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ABSTRACT

QUANTIFYING BEHAVIORAL COMPLEXITIES OF HUMAN AND BOT
ACCOUNTS USING DATA COMPRESSION

DAVUT BAYIK

DATA SCIENCE MASTER’S THESIS, JULY 2022

Thesis Supervisor: Asst. Prof. Onur Varol

Keywords: Data Compression, Variational Autoencoders, Twitter, Bot Accounts,
Dimensionality Reduction, Digital DNA, Complexity Analysis, Markov Chains

As the number of automated accounts grew rapidly in parallel with social media
platforms gain more users around the world, there is a growing need to understand
the nature of bot accounts to prevent their manipulative and misleading effects on
ordinary users. This study focused on complexity analysis of users on the Twitter
platform to reveal the hidden and differentiating patterns between human and bot
accounts, using 14 publicly available datasets collected through the Twitter API
and labelled with different annotation methods. The analysis consists of two parts,
quantifying the complexity of account behavior and reducing the dimensionality
of profile information. In our research, the assessment of account complexity is
performed by encoding account activities into sequence of codes and compressing
the repetitions and patterns about it. For the profile information, we developed
a heuristic method to determine how much of an account’s profile features can
be compressed with minimal loss of information using variational autoencoders.
The results for both parts of our analyzes are largely consistent with each other
in terms of comparing complexity with different datasets and between human and
bot accounts. We validated and corroborated our findings by predicting the next
activity of accounts and calculating the accuracy of the predictions using discrete-
time Markov Chains. Consequently, we analyzed the complexity of bot and human
accounts and had complexity levels for each bot dataset we used, and we hope this
study will lead to develop measures to quantify robustness of bot detection systems.
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ÖZET

VERI SIKIŞTIRMA YÖNTEMLERI KULLANARAK İNSAN VE BOT
HESAPLARIN DAVRANIŞSAL KARMAŞIKLIK ANALIZI

DAVUT BAYIK

VERİ BİLİMİ YÜKSEK LİSANS TEZİ, TEMMUZ 2022

Tez Danışmanı: Dr. Ögr. Üyesi Onur Varol

Anahtar Kelimeler: Veri Sıkıştırma, Varyasyonel Otokodlayıcılar, Twitter, Bot
Hesaplar, Boyut Azaltma, Dijital DNA, Karmaşıklık Analizi, Markov Zincirleri

Sosyal medya platformlarının dünyada yaygınlaşıp daha fazla insana ulaşmasıyla
yazılımla kontrol edilen hesapların sayısı giderek arttığı için, bot hesapların nor-
mal kullanıcılar üzerindeki manipülatif ve yanıltıcı etkilerini önlemek açısından,
bot hesapların doğasını anlama ihtiyacı ortaya çıkmıştır. Bu çalışma, Twitter plat-
formundaki bot ve insan hesaplar arasındaki gizli ve ayrıştırılabilen örüntüleri or-
taya çıkarmaya çalışan karmaşıklık analizleri üzerine yoğunlaşmıştır. Twitter API
ile toplanan 14 adet erişime açık, daha önce yapılan akademik çalışmalarda kul-
lanılmış verisetleri kullanılmıştır. Bu araştırmadaki karmaşıklık analizi iki aşa-
madan oluşmaktadır, hesap davranışlarının karmaşıklığının niceliklendirilmesi ve
profil özelliklerinin boyutunun azaltılması. Hesap karmaşıklığının değerlendirilmesi;
hesap davranışlarının bir metin olarak kodlanıp, bu metin içerisindeki örüntülerin ve
tekrarların sıkıştırılması ile örüntüsel davranışlarının derecesinin ortaya çıkarılması
ve Varyasyonel otokodlayıcılar kullanılarak hesap profil özelliklerini en az bilgi kaybı
ve en çok sıkıştırılabilirlikle ölçen bir yöntem ile yapılmaktadır. Verisetlerinin kendi
arasında ve insan ile bot hesaplar arasındaki kıyaslamalar açısından, iki yöntem
ile de bulduğumuz sonuçlar çoğunlukla birbirleriyle tutarlı çıkmıştır. Sonuçlarımızı
desteklemek ve doğrulayabilmek amacıyla, ayrık zamansal Markov Zincirleri kul-
lanarak hesapların bir sonraki davranışını tahmin etmeye çalışarak, bu tahminlerin
doğruluğunu değerlendirdik. Sonuç olarak, insan ve bot hesapların karmaşıklıklarını
analiz edip, farklı veri setleri için karmaşıklık seviyeleri elde ettik. Bu çalışmanın bot
algılama sistemlerinin sağlamlığını geliştirmek için kullanılabileceğine inanıyoruz.
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1. INTRODUCTION

In recent years, digital communication and interaction have reached enormous levels
through the development of technology and social media platforms. Everyone with
an internet connection can connect to these platforms and share their ideas with
other people they do not know. Although it sounds magical, such power is sometimes
used for bad and harmful intentions like every other technological development.
Some people and organizations have used automated accounts for various purposes
in social media platforms. Specifically, in the Twitter platform, the number of such
automated accounts, called bot accounts as a technical term, have increased rapidly
as Twitter has become more popular and reachable for the entire world. As they are
not controlled by humans and their nature relies on automation, the intention of such
accounts would reveal by their behaviours. Automation with innocent intentions
are usually easily recognizable as their purpose is lessening human work such as
tweeting about recurring events or daily weather forecasts. On the other hand,
some bot intentions may have bad and harmful influences over humans and they
generally disguise as human and not self identified themselves and their aim is to
spread misinformation (Shao, Ciampaglia, Varol, Yang, Flammini & Menczer, 2018).
They cause artificial popularity, election manipulation, negative effects on financial
and stock markets, promotion of a purpose with spam comments, or fake video
impressions. To prevent such negative effects, identifying and analyzing them is an
important task (Ferrara, Varol, Davis, Menczer & Flammini, 2016). Rather than
identifying an account as a bot or human, this research aims to answer following
research questions by using pre-labelled Twitter bot and human accounts datasets:

• Can we define a complexity measure for Twitter users?

• Do human and bot accounts are distinguishable in terms of complexity?

• Does behavioral and profile information complexities are consistent with each
other for same account classes?

• How complex are the behaviours of Twitter accounts?

1



• Is there a difference between human and bot accounts’ activity predictability?

• Does Twitter accounts behavioral complexity change during an important so-
cial event?

• How much we can compress Twitter account profile information with optimal
information loss?

• Does lower dimensional representations of human and bot accounts are differ-
entiable?

• How different is the performances of different compression methods?

It is essential to analyze Twitter accounts to understand the nature of human and
bots and to reveal the differences between them. For such purposes, we decided to
use compression techniques to observe and compare how much of information we
can compress from different labelled accounts. By the compression level, we defined
complexity measures and use them as evaluation metrics for this research. To an-
swer questions above, we used publicly available bot datasets that are gathered from
Twitter’s official API and used in many different researches. Our complexity frame-
work has two major branches which are behavioral and profile complexities. We
used different approaches for them, for behavioral complexities, we encoded account
activities into a string sequence and applied a text compression algorithm to assess
complexity for human and bot accounts. To this end, we inspired from Digital DNA
method (Cresci, Pietro, Petrocchi, Spognardi & Tesconi, 2016), and we introduced a
level system for behavioral sequences by adding more information about their activ-
ities gradually, for each level. For instance at bottom level, we encoded only tweet
type for each tweet an account posted. We mapped four different letter for tweet
types. T for normal tweet, R for retweet, A for answer tweet and Q for quote tweets.
In the second level, we added inter-tweet seconds in logarithmic scale for consecutive
tweets and for the last level, entities used along with previous levels’ information for
each level. We detected four different entities that we believe are important about
characteristics of a tweet and which are, hashtag number, user mention number, has
url or not and has media included or not. One character per distinct information
used in all levels. We compared the complexity results for different levels.
On the other hand, we extracted profile features and fed them into Variational Au-
toencoders (Kingma & Welling, 2014) which is a deep generative neural network al-
gorithm to analyze them into latent representations by forcing the input data to keep
important features in lower dimensions. Our aim is to compare different datasets’
complexities, by finding optimal lower dimension with minimum information loss.
We applied grid search for dimensions from minimum of 2 to numberoffeatures−1.

2



During the search process, we also analyzed latent space distributions of human and
bot accounts whether we can observe distinct clusters between them or not as we
only kept important features in the lower dimensions.
Lastly, we conducted a case study to see the effect of our framework. We found
a dataset consists of user information and tweets posted by the users about 2017
German Federal elections. Tweets ranged until nearly 4 months before the election
and goes until the next day of election. Our aim is to find if the Twitter account
behavior complexities change during an important social event or not. To achieve
this, we analyzed and compared the complexities of tweets posted before the election
months and during the election month. The details of our framework and results
we obtained are discussed in the following sections.

3



2. RELATED WORK

In this chapter, we reviewed previous studies that are relevant with our research and
gave a concise summary.

2.1 Bot Detection Systems

The need for detection of fully automated accounts on Twitter and other social
media platforms is an important task to analyze since their significant influences
over society like; spreading misinformation, political manipulation and giving false
impression of an information, are emerged rapidly in recent years (Ferrara et al.,
2016). There are several different approaches for bot detection. An early bot
detection method used honeypot accounts to capture bots by luring them with
posting nonsense contents that any rational human account do not interested in
over a 7 month period (Lee, Eoff & Caverlee, 2011). More recent methods filtered
account activities to find peculiar users that are actively tweeting about political
contents (Howard & Kollanyi, 2016). Moreover, most popular and state-of-art bot
detection system to date is a tool called BotOrNot when it is first released, which is
a classifier relies on more than 1,000 metadata and informative features of Twitter
accounts (Davis, Varol, Ferrara, Flammini & Menczer, 2016). Nowadays, it is
known as Botometer and trained with 1,150 features in six different categories which
are user-based, friends, network, temporal, content and language and sentiment
features (Davis et al., 2016; Varol, Ferrara, Davis, Menczer & Flammini, 2017; Yang,
Ferrara & Menczer, 2022). All different feature classes carry important features
and characteristics that can define an account for activity, social connectivity and
informative levels. Features are extracted from the datasets that are collected via
the API to train Botometer classifier. Bot accounts detected via previous methods
and verified human accounts used.
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However, developing such complex classifier is challenging due to dynamic natures
of bot accounts (Yang et al., 2020). In order to build an effective and efficient bot
detection classifier, Botometer authors tried to solve two issues of bot detection
systems. Firstly, there is a problem for scalability as for each account, too much
information is needed for the classifier and high computational costs occurs which
causes efficiency issue. Second issue is generalizability, which emerges as different
kinds of bots may present in train and test data since bot datasets may not be
scalable and may having limited amount of accounts to train the classifier. This
cause poor and unreliable performances for detecting bots (Echeverrï!a, De Cristo-
faro, Kourtellis, Leontiadis, Stringhini & Zhou, 2018; Yang et al., 2020). To address
such issues, only a few of user profile information used to train Botometer classifier
that are easily obtainable from raw metadata. Such features are selected in a way
that effectively distinguish accounts (Ferrara, Wang, Varol, Flammini & Galstyan,
2016). The proposed solution solves both issues, now the features as scaled up so
that even limited computational powers are able to train classifiers. At the same
time, it allows to extract many more account from Twitter API so it diversifies bot
accounts and the possibility of imbalanced train for different bots decreases and
having more reliable classifier. No doubt that, there is a trade-off between using
complex but costly features and simpler but efficient ones but results show that
scalable and generalizable data selection is an important application to having ef-
fective and efficient classifiers (Yang et al., 2020). For our study, we used the same
features which are chosen by the Botometer authors that proved the effectiveness
and they can be found in Table 4.2.

2.2 Twitter Account Behaviours

Researchers found out that significant changes happens to Twitter users’ behaviours
by exposure to misinformation (Wang, Han, Lehman, Lv & Mishra, 2021). Spread-
ing the misinformation on social media is one of the main jobs of bot accounts that
needed to be prevented (Ferrara et al., 2016). Such behavioral changes, may resulted
with bots to evolve and adopt to current detection systems which is a problem for
them (Cresci et al., 2019). To understand the nature and behaviours of bot ac-
counts, an analytical framework called as Digital DNA is proposed recently (Cresci
et al., 2016). The method characterizes a Twitter user’s timeline as a sequence string
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like human DNA sequences. Human DNA sequences are strands consisted of four
different nucleotides. Similar approach for Digital DNA, Twitter accounts’ timeline
encoded as series of choronological actions to a sequence string by using possible
three letters which are B = {A,C,T}. A is assigned to every tweet, C to every reply
and T to every retweet (Cresci et al., 2019). Changed behaviors of same users, can
be modelled by this approach and can be observed to analyze as it is flexible and
easy to implement (Cresci et al., 2016).

2.3 Data Compression

Data compression is a process of reducing the amount of data for storage or transmis-
sion of any given information (Hemmendinger, 2013). Data is encoded into smaller
bits rather than its original bit size; by searching patterns, repetitions or equivalent
representation into smaller bit sizes. It is a common technique used to represent
information efficiently in terms of storage aspect. Compression can be performed by
programs that are utilized to apply a formula or algorithm to reduce the size, de-
pending on the type of data or information are dealt with (Crocetti & Sliwa, 2017).
Data Compression has two types of major branches, lossless and lossy compression.
In the lossless compression, it is enabled to reconstruct the original data from the
compressed representation without losing any information or bits. On the other
hand, lossy compression permanently loses some information in compression pro-
cess to have higher compression rates in comparison with lossless compression and
it is impossible to reconstruct the original data from lossy compressed representa-
tion. However, it does not lose essential information from the original data (Fitriya,
Purboyo & Prasasti, 2017).
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2.4 Deep Learning

Deep learning is one of the subbranches of machine learning which is based on
artificial neural networks. Deep learning emerged over classical machine learning
techniques as the technology, computational powers and memory amounts advance
(Watson, Cooper, Palacio, Moran & Poshyvanyk, 2022). They are faster, powerful
and more reliable as the amount of data to process increases than the traditional
machine learning methods (Brownlee, 2020). Similar with the common machine
learning algorithms, deep learning techniques are applied with representation learn-
ing which can be supervised, semi-supervised and unsupervised. Representation
learning is a set of methods that the network learns representations for feature ex-
traction. This method allows network to automatically discover the needed features
representations and use them to accomplish the task that network designed to per-
form In supervised learning, labelled data is used to learn and predict the specified
task. When the data has no labels included, the learning task is considered as
unsupervised learning. Sometimes the small portion of data has labels and large
amount has no labels, combination of both during the learning process called as
semi-supervised learning (Ali, 2021).
General structure of Deep Learning networks are composed of multiple layers which
are input layers, hidden layers and output layers. The number of layers depend on
the architecture of the network. In each layer, feature representations are obtained
by combining non-linear transformation of the lower level representations into higher
level representations. Such transformations increases the level of abstraction of the
learned representations and at the end very complex feature representations can be
learned by applying them. The learned complex features are dependent on the spec-
ified task. For instance for classification problems, the higher layers of transformed
features are the ones that are crucial to distinguish the class which the instance is
belonging to and not includes irrelevant features into the learning process. The most
powerful part of deep learning is that the layers of learned features are not designed
by humans, the network learns and optimizes through the transformations by only
processing the given input data (LeCun, Bengio & Hinton, 2015). Figure 2.1 shows
an example deep learning architecture used in natural language processing field with
having input, output and 3 sets of hidden layers.
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Figure 2.1 Multilayer Artificial Neural Network Architecture(Kutzkov,
2022)

Neural Networks use gradient descent algorithm during the training process. The
complexity of deep learning algorithms require non-linearity therefore it is needed
to use backpropagation with gradient descent algorithm to optimize deep learning
networks. Backpropagation stands for "backward propagation of errors" and it fine-
tunes the error rate of network weights in each training epoch. While training a deep
learning model, for each iteration, gradient descent algorithm calculates new network
weights and loss function calculates new losses for each epoch. Backpropagation
feeds the amount of loss backwards ,meaning that from output to input, and by
that procedure, the gradient descent tries to decrease the new network errors in
the next iteration. With sufficient training epochs, backpropagation optimizes the
network by calculating the gradient of the specified loss functions with respect to
total error rate of the network. Optimization process is minimizing the total error so
that increasing the reliability and generalizability of the networks (Al-Masri, 2019).

2.4.1 Variational Autoencoders

Variational Autoencoders (VAEs) are deep learning based generative models which
allow to represent high dimensional input data into a low dimensional latent space
that are learned with an unsupervised manner (Girin, Leglaive, Bie, Diard, Hue-
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ber & Alameda-Pineda, 2021). VAEs are composed of two deep neural networks,
encoder and decoder networks, connected to each other and have latent space in
between them. VAEs assume the input data comes from a probability distribution,
generally Gaussian, and tries to find the parameters of the distribution by using
feature attribute values during the encoder part and then take samples from the
new probability distribution to get the latent space representation. The parameters
mean and sigma from the input distribution are tried to predicted by the network.
This process makes latent space continuous, easy to interpolate and analyze, and
keeps the important features of the data. Decoder network reconstructs the latent
space embeddings into its original dimension. At the end of the encoding and de-
coding process, unseen data is generated and this is the most powerful side of VAEs
(Kingma & Welling, 2019).

2.4.1.1 Loss Function

VAEs use a hybrid loss function for optimizing the network which is the combination
of both reconstruction error and KL divergence. Reconstruction error is mean
residual between input data and reconstructed data. Usually, mean squared error
or mean absolute error are used for this term. On the other hand, KL divergence
calculates the difference between newly calculated Gaussian distribution and a
standard Gaussian distribution with mean 0 and standard deviation 1. The opti-
mization process of a VAE network works as; minimizing the reconstruction loss so
that generated samples would be likely the original input while approximating the
calculated Gaussian distribution to a standard Gaussian. Therefore, KL divergence
acts like a regularization term and keeps the balance between generating similar
samples while keeping the important features that separates input clusters (Öngün,
2020). Considering the absence of error term in the loss function, KL divergence
forces the network to take samples from a standardized Gaussian distribution as
much as possible and this creates a problem as generating very similar samples so
that the reconstruction error goes high and reconstruction the input data would
be meaningless so hidden clusters inside the input features would be vanished. An
example of KL divergence can be found at Figure 2.2. Blue curve represents the ap-
proximated Gaussian distribution while green curve represents a standard Gaussian.
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Figure 2.2 Example of KL Divergence. More the blue curve overlaps with the
green one, less KL divergence (Zafar, Tzanidou, Burton, Patel & Araujo, Zafar

et al.)

2.4.1.2 Reparametrization Trick

Artificial Neural Networks are trained by backpropagation method. It stands for
backward propagation of errors which uses gradient descent algorithm with the error
function to optimize neural network weights in each training epochs as it discussed
more detailed in deep learning section previously. However, in the case of VEAs,
backpropagation can not be applied to the process of taking samples from a Gaussian
distribution parameters so there should be a change in order to use backpropagation
in the training process of VAEs. Therefore, epsilon a random value from Gaussian
distribution, is used during the sampling process of VAEs. The sampling equation
is z = mean + sigma ∗ epsilon where epsilon is a random variable sampled from
standard Gaussian distribution, have a very little value to not change the sampling
equation and since it is a random variable, backpropagation is now applied to the
network. This process called reparametrization trick of VAEs (Paul, 2020). An
illustration of reparametrization trick of VAEs can be found on Figure 2.3.

Figure 2.3 Illustration of reparametrization trick of VAEs (Paul, 2020)
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3. METHODOLOGY

In this chapter, we give brief information about the methods that we used in our
framework. Obtained results with the methods, will be discussed in the results
chapter.

3.1 Data Compression Techniques

From Twitter accounts perspective, our goal is to evaluate compression rates of
account behaviours and to analyze compressed representations of account profile
information. We had used different data compression approaches for our analyses
on Twitter accounts.

3.1.1 Text Compression

Text Compression is a technique for changing the representation of given set
of characters. Although there are different approaches for text compression,
semantic information of the text is not important in our research since we do not
concentrate on the content of the tweets, rather our spotlight is on the informative
characteristics of tweets and such encoded texts do not require to have a meaning
so we focused a simple text compression technique to only focus on the character
sequences over the text, specifically a Python package called Compress (Hu, 2020)
which is a compression API and we used zlib (Jean-loup Gailly, 2022) framework
for compression algorithm. Zlib conducts compression operation in bit-wise so that
it converts original string to a compressed string in bits and decompresses from bits
to string. It searches patterns and repetitions into the original string to compress.
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If a character or sequence of characters repeats itself consecutively, the algorithm
counts the occurrence number of each pattern and rather keeping the repetitions,
keeps the occurrence number bit-wise. It allows the algorithm to compress the
given string. We can define a compression ratio metric to analyze the complexity
of each account as follows:

• Original Text Size (t0): Length of the input text

• Compressed Text Size(tC): Length of the compressed text

• Offset (O): Length offset of zlib compression algorithm used. We found out it
as 20 and subtracted it from the compression calculation to be consistent for
all accounts.

• Compression ratio (CR): Complexity metric for account behaviours.

(3.1) CR = (t0 − tC)/t0 −O

We used Zlib text compressions in our research to find behavioral complexities of
Twitter accounts. Each account’s activities and behaviors encoded into sequence
strings and applied text compression to get compression ratios and find account
complexities. We interpreted the compression ratio as; higher the compression ratio,
lower the account complexity in our framework.

3.1.2 Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction technique by ap-
plying linear transformation to input data (Wold, Esbensen & Geladi, 1987). The
aim of PCA is changing the basis of data by calculating new uncorrelated variables
into a given lower dimension so that optimizes explained variance of data and in-
formation loss. PCA can tell for which reduced dimension keeps how much of the
information from the input data. This procedure can be applicable for our com-
plexity analysis by setting an explained variance threshold for lower dimensions and
comparing different bot datasets complexity. However, PCA only works for linear
inputs and non-linearity of the data might cause a problem. Other dimensional-
ity reduction techniques that account nonlinearity might be more confident for Bot
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datasets. We applied PCA to get lower dimensional representations of account pro-
file information and used it as a benchmark for account profile complexities and
compared the results with other methods.

3.1.3 t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding(t-SNE) is a nonlinear dimensionality
reduction technique which calculates a similarity measure between data instances
for both original dimension and reduced dimensions than tries to optimizes the sim-
ilarities and locates similar data instances closer (Van der Maaten & Hinton, 2008).
t-SNE is used in our framework for visualization purposes to get 2-dimensional em-
beddings of higher dimensional data.

3.1.4 Autoencoders

Autoencoders are artificial neural networks used for learning dense representation of
input data for unsupervised learning tasks (Baldi, 2012). Common usage areas for
Autoencoders are data compression via dimensionality reduction, facial recognition,
anomaly detection and image denoising. It consists of two parts which are encoder
and decoder. Encoder network maps the input data into a lower dimensional space
which often called as latent space. The layers of encoder network try to keep the
important information of the original input and embed them into latent space to
efficiently learn the important or hidden features of the data. Decoder network is the
opposite of encoder which takes the latent embeddings and reconstructs them to the
original dimension. During the encoding and decoding procedure, some information
from the original input is lost and the whole network tries to minimize that loss while
learning the important features of data. Figure 3.1 shows the architecture of a vanilla
Autoencoder. Similarly with PCA, we used Autoencoders as a benchmark for profile
complexities and compared Autoencoder compressions with other dimensionality
reduction techniques for profile information in our analysis.
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Figure 3.1 Architecture of Vanilla Autoencoder (Rocca, 2021)

3.1.5 Variational Autoencoders

Variational autoencoders are generative version of autoencoders and have similar
architecture (McCaffrey, 2018). They also have encoder and decoder networks for
encoding the input into lower dimensional latent space and reconstructing back to
the original dimension. However, VAEs can generate unseen data and it makes
them more flexible and powerful than standard autoencoders. The details about
VAEs are discussed in the related work section earlier. Figure 3.2 shows a standard
VAE architecture. Our main complexity analysis for account profile information is
done by VAEs. We extracted profile features of each account from user metadata
of Twitter API and fed them into VAEs to get latent space representations. Lower
dimensional latent representations are compared for human and bot accounts in
different dimensions to find out if there is a difference between human and bot
accounts in their hidden spaces.

Figure 3.2 Architecture of a Variational Autoencoder with loss function
(Rocca, 2021)
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3.2 Markov Chains

Markov Chains are mathematical stochastic system that describes making transi-
tions from one state to another using probabilistic approaches (Maltby, Khim, Lin,
Williams, Hernandez, Jackson & Pakornrat, 2022).It has important properties as
making the transition to the next state only depends on the previous state which
means that it is independent of history of states. Moreover, future states are always
fixed and transition probabilities are defined by certain rules that only depends on
the system. There different kinds of Markov chain systems such as discrete time,
continuous time, finite state etc. In our framework, we can define a state system
which the states are the tweet types and transition probabilities can be calculated as
for each tweet, counting the previous tweet occurrences divided by the total num-
ber of occurrence of that type. Such system is proper for discrete time Markov
Chains. The states are: S = {A,T,Q,R}. For instance for a transition matrix as
such in Figure 3.3 leads to a state system for the tweet types like Figure 3.4. Markov
Chains are used to support behavioral complexity differences between human and
bot accounts. We used account encoded behavioral sequence strings as an input and
get predictions for each accounts’ next activity and find system accuracy to check
whether there is a difference between human and bot account predictability.

Figure 3.3 Example of Transition
Matrix

Figure 3.4 Example of State
System
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4. DATASET AND PREPROCESSING

We used publicly available datasets from bot repository1 that are collected and la-
belled during different events and scientific purposes which are total of 14 distinct
bot datasets. Table 4.1 contains number of human and bot accounts for each dataset
along with annotation method for labelling the dataset.
Most of the datasets have human annotation method which means they are manu-
ally labelled by human efforts. For example astroturf dataset contains hyper-active
political bots that are detected thorough systematically deleting content and follow
trains which is basically group of accounts posting content addressing to follow each
other (Sayyadiharikandeh et al., 2020). botwiki dataset have self-identified bot
accounts from bot archive 2 (Yang et al., 2020). Filtering by verified account fea-
ture from the API stream, verified dataset created and consists of only human
accounts (Yang et al., 2020). gilani-17 dataset contains bot and human accounts
that are clustered into four different categories depending on the number of followers
which are celebrity status, very popular, mid-level recognition and lower popularity.
They took samples from the categorized accounts and manually labelled the data
based on key information (Gilani, Farahbakhsh, Tyson, Wang & Crowcroft, 2017).
Another human annotated dataset is midterm-2018 which accounts are filtered
during 2018 U.S. elections (Yang, Hui & Menczer, 2019; Yang et al., 2020). Twit-
ter user @josh_emerson shared political bot accounts in dataset josh-political
(Yang, Varol, Davis, Ferrara, Flammini & Menczer, 2019). kevin-feedback have
accounts from feedbacks given to Botometer (Yang et al., 2019). In rtbust dataset,
manually labelled from Italian retweets for a 12 days span in 2018 (Mazza, Cresci,
Avvenuti, Quattrociocchi & Tesconi, 2019). For varol-icwsm dataset, accounts
are manually labelled depending on the Botometer score (Varol et al., 2017). There
are other annotation methods also are used rather than human annotations. For
example, as being the oldest dataset present in this framework, caverlee dataset
used honeypot accounts to lure bots and human accounts that are manually verified

1botometer.org/bot-repository

2botwiki.org
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by authors (Lee et al., 2011). gregory-purchased dataset contains fake followers
that are purchased from companies (Yang et al., 2019). Andy Patel 3 shared scam
site sharing bot accounts in pronbots dataset (Yang et al., 2019). stock dataset
have bot accounts that are isolated to find same timelined tweets for five months for
selected cashtags (Cresci, Lillo, Regoli, Tardelli & Tesconi, 2018,1). Lastly, cresci-
17 dataset have more than one bot type along with human labels which are social
spambots, tradition spambots and fake followers. Social spambots classified by ac-
counts repeating normal accounts to promote a hashtag or a content coordinatively.
Tradition spambots are bot accounts that tweet always same content. Fake followers
the ones that paid other accounts to follow (Cresci, Pietro, Petrocchi, Spognardi &
Tesconi, 2017a,1).

Dataset Name Annot. Method #Bots #Humans Ref.

astroturf Human Ann. 505 0 (Sayyadiharikandeh
et al., 2020)

botwiki Human Ann. 697 0 (Yang et al., 2020)
caverlee Honeypot + verified 15,483 14,833 (Lee et al., 2011)
cresci-17 Various Methods 7,049 2,764 (Cresci et al., 2017)
gilani-17 Human Ann. 1,090 1,393 (Gilani et al., 2017)
gregory-purchased Fake Followers 1,087 0 (Yang et al., 2019)
josh-political Human Ann. 62 0 (Yang et al., 2019)
kevin-feedback Human Ann. 380 138 (Yang et al., 2019)
midterm-2018 Human Ann. 0 7459 (Yang et al., 2020)
pronbots Spam Bots 17,882 0 (Yang et al., 2019)
rtbust Human Ann. 352 340 (Mazza et al., 2019)

stock Sign of Coordination 7,101 6,174 (Cresci et al.,
2018b;2019)

varol-icwsm Human Ann. 733 1,495 (Varol et al. 2017)
verified Human Ann. 0 1,986 (Yang et al., 2020)
Total 52421 36582

Table 4.1 Dataset information. Number of human and bot accounts and
annotation method for every dataset are given (Sayyadiharikandeh et al., 2020)

3github.com/r0zetta/pronbot2
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4.1 Profile Feature Extraction

Feature engineering and selection is one of essential parts of bot detection systems
(Varol, Davis, Menczer & Flammini, 2018). The datasets utilized in this research
contain a user object for each account which has many informative profile features,
along with account’s most recent 200 tweets and its properties. The account features
in the datasets had been used to develop Botometer classifier which is a popular
bot detection system, over 1,000 features used for each account. (Davis et al.,
2016; Varol et al., 2017). As the complexity analysis needed to be applicable for
each Twitter account, regardless of being automated or natural, the features to be
used are chosen in a way that solves the scalability and generalization problem of
bot detection systems as mentioned in related work section. We extracted user
metadata information, calculated metadata features’ rates with respect to account
age in seconds to capture how fast the account’s activity occurs (Yang et al., 2020),
calculated hashtag numbers used in the user profile and selected binary features
regarding whether the user uses the default profile settings or have a customized
profile. Table 4.2 shows the type and description of features that we used in our
framework.
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Metadata Feature Name Type Explanation
favourites_count count Total number of favourites

statuses_count count
Total number of tweets of the
account

friends_count count Number of followings of the account
followers_count count Number of followers of the account

listed_count count
Number of public lists that the user
is a member of

default_profile binary
Whether the user has changed the
theme or background or not

default_profile_image binary
Whether the user has changed the
default profile image

Calculated Feature Name Type Explanation
screen_name_length count Length of the screen name
num_digits_in_screen_name count Number of digits in the screen name
name_length count Length of the user name
num_digits_in_name count Number of digits in the user name
description_length count Length of the profile description

num_#_in_description count
Number of hashtags in the profile
description

num_#_in_name count Number of hashtags in the user name

age numeric
Time in seconds between account
creation and its last tweet

tweet_freq numeric statuses_count / age
followers_growth_rate numeric followers_count / age
friends_growth_rate numeric friends_count / age
favourites_growth_rate numeric favourites_count / age
listed_growth_rate numeric listed_count / age
followers_friends_ratio numeric followers_count / friends_count

Table 4.2 Features are used for profile complexity analysis. Metadata
features comes from API stream and calculated features use them to create new

ones (Yang et al., 2020)

After collection and calculation of features, we applied log-transformation to each of
them to normalize and standardize them to prepare for our analyses since numeric
and calculated features are distributed with different ranges and scales. This process
did not change binary and count features much but still we applied for all features to
have more confidence on the features. An example distribution for caverlee dataset
for before and after log-transformation can be found in Figure 4.1 and Figure 4.2

19



Figure 4.1 Before normalization and standardization of profile features
distribution

Figure 4.2 After normalization and standardization of profile features
distribution

4.2 Encoding Behavioral Features

Other than the profile information, we encoded each account’s activity into a se-
quence string by a method called Digital DNA extraction to analyze behavioral com-
plexities of Twitter users. The original method is to characterize each tweet posted
by an account chronologically, with a capital letter, from the alphabet B = {A,C,T}
where A stands for each tweet, C is for each reply and T for each retweet to create
a behavioral sequence string like s = ...TTATCT (Cresci et al., 2019). Figure 4.3
shows the application of Digital DNA method on an account timeline.
We extended the Digital DNA method by adding extra information into the se-
quence strings for each tweet and introduced a level system to analyze account
behavior complexities. The levels are:
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Figure 4.3 Illustration of original Digital DNA method on a Twitter
account timeline (Cresci et al., 2019)

Time Segments Time in Seconds Logarithmic Scale
second 1 0
minute 60 1
hour 60*60 3
day 60*60*24 4
week 60*60*24*7 5
month 60*60*24*7*4 6
year 60*60*24*7*4*12 7

Table 4.3 Inter-tweet time segments. We took common logarithm of
corresponding times in seconds to scale times to integers to use them in our

behavioral level system

• level_0: Single character for each tweet, depending on the tweet type. The
alphabet for level_0 is B = {A,T,Q,R}, A stands for reply, T for normal
tweet, Q for quoted tweet and R is for retweet.

• level_1: Two characters for each tweet, addition to the level_0 with a digit
between 0-7, depending on the time passed between each tweet with its follow-
ing tweet on a logarithmic scale. Times are calculated in seconds but trans-
formed into a 1-digit by taking its common logarithm. Table 4.3 describes the
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Figure 4.4 Example illustration of our level system from four tweets of an
account timeline.

digits and corresponded time intervals between consecutive tweets. Since last
tweets has no tweet to follow, we calculated the most common time interval
for that account and added it to last tweets.

• level_2: In addition to level_0 and level_1, level_2 contains entity infor-
mation. Entities that reflect the characteristics of tweets, are selected to add
in this level, are as follows:v

– url: Binary information, checks the tweet contains a URL or not.
– media: Binary information, checks the tweet contains a media or not.
– hashtags: Count information, calculates how many hashtags used in the

tweet.
– user mentions: Count information, calculates how many users men-

tioned in the tweet.
If a tweet has more than 9 hashtags or mentions count, we interpreted
them as 9 to be consistent with the one character for each information idea.
Figure 4.4 and Figure 4.5 shows the illustration of behavioral encoding of our
level system from account timelines.
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Figure 4.5 Second example illustration of our level system from five
tweets of an account timeline.
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5. RESULTS

In this part, we will present our findings by the methodology we explained in the
previous part. We can divide the results into two parts and start with behavioral
complexities, give behavior predictions and end with profile complexities.

5.1 Behavioral Complexities

As we encoded user activities as string sequences with our level system and defined
a compression ratio by applying a text compression algorithm into the behavioral
sequences, we can analyze complexities of each account and can come up with com-
plexity comparisons between each dataset. Figure 5.1, Figure 5.2 and Figure 5.3
shows the compression densities for each dataset and for each label for all three
levels. By only looking at the density plots side-by-side, it is visible that the bot
accounts are more compressible comparing to the humans for almost each dataset
and compressibility changes for different levels are seen.
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Figure 5.1 Density Plots of level_0 label-by-label for datasets
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Figure 5.2 Density Plots of level_1 label-by-label for datasets
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Figure 5.3 Density Plots of level_2 label-by-label for datasets
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Furthermore, we can inspect the dataset complexities at denser perspective by look-
ing at Figure 5.4. This figure summarizes our framework over account activities. It
contains mean compression ratios at x-axis and standard deviations at y-axis so that
we can compare the complexities of human and bot accounts, each dataset and dif-
ferent levels of behavioral information separately in the same figure. We can clearly
see that human accounts are more consistent within itself than the bot accounts for
both dataset-to-dataset and level-to-level. Mean and standard deviation intervals
are lower than bots and lowest mean compression ratio is around 60% while high-
est is around 80%. Also, for standard deviations, the intervals are around 5 to 15.
Another aspect is that comparing different levels, level_2 have highest compression
ratios as we include entity information into level_2 and for plain tweets level_2 have
higher repetitions comparing to levels 0 and 1. Moreover, for most of the datasets,
level_0 has higher compression ratios than level_1 as expected since inter-tweet
times forces the sequences having lower compression ratios if the account did not
send tweets for same and fixed time intervals. On the other hand, bot accounts are
mover divergent within itself. We can see some bot datasets can reach near 100%
compression mean while some only have around 50% and standard deviations also
have a similar divergence. Likewise for different levels, we can not observe a con-
sistency over different levels like humans since it different levels do not have similar
compression range in the figure for bot accounts. By that results, we can conclude
that the behavioral complexity of bot accounts are not consistent through dataset
and it depend on the dataset and its annotation method. However humans are more
likely to be dataset independent as expected.
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5.1.1 Dataset Inspections

Apart from general perspective, we can also inspect the complexities of each dataset
for which having both bot and human labels to compare. Inspecting cresci-17
dataset is important as it contains different bot types as labels along with humans.
Figure 5.5 shows the sequence lengths and compressed sequence lengths which are
the original input length for tweets and length in bits for compressed representations,
respectively. It contains the lengths for each user with all three levels in cresci-17
dataset. By looking at the scatter diagram of each user, it is visible that compressed
sequence lengths and sequence lengths are not colliding at the diagonal dashed x = y

line and the area between dots and the line shows us how much of the accounts
behaviors compressed. Also from the fşgure, the compression lengths of humans are
higher than other bot types, specifically than socialspam and traditionspam bots,
and socialspam bots lengths are higher than traditionspam bots as it suggested in
the density plot at the left corner of the figures.

Figure 5.5 Original and compressed sequence lengths of cresci-17.
Density plots also given for humans and bots at the left top figure

Figure 5.6 Original sequence and compressed sequence lengths of caverlee
dataset. Density plots also given for humans and bots at the left top figure
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We can also inspect single bot type and human labelled datasets. For instance Fig-
ure 5.6 shows sequence and compressed lengths of caverlee dataset. From both
figures, we can conclude that level_0 and level_1 gives important hints about the
differentiability of humans and bots in terms of account complexity since unique
labels are visible in the graph in different positions. However, for level_2, which
have the entity information along with tweet types and inter-tweet times, compres-
sion rates increases for both human and bots and complexity difference decreases
as it is suggested from individual plots as well as summary figure. The cause of it
may depend on the entities selected or the entity positions and it is discussed more
in the conclusion and discussion section.

5.1.2 Temporal Behavioral Changes

Most of the datasets that we used are collected through long time spans. It gives us
a chance to analyze temporal behavioral changes of accounts. We take little chunks
of behavioral sequences and slide the chunk window with a given parameter. We
selected the chunk size as 20 and slide size as 10 but parameter values are subject to
change for better analyses. We selected two accounts, one human and one bot. Their
behavioral changes are observable when we apply compression the little behavioral
chunks over that accounts whole behavioral sequence and plot compression ratios
with respect to mean date of chunks. Each chunk contains 20 tweet so we took
the mean date of 20 tweets dates to plot with compression ratios. Figure 5.7 and
Figure 5.8 shows example of temporal changes of accounts. Observation of such
changes show that account behaviors change with respect to time for both humans
and bots. Bot changes are important to observe since bot behaviour changes might
cause bot detection systems to fail to capture them. Similarly, human behavior
changes might reveal occurence of an important event during sharp increase or
decrease in the compression ratios. We conducted more comprehensive analysis
about this in Case Study section.

28



Figure 5.7 Temporal behavioral changes of a human account from
cresci-17 dataset. level_1 sequences given and high and low compressed

chunks are highlighted

Figure 5.8 Temporal behavioral changes of a socialspam bot account from
cresci-17 dataset. level_1 sequences given and high and low compressed

chunks are highlighted

5.1.3 Sequence Predictions

Discrete-Time Markov Chains (DTMC) are proper tool for predicting the next vari-
able of long sequences. We can use DTMC to predict the next tweet type that
an account will post. In our level system, all 3 levels can be used to predict next
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sequence information. For instance predicting only next tweet type, we can use
level_0, to predict next tweet type along with inter-tweet time, level_1 can be used
and predict entity information, level_2 can be used. However, for simplicity, we only
used level_0 and predicted the next tweet type. In that setting we have 4 unique
states and have 4x4 transition matrix and if we used level_1, we should have 28
different states since 4 different tweet types and 7 different time segments and 28x28
transition matrix. It is way bigger for level_2 because we add 4 new characters for
each tweet, so we only focused on predicting the next tweet type. After setting
the states, we should determine how to calculate transition probabilities. Markov
property suggests that making a transition only depends on the previous state so,
we can calculate transition probabilities by counting the next tweet type for each
tweet and dividing it to total number of occurrences of the tweet type. We can ex-
tend the Markov property by looking previous 2 tweets for calculating the transition
probabilities. We defined two parameters for sequence prediction and which are:

• STATE_LEN: number of previous tweets to consider for transitions
• PRED_LEN: number of next tweets to be predicted

Figure 5.9 shows the accuracy of predicting next tweet with using Markov properties
for each dataset with STATE_LEN = 2 and PRED_LEN = 1 . The figure has labels for
both human and bot accounts as well as it contains the biased prediction which
only counts the tweet types and make a prediction based on the majority tweet
type. For datasets which having both human and bot labels, prediction accuracy is
always higher for bot accounts than humans. It shows that bot accounts are more
predictable, less complex than humans as expected. Prediction results are consistent
with the behavioral sequence compression results, for instance in botwiki dataset,
bot accounts are self identifiable so they have very less complexity, we know it from
previous figures, have the highest prediction accuracy. Another drawback is that
except from a few cases, Markovian and biased accuracy are very close to each other
for most of the datasets. It maybe suggest that, the next tweet that will be post
by an account, may be independent from the previous tweets, it may depend on the
tweeting habits of accounts. The results obtained by using different STATE_LEN and
PRED_LEN can be found in the appendix section.
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Figure 5.9 Next tweet prediction accuracy of next tweet per dataset

5.2 Profile Complexities

Apart from account behaviours, we also analyzed bot and human account’s profile
information to see that whether bots and humans are differentiable. It will allow
us to compare different dataset complexities. Similar to the previous approach, we
will use a compression method but with profile features of accounts. In Table 4.2,
we listed profile features and we put them into VAE to reduce the dimensionality of
our input data. As we discussed in the methodology section, VAEs keep important
features into latent space with lower dimensions. Therefore, we defined a range
of dimensions to compress, and compare different dimensions. We defined lower
dimensions range as range(2,21) for which 2 is the lowest possible meaningful
compressible range and 21 is the numberoffeatures − 1, in other words minimum
compressible dimension. As VAEs apply lossy compression to the input data, we
applied a grid search to the lower dimensions range to find the best compressible
dimension with minimum information loss.
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5.2.1 Implementation Details

We used tensorflow API (Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado,
Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz,
Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens,
Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, War-
den, Wattenberg, Wicke, Yu & Zheng, 2015) to train VAE network. The fully
connected encoder and decoder networks have two hidden dense layers with sizes 64
and 32. Encoder network connected with the input data with shape of 22, number
of profile features, to two hidden dense layers dimensions from 64 to 32 and out-
put dense layer with shape as latent space dimension from the grid search. After
the sampling process, the decoder network takes sampled input with latent space
dimension, connected it to the hidden dense layers from 32 dimensional to 64 di-
mension, and as output, it connects to the original dimensional dense layer which is
22. For all layers, relu activation function is used. We trained all the datasets with
batch size as 64 and for number of epochs, early stopping method is used and net-
work stopped training when there is no improvement on the network loss. Similarly,
network reduced learning rate when reaches to plateau by monitoring the loss.

5.2.2 Latent Space Analysis

VAE encodes given input data into a compressed lower dimension by forcing the
input distribution to a normal distribution and taking samples from it. By this way,
only the important features are kept and hidden insights of the input may reveal
in the latent space. We analyzed different dimensional latent spaces of datasets, to
see that if human and bot accounts are differentiable in the latent space. TSNE
embeddings are used to produce 2D projections of higher dimensional latent spaces
and original input. Figure 5.10 shows original dimension embeddings, latent space
dimensions 3 and 15. Different classes in the dataset became more visible as the
latent space dimension goes higher from 3 to 15. Furthermore, in the original TSNE
embedding, the clusters are too messy and same labels are seperated, however in la-
tent space dimension 15, it seems more concerted and clusters are visibly selectable.
When we observe the latent embeddings of other datasets, Figure 5.11 Figure 5.12
shows original dimension embeddings, latent space dimensions 3 and 15 embeddings
for stock and caverlee datasets. Original dimension embeddings, which is input
data without applying VAE compressions, not showing any regularity between bot
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and human classes but VAE embeddings seems more regular. Also, higher latent
dimension 15 seems more regular than latent space 3. However, it is visibly un-
derstandable that VAEs performed better on cresci-17 dataset than other two
datasets. We believe that the cause for different latent space structures between
datasets may be the annotation method for datasets. More detailed discussion can
be found in the conclusion and discussion section.

Figure 5.10 cresci-17 dataset with original embedding, latent space 3 and
15 embeddings

Figure 5.11 stock dataset with original embedding, latent space 3 and 15
embeddings
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Figure 5.12 caverlee dataset with original embedding, latent space 3 and
15 embeddings

5.2.3 Comparison of Different Techniques

We can compare different dimensionality reduction techniques for profile features
to see how well VAEs compress data into lower dimensional spaces. Figure 5.13
and Figure 5.14 shows the comparison of 2 and 15 dimensional representations of
cresci-17 dataset for PCA, Autoencoder and Variational Autoencoder. PCA and
VAE have similar visible clusters in 2 dimensional representations of cresci-17
dataset but AE fails to seperate labels. However, when we increase the compressed
dimension, PCA acts similarly as AE and fails to seperate. Most regular and seper-
able cluster in dimension 15 is observed in VAE encodings. Therefore, VAEs are
powerful tool to compress the input data into lower dimensions with keeping the
most important features.

Figure 5.13 PCA, Autoencoder and Variational Autoencoder
representations of 2 dimensional space for cresci-17 dataset
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Figure 5.14 PCA, Autoencoder and Variational Autoencoder
representations of 15 dimensional space for cresci-17 dataset

5.2.4 Complexity Comparison

To validate the method that we used, we applied Random Forest Classifier (Ho, 1995;
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer,
Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot & Duchesnay,
2011) with default parameters to both the original input data and lower dimensional
compressed data for all lower dimensions to compare. We used repeated stratified
K-fold cross validation technique with 10 fold and 10 repeats to validate the accu-
racy results. As VAE is a lossy compression technique, we should expect that we
loose more information as the compressed dimension gets lower and the classification
accuracy should be lower for compressed data in comparison with the original data.
Figure 5.15 and Figure 5.16 shows the classification accuracy and accuracy change
with respect to next latent space dimension for cresci-17 and stock datasets. RAW
corresponds to original input while other ticks on x-axis, shows the latent dimension
of compressed data. As it can be seen from the figures, the classification accuracy
goes higher from latent dimension 2 to some higher dimension gradually and become
closer to the original input accuracy, but improvement nearly stops at some dimen-
sion. Therefore, we defined a heuristic complexity measure as determine a lower
dimension for which the accuracy change of next consecutive 3 dimensions are un-
der 1%. We designate such dimension as an optimal compressible dimension for the
dataset. As the optimal dimension is lower, means the dataset has less complexity.
We can use this measure to compare different dataset complexities.
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Figure 5.15 Prediction Accuracy of cresci-17 dataset on different latent
dimensions
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Figure 5.16 Prediction Accuracy of stock dataset on different latent
dimensions
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5.2.5 Optimal Compressions

We validated reduced dimension complexities by applying Random Forest Classifier.
Regarding to the number of accounts contained and having both human and bot
labels, we selected five proper datasets to find best compressible dimension which
are caverlee, cresci-17 , gilani-17 , stock and varol-icwsm. To find the best
dimension for the selected datasets, we developed a heuristic approach which keeps
track of improvements on the classification accuracy of each dimension. We defined
a parameter epsilon = 0.01 and when the classification accuracy increased, we cal-
culated the difference between them and compared it with epsilon. If classification
accuracy stops improving, meaning that accuracy change is lower than epsilon with
the previous highest accuracy, we selected the dimension as the best compressible
dimension in terms of minimum information loss with maxiumum compression. Fig-
ure 5.17 shows our heuristic approach results for finding best optimal dimension for
selected five datasets.
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Figure 5.17 Best compressible dimensions for different datasets

The results show the dimensions that stop improvement on the accuracy. For in-
stance, cresci-17 dataset showed improvement until dimension 13 and improve-
ment stops, so we found best lossy dimension. For caverlee dataset stopped im-
provement at dimension 6. So it shows cresci-17 dataset complexity is higher than
caverlee dataset.
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6. CASE STUDY

In this section, we conducted a case study to show the application of our complexity
framework on a different event and dataset than bots

6.1 2017 GERMAN FEDERAL ELECTIONS

This case study is about applying our behavioral complexity framework to a Twitter
dataset that are collected before and during the Federal Elections of Germany that
happened at 24 September 2017. The dataset comprises of Twitter interactions
about 364 German politicians by more than 120.000 active Twitter users and more
than 1.200.000 Tweets starting from May 29 till 25 September which is one day
after the elections (Kratzke, 2017). Since we need some amount of tweets to create
behavioral sequences to apply compression and not want to deal with outliers, we
filtered the accounts that are having more than 20 tweets. Than we checked the
tweet count distribution of the accounts and it can be found on Figure 6.1. By
looking at the distribution, we chose to continue with users having number of tweets
higher than 30 and lower than 130 based on the tweet count distributions.
After filtering, we left with 5,270 users having 30-130 tweets during a 4 month time
span with total of 308,960 tweets. Noting that this dataset does not have any labels
about the collected accounts, we use it see whether an important societal event like
a federal election, changes the Twitter account’s tweeting habits and behaviours or
not. It is done by examining the behavioral complexities of accounts by comparing
before and during the election month which is September 2017. We divided the
dataset into before September tweets and after September tweets. We have total
of 213,103 tweets before September and 95,857 after September. Since the dataset
have no labels and our aim is not comparing human and bots, rather comparing pre
and during event complexities, we only used behavioral sequence compression for
this case study. Figure 6.2 shows the compression means and standard deviations of
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before and after September tweets. It also contains the euclidean distances between
same levels on before and after September. We can directly see that, compression
means are decreasing and standard deviations are increasing in September which is
the election month.
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Figure 6.1 Distribution of tweet counts

Figure 6.2 Behavioral complexities of accounts tweeted about 2017
German Federal Elections

Although level-by-level complexity differences are visible on the figure and tweet
complexities are higher in the election month, the compressibility trend is similar for
both time intervals. level_0 has highest compression means and at the same time
has highest standard deviation while level_2 has smallest standard deviation and
level_1 has smallest compression means in both cases. Therefore, as complexity
increases in the election month, tweeting habits of accounts are still consistent
within each other. In both time intervals, entity information in level_2, are not
used much and repeats itself to have highest compression means among other levels
and inter-tweet times still hard to compress and increases the complexity of tweets.
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Furthermore, level_0 has the highest distance among the distances of same levels
of different time intervals which actually explains what cause the difference between
election month and preceding months. Since we saw the consistency between
tweet characteristics in terms of inter-tweet times and entities, the cause for higher
complexity in election month is the complexity on different tweet types posted.
The natural cause of it may be the fact that Twitter users can post mixture of their
subjective opinions and objective news in the election month as election results and
other reflections of the election reveal in the election time comparing with months
before the election.

This case study shows us that a major societal event like an election may affect
tweet complexities. Such effect may cause a bias for the bot detection during such
events since our study showed that humans have higher complexities over bots but
in the case study, same users have different complexities in the presence of election.
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7. CONCLUSION AND DISCUSSION

In this research, we tried to define different complexity measures for Twitter
users. Our analyses have two major branches and which are account behavioral
complexities and account profile information complexities. We analyzed Twitter
accounts and defined complexity measures by compressing their activities and
profile metadata information. Our hypothesis was to observe significant differences
between bot and human accounts in terms of account and dataset complexity when
we compare their compressed representations. We utilized two main methods to
obtain the results. We extended so-called Digital DNA method and add more
information from the characteristics and content of each tweet and introduced
a level system for calculating the behavioral complexities of accounts. We also
adopted Variational autoencoders to use it on Twitter account datasets, to analyze
latent representations of bot and human accounts. For behavioral part of our
analysis, the results we achieved were supportive to our prior beliefs, and we
had saw the differences between human and bot account behaviors. Overall, for
different datasets, human compressions distributed into a denser space while bot
compressions have a wider range of space in terms of compression means and
standard deviations. We expected to see humans are more complex than bots and
the results proved our prior belief, human compressions are lower than bots in
average. However, as there are different kinds of bot accounts for different datasets,
the behaviors of bots are inconsistent than humans. We can observe bot behaviour
differences from two aspects of our analysis; firstly, standard deviations are higher in
bots and secondly, embedded behaviours in our level system proved it. Compression
level ratios of different levels positioned very close for different datasets for human
accounts but it is still inconsistent for bot accounts. Nevertheless, we managed
to achieve highest compression means with bot accounts. At that point, we tried
to predict the next behaviour for accounts by using Markov Chains by defining
behavioral sequences as a state system. Markov predictions showed us that bot
accounts are more predictable for all datasets than humans and it supports our
belief of bot accounts are less complex than humans.

Digital DNA method is a fine and powerful tool for analyzing account activities. Its
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power proven via our analysis, human and bot behavior differences were outlined
by applying compression over sequences. However, our extended level system
is still open for improvements. Zlib compression searches patterns over a string
and in our level system, the position of information in different levels or even
position of entities within level_2 may cause differences of compression amounts.
Furthermore, many other levels can be introduced as every tweet contains much
more information that we demonstrated in this research. Semantic information may
be one of the most important improvement to our system as we did not consider
semantics of tweets. Even further, we introduced levels as cumulative way it also
may cause biasses to the compressions working on single but different information
per level also may improve our level system.
After the analyses done over bot and human account activity complexities on bot
datasets, to validate our methodology, we conducted a case study on a dataset
collected during 2017 German Federal Elections. It contains accounts that are
actively tweeted about German politicians and elections starting from four months
before the election until election date. Therefore, we applied our behavioral
complexity framework to see whether account activities change through different
time spans during a major societal event like election or not, and divided the
dataset as tweets before the election month and on the election month. The results
showed that the overall account complexities increased during the election month
when comparing to the previous months. The behavioral levels that we defined
are consistently changed in both time spans and complexity of all increased in the
election month. As a result, our framework showed that, not only for bot datasets,
the behavioral complexity framework can be applicable for all accounts and it is
useful to analyze behavioral changes of accounts through time and existence of
major societal events. Such changes may cause biases for bot detection systems.

Another aspect of our complexity analysis was profile information compressions
by VAEs. One of our research questions was if human and bot accounts are
differentiable in their lower dimensional representations or not. Our results showed
that, VAEs yielded visually most regular latent spaces comparing with AEs and
PCA. VAEs showed that, the regularity over latent space increases as the latent
space dimension increases since information loss gets lower in higher dimensions.
However, VAEs perform differently from dataset-to-dataset. cresci-17 dataset
has a regular and clustered latent space in dimension 15 but stock and caverlee
dataset latent spaces are less regular and seperable when comparing with cresci-17
dataset. The reasons for it should be investigated by conducting more analyses
and experiments in the future but there might be a correlation between correctness
of annotated labels with the visual clustering and regularization quality of latent
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spaces. cresci-17 dataset used various and more sophisticated annotation
methods comparing with the other datasets and it might be the key reason for
VAEs performed better over cresci-17 dataset. Although, caverlee dataset used
honeypot luring for bot annotation, manual verification used for human accounts
and VAE performed poorly for distinguishing human and bot accounts.

Our other goal for profile complexity analysis is to quantify complexities of different
datasets by applying a grid search procedure for latent space dimensions from 2 to
number of inputfeatures − 1 to find a best compressible dimension. As objective
function of VAEs are information loss, during the network training, we tried to find
minimum loss with maximum compression. To validate our results, Random Forest
Classifier used to evaluate different latent space dimensions of each dataset. The
best compressible dimension is defined heuristically by a dimension which the accu-
racy stops improving afterwards. The improvement change tracked by an epsilon
parameter which we used its value as 0.01. The approach is highly dependent and
sensible to the value of epsilon parameter, however, we believed 0.01 is a fair
threshold by considering the accuracy change values on Figure 5.15 and Figure 5.16
and we want the accuracy to improve so we selected it as 0.01. The results showed
that stock dataset have the highest complexity while caverlee dataset has the least
one.
Such results are open to discussion as it is an heuristic approach. From Dataset
and Preprocessing section, we explained the annotation methods for each dataset.
stock dataset has a different annotation method as isolating the bot accounts by
the selected cashtags and that method yielded highest dataset complexity. Human
annotated gilani-17 and varol-icwsm datasets placed in the middle in terms of
complexity among other datasets but it is not enough to make an inference about hu-
man annotation methods since cresci-17 dataset used various bot detection meth-
ods but still has close complexity with human annotated datasets. Lastly, caverlee
dataset has lowest complexity between other datasets and it is understandable as it
is one of the very early bot datasets and long time passed since its annotations and
caverlee bots can be considered as simplest bots because of its age. Another discus-
sion point may be the number of samples contained in the datasets. caverlee, stock
and cresci-17 datasets have considerably higher number of samples comparing to
gilani-17 and varol-icwsm datasets. It may affects the classification accuracy
over different dimensions. Likewise, class imbalances may be another challenge over
this approach. Although we used stratified sampling for all datasets, bot and human
numbers is imbalanced in some of them and this is may be an issue over complexity
analysis.
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8. FUTURE WORK

Although our work answered most of our research questions and validated our
hypotheses, more improvements needs to be added to broaden the extent of the
research and to have more results to validate and support our findings in the future.

As we extended Digital DNA methodology by encoding crucial features from each
tweet, we selected tweet type, inter-tweet times and entity information with a prior
belief that the selected features characterize a tweet best. However, more features
may added to the methodology since Twitter API stream comes with has much
more information for tweets. More experiments needs to be conducted for selection
of tweet features and our level system needs to be organized accordingly. Moreover,
we added new levels in a cumulative manner and did not consider the position of
each information. Since text compression algorithms are sensitive to repetitions
and patterns, the positions of information in the encoded sequence strings are
important and may give different results for different positions. We need to be
more careful and rigorous to have reliable results.

Another important point in the future is that we should analyze more real
events to evaluate our method. We had conducted a case study about German
Federal elections on 2017 and compare the results we obtained for behavioral
complexity differences before and during the election month. Nevertheless, a
federal election is a major societal event and in that country, Twitter users were
very active about the election when the election date approaches. Twitter’s
worldwide scope may allow us to conduct more case studies like ours in the
future. Major societal events happens all the countries, sometimes globally like
a recent COVID-19 pandemic. We believe that if we investigate more, we can
find more dataset about a societal event and we can widen the scope of our com-
plexity analyses by investigating the complexity changes of users during such events.

The case study we examined and temporal change analyses of our research brought
new ideas and more questions about the results we obtained. We clearly conclude
that bot or human account behaviors usually changes as time passes. Societal events
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being one of key factors for such changes and there all other factors to influence
them. However, we know that bot detection systems are sensitive for such dramatic
changes for an account and they are designed to catch bot accounts. Behavioral
changes on bot accounts thorough time is understandable in an aspect of they are
adopting new systems and evolving. However, similar changes on human accounts
may cause biasses over bot detection systems and our case study showed that an
event like elections causes similar behavioral changes on human accounts. We need
to investigate that if temporal changes on human account behaviors cause biasses
over bot detection systems and if so, we should use our findings to improve the
robustness of bot detection systems to make more reliable detections even during
major societal event. That way, manipulation campaigns of bots would be easier to
expose and prevent.
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