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and Asst. Prof. Rahim Dehkharghani for their precious feedback to improve this

thesis.

I am also thankful to my colleagues in the Audit Data Team at Garanti BBVA for

their big support and belief in me, especially Hilmi Beydeş and İhsan Büyükuğur,
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Abstract

Knowing the difficulty of a text document, in particular learning materials, has many

benefits, such as recommending documents that are tailored towards a specific target

group with the goal of maximizing understanding when reading these recommended

documents.

While different factors exist that affect document difficulty, they capture different

aspects of it. One of which is readability, which captures syntactical and lexical

text properties and relates to linguistic difficulty. Another one is the background

knowledge needed for readers to understand a given document because concepts

therein might be more or less complex. Although both factors have been analyzed

in isolation, their interplay is unknown. Similarly, the importance of both factors has

not been examined, although addressing any of those problems could improve the

understanding of document difficulty and thus pave the way towards more reliable

models for predicting document difficulty.

Hence, this work investigates both problems by proposing a supervised model that

extracts 20 features related to background knowledge and readability of a document

to predict its difficulty. This model serves as the basis for analyzing the importance

of these features and the interplay between background knowledge and readability

for estimating document difficulty. We find that linguistic difficulty is more impor-



tant than background knowledge across all datasets. To the best of our knowledge,

there are no datasets in the educational domain available for predicting document

difficulty, thus we created one about biological concepts. We release this dataset to

the research community in the hope to stimulate more research and provide more

data to assess the reliability of methods for predicting document difficulty across

different domains.

v
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Özet

Bir metin belgesinin, özellikle eğitim materyallerinin zorluğunu bilmenin birçok fay-

dası vardır. Bunlardan biri, okuduğunu anlamayı en üst düzeye çıkarmak amacıyla

belirli bir hedef gruba yönelik uyarlanmış belgeler önermektir.

Doküman zorluğunu etkileyen farklı faktörler mevcut olmakla birlikte, bu faktörler

doküman zorluğun farklı yönlerini yakalarlar. Bunlardan biri, sözdizimsel ve sözcüksel

metin özelliklerini yakalayan ve dilbilimsel zorlukla ilgili olan okunabilirliktir. Bir

diğeri, okuyucuların belirli bir dokümanı anlaması için gereken bilgi birikimidir,

çünkü dokümandaki kavramlar okuyucu için karmaşık olabilir. Her iki faktör de

ayrı ayrı analiz edilmiş olsa da, bu faktörlerin karşılıklı etkileşimleri bilinmemek-

tedir. Benzer şekilde, bu faktörlerin doküman zorluğunu tahmin etmekteki önemi

birlikte incelenmemiştir. Bu sorunlardan herhangi birinin ele alınması, doküman

zorluğunun anlaşılmasını iyileştirebilir ve böylece doküman zorluğunu tahmin et-

mek için daha güvenilir modellerin yolunu açabilir.

Bu nedenle, bu çalışma, bir dokümanın zorluğunu tahmin etmek için gereken bilgi

birikimi ve okunabilirliği ile ilgili 20 özniteliği çıkaran gözetimli bir model önererek

her iki sorunu da araştırmaktadır. Bu model, doküman zorluğunu tahmin etmek

için bu öznitelikleri önemini ve gereken birikim bilgisi ile okunabilirlik arasındaki

karşılıklı etkileşimi analiz etmenin temelini oluşturur. Kullandığımız tüm veri kümelerinde



okunabilirliğin gereken bilgi birikiminden daha önemli olduğunu gözlemledik. Bildiğimiz

kadarıyla, eğitim alanında belge zorluğunu tahmin etmek için mevcut bir veri seti

yok, bu nedenle biyolojik kavramlar hakkında bir veri seti oluşturduk. Bu karşılaştırmalı

veri setini, daha fazla araştırmayı teşvik etmek ve farklı alanlarda belge zorluklarını

tahmin etmeye yönelik yöntemlerin güvenilirliğini değerlendirmek için daha fazla

veri sağlamak umuduyla araştırma topluluğuna sunuyoruz.
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Chapter 1

Introduction

The goal of this thesis is to understand how different features for supervised models

contribute to the task of predicting document difficulty. Section 1.1 provides the

context for this thesis by motivating why the task of predicting document difficulty

is relevant, how current state-of-the-art methods address this task, and what the

challenges are to improve results. Then Section 1.2 outlines how this thesis tackles

these open problems and what the most important outcomes are.

1.1 Motivation

What if the difficulty level of learning materials was known? Learning materials

could be tailored more accurately to the desired target audience. Similarly, more

appropriate learning materials could be recommended on e-learning platforms such

as [1] or search results rankings could be tailored to an individual’s preferences. More

generally speaking, knowing the difficulty level of any textual document, which learn-

ing materials are an instance of, provides benefits. For instance, documents could

be specifically geared towards intellectually disabled individuals, which has been

shown to improve their understanding [2]. Therefore, solving the problem of esti-

mating document difficulty has attracted a lot of attention from researchers over

time. For example, readability formulas like Dale-Chall [3] have been devised to

measure the difficulty of texts by analyzing syntactical (sentence structure) and lex-

ical (word difficulty) text properties. A plethora of methods [4, 5, 6, 7] have been

proposed to address this problem known as automatic readability assessment with

1



the implicit assumption that once readers understand what they read, they can learn

it. Learning materials are even assigned to different grade levels based on readability

measures such as the Lexile reading level [8]. However, this is only one of many fac-

tors affecting difficulty simultaneously [9]. Automatic readability assessment suffers

from the misconception that the ability to read a text is sufficient for understand-

ing. For example, a textual document might confuse readers by having an incohesive

train of thought, despite being written in simple language. Moreover, a document

could mention different concepts, each of which requires the reader to have a varying

degree of background knowledge to fully grasp the meaning of the text. This task,

also known as predicting conceptual text complexity has been introduced only re-

cently [10] in which the authors argue that document difficulty also depends on the

required background knowledge to understand all concepts mentioned in the text.

They propose different methods to address this task [10, 11, 12].

Thus, multiple factors contribute to the notion of document difficulty. However,

there is no consensus on these factors when attempting to predict document difficulty

automatically. Therefore, before diving into further challenges, we clarify what we

mean by document difficulty in this work. Although working definitions of document

difficulty have been proposed in the context of specific algorithms [13], they are too

narrow and do not take into account findings from cognitive science. Hence we

draw inspiration from theoretical frameworks that distinguish between external and

internal factors of document difficulty. External factors include language proficiency

(native speaker versus second language learner) [14] and motivation of a learner [15].

Internal factors include readability [5], the required background knowledge [10], and

structural difficulty of the language, which can be measured by syntactical and

morphological complexity [16]. In this work we limit ourselves to modeling document

difficulty by means of internal factors since most external ones are hard to capture

reliably.

While a broad range of factors affecting document difficulty have been explored in

the literature, most of them have been only considered in isolation. Therefore it

is an open question how important each of those factors is when combining them

for estimating document difficulty. Likewise it is unclear how those factors interact.
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An example of such an interaction is reported in [4], where the authors observed

a recursive relationship between word and document difficulty: word difficulty cor-

relates with the minimum difficulty of the document where the word occurs, and

document difficulty correlates with the maximum word difficulty in that document.

Acquiring such information for more features would be a step towards generating

text that exhibits a desired difficulty level.

Another challenge for predicting document difficulty is the lack of appropriate

datasets, especially in the educational domain. To the best of our knowledge,

the only high-quality human-curated dataset for predicting document difficulty is

Newsela [17], which contains news articles and simplified versions. Other datasets

addressing this task are of low quality [17].

1.2 Overview of the Methodology and Contribu-

tions

In this thesis the overarching goal is to understand how different features affect

document difficulty. To that end, we first define how we model document difficulty

based on findings from cognitive science to avoid ambiguity when using the term

”document difficulty”. In particular, we consider two factors, namely linguistic

difficulty and inherent concept difficulty. While linguistic difficulty covers lexical

and syntactical properties of documents, inherent concept difficulty relates to the

background knowledge required for understanding a document. In total, we extract

20 features for both factors together inspired by prior works. Features related to

inherent concept difficulty are derived from a graph that is constructed on the basis

of information obtained from an external knowledge base.

We leverage these features in our proposed supervised model to estimate the dif-

ficulty of textual documents. This model is used as a basis for investigating both

the importance of the extracted features as well as their interplay for predicting

document difficulty. To obtain more robust results, we conduct our experiments not

only on Newsela, but also on a newly created dataset covering concepts taught in

biology to both high school students and undergraduates in biology. To the best of
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our knowledge, we provide the first dataset for the educational domain for predict-

ing document difficulty. This new dataset also mitigates a drawback of Newsela,

because Newsela was initially devised as a dataset to evaluate the simplification of

sentences. Therefore, most sentences are aligned, which means that an easier vari-

ant of the sentence exists in the simplified document, whereas a harder variant of

the sentence exists in the harder version of the same document. However, we show

experimentally that this creates an artificial bias towards shorter sentences being

simpler as removing and paraphrasing sentences are the main operations that were

applied to simplify sentences. In contrast, the documents describing the same bio-

logical concepts in our newly created dataset stem from independent resources, thus

sentences are unaligned. Hence we argue that our new dataset captures document

difficulty more realistically.

Analyzing the importance of features and how their interplay affects predictions

regarding document difficulty on both datasets reveals that features related to lin-

guistic difficulty exert the biggest influence on the difficulty level of a document,

while features gauging inherent concept difficulty affect the difficulty level mainly

on our new dataset. In summary, our main contributions are:

1. We define document difficulty as a combination of linguistic difficulty, which is

expressed by lexical and syntactical features, and inherent concept difficulty,

which quantifies the background knowledge a reader needs to understand a

document.

2. We propose a supervised method utilizing 20 features related to inherent con-

cept and linguistic difficulty to estimate document difficulty.

3. To the best of our knowledge, we are the first to create a benchmark dataset

for predicting document difficulty in the educational domain, specifically for

biology.

4. We find that linguistic difficulty impacts document difficulty the most.

The rest of this thesis is structured as follows. Section 2 describes the most related

work, covering the automatic estimation of document difficulty in terms of automatic

readability assessment and predicting conceptual text complexity, and methods to

4



inspect and explain black-box models, which is known as explainable AI. Section 3

describes our proposed methodology for extracting the 20 features. This is followed

by evaluating in Section 4 the performance of our supervised model and using this

model to examine the impact of the features and their interplay. Last but not least,

Section 5 sums up the thesis and explores avenues for future research.
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Chapter 2

Related Work

In this section we review existing methods for predicting the difficulty of textual

documents in Section 2.1 as well as methods for a closely related task, namely

automatic readability assessment, in Section 2.2. This is followed by discussing

popular methods for interpreting AI models in Section 2.3.

2.1 Predicting Document Difficulty

Most existing works predict the difficulty of specific aspects in a document, but not

its overall difficulty. For instance, Huang et al. [18] predict the difficulty of questions

by quantifying the difficulty contribution of each sentence in a document to each

question by using an attention-based convolutional neural network. Similarly, in [19]

question difficulty is estimated by leveraging student assessment data for multidi-

mensional item response theory (IRT), which is an extension of IRT [20]. In [21]

the authors adopt a similar approach based on IRT, but integrate semantic fea-

tures derived from an external knowledge base to predict the difficulty of questions.

Specifically, the authors introduce two features, namely Coherence and Specificity

defined on the hierarchical structure of the knowledge base, which we adopt in this

work.

The task of estimating the required background knowledge of textual descriptions

to enable understanding of these texts has been introduced only recently and is

referred to as predicting conceptual text complexity [10]. In the same paper the
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authors suggest a supervised method capitalizing solely on 13 graph-based features

from the DBpedia knowledge graph [22]. Since the feature extraction step is time-

consuming and error-prone due to some missing in the graph, the same authors

propose to combine those and an extended set of DBpedia-related features in [12],

which improves their previous model. In [11] the authors propose an unsupervised

method based on activation spreading over DBpedia subgraphs.

2.2 Automatic Readability Assessment

Automatic readability assessment aims to predict the appropriate grade level needed

for being able to read a given text. The history of readability assessment is summa-

rized in [23]. Initially, many hand-crafted readability formulas were proposed in the

past that are still in use [23, 24], e.g., Dale-Chall [3]. These formulas typically esti-

mate readability on the basis of a few features like sentence length or word difficulty.

In [25] the authors analyzed the correlation of multiple readability formulas with two

types of text genres, namely narrative and informative texts. They discovered that

readability formulas performed well on informative texts. The authors of [26] further

analyzed narrative and informative texts and found that many readability formulas

underestimate the difficulty of literary texts, while overestimating the difficulty of

informative texts because the latter contain less core vocabulary, which constitutes

an important indicator of readability in readability formulas. Therefore, readability

formulas are insufficient to estimate readability. These findings also motivate why

more advanced features have been proposed and incorporated into more complex

models over time. In [5] different feature categories to consider for readability assess-

ment are summarized. An exhaustive list of 86 psycholinguistic features is described

in [6], comprising features based on readability formulas, counts of part-of-speech

tags, words based on specific word lists, Wordnet-based features, psycholinguistics,

and parse trees for estimating the readability of texts. One disadvantage of these

manually extracted features is that there might be other latent patterns in texts

that have not been explored thoroughly. Thus, deep learning models that represent

textual documents as high-dimensional vectors, also known as embeddings, might

be promising, especially given the wealth of text data that has been collected over
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decades of research on readability. One such method is presented in [27]. The

authors fuse many of the features described in [6] with deep learning models, but

find that the latter perform equally well without additional hand-crafted readability

features. Another method employing deep learning is described in [4]. The au-

thors present a semi-supervised approach to predict the discrete language levels of

documents for second language learners. An advantage of their method is that it

simultaneously predicts the difficulty/language level of words and documents using

a graph convolutional network (GCN). To that end, the authors exploit the rela-

tionship between difficulty at the document and word level: first, word difficulty is

correlated with the minimum difficulty of any document in which that word occurs.

And second, document difficulty is correlated with the maximum difficulty of any

word in that document. We incorporate the predicted language level from GCN as

a feature in our proposed method for predicting document difficulty. Moreover, we

employ GCN as a baseline in our evaluation.

While the task of automatic readability assessment [5, 7] is closely related to pre-

dicting document difficulty, it assumes that estimating the difficulty of reading a

textual document is identical with its difficulty. However, text readability does not

account for the required background knowledge to understand mentioned concepts

in a document amongst other factors [9]. Thus, available data sets for readability

assessment like [28, 29] are inappropriate for our evaluation. But in the remainder of

this work we consider readability as one of the factors affecting document difficulty.

Our work differs from existing works in two aspects. First, unlike existing methods

that regard document difficulty a result of predicting either the readability (auto-

matic readability assessment) or required background knowledge (conceptual text

complexity) of documents, we view document difficulty as the result of combining

both factors. Secondly, our goal is to assess how different features contribute to

document difficulty and how they interact. Furthermore, modeling document diffi-

culty as a result of the factors readability and background knowledge enables us to

analyze the importance of both factors for this classification task.
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2.3 Model Explainability

Different methods exist to explain why black-box models predict a certain class

label for a given document. One way to reveal insights about the inner workings

of a black-box model is considering feature importance. The importance of features

may be measured per document, which is known as local feature importance, or

globally for the whole dataset resulting in a single ranking of feature importances,

which is known as global feature importance. A popular method for measuring

global feature importance is permutation importance [30]. Permutation importance

is a popular method based on the idea of estimating the importance of feature f

based on the following procedure. First a base model is trained on the original

data. Then a second model is trained on the same dataset, but the values of f

are permuted. The difference between the performances of the base model and the

model trained on the permuted dataset indicates f ’s importance. Thus, negative

permutation importance scores indicate that the second model with the permuted

feature f performed better than the original model, which indicates that f is not

important. However, it is known that permutation importance overestimates the

importance of correlated features [31].

Diverse Counterfactual Explanations (DiCE) [32] pursues a different direction to

allow interpreting black-box models. It generates counterfactuals, i.e. artificial doc-

uments, to answer the question: how much do the features of a document have

to be adjusted for its class label to change? Since there are different possibilities

of achieving the goal of switching a label, DiCE optimizes three objectives simul-

taneously, s.t. generated counterfactuals are diverse, feasible, and sparse. In this

context feasibility means that one can select which of the features may be changed

by DiCE to generate counterfactuals. For example, assuming that a person’s age is

among the features, then age should not be changed by DiCE in the counterfactual

as a person cannot get younger in practice. Diversity implies that different com-

binations of features should change in different counterfactuals instead of updating

mainly the same feature subset. Similarly, sparsity states that as few features as

possible and as many features as necessary should be changed in counterfactuals.

DiCE can also be employed to estimate feature importance motivated by the idea
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that the more often a feature changes when generating counterfactuals for a given

document, the more important that specific feature becomes. By generating coun-

terfactuals for a single document, local feature importance can be estimated and

summing these importance scores over all documents results in a global ranking of

feature importances.

SHAP (SHapley Additive exPlanations) enables the interpretation of black-box

models by measuring local and global feature importances [33]. This way SHAP

can explain with local feature importance why a document has a certain predicted

value and also how important each feature is in a dataset. SHAP is grounded in

cooperative game theory and any feature importance computed by SHAP satisfies

three desirable properties for an intuitive interpretation: local accuracy, consistency,

and missingness. Local accuracy states that the sum of the importance scores of a

document’s features sum to its predicted value. Consistency states that if a model

changes and a feature’s value increases or stays the same, the feature’s importance

score also increases or stays the same. Missingness states that missing features have

no contribution. It is known from cooperative game theory that only Shapley values

satisfy these three properties. In SHAP a feature’s importance score corresponds

to its Shapley value. Shapley values are computed per document for local feature

importance scores and are summed up to get a global ranking of the features over

all documents.

At its core, SHAP assumes that the prediction of a trained and complex model f

can be approximated by a simpler model g, s.t. the predicted label for document

x, namely f(x), is close to g(x), i.e. f(x) ≈ g(x). A characteristic of g is that

it is a linear additive model, which assigns an effect, i.e. an importance score or

Shapley value, ϕi, to each feature. Summing up these effects results in g(x), which

approximates f(x). Formally, this is expressed by:

f(x) = g(x′) = ϕ0 +
n∑
i

ϕi ∗ x′
i (2.1)

where x′ represents the simplified input features, n denotes the number of simplified

input features, and ϕ0 indicates the prevalence of the positive class. The importance

score or Shapley value ϕi of each feature x′
i is computed over all possible orderings,

i.e. the power set, of the input features based on the idea that xi’s contribution is
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measured as the difference between the model’s performance with and without xi.

Instead of the actual feature values, simplified features indicate only the presence

or absence of a feature in an ordering.

Figure 2.1: Intuition for computing the Shapley value for feature 1 in the feature set

comprising features {1, 2, 3}: it is the sum of all marginal contributions indicated

by green edges. Note that each row in the lattice sums to one.

The intuition behind Shapley values for a document x is depicted in Fig. 2.1. Given

a feature set comprising features {1, 2, 3}, the importance of feature 1, which cor-

responds to its Shapley value, is computed as the sum of all marginal contributions

of a model trained on a feature subset containing feature 1. This means that the

difference in performance of a model trained on a feature subset containing feature 1

minus a model trained on the the same feature subset without feature 1 is attributed

to the presence of feature 1. For example, the performance of a model trained on

feature subset {1, 2} minus the performance of a model trained on feature subset

{2} indicates the importance of feature 1. Summing up the contributions of feature

1 over all these marginal contributions highlighted with green edges yields exactly

the Shapley value of feature 1 for document x. The weight of each marginal con-

tribution, i.e. the weight of an edge in the lattice, sums up to one in every row to

ensure that all rows contribute equally to the Shapley value.

Given the popularity of permutation importance, we utilize it in this thesis as a

baseline method for estimating global feature importances. In addition, we also

apply SHAP since it is based on game theory and it yields feature importances
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that are more consistent with human intuition than other existing methods [33], we

employ it not only for estimating feature importance, but also for examining the

interplay among multiple features. Since SHAP already allows interpreting black-

box models on a local and global level, we refrain from using DiCE.
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Chapter 3

Problem Definition and

Methodology

First and foremost, we formally define the problem setting in which our methodology

operates and cover preliminaries in Section 3.1. Then Section 3.2 describes our

methodology step by step.

3.1 Preliminaries and Problem Definition

In Section 3.1.1 we first formally state the problem that our proposed methodology

addresses. It outlines the general workflow for training a supervised model that

predicts document difficulty. Then Section 3.1.2 clarifies how we understand the

term ”document difficulty” and how we model it in this work. Last but not least, a

substantial set of features for training the supervised model will be extracted from

an external knowledge base, which is DBpedia in our case. Thus we briefly outline

in Section 3.1.3 the basics about DBpedia that are utilized in the remainder of this

thesis for feature extraction.

3.1.1 Problem Definition

Given a set of m unstructured text documents D = {d1, d2 · · · dm}, s.t. a set of k

keywords Ci = {c1, c2, · · · ck} is extracted by a keyword extraction algorithm for text

document di ∈ D. These keywords represent concepts and thus we always refer to
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them as concepts. Therefore, concept cij refers to the j-th concept of document di

and Ci refers to the set of k concepts extracted from di. With the help of an entity

linker each concept cij ∈ Ci is linked to an entry in an external knowledge base to

construct an undirected graph Gi. Features of di are extracted from Gi, the raw

text of di, and the external knowledge base. Based on these features a supervised

model M is trained to predict the difficulty of an unstructured text document di.

Document difficulty is quantified by n discrete levels L = 0, . . . n− 1, n > 1, where

L = 0 refers to the most difficult description and L = n−1 refers to the easiest one.

3.1.2 Document Difficulty

Document difficulty informally describes how difficult it is for individuals to under-

stand all ideas and arguments expressed in a given document. We model document

difficulty as a combination of linguistic difficulty and inherent concept difficulty. We

approximate linguistic difficulty by readability measures in line with [34]. Readabil-

ity is defined as the overall effect of language usage and composition on the ability of

readers to comprehend the document with ease [35]. Existing readability measures

quantify readability as a certain combination of lexical features such as word diffi-

culty and syntactical properties like sentence length. In line with [10], we consider

conceptual complexity affecting document difficulty. The term ”conceptual com-

plexity” is defined in cognitive science and comprises conceptual primitives, which

are to be thought of as building blocks. Humans either learn these primitives dur-

ing childhood or they might even be innate and universal. Therefore, more complex

concepts cover more conceptual primitives [36]. This notion bears similarities with

knowledge space theory [37] that describes how humans learn new concepts. We re-

fer to conceptual complexity as ”inherent concept difficulty” throughout this thesis.

It is measured as the cumulative background knowledge that a reader needs to know

about all concepts mentioned in that document to understand it. Inherent concept

difficulty is estimated based on features extracted from an external knowledge base,

DBpedia [22] in our case, which allows us to exploit the correlation between the

location of a concept in the knowledge graph and its difficulty level based on prior

work.
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3.1.3 DBpedia

DBpedia is a knowledge base for Wikipedia and has an entry for every Wikipedia

article. In contrast to Wikipedia, DBpedia is stored as a directed graph adopting

the RDF model [38]: each DBpedia entry is represented as a node and directed

edges encode different types of relations that were extracted from Wikipedia arti-

cles. Therefore, DBpedia provides more structured access to the same data that

Wikipedia provides, so accessing the information is easier. DBpedia uses SPARQL

to retrieve desired subgraphs from the DBpedia knowledge graph. In this thesis we

employ the following properties from DBpedia entries:

• dct:subject - contains the DBpedia categories in which that concept is used

• skos:broader - contains the parent categories of a category

• ˆskos:broader - contains the child categories of a category

• dbo:abstract - contains the beginning of the corresponding Wikipedia article

• dbo:wikiPageWikiLink - contains the outgoing edges, i.e. all Wikipedia articles

which the current DBpedia article links to

• ˆdbo:wikiPageWikiLink - contains the incoming edges of a DBpedia entry, i.e.

all Wikipedia articles that link to the current DBpedia entry

3.2 Methodology

Our methodology for training a supervised model for predicting document difficulty

comprises three steps. First, we extract concepts from the given raw text documents

and link (Section 3.2.1) them to the external knowledge base, which is DBpedia. In

the second step, we construct an undirected graph per document (Section 3.2.2).

Last but not least, we extract 20 features per document from different sources,

namely from the raw text, from DBpedia and from the undirected graph constructed

in the previous step.
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Figure 3.1: Illustration of the necessary steps to assign the given DBpedia entry

”dbr:Flagellum” a single DBpedia category, which is ”dbc:Bacteria”.

3.2.1 Concept Extraction and Entity Linking

Some of the features we extract for an unstructured text document di ∈ D are

based on the concepts mentioned in di. Specifically, they exploit information from

the DBpedia knowledge graph, but this requires linking the raw text to entries in

the DBpedia knowledge graph. We identify concepts as follows. First, we extract

the top-10 keywords from di with TopicRank [39] using PKE [40], which is an

open source Python-based keyphrase extraction toolkit. By default 10 keywords

are extracted as this has been shown empirically to be a good trade-off between

actual keywords and noise. Each extracted keyword represents a concept. In the

next step, these concepts are mapped to entries in the DBpedia knowledge graph

with the help of DBpedia Spotlight [41]. The linking step involves disambiguating

concepts, i.e. the concept ”bank” might refer to the financial institution or a river

bank depending on the context in di, so that the concept is mapped to the most

likely DBpedia entry. To that end we employ DBpedia Spotlight [41].

Some of our features require DBpedia category (dct:subject) for a DBpedia entry.

Since some entities belong to more than one category, we assign each DBpedia entry

the most related category among its candidate categories. To that end we utilize
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the frequency information of the candidate categories in the abstract (dbo:abstract)

of the related DBpedia entry. To that end we count the number of occurrences

of candidate categories and select the category with the highest number of occur-

rences. An example is given in Fig. 3.1, where the DBpedia entry ”dbr:Flagellum”

is assigned the single DBpedia category ”dbc:Bacteria” as it occurs most frequently

in the abstract of dbr:Flagellum.

3.2.2 Graph Construction

For each document di ∈ D an undirected graph Gi is created based on the top-10 ex-

tracted concepts as follows. Gi is described in terms of its set of nodes Vi and its set

of undirected edges Ei. Initially, Nodes in Vi correspond to the top-10 extracted con-

cepts. For each of these concepts its corresponding DBpedia entry is retrieved and all

concepts mentioned in its dbo:wikiPageWikiLink property are also added to Vi. An

undirected edge between nodes nk ∈ Vi and nl ∈ Vi, nk ̸= nl is added to Ei if both are

connected via the dbo:wikiPageWikiLink property in DBpedia. As a result of this

procedure, Gi might contain multiple disconnected components. Note that we only

add additional nodes in Vi that are one hop (according to dbo:wikiPageWikiLink

property) away from the top-10 extracted concepts. This decision is motivated by

the findings in [42], in which the researchers found that relevant concepts lie close

to each other, i.e., few hops apart, in the DBpedia knowledge graph.

3.2.3 Feature Extraction

Overall, our features can be grouped into three different categories as shown in

Table 3.1.
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Table 3.1: Short description of the extracted features representing a document di to

predict its document difficulty. The set of top-10 concepts Ci was extracted with a

keyword extraction algorithm and the undirected graph Gi with a set of nodes Vi

was constructed for di. Note that we dropped ”Average” from all feature names for

readability.

Difficulty

Factor

Source Feature Explanation

Inherent

concept

difficulty

DBpedia

Degree [21] Average number of nodes that c ∈ Ci

is connected to in DBpedia.

Specificity [21] Average location of c ∈ Ci in DBpe-

dia

Coherence [21] Average semantic relatedness of c ∈

Ci in DBpedia

Support [41] Average number of incoming edges of

c ∈ Ci in DBpedia

Similarity [41] Average probability that c ∈ Ci refers

to the linked DBpedia entry

Rank2 [43] Average confidence that c ∈ Ci is dis-

ambiguated correctly and mapped to

the corresponding DBpedia entry

Offset Confidence of the keyword extraction

algorithm for c ∈ Ci to represent a

concept in di

Graph

Clustering

Coeffi-

cient [44]

Quantifies the extent to which the

neighbors of c ∈ Ci in Gi resemble

a complete graph on average

Continued on next page
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Table 3.1 – continued from previous page

Difficulty

Factor

Source Feature Explanation

PageRank [45] Average relative importance of di as

the average of the PageRank values

of c ∈ Ci in Gi

Avg. Short-

est Path

Average distance of c ∈ Ci in Gi

Nof Con-

nected

Compo-

nents [46]

Number of connected subgraphs inGi

that are not part of any larger con-

nected subgraph

Inherent

concept

difficulty

Graph

Global effi-

ciency [47]

Average efficiency to send informa-

tion concurrently in Gi across all

pairs of nodes n ∈ Vi in Gi

Local effi-

ciency [47]

Average resilience of Gi after remov-

ing c ∈ Vi from Gi

HITS

Hubs [48]

Centrality of a concept c ∈ Ci based

on its outgoing edge in Gi

HITS Au-

thorities [48]

Centrality of a concept c ∈ Ci based

on its incoming edge in Gi

Subgraph

Central-

ity [49]

Number of closed walks of different

length in Gi over c ∈ Ci on average

S-

Metric [50]

Interconnectedness between nodes

c ∈ Vi with high node degree in Gi

Degree Cen-

trality

Average number of outgoing edges of

c ∈ Ci in Gi

Continued on next page
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Table 3.1 – continued from previous page

Difficulty

Factor

Source Feature Explanation

Linguistic

difficulty
Raw text

Dale-

Chall [3]

Lower scores indicate easier texts

GCN [4] Predicts the CEFR level (A1, . . .C2)

of di

DBpedia-based Features

DBpedia-based features are related to inherent concept difficulty as they encode

structural information from the DBpedia knowledge graph by capturing how densely

connected a concept is, how it relates to similar concepts, and where exactly that

concept is located in the graph. All features from this category are computed on

the DBpedia knowledge graph.

Average Degree(di), the Average Node Degree or Popularity [21] of document di,

indicates how well di is connected to other concepts in the DBpedia knowledge graph

on average:

Average Degree(di) =
1

|Ci|
∑
c∈Ci

in-degree(c) + out-degree(c) (3.1)

where, out-degree(c) refers to the number of outgoing edges from c and in-degree(c)

denotes the number of incoming edges of c based on the dbo:wikiPageWikiLink

property in DBpedia. We hypothesize that higher Average Degree is indicative of

easier documents, because due to more connections in di, the concepts c ∈ Ci are

more likely to be familiar.

Average Specificity(di) [21] of document di indicates the average location of di in

the DBpedia hierarchy:

Average Specificity(di) =
1

|Ci|
∑
c∈Ci

Specificity(c)depth of c’s category from the root category

(3.2)

where (Specificity)(c) [21] of concept c ∈ Ci is measured in the DBpedia knowl-

edge graph as the distance of c’s DBpedia category (dct:subject) from the root cat-
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egory.We hypothesize that for understanding documents with higher Average Speci-

ficity more knowledge is required, thus higher values of specificity result in harder

documents.

Average Coherence(di) of document di indicates how similar the concepts c ∈ Ci are

on average based on the DBpedia knowledge graph structure:

Average Coherence(di) =
1

|Ci|
∑
c∈Ci

Coherence(c, Ci) (3.3)

where Coherence(c) [21] of concept c indicates how similar c is on average in terms

of related categories (skos:broader) to all the other concepts in Ci in the DBpedia

knowledge graph. We hypothesize that higher Average Coherence value indicate more

coherent concepts, which reduces the mental load of readers trying to understand such

documents. And this, in turn, makes such documents easier to understand.

DBpedia Spotlight utilizes features for entity linking in a generative entity men-

tion model [51] that produces for each concept c ∈ Ci in document di’s raw text a

score how likely c refers to a DBpedia entity. For disambiguation this model utilizes

different features describing the probability distribution of keyword occurrences in

the text of di compared with the distribution over all DBpedia entities. We in-

corporate three of these features provided by DBpedia Spotlight which are called

Support, Similarity, Rank2. In addition, we also compute a fourth feature based on

DBpedia’s Offset feature to which we also refer as Offset.

Average Support(di) of document di describes the average number of incoming edges

in the DBpedia knowledge graph:

Average Support(di) =
1

|Ci|
∑
c∈Ci

Support(c) (3.4)

where Support(c) [41] describes the number of incoming edges of concept c ∈ Ci. It

is used by DBpedia Spotlight as the minimum threshold c has to exceed for it to

be linked to entities. We hypothesize that higher Average Support values correlate

with lower document difficulty because they indicate that concepts are more common,

which makes them more likely to be understood by readers.

Average Similarity(di) of document di refers to the average probability that concepts
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in di link to their matched DBpedia entries:

Average Similarity(di) =
1

|Ci|
∑
c∈Ci

Similarity(c) (3.5)

where Similarity(c) [41] represents the average probability that a concept c from di

links to the matched DBpedia entry. We hypothesize that if the disambiguation of

c is easy for DBpedia, it is also easy for humans. Thus, high Average Similarity

values correlate with easier documents.

Average Rank2(di) of document di estimates the average difference between the con-

cepts’ matched DBpedia entries and their second best DBpedia entry alternatives:

Average Rank2(di) =
1

|Ci|
∑
c∈Ci

Rank2(c) (3.6)

where Rank2(c) [43], the average percentage of second rank for concept c, which

corresponds to the Similarity(c̄ of the next best candidate c̄ for a concept c in

di’s text compared to Similarity(c). We hypothesize that higher differences increase

confidence in the disambiguation and therefore higher values of Average Rank2 char-

acterize easier documents.

Average Offset(di) of document di represents the average confidence that the key-

word extraction algorithm identified a concept that has an entry in DBpedia:

Average Offset(di) =
1

|Ci|
∑
c∈Ci

Offset(c) (3.7)

where Offset(c) represents the confidence of the keyword extraction algorithm for

concept candidate c to represent an actual concept in di. We hypothesize that higher

confidence scores correlate with easier documents, because identifying concepts helps

also a learner to see relationships across concepts.

Graph-based Features

Graph-based features are extracted for each document di from Gi, which is con-

structed according to Section 3.2.2.

Average PageRank(di) of document di describes the average importance of its con-

cepts in Gi:

Average PageRank(di) =
1

|Ci|
∑
c∈Ci

PageRank(c) (3.8)
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where PageRank(c) [45], of concept c measures the relative importance of c in G.

We hypothesize that high PageRank values indicate that di is easier because many

other concepts link to c ∈ Ci, thus c is more common on average.

Similar to Average PageRank(di), we rank concepts c ∈ Ci in document di based

on HITS [48] in Gi, where we distinguish between Average HITS Hubs(di) and

Average HITS Authorities(di). The former measures the centrality of a concept

c ∈ Ci based on its outgoing edges in Gi, whereas the latter utilizes c’s incoming

edges. We hypothesize that both high Average HITS Authorities values and high

Average HITS Hubs values, are more likely to occur in easier documents because such

documents contain highly connected concepts that learners might be already familiar

with.

Average Shortest Path(di) of document di measures the average of shortest paths

among c ∈ Ci in Gi:

Average Shortest Path(di) =
1

|Ci|
∑
c∈Ci

Shortest Path(c) (3.9)

where Shortest Path(c) measures measures the average of shortest paths from c ∈ Ci

to cj ∈ Ci − {c}. We hypothesize that high Average Shortest Paths indicate that

di mentions many unrelated or specialized concepts, which makes understanding di

harder.

AverageClusteringCoefficient(di) of document di describes how closely connected

Gi is on average:

Average Clustering Coefficient(di) =
1

|Ci|
∑
c∈Vi

Clustering Coefficient(c) (3.10)

where Clustering Coefficient(c) [44], of concept c ∈ Ci in Gi describes how closely

connected c’s neighbors are in Gi. If the neighbours of c are connected among

themselves, then the clustering coefficient of c will be higher. Therefore, the nodes

with low clustering coefficient tend to be more general. We hypothesize that lower

Average Clustering Coefficient values correlate with easier documents, because with

lower Average Clustering Coefficient values a document contains more general nodes

which makes understanding it easier.

S-Metric(di) of document di is a measure of interconnectedness between hub nodes
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(nodes with very high degree) of concepts c ∈ Vi in Gi [50]. We hypothesis that high

S-Metric values make documents easier, because more interconnected concepts are

likely more familiar, which enhances text understanding.

Average Degree Centrality(di) of document di measures how connected concepts in

di are:

Average Degree Centrality(di) =
1

|Ci|
∑
c∈Ci

Degree Centrality(c) (3.11)

where Degree Centrality(c) describes the number of edges of concept c ∈ Ci in

Gi.We hypothesize that higher values of Average Degree Centrality correlate with

easier documents because well-connected concepts increase the chances of familiarity

with them once readers come across them.

Average Subgraph Centrality(di) of document di describes how many closed walks

of different length exist in Gi on average:

Average Subgraph Centrality(di) =
1

|Ci|
∑
c∈Ci

Subgraph Centrality(c) (3.12)

where Subgraph Centrality(c) of a concept c ∈ Ci is the sum of closed walks of

different lengths in Gi starting and ending at c [49]. We hypothesize that higher

Average Subgraph Centrality values correlate with easier documents, because fewer

concepts need to be understood.

Global Efficiency(di) [47] of document di is a measure of how efficiently Gi exchanges

information concurrently [47]. We hypothesize that higher Global Efficiency values

indicate easier documents because high efficiency implies short paths in the graph,

which makes concepts

Local Efficiency(di) of a document di measures, on average, how efficiently Gi can

send information concurrently once all c ∈ Ci are removed [47]. Thus, high Local

Efficiency values indicate that a document is more robust. We hypothesize that

high Local Efficiency values are more likely to occur in easier documents because the

same ideas are still expressed by neighboring concepts, which could be included in

the documents.

Nof Connected Components(di), the number of (Nof) connected components [46],

of document di counts the number of disjoint sets in Gi, and there is a path among

24



all nodes within a disjoint set, but no path to other disjoint sets. We hypothesize

that lower values of Nof Connected Components will correlate with easier documents

because having fewer disjoint sets suggests that concepts are more related.

Features Related to Language Level and Readability

Dale-Chall readability score [3] distinguishes six levels, where the lowest level denotes

the easiest text. Instead of using the categories, we directly utilize the raw scores.

DC(di), the Dale-Chall readability score of document di’s raw text, is computed

based on:

DC(di) = 0.1579

(
#difficult words

#words
∗ 100

)
+ 0.0496

(
#words

#sentences

)
(3.13)

In addition, we utilize GCN [4], which outputs in the classification setting for each

document a discrete language level according to the Common European Framework

of Reference (CEFR) [52], i.e., one level from {A1,A2,B1,B2,C1,C2}). Note that

GCN is trained in a transductive setting, meaning that labeled and unlabeled con-

cepts and words are included in the graph. As labeled resources we utilize only the

two publicly available data sets provided by the authors, which are Cambridge [53]

and CEFR-J [54]. Similarly, for training we rely on the recommended configuration

for the classification setting: α = 0.3, learning rate = 0.0005, dropout probability =

0.5, number of hidden units = 512, number of hidden layers = 2, epochs = 500,

PMI window width = 5. GCN takes as input the raw, unprocessed documents.

By convention, we will drop Average from all feature names hereafter for the sake

of clarity, because whenever we refer to a feature, we refer to the averaged version

defined for documents.
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Chapter 4

Evaluation

To understand how different features contribute to the prediction of document dif-

ficulty, we focus in our experiments on three specific research questions (RQs). To

gauge the capabilities of our model, we first quantify its performance for predicting

document difficulty and analyze how well does it fares against other methods (RQ1).

To better understand the contribution of each extracted feature for the classifica-

tion task, we further analyze in RQ2 the feature importance of our model trained

for RQ1. Last but not least, in RQ3 we aim to explore more detailed relationships

among the features in the hope to identify common patterns that generalize across

datasets.

4.1 Datasets

In our experiments, we use two different data sets, namely Newsela [17] and Biology,

where we created the latter one. Newsela is comprised of 1905 newspaper articles

with four more and more simplified versions that were created by professional editors

according to the Lexile readability measure [55]. Thus, this is a high-quality corpus

containing five versions of the same news articles with difficulty labels from 0 (hard-

est) to 4 (easiest), where each news article represents a separate document. One

shortcoming of Newsela is that it was created mainly for sentence simplification, i.e.

the majority of sentences from the original article have a simplified version, which

allows aligning those sentences across all difficulty levels and predict their difficulty.

This is an unrealistic way of creating simpler versions of the original article. Ideally,
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each article would have been rewritten from scratch to have a more realistic dataset

for estimating conceptual complexity. Despite this known weakness, Newsela is used

in related works due to the lack of alternatives [10, 11, 12]. For example, Simple

Wikipedia [56] is known to be of low quality, which is the reason why it is not used

anymore.

To address the drawback of Newsela and to overcome the lack of available datasets

for predicting conceptual complexity, especially for the educational domain, we cre-

ated a new dataset for the domain of biology to which we simply refer as Bio

in the remainder. It is based on two independently written open source biology

books, one tailored to high school students (HIGHSCHOOL)1 and one tailored to

students with a biology major (UNIVERSITY)2. This way concepts are described

independently, which resembles a more realistic setting for measuring conceptual

text complexity than Newsela as sentences are not aligned. To identify concepts

that are explained in both books, a domain expert matched concepts manually. If

concepts from HIGHSCHOOL were explained in UNIVERSITY, it was counted as

a match and the respective text sections were extracted into documents. Difficulty

labels were assigned to these documents automatically based on the resource: texts

from HIGHSCHOOL were regarded easy, whereas the corresponding explanations

from UNIVERSITY were considered hard. With this methodology, a total of 174

concepts was identified that is explained in both books. Thus, Bio comprises 174

concepts with binary difficulty labels 0 (hard) and 1 (easy).

4.2 Experimental Design

To address RQ1, we train multiple models using our extracted features. In line with

Section 3.1.1, our goal is to predict the difficulty level of document di. Valid labels

are the n discrete levels L = 0 . . . n−1, where 0 refers to the hardest description and

n− 1 to the easiest one. For Newsela, we are given n = 5 versions of the same news

article, and each one represents a separate document. In contrast, for Bio we have

1https://ia600307.us.archive.org/22/items/ost-biology-ck_12_biology_i/CK_12_

Biology_I.pdf
2https://assets.openstax.org/oscms-prodcms/media/documents/Biology2e-WEB_

ICOFkGu.pdf
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n = 2 documents describing the same biological concept. Our goal is to predict the

correct difficulty level of a given document di.

To address RQ2, we estimate the feature importances of the previously trained model

from RQ1 according to different methods as each one yields different rankings of

features. With multiple methods we can verify the consistency of the obtained

rankings. Specifically, we rely on widely applicable methods that do not make

any assumptions about a trained model, because they consider it as a black box

model. In our case, we use permutation importance [30] and SHAP [33], which are

both explained in detail in Section 2.3, to measure global feature importances, i.e.

importance of the features over the whole datasets.

To address RQ3, we investigate features of our trained model as follows. Since global

feature importance alone potentially misses subtler effects, we also utilize SHAP for

estimating local feature importance, i.e. the importance of each feature for the

prediction of single documents. Moreover, we examine potential interactions among

features and last but not least, we also repeat these two analyses separately for

correctly predicted documents and for incorrectly predicted documents to identify

differences.

4.3 Visual Interpretations of SHAP Values

For understanding trained models we rely heavily on SHAP values and in particular

on different types of plots that provide more context for interpretations. Therefore,

we first explain how to interpret these plots, in particular Beeswarm plots (Sec-

tion 4.3.1) and Waterfall plots (Section 4.3.2). Beeswarm plots are used to gain

insights on a macro-level about how features impact predictions and how feature

value ranges relate to class labels. In contrast, Waterfall plots focus on single doc-

uments and explain why it was predicted to have a specific class label.

4.3.1 Beeswarm Plots

According to our problem definition from Section 3.1.1, easier documents are rep-

resented with higher labels. According to Equation 2.1 this implies for the inter-

28



Figure 4.1: Sample Beeswarm plot. Feature F1 is the most important feature, while

high values of F1 make the document harder (negative SHAP values), low F1 values

shift the prediction for a document towards easier difficulty labels.

pretation of ϕi that a positive SHAP value for feature xi shifts document x towards

a higher label. In other words, a positive SHAP value for xi indicates that this

features makes x easier. Similarly, the larger |ϕi|, the magnitude of SHAP value

ϕi is, the more feature xi contributes to the prediction of document x. Likewise,

|ϕi| = 0 indicates that feature xi has no effect on the prediction of document x.

Beeswarm plots reveal relationships between a feature and class labels, which cor-

respond to difficulty levels in our problem setting. Similarly, they reveal how each

feature affects predictions. One such Beeswarm plot is depicted in Fig. 4.1. Fea-

tures are sorted with respect to importance in terms of the magnitude of the mean

SHAP values from top to bottom. Thus, the most important feature is ranked at

the top. For a feature all documents are plotted as points horizontally. If documents

have the same feature value, they are stacked vertically, which may lead to bubbles

characterizing distributions. This way the feature value distribution is visualized,

while also revealing the relationship between the feature and the difficulty levels

by coloring the feature values from high to low and indicating their effect towards

making documents easier (positive SHAP values) or harder (negative SHAP values)

on the x-axis. For example, feature F1 is the most important feature and high fea-

ture values occur with negative SHAP values, whereas positive SHAP values were

computed for low feature values. This implies that high feature values of F1 make

documents harder, whereas low feature values make documents easier.
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Figure 4.2: Sample Waterfall plot. Contribution of each feature (quantified by

SHAP values) to the final prediction (label 1). The sum of all contributions plus

the base value (E[f(x)] = 0.45) yields exactly the predicted label 1.

4.3.2 Waterfall Plots

Waterfall plots illustrate the impact, measured by SHAP values, of all features of a

document on its predicted class. An example is given in Fig, 4.2. The grey values

on the left side show the actual feature values of the document and features are

sorted w.r.t. their impact on the document’s predicted difficulty level. According to

Eq. 2.1, the sum of all these SHAP values (plus the base value, which corresponds

here to the mean class label) results exactly at this predicted difficulty level. For

example, if the predicted label is 1 (=easy document), indicated by f(x) = 1 in

the top right, summing up all SHAP values (ϕi in Eq. 2.1) plus the base value (ϕ0

in Eq. 2.1), which is 0.45 in this case and is represented by E[f(x)] = 0.45 at the

bottom of the plot, results in 1. Therefore, this Waterfall plot explains why a model

predicted difficulty level 1 for this specific document.

4.4 Training Procedure

First, we allocate 80% of a dataset for training and tuning, and the remaining 20%

for testing. Then training is done using 10-fold stratified cross-validation (CV),

whereas the holdout set is only used for estimating model performance in an unbiased

manner. Note that, in contrast to prior work [10, 11, 12], all difficulty levels of a

document are part of the same fold or of the test set. This way information leakage is
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Training set

Top-1 model

Predictions of each classifier on test set serve as
input for meta classifier (logistic regression)

Predictions on test set

Hyperparameter tuning

Top-n modelTop-2 model Top-3 model Top-4 model Top-5 model

Figure 4.3: Procedure to build our ensemble model called ENSEMBLE from the

top-5 models.

prevented. Otherwise different difficulty levels of the same document might exhibit

similar features, which could overestimate the model performance in the worst case.

To achieve better performance, we also construct an ensemble as our main model to

which we refer as ENSEMBLE. It is constructed according to the workflow described

in Fig. 4.3. In total, we train 14 different models using all the 20 features described in

Section 3.2.3 according to the training procedure described in this section. We then

select the top-5 classifiers in terms of their F1-scores and tune their hyperparameters

before using their predictions as features for the meta-classifier, which is logistic

regression in our case. Note that with this workflow the top-5 models may change

for ENSEMBLE depending on the dataset. The exhaustive list of all 14 classifiers

is depicted in Table A.1.

4.5 Metrics

To evaluate model performance for predicting document difficulty, we report F1-

score, precision, recall, and accuracy as all datasets are balanced. Since Newsela is
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a multi-class dataset with n = 5 difficulty levels, we do not only want to quantify

how accurately the model predicts the correct difficulty level, but also how well the

model distinguishes easier from harder documents. Therefore, we compute pairwise

accuracy between pairs of documents (dj, dk) with labels Lj and Lk, Lj < Lk, i.e.

each pair contains first a harder document and then an easier one both describing the

same news article. Specifically, for each news article with labels 0 (hard) - 4 (easy),

we create 10 document pairs: (L0, L1), (L0, L2), (L0, L3), (L0, L4), (L1, L2), (L1, L3),

(L1, L4), (L2, L3), (L2, L4), (L3, L4) and compute their pairwise accuracy. Pairwise

accuracy for a pair of documents (dj, dk) with predicted labels Lj, Lk is computed

according to Equation 4.1 below:

Pairwise accuracy(Lj, Lk) =

1, if Lj < Lk

0, otherwise

(4.1)

Note that we exploit in pairwise accuracy the knowledge that dj is harder than dk

based on how we generated the pairs of documents (dj, dk). Therefore, pairwise

accuracy measures how often dj, the more difficult version of the same news article,

is predicted to be harder than dk, which is the easier version of the same news article.

This metric considers a pair as correctly predicted, even though the predicted labels

of dj and dk might differ from their true labels.

4.6 Baselines

In total, we employ four baselines. The first one is GCN [4]. Note that GCN

produces six CEFR levels, whereas Newsela contains only five difficulty levels. Thus

we map the six CEFR levels to the five difficulty levels, as follows: A1 → 4, A2 → 3,

B1 or B2 → 2, C1 → 1, and C2 → 0. Mapping both B levels to difficulty level 2

is based on the fact that the difference in vocabulary size between both levels is

minimal compared with the differences among other levels [57]. In Bio, we map

{B2,C1,C2} → 0 and {A1,A2,B1} → 1. Another baseline we employ is built

according to ENSEMBLE as described in Fig. 4.3, but utilizes only the top-1 model

instead of the top-5 models. We refer to it as TOP-1. Since it is known that

document length exhibits a high correlation with the difficulty levels on Newsela [10],
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we also train a baseline exploiting only features related to document length. It also

follows the same workflow described in Fig. 4.3, but uses only three features related

to document length as input for all models. Those three features are the number of

characters in a document, the number of words, and the number of sentences. We

refer to this baseline as LEN. Last but not least, we also employ a baseline method

called ALL, which is built according to Fig. 4.3 and utilizes all 20 features from

Section 3.2.3 plus the three features from LEN.

We do not compare with either [10] or [12] because both studies use only 200 ran-

domly selected articles from Newsela, which we cannot replicate. Moreover, in their

experimental setup information could potentially leak into the test set because some

versions of an article might be used for training, while others could be part of the

test set. In the worst case, this experimental setup overestimates the performance

of their proposed method.

4.7 Results

This section reports results for the different experiments. First, Section 4.7.1 reports

the performance of ENSEMBLE in comparison to baseline methods to address RQ1.

For RQ2 the importance of the different features of ENSEMBLE according to SHAP

and permutation importance is evaluated in Section 4.7.2. Last but not least, we

analyze relationships among features and how the features of ENSEMBLE interact

using SHAP to address RQ3 in Section 4.7.3.

4.7.1 RQ1: Performance Comparison

Here we report the results obtained after training ENSEMBLE and all baselines

according to Section 4.4. The results obtained on the test sets of Newsela and Bio

are reported in Table 4.1. First of all, no overfitting was observed as the model

performances on the validation (see Appendix A) and test set are similar. Secondly,

the top-5 classifiers on Newsela are logistic regression, gradient boosting, linear

discriminant analysis, random forest, and light gradient boosting machine. Likewise,

top-5 classifiers on Bio are naive bayes, logistic regression, ridge, linear discriminant

analysis, and random forest. Furthermore, ENSEMBLE outperforms the baseline
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Table 4.1: Classifier performances in the multi-class setting.

Dataset Model F1-score Precision Recall Accuracy Pairwise Accuracy

Newsela

ENSEMBLE 0.4879 0.494 0.4865 0.4863 0.7865

GCN 0.2612 0.4147 0.2439 0.2921 0.4706

TOP-1 0.4676 0.4708 0.4676 0.4674 0.7918

LEN 0.7698 0.7718 0.771 0.7708 0.8990

ALL 0.7639 0.7655 0.7641 0.7639 0.9022

Bio

ENSEMBLE 0.6667 0.6604 0.6731 0.6667 0.3207

GCN 0.4092 0.4510 0.3084 0.4626 0.0919

TOP-1 0.6667 0.5 1.0 0.5048 0.3018

LEN 0.4096 0.5667 0.3208 0.5377 0.1132

ALL 0.6337 0.6531 0.6154 0.6476 0.3773

GCN on both datasets and performs at least on par with TOP-1 on both datasets.

The main difference between Newsela and Bio is the performance of LEN and ALL.

In Newsela both baselines exhibit superior performance and we observe performance

increases up to 57% over ENSEMBLE in terms of F1-score. This result on Newsela

is not unexpected given that sentences in Newsela were simplified one by one to

obtain easier versions of a news article using the following set of valid operations

for simplifying a sentence: deleting it, paraphrasing it, combining both operations,

splitting the sentence up, or leaving it unaltered. Thus, operations either shorten

the sentences or preserve their length. This inevitably introduces a bias towards

shorter versions of news articles becoming easier. In contrast, ENSEMBLE slightly

outperforms ALL and outperforms LEN by a large margin on Bio, which suggests

that a length bias similar to Newsela does not exist. Pairwise accuracy of Newsela

also indicates that ENSEMBLE manages to distinguish easier from harder news

articles, but it fails to recognize the exact difficulty label, because its accuracy is

substantially lower than the respective pairwise accuracy.

We further investigate how ENSEMBLE performs for different pairs of difficulty

levels. First, we analyze accuracy and pairwise accuracy in Fig. 4.4 for Newsela

only because this analysis is redundant for Bio. Then we continue examining the
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remaining metrics F1-score, precision, and recall for Newsela (Fig. 4.5) and Bio

(Fig. 4.6) for each difficulty level separately.

Figure 4.4: Performance of ENSEMBLE on Newsela comparing pairwise accuracy

and accuracy.

Pairwise accuracy and accuracy for ENSEMBLE are shown for each pair of difficulty

levels in Fig. 4.4. Most importantly, the performance of ENSEMBLE in terms of

pairwise accuracy improves the further the difficulty levels in a pair of documents are

apart, which suggests that ENSEMBLE does separate easier from harder documents,

although the accuracies for all classwise comparisons look similar, with only pairs

involving either difficulty levels 1 and 3 or levels 1 and 2 performing noticeably

worse. ENSEMBLE achieves a pairwise accuracy of at least 95% for pairs with

one easier document (either difficulty level 3 or 4) and a harder document (either

difficulty level 0 or 1), while such pairs contain no documents with adjacent difficulty

levels like 0 and 1, 1 and 2, etc. That also explains why pairwise accuracy involving

difficulty level 2 tends to be lower - only a combination of levels 2 and 4 results

in accurate predictions because both levels are not adjacent. For pairs with non-

adjacent difficulty levels the combination involving 0 and 2 yields the lowest pairwise

accuracy with 79%, whereas the lowest pairwise accuracy is 43% for pairs with

documents from the adjacent combination of difficulty levels 0 and 1. Moreover, it

seems that distinguishing pairs with easier difficulty levels (which include levels 2,

3 and 4) is easier than separating harder pairs (which include levels 0, 1 and 2).

This suggests that more features discriminating difficult documents could enhance

the performance of ENSEMBLE.
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Focusing on the classwise performances of Newsela in Fig. 4.5 and of Bio in Fig. 4.6,

Figure 4.5: Classwise performance of ENSEMBLE on Newsela.

Figure 4.6: Classwise performance of ENSEMBLE on Bio.

we find that ENSEMBLE exhibits the same performance on Bio for both difficulty

levels. In contrast, on Newsela performances vary depending on the difficulty level.

ENSEMBLE predicts the easiest (level 4) and hardest (level 0) difficulty levels more

reliably, whereas the distinction of the remaining levels seems more challenging.

This suggests that our extracted features capture differences between the easiest

and hardest difficulty levels best, but are insufficient to separate difficulty levels 1-3

correctly.
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4.7.2 RQ2: Most Important Features for Document Diffi-

culty

In this section we estimate feature importance in ENSEMBLE with two methods.

First, we report permutation importances. Then we report importance rankings

obtained with SHAP.

Permutation Importance

(a) Feature Importances on Newsela. (b) Feature Importances on Bio.

Figure 4.7: Feature importances according to permutation importance per dataset.

The results of estimating feature importance according to permutation importance

are displayed in Fig. 4.7. Most notably, the importance of features varies substan-

tially across datasets. The top-5 features are Dale-Chall, GCN, Degree Centrality,

PageRank, and Local Efficiency when sorting feature importances according to av-

erage ranks. Similarly, on average the top-5 least important features are Degree,

Subgraph Centrality, HITS Authorities, Support, HITS Hubs and Specificity are

tied. The features whose importance varies the most across both datasets are Avg.

Shortest Path, Coherence, and Global Efficiency. Moreover, on Bio six features are

deemed unimportant by permutation importance, while this is only the case for

three features on Newsela. Interestingly Dale-Chall is considered to be the most

important feature on both datasets by a large margin, which suggests that language

difficulty overlaps heavily with conceptual text complexity. This is corroborated by

the fact that GCN, which also captures language difficulty, is consistently among

the four most important features. In contrast, inherent concept difficulty, encoded
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by features extracted from the graph structure of DBpedia, seems to have a higher

impact on predicting conceptual text complexity on Bio as they exhibit higher im-

portance scores on Bio. One possible explanation for this observation could be the

scope of the datasets: while Newsela is comprised of news articles about the state

of the world, Bio is tailored towards teaching specific concepts. This way it might

be easier for DBpedia to identify and link these concepts to DBpedia entries.

SHAP

(a) Newsela. (b) Bio.

Figure 4.8: Feature importances according to SHAP per dataset.

Fig. 4.8 depicts the importance of each feature in ENSEMBLE on Newsela and Bio

according to SHAP. It is immediately visible that Dale-Chall dominates the ranking

of feature importances on Newsela. Other features contribute much less to correct

predictions. This observation suggests that most predictions on Newsela depend

mainly on Dale-Chall - if this feature does not capture the actual difficulty level of a

news article well, a prediction will likely be incorrect. In contrast, a larger subset of

important features exists on Bio which is utilized for classification, and which yields

more robust results. This interpretation is also consistent with the results from

Section 4.7.1, where ENSEMBLE achieved better performances on Bio compared
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with Newsela.

(a) Misclassified Newsela article (true difficulty level=0, predicted

level=3). Dale-Chall is largely responsible for the misclassification.

(b) Many features contribute to the correct prediction (difficulty

level=0) of the Bio document, despite Dale-Chall shifting the predic-

tion towards the opposite difficulty level.

Figure 4.9: Impact of Dale-Chall on predicting document difficulty for specific doc-

uments.

We also selected one document from Newsela and one from Bio to highlight this

problem with Dale-Chall. The Waterfall plots are shown in Fig. 4.9. The true label

of the Newsela document is 0 (most difficult) and it is misclassified as 3. Dale-Chall

39



has the largest (false) contribution to the prediction towards the false direction.

Therefore, the misclassification can be largely attributed to Dale-Chall. In contrast,

in Bio multiple features have higher importance and although Dale-Chall shifts the

prediction in the wrong direction, the combination of the other features still leads

to the correctly predicted difficulty level, which is 0 here.

Comparing the consistency of the rankings of the SHAP values in Fig. 4.8 on both

datasets shows that Dale-Chall, Degree Centrality, Local Efficiency, and GCN are

the most important features when sorting them according to their average ranks.

The least important ones are Subgraph Centrality, HITS Hubs, Degree, HITS Au-

thorities, and Rank2. The features whose importance varies the most on both

datasets are Clustering Coefficient, S-Metric, and Support.

Consistency between SHAP and Permutation Importance

When considering the average ranks of all features in terms of their importance

according to SHAP and permutation importance over both datasets, both methods

agree on the impact of some features on predicting document difficulty. Most im-

portantly, both regard Dale-Chall as the most important feature on each dataset.

The other important set of features that both methods agree on comprises GCN

and Degree Centrality. Similarly, the trend that more features matter on Bio than

on Newsela is consistent in both methods. In terms of the least important set of

features both methods agree on Subgraph Centrality, Degree, HITS Hubs, and HITS

Authorities. The five most important features according to SHAP and permutation

importance, when considering their average ranks, are Dale-Chall, Degree Central-

ity, GCN, Local Efficiency, and PageRank. Similarly, the five least important ones

are Subgraph Centrality, Degree, HITS Authorities, HITS Hubs, and Rank2. The

features with the highest variance in terms of rankings are Coherence, Clustering

Coefficient, Avg. Shortest Path, Support, and S-Metric. Thus, it is unclear how

important these features, all related to the factor inherent concept difficulty, are for

predicting document difficulty, while both features quantifying language difficulty,

namely GCN and Dale-Chall, are considered important.
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4.7.3 RQ3: Relationships Among Features

To better understand how features of easier and harder documents differ in EN-

SEMBLE, we first analyze relationships between features and difficulty level using

Beeswarm plots. Since features may also interact with one another, we examine

feature interactions separately afterwards. Last but not least, we investigate if re-

lationships between features and difficulty levels differ between correctly and incor-

rectly classified documents. In this section we limit the analysis to Newsela, because

SHAP results for Bio turned out to be unstable when re-running experiments with

different splits of Bio, which is demonstrated in Appendix B. This instability results

from the small dataset size. However, the performance of Bio remains stable across

different splits of the dataset.

Relationships between Features and Difficulty Level

SHAP also gives insights about the relationships between features and class labels

with a Beeswarm plot. First, we examine the top-6 features in terms of their re-

lationships with difficulty levels on both datasets as these features will be used for

further analyses later. Note that we only include Bio for reference, because SHAP

results are unstable as explained above.

In Fig. 4.10a the effect of how specific ranges of feature values affect predicted

difficulty levels. Higher values of Dale-Chall make documents harder, whereas lower

values make them easier, which is expected based on how Dale-Chall values are

defined. The Dale-Chall values of documents are also relatively evenly distributed

and more extreme values have a higher impact on predictions, while medium values

barely influence the difficulty level. High values of GCN make a document easier,

while lower values make a document harder, which is expected because harder CEFR

levels are expressed with lower values, whereas easier CEFR levels are encoded as

higher values. For most documents GCN exerts a low impact on predictions because

most documents exhibit low SHAP values. In terms of Nof Connected Components,

higher values make documents harder and lower values simplify them. However,

most of the time this feature has little to no impact on the predicted difficulty level.

If it has influence, mainly high values affect predictions. A higher Nof Connected
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(a) Newsela. (b) Bio.

Figure 4.10: Influence of feature values on prediction according to SHAP per dataset.

Positive SHAP values for a feature indicate that this feature shifts predictions to-

wards easier difficulty levels, whereas negative SHAP values for a feature indicate

that this feature shifts predictions towards harder difficulty levels. In short, positive

SHAP values indicate that a feature makes a document easier, while negative SHAP

values show that a feature makes a document harder.

Components value in document di indicates that more diverse concepts are discussed

which are not linked in the constructed undirected graph Gi of di (see Section 3.2.2)

via a dbo:wikiPageWikiLink edge. Hence, covering more diverse concepts in the

same document makes this document harder. Low Degree Centrality values make

documents harder, whereas high values simplify documents. But in most documents

this feature has only marginal influence on predictions, and only in case of higher

values it exerts a larger influence in making documents easier. S-Metric exhibits the

same pattern as Degree Centrality. High Avg. Shortest Path values indicate harder

documents, while lower values shift predictions towards easier difficulty levels. For

most documents this feature does not affect classifications.

In Fig. 4.10b Dale-Chall follows the same pattern as in Newsela. Low values in Local
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Efficiency make documents harder, whereas higher values simplify it. Degree Cen-

trality exhibits the same pattern as in Newsela. Higher Clustering Coefficient values

make documents harder and lower ones simplify documents. Higher values affect

classification more profoundly. Lower Coherence values make documents harder and

higher ones make them easier. Support follows the same pattern as Coherence.

With Fig. 4.10a we can analyze the hypotheses we formulated for every feature in

Section 3.2.3. We focus only on Newsela since it is bigger and therefore results

are more robust. As shown in 4.10a, our hypotheses about Dale-Chall, GCN,

Nof Connected Components, Degree Centrality, S-Metric, Avg Shortest Path, Lo-

cal Efficiency, Specificity, Offset, Support, Clustering Coefficient are correct. Since

HITS Authorities, HITS Hubs and Subgraph Centrality have almost no impact on

predictions, we cannot verify the correctness of our hypotheses. In contrast, our

hypotheses about Similarity, PageRank, Rank2, Coherence, Degree, Global Effi-

ciency seem incorrect. Since Similarity and Rank2 are related to the confidence

that keywords from the raw text are linked to corresponding DBpedia entries, our

hypotheses about those features could be wrong due to the fact that this disam-

biguation about linking to DBpedia may not be an important factor for predicting

difficulty levels. The hypotheses about PageRank and Degree could be incorrect

since both are related to the number of edges of concepts in documents and it might

not affect the difficulty level contrary to our initial thought. Difficult documents

could also contain popular concepts that are difficult themselves. Coherence indi-

cates the average number of mutual categories. Since some concepts could share

many common categories while others share few, averaging them could lead to ar-

tificially low Coherence scores. Considering only the most related concepts when

computing Coherence might be a more reliable approach. Since the computation of

Global Efficiency takes the distant parts of the graph into account, it is more sen-

sitive to outliers than Local Efficiency. Thus, some distant part of the graph could

artificially lower Global Efficiency. Therefore, Local Efficiency is more reliable than

Global Efficiency in terms of prediction contribution.
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Interactions Among Features

We focus only on the interactions of the top-6 features according to Section 4.7.2

because they have the biggest impact on predictions. For each of these top-6 feature

we consider the feature with the strongest interaction and create a dependence plot.

In these plots an interaction between features A and B means that effects of feature

A depend on effects of feature B.

Figure 4.11: Interactions of the top-6 features in Newsela.

The results for Newsela are shown in Fig. 4.11. We observe that Dale-Chall interacts
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with GCN. Since for a fixed x-value, which corresponds to a normalized Dale-Chall

value, its y-value, i.e. the impact of the Dale-Chall value on prediction, exhibits

a spread, suggesting that at least one other feature interacts with Dale-Chall. In

this specific case, GCN explains most of the variance in spread of the Dale-Chall

values. Specifically, for low Dale-Chall values the GCN values tend to be higher.

When combining that information with the SHAP values on the y-axis, we can

conclude that low Dale-Chall values that have high GCN values make a document

easier. This observation is consistent for both features in isolation: low Dale-Chall

values simplify a document and high GCN values make a document easier as well.

Both features combined distinguish easier documents more accurately indicating

that GCN and Dale-Chall complement each other and capture different aspects of

language difficulty, especially for easier documents. This finding is also in line with

Fig. 4.4, where ENSEMBLE manages to separate easier documents more reliably

than hard ones. While Dale-Chall considers only the percentage of difficult words

and average number of words per sentence, GCN exploits word frequency and diffi-

culty among other features with a high-dimensional representation per word, which

seems to encode different information than Dale-Chall.

GCN interacts with Dale-Chall, which we already discussed above.

When examining the interactions between Nof Connected Components and GCN,

we do not observe a easily interpretable interaction which is indicated by the al-

most equally distributed feature values of GCN within each value of Nof Connected

Components. It may be due to both features being discrete that the interaction is

hidden.

Degree Centrality interacts with Dale-Chall. Higher Degree Centrality values make

a document easier if Dale-Chall values are high, i.e. well-connected (=popular)

concepts make a document easier if the text in the document is difficult to read.

However, once Dale-Chall values are low, which means a document is easily readable,

the popularity of a concept does not provide any additional information for the

document difficulty as SHAP values of Degree Centrality are close to 0. This suggests

that readability dominates concept popularity if one has to make a trade-off between

using easy or hard language versus popular or unpopular concepts and that it is more
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important to write the text in an easy language.

When examining the strongest interaction between S-Metric versus Dale-Chall and

Avg. Shortest Path versus Specificity, it seems that there is no clear interaction

pattern.

Differences between Correctly and Incorrectly Classified Documents

(a) Feature importances of correctly classified

articles.

(b) Feature importances of misclassified arti-

cles.

Figure 4.12: Global feature importances according to SHAP based only on correct-

ly/incorrectly classified Newsela articles.

To better understand why some documents are classified incorrectly, we compute

SHAP values separately for correctly and incorrectly predicted documents. This

way all features can be ranked according to their importances using only correctly

classified documents on the one hand and using only incorrectly classified documents

on the other hand. Potential differences could explain the misclassifications. Simi-

larly, two separate Beeswarm plots can be generated based on the computed SHAP

values to identify potential differences in terms of relationships between features and

difficulty levels.

First, we focus on the global feature importances of Newsela according to SHAP
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values separately for correctly and incorrectly classified documents. As shown in

Fig. 4.12a Dale-Chall has a lower importance when considering SHAP of misclassi-

fied articles only compared to SHAP of correctly classified articles in Fig. 4.12b.

(a) Correctly classified articles. (b) Incorrectly classified articles.

Figure 4.13: Beeswarm plots using only correct or incorrect classifications in

Newsela.

In Fig. 4.12 we display Beeswarm plots of correctly and incorrectly classified docu-

ments. Overall, the relationships between features and difficulty level are identical

on both datasets. Given that most features have little to no impact on predictions,

which is indicated by the large number of documents around SHAP value 0, we

focus on differences in Dale-Chall as it is the most important feature by a large

margin. As can be seen in Fig. 4.12b, many missclassified documents have medium

Dale-Chall values whose contribution to classification is negligible due to SHAP

values being close to 0. In contrast, most correctly classified documents exhibit

extreme Dale-Chall values, which shift predictions either towards easier or harder

predictions, which is depicted in Fig. 4.12a. This suggests that most of the correctly

classified documents tend to be the easiest and most difficult documents where Dale-

Chall suffices to capture the correct difficulty level. Applying the same argument

to the incorrectly classified documents implies that these documents contain more
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likely medium Dale-Chall values, which is not informative enough for steering the

predicted class label in the correct direction. Other features should help in that re-

gard, but fail, which hints at a lack of features that reliably discriminate documents

with medium Dale-Chall values, which is in line with Section 4.7.1, because EN-

SEMBLE has problems distinguishing documents with intermediate difficulty levels

1-3. Moreover, for the other features other than Dale-Chall we would expect to

observe more differences between correctly and incorrectly classified documents if

they impacted predictions. Overall, a possible explanation for the minor differences

observed between correctly and incorrectly classified documents using SHAP values

could be that the majority of our features are insufficient to distinguish the difficulty

levels of news articles.

4.8 Discussion

Despite having conducted experiments on Newsela and Bio for research questions

RQ1-RQ3, we report results for RQ2 and RQ3 only on Newsela, because the results

on Bio are unstable given its small size. Although we report results on Bio for RQ2,

we do not compare them with Newsela to avoid drawing any incorrect conclusions

and treat the results on Bio as preliminary results. However, for RQ1 performances

measured are robust on Newsela and Bio in that splitting the dataset randomly into

training and test set does not affect performances.

Most importantly, our experiments reveal that the factor language difficulty is more

important than inherent concept difficulty for predicting document difficulty, be-

cause Dale-Chall is ranked consistently first in terms of feature importance inde-

pendent of the dataset and method for estimating feature importance. This seems

consistent with the intuition that one can only learn what one reads. This finding

holds on Newsela and also on Bio according to Section 4.7.2, even when splitting

Bio differently (see Appendix B). In line with that, it seems more important to use

easier language than well-known concepts when writing a document as pointed out

for Newsela in Section 4.7.3. It is unclear if this finding is reliable or not due to

the way Newsela was created. As explained in Section 4.1, Newsela was created for

sentence simplification, which introduces an artificial length bias s.t. easier articles
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become shorter, because human experts removed or paraphrased more difficult sen-

tences to simplify them in order to ensure that sentences stay aligned across different

difficulty levels. Moreover, simplified versions obey the Lexile readability formula,

which incentivized human experts to use words that are considered easier according

to that specific formula. Thus, we speculate that this language bias could lead to

overestimated feature importances for features related to language difficulty, which

are GCN and Dale-Chall, on Newsela as reported in Section 4.7.2. If this were the

case, language difficulty would still play an important role in predicting document

difficulty, but the importance of inherent concept difficulty could increase.

It is known that Newsela has a length bias, e.g. [10] explicitly note that no features

without normalization may be used as it would leak information about the respective

document difficulty otherwise. In our experiments we also observe this problem in

the baselines LEN and ALL, exploiting document length, as shown in Table 4.1,

because these baselines outperform ENSEMBLE by a large margin. In contrast,

this behavior does not occur in Bio, where ENSEMBLE slightly outperforms the

aforementioned baselines. This is most likely due to collecting explanations for the

same biological concept from two independent resources, but it suggests that this

type of dataset is more suitable as a benchmark dataset for predicting document

difficulty. Unfortunately, Bio is too small for quantifying feature importance reliably

as shown in Section 4.7.3, but it shows that alternative datasets for estimating

document difficulty can be constructed.

Based on our experimental results obtained in Newsela, it seems also worth ex-

ploring additional features in the future. While we employ 18 features related to

inherent concept difficulty, we utilize only two features related to language difficulty.

Yet, language difficulty turns out to be more impactful than inherent concept dif-

ficulty, but this finding might be affected by the implicit language bias of Newsela.

Nevertheless, GCN and Dale-Chall seem to complement each other according to

Section 4.7.3, thus including additional features related to language difficulty could

be promising. In terms of inherent concept difficulty, Degree Centrality, Local Effi-

ciency, and PageRank perform well according to permutation importance and SHAP.

The features that seem the least promising are Subgraph Centrality, Degree, HITS
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Authorities, HITS Hubs, and Rank2. While the low importance of Rank2, which

is related to matching extracted keywords to DBpedia entries, is conceivable, the

other four features are more surprising. While PageRank is important, both features

related to HITS are not, and similarly Degree shares similarities with Degree Cen-

trality, yet it barely affects document difficulty. We offer three possible explanations

for these results.

The first explanation relates to our trained model called ENSEMBLE, because we

analyze feature importances w.r.t. ENSEMBLE. While it distinguishes easier from

more difficult documents according to pairwise accuracy in Fig. 4.4, it fails to detect

subtler differences between difficulty levels 1-3 as shown in Fig. 4.5. These problems

also surface when estimating feature importances using SHAP and permutation im-

portance, as both evaluate importance w.r.t. the trained model, ENSEMBLE in our

case. Hence, we draw similar conclusions in Section 4.7.1 and in Section 4.7.3 where

we find that ENSEMBLE separates easier documents more easily than difficult ones.

The second possible explanation relates to the choice of datasets. While Bio is of

preliminary nature, Newsela might not be an ideal benchmark dataset for predicting

document difficulty due to the language and length biases.

The third explanation relates to the scope of Bio and Newsela. Bio is geared to-

wards teaching specific biological concepts. Hence, it is structured in a way that

related concepts are taught together, ideally one at a time to reduce the mental

load of learners. Our features might reflect this difference in scope of both datasets.

On the one hand, Newsela news articles are all grounded in the Lexile readability

measures [55], i.e. articles have an appropriate Lexile score for the respective target

audience. This also explains why GCN and Dale-Chall are the two most important

features on this dataset according to Section 4.7.2. On the other hand, background

knowledge becomes more important in Bio, as observed in Section 4.7.2, where fea-

tures related to inherent concept difficulty tend to contribute more, so that correct

predictions rely less on Dale-Chall alone, which makes the predictions more robust

and is also reflected in overall better performances of ENSEMBLE in Bio as we

showed in Section 4.7.1.

50



Chapter 5

Conclusion and Future Work

In this thesis we set out to examine how different features affect document difficulty.

After modeling document difficulty to be comprised of two factors, namely linguis-

tic difficulty and inherent concept difficulty, we utilized an DBpedia as an external

knowledge base to extract subgraphs that were utilized for estimating inherent con-

cept difficulty. Similarly, we extracted features gauging linguistic difficulty in terms

of lexical and syntactical text properties. This resulted in 20 features utilized for

training a supervised ensemble classifier on two datasets to obtain more robust re-

sults. Those datasets comprise the popular Newsela dataset as well as a newly

generated one about biology for high school students and biology major students.

With the help of the trained ensemble classifier we investigated the importance of

features and interplay thereof using SHAP. It turned out that linguistic difficulty is

more important than inherent concept difficulty for predicting document difficulty.

Due to Newsela being originally devised for sentence simplification, our new dataset

is more appropriate for estimating document difficulty as the easier and harder ver-

sion of documents were written independently, whereas in Newsela sentences were

gradually simplified by paraphrasing and removing redundant information to keep

sentences aligned across multiple difficulty levels, which introduces an artificial bias

towards shorter sentences and documents being easier. We demonstrated this bias

experimentally, because our supervised ensemble model trained only on document

length outperformed our ensemble method by a large margin. Adding these features

to the ensemble method enhanced its performance to a similar degree. In contrast,

the effect of document length in the new dataset is smaller as the model trained on
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features related to document length did not outperform our ensemble. This result

is consistent with intuition, because longer documents may also be easy, e.g. adding

more examples for clarification reduces the difficulty of a document. Hence, Newsela

is not ideal for estimating document difficulty due to the artificial bias in terms of

document length. Another bias in Newsela is that the articles comply with a specific

readability measure, which potentially inflates the importance of features related to

readability.

This observation raises the question how generalizable our results are for three rea-

sons. First, results obtained with SHAP are model-dependent, i.e. our reported

results hold only for our specific model and could get affected by replacing either

the training procedure, the classifier, or both. Secondly, the results from Newsela

might not generalize due to the artificial bias. Although most of the results were

also observed in our biology dataset, this could be a coincidence due to the small

size of the dataset. Hence, the results on the biology dataset must be regarded as

preliminary.

This shortcoming directly motivates our plan to create more extensive datasets for

the educational domain. While we have started this endeavor with the biology

dataset, additional domains must be covered as well, most notably chemistry and

computer science. One potential problem with other STEM fields like physics or

mathematics is that these rely heavily on equations. Thus mapping them to DBpedia

might prove to be challenging. Similarly, capturing features related to linguistic

difficulty would be impacted by the sheer amount of equations instead of textual

descriptions. Another avenue for future research is integrating our method into an

e-learning platform like [1] to recommend more learning materials of a difficulty

level that is appropriate for individual learners. Estimating document difficulty

could also have benefits for prerequisite detection, in which the goal is to predict

all prerequisites for a given target concept. We speculate that document difficulty

could be another feature for determining prerequisites, because it is conceivable that

prerequisites are easier than a target concept. Hence, investigating this relationship

could prove to be promising.

In this thesis we assumed document difficulty to be of general nature, i.e. everyone
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perceives a document to be equally difficult. However, in practice this is not the case

and document difficulty is subjective [58]. Therefore, one would have to incorporate

a user model that encodes their background knowledge and abilities to estimate doc-

ument difficulty per individual. Another way we can imagine to mitigate subjective

document difficulty, at least to some extent, is by ensuring that individuals have

the same prior knowledge before reading a specific document. This can be accom-

plished by explicitly providing prerequisites for each document. But this solution

seems mainly applicable in an educational environment such as e-learning platforms

where specific knowledge is taught in the form of courses.
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Appendix A

Analysis of Overfitting

Table A.1: Performances of all 14 classifiers using default hyperparameters on the

validation set of Newsela. Majority always predicts the majority label as a baseline.

Model F1-score Precision Recall Accuracy

0 Logistic Regression 0.4709 0.4712 0.4768 0.4762

1 Gradient Boosting 0.4696 0.4712 0.4720 0.4715

2 Linear Discriminant Analysis 0.4692 0.4698 0.4744 0.4738

3 Random Forest 0.4558 0.4559 0.4601 0.4595

4 Light Gradient Boosting Machine 0.4549 0.4559 0.4572 0.4566

5 Extra Trees 0.4423 0.4410 0.4494 0.4488

6 Ada Boost 0.4364 0.4353 0.4477 0.4469

7 Decision Tree 0.3778 0.3798 0.3780 0.3776

8 SVM - Linear Kernel 0.3736 0.3744 0.4119 0.4107

9 K Neighbors 0.3712 0.3764 0.3735 0.3733

10 Naive Bayes 0.2788 0.4854 0.3406 0.3413

11 Ridge 0.2754 0.3453 0.3990 0.3973

12 Quadratic Discriminant Analysis 0.2615 0.4460 0.3297 0.3305

13 Majority 0.0671 0.0403 0.2000 0.2006
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Table A.2: Performances of the top-5 classifiers after tuning on the validation set of

Newsela.

Model F1-score Precision Recall Accuracy

0 Logistic Regression 0.4715 0.4715 0.4777 0.4771

1 Gradient Boosting 0.4704 0.4702 0.4748 0.4742

2 Linear Discriminant Analysis 0.4695 0.4702 0.4748 0.4742

3 Random Forest 0.4620 0.4621 0.4680 0.4674

4 Light Gradient Boosting Machine 0.4686 0.4700 0.4722 0.4716

Table A.3: Performances of the top-5 classifiers after tuning on the test set of

Newsela.

Model F1-score Precision Recall Accuracy

0 Logistic Regression 0.4676 0.4708 0.4676 0.4674

1 Gradient Boosting 0.4651 0.4658 0.4656 0.4653

2 Linear Discriminant Analysis 0.4729 0.4766 0.4733 0.4732

3 Random Forest 0.4743 0.4748 0.4766 0.4763

4 Light Gradient Boosting Machine 0.4613 0.4628 0.4624 0.4621
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Table A.4: Performances of all 14 classifiers using default hyperparameters on the

validation set of Bio. Majority always predicts the majority label as a baseline.

Model F1-score Precision Recall Accuracy

0 Naive Bayes 0.6010 0.4935 0.8756 0.4855

1 Logistic Regression 0.5819 0.6016 0.5821 0.5837

2 Ridge 0.5793 0.6054 0.5750 0.5840

3 Linear Discriminant Analysis 0.5740 0.5939 0.5750 0.5757

4 Random Forest 0.5694 0.5892 0.5654 0.5805

5 K Neighbors 0.5612 0.5810 0.5564 0.5678

6 Ada Boost 0.5401 0.5396 0.5583 0.5395

7 Extra Trees 0.5357 0.5600 0.5333 0.5475

8 SVM - Linear Kernel 0.5327 0.5206 0.5571 0.5057

9 Majority 0.5315 0.3980 0.8000 0.4940

10 Light Gradient Boosting Machine 0.5296 0.5745 0.5096 0.5518

11 Decision Tree 0.5291 0.5300 0.5378 0.5422

12 Gradient Boosting 0.5068 0.5401 0.5090 0.5353

13 Quadratic Discriminant Analysis 0.0771 0.1478 0.0994 0.4853

Table A.5: Performances of the top-5 classifiers after tuning on the validation set of

Bio.

Model F1-score Precision Recall Accuracy

0 Naive Bayes 0.6451 0.5063 0.9096 0.5142

1 Logistic Regression 0.5791 0.6069 0.5744 0.5878

2 Ridge Classifier 0.5753 0.6069 0.5660 0.5877

3 Linear Discriminant Analysis 0.5733 0.6065 0.5660 0.5838

4 Random Forest Classifier 0.6026 0.6204 0.6071 0.6087
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Table A.6: Performances of the top-5 classifiers after tuning on the test set of Bio.

Model F1-score Precision Recall Accuracy

0 Naive Bayes 0.6667 0.5 1.0 0.5048

1 Logistic Regression 0.6792 0.6667 0.6923 0.6762

2 Ridge Classifier 0.6667 0.6604 0.6731 0.6667

3 Linear Discriminant Analysis 0.6792 0.6667 0.6923 0.6762

4 Random Forest Classifier 0.5862 0.5312 0.6538 0.5429

Comparing the performances of all 14 classifiers in the multi-class setting on the

validation set of Newsela using default hyperparameters (Table A.1) with the perfor-

mances of the top-5 models after hyperparameter optimization (Table A.2) indicates

that no overfitting occurred as the performances on the validation dataset are sim-

ilar to those obtained on the test set as shown in Table A.3. The same observation

about overfitting also holds for Bio as shown in Tables A.4, A.5, and A.6.
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Appendix B

Instability of Bio Beeswarm Plots

As shown in Fig B.1, when splitting the available documents in Bio randomly into

training and test set in four different ways, the resulting Beeswarm plots vary sub-

stantially in terms of the feature importance that is attributed to each feature.

Thus, we do not draw any conclusions from Beeswarm plots in Bio and just report

the results for reference.
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(a) First split. (b) Second split.

(c) Third split. (d) Fourth split.

Figure B.1: Resulting Beeswarm plots when splitting Bio randomly into training

and test set four times.
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