the case that
¯
α =

¯
β = 0. This clearly

implies that the direction of the flow is known to be positive. Thus, we first present
an outer-approximation of X for the passive elements with the bounds

¯
α =

¯
β = 0.

In such cases, the gas flows from node i to node j, and the pressure loss induced by
passive arc (i, j) is given by πi−πj for (i, j) ∈ P̃ . Then, equation (3.7a) reduces to
the the positive half of the curve whose endpoints are (0,0) and (ᾱ, β̄) in the space
of (f,π). By adding the chord of this curve passing through these points, we have a
linear approximation of X given by

K0
LP := {(f,π) ∈ R2

+ : π ≤ (ᾱ/β̄)f}.

Note that the formulation based on K0
LP is very weak. By using the SOCr of the

convex hull of the set defined by equation (3.7a), we also obtain a quadratic outer-
approximation of X given by

K0
SOCP := {(f,π) ∈ R2

+ : π ≥ wf2,π ≤ (ᾱ/β̄)f}.

Note that the first constraint in K0
SOCP is SOCr. Moreover, K0

SOCP represents the
convex hull of X whenever the direction of the gas flow is positive. Observe that
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both K0
LP and K0

SOCP are defined in the original space. It is also easy to see that
K0

SOCP ⊆K0
LP . In the remainder of this section, we assume that

¯
αij < 0 < ᾱij and

¯
βij < 0 < β̄ij for each passive element (i, j) ∈ P̃ . Our convexification approaches
use the polyhedral outer-approximation and the SOCr outer-approximations of X ,
where the latter benefits from zij variables as well as auxiliary variables.

3.4.1 Polyhedrally-representable Set

In this section, we present a “cheap” approximation of X . In particular, we use
four hyperplanes to obtain an outer-approximation of this set. Our construction is
geometrically summarized in Figure 3.3.

f

π

p1

p2

(ᾱ, β̄)

(
¯
α,

¯
β)

Figure 3.3 Polyhedral outer-approximation of X .

To be precise, we first find the line passing through (
¯
α,

¯
β) and tangent to the curve

at point p1 = (a,wa2) with f,π ≥ 0. Similarly, we obtain the line passing through
(ᾱ, β̄) and tangent to this curve at point p2 = (a,−wa2) with f,π ≤ 0. For the
remaining hyperplanes, we find two tangent lines to this curve at the points (

¯
α,

¯
β)

and (ᾱ, β̄), respectively. After some simple calculations, these four hyperplanes are
given by

πi−πj ≥ wijaij(2fij−aij) (i, j) ∈ P̃(3.14a)
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πi−πj ≤ wijbij(bij−2fij) (i, j) ∈ P̃(3.14b)

πi−πj ≥ wijᾱij(2fij− ᾱij) (i, j) ∈ P̃(3.14c)

πi−πj ≤ wij¯
αij(¯

αij−2fij) (i, j) ∈ P̃ ,(3.14d)

where aij = (1−
√

2)
¯
αij and bij = (1−

√
2)ᾱij . Thus, we have a polyhedral outer-

approximation of X given by

K1
LP := {(f,π) ∈R : (3.14)}.

Proposition 3.2 The set K1
LP forms an outer-approximation of X .

We note that X can be approximated better by applying piecewise linearization
(see, e.g., Pfetsch et al. (2015)). However, such a formulation requires using “many”
binary variables even for a single passive arc. In this case, the global solver might
fail to provide even locally optimal solutions as the size of the gas network increases
due to the time limit. In the next sections, we approximate X with MISOCr sets by
using only one binary zij variable for each passive arc, which represents the direction
of the gas flow through (i, j) ∈ P̃ .

3.4.2 MISOCr Set I

In order to remove the absolute value from the nonconvex constraint (3.7a), we
define two new nonnegative variables f+

ij and f−
ij for each passive element (i, j) ∈ P̃ .

If the direction of the gas flow is positive, the pressure loss πi−πj = wij(f+
ij )2 ≥ 0

and f−
ij = 0. In case of a negative gas flow, the pressure loss is given by πj −πi =

wij(f−
ij )2 ≥ 0, and f+

ij = 0 holds. These conditions can be modeled by the following
set of constraints:

πi−πj = wij((f+
ij )2− (f−

ij )2) (i, j) ∈ P̃(3.15a)

fij = f+
ij −f−

ij (i, j) ∈ P̃(3.15b)

0≤ f+
ij ≤ ᾱijzij (i, j) ∈ P̃(3.15c)

0≤ f−
ij ≤−¯

αij(1− zij) (i, j) ∈ P̃(3.15d)

¯
βij ≤ πi−πj ≤ β̄ij (i, j) ∈ P̃ .(3.15e)
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Although the absolute value is removed from constraint (3.7a) by using zij variables,
this formulation is still nonconvex due to equality constraint (3.15a) with quadratic
terms. Now, observe that constraint (3.15a) can be equivalently rewritten as

πi−πj ≥ wij((f+
ij )2− (f−

ij )2) (i, j) ∈ P̃(3.16a)

πi−πj ≤ wij((f+
ij )2− (f−

ij )2) (i, j) ∈ P̃ .(3.16b)

Also, f+
ij ≤ ᾱij and f−

ij ≤−¯
αij since zij ∈ {0,1}. By using these bounds along with

constraints (3.16), we obtain the following valid constraints:

πi−πj ≥ wij((f+
ij )2 +

¯
αijf

−
ij ) (i, j) ∈ P̃(3.17a)

πi−πj ≤ wij(ᾱijf
+
ij − (f−

ij )2) (i, j) ∈ P̃ .(3.17b)

Observe that constraints (3.17a) and (3.17b) are SOCr. Thus, we have an outer-
approximation of X with an MISOCr set defined as

K1
SOCP := {(f,π) ∈ R2 : ∃(f+,f−, z) ∈ R2×{0,1} : (3.15b)− (3.15e),(3.17)}.

Proposition 3.3 The set K1
SOCP forms an outer-approximation of X .

Note that a similar formulation is proposed in the work by Schwele et al. (2019)
for the gas transmission problem by omitting constraint (3.16b). The big-M formu-
lations are applied to constraint (3.16a), which results in bilinear terms with large
bounds, and the McCormick envelopes are constructed for these terms.

3.4.3 MISOCr Set II

In this section, we present another exact reformulation of X . We can easily remove
the absolute value from equation (3.7a) by using zij variables. In particular, we
ensure that left-hand side this constraint is πi−πj whenever the gas flow is positive
through passive arc (i, j), and πj −πi otherwise. We model these conditions with
the following set of constraints:

(2zij−1)(πi−πj) = wijf
2
ij (i, j) ∈ P̃(3.18a)

¯
βij(1− zij)≤ πi−πj ≤ β̄ijzij (i, j) ∈ P̃(3.18b)

¯
αij(1− zij)≤ fij ≤ ᾱijzij (i, j) ∈ P̃ .(3.18c)
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Observe that this formulation is nonconvex due to the bilinear terms in the equality
constraint (3.18a). In order to represent the bilinear term at the left-hand side of
this constraint, we introduce the variable π̄ij for each passive arc (i, j) ∈ P̃ . After
replacing (2zij−1)(πi−πj) by π̄ij , constraint (3.18a) can be relaxed into a quadratic
constraint. Also, the term π̄ij = (2zij − 1)(πi−πj) can be linearized with the Mc-
Cormick envelopes. Finally, we obtain the following set of constraints:

π̄ij ≥ wijf
2
ij (i, j) ∈ P̃(3.19a)

(π̄ij ,2zij−1,πi−πj) ∈M(−1,1,
¯
βij , β̄ij) (i, j) ∈ P̃ .(3.19b)

Here, constraint (3.19a) is SOCr whereas the set defined by constraint (3.19b) is
polyhedral. In fact, constraint (3.19a) represents the epigraph of π̄ij = wijf

2
ij in the

(f, π̄)-space, which is also its convex hull. Note that the linearization in constraint
(3.19b) is exact since zij is binary. Finally, we have an outer-approximation of X :

K2
SOCP := {(f,π) ∈ R2 : ∃(π̄, z) ∈ R×{0,1} : (3.18b),(3.18c),(3.19)}.

Proposition 3.4 The set K2
SOCP forms an outer-approximation of X .

Note that a similar formulation is also proposed in Borraz-Sánchez et al. (2016)
without constraints (3.18b) and (3.18c) for the gas expansion planning problem.

3.4.4 MISOCr Set III

In this section, we define two new variables π′
ij and π′′

ji for each (i, j) ∈ P̃ in order to
model the pressure loss between adjacent nodes. We enforce one of these variables to
be 0 in case of the positive or negative gas flow. In the former case, π′

ij = πi−πj ∈
[0, β̄] and π′′

ji = 0. However, if the gas flow is negative, π′′
ji = πi− πj ∈ [

¯
β,0] and

π′
ij = 0. These conditions are given by the following set of constraints:

π′
ij−π′′

ji = wijf
2
ij (i, j) ∈ P̃(3.20a)

πi−πj ≤ π′
ij ≤ πi−πj−

¯
βij(1− zij) (i, j) ∈ P̃(3.20b)

πi−πj− β̄ijzij ≤ π′′
ji ≤ πi−πj (i, j) ∈ P̃(3.20c)

0≤ π′
ij ≤ β̄ijzij (i, j) ∈ P̃(3.20d)

¯
βij(1− zij)≤ π′′

ji ≤ 0 (i, j) ∈ P̃(3.20e)
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¯
αij(1− zij)≤ fij ≤ ᾱijzij (i, j) ∈ P̃ .(3.20f)

Observe that this formulation is nonconvex due to constraint (3.20a), which can be
relaxed into an SOCr constraint as

π′
ij−π′′

ji ≥ wijf
2
ij (i, j) ∈ P̃ .(3.21)

Note that the convex hull of the set induced by constraint (3.20a) is defined by
inequality (3.21). Finally, we have an outer-approximation of X :

K3
SOCP := {(f,π) ∈ R2 : ∃(π′,π′′, z) ∈ R2×{0,1} : (3.20b)− (3.20f),(3.21)}.

Proposition 3.5 The set K3
SOCP forms an outer-approximation of X .

3.4.5 MISOCr Set IV

For each (i, j) ∈ P̃ , we define new variables f+
ij ,f−

ij ,π+
i ,π+

j ,π−
i ,π−

j as fij = f+
ij +f−

ij ,
πi = π+

i + π−
i and πj = π+

j + π−
j . As before, we enforce exactly one of these new

variables of each type to take the value zero depending on the direction of the gas
flow. In particular, the gas flow f+

ij ≥ 0 and the squared pressure loss is π+
i −π+

j ≥ 0
if and only if z = 1. On the other hand, zij = 0 holds if and only if f−

ij ≤ 0, and the
pressure loss is π−

j −π−
i ≥ 0. These conditions are modeled by the following set of

constraints:

π+
i −π+

j = wij(f+
ij )2 (i, j) ∈ P̃(3.22a)

π−
j −π−

i = wij(f−
ij )2 (i, j) ∈ P̃(3.22b)

fij = f+
ij +f−

ij (i, j) ∈ P̃(3.22c)

πi = π+
i +π−

i , πj = π+
j +π−

j (i, j) ∈ P̃(3.22d)

¯
πizij ≤ π+

i ≤ π̄izij (i, j) ∈ P̃(3.22e)

¯
πjzij ≤ π+

j ≤ π̄jzij (i, j) ∈ P̃(3.22f)

¯
πi(1− zij)≤ π+

i ≤ π̄i(1− zij) (i, j) ∈ P̃(3.22g)

¯
πj(1− zij)≤ π+

j ≤ π̄j(1− zij) (i, j) ∈ P̃(3.22h)

0≤ π+
i −π+

j ≤ β̄ijzij (i, j) ∈ P̃(3.22i)

¯
βij ≤ π−

i −π−
j ≤ 0 (i, j) ∈ P̃(3.22j)
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0≤ f+
ij ≤ ᾱij (i, j) ∈ P̃(3.22k)

¯
αij ≤ f−

ij ≤ 0 (i, j) ∈ P̃ .(3.22l)

Note that the set defined by system (3.22) is still nonconvex due to constraints
(3.22a) and (3.22b). These constraints can be relaxed into SOCr constraints as

π+
i −π+

j ≥ wij(f+
ij )2 (i, j) ∈ P̃(3.23a)

π−
j −π−

i ≥ wij(f−
ij )2 (i, j) ∈ P̃ ,(3.23b)

which represent the convex hull of the sets defined by equations (3.22a) and (3.22b),
respectively. Observe that all continuous variables are bounded by closed intervals
in system (3.22). Thus, we tighten the formulation in system (3.23) by using the
following two halfspaces:

π+
i −π+

j ≤ (β̄ij/ᾱij)f+
ij , π−

i −π−
j ≥ (

¯
βij/¯

αij)f−
ij (i, j) ∈ P̃ .(3.24)

Finally, we have an outer-approximation of X is given by the following MISOCr set:

K4
SOCP := {(f,π) ∈ R2 : ∃(π+,π−,f+,f−, z) ∈ R6×{0,1}

: (3.22c)− (3.22l),(3.23),(3.24)}.

Proposition 3.6 The set K4
SOCP forms an outer-approximation of X .

3.5 Solution Methodology

In this section, we describe our solution framework for solving the multi-period
gas storage optimization problem (3.10). Our two-step procedure is summarized in
Algorithm 4. The input of this algorithm is the type of the mixed-integer convex
relaxation of problem (3.10). We denote the tolerance of our algorithm by ϵ. In
Step 1 of Algorithm 4, a mixed-integer convex relaxation of our choice is solved
to optimality. The dual bound for this relaxation provides a lower bound on the
objective value of problem (3.10). In order to obtain (locally) optimal solutions, all
the optimal binary values x∗ produced by the relaxation are fixed, which reduces
problem (3.10) to a nonlinear program (NLP). By passing the optimal continuous
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values y∗ produced by the relaxation as the initial point, we solve this program
with a local interior point solver in Step 4. If the solver converges to a (locally)
optimal solution, which is also feasible for problem (3.10), we have an upper bound
on its optimal objective value. By using these lower and upper bounds, the relative
optimality gap in percentages is calculated.

Algorithm 4 MINLP
Input: convexRelaxation.
Output: Primal and dual bounds for problem (3.10), the relative optimality gap

in percentages.
1: Solve convexRelaxation of problem (3.10).
2: Obtain ϵ-optimal x∗ = (x,x+,x−,u,v) and y∗ = (π,f,s,s+, s−, l, l+, l−) solutions

produced by convexRelaxation.
3: Assign the dual bound of convexRelaxation to LB.
4: Solve problem (3.10) by fixing x∗ and passing y∗ as an initial point.
5: Assign the primal bound of problem (3.10) to UB.
6: Assign the relative optimality (1−LB/UB)% to Gap.
7: return LB,UB,Gap.

We conclude this section by describing the mixed-integer convex relaxations pro-
posed for the multi-period gas storage optimization problem (3.10). These relax-
ations differ from each other in terms of the choice of the outer-approximation
of X as explained in Section 3.4. Thus, we consider the following cases for
convexRelaxation in Algorithm 4:

• MILP0: The MILP relaxation under K0
LP .

• MILP1: The MILP relaxation under K1
LP .

• MISOCP0: The MISOCP relaxation under K0
SOCP .

• MISOCP1: The MISOCP relaxation under K1
SOCP .

• MISOCP2: The MISOCP relaxation under K2
SOCP .

• MISOCP3: The MISOCP relaxation under K3
SOCP .

• MISOCP4: The MISOCP relaxation under K4
SOCP .

Note that the MISOCr set Y as in formulation (3.13) for compressors is used in each
of these relaxations.

3.6 Computational Experiments
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In this section, we present the results of our computational study conducted on vari-
ous GasLib test instances from the literature (Schmidt, Aßmann, Burlacu, Humpola,
Joormann, Kanelakis, Koch, Oucherif, Pfetsch, Schewe, Schwarz & Sirvent, 2017).
We focus on a short-term gas network operations and let |T | = 24. Note that
demand parameters in GasLib instances are given for a single-period. Thus, we
generate a new demand dataset by using the 24-hour gas demand data in Schwele
et al. (2019) such that the single-period demand from GasLib instances is the av-
erage gas demand within the planning horizon. Table 3.1 shows the cardinality of
gas network elements for all the test instances used in our study. All computational
experiments are conducted on a 64-bit workstation with two Intel(R) Xeon(R) Gold
6248R CPU (3.00GHz) processors. The workstation runs on the Windows opera-
tions system and has 256 GB 2993 Mhz RAM. All mixed-integer convex relaxations
for the multi-period gas storage optimization problem are solved by using GUROBI
9.5.0 (Gurobi Optimization, 2022). After fixing the binary variables obtained from
these relaxations, the resulting NLP is solved by the interior point solver IPOPT
3.11.1 (Wächter & Biegler, 2006). For these NLPs, the the bound_relax_factor
parameter is set to 0 in IPOPT. We also compare the computational performance
of our approaches by directly solving problem (3.10) over the rectangle R with the
global solver BARON (Tawarmalani & Sahinidis, 2005). The wall-clock time limit for
each computational experiment is set to one hour. All computational experiments
are measured in seconds. In order to assess the scalability of our approaches, we also
stress the gas network by scaling the gas demand from 1.25 up to 2.00 for each test
instance. We present our computational results by presenting the following metrics
that are obtained within Algorithm 4:

• LB: Lower bound obtained by convexRelaxation.

• UB: Upper bound obtained by the NLP.

• Relax. Time: CPU time in convexRelaxation.

• Total Time: Total CPU time.

• Gap (%): The relative optimality gap in percentages.

The abbreviation “inf” (under column “LB”) is used if the mixed-integer convex
relaxation is proven to be infeasible. Under “UB” columns, we use the abbreviation
“local inf” if the local solver converges to a locally infeasible solution. Under “Relax.
Time” and “Total Time” columns, we use the abbreviation “TL” if the one-hour time
limit has been reached.
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Instance |N | |Nsource| |Nsink| |P ′| |P ′′| |P ′′′| |R| |V| |C|
Gaslib-11 11 3 3 8 0 0 1 0 2
Gaslib-24 24 3 5 19 1 1 0 1 3
Gaslib-40 40 3 29 39 0 0 0 0 6
Gaslib-134 134 3 45 86 0 45 0 1 1

Table 3.1 GasLib Instances.

In Table 3.2, we present our results on the GasLib-11 instance. In terms of com-
putational times, our mixed-integer convex relaxation methods perform better than
BARON under all demand scales. Also, all the proposed methods result in the same
dual bounds. However, only MISOCP3 is able to provide the best feasible solution
among them. In fact, these solutions obtained by MISOCP3 are optimal. Under 1.25
scale, all of these methods also solve the problem to optimality, whereas they fail
to prove infeasibility under 1.75 scale. Still, we note that this small-scale instance
is very easy to solve since there is no cycle consisting of passive network elements,
and the directions of the gas flow through compressors are known to be positive.

We present the computational results on the GasLib-24 instance in Table 3.3. Note
that all lower limits for gas flows in this instance are given as zero, which implies
that the gas flow directions are all positive i.e.,

¯
α =

¯
β = 0. Hence, we use the

mixed-integer convex relaxations MILP0 and MISOCP0. Whenever our problem is
feasible, both of these methods provide the same dual bound. Also, they prove
infeasibility in less than two seconds under 1.75 and 2.00 scales. Although this is
a small-scale instance with unidirectional gas flows, BARON reaches to the one-hour
time limit whenever the problem is feasible. While the optimality gaps under BARON
are smaller than those under our methods, all of these methods result in the same
feasible solution in terms of the objective value.
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Scale Method LB UB Relax.
Time

Total
Time Gap (%)

1.00 MILP1 70463.22 70501.73 0.81 1.93 0.05
MISOCP1 70463.22 70495.16 0.91 2.21 0.05
MISOCP2 70463.22 70499.74 1.10 2.57 0.05
MISOCP3 70463.22 70474.25 0.96 2.09 0.02
MISOCP4 70463.22 70477.43 1.33 2.49 0.02
BARON 70474.20 70474.25 - 35.25 0.00

1.25 MILP1 85270.02 85272.21 0.91 3.63 0.00
MISOCP1 85270.02 85272.21 0.94 2.21 0.00
MISOCP2 85270.02 85272.21 0.95 2.10 0.00
MISOCP3 85270.02 85272.21 0.96 2.58 0.00
MISOCP4 85270.02 85272.21 1.33 2.95 0.00
BARON 85272.13 85272.21 - 9.02 0.00

1.50 MILP1 100076.83 100482.34 0.91 1.94 0.40
MISOCP1 100076.83 100447.63 0.97 2.12 0.37
MISOCP2 100076.83 100412.15 0.91 2.29 0.33
MISOCP3 100076.83 100366.10 0.96 2.29 0.29
MISOCP4 100076.83 100378.72 1.21 2.32 0.30
BARON 100282.75 100366.10 - TL 0.08

1.75 MILP1 114883.63 local inf 0.94 2.62 NA
MISOCP1 114883.63 local inf 0.91 2.97 NA
MISOCP2 114883.63 local inf 0.94 2.78 NA
MISOCP3 114883.63 local inf 0.95 2.92 NA
MISOCP4 114883.63 local inf 1.13 3.25 NA
BARON inf - - 1.50 NA

2.00 MILP1 inf - 3.29 - NA
MISOCP1 inf - 4.73 - NA
MISOCP2 inf - 4.94 - NA
MISOCP3 inf - 5.03 - NA
MISOCP4 inf - 10.36 - NA
BARON inf - - 1.00 NA

Table 3.2 Computational Results on GasLib-11.

Table 3.4 presents the computational results on the GasLib-40 instance. Note that
this network has six fundamental cycles containing both passive and active elements.
We encounter some persistent issues with BARON for this instance. Interestingly,
BARON claims false infeasibility under all demand scales. We try to overcome this
by solving our problem in a shorter planning horizon and decreasing the demand
scales. BARON also falsely states upon termination that these cases are also infeasible.
Under 1.00 scale, all of our methods are able to find the global optimal solution.
Although MILP1 is better than other methods in terms of computational times, the
quality of the solutions obtained by this method worsens for the congested networks.
MISOCP4 provides better dual bounds than the other methods within one-hour time
limit. Both MISOCP1 and MISOCP4 are able to find feasible solutions with the same
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objective value except under 2.00 scale. Still, MISOCP4 is faster than MISOCP1 for
the cases that the one-hour time limit is not reached.

Scale Method LB UB Relax.
Time

Total
Time Gap (%)

1.00 MILP0 134991.60 136417.26 1.22 3.65 1.05
MISOCP0 134991.60 136417.26 1.34 2.93 1.05
BARON 135710.56 136417.26 - TL 0.52

1.25 MILP0 164525.99 165297.66 1.16 2.87 0.47
MISOCP0 164525.99 165297.66 1.34 2.90 0.47
BARON 164776.57 165297.66 - TL 0.32

1.50 MILP0 194060.39 194268.17 1.08 3.24 0.11
MISOCP0 194060.39 194268.17 1.26 3.46 0.11
BARON 194071.74 194268.17 - TL 0.10

1.75 MILP0 inf - 1.51 - NA
MISOCP0 inf - 1.83 - NA
BARON inf - - 1.11 NA

2.00 MILP0 inf 1.57 - NA
MISOCP0 inf - 1.83 - NA
BARON inf - - 1.17 NA

Table 3.3 Computational Results on GasLib-24.

In Table 3.5 presents the computational results on the Gaslib-134 instance. Note
that this is a tree-structured gas network. Similar to the GasLib-40 instance, we
have some interesting results for BARON. In our first experiments, BARON returns the
“Problem is numerically sensitive” message and the “Best possible” objective values
are inconsistent among each experiment. After multiple attempts, we present the
results for BARON, which are consistent with our methods. Our methods provide
the identical dual bounds for all cases. Although the difference between the up-
per bounds obtained by these methods is negligible under 2.00 scale, MISOCP2 and
MISOCP4 find better feasible solutions than other methods. For most of the cases,
our methods are able to find high-quality feasible solutions less than three minutes.

We summarize our observations on the computational results as follows. In our
experiments, MILP1 is faster than our other methods in almost all cases. However,
our MISOCP-based methods are able to produce better dual bounds than those
obtained by MILP1. Also, MISOCP1 and MISOCP4 are consistently better than MISOCP2

and MISOCP3 in terms of the quality of the feasible solutions obtained by these
methods for medium-scale instances. Still, MISOCP4 is more promising in terms of
(near) globally optimal solutions. Although BARON is seemingly better than our
methods for the GasLib-11 instance, it is computationally very expensive compared
to our methods for the GasLib-24 instance. Moreover, it produces unreliable results
for medium-scale instances such as false infeasibility claims and inconsistent bounds
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on the underlying problem. Our methods produce consistent results in only a few
seconds, which is significantly less than the one-hour run time of BARON.

Scale Method LB UB Relax.
Time

Total
Time Gap (%)

1.00 MILP1 449864.73 449864.73 2.48 126.85 0.00
MISOCP1 449864.73 449864.73 3.97 57.82 0.00
MISOCP2 449864.73 449864.73 11.57 79.20 0.00
MISOCP3 449864.73 449864.73 9.29 59.86 0.00
MISOCP4 449864.73 449864.73 9.40 19.43 0.00
BARON - - - 334.86 NA

1.25 MILP1 555308.41 581137.61 2.57 22.07 4.44
MISOCP1 576636.31 576636.31 34.36 49.91 0.00
MISOCP2 576636.31 588633.14 92.42 160.47 2.04
MISOCP3 576636.16 581908.99 428.30 513.20 0.91
MISOCP4 576636.31 576636.31 33.69 77.77 0.00
BARON - - - 378.10 301.39

1.50 MILP1 688036.09 832845.33 2.59 97.55 17.39
MISOCP1 832839.55 832845.33 449.86 496.14 0.00
MISOCP2 727306.20 840945.33 TL 3696.89 13.51
MISOCP3 738422.20 840945.33 TL 3680.89 12.19
MISOCP4 832839.55 832845.33 193.24 219.18 0.00
BARON - - - 350.46 NA

1.75 MILP1 942990.22 1325219.89 2.45 97.02 28.84
MISOCP1 1285470.92 1325219.89 TL 3670.79 3.00
MISOCP2 923227.07 1368686.13 TL 3661.49 32.55
MISOCP3 951265.64 1341929.24 TL 3686.94 29.11
MISOCP4 1297252.37 1325219.89 TL 3630.95 2.11
BARON - - - 403.74 NA

2.00 MILP1 1460189.51 2315998.40 2.44 65.31 36.95
MISOCP1 2149490.27 2315980.38 TL 3643.54 7.19
MISOCP2 1915562.66 2307121.71 TL 3694.44 16.97
MISOCP3 1912566.90 2313062.68 TL 3670.58 17.31
MISOCP4 2158947.81 2309063.38 TL 3650.95 6.50
BARON - - - 433.66 NA

Table 3.4 Computational Results on GasLib-40.
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Scale Method LB UB Relax.
Time

Total
Time Gap (%)

1.00 MILP1 76725.58 76751.89 2.38 93.99 0.03
MISOCP1 76725.58 76751.89 3.21 123.80 0.03
MISOCP2 76725.58 76751.89 3.51 118.24 0.03
MISOCP3 76725.58 76751.89 4.10 91.15 0.03
MISOCP4 76725.58 76751.89 6.28 96.03 0.03
BARON 76751.81 76751.89 - 23.63 0.00

1.25 MILP1 94502.47 94539.20 2.43 84.73 0.04
MISOCP1 94502.47 94539.20 3.25 82.78 0.04
MISOCP2 94502.47 94539.19 3.61 114.50 0.04
MISOCP3 94502.47 94539.20 3.73 129.14 0.04
MISOCP4 94502.47 94539.19 6.92 124.80 0.04
BARON 94539.10 94539.19 - 31.36 0.00

1.50 MILP1 112279.37 112329.10 2.72 102.25 0.04
MISOCP1 112279.37 112329.10 3.38 98.23 0.04
MISOCP2 112279.37 112329.10 3.61 156.15 0.04
MISOCP3 112279.37 112329.10 3.72 136.19 0.04
MISOCP4 112279.37 112329.10 6.61 98.88 0.04
BARON 112329.04 112329.15 - 46.02 0.00

1.75 MILP1 130056.26 130122.18 2.66 130.99 0.05
MISOCP1 130056.26 130122.18 3.52 93.95 0.05
MISOCP2 130056.26 130122.18 3.57 164.56 0.05
MISOCP3 130056.26 130122.18 3.75 221.40 0.05
MISOCP4 130056.26 130122.18 6.54 51.99 0.05
BARON 130122.05 130122.18 - 33.47 0.00

2.00 MILP1 147833.16 147919.02 2.60 103.00 0.06
MISOCP1 147833.16 147919.02 3.40 138.13 0.06
MISOCP2 147833.16 147919.02 3.72 195.05 0.06
MISOCP3 147833.16 147919.02 3.87 149.92 0.06
MISOCP4 147833.16 147919.02 6.99 129.03 0.06
BARON 147919.30 147919.45 - 34.90 0.00

Table 3.5 Computational Results on GasLib-134.

3.7 Conclusion

In this work, we study a multi-period gas storage optimization problem under sta-
tionary conditions, which contains highly nonlinear, nonconvex and discrete aspects.
In order to obtain (near) globally optimal solutions, we propose different mixed-
integer convex relaxations for this problem. In this context, we focus on two types
of nonconvexity resulting from the Weymouth and fuel gas consumption equations,
and then convexify the feasible regions induced by these nonconvex equations with
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different polyhedrally-representable and MISOCr sets. We conduct a computational
study on small- and medium-scale test instances taken from the literature, and com-
pare our mixed-integer convex relaxation approaches with a state-of-the-art global
solver. Our mixed-integer convex relaxations offer initial points which can be used
in the local solver. For medium-scale instances, they also consistently produce tight
dual bounds as well as high-quality feasible solutions under congested networks. Our
approaches lead to numerically more stable results in comparison with the global
solver. There is still room for improvement in terms of stronger formulations for our
mixed-integer convex relaxations and computational efficiency in medium-scale and
congested gas networks.
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4. Conclusion

Mathematical programming methods have been very useful tool to solve optimiza-
tion problems in energy systems. In this thesis, we particularly focused on two of
these problems, both of which have potential benefits along with certain challenging
aspects. First, we studied the short-term condition-based maintenance and oper-
ations planning problem in power systems by considering the unexpected failures
of both generators and transmission lines. As this problem was formulated as a
two-stage joint chance-constrained stochastic program, dealing with the exponential
increase in the number of failure scenarios and the nonconvex nature of the joint-
chance constraint was not an easy task. Thus, we proposed a decomposition-based
cutting-plane algorithm along with different algorithmic enhancements in order to
solve this problem. Later, we focused on the multi-period natural gas storage op-
timization problem which was formulated as a nonconvex MINLP under stationary
conditions. The discrete aspect of this problem was due to the switching decisions
of active arcs whereas its nonlinear and nonconvex aspects emerge from the well-
known Weymouth equations for pipes and resistors and loss consumption equations
for compressors. In order to convexify the feasible region induced by these equa-
tions, we derived mixed-integer linear and SOCr outer-approximations. Based on
these mixed-integer outer-approximations, we solved our problem with a two-step
approach, and obtain (near) globally optimal and high-quality (locally) feasible so-
lutions.

Although we consider some of the challenging aspects of the optimization problems
in this thesis, there are more interesting aspects to be introduced in them. In
particular, considering different sources of uncertainty such as price and demand
uncertainty, and their modeling in both of these problems are recommended. While
these uncertainties can be introduced by using the knowledge on the underlying
distributions, which can be further exploited in the solution approaches, it may
be also interesting to focus on the cases based on empirical distributions in the
absence of such distributional information. The integration of gas networks into
power systems is another considerable future work.
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APPENDIX A

The Monotonicity of Poisson Binomial Distribution.

We state Lemma A.1 which is used in the proof of Proposition 2.4.

Lemma A.1 The cumulative distribution function of Poisson Binomial distribution
is non-increasing with respect to success probability pi for all i = 1, . . . ,n.

Proof A.1 Let Y be a Poisson Binomial random variable with success probabilities
p1, . . . ,pn. It suffices to show that the partial derivative of the cumulative distribution
function of Poisson Binomial distribution with respect to pi is nonpositive for all
i = 1, . . . ,n. Without loss of generality, we concentrate on the nth Bernoulli random
variable. The cumulative distribution function of Poisson Binomial distribution is
given by:

F (y,p1, . . . ,pn) = P(Y ≤ y) =
y∑

l=0
f(l,p1, . . . ,pn) =

y∑
l=0

∑
A∈Bl(1,...,n)

∏
i∈A

pi

∏
j∈Ac

(1−pj),

where f(l,p1, . . . ,pn) denotes its probability mass function, i.e., the probability of l

successes in n Bernoulli trials, and Bl(1, . . . ,n) denotes the set of all subsets of size
l from {1, . . . ,n}. We can rewrite the probability mass function of Poisson Binomial
distribution as follows:

f(y,p1, . . . ,pn) =
∑

A∈By(1,...,n):n∈A

∏
i∈A

pi

∏
j∈Ac

(1−pj)+
∑

A∈By(1,...,n):n/∈A

∏
i∈A

pi

∏
j∈Ac

(1−pj)

= pn

∑
A∈By(1,...,n):n∈A

∏
i∈A:i̸=n

pi

∏
j∈Ac

(1−pj)

+(1−pn)
∑

A∈By(1,...,n):n/∈A

∏
i∈A

pi

∏
j∈Ac:j ̸=n

(1−pj).

Let us now obtain the partial derivative of f(y,p1, . . . ,pn) with respect to pn. In fact,
we have:

∂f(y,p1, . . . ,pn)
∂pn

=
∑

A∈By(1,...,n):n∈A

∏
i∈A:i̸=n

pi

∏
j∈Ac

(1−pj)

−
∑

A∈By(1,...,n):n/∈A

∏
i∈A

pi

∏
j∈Ac:j ̸=n

(1−pj)
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=
∑

A∈By−1(1,...,n−1)

∏
i∈A

pi

∏
j∈Ac

(1−pj)

−
∑

A∈By(1,...,n−1)

∏
i∈A

pi

∏
j∈Ac

(1−pj).

Consider the quantity Hy−1 := ∑
A∈By−1(1,...,n−1)

∏
i∈A pi

∏
j∈Ac(1− pj). The first

term in the last equality follows from the fact that the index n indeed belongs to set
By(1, . . . ,n), but is not used in any of the multiplication operations. This is equiva-
lent to the selection of y−1 many elements from {1, . . . ,n−1}. Similarly, consider
the quantity Hy :=∑

A∈By(1,...,n−1)
∏

i∈A pi
∏

j∈Ac(1−pj). The second term in the last
equality is due to the fact that the index n does not belong to set By(1, . . . ,n), and is
not used in any of the multiplication operations. This is equivalent to the selection of
y many elements from {1, . . . ,n−1}. Thus, the partial derivative of f(y,p1, . . . ,pn)
with respect to pn is given by:

∂f(y,p1, . . . ,pn)
∂pn

=


−H0 if y = 0,

Hy−1−Hy if 1≤ y ≤ n−1,

Hn−1 if y = n.

Then, it is easy to obtain the partial derivative of F (y,p1, . . . ,pn) with respect to pn

as follows:

∂F (y,p1, . . . ,pn)
∂pn

=


−H0 if y = 0,

−Hy if 1≤ y ≤ n−1,

0 if y = n.

Since pn ∈ [0,1], we clearly have ∂F (y,p1,...,pn)
∂pn

≤ 0 for y = 0, . . . ,n. This proves the
property of monotonicity of Poisson Binomial distribution with respect to pn.

Proof of Proposition 2.4

Consider any pair of maintenance decisions v′ = (w′, z′),v′′ = (w′′, z′′) with the fol-
lowing property:

(h,t′)≤ (h,t′′) for (h,t′) ∈ I(v′), (h,t′′) ∈ I(v′′) and h ∈H′.

Let us first consider the set of generators prone to failure. As before, we let ζ̂G(w′)
and ζ̂G(w′′) be the Poisson Binomial random variables with success probabilities
{p′

i = P(ξi ≤mi(w′)); i∈ G} and {p′′
i = P(ξi ≤mi(w′′)); i∈ G}, respectively. Clearly,
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the maintenance schedule under decision w′′ is in a later period than the maintenance
schedule under decision w′, which implies that mi(w′) ≤mi(w′′) for i ∈ G′. Then,
we have p′

i ≤ p′′
i . Secondly, we consider the set of transmission lines prone to failure.

We let ζ̂L(z′) and ζ̂L(z′′) be the Poisson Binomial random variables with success
probabilities {p′

ij = P(ξij ≤mij(z′)); (i, j) ∈ L} and {p′′
ij = P(ξi ≤mi(z′′)); i ∈ L},

respectively. Similarly, we have p′
ij ≤ p′′

ij for (i, j) ∈ L′.

By Lemma A.1, we have P(ζ̂G(w′) ≤ ρG) ≥ P(ζ̂G(w′′) ≤ ρG) and P(ζ̂L(z′) ≤ ρL) ≥
P(ζ̂L(z′′)≤ ρL). By using the independence of these random variables, we immedi-
ately have that P(v′)≥ P(v′′).
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APPENDIX B

Physical Quantities.

We present the physical parameters and constants used in this thesis.

We first note that each pipe (i, j)∈P ′ is characterized by its length Lij , its diameter
Dij and its roughness kij . The length and diameter parameters are measured in
meters, whereas roughness is a unitless parameter. Then, the resistance coefficient
wij of pipe (i, j) can be computed as

wij = 16λijLijp0ρ0zmTm

π2D5
ijz0T0

.

Here, z0 and zm are the norm and mean compressibility factors; T0 and Tm are the
norm and mean gas temperature; ρ0 is the norm density and p0 is the norm gas
pressure. The friction coefficient λij is given by the Nikuradse’s formula:

λij =
(

2log10

(
Dij

kij

)
+1.138

)−2
.

The compressibility factors can be approximately computed by the Papay’s equation:

zk := zk(pk,Tk) = 1−3.52(pk/pc)e−2.26Tk/Tc +0.274(pk/pc)2e−1.878Tk/Tc ,

where pc and Tc are the pseudocritical pressure and pseudocritical temperature,
respectively. Thus, the norm compressibility factor is given by z0(p0,T0) whereas
the mean compressibility factor is given by zm(pm,Tm) with pm = (max{p

i
,p

j
}+

min{pi,pj})/2. Each resistor (i, j) ∈ P ′′ is associated with a unitless drag factor
ζij > 0. The resistance coefficient of resistor (i, j) is then computed as

wij = 16ζijp0ρ0zmTm

π2D4
ijz0T0

.

For each compressor (i, j) ∈ C, the consumption parameter κ′
ij is computed as

κ′
ij = 1

3.6 105κ

ρ0RTmzm

mηadηdriveHc
.
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Here, R is the universal gas constant; m is the molar mass of the gas; Hc is the
lower calorific value; ηadiabatic and ηdrive are the adiabatic and driver efficiency,
respectively. Also, the physical constant κ is calculated by (χ−1)/χ where χ is the
estimate for the isentropic exponent parameter.

In Table B.1, we present the constants used in the parameter calculations along with
their units. The values for constants ηadiabatic and ηdriver are chosen as in Tabkhi,
Pibouleau, Hernandez-Rodriguez, Azzaro-Pantel & Domenech (2010).

Notation Definition Value Unit
T0 norm gas temperature 283.15 K
Tm mean gas temperature 273.15 K
ρ0 norm gas density 0.785 kg/m3

po norm pressure 101325 Pa
pc pseudocritical pressure 459293 Pa
Tc pseudocritical temperature 188.55 K
R universal gas constant 8.3145 J/mol/K
m molar mass of gas 0.01857 kg/mol
Hc lower calorific value of gas 9.8 kwh/m3

χ isentropic exponent 1.296 1
ηadiabatic adiabatic efficiency 0.90 1
ηdrive driver efficiency 0.35 1

Table B.1 Physical constants.

In our optimization model, we use constant cost coefficients. In particular, we choose
Cfc

ij = 0.1372$/kwh (EIA, 2020), Con
ij = 5618$ (Yucekaya, 2013) for each compressor

(i, j) ∈ C. For each store j ∈ S(i), Cwd
j = 0.1311$/m3. We also choose η′

j = η′′
j = 0.90

for each store j. The minimum-up and minimum-down time restrictions are as
follows: MUij = MDij = 2 for each (i, j)∈C∪V ; MUij = MDij = 1 for each (i, j)∈R
(see, e.g., Burlacu et al. (2019)). Also, we let

¯
δij = 5, δ̄ij = 15 and chose

¯
rij = 1.0895

and r̄ij = 1.6009 as in Burlacu et al. (2019) for each (i, j) ∈ C;
¯
rij = 1/1.0895 and

r̄ij = 1/1.6009 for each control valve (i, j) ∈ V . In Table B.2, we finally present the
units of the original variables in our optimization model by dropping their subscripts:

Notation Definition Unit
f gas flow m3/s
l fuel gas consumption m3/s
p gas pressure Pa
s gas storage level m3

s′ gas injected m3/s
s′′ gas withdrawn m3/s

Table B.2 Variables.
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