
COLUMN GENERATION-BASED METHODS FOR THE ELECTRIC
VEHICLE ROUTING PROBLEMS WITH TIME WINDOWS

by
ECE NAZ DUMAN

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Doctor of Philosophy

Sabancı University
May 2022



Ece Naz Duman 2022 ©

All Rights Reserved



ABSTRACT

COLUMN GENERATION-BASED METHODS FOR THE ELECTRIC
VEHICLE ROUTING PROBLEMS WITH TIME WINDOWS

ECE NAZ DUMAN

Industrial Engineering Ph.D DISSERTATION, May 2022

Dissertation Supervisor: Prof. Bülent Çatay

Dissertation Co-Supervisor: Asst. Prof. Duygu Taş Küten

Keywords: Electric Vehicles, Vehicle Routing, Time Windows, Column
Generation, Flexible Delivery

The Electric Vehicle Routing Problem with Time Windows (EVRPTW) is an ex-
tension of the well-known Vehicle Routing Problem with Time Windows (VRPTW),
where a fleet of electric vehicles (EVs) is used instead of conventional vehicles. EVs
have a limited driving range, and thus, they may need to visit a station on the route
to recharge their batteries. The duration spent to recharge the battery is linearly pro-
portional to the amount of energy transferred. In this thesis, the EVRPTW and the
EVRP with Flexible Delivery (EVRP-FD) are studied. The first problem is based on
the classical VRPTW and assumes that for each customer only one delivery location
and its related time window are provided. In the second problem, this assumption is
generalized such that customers are offered the flexibility to specify multiple deliv-
ery locations for service to take place within different predetermined time windows.
We develop exact and heuristic algorithms based on the Column Generation (CG)
method that is embedded in Branch-and-Price (BP) and Branch-and-Price-and-Cut
(BPC) procedures to obtain solutions for these problems. Pricing subproblems of
those methods are solved by using different labeling algorithms all based on the
Pulse algorithm or the ng-route algorithm and improved with the state-of-the-art
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acceleration techniques including (i) a bidirectional search mechanism in which both
forward and backward labels are created, (ii) a method to prevent solving the pric-
ing sub-problem at each iteration, (iii) a procedure for dynamically eliminating arcs
that connect customers to remote stations from the network during the path gener-
ation, (iv) a bounding procedure providing early elimination of sub-optimal routes,
and (v) an integer programming model that generates upper bounds. The BPC is
strengthened by employing a well-known set of valid inequalities. The methods pro-
posed for solving the EVRPTW are evaluated by using a benchmark data set that
includes instances with up to 100 customers and 21 stations and several new solu-
tions are introduced while some existing solutions are improved. The BP procedure
with the Pulse algorithm also provides a number of new solutions for the instances
with 100 customers to the literature. For the EVRP-FD, we present a new data
set including instances with up to 120 customers and an extensive computational
study is performed to evaluate the performance of the BP algorithm applied with
the bidirectional Pulse procedure.
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ÖZET

ZAMAN PENCERELİ ELEKTRİKLİ ARAÇ ROTALAMA PROBLEMİ İÇİN
SÜTUN TÜRETME ALGORİTMASINA DAYALI ÇÖZÜM YÖNTEMLERİ

ECE NAZ DUMAN

Endüstri Mühendisliği DOKTORA TEZİ, Mayıs 2022

Tez Danışmanı: Prof. Dr. Bülent Çatay

Tez Eş-Danışmanı: Dr. Öğr. Üyesi Duygu Taş Küten

Anahtar Kelimeler: Elektrikli Araçlar, Araç Rotalama, Zaman Pencereleri, Sütun
Türetme Metodu, Esnek Teslimatlar

Zaman Pencereli Elektrikli Araç Rotalama Problemi (ZEARP), geleneksel araçlar
yerine bir elektrikli araç (EA) filosunun kullanıldığı ve iyi bilinen Zaman Pencereli
Araç Rotalama Problemi’nin (ZARP) bir uzantısıdır. EA’ların sınırlı bir sürüş men-
zili vardır ve bu nedenle bataryalarını şarj etmek için rotadaki bir istasyonu ziyaret
etmeleri gerekebilir. Şarj için harcanan süre, aktarılan enerji miktarı ile doğrusal
orantılıdır. Bu tezde ZEARP ve Esnek Teslimatlı Elektrikli Araç Rotalama Problem-
leri (ET-EARP) incelenmiştir. İlk problem klasik ZARP’ye dayanmaktadır ve prob-
lemde her müşteri için sadece bir teslimat yeri ve bununla ilgili zaman penceresinin
sağlandığı varsayılır. İkinci problemde, bu varsayım, müşterilere birden fazla tesli-
mat yeri ve her teslimat noktası için farklı bir zaman penceresi belirtme esnekliğinin
sağlandığı şekilde genelleştirilmiştir. Bu problemlere çözüm elde etmek için kesin ve
sezgisel algoritmalar geliştiririz. Bu algoritmalar Sütun Türetme yöntemine dayalı
Dal-ve-Ücret (DÜ) ve Dal-ve-Ücret-ve-Kesit (DÜK) prosedürlerinden oluşmaktadır.
Bu yöntemlerin ücretlendirme alt problemleri Pulse algoritmasına veya ng-rota algo-
ritmasına dayanan farklı etiketleme algoritmaları kullanılarak çözülmektedir. Sütun
türetme algoritmalarını iyileştirmek için kullanılan hızlandırma teknikleri şu şek-
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ildedir: (i) hem ileri hem de geriye doğru etiketlerin oluşturulduğu iki yönlü bir
arama mekanizması, (ii) her yinelemede ücretlendirme alt probleminin çözülmesini
önleyen bir yöntem, (iii) rota oluşturma sırasında müşterileri ağdan uzak istasyon-
lara bağlayan bağlantıları dinamik olarak ortadan kaldırmak için bir prosedür, (iv)
alt optimal yolların erken ortadan kaldırılmasını sağlayan bir sınırlama prosedürü
ve (v) üst sınırlar oluşturan bir tamsayılı programlama modeli. DÜK iyi bilinen
bir dizi geçerli eşitsizlik uygulanarak güçlendirilir. ZEARP için önerilen yöntemler
100’e kadar müşteri ve 21 istasyona sahip örnekleri içeren bir veri seti kullanılarak
değerlendirmiş ve mevcut bazı çözümler iyileştirilirken birçok yeni çözüm de sunul-
muştur. Ayrıca, Pulse algoritması ile DÜ yöntemi kullanılarak 100 müşterili bir veri
seti daha çözdülmüş ve elde edilen birkaç çözüm iyileştirilmiştir. ET-EARP için ise
120’ye kadar müşteriye sahip örnekleri içeren yeni bir veri seti oluşturulmuştur ve
bu örnekler üzerinde çift yönlü Pulse prosedürü ile uygulanan DÜ algoritmasının
performansını değerlendiren kapsamlı bir hesaplama çalışması sunulmaktadır.
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1. INTRODUCTION

The transport sector causes about 25% of the total greenhouse gas (GHG) emis-
sions in the world (Muller, 2022). Road transport is the main contributor with a
share of approximately 75% (IEA, 2019). The environmental issues related to fossil-
fuel-dependent transportation have attracted a lot of attention in the last decade,
and growing concerns have been raised in modern societies (Zhu and Hu, 2019).
Consequently, governments have started setting ambitious targets to combat GHG
emissions. The European Commission (EC) targets a 90% reduction in emissions by
2050 by making all transport modes more sustainable (EC, 2020). Urban transport is
particularly important because road vehicles are mostly used in densely populated
areas, which causes the concentration of emissions in the cities. Many European
countries including Norway, Denmark, the Netherlands, Germany, and the UK an-
nounced plans to ban the sale of internal combustion engine vehicles (ICEVs) shortly
and phase them out through 2050 (IEA, 2020).

A promising approach to meet the emission reduction targets is replacing the ICEVs
with electric vehicles (EVs). Despite their high acquisition costs, EVs can be cost-
effective in the long term due to their lower energy consumption per distance traveled
(Wu et al., 2015). On the other hand, their range anxiety and limited recharging
facility infrastructure constitute the main disadvantages (Giordano et al., 2018). Al-
though managing a fleet of EVs is similar to managing an ICEV fleet, the operational
limitations give rise to additional complexities for logistics service providers and call
for new optimization approaches in operational planning. Therefore, studies that
consider the utilization of EVs in logistics operations have grown rapidly in parallel
with the advancements in the sector (Sassi and Oulamara, 2017), and many articles
have appeared in the field of the Vehicle Routing Problem (VRP) during the past
decade (see Qin et al., 2021 for an extensive review).

A growing interest in logistics industry has been concentrated parallel to the sus-
tainability issues (Mangiaracina et al., 2015). In the last 30 years, the internet has
been ubiquitously availed, which equalized the retail industry and enabled shopping
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without geographic restrictions. According to the information reported by Digital
Commerce (2021), in 2010 e-commerce was around 7% of the total retail purchases.
This percentage has been steadily increasing until the surge caused by the Covid-19
pandemic. The worldwide online sales were around 15% of the total sales for the first
three months of 2020. Around this time the Covid-19 pandemic started to spread
through out the world and force people to stay at home. Therefore, the share of
online sales increased by 58% in April 2021 (eMarketer, 2021). Online sales provide
many advantages to the retailers, including reducing the costs related to the physical
facilities and reaching distant customers. On the other hand, it also brings serious
challenges related to the delivery of the goods to the end customers in the supply
chain. The importance of the delivery to the end customers, last-mile logistics, is
propelled to the forefront in developments of the logistics sector. A recent study
reported by DHL (2021) points out that flexible delivery options can be offered for
last-mile logistics. Flexible deliveries enable customers to provide different locations
for the delivery to take place at different time windows.

Although EVs are invented in the mid-19th century, for many years they were not as
commonly used as ICEVs since their driving ranges were quite limited (Guarnieri,
2012). Over the years the popularity of EVs is accelerated due to the following
reasons: (i) technological developments, (ii) an increased focus on environmental
issues and renewable energy, (iii) increasing public interest and awareness, (iv) the
government incentives for the EV ownership, and (v) the structural incentives such
as more and more stations being built in the urban areas (Zivin et al., 2014).

EVs differ from fossil fuel-powered vehicles in that the electricity they consume can
be generated from a wide range of sources, including fossil fuels, nuclear power, and
renewable sources such as solar power and wind power or any combination of that
(Pistoia, 2010). The most commonly used electric vehicles are battery EVs (BEVs).
BEVs are vehicles that are entirely powered by rechargeable lithium-ion batteries.
Lithium-ion batteries have a higher energy and power density and longer life span,
than most other practical batteries (Yoshio et al., 2009). Jaller et al. (2018) identi-
fies BEVs as the cleanest vehicles in transportation since their rechargeable battery
operates without emitting exhaust pollutants such as volatile organic compounds,
hydrocarbons, carbon monoxide, ozone, lead, and various oxides of nitrogen. Ad-
ditionally, BEVs can be maintained easier and with lower costs compared to the
other EV types since they do not contain complex engine structures like the com-
bustion engine, transmission, fuel tank, cooling, and exhaust system. Nevertheless,
even with the improved technology, EVs have limited driving ranges, high battery
costs, long recharging times, and sparse recharging facilities (Giordano et al., 2018).
Throughout this dissertation the term EV will refer to a commercial BEV.
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Nykvist and Nilsson (2015) reports that the battery is the most expensive part of
an EV. Nowadays, the lithium-ion battery of an EV costs more than a quarter of its
total price. Luckily, the prices decreased by 14% annually between 2007 and 2014.
Recently, the total cost of ownership of an EV is cheaper than that of an equivalent
ICEV in the EU and USA, due to lower fueling and maintenance costs. More
information related to the EVs and the battery types can be found in Mangiaracina
et al. (2015).

1.1. Electric Vehicle Routing Problems

The Electric Vehicle Routing Problem (EVRP) is an extension of the well-known
VRP. The problem aims to determine the minimum routing cost while serving cus-
tomers with known demands by utilizing a fleet of EVs. EVs are benefited in logistics
operations since they have zero tailpipe emissions and their operational costs are less
than ICEVs. However, they have some limitations such as limited battery capacity
and charging facilities, and long charging duration. The EVRP studies targeting
these challenges have recently gained momentum in the last 20 years.

Schneider et al. (2014) introduce the EVRP with Time Windows (EVRPTW) and
propose a metaheuristic method to solve the problem with full recharging (EVs are
fully charged when they visit a station). As well as classical EVRP and EVRPTW,
many other adaptations of the problem are studied such as the electric location rout-
ing problem that make decisions on both the locations of recharging facilities and the
routes of EVs (Yang and Sun, 2015; Hof et al., 2017; Schiffer and Walther, 2017a,b;
Paz et al., 2018), the EVRP with a mixed fleet of EVs and ICEVs (Goeke and Schnei-
der, 2015; Macrina et al., 2019; Hiermann et al., 2016), the EVRP with hybrid EVs
(Mancini, 2017; Zhen et al., 2020), the electric dial-ride problem in which customers
specify pickup and delivery requests between origins and destinations (Cordeau and
Laporte, 2007; Molenbruch et al., 2017; Ho et al., 2018), the electric two-echelon
VRP (Baldacci et al., 2013; Breunig et al., 2019; Jie et al., 2019), the EVRP with
flexible time windows (Taş, 2021), the EVRP with fast recharging (Felipe et al.,
2014; Çatay and Keskin, 2017; Keskin and Çatay, 2018), and electric pickup and
delivery problem with time windows (Goeke, 2019). In addition, some EVRP ex-
tensions consider stochastic variables such as energy consumption (Pelletier et al.,
2019), waiting times in stations (Keskin et al., 2019a) and availability of stations
(Kullman et al., 2018; Keskin et al., 2019b, 2021). We refer the interested reader
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to Qin et al. (2021) for an extensive review on the electric vehicle routing problem
variants.

Additionally, the concept of flexible delivery locations attracts attention in the VRP
literature in the last couple of years. Sadati et al. (2022) introduces the EVRP with
Flexible Delivery (EVRP-FD) in which the customers may request their packages
to be delivered to one of the locations that they specify within the related time
window.

The research concerning finding the most suitable technology to handle charging
needs of the commercial EVs focuses on using battery swap stations since they
provide fastest service much like gas and petrol stations today (Ahmad et al., 2020;
Vallera et al., 2021). EVRP with battery swap stations are also studied by many
articles (e.g. Pelletier et al., 2017; Hof et al., 2017). Furthermore, another charging
related research direction is related to the battery charging function. The studies
mentioned by now consider recharging time to be linearly proportional to the amount
of loaded energy. On the other hand, more realistic approaches like considering
nonlinear battery recharging function have also been considered by several studies
including Montoya et al. (2017) and Zhang et al. (2018).

The VRP is an NP-Hard combinatorial optimization problem. Therefore, the ma-
jority of the studies related to the VRP variants focus on the heuristic solution
methods including constructive heuristics (Dell’Amico et al., 2007) and multi-phase
heuristics (Petch and Salhi, 2003; Ganesh and Narendran, 2007) or metaheuristic
approaches like Tabu Search (Xu et al., 2017; Balcik, 2017), Simulated Annealing
(Vincent et al., 2017; Yassen et al., 2017) and Large Neighborhood Search (Bektaş
and Laporte, 2011; Hiermann et al., 2016; Keskin and Çatay, 2018). We direct the
interested reader to Cordeau et al. (2005) and Elshaer and Awad (2020) for reviews
of heuristic and metaheuristic algorithms proposed for VRPs, respectively.

In this dissertation, we propose exact and heuristic methods based on the Branch-
and-Price (BP) and Branch-and-Price-and-Cut (BPC) to solve the EVRPTW and
the EVRP-FD. The Column Generation (CG) procedure is used to solve each node
of these methodologies since it is shown to be one of the most effective methods for
NP-Hard combinatorial optimization problems (Danna and Pape, 2005; Kallehauge
et al., 2005; Baldacci et al., 2012). The subproblem of the CG is defined as the
Elementary Shortest Path Problem with Resource Constraints (ESPPRC). ESPPRC
is solved by using label setting and label correcting algorithms, the performance of
which can be improved with several different strategies including the state space
augmentation algorithm (Boland et al., 2006; Righini and Salani, 2008), the ng-
route algorithm (Baldacci et al., 2011; Andelmin and Bartolini, 2017) which allow
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non-elementary paths, and the Pulse algorithm that provides label-free approach
search structure (Lozano et al., 2015; Thomas et al., 2019; Cabrera et al., 2020).
Valid inequalities such as Chvátal-Gomory cuts (Petersen et al., 2008), 2-path cuts
(Kohl et al., 1999), and subset-row inequalities (Jepsen et al., 2008) are often used
to strengthen the bounds. The performance of the CG is usually further improved
with the approaches like the bidirectional search (Desaulniers et al., 2016; Thomas
et al., 2019; Tilk and Goel, 2020), finding lower bounds on the reduced costs of paths
(Baldacci et al., 2011; Di Puglia Pugliese and Guerriero, 2012; Lozano et al., 2015),
finding upper bounds on the solution costs (Santos et al., 2011; Yu et al., 2022), and
saving routes to be used in later iterations (Taş et al., 2014).

1.2. Organization

In Chapters 2 and 3, we address the EVRPTW, which is an extension of the well-
known VRP with Time Windows (VRPTW). Introduced by Schneider et al. (2014)
the EVRPTW deals with serving a set of customers with known demands and time
windows using a homogeneous fleet of EVs dispatched from a single depot. The EVs
start their routes from the depot, serve each customer exactly once, and return to
the depot at the end of the day. Since they have a limited driving range, they can be
recharged at charging stations en route. The stations are uncapacitated but scarce.
The objective is to minimize the total distance traveled.

In Chapter 2, we propose an exact algorithm and a heuristic method to solve the
EVRPTW. Both methods are based on a BPC algorithm employed with a CG pro-
cedure. CG consists of two main parts: the linear relaxation of the master problem
for route selection and the pricing subproblem for route generation. Our branching
strategy is to employ the first attainable rule among the following branching rules
that are widely applied in the literature (Kohl et al., 1999; Kallehauge et al., 2005;
Desaulniers et al., 2016): branching (i) on the total number of vehicles, (ii) on the
total number of recharges, (iii) on the total number of recharges at a station, and
(iv) on the total flow on an arc.

The performance of CG is enhanced by using a set of valid inequalities known as
subset-row inequalities (Jepsen et al., 2008). Moreover, the BPC algorithm is im-
proved by employing six acceleration techniques. The first method, Intermediate
Column Pool (ICP), preserves routes with non-negative reduced costs which can be
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used in later iterations when the dual variables change. The second technique is
obtained by modifying a well-known label correcting algorithm, ng-route algorithm
(Baldacci et al., 2011), for solving the pricing subproblem of the BPC procedure.
The pricing subproblem varies between our two solution procedures as follows. In
the heuristic algorithm referred to as Heuristic Column Generator (HCG), the la-
beling algorithm is obtained by relaxing the ng-route algorithm. On the other hand,
the pricing subproblem of the exact algorithm is solved with a sequential procedure
including heuristic and exact labeling methods. The third procedure that we im-
plement is the bidirectional labeling algorithm, which is shown to be quite effective
for solving shortest path problems (Pohl, 1971; Luby and Ragde, 1989; Righini and
Salani, 2006). The fourth acceleration method is denoted as Augmented Node (AN)
and benefits from the domination of stations that can be visited between each pair
of customers (Bruglieri et al., 2016). More specifically, this method reduces the
problem network by eliminating the dominated stations dynamically and explores
the search tree by traveling from one customer to another either directly or via a
station. The fifth method provides lower bounds on reduced costs of the paths on
each node, which allows the removal of suboptimal routes before they arrive at the
depot (Baldacci et al., 2011). Lastly, we present the Integer Master Problem (IMP)
that provides good upper bounds for the problem at the root node of the BPC tree.

In the computational analysis, we evaluate the proposed procedures by using the
benchmark instances provided by Desaulniers et al. (2016) and present solutions for
several instances that have not been solved before.1

In Chapter 3, we solve the EVRPTW by utilizing the Pulse algorithm for the pricing
subproblem of the BP procedure. The Pulse algorithm simplifies the difficulties of
the classical labeling algorithms such as label storage and dominance (Lozano et al.,
2015). Its depth-first search structure avoids the storage of an excessive number of
labels at the same time. The Pulse algorithm consists of several strategies which
fathom suboptimal paths. One of these strategies is the bounding method which
creates a bound matrix using lower bounds on the reduced costs found for each
node and discrete values of resource consumption. The bound matrix is beneficial
to eliminate unfavorable paths and thereby speeding up the process. In addition,
another method called rollback pruning simplifies the dominance procedure, often
used in labeling algorithms (Feillet et al., 2004; Kohl et al., 1999), by evaluating
whether the last node included in the path should be removed. The construction of
this strategy allows the disposal of most of the dominance rules.

The BP procedure with the Pulse algorithm is improved using several acceleration

1The related solutions have been reported in Duman et al. (2021).
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techniques including the IMP, the ICP, and the AN methods. Additionally, each
iteration of the Pulse algorithm is prematurely terminated when the number of
complete routes with negative reduced cost reaches a threshold value. We provide
three rules including branching (i) on the total number of vehicles, (ii) on the total
number of recharges, and (iii) on the total flow value of an arc.

We provide the results of the computational experiments evaluating the performance
of the BP algorithm on Desaulniers et al. (2016) data set again.. We compare the
results with those obtained in Chapter 2 and present several new solutions.

In Chapter 4, we address the Electric Vehicle Routing Problem with Flexible De-
liveries (EVRP-FD) introduced by Sadati et al. (2022) and propose an effective BP
algorithm to solve it. In the EVRP-FD, customers may request their orders to be
delivered to one of the predetermined delivery locations within the corresponding
time window. Each day a homogeneous fleet of EVs is dispatched from a central
depot to serve each customer exactly once in one of their locations within the re-
lated time window. The problem aims to minimize the total distance traveled. We
provide a Mixed-Integer Linear Programming (MILP) formulation for the EVRP-
FD and develop a BP algorithm employed with a CG procedure. A bidirectional
Pulse algorithm is proposed to solve the pricing subproblem of the EVRP-FD. The
BP algorithm is promoted by employing several acceleration techniques: the bidi-
rectional search, IMP, ICP, and heuristic pricing. We start each iteration of the
CG after employing the HCG. The performance of the proposed algorithm is tested
using data adapted from the literature.

In Chapter 5, we conclude the dissertation with final remarks and provide directions
for future research in this area.
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2. BRANCH-AND-PRICE-AND-CUT METHODS FOR ELECTRIC

VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

In this chapter, we address the Electric VRP with Time windows (EVRPTW),
which is an extension of the well-known VRP with Time Windows (VRPTW) and
introduced by Schneider et al. (2014). The EVRPTW deals with serving a set of
customers with known demands and time windows using a homogeneous fleet of
electric vehicles (EVs) dispatched from a single depot. The EVs start their routes
from the depot, serve each customer exactly once, and return to the depot at the end
of the day. Since they have limited driving range, they can be recharged at charging
stations en-route. The stations are uncapacitated but scarce. The objective is to
minimize the total distance traveled. Schneider et al. (2014) assumed a full-recharge
policy, which is later relaxed in the follow-up studies (e.g, Bruglieri et al., 2015;
Desaulniers et al., 2016; Keskin and Çatay, 2016; Hiermann et al., 2016).

To the best of our knowledge, Desaulniers et al. (2016) is the only study that pro-
posed exact methods for solving the EVRPTW. In this chapter, we develop an exact
algorithm and a heuristic method for the same problem. Both methods are based on
a Branch-and-Price-and-Cut (BPC) algorithm employed with a Column Generation
(CG) procedure. CG consists of two main parts: the linear relaxation of the master
problem for route selection and the pricing subproblem for route generation. The
performance of CG is enhanced by using a set of valid inequalities known as subset-
row inequalities (Jepsen et al., 2008). Moreover, the BPC algorithm is improved
by employing six acceleration techniques. The first method, effectively employed
by Taş et al. (2014), preserves routes with non-negative reduced costs which can be
used in later iterations when the dual variables change. The second technique is
obtained by modifying a well-known label correcting algorithm, ng-route algorithm
(Baldacci et al., 2011), for solving the pricing subproblem of the BPC procedure.
The pricing subproblem varies between our two solution procedures as follows. In
the heuristic algorithm referred to as Heuristic Column Generator (HCG), the la-
beling algorithm is obtained by relaxing the ng-route algorithm. On the other hand,
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the pricing subproblem of the exact algorithm is solved with a sequential proce-
dure including heuristic and exact labeling methods. The third procedure that we
implement is bidirectional labeling algorithm, which is shown to be quite effective
for solving shortest path problems (Pohl, 1971; Luby and Ragde, 1989; Righini and
Salani, 2006). The fourth acceleration method is based on a branching strategy
only on customer nodes and benefits from the domination of stations that can be
visited between each pair of customers (Bruglieri et al., 2016). More specifically,
this method reduces the problem network by eliminating the dominated stations
dynamically and explores the search tree by traveling from one customer to another
either directly or via a station. The fifth method provides lower bounds on reduced
costs of the paths on each node, which allows the removal of suboptimal routes
before they arrive at the depot (Baldacci et al., 2011). Lastly, we present a method
providing good upper bounds for the problem at the root node of the BPC tree.
The contributions of this chapter to the existing literature can be summarized as
follows.

• We adopt the state-of-the-art methods from the literature to develop an effec-
tive BPC algorithm. In addition, we introduce an acceleration method which
benefits from network reduction through the elimination of dominated stations.
This method enables us to consider only customers during route generation by
creating an augmented node which combines a customer and a station node.

• We first develop an iterative heuristic algorithm based on a relaxation in the
pricing subproblem. This method is then used to obtain an effective BPC by
generating a CG procedure starting with the heuristic algorithm and perform-
ing an exact labeling algorithm next.

• We provide computational analysis to evaluate the proposed procedures using
instances with up to 100 customers and 21 stations, and present solutions for
several instances that have not been solved before.

The remainder of this chapter is organized as follows. Section 2.1 reviews the related
literature. Section 2.2 describes the problem and formulates its mathematical pro-
gramming model. Section 2.3 presents the BPC procedures. Section 2.4 details the
experimental study and discusses the numerical results. Finally, concluding remarks
are provided in Section 2.5.
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2.1. Literature Review

Artmeier et al. (2010) is the first study that considers an EV within the context
of planning a single route. Then, the Recharging VRP is introduced by Conrad
and Figliozzi (2011), where the fleet consists of EVs that can be recharged at a
subset of customer locations during their service. Erdoğan and Miller-Hooks (2012)
investigate the Green VRP (GVRP) by considering a homogeneous fleet of AFVs.
The authors assume that the vehicles are fully refuelled at constant time and employ
two heuristic approaches to solve the problem.

The EVRPTW is introduced by Schneider et al. (2014). The authors assume that
the EVs are fully recharged at the stations and the recharging time is proportional
to the amount of energy transferred. They develop three algorithms by integrating
Variable Neighborhood Search (VNS) with Tabu Search (TS) and compare their
performances using small- and large-size data sets that they generate based on the
VRPTW instances of Solomon (1987). Inspired by this study, Keskin and Çatay
(2016) relax the full charge restriction by allowing partial recharges at stations
and propose an Adaptive Large Neighborhood Search (ALNS) algorithm to solve
it. The problem with partial recharging is also addressed by Bruglieri et al. (2015).
The authors formulate the Mixed-Integer Linear Programming (MILP) model of the
problem, develop a VNS algorithm, and evaluate their performances on small-size
instances.

Various variants of the Electric VRP (EVRP) have been studied in the literature
including the mixed fleet which consists of both EVs and Internal Combustion Engine
Vehicles (ICEVs) (Goeke and Schneider, 2015; Macrina et al., 2019; Hiermann et al.,
2016), hybrid EVs (Zhen et al., 2020); location routing problem with EVs (Yang and
Sun, 2015; Hof et al., 2017; Schiffer and Walther, 2017a,b; Paz et al., 2018), nonlinear
battery recharging function (Montoya et al., 2017; Zhang et al., 2018), flexible time
windows (Taş, 2021), fast recharging (Felipe et al., 2014; Çatay and Keskin, 2017;
Keskin and Çatay, 2018) and battery swap stations (Pelletier et al., 2017; Hof et al.,
2017). In addition, some EVRP extensions consider stochastic variables such as
energy consumption (Pelletier et al., 2019), waiting times in stations (Keskin et al.,
2019a) and availability of stations (Kullman et al., 2018; Keskin et al., 2019b, 2021).

There are only few studies in the literature that solve EVRPs with exact methods.
However, several VRP extensions are solved by exact solution methods based on
the branch-and-bound. The interested reader is referred to Baldacci et al. (2012)
and Semet et al. (2014) for the solution methods related to VRP, to Coelho and
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Laporte (2013) and Grønhaug et al. (2010) for the algorithms proposed to solve
inventory routing problems, and to Yuan et al. (2015) for the approaches developed
to solve the home health care routing problem. Among the studies that propose
efficient procedures, Taş et al. (2014) develop a Branch-and-Price (BP) method for
the VRP with stochastic travel times and soft time windows. The subproblem of the
CG is defined as the Elementary Shortest Path Problem with Resource Constraints
(ESPPRC) and the authors benefit from the state space augmentation algorithm
(Boland et al., 2006; Righini and Salani, 2008) to solve the ESPPRC. Andelmin
and Bartolini (2017) consider a BP method for the GVRP. The authors describe
several different valid inequalities and best results are achieved with Chvátal-Gomory
cuts. Furthermore, they provide modifications in the CG method to increase the
efficiency of the subproblem such as implementing the ng-route algorithm. The
ng-route algorithm improves the performance of the BPC procedure by allowing
non-elementary paths. For a partial path at node i, the algorithm defines a set of
customers which are forbidden to be visited more than once by that path. These
dynamic sets are obtained from the ng-sets that are defined for each node and
contains neighbors of that node, often the ones in short traveling distances. This
method is also applied by Desaulniers et al. (2015) and Rothenbächer et al. (2016)
to solve particular VRP variants.

Desaulniers et al. (2016) address four different versions of the problem in two cat-
egories, and solve them with a branch-and-price-and-cut method. The authors im-
plement a set partitioning formulation for the relaxed master problem and solve the
pricing subproblem using a labeling correcting algorithm. Moreover, acceleration
strategies such as bidirectional search, the ng-route relaxation, and heuristic relax-
ation in the network are applied. In this chapter, we develop two BPC algorithms
with an exact algorithm and a heuristic column generation method to solve the
EVRPTW by considering multiple and single partial recharges. We allow partial
recharges since it constitutes a realistic setting, and is more challenging to solve.

2.2. Problem Description and Model

The EVRPTW is defined on the digraph G = (N, A), where N = {0, 1, ..., n + 1}
is the set of nodes and A is the set of arcs. The notation provided by Keskin and
Çatay (2016) is benefited for the problem formulation. In set N , node 0 and node
n + 1 represent the departure depot and the arrival depot, respectively. The set of
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customers is denoted by V = {1, ..., n}. The demand of each customer i given by qi

should be satisfied within the specified time window [ei, li], and the service duration
is si for all i ∈ V . If an EV arrives at customer i before the earliest possible service
time ei, it waits until ei. On the other hand, arrivals after the latest possible service
time li are not permitted. The set of nodes including customers and the departure
depot 0 is denoted by V0 = V ∪ {0}, customers and the arrival depot is represented
by Vn+1 = V ∪{n + 1}, and customers, the arrival and departure depots is provided
by V0,n+1 = V0 ∪ {n + 1}. The fleet consisting of identical EVs with cargo capacity
C and battery energy capacity Q is represented by K. Note that there is no limit
on the number of EVs in the fleet. The battery charging rate of each EV is g and
the consumption rate is h.

Table 2.1. Mathematical notation

Sets
V Set of customers, V = {1, .., n}
V0 Set of customers and the departure depot, V0 = V ∪ {0}
Vn+1 Set of customers and the arrival depot, Vn+1 = V ∪ {n + 1}
V0,n+1 Set of customers, the departure depot and the arrival depot, V0,n+1 = V0 ∪

{n + 1}
F Set of recharging stations
N Set of all nodes, N = V0,n+1 ∪ F
K Set of EVs

Parameters
dij Distance along arc (i, j) ∈ A
tij Travel time along arc (i, j) ∈ A
qi Demand of customer i, i ∈ V
si Service time spent at customer i, i ∈ V
[ei, li] Service time window at node i, i ∈ V0,n+1
C Vehicle freight capacity
Q Vehicle battery capacity
g Battery charging rate
h Energy consumption rate
tijs Detour time spent for visiting station s while traveling from node i to node j,

tijs = tis + tsj − tij , i ∈ V0, j ∈ Vn+1, s ∈ F
dijs Detour distance traversed by visiting station s while traveling from node i to

node j, dijs = dis + dsj − dij , i ∈ V0, j ∈ Vn+1, s ∈ F

Decision Variables
τk

i Service start time of vehicle k at customer i, i ∈ V , k ∈ K
yk

i Battery state of charge (SoC) of vehicle k at its arrival at node i, i ∈ V0,n+1,
k ∈ K

Y k
ijs Battery SoC of vehicle k at its departure from station s if it travels from node

i to node j through station s, i ∈ V0, j ∈ Vn+1, s ∈ F , k ∈ K
yk

ijs Battery SoC of vehicle k at its arrival at station s if it travels from node i to
node j through station s, i ∈ V0, j ∈ Vn+1, s ∈ F , k ∈ K

xk
ij 1, if vehicle k traverses arc (i, j), directly or through a station, 0 otherwise,

i ∈ V0, j ∈ Vn+1, k ∈ K
zk

ijs 1, if vehicle k travels from node i to node j through station s, 0 otherwise,
i ∈ V0, j ∈ Vn+1, s ∈ F , k ∈ K
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The distance along arc (i, j) is denoted by dij where the triangular inequality is
satisfied for each arc (i, j) ∈ A. However, in case a vehicle visits a station s while
traveling from node i to node j we introduce dijs that represents the total distance
traversed as dijs = dis+dsj−dij. Additionally, tij denotes the time spent for traveling
directly from node i to node j. Similarly, tijs = tis + tsj− tij represents the traveling
time when station s is visited between node i and node j.

The decision variables τ k
i and yk

i keep track of the start time of service and the
battery state of charge (SoC) of vehicle k at its arrival at node i, respectively. In
case vehicle k travels from node i to node j through station s, the decision variables
yk

ijs and Y k
ijs represent the battery SoC of that vehicle at its arrival at station s

and departure from station s, respectively. The binary decision variable xk
ij takes

the value 1 if vehicle k traverses arc (i, j) directly or through a station, and 0
otherwise. Furthermore, zk

ijs is a decision variable which takes the value 1 if vehicle
k traverses arc (i, j) through station s, and 0 otherwise. The mathematical notation
is summarized in Table 2.1. .

EVs are dispatched from the depot at the beginning of each day with their batteries
fully charged overnight, and they return to the depot after they complete their
tour. The fleet must respect the customer time windows and the scheduling horizon
represented by the time window of the depot. The stations are identical in terms of
charging speed and cost, and can be visited multiple times by the same or different
EVs. For the sake of simplicity, we assume that the battery charging time is linearly
proportional to the amount of energy transferred. In addition, we allow at most
one recharge between each pair of customers. This is a rational assumption since
recharging the battery of EVs at multiple stations when it travels from one customer
to another may not be practical in urban logistics operations.

Bruglieri et al. (2016) developed a new formulation for the GVRP which models the
visits to stations implicitly. Below, we present a modified version of this formulation
for solving the EVRPTW which benefits from arc-based decision variables.

min
∑
i∈V0

∑
j∈Vn+1,j ̸=i

∑
k∈K

(
dijxk

ij +
∑
s∈F

dijszk
ijs

)
(2.1)

subject to
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∑
k∈K

∑
j∈Vn+1,j ̸=i

xk
ij = 1, i ∈ V, (2.2)

∑
i∈V0,i ̸=j

xk
ij −

∑
i∈Vn+1,i ̸=j

xk
ji = 0, k ∈ K, j ∈ V0,n+1, j ̸= i, (2.3)

∑
s∈F

zk
ijs ≤ xk

ij , k ∈ K, i ∈ V0, j ∈ Vn+1, i ̸= j, (2.4)

τk
i + (tij + sj)xk

ij +
∑
s∈F

(
tijszk

ijs + g
(
Y k

ijs − yk
ijs

))
− l0(1− xk

ij) ≤ τk
j ,

k ∈ K, i ∈ V0, j ∈ Vn+1, i ̸= j,

(2.5)

ej ≤ τk
j ≤ lj , k ∈ K, j ∈ V0,n+1, (2.6)∑

i∈V

qi

∑
j∈Vn+1,j ̸=i

xk
ij ≤ C, k ∈ K, (2.7)

0 ≤ yk
j ≤ yk

i − hdij + (Q + hdij)
(

1− xk
ij +

∑
s∈F

zk
ijs

)
,

k ∈ K, i ∈ V0, j ∈ Vn+1, i ̸= j,

(2.8)

yk
j ≤

∑
s∈F

(Y k
ijs − hdsjzk

ijs) + Q

(
1−

∑
s∈F

zk
ijs

)
+ Q(1− xk

ij),

k ∈ K, i ∈ V0, j ∈ Vn+1, i ̸= j,

(2.9)

yk
ijs ≤ yk

i − hdiszk
ijs + Q(1− xk

ij), k ∈ K, s ∈ F, i ∈ V0, j ∈ Vn+1, i ̸= j, (2.10)

0 ≤ yk
ijs ≤ Y k

ijs ≤ Qzk
ijs, k ∈ K, s ∈ F, i ∈ V0, j ∈ Vn+1, i ̸= j, (2.11)∑

s∈F

∑
i∈V0

∑
j∈Vn+1,j ̸=i

zk
ijs ≤ 1 k ∈ K, (2.12)

xk
ij ∈ {0, 1}, k ∈ K, i ∈ V0, j ∈ Vn+1, i ̸= j, (2.13)

zk
ijs ∈ {0, 1}, k ∈ K, i ∈ V0, j ∈ Vn+1, s ∈ F, i ̸= j. (2.14)

The objective (2.1) is to minimize the total distance traveled. Constraints (2.2)
guarantee that each customer is visited exactly once. Flow balance is attained
by constraints (2.3). Constraints (2.4) ensure that at most one station is visited
between each pair of customers. Constraints (2.5) enforce the time feasibility of arcs
emanating from the customers and the depot. Constraints (2.6) make sure that each
node is served within its time window. Additionally, constraints (2.7) ensure that
the vehicle capacity is not exceeded. Battery SoC consistency throughout the route
is satisfied by constraints (2.8) - (2.10). In particular, constraints (2.8) guarantee
the battery feasibility at customers and at the depot. If arc (i, j) ∈ A is not traveled
or if a station is visited between nodes i and j, these constraints are redundant.
Constraints (2.9) guarantee the battery feasibility at node j if a station is visited
between node i and node j, and determine the amount of energy transferred to the
battery. Battery feasibility at the arrival to the stations is provided by constraints
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(2.10). Moreover, if a station is not visited constraints (2.11) guarantee that the
related charge variables take the value of 0. Constraints (2.12) are included in
the single-recharge case to limit the number of recharges on each route by one.
Constraints (2.13) and (2.14) define the binary decision variables.

2.3. Branch-and-Price-and-Cut

Before the BPC procedure starts, we employ a preprocessing method which removes
infeasible arcs from the network. The method suggested by Schneider et al. (2014)
removes the arc (i, j) if the vehicle battery capacity is not enough to visit node j

after node i, or if the vehicle arrives at node j after visiting node i later than the
time window of node j closes, or if the total time of serving nodes i and j and then
traveling to the arrival depot exceeds the closing time of the window at the depot,
or if it is not possible to visit any station or depot before and after traversing that
arc with full battery capacity.

We obtain an initial solution using the construction algorithm suggested by Keskin
and Çatay (2016). In this greedy algorithm, the routes are obtained by adding the
customer with the minimum insertion cost to the route, until no more insertions can
be performed without violating the load and the time window constraints. Battery
feasibility is satisfied by embedding the station with the minimum insertion cost
when needed.

In the remaining of this section, we present detailed descriptions of the CG pro-
cedure, the branching strategy, the implementation of a set of well-known valid
inequalities, acceleration methods employed to improve the performance of the al-
gorithm, and the heuristic algorithm.

2.3.1. Column Generation

The master problem of the CG is represented by the set partitioning formulation
(2.15)-(2.17). In this formulation, the set of all feasible routes starting from the
departure depot (node 0) and ending at the arrival depot (node n+1) is represented
by Ω. Parameter cp denotes the cost of route p, api is equal to 1 if route p visits
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node i, and 0 otherwise. Moreover, θp is a binary decision variable which takes the
value of 1 if route p is part of the solution, and 0 otherwise.

min
∑
p∈Ω

cpθp (2.15)

subject to
∑
p∈Ω

apiθp = 1, i ∈ V, (2.16)

θp ∈ {0, 1}, p ∈ Ω. (2.17)

The objective function (2.15) minimizes the total cost. Constraints (2.16) make sure
that each customer is visited exactly once, and constraints (2.17) define the binary
decision variables. Only a subset of routes ΩR is evaluated at each iteration in
the Linear Programming (LP) relaxation of the set partitioning formulation, called
Restricted Linear Programming Master Problem (RLPMP). The interested reader
is referred to Kallehauge et al. (2005) for the details about CG methods proposed
for the VRP.

min c̄p (2.18)

subject to (2.2)− (2.14) (2.19)

The pricing subproblem for each vehicle k, defined by the MILP formulation (2.18)-
(2.19), corresponds to an ESPPRC. The elementary property is emphasized on cus-
tomer nodes specifically since each customer has to be visited exactly once. The CG
starts by solving the RLPMP where only the routes of an initial feasible solution are
included in ΩR. The subproblem aims at producing routes with negative reduced
cost that can improve the current solution and is solved next by using the values
of the dual variables obtained by solving the RLPMP. The new routes are added
into the RLPMP that is then reoptimized. This procedure is repeated until the
subproblem cannot find any route with negative reduced cost. The reduced cost c̄p

associated with route p is calculated as c̄p = cp −
∑

i∈V apiπi, where πi is the value
of the dual variables associated with constraints (2.16).
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2.3.1.1. A Generic labeling Algorithm for the ESPPRC

We implement a modified version of the label correcting algorithm developed by
Feillet et al. (2004) and Desaulniers et al. (2016). In the forward labeling algorithm,
a label is associated with each partial path p from the departure depot to node
i, i ∈ N . A label consists of several components representing the consumption
of resources. In our problem partial recharging is allowed, thus when a station is
visited the recharge quantity should be determined and the recharging time should
be added into the route time. We adopt three label components to define the total
route time under different conditions, T tMin

i , T tMax
i , and T rtMax

i (Desaulniers et al.,
2016). T tMin

i denotes the earliest possible arrival time to node i, and if a station is
visited prior to node i by partial path p, the minimum amount of energy ensuring
the battery feasibility up to node i is considered. If no station is visited, the value
of T tMin

i is equal to the summation of the travel times of each arc traversed along
path p and the service times of each customer visited by path p. T tMax

i is the
earliest possible arrival time to node i, and if a station is visited prior to node i, the
maximum recharging duration guaranteeing time window feasibility is considered.
If no station is visited, T tMax

i is similarly computed by including the travel times of
the arcs traversed and the service times spent at customer locations. Despite the
fact that EVs can never be recharged at customer locations, we make the artificial
assumption that EVs can be recharged at customer locations to define T rtMax

i . Using
this assumption, T rtMax

i is the maximum time required to fully recharge the battery
at node i. If a station is visited along path p before node i, T rtMax

i considers that
the minimum amount of energy guaranteeing the battery feasibility is loaded. The
total freight load of the path up to node i is denoted by T load

i . ap denotes the
number of customers that are unreachable by path p where customer j is said to be
unreachable if T load

i + qj > C or T tMin
i + tij + si > lj. In addition, VV

p is a vector of
binary variables where Vj

p states that node j is unreachable by path p if its value is
equal to 1. The interested reader is referred to Feillet et al. (2004) for more details
about unreachable nodes. Altogether, a state of path p is defined with its reduced
cost c̄p and label Lp = (T load

i , T tMin
i , T tMax

i , T rtMax
i , ap,VV

p ).

The time related label components T tMin
p , T tMax

p and T rtMax
p are sufficient to de-

scribe minimum and maximum feasible recharges at stations. Thus, at each node
time window feasibility and battery SoC feasibility can be maintained through these
labels.

The extension of a label from node i to node j is performed by using the following
label calculating equations (2.20)-(2.33) where |Sp| is the number of stations visited
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along path p and Sij is defined as the slack time between the earliest possible service
start time ej and the earliest possible arrival time to node j. If slack time exists, it
refers to the availability of (additional) recharging time at stations. In addition, Rij

denotes the minimum required recharging time to maintain battery feasibility minus
the slack time and calculated as Rij = max

(
0, max

(
0, T rtMax

i − Sij

)
+ gdij − gQ

)
.

T load
j = T load

i + qj (2.20)

T tMin
j =

max
(
ej, T tMin

i + tij + si

)
, if |Sp| = 0

max
(
ej, T tMin

i + tij + si

)
+ Rij, otherwise

(2.21)

T tMax
j =

min
(
lj, max(ej, T tMin

i + T rtMax
i + tij + si)

)
, if i ∈ F

min
(
lj, max(ej, T tMax

i + tij + si)
)

otherwise
(2.22)

T rtMax
j =

T rtMax
i + gdij, if |Sp| = 0

min
(
gQ, max(0, T rtMax

i + Sij + gdij)
)

otherwise
(2.23)

where

Sij =


max

(
0, min(ej − (T tMin

i + tij + si

)
, T rtMax

i )
)

if i ∈ F

max
(
0, min(ej − (T tMin

i + tij + si), T tMax
i − T tMin

i )
)

otherwise

At any step of the algorithm, the feasibility of the routes with respect to the load
and time constraints is maintained. If T load

j > C, T tMin
j > lj, T tMin

j > T tMax
j , or

T rtMax
j > Qg, the partial path p is infeasible and thus eliminated. The EVRPTW

with single recharging requires an additional feasibility rule, |Sp| ≤ 1, that limits
the number of station visits by one.

Next, we explain the rules used to eliminate dominated paths. Note that the super-
script i is removed from the label components of paths p1 and p2 since both paths
arrive at the same node. definition definition

Definition 1 (Dominance Relation) Let p1 and p2 be two distinct partial paths from
the departure depot to node i and their labels be (Lp1 , c̄p1) and (Lp2 , c̄p2), respectively.
Path p1 dominates path p2 if and only if:
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c̄p1 ≤ c̄p2 (2.24)

W load
p1 ≤ W load

p2 , (2.25)

T tMin
p1 ≤ T tMin

p2 , (2.26)

ap1 ≤ ap2 , (2.27)

V j
p1 ≤ V j

p2 for all j ∈ V (2.28)

T rtMax
p1 − (T tMax

p1 − T tMin
p1 ) ≤ T rtMax

p2 − (T tMax
p2 − T tMin

p2 ) (2.29)

T rtMax
p1 + T tMin

p1 ≤ T rtMax
p2 + T tMin

p2 (2.30)

and at least one of the above inequalities is strictly satisfied.

Inequality (2.24) indicates that the reduced cost of path p1 is less than or equal to
the reduced cost of path p2. Inequality (2.25) provides that the load capacity of
the vehicle is used less by path p1 compared to path p2. Similarly, inequality (2.26)
states that path p1 arrives earlier compared to path p2. Inequality (2.27) expresses
that the number of unreachable nodes by path p1 is less than or equal to that by
path p2. In addition, inequality (2.28) implies that every unreachable node for path
p1 is also unreachable for path p2.

If path p1 does not visit any station, T tMax
p1 is equal to T tMin

p1 , and thus the difference
(T tMax

p1 −T tMin
p1 ) is equal to zero. On the other hand, if at least one station is visited,

this difference denotes the additional available recharging time that can be added to
the minimum required recharging time. Since T rtMax

p1 states the current battery SoC
in terms of the required time for recharging, the difference T rtMax

p1 −(T tMax
p1 −T tMin

p1 )
measures the additional time required to fully recharge the battery, after all available
time is used for recharging. Therefore, the condition (2.29) holds if path p1 requires
less time to fully recharge compared to path p2 or alternatively the remaining energy
level of path p1 is more than that of path p2.

Finally, inequality (2.30) states that path p1 spends less time compared to path
p2 for recharging and traveling. This condition becomes redundant if no station is
visited along the path, as it can be obtained by summing up inequalities (2.26) and
(2.29).

2.3.2. Branching

If the optimal solution obtained by the CG algorithm to the LP relaxation of the
formulation (2.15)-(2.17) is fractional, this solution corresponds to a lower bound
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(LB) for the original problem and integer solutions are generated through a BPC
tree. We employ four main branching strategies widely applied in the literature
(Kohl et al., 1999; Kallehauge et al., 2005; Desaulniers et al., 2016): branching (i)
on the total number of vehicles, (ii) on the total number of recharges, (iii) on the
total number of recharges at a station, and (iv) on the total flow on an arc. When
the CG ends with a fractional solution, using the provided order of branching rules
we employ the first attainable rule.

If the first three strategies are not available we branch on flow variables as follows:
Let ΩR be the set all routes generated by the CG algorithm and p ∈ ΩR. The total
flow for each arc is then calculated as fij = ∑

k∈K xk
ij where the values of xk

ij are
obtained by using the solution of the restricted linear programming master problem.
More specifically, fij can also be defined as fij = ∑

p∈ΩR:(i,j)∈p θp , where θp takes
the value 1 if route p is in the solution and 0 otherwise. If there are more than
one arc incurring fractional flow value, the arc with a flow value closest to 0.5 is
selected for branching and two branches are generated as follows: fij is forced to 0
by eliminating the related arc from the graph and to 1 by deleting arcs (i, v) and
(v, j) for any v ∈ N\{i, j}.

The depth-first search strategy is implemented on the tree since it is shown to be
more effective (Taş et al., 2014; Desaulniers et al., 2016). At each tree node, the CG
algorithm is solved. If the solution is integral, then branching is completed on that
node. A tree node producing an infeasible solution is fathomed.

2.3.3. Cuts

Valid inequalities are often used to obtain stronger bounds to the branch-and-bound
tree and to improve its linear relaxations (see Desaulniers et al., 2008, 2016). So, we
implement a separation algorithm using the subset-row inequalities (Jepsen et al.,
2008). The subset-row inequalities are Chvátal-Gomory inequalities of rank 1 defined
over subsets of the set partitioning constraints of the RLPMP. We consider only the
subsets including three customers as in Jepsen et al. (2008) and Desaulniers et al.
(2016). Given a subset of three customers U ⊂ N , a subset-row inequality ensures
that any feasible integer solution can contain at most one route visiting two or
three customers in U . The corresponding subset-row inequality is ∑p∈Ω mU

p θp ≤ 1,
where mU

p = ⌊βU
p /2⌋ and βU

p is equal to the number of visits to any customer in U

along route p. The decision variable θp takes the value 0 if path p is not part of
the solution and 1 otherwise as in formulation (2.15)-(2.17). If p is an elementary
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path, βU
p can at most be three. The separation of the subset-row inequalities starts

with enumerating all subsets of three customers. Next, the algorithm checks for
each subset whether the corresponding inequality is violated. Whenever violated
inequalities are found, they are added to the RLPMP. One difficulty of these cuts
is that the dual variables associated with the subset-row cuts cannot be integrated
directly to the reduced arc costs. Instead, the dual variable associated with a subset-
row cut is sent to the labeling algorithm that solves the pricing subproblem. The
dual variable is then subtracted from the reduced cost of a partial path each time
it visits two customers defining the cut. An additional label component needs to be
included into the labeling algorithm to count the number of visits to each subset of
customers.

The subset-row inequalities are proven to improve the bounds. They substantially
reduce both the number of nodes to explore in the search tree and the computation
time. On the other hand, the cuts may increase the problem complexity due to the
integration of dual variables. We address this issue by bounding the number of cuts
that can be added simultaneously to the RLPMP using two parameters: a cut can
be chosen if the violation is greater than threshold value tSRC and a maximum of
nSRC

max cuts can be added in each round.

2.3.4. Acceleration Techniques

Our preliminary tests revealed that the RLPMP is solved within few seconds even
for larger instances. However, our exact algorithm slows down significantly during
route generation. In this section, we provide methods improving the performance
of the algorithm mainly by reducing the computational effort spent for solving the
pricing subproblem.

The labeling algorithm is terminated prematurely whenever the number of efficient
elementary routes with negative reduced costs is greater than or equal to a predeter-
mined threshold value, nrt. This approach is particularly effective when the number
of feasible routes is quite large.

In what follows, we describe the acceleration techniques that we implement to en-
hance the performance of BPC algorithm.
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2.3.4.1. Intermediate Column Pool

An Intermediate Column Pool (ICP) is implemented to store complete routes that
have not been sent to the RLPMP (Taş et al., 2014). At each iteration of the
CG, reduced costs of the columns in the ICP are computed with respect to the
optimal dual values. If the reduced cost of any column is negative, the corresponding
route is added to the RLPMP. The implementation of the column pool involves two
parameters: the first one bounds the number of routes stored in the pool, ncol,
whereas the second one limits the maximum number of iterations that each column
is stored in the pool, niter.

2.3.4.2. Two-Phase Algorithm with Ng-Route

The ng-route algorithm is introduced by Baldacci et al. (2011) for solving the
VRPTW. The algorithm relaxes elementary constraint of the pricing subproblem
and allows selected sets of customers, ng-sets, to be revisited. The ng-set for node j,
NGj, denotes the set of ν geographically closest customers to node j where ν is the
predetermined size of the neighborhood. At each step of the subproblem, the nodes
belonging to the ng-set are allowed to be visited at most once, while others can be
visited multiple times. For instance, if i /∈ NGj, then any route generated by the
algorithm is allowed to include the cycle i− ...− j − i. On the other hand, a route
containing such a cycle cannot be part of the optimal solution since the distance dij,
already greater than the distance between node j and any other customer in NGj,
is added to the path cost although customer i has already been visited.

We modify the ng-route algorithm for solving the EVRPTW as outlined in
Algorithm 2.1. All labels provided in Section 2.3.1.1 remain the same except the
one storing unreachable nodes. Since some customers may be visited multiple
times, the definition of VV

p is extended to include integer values greater than one.
In the algorithm, the list of nodes to be treated is denoted by I, the list of labels
on node i is Πi, and Hij corresponds to the set of labels extended from node i

to node j. Extend() procedure used in Algorithm 2.1 is detailed in Algorithm
2.2. Dominance() procedure represents the elimination of dominated routes using
the relations provided by inequalities (2.24)-(2.30). Note that the dominance rules
provided in Section 2.3.1.1 remain the same in the ng-route algorithm.As defined
earlier, ΩR denotes the restricted set of the routes with negative reduced costs.
Note also that we eliminate non-elementary routes at the end of every iteration
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and send only the elementary routes to the RLPMP. If the algorithm yields
only non-elementary routes with negative reduced costs at the arrival depot, the
customer with the highest multiplicity is added to ng-sets of each customer and the
CG algorithm continues its operations using the updated ng-sets. Consequently, the
optimality is guaranteed and a method for extracting cycles from non-elementary
routes is not needed.

Algorithm 2.1: Ng-route algorithm
1 Initialize;
2 L0 = (0, 0, 0, 0, 0, 0);
3 for I = {1, ..., N} do
4 Πi = ∅;

5 while I ̸= ∅ do
6 select a node i ∈ I;
7 for (i, j) ∈ A do
8 Hij :← ∅;
9 for Lp = (T load

p , T tMin
p , T tMax

p , T rtMax
p , ap, VV

p ) ∈ Πi;
10 do
11 if V j

p = 0 or j /∈ NGi then
12 if Extend(i, j, Lp)=true then
13 Hij :← Hij ∪ Lp;

14 Πj ← Dominance(Πj ∪Hij);
15 if Πj has changed and j /∈ I then
16 I ← I ∪ {j};

17 I ← I\{i}

18 Π0 = Dominance(Π0);
19 if ∃ elementary routes with negative reduced costs at the depot then
20 update ΩR and solve RLPMP;
21 else if ∃ non-elementary routes with negative reduced costs at the depot then
22 select the customer k with the highest multiplicity and NGh ← {k}, h ∈ V \{k} ;

We develop the heuristic labeling algorithm based on the ng-route algorithm to solve
the pricing subproblem. The preliminary experiments show that removing VV

p from
the label enhances the performance of the CG algorithm.

Since the relaxation does not guarantee an optimal solution, we propose an enhanced
CG procedure that uses the Heuristic Labeling Algorithm (HLA) to effectively deter-
mine a good upper bound to the RLPMP. In other words, the Two-Phase Algorithm
(TPA) is developed for the exact BPC by benefiting from the fast execution of the
HLA. In the first stage, the HLA produces routes that feed the RLPMP until no
more columns with negative reduced cost can be found. Then, in the second stage,
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a CG procedure is applied using the ng-route algorithm. The second stage of the
TPA certifies that the obtained solution is optimal.

Algorithm 2.2: Extend(i, j, Lp)
1 Calculate T load

j , T tMin
j , T tMax

j and T rtMax
j using equations (2.20)-(2.33);

2 if T tMin
j ≤ lj & T tMin

p ≤ T tMax
j & T rtMax

j ≤ gQ then
3 if j ∈ V then
4 ap ← ap + 1;
5 V j

p ← V j
p + 1;

6 Lp = (T load
j , T tMin

j , T tMax
j , T rtMax

j , ap, VV
p ) ;

7 else
8 ap ← ap + 1 ;
9 V j

p ← V j
p + 1 ;

2.3.4.3. Bidirectional Search

In the bidirectional search mechanism, we employ both the forward labeling pro-
cedure described in Section 2.3.1.1 and a backward labeling algorithm (see Righ-
ini and Salani, 2006 for the details about backward labeling). The backward
search starts from the arrival depot, and finishes at the departure depot. Each
path starts at time l0, and the time is decreased as more nodes are visited. Let
Lp = (W load

i , W tMin
i , W tMax

i , W rtMax
i , wp, BV

p ) be the label of the backward path p.
The definitions of W load

i , wp and BV
p are similar to those given for T load

i , ap and
VV

p , respectively (see Section 2.3.1.1). Moreover, W tMin
i , W tMax

i and W rtMax
i are

used to manage the arrival time and the battery capacity as before. The related
formulations are presented as follows:

W tMin
j =

min
(
lj, W tMin

i − tij − sj

)
, if |Sp| = 0

min
(
lj, W tMin

i − tij − sj

)
−Rij, otherwise

(2.31)

W tMax
j =

max
(
ej, min(lj, W tMin

i −W rtMax
i − tij − sj)

)
, if i ∈ F

max
(
ej, min(lj, W tMax

i − tij − sj)
)

otherwise
(2.32)

W rtMax
j =

W rtMax
i + gdij, if |Sp| = 0

min
(
gQ, max(0, W rtMax

i − Sij + gdij)
)

otherwise
(2.33)
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where

Sij =

max
(
0, min(W tMin

i − tij − sj − lj, W rtMax
i )

)
if i ∈ F

max
(
0, min(W tMin

i − tij − sj − lj, W tMin
i −W tMax

i )
)

otherwise

Rij = max
(
0, max(0, W rtMax

i − Sij) + gdij − gQ
)

Since the route time is decreased each time the path is extended to a node, a change
is required in the treatment of the service times. More specifically, to compute the
arrival time at node j, the service time of the customer j needs to be subtracted.

Forward paths and backward paths are extended until a predefined time M ∈ (e0, l0).
The exploitation stops when both T tMin

i and W tMin
i , are less than or equal to M for

forward and backward labeling, respectively. A forward label and a backward label
at a node are combined if the conditions (2.34)-(2.37) hold.

T load
j + W load

j − qj ≤ C, (2.34)

V v
p + Bv

p ≤ 1 ∀v ∈ V0,n+1\{j}, (2.35)

T tMin
i + Zi ≤ W tMin

i , (2.36)

Zi ≤ (T tMax
i − T tMin

i ) + (W tMin
i −W tMax

i ) (2.37)

where Zi = max(0, T rtMax
i −W rtMax

i − gQ) denotes the time required at a station
for recharging the minimum amount of energy to ensure that the battery SoC is
never negative on the route (Desaulniers et al., 2016). Condition (2.34) indicates
that the total load of the vehicle does not exceed its capacity. Condition (2.35)
ensures that customers are not visited more than once. Nevertheless, this condition
may be relaxed for the ng-route algorithm and Bv

p can take values greater than one
as well. Condition (2.36) guarantees that the time window of node i is respected.
Condition (2.37) ensures that the minimum required recharging time does not exceed
the available route time. Note that this condition is not checked if i represents a
recharging station.

Single Charging Problem. For the EVRPTW with single charging, the backward
labeling procedure needs to limit the total number of stations visited en route to
one as in forward labeling. Moreover, to obtain a feasible combination of a forward
and a backward path the total number of stations in the completed path should be
less than or equal to one.
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2.3.4.4. Reducing the Size of the Search Tree

Let Fij be the set of nondominated stations for node pair (i, j) and s∗ =
arg mins∈F{dis + dsj}. For all s ∈ F\{s∗} if dis ≥ dis∗ and dsj ≥ ds∗j, then s is
dominated by s∗ and removed from Fij (see Bruglieri et al., 2016). Consequently,
we can make the following observation. In the optimal solution, recharging stations
between each node pair (i, j) belong to the set Fij.

Figure 2.1. illustrates an example involving four stations that the vehicle can visit
during its trip from customer i to customer j. Among the four stations, dis2 +ds2j =
15 is the minimum. Hence, s4 is dominated since dis4 = 11 > 10 = dis2 and
ds4j = 11 > 5 = ds2j.

Figure 2.1. An illustrative example for station dominance (Keskin and Çatay,
2018)

In the route generation algorithms developed for the EVRPs (Desaulniers et al.,
2016; Taş, 2021), a path arriving at customer i can be extended to an unvisited
customer j, or to a recharging station s, or to the depot. If F includes too many
stations, the search tree can be massive. As a remedy, using Observation 2.3.4.4,
we introduce the Augmented Node (AN) approach which enables a more effective
search on the tree. When a vehicle is at customer i, it will then visit a customer node
j or an augmented node, js, which is a combination of node j and a non-dominated
station s.

In this way, EVs always travel from one customer to another since visits to stations
are performed implicitly. Since many stations are remotely located, Fij can be
significantly smaller than F . Thus, the number of nodes that the algorithm searches
through is expected to decrease significantly.

26



In both TPA and HCG, a path is extended to node js by augmenting label calcula-
tions for station s and node j. The extension of the label Lp to augmented node js

requires to be performed first for station s and then for customer j using equations
(2.20)-(2.33).

2.3.4.5. Bounding Procedure

A number of methods have commonly been used in the VRPTW literature to
fathom suboptimal paths. Bounding methods aim at producing lower bounds
on the reduced costs based on the consumption of a single resource where the
utilization of all other resources are often ignored. The bounding method suggested
by Baldacci et al. (2011) generates a bound matrix B(r, t) which is obtained by
finding lower bounds for every node i with respect to discrete values of time
consumption. The procedure relaxes the capacity constraint and assumes that
vehicles have an unlimited freight capacity.

Algorithm 2.3: Bounding Procedure
1 τ ← l0;
2 while τ ≥ e0 do
3 τ ← τ − δ;
4 for i ∈ N do
5 p = {};
6 c̄p = 0;
7 T load

i = 0;
8 T tMin

i = τ ;
9 T tMax

i = τ ;
10 T rtMax

i = 0;
11 Explore(p, c̄p, T load

i , T tMin
i , T tMax

i , T rtMax
i ) ;

12 if ∄ any routes at the depot then
13 B(i, τ) =∞;
14 else
15 B(i, τ) = c̄p;

The method represented by Algorithm 3.3 is employed as follows. Given that l0 is
the latest possible arrival time at the depot and δ is a nonnegative time step, the
pricing subproblem is solved for every node i ∈ N and the search starts at t = l0−δ.
In the first iteration, since only δ units of time is available, the resulting number
of feasible solutions is small. These solutions can be rapidly found using a labeling
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algorithm represented by the Explore() procedure in Line 11 of the Algorithm
3.3. For this procedure, we employ HLA since this is the fastest algorithm that we
propose to generate routes. The lower bound for node i is the minimum reduced cost
of any path at node i which uses maximum δ units of time. In the next iteration,
the available time consumption is increased by δ, and the lower bounds on reduced
cost for every node are found with respect to the starting time l0 − 2δ. Although
the size of the feasible region is increased, the search can be completed in short time
since the lower bounds found so far can be used to fathom unpromising paths. This
procedure is repeated until the starting time reaches to the lower bound of the time
window of the depot, e0. If the procedure Explore() cannot find any routes with
negative reduced costs, then the algorithm stops.

A bound check function is implemented in both stages of TPA. The function fathoms
any path if c̄p +B(i, t(p)) > c̄p∗, where c̄p∗ is the global bound continuously updated
with the minimum reduced cost of a complete route.

2.3.4.6. Generating Upper Bounds with Integral Master Problem

The performance of the BPC procedure strongly depends on the quality of the
bounds. Hence, it suffers deeply if the bounds are not updated for a considerable
number of iterations. Especially, the depth-first search strategy may cause a delay
in updating lower bounds since the algorithm may generate several new branches
without obtaining any integral solution. In such cases, the lack of good upper bounds
increases the number of required tree nodes, and hence the computation time. We
address this issue and solve the master problem (2.15)-(2.17) when the root node of
the BPC tree ends with a fractional solution. The Integral Master Problem (IMP)
generates an integer feasible solution which provides a good upper bound to the
problem using all the routes generated at the root node. The IMP reduces the
computational effort, since the relative integrality gap shrinks faster with a good
upper bound.

2.3.5. Heuristic Column Generator

When the second component of TPA is discarded, the resulting algorithm corre-
sponds to a heuristic algorithm based on a CG scheme. As mentioned in Section
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4.2.3.2, the HLA is obtained by removing the vectorial label components of forward
and backward labeling algorithms, VV

p and BV
p both from the label calculations and

the dominance procedure of the ng-route algorithm. The computation time required
to execute the HCG is certainly less compared to the TPA because of the relaxation
in the labeling algorithm and the elimination of the CG procedure including the
ng-route algorithm. On the other hand, refining in the dominance procedure may
also cause the elimination of the optimal routes. Therefore, the HLA does not pro-
vide lower bounds but it generates good upper bounds. Similar to the TPA, the
heuristic procedure is enhanced with the employment of all acceleration methods
and the subset-row inequalities.

2.4. Computational Study

We conducted our computational experiments on the EVRPTW data provided by
Desaulniers et al. (2016) generalized based on the well-known VRPTW benchmark
dataset of Solomon (1987). There are three groups of instances categorized accord-
ing to the geographical positions of customers: clustered (C), randomly located
(R), and randomly clustered (RC). Moreover, each set includes two different groups
with respect to the width of the time windows and the length of planning horizon:
100-series (tight time windows), and 200-series (wide time windows). In addition,
Desaulniers et al. (2016) introduce instances with 25 and 50 customers by reducing
the size of the original data involving 100 customers and 21 recharging stations. We
skipped C2, R2 and RC2 instances since the time window constraints can easily be
satisfied and their effect on routing and recharging decisions is minor (Desaulniers
et al., 2016; Keskin and Çatay, 2018), and focused only on the C1, R1 and RC1
instances.

Our algorithms were implemented on JAVA (using IntelliJ Idea, 2020) and linear
programming models were solved by IBM ILOG CPLEX 12.9. (IBM, 2020) using
a computer with 3.2 GHz Intel i7-8700 processor and 32 GB RAM running on
Windows 10 Pro operating system. For consistency, we followed the approach of
Desaulniers et al. (2016) when performing the computational analysis including the
rounding methodology that they applied to the parameter values. We limited the
execution time to one hour for each instance.

In our computational analysis, we set the cuts related parameters tSRC = 0.2
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and nSRC
max = 10 (Desaulniers et al., 2016). To tune the remaining parameters,

we performed preliminary experiments on a subset of instances by considering
ncol = {25, 50, 75, 100, 150}, niter = {1, 2, 3, 4, 5} and nrt = {10, 100, 500, 1000},
and determined ncol = 50, niter = 2, and nrt = 100 for the monodirectional algo-
rithms. The ICP parameters remain the same for bidirectional methods. However,
since forward and backward search mechanisms stop before the latest possible arrival
time to the depot is reached, the number of routes at the depot decreases signif-
icantly in the bidirectional algorithms. Based on our preliminary tests conducted
for nrt = {1, 5, 10, 20} we set nrt = 5. In the bidirectional algorithm, forward and
backward paths are stopped at M = 0.5(l0 − e0) for the exact labeling. For the
heuristic labeling, we performed experiments on a subset of instances by testing
M = {(l0 − e0), 0.95(l0 − e0), 0.90(l0 − e0), 0.75(l0 − e0)} and set M to 0.90(l0 − e0).

Additional computational experiments are performed with bidirectional two-phase
algorithm to measure the efficiency of the ng-route algorithm and bounding method
by considering the following categories: (i) neither ng-route nor bounding, (ii) only
ng-route, (iii) only bounding, and (iv) both ng-route and bounding by using a subset
of six instances involving 50 customers. The experiment setting including both
methods has the shortest average computational time and all instances are solved.
On the other hand, using the setting in which none of the methods are included,
show that only 4 instances could be solved and the average computational time is the
largest among all. This study also shows that the ng-route improves the performance
of the algorithm more compared to the bounding method for the selected subset of
instances.

Table 2.2. provides a summary of the numerical results obtained by using the TPA
and HCG. SP and MP in the first column refer to the single-partial and multiple-
partial recharge cases, respectively. Columns #Opt, t(s) and ∆(%) under TPA
indicate the number of instances solved to optimality, the average computational
time in seconds and the relative integrality gap, respectively. The relative integrality
gap is the gap between the best upper (z∗) and the best lower (zlb) bounds and
is calculated as 100 z∗−zlb

z∗ . Columns #Solved and ∆T P A (%) under HCG report
the number of instances solved and the average difference between the objective
functions of HCG and TPA, respectively. ∆T P A is calculated as 100 zh−z∗

zh , where
zh is the objective function value obtained by HCG. For a fair comparison ∆T P A is
computed only over the instances solved by both algorithms.

The results in Table 2.2. show that both TPA and HCG can easily solve all 25-
customer MP and SP instances with bidirectional as well as monodirectional search.
However, we see that the bidirectional search does not enhance the run time. This
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may be due to the fact that it requires storing substantially more paths. In addition,
the time spent for combining forward and backward paths increases exponentially
as the number of partial routes increases.

In the case of 50-customer MP instances, the performances of the HCG and TPA
are similar in terms of the number of problems solved. On the other hand, both
methods benefit from the bidirectional search in solving additional problems and
the HCG is significantly faster than the TPA, on average. In 100-customer MP
instances, HCG outperforms TPA by solving four and eight more instances with
monodirectional and bidirectional search, respectively.

The results are similar for the SP instances: the performances of the two meth-
ods with both monodirectional and bidirectional labeling are comparable for the
50-customer instances with respect to the number of problems solved while, on av-
erage, HCG requires significantly less effort. Regarding 100-customer SP instances,
HCG again outperforms TPA by solving five more problems using monodirectional
search and eight more using bidirectional search. Overall, we see that the average
run time of the HCG is considerably shorter than that of the TPA. Furthermore,
bidirectional search improves the efficiency of both methods in solving large-size
instances. It makes a significant contribution to the performance of the HCG in
particular, allowing it to solve seven additional problems in both MP and SP vari-
ants.

Comparing the results for the two problem variants, we observe that the algorithms
exhibit a similar performance in solving both, even though only one recharge is al-
lowed en-route in the SP case. The relaxation of path labels allows the dominance
procedure of the HCG to be shorter than that of the TPA, which reduces the av-
erage computation time approximately by 50%. Moreover, this relaxation provides
extremely good bounds for the subproblem.

In sum, we see that out of 174 test instances, the TPA and HCG with monodirec-
tional search solve 128 and 136 instances, respectively. TPA can solve eight more
instances by using bidirectional labeling, whereas HCG solves 16 more. The algo-
rithm is completed at the root node for 551 solutions obtained. This is achieved
by the implementation of subset-row inequalities with executing integral master
problem. The detailed results are provided in Appendix A.

Table 2.3. presents the results for the instances for which either the best-known
solution (BKS) is improved or a solution is introduced to the literature for the first
time. The third column reports BKS values provided to the literature by Desaulniers
et al. (2016). The best solution value obtained by our algorithms are provided in the
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fourth column. The fifth column indicates the name of the algorithm providing that
solution. In order to better assess the quality of the upper bounds found by TPA and
HCG, we executed TPA with a time limit of five days in an attempt to determine
good lower bounds. So, ∆ (%) in the table reports the relative integrality gaps
calculated using these lower bounds. The last column reports the computational
time in seconds.
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Table 2.2. Summary of results

Monodirectional Search Bidirectional Search
TPA HCG TPA HCG

Problem Variant n Type #solved t (s) ∆ (%) #solved t (s) ∆T P A (%) #solved t (s) ∆ (%) #solved t (s) ∆T P A (%)
MP 25 All 29/29 14.7 0.94 29/29 5.2 0.10 29/29 17.7 0.84 29/29 4.1 0.06

C-set 9/9 18.8 0.46 9/9 5.8 0.18 9/9 36.2 0.43 9/9 3.9 0.08
RC-set 8/8 6.1 1.12 8/8 3.0 0.02 8/8 5.1 0.94 8/8 2.5 0.07
R-set 12/12 17.4 1.19 12/12 6.1 0.09 12/12 12.1 1.09 12/12 5.4 0.04

50 All 26/29 342.3 1.73 27/29 136.5 0.02 27/29 210.9 1.57 29/29 171.6 0.25
C-set 8/9 162.8 0.87 9/9 230.4 0.01 9/9 274.7 0.99 9/9 68.6 -0.03
RC-set 7/8 234.5 2.62 7/8 65.5 0.00 7/8 115.2 2.60 8/8 431.6 0.39
R-set 11/12 541.3 1.78 11/12 104.9 0.04 11/12 220.5 1.37 12/12 75.5 0.41

100 All 8/29 950.3 2.12 12/29 784.4 0.00 11/29 831.1 2.52 19/29 904.0 0.19
C-set 3/9 843.2 3.01 3/9 804.7 0.00 3/9 961.0 3.05 5/9 760.3 0.14
RC-set 2/8 1319.5 2.55 3/8 263.4 0.00 3/8 901.6 3.49 3/8 235.0 0.39
R-set 3/12 811.2 1.09 6/12 1034.8 0.00 5/12 630.7 1.03 11/12 1151.8 0.11

SP 25 All 29/29 7.1 0.79 29/29 2.5 0.00 29/29 7.3 0.84 29/29 2.1 0.00
C-set 9/9 9.0 0.52 9/9 2.6 0.00 9/9 9.2 0.53 9/9 1.7 0.00
RC-set 8/8 3.2 0.87 8/8 1.7 0.00 8/8 3.1 0.77 8/8 1.7 0.00
R-set 12/12 8.2 0.94 12/12 3.0 0.00 12/12 8.8 1.11 12/12 2.8 0.00

50 All 26/29 211.0 1.99 27/29 44.8 0.46 27/29 317.7 2.09 27/29 35.6 0.11
C-set 8/9 60.3 1.42 9/9 46.9 0.83 9/9 212.5 1.27 9/9 27.7 0.24
RC-set 6/8 150.0 1.73 6/8 39.2 0.83 6/8 128.3 1.85 6/8 35.6 0.06
R-set 12/12 342.0 2.50 12/12 46.1 0.02 12/12 491.3 2.83 12/12 41.5 0.03

100 All 10/29 857.8 1.66 15/29 716.2 0.24 14/29 1128.5 1.90 22/29 729.7 0.14
C-set 5/9 768.3 1.26 6/9 683.1 0.00 6/9 1120.0 1.27 7/9 834.5 0.10
RC-set 1/8 1877.5 4.85 2/8 578.3 2.43 3/8 1756.0 3.13 4/8 803.9 0.34
R-set 4/12 714.7 1.38 7/12 783.9 0.00 5/12 762.2 1.91 11/12 636.0 0.21
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We provide 21 new solutions in Table 2.3. , 13 in the MP-type and eight in the
SP-type instances. Out of 21 solutions, seven were obtained using monodirectional
search (indicated with a). Furthermore, 16 new solutions were achieved by using
HCG, which validates the superior performance of the proposed heuristic approach.
Note that the solutions for instances C106 and C107 were improved while testing
the branching rules in TPA (indicated with b).

Table 2.3. New and improved solutions

this study
Problem Variant n Instance BKS Bound Method ∆ (%) t (s)
MP 50 C103 n/a 63641 TPA 3.05 626.9

RC107 n/a 78368a,c HCG 4.11 59.1
R104 n/a 62199c HCG 3.56 185.6

100 C102 n/a 101542 HCG 4.66 1461.5
C109 n/a 93688 HCG 4.59 1257.3
RC101 n/a 163949 TPA 4.39 303.9
R104 n/a 106742 HCG 3.97 2670.2
R106 n/a 120760a HCG 0.45 2446.0
R107 n/a 112227 HCG 3.04 2327.3
R108 n/a 100652 HCG 3.75 2169.5
R109 n/a 118519 TPA 3.08 1921.2
R110 n/a 109386 HCG 4.78 1474.5
R111 n/a 109820 HCG 4.71 1451.0

SP 50 R104 n/a 62561a,c HCG 3.74 165.1
R112 n/a 66054 HCG 4.85 84.7

100 C106 102744 102467a,b TPA 0.35 3239.8
C107 103040 102665a,b TPA 1.75 2689.8
RC106 n/a 140885 TPA 4.85 1877.5
R105 n/a 137557a,c HCG 2.67 50.2
R107 n/a 117628 HCG 3.77 1167.8
R109 n/a 126350 TPA 3.25 1056.4
R110 n/a 111691 HCG 4.77 668.5
R111 n/a 112729a HCG 3.05 1294.1

a Obtained by using monodirectional search
b Obtained when testing the branching rules
c Obtained with TPA as well.
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2.5. Conclusion

This chapter presents exact and heuristic algorithms based on BPC method to solve
the EVRPTW. For both algorithms, a column generation method including a pric-
ing subproblem and a restricted linear programming master problem is employed.
The pricing subproblems are solved by labeling algorithms which are developed by
modifying the well-known ng-route algorithm. On the other hand, the heuristic
method is obtained by relaxing the ng-route algorithm whereas the CG procedure
of the exact algorithm contains two steps: a heuristic labeling algorithm followed
by the ng-route algorithm.

The performance of the algorithms is improved by using several further acceleration
techniques including the bidirectional search improving the performance of labeling
algorithms, Intermediate Column Pool (ICP) preserving a number of routes with
non-negative reduced cost to be used in later iterations, Augmented Node (AN)
method enabling the elimination of many inefficient searches through the network,
the bounding method eliminating partial paths using the generated lower bounds on
reduced costs, and Integral Master Problem (IMP) helping the algorithms produce
a good upper bound.

The algorithms are evaluated by using a well-known data set which includes in-
stances with up to 100 customers. Considering only the instance solved by both
algorithms, the computational time of the heuristic algorithm is at least 55% less
than the exact algorithm for each experiment setting. Moreover, the average of rela-
tive distance of the solutions obtained by using HCG and TPA is no more than 1%.
Lastly, we introduce 21 new solutions to the literature that can be used in future
research and improve solutions of two instances that have already been provided in
the literature.

The efficiency of the heuristic algorithm is shown by the computational tests. This
method simply outperforms the TPA especially for large-size instances. Moreover,
for small- and medium-size instances the heuristic method provides similar results
compared to the exact algorithm. Therefore, the heuristic algorithm can be used to
solve the real-life problems which usually include a large number of customers.

The methods proposed in this study can be further improved by implementing the
network reduction techniques to solve larger problem instances. Further research
may also focus on solving extensions of the EVRP such as the versions considering
multiple recharge technologies, flexible deliveries with alternative locations and time
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windows, and uncertainties related to service and recharging times.

36



3. IMPLEMENTATION OF PULSE ALGORITHM FOR SOLVING

THE ELECTRIC VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

In this chapter, we solve the EVRPTW by implementing the Pulse algorithm for
the pricing subproblem of a Branch-and-Price (BP) procedure. The Pulse algo-
rithm is suggested by Lozano et al. (2015) to solve the VRPTW within a Column
Generation (CG) procedure. The algorithm simplifies the difficulties of the classi-
cal labeling algorithms such as label storage and dominance. Its depth-first search
structure prevents the storage of an excessive number of labels at the same time.
The Pulse algorithm consists of several strategies which fathom suboptimal paths.
One of these strategies is a bounding method which creates a bound matrix using
lower bounds on the reduced costs found for each node and discrete values of re-
source consumption. The bound matrix is beneficial to eliminate unfavorable paths
and thereby speeding up the process. In addition, another method called rollback
pruning, often used in labeling algorithms (Feillet et al., 2004; Kohl et al., 1999),
simplifies the dominance procedure by evaluating whether the last node included in
the path should be removed. The construction of this strategy allows the disposal
of most of the dominance rules.

Lozano et al. (2015) present a computational study to evaluate the performance
of the Pulse algorithm by solving the root node of the BP tree on the data set
introduced by Solomon (1987). The results obtained by the Linear Programming
(LP) relaxation are compared to those provided by Baldacci et al. (2011). Further-
more, three more studies using the Pulse algorithm to solve a variety of Constrained
Shortest Path problems (CSP) are described as follows.

Thomas et al. (2019) address the family of resource-constrained shortest path prob-
lems and present three algorithms including a bidirectional Dijkstra’s method and
the Pulse algorithm to solve them. The study provides a literature review on the
heuristic bidirectional search approaches and benefits from one of these methods
to improve the performance of the bidirectional Dijkstra’s method. In the heuristic
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pricing, the authors modify the resource bounding method suggested by Righini and
Salani (2006) in which extension of a path is terminated if more than half of a re-
source referred to as "critical" is consumed. The authors estimate the shortest path
distances approximately while employing the resource bounding method. The arti-
cle is completed with an extensive computational study evaluating the performances
of several methods from the literature using a real-life data set. It is stated that the
Pulse algorithm obtains shorter average computation time than the bidirectional
Dijkstra’s method, but it runs out of memory for many instances.

Cabrera et al. (2020) solve the CSP and the multi-activity shift scheduling problem
which deals with scheduling staff who are responsible for different work activities
during different periods. A BP algorithm, benefiting from a bidirectional Pulse al-
gorithm to generate routes, is proposed to solve the problems. The method includes
a Pulse-based heuristic that improves the CG algorithm. The authors provide a
computational study over large real-road networks with up to six million nodes and
15 million arcs.

Li et al. (2020) provide a model for the plug-in hybrid electric vehicles which mini-
mizes the energy consumption of EVs. The authors propose a BP algorithm to solve
the CSP by employing the Pulse algorithm to generate the route with the minimum
reduced cost. The performance of the algorithm is evaluated using a simulation
model of the Ann Arbor city in SUMO. The experiment results provide that the
total energy consumption of EVs is reduced by 7% to 14%.

We modify the labels reported by Lozano et al. (2015), to cope with battery energy
consumption and recharging requirements of EVs. Relevant dominance rules are
included in the rollback pruning method. Furthermore, the BP procedure with the
Pulse algorithm is improved using several acceleration techniques including the Inte-
gral Master Problem (IMP), Intermediate Column Pool (ICP), and the Augmented
Node (AN) methods (see Section 2.3.4). We employ the AN method which reduces
the problem network by eliminating the dominated stations dynamically and ex-
plores the search tree by traveling from one customer to another either directly or
via a station. IMP is applied to obtain a strong upper bound for the problem at
the root node of the BP tree. ICP participates in increasing the performance of the
algorithm by storing routes with nonnegative reduced costs to be used in later CG
iterations without causing an important amount of time. Additionally, each itera-
tion of the Pulse algorithm is prematurely terminated when the number of complete
routes with negative reduced cost reaches a threshold value. For the branching, we
provide three rules that are branching (i) on the total number of vehicles, (ii) on
the total number of recharges, and (iii) on the total flow value of an arc. We dis-
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card branching on the recharges in a station (see Section 2.3.2), since it significantly
increases the information to be preserved at each branch.

In the computational analysis, we evaluate the proposed procedures by using the
benchmark instances provided by Desaulniers et al. (2016) including up to 100 cus-
tomers and 21 stations. We compare the results with those obtained in Chapter 2
and provide solutions for several instances that have not been solved before.

The rest of this chapter is organized as follows. In Section 3.1, we provide the details
of the Pulse algorithm. Section 3.2 describes the experimental design and presents
the computational results. In the computational study, first, we provide the results
of the preliminary tests performed to determine the best ICP parameters and the
threshold value on the number of routes to terminate the algorithm prematurely.
Then, using the determined parameters two versions of the Pulse algorithm, with
and without AN, are evaluated and the results are compared to those provided in
Section 2.4. Finally, the summary and concluding remarks are provided in Section
3.3.

3.1. Solution Methodology

First, we apply the preprocessing and the generating initial solutions using the meth-
ods described in Section 2.3. Then, the BP procedure begins by solving the root
node of the BP tree. The CG algorithm is employed to solve each branch. The
master problem of the CG corresponds to the set partitioning formulation repre-
sented as the formulation (2.15)-(2.17). The pricing subproblem of the CG is solved
with the Pulse Algorithm. Additionally, several acceleration methods are imple-
mented to improve the performance of the CG. If the CG algorithm ends with a
fractional solution, the branching procedure finds two new branches by applying
the first attainable branching rule among the three rules mentioned in the earlier
section.

The Pulse algorithm explores the network and generates partial paths until they
reach the depot or are eliminated by a pruning strategy. It consists of two general
steps: first a bounding procedure finds lower bounds on the reduced cost given an
amount of resource consumption for each node, and then the routes with negative
reduced costs are recursively generated based on an implicit enumeration of the
solution space.
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The exploration stage works similar to the labeling algorithms. It begins at the
depot node, travels throughout the outgoing arcs of each visited node using a depth-
first search structure and stores the resulting partial path p at each node i with its
the reduced cost c̄p and the cumulative consumption values for each resource. The
first resource qp is the freight load of path p. In Lozano et al. (2015), the second
label developed for the VRPTW is the total time consumption of path p. However, a
single label is inadequate to determine the cumulative time for the problem including
EVs. Instead, we modify the algorithm by including three time-related resources,
T tMin

i , T tMax
i , and T rtMax

i , which denote the arrival time to node i considering
the battery SoC feasibility, the arrival time to node i considering the time window
feasibility, and the required time for recharging the battery fully, respectively, as in
the generic labelling algorithm described in Section 2.3.1.1.

Since our problem allows partial recharges, the optimal amount of energy to be
recharged at a station is unknown before EVs arrive at the depot. This issue is
resolved by using two different labels for the cumulative time consumption of the
path p, regarding the minimum and the maximum possible recharging time. The
minimum possible recharging time is considered for maintaining battery feasibility.
On the other hand, the maximum recharging time is determined concerning the
battery capacity and upper limit of the time window. If there is no station along
path p, the arrival time is calculated as the summation of the travel duration and
the service times at the customers, thus the values of the two time resources, T tMin

i

and T tMax
i , are equal. The difference between these labels is explained as follows.

The resource T tMin
i is the arrival time at node i considering the minimum amount of

recharging time that sustains the battery feasibility if path p visits a station before
i. On the other hand, T tMax

i provides the arrival time at node i considering the
maximum amount of recharging time with respect to the service closing time of i,
if recharging occurs at the prior nodes. Moreover, the difference between T tMin

i and
T tMax

i , T tMax
i − T tMin

i , shows the additional time that can be used for recharging
besides the minimum required recharging time and is always greater than or equal
to zero for a feasible path. The calculation of these two labels still requires the
knowledge of the battery SoC at each node. The resource T rtMax

i refers to the time
for recharging the battery fully assuming that if a station is visited along the path,
then the minimum amount of energy, maintaining battery feasibility, is loaded into
the vehicle.
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Algorithm 3.1: Pulse Algorithm
1 Start at node 0, qp = 0, c̄p = 0, T rtMax

i = 0, T tMin
i = 0, T tMax

i = 0;
2 bound(δ);
3 pulse(c̄p, qp, T tMax

i , T tMin
i , T tMax

i );
4 Return ϕ

Algorithm 3.1 shows the general structure of the Pulse algorithm which starts with
the initialization. The algorithm then generates a bound matrix containing lower
bounds on the reduced costs for each node and the time step over the planning
time horizon, the length of which is δ. Next, the pulse procedure is applied which
is explained in Algorithm 3.2. Lastly, the algorithm ends with ϕ, a set of negative
reduced cost columns.

Algorithm 3.2: pulse Procedure
1 if Feasible(c̄p, qp, T rtMax

i , T tMin
i , T tMax

i ) = true then
2 if checkBound(c̄p, qp, T rtMax

i , T tMin
i , T tMax

i ) = false then
3 if rollback(c̄p, qp, T rtMax

i , T tMin
i , T tMax

i ) = false then
4 p← p ∪ {j};
5 qp ← qp + qj ;
6 c̄p ← c̄p + c̄ij ;
7 T tMin

i ← LCE(T tMin
i , T tMax

i , T rtMax
i , tij , si, hij);

8 T tMax
i ← LCE(T tMin

i , T tMax
i , T rtMax

i tij , si);
9 T rtMax

i ← LCE(T rtMax
i , hij);

10 pulse(c̄p, qp, T rtMax
i , T tMin

i , T tMax
i )

In Algorithm 3.2, the steps of pulse procedure are provided explicitly. First, the
algorithm checks whether path p is feasible. Then, the bound check is completed.
Next, the rollback pruning function reevaluates the latest node choice of the path.
If path p passes all three pruning strategies, then it is extended to node j. The
details of each procedure are explained as follows.

The Pulse algorithm includes not only the propagation to new nodes but also three
pruning strategies. The first one is infeasibility pruning which eliminates a path if
it is infeasible. A path is infeasible in following situations: (i) a customer is visited
more than once, (ii) the arrival time considering battery feasibility is later than the
service closing time of customer i (T tMin

i > li), (iii) the arrival time considering
battery feasibility is later than the arrival time considering time window feasibility
(T tMin

i > T tMax
i ), (iv) the cumulative load exceeds load capacity of the vehicle
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C (qp > C), and (v) the maximum required recharging time is greater than the
recharging time for an empty battery (T rtMax

i > gQ).

The second pruning strategy is a bound check procedure that eliminates paths if the
summation of their reduced cost and the lower bound is greater than a continuously
updated global bound on the reduced cost of a route, c̄∗

p. The lower bounds are
generated iteratively through the bounding procedure and used to eliminate the
suboptimal paths. The reduced cost achieved by a path that uses t(p)δ = τ amount
of time is a lower bound for the reduced cost of that path with τ +ϵ time consumption
where ϵ ≥ 0 and t(p) is the time step. As an example, let us consider a problem with
the total length of the day as 100 and a time step defined as 10. If T tMin

i is 75 units
of time, then the corresponding time step on the bound matrix is 70 units of time.
Note that under this bounding scheme, time step t(p) is the lower closest available
value in the bound matrix to the arrival time of path p; thus, τ ≤ T tMin

i ≤ T tMax
i .

Since T tMin
i is the earliest arrival time of path p that is closest to the step length τ ,

it is used to calculate the time step t(p) and p is pruned if c̄p + B(i, t(p)) > c̄∗
p.

Let path p1 be a partial path at node j which travels through arcs (i, k) and (k, j),
respectively. For path p1, the rollback pruning strategy reevaluates the decision of
visiting node k before node j by comparing its resource consumption to the amount
of that consumed by an alternative path p2 which visits the same nodes in the same
order as in path p1 until node i and then travels to node j directly. Dominance rules
described by Feillet et al. (2004) state that path p1 dominates path p2 if and only if
the following conditions are held and at least one of them is strictly satisfied:

c̄p1 ≤ c̄p2 (3.1)

aV
p1 ≤ aV

p2 (3.2)

V j
p1 ≤ V j

p2 for all j ∈ V (3.3)

qp1 ≤ qp2 (3.4)

T tMin
p1 ≤ T tMin

p2 (3.5)

T rtMax
p1 − (T tMax

p1 − T tMin
p1 ) ≤ T rtMax

p2 − (T tMax
p2 − T tMin

p2 ) (3.6)

T rtMax
p1 + T tMin

p1 ≤ T rtMax
p2 + T tMin

p2 (3.7)

By the definition of paths p1 and p2, inequalities (3.2), (3.3), (3.4), and (3.5) are
satisfied immediately. Inequalities 3.2 and 3.3 are satisfied because path p2 visits the
same nodes with path p1 except node k. Furthermore, inequality (3.5) holds since
the triangular inequality is assumed for the travel times for all arcs belonging to
set A. Therefore, the rollback pruning strategy inspects only the inequalities (3.1),
(3.6), and (3.7). The condition (3.6) holds if path p1 requires less time to recharge

42



the battery fully compared to path p2 or alternatively the remaining energy level of
path p1 is more than that of path p2. Lastly, inequality (3.7) states that path p1

spends less time compared to path p2 for recharging and traveling. In Figure 3.1. ,
a representation of paths p1 and p2 are provided.

Figure 3.1. Rollback pruning strategy example

The depth-first search is vulnerable to the poor decisions made at the early stages
of the exploration, since they may lead to the examination of unfavorable regions
of the solution space. The rollback pruning strategy is specifically designed for
the depth-first search. The method helps the algorithm catch these poor decisions
sooner. Moreover, the efficiency of the pruning strategies impacts the performance
of the labeling procedure strongly. Mainly because whenever a path is eliminated
with a pruning strategy, not only a single solution but also an entire region of the
solution space is discarded.

The Pulse algorithm does not have any dominance rules. Note that dominance is
often the most time-consuming part of the labeling algorithms. It requires stor-
ing many labels related to the existing partial paths. On the other hand, working
together with the dept-first search mechanism, the rollback procedure can be com-
pleted without the need of keeping all the labels. The algorithm runs on the same
path until it is pruned, or it reaches the depot. Therefore, at each step, only the re-
sources of the currently explored path are stored. More specifically, if the algorithm
is sending a pulse through path p1 in Figure 3.1. which travels through nodes
i, k, and j consecutively, only the labels of path p1 at nodes j and i are stored.
The resources at node i are used when path p1 enters the rollback function. This
additional information at node i can be used to extend path p2 to node j.
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3.1.1. Bounding Procedure

Several relaxation methods are commonly used in the VRP literature to fathom sub-
optimal paths. Bounding methods often enhance the relaxation of the consumption
of some resources and focus on producing lower bounds based on a single resource.
The bounding method suggested by Baldacci et al. (2011) generates a bound matrix
B(r, t) which is obtained by finding conditional lower bounds for every node i and
for the discrete values of time consumption. The procedure relaxes the capacity
constraint and assumes that the vehicles have an unlimited freight capacity.

Algorithm 3.3: Bounding Procedure
1 τ ← l0;
2 while τ ≥ e0;
3 do
4 τ ← τ − δ;
5 for i ∈ N ;
6 do
7 p = {};
8 c̄p = 0;
9 qp = 0;

10 T tMin
i = τ ;

11 T tMax
i = τ ;

12 T rtMax
i = 0;

13 pulse(p, c̄p, T tMin
i , T tMax

i , T rtMax
i );

14 if ϕ = {} then
15 B(i, τ) =∞;
16 else
17 B(i, τ) = c̄p;

The method represented by Algorithm 3.3 is employed as follows. Given that l0

is the upper bound of the time window at the depot and δ is a nonnegative time
step, the ESPPRC is solved for every node i ∈ N given the exploitation starts at
t = l0− δ. At the first iteration, since only δ units of time is available, the resulting
feasible regions for each node are noticeably small, and there are just a few feasible
solutions. Thus, these problems can be rapidly solved to optimality with the pulse
procedure (see Algorithm 3.2). The lower bound for node i is the minimum reduced
cost of any path at node i which can use maximum δ units of time. Hence, at
this iteration δ ≥ T tMin

p ≥ T tMin
p for each path p. After this step, the available

time consumption is increased to 2δ, and bounds are found for every node given the
starting time of l0 − 2δ. Although the size of the feasible region is increased, the
lower bounds found in the first iteration can be used to fathom unpromising paths
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at this step. This process is repeated for each increase of δ units until the starting
time reaches e0, which is the lower bound of the time window at the depot. The set
ϕ in line 14 of Algorithm 3.3 represents the set of routes generated by the function
pulse.

3.1.2. Improvements in Branch-and-Price Procedure

The Pulse algorithm is employed within the BP procedure which is enhanced with
the acceleration methods explained in Section 2.3.4. These methods include IMP,
ICP, AN, and terminating the route generation prematurely. The IMP generates
upper bounds by solving the master problem at the root node of the BP tree. The
ICP stores the complete routes that have not been sent to the RLPMP. There are
two parameters related to the ICP, ncol and niter, which denote the limit on the
number of routes stored in the pool and the maximum number of iterations that
each column can be stored, respectively. The AN method has been proven to be
efficient for the BP procedure provided in Chapter 2. It generates the set of non-
dominated stations, Fij, for each arc (i, j), i ∈ V0, j ∈ Vn+1. Then, at node i, the
path p is extended to node j directly or through a station s ∈ Fij (see Section
2.3.4.4).

The subproblem is terminated prematurely when the number of routes at the de-
pot with negative reduced costs reaches a predetermined threshold value, nrt. The
algorithm described by Lozano et al. (2015) focuses on finding the route with the
minimum reduced cost. Therefore, they do not stop solving an iteration of the
pricing subproblem until they find all routes with negative reduced costs. However,
solving the pricing problem is usually the bottleneck operation for BP procedures
(Feillet et al., 2004; Kallehauge et al., 2005; Baldacci et al., 2012). Generating all
feasible routes significantly increases the computation time that each pricing sub-
problem iteration requires, whereas sending only one route to RLPMP may increase
the number of CG iterations. Considering these difficulties, we determined the
threshold value for limiting the number of routes with negative reduced costs which
are sent to RLPMP by implementing preliminary tests on a subset of instances.
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3.1.3. Branching

We employ the branching procedure by applying the following strategies in the
respective order. (Kohl et al., 1999; Kallehauge et al., 2005; Desaulniers et al.,
2016): branching (i) on the total number of vehicles, (ii) on the total number of
recharges, and (iii) on the total flow on an arc. When the CG ends with a fractional
solution, we employ the first attainable rule using the provided order of branching
rules. We refer the interested reader to the Section 2.3.2 for the details of the
branching procedure.

Branching on the flow value of a specific station is excluded since our preliminary
tests show that applying this rule not only causes more branches to be needed but
also increases the amount of data stored.

3.2. Computational Study

In this section, we provide the results of the computational study that we performed
using the BP procedure with the Pulse algorithm. For the experiments, we used
JAVA (using IntelliJ Idea, 2020) language and linear programming models were
solved by IBM ILOG CPLEX 12.9. The computer was on Windows 10 and has an
Intel Core i7 processor running 3.2 GHz with 32 GB RAM allocation. All exper-
iments were completed on instances with 25, 50, and 100 customers generated by
Desaulniers et al. (2016) and the time limit was set to one hour. Our BP method
terminated whenever all branches were solved or fathomed, or the gap between the
best upper and lower bounds referred to as the relative integrality gap was less than
a threshold value. The latter setting was applied to be consistent with Desaulniers
et al. (2016). All average computation times were computed only for the instances
solved to optimality within the time limit.

In what follows, we provide two sets of computational experiments. First, we present
the results of the preliminary tests conducted to determine the parameters related to
the bound on the number of routes with negative reduced cost and the ICP. For these
experiments, the AN method was not included in the Pulse algorithm. The param-
eter tuning starts with determining the bound on the number of routes. We expect
that the impact of this parameter on the algorithm performance is greater since it
directly affects the computation time required for an iteration of the pricing subprob-
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lem. Second, we provide a computational study performed by using all instances in
100-series (Desaulniers et al., 2016). Both single-partial (SP) and multiple-partial
(MP) problem variants were solved and the impact of the AN method was evaluated.

3.2.1. Parameter Tuning

In this section, we first determined the threshold value on the number of complete
routes with negative reduced costs at the depot, which is used to prematurely termi-
nate the pricing subproblem. The experiments were conducted for the MP problem
by using subsets of instances with 50 and 100 customers which included two in-
stances from each of the C, RC, and R types. When determining nrt, we set the
values of ICP parameters to ncol = 50 and niter = 2 as suggested in Section 2.4.

In Table 3.1. , we present the best upper bound (Bound), the computation time in
seconds (t), and the relative integrality gap (∆) for each selected instance where nrt is
set to 2000, 1000, and 500. Additionally, the table provides the number of instances
solved (#solved), average computation times, and average relative integrality gaps.
The relative integrality gap is the gap between the best upper (z∗) and the best
lower (zlb) bounds and is calculated as 100 z∗−zlb

z∗ .

Table 3.1. Results of the preliminary tests for nrt using 100-customer instances

Instance
2000 1000 500

Bound t (s) ∆ (%) Bound t (s) ∆ (%) Bound t (s) ∆ (%)
C101 104376 349.7 0.00 104376 461.1 0.00 104376 381.5 0.00
C105 102889 399.6 4.65 102950 667.3 4.71 102993 588.5 4.75
RC101 165702 3600.9 5.38 163757 74.6 4.25 163866 50.8 4.32
RC102 152344 3601.4 5.09 152146 263.6 4.97 152819 3601.2 5.39
R101 157500 46.9 0.58 158018 57.7 0.91 157575 50.7 0.63
R102 142606 205.0 0.45 142449 322.8 0.34 142645 439.6 0.47
All 1367.2 2.69 307.8 2.53 852.1 2.59
#solved 4 6 5

Considering instances with 100 customers, setting the threshold value to 2000 allows
the algorithm to obtain shorter run times for the instances belonging to C and R
types. However, considering the averages, limiting the number of complete routes
having negative reduced cost to 1000 is the most time-efficient option for the selected
subset. This value helps the algorithm solve all six instances within the time limit.
Thus, nrt is set to 1000 for the rest of the computational experiments using the
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instances with 100 customers.

Table 3.2. Results of the preliminary tests for nrt using 50-customer instances

Instance 2000 1000 500
Bound t (s) ∆ (%) Bound t (s) ∆ (%) Bound t (s) ∆ (%)

C102 77719 798.7 0 77719 914.6 0.00 77719 1302.0 0.00
C103 64581 356.0 4.42 63940 886.5 3.36 63839 3355.4 3.21
RC106 88950 3600.0 5.5 87024 12.3 3.40 86815 14.1 3.17
RC108 73980 3600.0 5.58 75190 3600.0 7.10 75190 3600.0 7.10
R105 83475 10.3 1.87 83261 8.4 1.61 83482 8.9 1.87
R106 79216 27.9 2.31 79922 35.0 3.17 79812 158.5 3.04
All 1398.8 3.28 909.5 3.11 1406.5 3.07
# solved 5 6 5

In Table 3.2. , we provide the results of nrt tuning tests for the subset of instances
with 50 customers. Note that, only by setting nrt to 1000 all instances could be
solved within the time limit. Additionally, the algorithm runs at least 35% faster
by setting nrt to 1000. Thus, nrt is fixed to 1000 also for the instances with up to
50 customers.

Next, we conducted experiments to assess the most effective values of the ICP pa-
rameters. First, for ncol the values 10, 25, 50, 100, and 1000 were tested while niter

was set to 2 since this is the best value reported in Section 2.4. The results are
demonstrated in Table 3.3. .

Table 3.3. Results of the preliminary tests for ncol

ncol
100-Cust 50-Cust

#solved t (s) ∆ (%) #solved t (s) ∆ (%)
1000 6 372.0 2.40 4 1561.3 4.03
100 6 307.8 2.53 5 1427.2 3.57
50 3 1971.6 2.86 5 909.5 3.11
25 5 837.6 2.49 6 281.9 2.87
10 5 840.5 3.57

Table 3.3. shows the average computation times and the average relative integrality
gaps obtained by setting ncol to 1000, 100, 50, 25, and 10. For the instances with
100 customers, the value 10 is omitted based on the results obtained by using the
values 25 and 50. The results show that the best value for the ncol differs as the data
size varies. Indeed, for instances with 100 customers, we obtain the best results by
setting ncol to 100 (this setting has an average time approximately 21% shorter than
the second-best setting, ncol = 1000), while ncol is set to 25 for the instances with
up to 50 customers.
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In Table 3.4. , we present the results of the preliminary tests conducted to determine
niter. The values one, two, and five were evaluated by using the best values for nrt

and ncol determined by the earlier experiments. The results favor the value two, so
this value is fixed for the remaining experiments.

Table 3.4. Results of the preliminary Tests for niter

niter
100-Cust 50-Cust

#solved t (s) ∆ (%) #solved t (s) ∆ (%)
1 5 761.8 2.52 5 947.4 3.32
2 6 307.9 2.53 6 281.9 2.87
5 5 834.7 2.73 5 844.5 3.38

We report the average integrality gap values for all tables, to evaluate the solution
quality with different parameters and make sure that it does not deteriorate. The
results show that there is a slight difference in the gap values. Although our average
results include the non-optimal solutions as well, we observe that the average relative
integrality gap values are small. This proves that the algorithm produces good upper
bounds for the selected instances and they may be solved to optimality with new
acceleration methods.

The parameter tests provided one more MP solution for RC103 with 100 customers,
using the parameters ncol = 50 and niter = 2. The literature has not reported any
solution for this instance, and we could not solve it with other parameters either.
The instance was solved within 2183 seconds and the obtained solution had a 4.84%
relative integrality gap.

The results of the instances with 25 customers fluctuated less compared to other sets
when the parameters were changed. Hence, for these instances instead of conducting
further tests to find values of the the parameters, the values determined for the 50-
customer instances were used.

Table 3.5. summarizes the values selected by the parameter tuning experiments
for all instances.

Table 3.5. Determined parameters

Set nrt ncol niter

25-Cust 1000 25 2
50-Cust 1000 25 2
100-Cust 1000 100 2

,
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3.2.2. Experimental Results

In this section, we provide the results of the numerical study performed on the Pulse
algorithm using instances with 25, 50, and 100 customers and the parameter values
determined above. The Pulse algorithm was implemented using approaches with
and without the AN method, and both methodologies were tested on all instances
(Desaulniers et al., 2016) for two problem variants (SP and MP).

Table 3.6. provides a summary of the numerical results obtained from the evalua-
tion of the Pulse algorithm. Pulse0 and PulseAN denote the Pulse algorithm without
and with the AN method, respectively. Columns #solved, t(s) and ∆ (%) indicate
the number of instances solved to optimality, the average computation time in sec-
onds, and the average relative integrality gap, respectively.

Table 3.6. Summary of the results

Pulse0 PulseAN

Problem Variant n Type #solved t (s) ∆ (%) #solved t (s) ∆ (%)
MP 25 All 29/29 142.5 1.03 29/29 57.9 0.88

C-set 9/9 438.0 0.74 9/9 172.0 0.98
RC-set 8/8 3.9 1.22 8/8 4.2 0.79
R-set 12/12 13.4 1.12 12/12 8.1 0.86

50 All 25/29 130.5 1.59 24/29 347.5 1.72
C-set 8/9 204.4 0.67 7/9 258.6 0.89
RC-set 7/8 59.1 2.13 6/8 103.9 2.05
R-set 11/12 116.9 1.97 11/12 523.0 2.17

100 All 14/29 491.2 2.96 10/29 1160.3 2.60
C-set 3/9 783.4 3.12 3/9 1957.5 3.04
RC-set 3/8 132.8 4.21 2/8 498.5 3.64
R-set 8/12 515.9 2.44 5/12 946.7 1.92

SP 25 All 29/29 44.4 0.99 29/29 30.5 0.76
C-set 9/9 133.2 0.48 9/9 89.1 0.48
RC-set 8/8 3.2 1.16 8/8 3.1 0.75
R-set 12/12 5.4 1.27 12/12 4.9 0.98

50 All 24/29 264.6 2.31 25/29 197.2 2.24
C-set 8/9 280.6 1.59 7/9 227.3 1.18
RC-set 6/8 40.4 2.30 6/8 96.3 1.97
R-set 10/12 386.4 2.88 12/12 230.2 2.97

100 All 11/29 642.8 2.31 10/29 1024.4 1.55
C-set 3/9 1134.1 0.97 4/9 1582.4 0.88
RC-set 3/8 270.5 4.02 3/8 443.7 3.55
R-set 5/12 571.3 2.42 3/12 861.0 1.12

All 25-customer instances are solved optimally and the average computation times
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obtained by using PulseAN are 31% and 59% shorter in MP and SP cases, respectively
compared to those obtained by using Pulse0. Considering MP case over the instances
with 50 customers, the AN approach solves one less instance compared to Pulse0 and
runs 62% slower. On the other hand, in the SP case over the 50-customer instances,
PulseAN solves one more instance to optimality compared to Pulse0 and runs 25%
faster on the average. Considering 100-customer instances, the Pulse algorithm
with AN procedure runs 1.6 and 2.4 times slower in MP and SP cases, respectively,
and shows an inferior performance by solving four fewer instances in MP and one
less in SP compared to Pulse0. In sum, although the AN approach enhanced the
performances of HCG and TPA in all data sets in Chapter 2, we observe that it is
not as efficient when combined with the Pulse algorithm for larger instances. It can
be predicted that this low performance is due to the combination of the AN method
and dept-first search approach used in the route creation procedure.
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Table 3.7. Comparison of the performances of Pulse algorithm and monodirectional algorithms from the literature

Pulse0 TPA Desauniers et. al. 2016
Problem Variant n Type #solved t (s) ∆ (%) #solved t (s) ∆ (%) #solved t (s) ∆ (%)
MP 25 All 29/29 142.5 1.03 29/29 14.7 0.94 29/29 24.4 0.80

C 9/9 438.0 0.74 9/9 18.8 0.46 9/9 1.3 0.43
RC 8/8 3.9 1.22 8/8 6.1 1.12 8/8 2.0 0.89

R 12/12 13.4 1.12 12/12 17.4 1.19 12/12 56.7 1.02
50 All 26/29 130.5 1.59 26/29 342.3 1.73 26/29 380.5 1.17

C 8/9 204.4 0.67 8/9 162.8 0.87 8/9 46.4 0.28
RC 7/8 59.1 2.13 7/8 234.5 2.62 7/8 209.1 2.06

R 11/12 116.9 1.97 11/12 541.3 1.78 10/12 732.6 1.26
100 All 14/29 491.2 2.96 8/29 950.3 2.12 10/29 419.6 1.67

C 3/9 783.4 3.12 3/9 843.2 3.01 3/9 372.2 2.18
RC 3/8 132.8 4.21 2/8 1319.5 2.55 3/8 361.5 2.53

R 8/12 515.9 2.44 3/12 811.2 1.09 4/12 498.6 0.64
SP 25 All 29/29 44.4 0.99 29/29 7.1 0.79 29/29 2.6 0.66

C 9/9 133.2 0.48 9/9 9.0 0.52 9/9 1.1 0.47
RC 8/8 3.2 1.16 8/8 3.2 0.87 8/8 1.4 0.59

R 12/12 5.4 1.27 12/12 8.2 0.94 12/12 4.5 0.86
50 All 24/29 264.6 2.31 26/29 211.0 1.99 25/29 130.2 1.37

C 8/9 280.6 1.59 8/9 60.3 1.42 8/9 17.8 0.88
RC 6/8 40.4 2.30 6/8 150.0 1.73 7/8 50.3 1.83

R 10/12 386.4 2.88 12/12 342.0 2.50 10/12 276.1 1.45
100 All 11/29 642.8 2.31 10/29 857.8 1.66 9/29 247.6 0.91

C 3/9 1134.1 0.97 5/9 768.3 1.26 6/9 149.1 0.95
RC 3/8 270.5 4.02 1/8 1877.5 4.85 1/8 1291.6 1.77

R 5/12 571.3 2.42 4/12 714.7 1.38 2/12 21.1 0.38
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Since the overall performance of Pulse0 is better than that of PulseAN, especially in
the instances with 100 customers, we compare it with the results of the monodirec-
tional algorithms from the literature namely the TPA provided in Chapter 2 and
the BPC algorithm proposed by Desaulniers et al. (2016). Our observations on the
results are summarized in Table 3.7. are as follows:

• All instances involving 25 customers are solved optimally by all algorithms.
However, the Pulse algorithm is significantly slower than the others.

• Considering the instances with 50 customers, the Pulse algorithm solves at
least one less instance compared to others for both MP and SP cases. Never-
theless, in MP problem, it achieves the shortest average computation time of
all.

• In the MP case with instances including 100 customers, the Pulse algorithm
solves six and four more instances compared to TPA and the BPC, respectively.
Moreover, it runs on the average 52% faster compared to TPA and only 7%
slower compared to the BPC algorithm.

• In the SP problem and instances with 100 customers, the Pulse algorithm
solves one and two more instances compared to TPA and the BPC algorithm,
respectively. It runs on average 25% faster than TPA, but around two times
slower than the BPC algorithm.

• The results also demonstrate the efficiency of the Pulse algorithm on the ran-
domly located data sets such that the Pulse algorithm solves at least as many
R-type instances as the others for each experiment.

One reason for the higher performance of the Pulse algorithm on R-type of instances
can be related to the setting in which ng-route relaxation is not implemented. Con-
sidering ng-route based BP algorithms, visiting a customer multiple times can lead
the algorithm to return to the promising neighborhoods. Thus, the ng-route algo-
rithm provides excellent results for the instances that include geographically clus-
tered customers (C-type). However, the method can be less efficient for R-type in-
stances since the chance of returning to unpromising neighborhoods is often greater
for R-type compared to C-type.

In comparison with the other exact algorithms, the Pulse algorithm is particularly
effective for the MP case with 100-customer instances.

We also evaluated the performance of the Pulse algorithm by using one branching
rule only on the MP problem instances. The efficiency of the hierarchical branching
procedure proposed here can be evaluated by benchmarking the results obtained by
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Pulse0 with the results of the experiments including only one branching rule. For
the instances with up to 50 customers, the performances of the two approaches are
similar. However, for the 100-customer instances Pulse0 containing three branching
rules runs on the average 30% faster compared to the version including one branching
rule.

Table 3.8. New and improved solutions

Problem Variant n Instance BKS Bound ∆ (%) t (s)
MP 100 RC101 163949 163757 4.25 63.1
SP 100 RC101 n/a 173326 4.45 68.2
SP 100 RC106 140885 140022 4.85 1877.5

Table 3.8. presents the results of the instances for which either the BKS is improved
or a solution is introduced to the literature for the first time. The fourth column
reports BKS values reported in Chapter 2. The best solution value obtained by
Pulse0 is provided in the fifth column. The last column reports the computation
time in seconds. The full set of results is provided in Appendix B.

3.3. Conclusion

In this chapter, we modified the Pulse algorithm to solve the EVRPTW. The al-
gorithm was improved by using the following acceleration methods: (i) terminating
the labeling algorithm when the number of efficient routes at the depot exceeds a
threshold value, (ii) applying an Intermediate Column Pool (ICP) to store routes
that are sent to RLPMP yet, (iii) implementing the Integral Master Problem (IMP)
at the root node of the Branch-and-Price (BP) to improve the upper bound and (iv)
employing the Augmented Node (AN) method to eliminate visits to dominated sta-
tions. Moreover, a branching procedure was implemented by including three rules:
branching on the number of routes, on the number of recharges, and on the arc-flow
values.

The computational experiments include two main parts: the preliminary tests for
determining the most suitable values of the parameters and the complete exper-
iments which analyze the performance of the algorithm for all instances and two
problem variants. We reported the results of the preliminary tests conducted to de-
termine the ICP parameters and the bound on the complete routes for stopping the
pricing subproblem prematurely. After determining the values of these parameters,
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the algorithm with and without the AN approach was evaluated for all and both
problem cases. The results show that the AN method implemented in the Pulse
algorithm is effective only for small-sized data sets.

The results of the Pulse algorithm without using the AN approach, Pulse0, were
compared to those obtained by Desaulniers et al. (2016) and the results favor Pulse0

in both MP and SP problem over the instances with 100 customers. In addition,
Pulse0 introduced three new solutions to the literature. The numerical experiments
certify that even though the Pulse procedure has similarities with labeling algo-
rithms, the specific pruning mechanisms like the bounding method and rollback
pruning provide smarter exploitation of the problem network.

The methods proposed in this chapter can be further improved by implementing the
network reduction techniques to solve larger problem instances. Additionally, future
research may also focus on solving extensions of the EVRPTW such as the versions
considering multiple recharge technologies and uncertainties related to service and
recharging times. The Pulse algorithm can be improved using parallel computing
techniques and valid inequalities.
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4. A BRANCH-AND-PRICE ALGORITHM FOR THE ELECTRIC

VEHICLE ROUTING PROBLEM WITH FLEXIBLE DELIVERY

In this chapter, we propose an effective Branch-and-Price (BP) algorithm to solve
the Electric Vehicle Routing Problem with Flexible Delivery (EVRP-FD) introduced
by Sadati et al. (2022). In the EVRP-FD, the fleet comprises of identical electric
vehicles (EVs) and customers can be associated with several delivery locations for
each of which a time window is provided. Each day the EVs are dispatched from a
central depot with full batteries to serve each customer exactly once at one of their
locations within the provided time window. The EVs can be recharged at charging
stations that are assumed to be uncapacitated but scarce. The aim of the EVRP-FD
is to minimize the total distance traveled while satisfying capacity and time window
constraints.

To the best of our knowledge, Sadati et al. (2022) is the only study related to
the EVRP-FD in the literature. The authors formulate a mathematical model and
develop a hybrid variable neighborhood search method together with a tabu search
mechanism to solve it. Additionally, the study introduces new instances for the
EVRP-FD and provides a computational study evaluating the performance of the
algorithm on these instances and investigating the effect of several parameters such
as fixed cost, freight capacity, charger type, and battery capacity on the solution
characteristics.

Little research has been conducted which addresses the VRP with flexible delivery
options. The first study related to the concept of flexible options for delivery is pre-
sented by de Jong et al. (1996). The article addresses the VRP with Multiple Time
Windows (VRPMTW) in which customers can provide alternating time windows for
the delivery. Then, Doerner et al. (2008) develop a branch-and-bound method and
a heuristic algorithm to solve the VRPMTW and evaluate them by using a data set
including instances with up to 15 customers. Later, the problem is also addressed
by Favaretto et al. (2007), Belhaiza et al. (2014), and Beheshti et al. (2015) where
metaheuristic algorithms are proposed to solve it.
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The concept of flexible delivery locations is introduced as the VRP with Roaming
Delivery Locations (VRPRDL) by Reyes et al. (2017). In the VRPRDL, customers’
orders are delivered to one of their locations within the related time window. The
problem is also known as "trunk delivery" in which the demands of the customers
can be delivered to the trunk of their car which may be located in different places
at different periods of the day. The study also introduces the VRP with Home
and Roaming Delivery Locations (VRPHDL) serving the customers either at their
home locations anytime during the day or at one of the other locations within the
corresponding time window. The study suggests a two-phase heuristic method to
solve both problems. The objective is to minimize the total traveling cost which
is linearly related to the total distance traveled. Additionally, a new data set is
generated and the results of an extensive computational study on these instances
are included in the study.

Ozbaygin et al. (2017) presents a BP algorithm to solve the VRPRDL and the
VRPHDL. The authors apply the state-space augmentation method (Boland et al.,
2006) along with the label setting algorithm suggested by Feillet et al. (2004) to
solve the pricing subproblem of CG. The BP procedure is advanced with various
acceleration methods including premature termination of the labeling algorithm and
storage of non-dominant routes that were not sent to the linear relaxation of the
constrained main problem. Also, to deal with the tailing effect (the decrease in the
rate of improving the bounds towards the end of CG), the authors recommend using
Lagrange dual bounds and premature termination of CG. The performance of the
algorithm is evaluated by using both the instances provided by Reyes et al. (2017)
and newly generated 20 instances consisting of two variations of instances with 40
customers.

A generalized version of the VRPRDL, the VRP with Delivery Options (VRPDO) is
addressed by Tilk et al. (2021). In this problem, the customers have multiple delivery
options such as collecting their delivery from lockers and shops, using a reception
box and controlled access systems, and requesting a trunk delivery. The authors
develop a Branch-Price-and-Cut (BPC) algorithm to solve the problem. In addition,
a bidirectional ng-route algorithm is proposed to solve the pricing subproblem of the
BPC. Two sets of valid inequalities are proposed to reduce the integrality gap faster:
k-path inequalities (Kohl et al., 1999) and subset-row inequalities (Jepsen et al.,
2008). The study provides instances including up to 100 options and a computational
study evaluating the performance of the BPC procedure with the new instances.
Moreover, the results obtained for the VRPRDL and the VRPHDL are also reported
and the performance of the BPC algorithm is compared to that of the solution
procedure provided by Ozbaygin et al. (2017).
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We develop a BP algorithm employed with a Column Generation (CG) procedure
to solve the EVRP-FD. A bidirectional Pulse algorithm (Lozano et al., 2015) is
proposed to solve the pricing subproblem of the EVRP-FD. The algorithm needs to
preserve only a few labels during a CG iteration because of the depth-first search-
based exploitation of the digraph. The suboptimal paths can be eliminated by one
of the following strategies at the early stages of the exploitation: (i) the bounding
method which creates a bound matrix using lower bounds on the reduced costs found
for each node and discrete values of resource consumption, (ii) rollback pruning
method reevaluating whether the last node included to the path should be removed,
and (iii) infeasibility pruning method eliminating infeasible paths.

Our BP algorithm is promoted by employing several acceleration techniques: the
bidirectional search, IMP, ICP, and heuristic pricing (see Section 2.3.4). The effi-
ciency of the bidirectional search is widely benefited for solving shortest path prob-
lems (Pohl, 1971; Luby and Ragde, 1989; Righini and Salani, 2006). The second
technique, IMP, generates an upper bound for by solving the MILP formulation of
the master problem at the root node of the BPC tree. Moreover, the ICP stores the
routes with non-negative reduced costs which can be used in later iterations when
the dual variables change (Taş et al., 2014). We start each iteration of the CG by
employing the heuristic column generator (HCG) explained in Section 2.3.4.

The contributions of this chapter are summarized as follows.

• We provide a MILP formulation for the EVRP-FD and propose a BP algorithm
improved with the state-of-the-art methods to solve it.

• We present a modified version of the bidirectional Pulse algorithm explained in
Chapter 3 to solve the pricing subproblem of the CG algorithm. Additionally,
we improve the performance further by applying HCG before employing the
exact CG procedure.

• We present new benchmark instances with up to 120 customers, 470 locations,
and 13 stations. In addition, we provide an extensive computational study
evaluating the performance of the proposed procedure by using these instances.

The remainder of this chapter is organized as follows. Section 4.1 describes the
problem in detail. Section 4.2 explains the BP procedure. Section 4.3 provides
the details of the experimental study and discusses the numerical results. Finally,
concluding remarks are provided in Section 4.4.
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4.1. Problem Description

In the EVRP-FD, the customers whose demands, alternative delivery locations, and
related time windows are provided are served by using a homogeneous fleet of EVs.
EVs are dispatched from the depot at the beginning of each day with fully charged
batteries and return to the depot at the end of their tour. The fleet must respect
the time windows of the locations and the scheduling horizon represented by the
time window of the depot. The stations are identical in terms of charging speed and
cost and can be visited multiple times by different EVs. For the sake of simplicity,
we assume that the battery charging time is linearly proportional to the amount
of energy transferred. In addition, EVs are allowed to visit at most one station
along their route. This is a rational assumption since recharging the battery of EVs
more than once during the planning horizon may not be practical in urban logistics
operations.

The problem is defined on a complete digraph in which V = {1, ..., n} denotes the
set of all locations and A is the set of all arcs. The depot is represented by node 0
for the departures and by n + 1 for the arrivals. The set of customers is denoted by
Vc. The locations related to customer c are denoted by Lc. The demand of customer
c, qc, should be satisfied within one of the specified non-overlapping time windows
[ei, li] where i ∈ Lc. Note that qc is equal to qi for all i ∈ Lc. If an EV arrives at
location i before the earliest possible service time ei, it waits until ei. On the other
hand, no arrivals after the latest possible service time, li, are accepted for location
i.

The distance along arc (i, j) is denoted by dij where the triangular inequality is
satisfied. In case a vehicle visits a station s while traveling from node i to node j we
introduce dijs that represents the total distance traversed as dijs = dis + dsj − dij.
Additionally, tij denotes the time spent for traveling directly from node i to node j

where tijs = tis + tsj − tij.

The decision variables τ k
i and yk

i keep track of the start time of service and the
battery state of charge (SoC) of vehicle k at its arrival at node i, respectively. In
case vehicle k travels from node i to node j through station s, the decision variables
yk

ijs and Y k
ijs represent the battery SoC of that vehicle at its arrival at station s

and departure from station s, respectively. The binary decision variable xk
ij takes

the value 1 if vehicle k traverses arc (i, j) directly or through a station, and 0
otherwise. Furthermore, zk

ijs is a decision variable which takes the value 1 if vehicle
k traverses arc (i, j) through station s, and 0 otherwise. The mathematical notation
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is summarized in Table 4.1. .

Table 4.1. Mathematical notation

Sets
V Set of locations, V = {1, .., n}
Vc Set of customers,
Lc Set of locations of customer, c ∈ Vc

V0 Set of locations and the departure depot, V0 = V ∪ {0}
Vn+1 Set of locations and the arrival depot, Vn+1 = V ∪ {n + 1}
V0,n+1 Set of locations, the departure depot and the arrival depot, V0,n+1 = V0 ∪

{n + 1}
F Set of stations
K Set of EVs

Parameters
dij Distance along arc (i, j) ∈ A
tij Travel time along arc (i, j) ∈ A
qi Demand of location i, i ∈ V
[ei, li] Service time window at node i, i ∈ V0,n+1
C Vehicle freight capacity
Q Vehicle battery capacity
g Battery charging rate
h Energy consumption rate
tijs Detour time spent for visiting station s while traveling from node i to node j,

tijs = tis + tsj − tij , i ∈ V0, j ∈ Vn+1, s ∈ F
dijs Detour distance traversed by visiting station s while traveling from node i to

node j, dijs = dis + dsj − dij , i ∈ V0, j ∈ Vn+1, s ∈ F

Decision Variables
τk

i Service start time of vehicle k at customer i, i ∈ V , k ∈ K
yk

i Battery State of Charge (SoC) of vehicle k at its arrival at node i, i ∈ V0,n+1,
k ∈ K

Y k
ijs Battery SoC of vehicle k at its departure from station s if it travels from node

i to node j through station s, i ∈ V0, j ∈ Vn+1, s ∈ F , k ∈ K
yk

ijs Battery SoC of vehicle k at its arrival at station s if it travels from node i to
node j through station s, i ∈ V0, j ∈ Vn+1, s ∈ F , k ∈ K

xk
ij 1, if vehicle k traverses arc (i, j), directly or through a station, 0 otherwise,

i ∈ V0, j ∈ Vn+1, k ∈ K
zk

ijs 1, if vehicle k travels from node i to node j through station s, 0 otherwise,
i ∈ V0, j ∈ Vn+1, s ∈ F , k ∈ K

Below, we present a modified version of the EVRPTW formulation presented in
Section 2.2.

min
∑
i∈V0

∑
j∈Vn+1,j ̸=i

∑
k∈K

(
dijxk

ij +
∑
s∈F

dijszk
ijs

)
(4.1)

subject to
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∑
k∈K

∑
i∈Lc

∑
j∈Vn+1,j ̸=i

xk
ij = 1, c ∈ Vc, (4.2)

∑
i∈V0,i ̸=j

xk
ij −

∑
i∈Vn+1,i ̸=j

xk
ji = 0, k ∈ K, j ∈ V0,n+1, j ̸= i, (4.3)

∑
s∈F

zk
ijs ≤ xk

ij , k ∈ K, i ∈ V0, j ∈ Vn+1, (4.4)

τk
i + tijxk

ij +
∑
s∈F

(
tijszk

ijs + g
(
Y k

ijs − yk
ijs

))
− l0(1− xk

ij) ≤ τk
j ,

k ∈ K, i ∈ V0, j ∈ Vn+1, i ̸= j,

(4.5)

ej ≤ τk
j ≤ lj , k ∈ K, j ∈ V0,n+1, (4.6)∑

i∈V

qi

∑
j∈Vn+1,j ̸=i

xk
ij ≤ C, k ∈ K, (4.7)

0 ≤ yk
j ≤ yk

i − hdij + (Q + hdij)
(

1− xk
ij +

∑
s∈F

zk
ijs

)
, k ∈ K, i ∈ V0, j ∈ Vn+1, i ̸= j,

(4.8)

yk
j ≤

∑
s∈F

(Y k
ijs − hdsjzk

ijs) + Q

(
1−

∑
s∈F

zk
ijs

)
+ Q(1−xk

ij),

k ∈ K, i ∈ V0, j ∈ Vn+1, i ̸= j,

(4.9)

yk
ijs ≤ yk

i − hdiszk
ijs + Q(1− xk

ij), k ∈ K, s ∈ F, i ∈ V0, j ∈ Vn+1, i ̸= j, (4.10)

0 ≤ yk
ijs ≤ Y k

ijs ≤ Qzk
ijs, k ∈ K, s ∈ F, i ∈ V0, j ∈ Vn+1, i ̸= j, (4.11)∑

s∈F

∑
i∈V0

∑
j∈Vn+1,j ̸=i

zk
ijs ≤ 1 k ∈ K, (4.12)

xk
ij ∈ {0, 1}, k ∈ K, i ∈ V0, j ∈ Vn+1, i ̸= j, (4.13)

zk
ijs ∈ {0, 1}, k ∈ K, i ∈ V0, j ∈ Vn+1, s ∈ F, i ̸= j. (4.14)

The objective (4.1) is to minimize the total distance traveled. Constraints (4.2)
guarantee that customers are visited exactly once in one of their locations. Flow
balance is guaranteed by constraints (4.3). Constraints (4.4) ensure that at most one
station is visited between each pair of locations. Constraints (4.5) enforce the time
feasibility of arcs emanating from the locations and the depot. Constraints (4.6) en-
sure that each node is served within its time window. Additionally, constraints (4.7)
assure that the vehicle capacity is not exceeded. Battery SoC consistency through-
out the route is satisfied by constraints (4.8) - (4.10). In particular, constraints
(4.8) guarantee the battery feasibility at locations and the depot. Constraints (4.9)
guarantee the battery feasibility at node j if a station is visited between nodes i

and j and determine the amount of energy transferred to the battery. Battery fea-
sibility on the arrival at the stations is provided by constraints (4.10). If a station
is not visited, constraints (4.11) guarantee that the related charging variables take
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the value of 0. Constraints (4.12) limit the number of recharges on each route by
one. Constraints (4.13) and (4.14) define the binary decision variables.

4.2. Solution Methodology

The BP algorithm is initialized by applying the preprocessing rules and the greedy
construction algorithm reported in Section 2.3 to eliminate infeasible arcs from the
problem network and to find an initial feasible solution, respectively.

We develop a BP method in which a CG algorithm is solved at each branch. The
master problem of the CG is the set partitioning formulation given by (4.15) - (4.17).
In this formulation, the set of all feasible routes starting from the departure depot
(node 0) and ending at the arrival depot (node n+1) is represented by Ω. cp denotes
the cost of route p and apc is equal to 1 if route p visits a location of customer c and
0 otherwise. Moreover, θp is a binary decision variable that takes the value of 1 if
route p is part of the solution and 0 otherwise.

min
∑
p∈Ω

cpθp (4.15)

subject to
∑
p∈Ω

apcθp = 1, c ∈ Vc, (4.16)

θp ∈ {0, 1}, p ∈ Ω. (4.17)

The objective function (4.15) minimizes the total cost. Constraints (4.16) ensure
that exactly one location of each customer is visited. Lastly, constraints (4.17) define
the binary decision variables. Only a subset of routes, ΩR, is evaluated at each CG
iteration (see Section 2.3 for the detailed description of CG).

The MILP formulation (4.1)-(4.14) can be separated for each vehicle k by using
Danzig-Wolfe decomposition. This problem denotes the elementary shortest path
problem with resource constraints. The CG starts by solving the Restricted Lin-
ear Programming Master Problem (RLPMP) where only the routes generated by
the initial feasible solution are included in ΩR. At each CG iteration, the pricing
subproblem aims at producing routes with negative reduced costs that can improve
the current solution and utilizes the values of the dual variables obtained from the
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RLPMP to calculate the reduced costs of paths. The reduced cost c̄p associated
with route p is calculated as c̄p = cp −

∑
c∈Vc

apcπc where πc is the value of the dual
variable associated with the set partitioning constraint of customer c. The CG ends
when the labeling algorithm cannot produce any more routes with negative reduced
costs.

4.2.1. Solving the Pricing Subproblem

We propose the Pulse algorithm (Lozano et al., 2015) to solve the pricing subproblem
of the BP method. The Pulse algorithm explores the network and generates partial
paths until they reach the depot or are eliminated by a pruning strategy. It consists
of two general steps: the first stage involves a bounding procedure that finds lower
bounds on the reduced cost given an amount of resource consumption for each node.
In the second step, the routes with negative reduced costs are recursively generated
and the solution space is implicitly enumerated.

After applying the bound method, the algorithm begins exploring the location-based
digraph at the depot node, travels throughout the outgoing arcs of each visited
node using depth-first search structure, and stores the resulting partial path p, the
current node i, the reduced cost c̄p, and the cumulative consumption values for each
resource. The first resource W load

i is the freight load of path p. Note that, the
demand of customer c can be considered as the demand of location i, where i ∈ Lc.
The second resource is time and measured by using a combination of three time
related resources, T tMin

i , T tMax
i , and T rtMax

i which are related to the arrival time
to node i under different recharging rules and recharging time, as in the generic
labeling algorithm provided in Chapter 2.

The Pulse algorithm utilizes three pruning strategies to discard suboptimal partial
paths at the early stages of the search. The first strategy is infeasibility pruning
which eliminates a path if it is infeasible. The infeasibility occurs if one of the
following situations happens: more than one location of a customer is visited, the
arrival time considering battery feasibility is later than the upper bound of the time
window of the location i, T tMin

i > li, the arrival time considering battery feasibility
is later than the arrival time considering time window feasibility T tMin

i > T tMax
i ,

the cumulative load exceeds load capacity of the vehicles C, W load
i > C, and the

maximum required recharging time is greater than the recharging time for an empty
battery, T rtMax

i > gQ.
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The second pruning strategy is a bound check procedure that eliminates paths if the
summation of their reduced costs and the lower bound obtained with the bounding
procedure is greater than a continuously updated global bound on the reduced cost of
a complete route, c̄p∗. The bounding method finds conditional lower bounds on the
reduced cost of paths for every node and for all discrete values of time consumption.

The last pruning strategy is called rollback pruning which checks the last choice
made in the following fashion. Consider a path p1 from the depot to node i which
travels to node k and arrives at node j. The rollback pruning strategy reevaluates
the decision of visiting node k before node j in the following way. An alternative
path p2 visits the same nodes in the same order with p1 until node i and then it
travels to node j.

We refer the interested reader to Section 3.1 for the details of the bounding proce-
dure, rollback pruning strategy, and the exploitation procedure.

4.2.2. Branching

When the CG ends with a fractional solution, two new branches are created from
the currently solved tree node. Among the arcs which have a fractional flow value,
we select the arc having a flow value close to 0.5. The total flow for each arc is
calculated as fij = ∑

k∈K xk
ij where xk

ij is the flow of arc (i, j) of route operated by
vehicle k and computed by using the RLPMP solution (Kallehauge et al., 2005).
More details are provided in Section 2.3.2.

The branch-and-bound tree is enumerated using the depth-first search strategy since
several studies in the literature state that it is more effective compared to the
breadth-first search for solving the VRPTW variants with a BP algorithm (Taş
et al., 2014; Desaulniers et al., 2016).

4.2.3. Acceleration Methods

The Pulse algorithm is employed with the BP procedure which is enhanced with
several acceleration methods including the IMP, ICP, and terminating the route
generation prematurely. We use IMP to generate an upper bound by solving the
integer formulation of the master problem when the root node of the BP tree is
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completely solved or the time limit has been reached before the root node of the BP
tree is not completed. In the second case, the IMP provides a feasible solution. We
report the results of this approach separately in the computational study to provide
a reference for future research.

ICP stores the complete routes that have not been sent to the RLPMP. There are
two parameters related to the ICP: ncol and niter denote the limit on the number of
routes stored in the pool and the maximum number of iterations that each column
can be stored, respectively. At each iteration of CG, the reduced cost of each route
in ICP is recomputed by using the last dual variables obtained by the RLPMP. If
the algorithm finds routes with negative reduced costs, they are sent to RLPMP
which is then run again.

The subproblem is terminated prematurely when the number of routes at depot with
negative reduced costs reaches a predetermined threshold value, nrt. We determine
the value of this parameter to limit the number of routes with negative reduced costs
sent to the RLPMP by implementing preliminary tests on a subset of instances.

In the rest of this section, the details of the bidirectional search mechanism and the
heuristic labeling algorithm are provided.

4.2.3.1. Bidirectional Search

The details of the forward search are provided in Section 4.2.1. Additionally, we
implement a backward search that starts from the arrival depot and finishes at the
departure depot. Each path starts at time l0 and the time is decreased as nodes are
visited.

Let Lp = (W load
i , W tMin

i , W tMax
i , W rtMax

i , wp, BV
p ) be the label of the backward path

p. The definitions of W load
i , wp and BV

p are similar to those given for T load
i , ap and

VV
p , respectively (see Section 4.2.1). Moreover, W tMin

i , W tMax
i and W rtMax

i are
used to manage the arrival time and the battery capacity as before. The related
formulation is the same as the formulation provided in Section 2.3.4.3 for backward
labeling.

Forward paths and backward paths are extended until a predefined time M ∈ (e0, l0).
The search stops and the label of the path p is saved when T tMin

i and W tMin
i , are

less than or equal to M for forward and backward labeling, respectively. A forward
label and a backward label at a node are combined if the conditions (4.18)-(4.21)
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hold.

T load
j + W load

j − qj ≤ C, (4.18)

V i
p + Bi

p ≤ 1 ∀i ∈ V0,n+1\{j}, (4.19)

T tMin
i + Zi ≤ W tMin

i , (4.20)

Zi ≤ (T tMax
i − T tMin

i ) + (W tMin
i −W tMax

i ) (4.21)

where Zi = max(0, T rtMax
i −W rtMax

i −gQ) denotes the time required at a station for
recharging the minimum amount of energy to ensure that the battery SoC is never
negative on the route (Desaulniers et al., 2016). Condition (4.18) states that the
total load of a vehicle cannot exceed its freight capacity. Condition (4.19) ensures
that each location is not visited more than once. Condition (4.20) guarantees that
the time window of node i is respected. Condition (4.21) states that the minimum
required recharging time cannot exceed the available route time. Note that this
condition is not checked if node i represents a recharging station.

4.2.3.2. Heuristic Pricing

Heuristic column generator (HCG) is an ng-route (Baldacci et al., 2012) based
method (see Section 2.3.4 for the details related to HCG). We propose an enhanced
CG procedure starting with the HCG to effectively determine a good upper bound
to the RLPMP. First, the HCG produces routes that feed the RLPMP until no more
columns with negative reduced costs can be found. Then, the bidirectional Pulse
algorithm is employed as long as the algorithm generates at least one route with a
negative reduced cost.

4.3. Computational Study

In this section, we provide the results of the extensive computational study evalu-
ating the performance of our BP procedure. We evaluated the performance of the
BP algorithm on all instances and two problem variations. These variations were
obtained according to the VRPRDL and the VRPHDL addressed by Reyes et al.
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(2017) and Ozbaygin et al. (2017). We solved extensions of these problems by uti-
lizing a fleet of EVs. Although our main study regards single (partial) recharge (SP)
per route, we also performed experiments with multiple-partial (MP) case which
allows recharging more than once en route. Nevertheless, for the MP problem, we
assume that only one station can be visited between each customer pair, since trav-
eling from one station to another for recharging is not practical in urban logistics.
For MP problem, constraints 4.4 is added to the pricing subproblem and constraints
4.12 are removed from it.

We used JAVA (using IntelliJ Idea, 2020) language to implement the BP algorithm.
The linear programming models were solved by using IBM ILOG CPLEX 12.9 (IBM,
2020). The computer was on Windows 10 Pro and had an Intel Core i9 processor
running 3.6 GHz with 64 GB RAM allocation.

In the following, first a detailed explanation of data generation is provided. Then,
we present the results of the parameter tuning tests applied to determine the values
of the parameters associated with the bound on terminating the subproblem pre-
maturely and with the ICP. Next, we provide detailed solutions for the EVPR-FD
and EVRP-FDH and report the results of the experiments performed with the MP
relaxation. Finally, we present the feasible solutions obtained for the instances that
cannot be solved by using the BP procedure. The computational time was limited
to two hours for the instances with up to 60 customers, and 12 hours for the in-
stances with 120 customers. Additionally, the triangular inequality was obtained by
solving all-pairs shortest path problem before the BP procedure begins as suggested
by Ozbaygin et al. (2017).

4.3.1. Data Generation

For the VRPRDL, the literature provides two benchmark data sets reported by
Reyes et al. (2017) (Set 1) and Ozbaygin et al. (2017) (Set 2). In both sets, customers
start and finish the day at their home locations. In addition, a customer can be
linked to a maximum of six locations. In Set 1, the locations were placed randomly
in a circle around the customer’s home location with a predefined radius. The set
consists of 40 instances with the following sizes: 5 instances with 15 customers, 5
instances with 20 customers, 10 instances with 30 customers, 10 instances with 60
customers, and 10 instances with 120 customers. Moreover, the instances with 60
customers have up to 237 locations whereas instances with 120 customers include
up to 470 locations.
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Set 2 was generated to investigate the effect of the distances of service locations to
the depot and consists of two variations of instances with 40 customers (each variant
has 10 instances). The first variation of these instances was obtained by using the
same instance generation mechanism as Reyes et al. (2017). In the second variation,
the instance generation procedure was not altered for the radius of the circular area
on which the locations are placed randomly. However, the center of the area was
moved to the middle of the line connecting the customer’s home location to the
warehouse. This increases the distance between the home location and the other
locations for each customer. Thus, the time windows were tightened to make sure
customers can visit all of their locations and return to home locations during the
planning period. More specifically, the width of the time windows in Set 1 are 23%
wider on average compared to that of Set 2.

We generated the EVRP-FD instances by benefiting from the properties of both Set
1 and Set 2 instances described above.

We assume that the fleet considered for the experiments consists of Mercedes EQV
(Mercedes-Benz, 2021). This EV has a driving range of 300 km and a battery energy
capacity of 90 kWh that can be effectively used. Therefore, the discharging rate is
computed as 90/300 = 0.3 kWh/km. We consider chargers with 90kW power.

The time horizon is set to 12 hours in the instances provided by Ozbaygin et al.
(2017). However, the data set includes some customers whose goods cannot be
delivered to any of their locations within 12 hours by using a Mercedes EQV, since
these locations are placed more than 150 km away from the depot and EVs need to
recharge at least once to complete a round trip starting from the depot and visiting
these locations next. In such circumstances, the total route time including the
recharging time exceeds 12 hours. We eliminate this infeasibility by setting the time
horizon to 13 hours in all instances and shifting the time windows of the location
that has the latest time window closing.
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Figure 4.1. Representation of stations on the Cartesian coordinate system

We included recharging stations into the data in the following fashion. Uniform
random numbers are used to generate x and y coordinates of the stations for which
we consider that a round trip starting from the depot and visiting a station is
feasible with a full battery. We placed three stations at each region in the Cartesian
coordinate system and there is a charging station at the depot. The locations of
these 13 stations are fixed for all data sets. A representation of the locations of the
stations and the customers of a randomly selected instance is provided in Figure
4.1. .

4.3.2. Parameter Tuning

We conducted preliminary tests to determine the limit on the number routes sent
to the RLPMP, nrt, and to obtain the values of the ICP parameters ncol and niter.
We only considered the EVPR-FD and a subset of six instances where we randomly
selected four instances from Set 1 (two instances with up to 30 customers and two
instances with 60 customers) and two instances from Set 2 (with 40 customers).

Table 4.2. displays the results of the tests conducted for the parameter nrt.
Columns Bound, t (s) and ∆ (%) indicate the best upper bound, the average compu-
tational time in seconds, and the relative integrality gap, respectively. The relative
integrality gap is the gap between the best upper (z∗) and the best lower (zlb) bounds
and is calculated as 100 z∗−zlb

zlb . Note that, the bound and the relative integrality gap
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are not displayed for each test separately in the tables provided in this section since
they remain the same for different values of the parameters. Moreover, when an
instance could not be solved optimally within the time limit, the run time of two
hours was considered when computing the average run time.

nrt was determined as five for the bidirectional labeling algorithm applied to solve
the EVRPTW (see Section 2.4). Hence, we started the evaluation by assessing
nrt = 5 and considered the values nrt = {5, 10, 20, 50}. While tuning nrt, the ICP
parameters ncol and niter was fixed to 50 and 2 as suggested in Section 3.2.

Table 4.2. Results of the preliminary tests conducted to determine nrt

Instance Bound ∆ (%)
t (s)

nrt=5 nrt=10 nrt=20 nrt=50
E10 1395 0.00 1.2 1.3 0.6 1.5
E19 1992 4.35 8.6 7.9 7.6 9.1
E21 3060 0.00 315.0 305.9 160.3 711.7
E26 2882 3.72 224.1 181.5 169.4 248.7
E41.v1 2706 3.65 63.0 99.1 23.4 37.1
E43.v2 1848 0.27 619.1 482.4 749.0 445.4
All 2.00 205.2 229.5 185.0 280.6

According to Table 4.2. , setting nrt = 20 provides the smallest average computa-
tional time, that is 11%, 24%, and 51% shorter compared to that obtained when
nrt is set to 5, 10, and 50, respectively. Thus, we set nrt to 20 for the following
computational study.

Table 4.3. Results of the preliminary tests conducted to determine ncol

Instance Bound ∆ (%)
t (s)

ncol=25 ncol=50 ncol=100
E10 1395 0.00 1.3 0.6 1.2
E19 1992 4.35 7.9 7.6 8.2
E21 3060 0.00 291.8 160.3 323.9
E26 2882 3.72 227.2 169.4 180.4
E41.v1 2706 3.65 80.2 23.4 99.6
E43.v2 1848 0.27 7200.0 749.0 1206.3
All 2.00 1301.4 185.0 303.3

Table 4.3. provides the results of the tests conducted for the parameter ncol by
using the same subset of instances. ncol = 50 was determined by the parameter
tuning test in Section 3.2. Therefore, we considered the values ncol = {25, 50, 100}
and the smallest average computational time was obtained when we set ncol to 50.
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We further observe that the average run time of the algorithm is 86% and 39%
shorter when ncol equals 50 compared to that obtained when the parameter is set
to 25 and 100, respectively.

Table 4.4. Results of the preliminary tests conducted to determine niter

Instance Bound ∆ (%)
t (s)

niter=1 niter=2 niter=3
E10 1395 0.00 1.2 0.6 1.0
E19 1992 4.35 7.2 7.6 12.9
E21 3060 0.00 170.5 160.3 634.8
E27 2882 3.72 223.0 169.4 218.6
E41.v1 2706 3.65 35.0 23.4 32.3
E43.v2 1848 0.27 7200.0 749.0 604.8
All 2.00 1272.8 185.0 252.4

Lastly, we present the results of tests conducted to determine the value of the pa-
rameter niter in Table 4.4. . niter was set to 2 according to the parameter tuning
tests presented in Section 3.2. For the EVRP-FD, we considered niter = {1, 2, 3}
and the results favor when niter is equal to 2. Note that, the algorithm solves one
less instance when niter = 1 leading to 85% longer computational time compared to
the case when niter is set to 2.

We observe that niter have been set to 2 by all parameter tests in this dissertation.
Hence, we can conclude that this value is robust for niter and it is not altered when
the problem or the solution method changes. A similar conclusion can be made for
ncol. The value of 50 provides sufficiently good solutions for the instances including
at least 100 nodes in all EVRP variants and solution methods considered in this
dissertation.

4.3.3. Experimental Results for the EVRP-FD

In the following four tables (including two tables in the next section), we provide the
results for two separate experiments. The first experiment, denoted as Test-1, was
conducted by using the approach of Desaulniers et al. (2016) in which the algorithm
is terminated if one of the following conditions occurs: (i) all branches are solved
or fathomed, (ii) the time limit is reached, or (iii) the relative integrality gap is less
than the threshold value. The second experiment (Test-2) was carried out to find a
better bound for the instances solved by Test-1 if the solution obtained by Test-1
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had a non-zero relative integrality gap. Therefore, for Test-2, we did not provide a
threshold value for the relative integrality gap and ran the algorithm until (i) or (ii)
held.

The related results of the EVPR-FD instances are displayed in Tables 4.5. and
4.6. , for Set 1 and Set 2, respectively. Additional to the columns described in the
earlier section, #n and #b represent the number of customers and the total number
of branches used in the solution, respectively.

As Table 4.5. displays that all instances with up to 60 customers were solved
within the time limit by Test-1 and the average run time is 264.2 seconds. 17 of
these solutions are proven to be optimal since their relative integrality gaps are zero.
In addition, three instances with 120 customers were solved within 22513 seconds
on average.

Furthermore, we present optimal solutions for six instances with up to 60 customers
obtained by Test-2 and improved upper bounds for four instances that were already
solved by Test-1. Moreover, the Test-1 solution of E11 was proven to be optimal by
Test-2 (the upper bound in Test-1 is the same as the optimal solution obtained by
Test-2).
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Table 4.5. Results of the EVRP-FD for Set 1

Test-1 Test-2
Instance #n Bound #b t (s) ∆ (%) Bound #b t (s) ∆ (%)
E1 15 880 0 1.9 0.00
E2 1140 0 0.7 0.00
E3 998 0 0.7 0.00
E4 1037 0 0.7 0.00
E5 1838 0 0.3 0.00
E6 20 1303 0 1.6 1.76 1302 2456 506.3 0.00
E7 1178 0 4.2 3.92 1164 4647 7200.0 2.68
E8 1366 0 2.3 0.00
E9 1282 0 4.0 3.72 1266 988 229.2 0.00
E10 1395 0 0.6 0.00
E11 30 1928 0 6.6 0.63 1928 1354 1489.3 0.00
E12 1802 0 8.2 0.00
E13 1678 0 43.0 0.00
E14 1191 0 9.7 0.00
E15 1611 0 6.1 3.85 1606 7316 7200.0 3.17
E16 1931 0 11.0 0.00
E17 1985 0 5.89 0.88 1982 850 1102.1 0.00
E18 1834 0 5.0 0.00
E19 1992 0 7.6 4.34 1978 2242 7200.0 3.53
E20 1642 0 9.1 1.08 n/a
E21 60 3060 0 160.3 0.00
E22 2743 0 1411.5 0.27 2737 4 4087.4 0.00
E23 3655 0 2436.3 0.00
E24 3335 0 109.4 0.94 3333 369 7200.1 0.88
E25 2911 0 805.8 0.00
E26 4339 0 90.0 0.00
E27 2882 0 169.4 3.72 n/a
E28 3447 0 2436.4 0.00
E29 3468 0 99.3 3.74 n/a
E30 3893 0 77.5 0.07 3891 2 202.3 0.00
E32 120 4875 0 9791.3 0.64 n/a
E33 4556 0 29923.1 1.30 n/a
E35 4881 0 27823.9 1.84 n/a

In Table 4.6. , we report the results of the experiments for the instances in Set 2.
Considering Test-1, all instances were solved within the time limit and the average
computational time is 489.3 seconds. On the other hand, Test-2 solved four more
instances to optimality within an average of 1169.4 seconds. Furthermore, for three
more instances, it improved the upper bounds generated by Test-1 even though the
algorithm was not terminated within the run time limit.
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Table 4.6. Results of the EVRP-FD for Set 2

Test-1 Test-2
Instance Bound #b t (s) ∆ (%) Bound #b t (s) ∆ (%)
E41.v1 2706 0 23.4 3.65 n/a
E42.v1 2611 0 32.8 0.29 2606 16 292.0 0.00
E43.v1 2220 0 108.0 2.73 n/a
E44.v1 2114 0 100.1 2.62 2100 677 7200.0 1.94
E45.v1 2519 0 90.6 0.04 2518 4 161.0 0.00
E46.v1 2485 0 174.4 0.00
E47.v1 2640 0 31.6 3.60 n/a
E48.v1 3091 0 20.2 4.26 n/a
E49.v1 3188 0 10.9 0.00
E50.v1 2239 0 530.0 1.28 2223 11 7200.0 0.56
E51.v2 2141 0 56.0 4.97 2111 1034 7200.0 3.50
E52.v2 1908 0 76.8 1.43 1895 230 3294.4 0.00
E53.v2 1848 0 749.0 0.27 1844 2 930.1 0.00
E54.v2 1675 0 595.1 4.12 n/a
E55.v2 2250 0 5062.3 0.00
E56.v2 2360 0 216.6 0.16 n/a
E57.v2 1898 0 321.7 0.00
E58.v2 2285 0 542.0 0.00
E59.v2 2391 0 162.0 1.49 n/a
E60.v2 2194 0 882.3 0.40 n/a

To conclude, the BP algorithm solved all EVRP-FD instances (in Sets 1 and 2) with
up to 60 customers within 354.2 seconds by applying Test-1. This test provided
optimal solutions for 55% of those instances and the average relative integrality
gap is 2.15% over the instances for which a feasible solution could be obtained.
Combining both tests, we provide optimal solutions for 80% of the instances with
up to 60 customers.

4.3.4. Experimental Results for the EVRP-FDH

Tables 4.7. and 4.8. provide the results obtained for the EVRP-FDH over the
instances in Set 1 and Set 2, respectively.

According to the results presented in Table 4.7. , 19 instances with up to 30 cus-
tomers were solved within the time limit with Test-1 and the average run time is
454.6 seconds. 10 of those instances were proven to be optimal since their relative
integrality gaps were zero. In addition, the average relative integrality gap is 2%
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for the instances for which a feasible solution could be obtained. Moreover, two
instances with 60 customers were solved within 5874 seconds on average.

Test-2 includes six additional optimal solutions and their average computational
time is 1600.2 seconds. Additionally, the upper bound found by Test-1 for E18 was
improved by Test-2.

Table 4.7. Results of the EVRP-FDH for Set 1

Test-1 Test-2
Instance #n Bound #b t (s) ∆ (%) Bound #b t (s) ∆ (%)
E1 15 777 0 6.0 2.44 773 144 121.9 0.00
E2 1066 0 2.5 0.00
E3 998 0 3.1 0.00
E4 827 0 2.9 1.45 825 422 172.1 0.00
E5 1748 0 1.2 4.02 1714 7232 642.2 0.00
E6 20 1077 0 4.6 2.04 1077 8224 6604.2 0.00
E7 995 0 41.8 0.75 994 114 896.4 0.00
E9 998 0 29.1 0.00
E10 1110 0 38.5 0.00
E11 30 1522 0 683.6 1.34 1522 194 7200.0 0.98
E12 1602 0 932.0 0.00
E13 1563 0 308.3 0.00
E14 1076 0 406.8 0.84 1068 2 1164.3 0.00
E15 1289 0 1718.9 0.00
E16 1293 0 2909.4 0.00
E17 1460 0 147.1 0.00
E18 1585 0 166.7 4.30 1571 886 7200.0 3.08
E19 1448 0 216.2 2.08 n/a
E20 1575 0 260.6 0.00
E21 60 2534 0 4742.4 0.72 n/a
E27 2373 0 7005.4 1.19 n/a

In Table 4.8. , we report the solutions of the EVRP-FDH over the instances in Set 2.
The BP algorithm applied with the Pulse algorithm solved 12 instances with Test-1.
The average computational time of these solutions is 1949.7 seconds. The relative
integrality gaps are zero for five instances (optimal solutions) whereas the average
of that is less than 1% for the remaining instances (feasible solutions). Further, we
introduce an additional optimal solution by using Test-2.

Overall, the BP algorithm solved 80% of the EVRP-FDH instances with up to 30
customers to optimality. 63% of those solutions were obtained by Test-1.
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Table 4.8. Results of the EVRP-FDH for Set 2

Test-1 Test-2
Instance Bound #b t (s) ∆ (%) Bound #b t (s) ∆ (%)
E41.v1 2454 0 112.3 0.00
E42.v1 2369 0 239.5 0.00
E45.v1 2489 0 542.3 0.00
E46.v1 2456 0 1978.0 0.00
E47.v1 2250 0 1230.2 3.62 n/a
E48.v1 2810 0 451.8 0.21 n/a
E49.v1 3146 0 362.0 0.00
E51.v2 1949 0 3567.6 0.41 n/a
E56.v2 2210 0 4513.3 1.04 n/a
E57.v2 1758 0 6391.5 0.29 n/a
E58.v2 2235 0 780.2 0.72 2228 2 7200.0 0.41
E59.v2 2328 0 3227.9 0.09 n/a

The EVRP-FDH has wider time windows in general. It is known that solving
the instances with tight time windows is easier than solving those with wide time
windows (Dell’Amico et al., 2006; Bettinelli et al., 2014). Hence, the algorithm
performed better for the EVRP-FD than the EVRP-FDH, considering the average
computational times and the number of instances solved.

4.3.5. Summary of Branch-and-Price Experiments

We present a summary of the results of the computational experiments in Table 4.9.
, where the columns #n, #solved, #optimal, #ImpBound, and ∆ (%) represents the
number of customers, the number of instances solved, the number of optimal solu-
tions, the number solutions improved by Test-2, and the average relative integrality
gap, respectively.

Considering both problem types, we evaluated our algorithm on 100 instances with
up to 60 customers and solved 85 of them. In total 88% of the EVRP-FD instances
were solved including all instances in Set-1 and Set-2 with up to 60 customers and
three instances with 120 customers. Moreover, Test-1 and Test-2 provide optimal
solutions for 77% of the Set-1 instances with up to 60 customers.

Considering the EVRP-FDH, we provide solutions for 85% of the instances with up
to 30 customers and 129 locations, 60% of the Set 2 instances, and two instances
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with 60 customers. Including the six optimal solutions found by Test-2, in total 89%
of the instances with up to 30 customers are proven to be optimal.

Table 4.9. Summary of results obtained by the branch-and-price algorithm

Type Set #n
Test-1 Test-2

#solved #optimal ∆ (%) #ImpBound #optimal ∆ (%)
EVRP-FD Set 1 ≤ 30 20/20 12 1.01 6 4 0.49

60 10/10 5 0.89 3 2 0.83
120 3/10 0 2.73 0 0 n/a

Set 2 40 (V1) 10/10 2 1.85 4 2 0.62
40 (V2) 10/10 3 1.28 3 2 0.91

EVRP-FDH Set 1 ≤ 30 19/20 10 0.97 6 6 0.18
60 2/10 0 0.96 0 0 n/a

Set 2 40 (V1) 7/10 5 0.55 0 0 n/a
40 (V2) 5/10 0 0.49 1 0 0.40

4.3.6. Results of the Multiple Recharge Experiments

In this section, we disregarded the restriction that each EV is allowed to be charged
only once, to investigate the effect of having multiple recharges (MP) on the perfor-
mance of the BP algorithm and the quality of the solutions. We provide the related
solutions in Table 4.10. for the instances for which MP obtained a better solution.
As in earlier sections, we performed two experiments denoted Test-1 and Test-2 rep-
resenting the experiments including the threshold value for the relative integrality
gap to terminate the algorithm prematurely and not including it, respectively.

We introduce 22 solutions in total for both EVRP-FD and the EVRP-FDH cases
by using the MP relaxation. Considering the EVRP-FD, for two instances namely
E44.v1 and E48.v1, MP relaxation provides a better bound than the SP case in
both experiments. Moreover, Test-1 achieved better bounds than the SP case for
six additional instances including three instances in Set-2 (E43.v1, E56.v2, and
E59.v2) and three instances with 120 customers that could not be solved for the SP
problem (E34, E38 and E40). For the instances with 120 customers, the average
computational time is 21026 seconds and the relative integrality gap is 2.73% on
average. Furthermore, Test-2 solved six EVRP-FD instances in total and improves
the SP solutions for all of them.
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Table 4.10. Results of the improved solutions with MP relaxation

Type Set #n
Test-1 Test-2

#solved #b t (s) ∆ (%) #solved #b t (s) ∆ (%)
EVRP-FD Set 1 E7 1178 0 7.0 3.97 1151 698 565.3 0.00

E9 1297 635 330.9 4.97 1269 5069 2827.9 0.00
E13 1676* 0 8.1 0.00
E20 1647 0 27.4 1.32 1639 1272 7200 0.83
E23 3653* 0 751.3 0.00
E24 3330 0 159.4 0.74 n/a
E34 4924 0 22033.1 3.40 n/a
E38 4577 0 23358.5 0.81 n/a
E40 4520 0 17686.5 3.98 n/a

Set 2 E43.v1 2219 0 494.9 2.79
E44.v1 2110 0 128.3 2.58 2101 621 7200.0 2.11
E48.v1 3088 0 43.9 4.43 3087 1476 7200.0 4.40
E54.v2 1681 8 748.8 4.23 1656 342 7200.1 2.68
E56.v2 2352 0 786.6 0.00
E59.v2 2386 0 109.9 1.26 n/a

EVRP-FDH Set 1 E21 2529 0 3374.7 0.52
E30 2461 0 5598.1 0.00

Set 2 E47.v1 2183* 0 3620.1 0.69 n/a
E48.v1 2804 0 6230.1 0.00
E51.v2 1941 0 4810.1 0.00
E59.v2 2327 0 806.7 0.00

* Solution includes routes with multiple recharges

The MP problem provides an additional optimal solution for an EVRP-FDH in-
stance, E30, that could not be solved in the SP case. In addition, the bounds of
five instances are improved by the first MP experiment (Test-1) and three of those
instances were solved to optimality.

Considering both experiments, we present optimal solutions for nine instances with
the MP problem. The optimal solutions of three instances including the EVRP-FD
instances E13, E23, and the EVRP-FDH instance E47.v1 contain routes with two
recharges. In the remaining solutions, all EVs visit at most one station during the
day. Removing the recharge restriction increases the search space for the algorithm,
resulting in better bounds for 26% of all instances solved with SP experiments, and
only three of those solved consist of routes with multiple station visits.

4.3.7. Results of the Heuristic Upper Bounding Experiments

In this section, we report the solutions obtained for the instances that cannot be
solved by using the BP procedure to provide a feasible solution (bound) for the
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following studies. We applied the IMP procedure to obtain an upper bound for
an instance if algorithm stops due to time limit and could not find any upper or
lower bounds. Shown by our preliminary experiments that applying IMP does not
consume significantly long time since the master problem contains only the set-
partitioning constraints. In Table 4.11. , we provide the corresponding results where
columns Bound and ∆i denote the upper bound found by the IMP and the percent-
age of the improvement from the initial solution, respectively.

Table 4.11. Upper bounds for the unsolved instances

Type Set Instance Bound ∆i (%)

EVRP-FDH Set 1 E22 2131 43.99
E23 2757 51.55
E24 2438 59.68
E25 2244 54.53
E26 2712 59.13
E29 2629 53.67
E30 2461 60.40

Set 2 E43.v1 2071 56.14
E44.v1 2001 52.09
E50.v1 2269 52.58
E53.v2 1811 44.57
E54.v2 2794 6.24
E55.v2 2207 47.07
E60.v2 2059 43.56

We provide upper bounds for 14 EVRP-FDH instances in total. For an instance,
the improvement from the initial solution is less than 10%. We obtained on average
51% improvement for the remaining instances.

4.4. Conclusion

In this study, we addressed a variant of the EVRPTW, the Electric Vehicle Rout-
ing Problem with Flexible Delivery (EVRP-FD). In the EVRP-FD, customers may
request their orders to be delivered to one of the predetermined delivery locations
within the corresponding time windows. Each day a homogeneous fleet of EVs is
dispatched from a central depot to serve each customer exactly once in one of their
locations within the provided time window. The EVs can be recharged at most once
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a day in the recharging stations which are uncapacitated but scarce. This study is
the first presenting a Branch-and-Price (BP) algorithm employed with a Column
Generation (CG) procedure to solve the problem. We utilized the Pulse algorithm
developed by (Lozano et al., 2015) to solve the pricing subproblem and enhanced it
by implementing a bidirectional search. The bidirectional search starts both from
the departure and arrival depots simultaneously which increases the efficiency of the
BP procedure significantly.

The BP algorithm was improved by employing several acceleration techniques be-
sides the bidirectional search including terminating the subproblem prematurely
when the number of routes with negative reduced cost reaches a predetermined
threshold, Integer Master Problem (IMP), Intermediate Column Pool (ICP), and
the heuristic column generation procedure. Limiting the number of generated routes
with negative reduced costs eases the algorithm since the pricing subproblem requires
more computational effort than solving the RLPMP for our problem. Moreover, the
IMP generating an upper bound for the problem at the root node of the BPC tree
enables obtaining solutions for most of the instances at the root node of the BP tree.
This method was also benefited when the BP algorithm could not find any bounds
for an instance within the time limit. ICP holds complete routes with non-negative
reduced costs which are reevaluated in the later CG iterations as the dual values
are updated. Furthermore, heuristic pricing was employed with HCG to reduce the
time spent on the exact labeling procedure.

In the computational study, we offered two data sets including 13 stations and up to
120 customers obtained by modifying the instances reported by Reyes et al. (2017)
and Ozbaygin et al. (2017). We generated instances for EVRP-FD and EVRP-
FDH variants by considering VRPRDL and VRPHDL cases developed by Reyes
et al. (2017), respectively. We applied parameter tuning tests on the EVRP-FD
instances to determine the values of the parameters associated with the bound on
terminating the subproblem prematurely and the ICP. With the tuned parameters,
our algorithm was evaluated by using both problem types and all instances. Two
separate experiments were conducted with a difference in the terminating conditions
of the algorithm. The branch-and-bound algorithm solved 88% of the EVRP-FD
instances and 53% of the EVRP-FDH instances. Moreover, we improved the bounds
of 22 instances by utilizing the MP relaxation in which the number of recharges per
route is not limited. Lastly, we report upper bounds for 14 instances by solving an
IMP at the root node for the instances that the BP could not obtain a solution.

When the MP and SP problem results are compared, the BP algorithm provided
better bounds for 18% of the EVRP-FD instances with MP relaxation and four
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additional solutions. Moreover, almost all of these solutions consist of routes with
single recharging (only three instances contain routes with multiple recharging).
Although those results show that allowing one recharge along a route is a realistic
assumption, it might be slowing down the algorithm regarding the search through
the promising neighborhoods. In conclusion, another approach for improving the
performance of the BP can be running the Pulse algorithm without the charging
limitation and not sending the routes with multiple recharges to the RLPMP.

For future research, we plan to employ valid inequalities and network reduction
techniques. In addition, we consider the parallel application of the bidirectional
Pulse algorithm. By means of the depth-first-search structure of the algorithm,
the problem network can be exploited parallel using multiple threads. Moreover, a
variant of the EVRP-FD which includes overlapping time windows for the customer
locations can be addressed.
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5. FINAL REMARKS

In this study, we addressed the EVRPTW and the EVRP-FD. We presented math-
ematical models for both problems, and adopted the state-of-the-art methods from
the literature. More specifically, exact and heuristic algorithms based on the CG
procedure that was embedded in BP or BPC schemes to effectively solve these
problems. We developed novel procedures all based on the Pulse algorithm or the
ng-route algorithm to solve the pricing subproblems of those methods. We provided
extensive numerical studies evaluating the performances of the proposed procedures.

In Chapter 2, we presented an exact and a heuristic algorithm based on the BPC
method to solve the EVRPTW. For both algorithms, the ng-route algorithm was
benefited to solve the pricing subproblem. We generated an effective heuristic
method by relaxing a label of the ng-route algorithm which significantly decreased
the computation time of the algorithm. We proposed an efficient CG procedure
for the exact method which consists of a heuristic labeling phase followed by the
ng-route algorithm. The performances of the algorithms were improved by using
the following methods: the bidirectional search during the route generation, the
ICP that stores the routes with non-negative reduced costs to be used in the next
iterations, the AN method that eliminates inefficient routes over the network, the
bounding method that eliminates partial paths using lower bounds on reduced costs,
and IMP method which helps to produce good upper bounds. Additionally, we lim-
ited the number of efficient routes since it speeds up solving the pricing subproblem
which requires more computational effort than solving the RLPMP. Furthermore, we
enhanced the BP by using a set of valid inequalities. We evaluated the algorithms on
a well-known data set that includes instances with up to 100 customers, introduced
21 new solutions to the literature, and improved solutions of two instances that have
already been provided in the literature.

In Chapter 3, we focused on the EVRPTW and developed a BP procedure for which
the pricing subproblem was solved by an effective label setting method known as
the Pulse algorithm. The algorithm was enhanced with the acceleration techniques
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proposed in Chapter 2. In the computational study, we analyzed the performance of
the algorithm with and without the AN approach for all instances for both single-
partial (SP) and multiple-partial (MP) variants. The results showed that the AN
method implemented in the Pulse algorithm is effective only for small-sized data
sets. Moreover, the results of the Pulse algorithm without using the AN approach,
Pulse0, were compared to those obtained by Desaulniers et al. (2016) and the Two-
Phased Algorithm (TPA) proposed in Chapter 2. The results favored Pulse0 in
both MP and SP variants over the instances with 100 customers since it solved
several more instances compared to other algorithms. In addition, Pulse0 introduced
three new solutions to the literature. The numerical experiments certify that even
though the Pulse procedure has similarities with labeling algorithms, the specific
pruning mechanisms like the bounding method and rollback pruning provide smarter
exploitation of the problem network.

In Chapters 2 and 3, we addressed the EVRPTW and proposed two different exact
algorithms. The main difference between the solution mechanisms was the label-
ing procedure which provided varying performances for different data types. In the
EVRPTW, there are three types of instances according to their geographic positions
on the digraph: random (R-type), clustered (C-type), and randomly clustered (RC-
type). We noticed that over the R-type of instances the performance of the Pulse
algorithm was better than that of the algorithms based on the ng-route method.
More specifically, the Pulse algorithm solved at least as many R-type instances as
the other methods for each experiment. One reason for the better performance of the
Pulse algorithm on R-type of instances can be presented as follows: in the ng-route
based BP algorithms, visiting a customer multiple times can lead the algorithm to
return to the promising neighborhoods and generate efficient routes faster. Thus,
the ng-route algorithm provides excellent results for the instances that include geo-
graphically clustered customers (C-type). However, the method can be less effective
for R-type instances since the chance of returning to unpromising neighborhoods
is often greater for these instances compared to C-type. Since the Pulse algorithm
does not rely on ng-route relaxation, it may be performing at least as good as the
other for R-type of instances.

Comparing the effectiveness of our algorithms for SP and MP variants, we observed
that limiting the number of recharges per route increased the performance of the ng-
route based algorithms proposed in Chapter 2 for the instances with 100 customers.
For this data set, both the TPA and the heuristic algorithm (monodirectional and
bidirectional versions) solved three more instances on average for the SP case com-
pared to the number of solutions they obtained for the MP problem. On the other
hand, the BP with Pulse algorithm proposed in Chapter 3 solved three more in-
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stances with 100 customers for the MP problem than for the SP problem. The rea-
son for this can be related to the search mechanisms used by the algorithms search
through the problem network. The ng-route based algorithms utilize a breadth-first
search structure and they simultaneously enumerate many partial paths. Since the
number of feasible routes increases in the MP variant, these algorithms need to keep
more labels at the same time which deteriorates the performance of the algorithm
directly. On the other hand, the Pulse algorithm uses a depth-first search structure
and keeps only one path and the related label at a given moment. When a path
visits a station for the second time the algorithm has to eliminate that path and
start from the beginning, thus, the time spent on obtaining that path is wasted.

In Chapter 4, we addressed the EVRP-FD which provides the customers the flexi-
bility to request their orders to be delivered to one of the predetermined locations
within the relevant time window. This is a more complex problem compared to the
EVRPTW since each customer can be associated with up to six locations. We pro-
posed an exceptional bidirectional version of the Pulse algorithm embedded in a BP
procedure to solve the EVRP-FD. The BP algorithm was improved by employing
the state-of-the-art acceleration techniques including terminating the subproblem
prematurely when the number of routes with negative reduced cost reaches a prede-
termined threshold, the IMP, the ICP, and the heuristic pricing with the Heuristic
Column Generator (HCG). First the heuristic pricing procedure was applied and
then the CG with the Pulse algorithm is employed since it was shown in Chapter
2 that HCG produces most of the efficient routes, and thus, significantly reduces
the time spent for the exact labeling procedure. We offered a data set including 13
stations and up to 120 customers obtained by modifying benchmark instances. We
evaluated the algorithm on these instances considering both SP and MP problem
variants and provided solutions for 85% of the instances with up to 60 customers
and up to 237 locations and 30% of the instances with 120 customers and up to 470
locations.

For the MP problem, the BP algorithm obtained better bounds for 18% of the
EVRP-FD instances that are solved with the SP case and provided four additional
solutions. Except for three instances, all these solutions consist of routes with sin-
gle recharging. Since most of the routes in the solutions include only one visit to
stations, allowing one recharge along a route is a realistic assumption. However, it
might be slowing down the algorithm regarding the search through the promising
neighborhoods. Thus, another approach for improving the performance of the BP
can be running the Pulse algorithm without the charging limitation and not sending
the routes with multiple recharges to the RLPMP.
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In future studies, the BP and BPC-based methods (TPA, HCG, and Pulse algo-
rithm) proposed in Chapters 2, 3 and 4 can be adapted to similar problems using
fleets of EVs such as the EVRPTW with flexible time windows and variants with
a capacity of charging stations. In this dissertation, we assumed that EVs cannot
serve a customer if they arrive later than the upper bound of the time window of
that customer. However, in reality, this assumption may be too strict to follow
for carrier companies and a problem including soft time windows can be studied in
which EVs may arrive after the upper bound of the time window but are punished
with a penalty cost. Additionally, the assumption of the linear recharging function
may not be applicable in real life and can be further investigated in the future for
both EVRPTW and EVRP-FD. Moreover, it is possible to strengthen algorithms
in various ways including generating the branch-and-bound tree using a best-first
branching technique which aims to select the most promising node to branch and
solve the pricing subproblem on a narrowed network first and apply the labeling al-
gorithm on the full network next. In this dissertation, we assumed that the chargers
are always available and the EVs can start recharging as soon as they arrive at a
station. However, in practice, the chargers may be busy recharging other vehicles.
Hence, the EVs may wait in queue for service. Future research within this context
may investigate the stochastic nature of the problem by considering queueing times
at stations. Furthermore, many companies prefer recharging their EVs at their depot
or dedicated stations because of security concerns regarding the cargo onboard and
driver idle times. Therefore, the problem can be extended to address the routing
and charge scheduling decisions of the fleet simultaneously.

The BP algorithm proposed to solve the EVRP-FD may be improved by employing
valid inequalities and implementing the bidirectional Pulse algorithm in a parallel
structure which allows utilizing multiple threads for route generation. Using the
depth-first-search structure of the algorithm, the problem network can be exploited
parallel by using multiple threads. Furthermore, an interesting research direction is
to address a variant of the EVRP-FD which includes overlapping time windows for
the customer locations.
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Appendix A. Detailed Results of the TPA and HCG

This appendix provides instance-based results of the computational analysis con-
ducted to evaluate both monodirectional and bidirectional versions of the TPA and
the HCG, and the multiple-partial recharge (MP) and the single-partial recharge
(SP) problem variants over the complete dataset. The columns Bound, ∆BKS (%),
#b, t(s), and ∆ (%) indicate the best solution value, the relative gap between our so-
lution and the best solution provided in the literature (Desaulniers et al., 2016), the
number of branches, the computation time in seconds, and the relative integrality
gap, respectively. Moreover, ∆T P A (%) under HCG denotes the relative gap between
the bound obtained by HCG and that obtained by TPA. If TPA does not provide
a lower bound within the run-time limit for an instance, the relative integrality gap
cannot be calculated. ∆BKS is not computed if the algorithm is not completed
within the time limit. Additionally, ∆T P A is computed only for the instances that
could be solved by both algorithms.
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Table A.1. MP problem results obtained by monodirectional algorithms for
25-customer instances

Ins.
TPA HCG

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆T P A (%) ∆BKS (%)
C101 62289 0 1.5 0.00 0.00 62289 0 1.3 0.00 0.00
C102 52169 0 8.38 0.00 0.00 52169 0 4.7 0.00 0.00
C103 34554 0 64.2 0.37 0.00 34554 0 25.7 0.00 0.00
C104 43192 0 79.7 0.00 0.11 43481 0 10.9 0.66 0.78
C105 52480 0 0.83 0.00 0.00 52480 0 0.7 0.00 0.00
C106 56002 0 1.25 1.93 0.72 56002 0 1.1 0.00 0.72
C107 50515 0 2.11 1.73 0.00 50515 0 1.9 0.00 0.00
C108 49482 0 1.95 0.00 0.00 49482 0 1.4 0.00 0.00
C109 44240 0 9.07 0.11 0.00 44654 0 4.6 0.93 0.94
RC101 72835 0 0.44 1.47 0.00 72835 0 0.4 0.00 0.00
RC102 63971 0 1.06 1.60 0.00 63971 0 0.8 0.00 0.00
RC103 55223 0 4.97 1.25 0.00 55223 0 3.4 0.00 0.00
RC104 51895 0 16.0 2.77 0.53 51895 0 7.4 0.00 0.53
RC105 58986 0 1.98 0.00 0.00 59037 0 1.0 0.09 0.09
RC106 54928 0 2.03 0.00 0.00 54979 0 1.3 0.09 0.09
RC107 49765 0 12.0 0.00 0.00 49765 0 4.6 0.00 0.00
RC108 47769 0 10.5 1.90 1.40 47769 0 5.5 0.00 1.40
R101 66146 0 0.17 0.00 0.00 66146 0 0.1 0.00 0.00
R102 43806 0 4.36 0.00 0.00 44048 0 1.5 0.55 0.55
R103 49310 0 6.33 0.24 0.00 49310 0 2.9 0.00 0.00
R104 35569 0 28.8 3.29 1.00 35569 0 14.6 0.00 1.00
R105 54407 0 0.78 0.01 0.00 54407 0 0.6 0.00 0.00
R106 48022 0 9.05 1.63 0.00 48022 0 6.0 0.00 0.00
R107 41114 0 69.9 0.52 0.00 41235 0 7.0 0.29 0.29
R108 42434 0 30.7 0.00 0.00 42548 0 8.9 0.27 0.27
R109 45351 0 2.8 1.61 0.00 45351 0 2.3 0.00 0.00
R110 40684 0 14.7 0.45 0.00 40684 0 10.1 0.00 0.00
R111 38736 0 18.7 4.01 1.17 38736 0 8.7 0.00 1.17
R112 38551 0 22.4 2.50 0.00 38551 0 10.6 0.00 0.00
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Table A.2. MP problem results obtained by monodirectional algorithms for
50-customer instances

Ins.
TPA HCG

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆T P A (%) ∆BKS (%)
C101 77150 0 13.2 0.00 0.00 77150 0 11.6 0.00 0.00
C102 77719 0 107.2 0.00 0.00 77719 0 66.2 0.00 0.00
C103 63783 0 969.5 3.27 n/a 63783 0 208.9 0.00 n/a
C104 55099 0 1660.7 n/a 0.00
C105 72980 0 12.6 0.00 0.00 72980 0 10.9 0.00 0.00
C106 73554 0 17.3 0.06 0.00 73554 0 15.1 0.00 0.00
C107 70412 0 27.2 0.00 0.00 70412 0 24.4 0.00 0.00
C108 72984 0 51.2 2.00 1.52 72984 0 25.2 0.00 1.52
C109 66897 0 104.2 1.62 0.00 66944 0 50.6 0.07 0.07
RC101 105800 0 6.0 4.30 0.61 105800 0 5.3 0.00 0.61
RC102 87543 0 99.3 0.00 0.00 87543 0 65.4 0.00 0.00
RC103 82364 0 181.9 1.29 0.17 82364 0 73.7 0.00 0.17
RC104 69430 0 1110.4 2.62 1.07 69430 0 219.5 0.00 1.07
RC105 97125 0 20.5 2.84 0.43 97125 0 13.1 0.00 0.43
RC106 86817 0 42.8 3.17 1.12 86817 0 22.4 0.00 1.12
RC107 78368 0 180.8 4.11 n/a 78368 0 59.1 0.00 n/a
R101 93065 0 2.3 0.28 0.05 93065 0 1.9 0.00 0.05
R102 84919 0 44.1 1.39 0.05 84919 0 32.7 0.00 0.05
R103 77801 0 94.9 0.81 0.00 78089 0 37.6 0.37 0.37
R104 62199 0 2953.6 3.56 n/a 62199 0 314.3 0.00 n/a
R105 83260 0 9.8 1.75 0.38 83260 0 7.9 0.00 0.38
R106 78934 0 160.0 1.96 0.00 78934 0 55.0 0.00 0.00
R107 67580 0 372.8 1.88 0.95 67580 0 203.7 0.00 0.95
R109 76758 0 65.3 2.08 0.48 76789 0 29.7 0.04 0.52
R110 71318 0 310.6 3.31 1.23 71318 0 135.9 0.00 1.23
R111 72026 0 194.3 0.46 2.23 72026 0 97.1 0.00 0.20
R112 59617 0 1746.6 2.09 1.65 59617 0 237.7 0.00 1.65
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Table A.3. MP problem results obtained by monodirectional algorithms for
100-customer instances

Ins.
TPA HCG

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆T P A (%) ∆BKS (%)
C101 104376 0 278.4 0.00 0.00 104376 0 260.4 0.00 0.00
C105 102786 0 612.8 4.57 1.15 102786 0 586.2 0.00 1.15
C106 102313 0 1638.5 4.46 1.46 102313 0 1567.6 0.00 1.46
RC101 163255 0 260.3 3.98 n/a 163255 0 77.7 0.00 n/a
RC102 151327 0 546.8 n/a 2.04
RC105 145921 0.0 2378.8 2.55 1.15 146849 0 165.7 n/a 1.79
R101 157560 0 44.5 0.62 0.11 159474 0 38.4 0.00 0.11
R102 142909 0 2199.6 0.66 0.34 143153 0 571.8 0.00 0.34
R105 131862 0 189.4 2.00 1.19 131862 0 147.7 0.00 1.19
R106 120760 0 2446.0 n/a n/a
R109 118843 0 349.5 n/a n/a
R110 109461 0 2655.5 n/a n/a
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Table A.4. SP problem results obtained by monodirectional algorithms for
25-customer instances

Ins.
TPA HCG

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆T P A (%) ∆BKS (%)
C101 62289 0 1.0 0.00 0.00 62289 0 0.8 0.00 0.00
C102 54130 0 4.0 0.00 0.00 54130 0 2.6 0.00 0.00
C103 34554 0 52.9 0.00 0.00 34554 0 11.9 0.00 0.00
C104 45968 0 16.6 0.00 0.00 45968 0 3.4 0.00 0.00
C105 53706 0 0.5 0.00 0.00 53706 0 0.4 0.00 0.00
C106 56002 0 0.6 1.93 0.42 56002 0 0.5 0.00 0.42
C107 50515 0 0.8 0.81 0.00 50515 0 0.7 0.00 0.00
C108 50915 0 1.2 0.00 0.00 50915 0 0.9 0.00 0.00
C109 49385 0 3.0 1.95 0.27 49516 0 2.4 0.00 0.27
RC101 76335 0 0.4 1.53 0.00 76335 0 0.3 0.00 0.00
RC102 67566 0 0.8 1.49 0.38 67825 0 0.6 0.00 0.38
RC103 55260 0 2.9 0.62 0.00 55223 0 1.9 0.00 0.00
RC104 52995 0 10.0 1.27 0.27 52062 0 3.1 0.00 0.27
RC105 59469 0 1.0 0.00 0.00 59469 0 0.6 0.00 0.00
RC106 55723 0 0.8 0.74 0.58 56047 0 0.6 0.00 0.58
RC107 50222 0 3.8 0.00 0.00 50222 0 2.5 0.00 0.00
RC108 47567 0 6.2 1.28 0.97 47567 0 3.9 0.00 0.97
R101 66230 0 0.1 0.00 0.00 66230 0 0.1 0.00 0.00
R102 45877 0 2.0 1.33 0.75 45692 0 0.8 0.00 0.75
R103 49858 0 2.5 0.00 0.00 49858 0 1.6 0.00 0.00
R104 35216 0 26.8 1.38 0.00 35216 0 6.2 0.00 0.00
R105 61638 0 0.4 0.72 0.00 61638 0 0.3 0.00 0.00
R106 48022 0 3.0 1.38 0.00 48022 0 2.0 0.00 0.00
R107 41651 0 22.2 1.07 0.01 41655 0 7.7 0.00 0.01
R108 45686 0 9.7 2.12 0.00 45652 0 5.0 0.00 0.00
R109 46203 0 1.6 0.38 0.00 46203 0 1.0 0.00 0.00
R110 41004 0 4.8 0.00 0.00 41004 0 2.9 0.00 0.00
R111 38304 0 16.9 1.76 0.38 38449 0 4.9 0.00 0.38
R112 38551 0 7.9 1.18 0.00 38551 0 3.0 0.00 0.00
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Table A.5. SP problem results obtained by monodirectional algorithms for
50-customer instances

Ins.
TPA HCG

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆T P A (%) ∆BKS (%)
C101 77693 0 11.2 0.00 0.00 77828 0 7.7 0.17 0.17
C102 82333 0 121.9 0.00 0.00 82904 0 24.7 0.69 0.69
C103 67534 0 253.4 3.34 1.16 67534 0 50.6 0.00 1.16
C104 55913 0 280.3 n/a 0.00
C105 75563 0 6.9 0.61 0.12 77942 0 6.0 3.05 3.27
C106 79933 0 10.1 0.71 0.01 79933 0 8.9 0.00 0.01
C107 78729 0 10.5 4.58 0.56 79610 0 8.9 1.11 1.69
C108 73383 0 30.5 0.50 0.02 74596 0 13.5 1.63 1.67
C109 67740 0 37.5 1.58 0.35 67740 0 21.0 0.00 0.35
RC101 107507 0 3.4 3.02 0.81 107507 0 2.5 0.00 0.81
RC102 90071 0 33.7 0.27 0.00 90071 0 25.9 0.00 0.00
RC103 84700 0 110.6 0.65 0.00 85833 0 31.4 1.32 1.34
RC104 69294 0 440.2 1.99 0.13 69703 0 94.2 0.59 0.72
RC105 99759 0 15.7 1.11 0.00 101404 0 6.2 1.62 1.65
RC108 73602 0 296.5 3.34 1.37 74708 0 75.0 1.48 2.89
R101 93729 0 1.4 0.00 0.00 93729 0 1.2 0.00 0.00
R102 90035 0 15.4 3.01 2.50 90035 0 9.9 0.00 2.50
R103 80947 0 38.7 1.79 0.36 80947 0 17.0 0.00 0.36
R104 62561 0 1353.4 3.74 n/a 62561 0 165.1 0.00 n/a
R105 84055 0 5.2 1.57 0.19 84076 0 2.9 0.02 0.21
R106 80990 0 69.1 2.56 1.32 80990 0 13.5 0.00 1.32
R107 74229 0 154.4 2.64 0.63 74229 0 61.3 0.00 0.63
R108 53763 0 1349.4 2.18 0.00 54981 0 279.8 0.00 0.00
R109 82179 0 28.5 1.98 0.68 82179 0 10.3 0.00 0.68
R110 73971 0 172.5 2.84 1.41 73971 0 27.9 0.00 1.41
R111 79229 0 83.9 2.78 1.16 79420 0 25.1 0.24 1.41
R112 66054 0 832.0 4.85 n/a 66054 0 98.4 0.00 n/a
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Table A.6. SP problem results obtained by monodirectional algorithms for
100-customer instances

Ins.
TPA HCG

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆T P A (%) ∆BKS (%)
C101 105706 0 315.1 0.00 0.00 105706 0 155.1 0.00 0.00
C102 0 102848 0 2081.1 n/a 0.30
C105 103250 0 661.9 1.06 0.12 103250 0 476.0 0.00 0.12
C106 102876 0 353.6 0.46 0.13 102876 0 310.3 0.00 0.13
C107 103256 0 442.9 1.92 0.21 103256 0 305.5 0.00 0.21
C108 102436 0 2068.0 2.86 0.94 102436 0 770.6 0.00 0.94
RC103 133355 0 1050.4 n/a 1.46
RC106 140885 0 1877.5 4.85 n/a 144388 0 106.3 2.43 n/a
R101 161850 0 29.6 1.57 0.95 161850 0 10.3 0.00 0.96
R102 145257 0 755.9 0.17 0.07 145257 0 253.1 0.00 0.07
R105 137557 0 69.0 2.67 n/a 137557 0 50.2 0.00 n/a
R106 125297 0 2004.3 1.09 0.09 125297 0 340.9 0.00 0.09
R107 118019 0 1276.9 n/a n/a
R108 102222 0 2261.7 n/a n/a
R111 112729 0 1294.1 n/a n/a
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Table A.7. MP problem results obtained by bidirectional algorithms for
25-customer instances

Ins.
TPA HCG

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆T P A (%) ∆BKS (%)

C101 62289 0 1.4 0.00 0.00 62289 0 1.1 0.00 0.00
C102 52169 0 10.3 0.00 0.00 52169 0 4.4 0.00 0.00
C103 34554 0 49.0 0.37 0.00 34554 0 11.7 0.00 0.00
C104 43143 0 249.8 0.00 0.00 43194 0 10.0 0.12 0.12
C105 52480 0 1.0 0.00 0.00 52480 0 0.8 0.00 0.00
C106 55851 0 1.5 1.67 0.45 55851 0 1.1 0.00 0.45
C107 50515 0 1.9 1.73 0.00 50515 0 1.4 0.00 0.00
C108 49482 0 2.1 0.00 0.00 49482 0 1.2 0.00 0.00
C109 44240 0 8.7 0.11 0.00 44498 0 3.4 0.58 0.58
RC101 72835 0 0.3 1.47 0.00 72835 0 0.2 0.00 0.00
RC102 63971 0 1.0 1.60 0.00 63971 0 0.8 0.00 0.00
RC103 55265 0 4.6 1.33 0.08 55265 0 2.6 0.00 0.08
RC104 51785 0 14.2 2.57 0.32 51785 0 6.6 0.00 0.32
RC105 58986 0 1.9 0.00 0.00 58986 0 1.2 0.00 0.00
RC106 54928 0 1.6 0.00 0.00 54979 0 1.0 0.09 0.09
RC107 49765 0 8.7 0.00 0.00 49995 0 2.4 0.46 0.46
RC108 47108 0 8.3 0.52 0.00 47108 0 5.2 0.00 0.00
R101 66146 0 0.2 0.00 0.00 66146 0 0.2 0.00 0.00
R102 43806 0 3.3 0.00 0.00 43806 0 2.2 0.00 0.00
R103 49310 0 6.0 0.24 0.00 49310 0 2.8 0.00 0.00
R104 35216 0 19.2 2.10 0.00 35276 0 12.8 0.17 0.17
R105 54407 0 0.7 0.01 0.00 54407 0 0.5 0.00 0.00
R106 48022 0 6.7 1.63 0.00 48022 0 5.2 0.00 0.00
R107 41114 0 29.0 0.52 0.00 41114 0 8.2 0.00 0.00
R108 42434 0 29.1 0.00 0.00 42548 0 6.5 0.27 0.27
R109 45660 0 4.1 2.27 0.68 45660 0 2.9 0.00 0.68
R110 40684 0 10.3 0.45 0.00 40684 0 8.3 0.00 0.00
R111 38470 0 19.6 3.34 0.47 38470 0 7.4 0.00 0.47
R112 38551 0 17.5 2.50 0.00 38551 0 8.3 0.00 0.00
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Table A.8. MP problem results obtained by bidirectional algorithms for
50-customer instances

Ins.
TPA HCG

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆T P A (%) ∆BKS (%)

C101 77150 0 13.4 0.00 0.00 77236 0 7.0 0.11 0.11
C102 77719 0 110.4 0.00 0.00 77719 0 58.2 0.00 0.00
C103 63641 0 626.9 3.05 n/a 63718 0 147.4 0.12 n/a
C104 55099 0 1418.5 0.00 0.00 55239 0 310.5 0.25 0.25
C105 72980 0 20.5 0.00 0.00 72980 0 8.4 0.00 0.00
C106 73555 0 28.4 0.06 0.00 73554 0 15.4 0.00 0.00
C107 70412 0 34.3 0.00 0.00 70412 0 17.2 0.00 0.00
C108 74411 0 49.7 3.84 3.51 74077 0 21.1 -0.45 3.04
C109 67132 0 148.4 1.95 0.35 66899 0 32.4 -0.35 0.00
RC101 105681 0 7.4 4.19 0.50 105873 0 3.0 0.18 0.68
RC102 87543 0 82.7 0.00 0.00 87543 0 35.6 0.00 0.00
RC103 82221 0 84.6 1.12 0.00 82364 0 57.5 0.17 0.17
RC104 68933 0 424.3 1.92 0.34 69465 0 90.9 0.77 1.12
RC105 97193 0 24.2 2.90 0.50 97213 0 11.1 0.02 0.52
RC106 86995 0 34.4 3.37 1.33 88008 0 19.4 1.16 2.51
RC107 78867 0 148.5 4.72 n/a 78540 0 54.4 -0.41 n/a
RC108 73750 125 3181.0 n/a 2.32
R101 93065 0 3.1 0.28 0.05 93019 0 2.6 -0.05 0.00
R102 84877 0 36.0 1.35 0.00 85305 0 26.5 0.50 0.50
R103 78179 0 110.9 1.18 0.49 78089 0 33.0 -0.12 0.37
R104 62199 0 185.6 n/a n/a
R105 83399 0 9.6 1.91 0.55 83438 0 7.1 0.05 0.60
R106 79009 0 81.4 1.95 0.10 79437 0 40.8 0.54 0.64
R107 66942 0 266.3 0.94 0.00 67778 0 158.3 1.25 1.25
R108 53624 0 1433.9 2.28 0.00 54173 0 175.0 1.02 1.02
R109 76538 0 54.8 1.80 0.19 76746 0 17.3 0.27 0.46
R110 70550 0 192.8 2.25 0.14 70777 0 65.8 0.32 0.46
R111 71880 0 195.3 0.26 0.00 71880 0 57.0 0.00 0.00
R112 59429 0 1255.3 1.77 1.33 60241 0 137.6 1.37 2.71
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Table A.9. MP problem results obtained by bidirectional algorithms for
100-customer instances

Ins.
TPA HCG

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆T P A (%) ∆BKS (%)

C101 104376 0 306.4 0.00 0.00 104376 0 119.8 0.00 0.00
C102 101542 0 1461.5 n/a n/a
C105 103017 0 889.5 4.79 1.38 102981 0 328.0 -0.03 1.34
C106 102223 0 1687.2 4.37 1.37 102699 0 635.1 0.47 1.84
C109 93688 0 1257.3 n/a n/a
RC101 163949 0 260.4 4.39 n/a 164539 0 46.9 0.36 n/a
RC102 150185 0 1741.4 3.83 1.27 151424 0 364.0 0.82 2.10
RC105 146219 0 703.1 2.75 1.36 146219 0 294.0 0.00 1.36
R101 157407 0 34.1 0.48 0.02 157760 0 24.4 0.22 0.24
R102 142532 0 1685.8 0.39 0.07 142815 0 269.7 0.20 0.27
R103 117773 0 1012.9 n/a 1.30
R104 106742 0 2670.2 n/a n/a
R105 132138 0 172.1 2.20 1.41 131119 0 97.9 -0.77 0.62
R106 120794 0 1552.0 0.48 n/a 120794 0 945.2 0.00 n/a
R107 112227 0 2327.3 n/a n/a
R108 100652 0 2169.5 n/a n/a
R109 118519 0 1921.2 3.08 n/a 119559 0 227.4 0.88 n/a
R110 109386 0 1474.5 n/a n/a
R111 109820 0 1451.0 n/a n/a
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Table A.10. SP problem results obtained by bidirectional algorithms for
25-customer instances

Ins.
TPA HCG

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆T P A (%) ∆BKS (%)

C101 62289 0 0.9 0.00 0.00 62289 0 0.7 0.00 0.00
C102 54130 0 4.4 0.00 0.00 54130 0 1.5 0.00 0.00
C103 34554 0 44.7 0.00 0.00 34554 0 4.7 0.00 0.00
C104 45974 0 26.9 0.00 0.01 45974 0 3.6 0.00 0.01
C105 53706 0 0.4 0.00 0.00 53706 0 0.3 0.00 0.00
C106 56002 0 0.6 1.93 0.42 56002 0 0.5 0.00 0.42
C107 50515 0 0.8 0.81 0.00 50515 0 0.7 0.00 0.00
C108 50915 0 1.3 0.00 0.00 50915 0 0.9 0.00 0.00
C109 49566 0 2.7 2.04 0.37 49566 0 2.0 0.00 0.37
RC101 76335 0 0.3 1.53 0.00 76335 0 0.3 0.00 0.00
RC102 67566 0 0.9 1.11 0.00 67566 0 0.9 0.00 0.00
RC103 55223 0 3.5 0.62 0.00 55223 0 1.9 0.00 0.00
RC104 52062 0 9.6 1.27 0.27 52062 0 3.3 0.00 0.27
RC105 59469 0 1.0 0.00 0.00 59469 0 0.6 0.00 0.00
RC106 55723 0 0.8 0.17 0.00 55723 0 0.7 0.00 0.00
RC107 50222 0 2.7 0.00 0.00 50222 0 2.2 0.00 0.00
RC108 47665 0 6.2 1.49 1.18 47665 0 3.9 0.00 1.18
R101 66230 0 0.1 0.00 0.00 66230 0 0.1 0.00 0.00
R102 45692 0 0.7 1.13 0.75 45692 0 0.6 0.00 0.75
R103 49858 0 3.5 0.00 0.00 49858 0 1.5 0.00 0.00
R104 35216 0 28.1 1.38 0.00 35216 0 8.0 0.00 0.00
R105 61638 0 0.4 0.72 0.00 61638 0 0.3 0.00 0.00
R106 48022 0 3.1 1.38 0.00 48022 0 2.0 0.00 0.00
R107 41815 0 25.0 1.45 0.39 41815 0 5.8 0.00 0.39
R108 45650 0 12.5 2.12 0.00 45650 0 3.2 0.00 0.00
R109 47039 0 1.6 2.15 1.81 47039 0 0.8 0.00 1.81
R110 41004 0 4.1 0.00 0.00 41004 0 3.2 0.00 0.00
R111 38470 0 17.9 1.81 0.43 38470 0 4.8 0.00 0.43
R112 38551 0 8.4 1.18 0.00 38551 0 3.1 0.00 0.00
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Table A.11. SP problem results obtained by bidirectional algorithms for
50-customer instances

Ins.
TPA HCG

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆T P A (%) ∆BKS (%)

C101 77693 0 8.5 0.00 0.00 77693 0 4.8 0.00 0.00
C102 82333 0 118.3 0.00 0.00 82333 0 19.9 0.00 0.00
C103 67521 0 298.0 3.32 1.14 67521 0 46.7 0.00 1.14
C104 55913 0 1378.2 0.00 0.00 55913 0 123.8 0.00 0.00
C105 75688 0 10.3 0.78 0.28 75688 0 5.5 0.00 0.28
C106 79933 0 8.9 0.71 0.01 79933 0 7.3 0.00 0.01
C107 78688 0 12.9 4.53 0.51 78688 0 9.3 0.00 0.51
C108 73383 0 29.5 0.50 0.02 74988 0 13.2 2.19 2.21
C109 67740 0 48.1 1.58 0.35 67740 0 18.7 0.00 0.35
RC101 107507 0 4.3 3.02 0.81 107507 0 2.0 0.00 0.81
RC102 90071 0 59.8 0.27 0.00 90071 0 15.2 0.00 0.00
RC103 84699 0 76.9 0.65 0.00 84699 0 35.6 0.00 0.00
RC104 69602 0 419.0 2.43 0.57 69602 0 84.4 0.00 0.57
RC105 99760 0 12.7 1.11 0.00 99957 0 5.8 0.20 0.20
RC108 73839 0 197.1 3.65 1.69 73961 0 70.5 0.17 1.86
R101 93729 0 2.4 0.00 0.00 93729 0 1.1 0.00 0.00
R102 90803 0 29.3 4.26 3.37 90803 0 9.3 0.00 3.37
R103 81269 0 28.0 2.18 0.76 81269 0 19.8 0.00 0.76
R104 63035 0 1674.4 4.46 n/a 63035 0 117.1 0.00 n/a
R105 84119 0 5.5 1.65 0.26 84119 0 4.1 0.00 0.26
R106 79974 0 60.3 1.60 0.05 79974 0 21.9 0.00 0.05
R107 74183 0 216.9 2.58 0.57 74184 0 58.4 0.00 0.57
R108 54726 0 1461.0 3.90 1.79 54908 0 119.4 0.33 2.13
R109 82424 0 28.0 2.33 0.98 82424 0 8.5 0.00 0.98
R110 73734 0 200.1 2.61 1.09 73734 0 27.8 0.00 1.09
R111 79811 0 74.5 3.54 1.91 79811 0 26.0 0.00 1.91
R112 66054 0 2115.4 4.85 n/a 66054 0 84.7 0.00 n/a
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Table A.12. SP problem results obtained by bidirectional algorithms for
100-customer instances

Ins.
TPA HCG

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆T P A (%) ∆BKS (%)

C101 105706 0 215.9 0.00 0.00 105706 0 82.4 0.00 0.00
C102 102640 0 3230.9 0.85 0.10 102640 0 1329.7 0.00 0.10
C103 102411 0 2998.9 n/a n/a
C105 103263 0 374.9 1.07 0.13 103368 0 167.9 0.10 0.24
C106 102744 0 803.9 0.33 0.00 103300 0 407.2 0.54 0.54
C107 103384 0 576.2 2.04 0.33 103328 0 278.7 -0.05 0.28
C108 102793 0 1456.5 3.20 1.29 102793 0 576.8 0.00 1.29
RC102 155304 0 1126.5 2.02 0.28 155055 0 383.0 -0.16 0.11
RC103 134046 0 3511.8 2.67 1.99 135699 0 828.2 1.23 n/a
RC104 121991 0 1743.9 n/a n/a
RC106 140641 0 629.6 4.70 n/a 141040 0 260.3 0.28 n/a
R101 161515 0 64.8 1.37 0.75 160923 0 16.1 -0.37 0.38
R102 145156 0 1097.3 0.14 0.00 145211 0 191.7 0.04 0.04
R103 123315 0 571.5 n/a 1.84
R104 109146 0 1689.4 n/a n/a
R105 138846 0 80.0 3.57 n/a 138846 0 46.5 0.00 n/a
R106 125456 0 1512.3 1.22 0.21 125456 0 365.6 0.00 0.21
R107 117628 0 1167.8 n/a n/a
R108 102269 0 1192.4 n/a n/a
R109 126350 0 1056.4 3.25 n/a 128072 0 162.6 1.36 n/a
R110 111691 0 668.5 n/a n/a
R111 114357 0 924.2 n/a n/a
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Appendix B. Detailed Results of the Pulse Algorithm

This appendix provides the detailed results of the computational study conducted
by using the Pulse algorithm with and without the augmented node (AN) approach
for the multiple-partial recharge (MP) and the single-partial recharge (SP) problem
variants over the complete data set. The columns Bound, ∆BKS (%), #b, t(s), and
∆ (%) indicate the best bound, the relative gap between our solution and the best
solution provided in the literature (Desaulniers et al., 2016), the number of branches,
the computation time in seconds, and the relative integrality gap, respectively.
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Table B.1. MP problem results obtained for 25-customer instances

Ins.
Pulse0 PulseAN

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆ (%) ∆BKS (%)
C101 62289 0 3.1 0.00 0.00 62289 0 2.3 0 0.00
C102 52169 0 403.0 0.00 0.00 52169 0 49.9 0 0.00
C103 34845 0 605.0 1.20 0.84 34554 0 531.9 0 0.00
C104 43204 0 2899.5 0.00 0.14 43143 0 940.0 2.88 0.00
C105 53383 0 2.3 1.62 1.69 52642 0 1.7 2.7 0.31
C106 56044 0 6.0 2.00 0.79 56044 0 2.2 1.67 0.79
C107 50515 0 4.0 1.73 0.00 51008 0 2.2 1.46 0.97
C108 49482 0 3.7 0.00 0.00 49482 0 3.9 0 0.00
C109 44240 0 15.0 0.11 0.00 44240 0 13.9 0.11 0.00
RC101 74306 0 0.7 3.42 1.98 73614 0 0.4 1.45 1.06
RC102 63971 0 1.0 1.60 0.00 63971 0 0.8 1.13 0.00
RC103 55324 0 4.6 1.44 0.18 55324 0 3.1 1.44 0.18
RC104 51881 0 10.5 2.75 0.50 52437 0 13.6 1.95 1.55
RC105 58986 0 1.5 0.00 0.00 58986 0 1.8 0 0.00
RC106 54928 0 2.1 0.00 0.00 54928 0 1.5 0 0.00
RC107 49765 0 5.1 0.00 0.00 49765 0 5.9 0 0.00
RC108 47108 0 5.6 0.52 0.00 47318 0 6.8 0.32 0.44
R101 66149 0 0.5 0.00 0.00 66149 0 0.3 0 0.00
R102 43806 0 3.2 0.00 0.00 43806 0 1.7 0 0.00
R103 49310 0 2.3 0.24 0.00 49310 0 2.9 0.43 0.00
R104 35455 0 17.8 2.98 0.67 35216 0 12.9 1.46 0.00
R105 54407 0 0.9 0.01 0.00 54407 0 0.7 0.04 0.00
R106 48078 0 4.2 1.74 0.12 48334 0 4.0 1.38 0.65
R107 41227 0 31.7 0.80 0.27 41192 0 13.3 0.71 0.19
R108 42434 0 25.6 0.00 0.00 42434 0 13.3 0 0.00
R109 45351 0 3.2 1.60 0.00 45351 0 2.1 1.45 0.00
R110 40684 0 8.5 0.45 0.00 40904 0 5.3 0.45 0.54
R111 38364 0 50.2 3.07 0.20 38500 0 28.2 1.99 0.55
R112 38551 0 12.5 2.50 0.00 38776 0 12.8 2.4 0.58
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Table B.2. MP problem results obtained for 50-customer instances

Ins.
Pulse0 PulseAN

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆ (%) ∆BKS (%)
C101 77150 0 17.7 0.00 0.00 77150 0 19.4 0.00 0.00
C102 77719 0 918.2 0.00 0.00 77719 0 516.4 0.00 0.00
C103 64403 0 590.2 4.06 n/a 64074 0 1262.6 3.62 n/a
C105 72980 0 23.2 0.00 0.00 72980 0 38.6 0.00 0.00
C106 73555 0 40.2 0.06 0.00 73554 0 35.5 0.06 0.00
C107 70412 0 57.4 0.00 0.00 70412 0 42.4 0.00 0.00
C108 72067 0 63.3 0.53 0.24 73132 0 48.9 1.86 1.70
C109 66916 0 129.0 1.37 0.03 67141 0 104.8 1.58 0.36
RC102 87662 0 21.4 0.00 0.14 87543 0 37.6 0.00 0.00
RC103 82314 0 63.0 1.21 0.11 82927 0 124.1 1.17 0.85
RC104 69108 0 183.2 2.17 0.59 68934 0 329.7 1.88 0.34
RC105 97213 0 9.5 2.92 0.52 97038 0 13.0 2.75 0.34
RC106 87409 0 14.8 3.83 1.78 87998 0 14.9 4.47 2.44
RC108 72976 0 121.5 4.28 1.23 75342 844 3615.4 6.42 4.33
R101 93144 0 5.0 0.37 0.13 93019 0 4.7 0.23 0.00
R102 86209 0 12.4 2.87 1.55 85463 0 17.4 2.02 0.69
R103 77989 0 23.3 0.97 0.24 77933 0 39.0 0.67 0.17
R104 62779 0 239.0 4.45 n/a 62789 0 1397.6 4.20 n/a
R105 83477 0 10.0 1.87 0.64 83416 0 6.7 1.83 0.57
R106 79922 0 36.5 3.17 1.24 79884 0 85.4 2.95 1.19
R107 68515 0 84.4 3.22 2.30 66982 0 118.0 0.98 0.06
R108 55191 368 3601.9 5.0 2.84 53763 0 577.8 2.15 0.26
R109 77551 0 18.1 3.07 1.49 78533 0 20.1 3.93 2.73
R110 70892 0 62.4 2.71 0.62 73826 1042 3611.3 5.55 4.57
R111 71883 0 39.3 0.19 0.00 75012 0 66.0 3.39 4.18
R112 60374 0 934.2 3.42 2.85 59843 0 3419.8 1.54 1.99
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Table B.3. MP problem results obtained for 100-customer instances

Ins.
Pulse0 PulseAN

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆ (%) ∆BKS (%)
C101 104376 0 401.4 0.00 0.00 104376 0 689.0 0.00 0.00
C105 102950 0 569.0 4.71 1.30 102660 0 2146.2 4.43 1.02
C106 102524 0 1379.9 4.64 1.64 102586 23 3037.3 4.68 1.70
RC101 163757 0 63.1 4.25 n/a 165983 662 3667.7 5.35 n/a
RC102 152146 0 214.3 4.97 2.52 151996 0 676.2 4.53 2.43
RC105 147203 0 121.0 3.40 2.00 146649 0 320.7 2.74 1.63
R101 158018 0 50.9 0.91 0.40 157527 0 47.7 0.60 0.09
R102 142787 0 265.6 0.57 0.25 142886 0 752.2 0.61 0.32
R103 116824 0 1024.5 1.01 0.48 205734 0 3700.6 0.00 n/a
R105 133872 0 102.0 3.45 2.66 133395 0 69.8 2.68 2.31
R106 120959 0 644.5 0.54 n/a 122919 0 2982.2 1.55 n/a
R107 113925 0 809.5 4.33 n/a 198226 0 3683.5 0.00 n/a
R109 119497 0 275.8 3.75 n/a 120200 0 881.5 4.14 n/a
R111 110144 0 954.8 4.95 n/a 201472 0 3638.6 0.00 n/a
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Table B.4. SP problem results obtained for 25-customer instances

Ins.
Pulse0 PulseAN

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆ (%) ∆BKS (%)
C102 54130 0 93.0 0.00 0.00 54130 0 32.8 0.00 0.00
C103 34554 0 109.0 0.00 0.00 34554 0 220.1 0.00 0.00
C104 45968 0 950.2 0.00 0.00 45968 0 522.1 0.00 0.00
C105 53706 0 2.5 0.00 0.00 53706 0 1.3 0.00 0.00
C106 56002 0 2.6 1.93 0.42 56002 0 1.1 1.93 0.42
C107 50515 0 3.7 0.72 0.00 50515 0 2.1 0.72 0.00
C108 50915 0 4.7 0.00 0.00 50915 0 3.0 0.00 0.00
C109 49385 0 30.7 1.69 0.00 49385 0 18.1 1.70 0.00
RC101 76335 0 0.6 1.53 0.00 76335 0 0.4 1.53 0.00
RC102 67566 0 1.1 1.11 0.00 67566 0 0.5 1.11 0.00
RC103 55260 0 2.0 0.69 0.07 55223 0 2.7 0.62 0.00
RC104 52628 0 7.4 2.33 1.35 52566 0 10.3 2.21 1.23
RC105 59469 0 0.8 0.00 0.00 59469 0 1.0 0.00 0.00
RC106 56352 0 1.2 1.28 1.12 55723 0 1.2 0.17 0.00
RC107 50222 0 7.1 0.00 0.00 50222 0 4.3 0.00 0.00
RC108 48083 0 5.3 2.34 2.03 47108 0 4.6 0.32 0.00
R101 66230 0 0.4 0.00 0.00 66230 0 0.3 0.00 0.00
R102 46274 0 1.2 2.57 2.00 45350 0 1.2 0.59 0.00
R103 49858 0 1.6 0.00 0.00 49858 0 2.0 0.00 0.00
R104 35216 0 9.2 1.38 0.00 35216 0 8.2 1.38 0.00
R105 61638 0 0.8 0.72 0.00 61638 0 0.5 0.72 0.00
R106 48022 0 2.4 1.38 0.00 48022 0 3.0 1.38 0.00
R107 41711 0 9.2 1.21 0.14 41711 0 9.6 1.21 0.14
R108 45863 0 8.5 2.58 0.46 45650 0 6.9 2.12 0.00
R109 47144 0 1.8 2.37 2.00 46870 0 1.4 1.77 1.42
R110 41004 0 6.0 0.00 0.00 41004 0 5.4 0.00 0.00
R111 38470 0 17.5 1.81 0.43 38304 0 13.2 1.38 0.00
R112 38551 0 6.6 1.18 0.00 38551 0 6.8 1.18 0.00
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Table B.5. SP problem results obtained for 50-customer instances

Ins.
Pulse0 PulseAN

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆ (%) ∆BKS (%)
C101 77693 0 25.4 0.00 0.00 77693 0 15.0 0.00 0.00
C102 82333 0 928.8 0.00 0.00 82333 0 455.4 0.00 0.00
C103 67600 0 840.1 3.27 1.24 67492 0 893.4 3.11 1.08
C105 75563 0 19.3 0.61 0.12 75563 0 21.1 0.61 0.12
C106 79933 0 46.1 0.67 0.01 79933 0 33.2 0.71 0.01
C107 78663 0 50.4 4.48 0.47 79190 1320 3611.9 5.12 1.14
C108 73383 0 79.8 0.50 0.02 73551 0 44.1 0.72 0.25
C109 69168 0 255.0 3.21 2.40 68951 0 77.7 3.09 2.09
RC101 107921 0 6.4 3.39 1.18 108278 0 4.0 3.71 1.51
RC102 90169 0 13.3 0.38 0.11 90071 0 18.7 0.27 0.00
RC103 86115 0 47.6 2.28 1.64 85103 0 115.6 1.12 0.47
RC104 69604 0 94.9 2.43 0.57 69205 0 222.1 1.87 0.00
RC105 100078 0 12.4 1.43 0.32 101043 0 12.5 2.37 1.27
RC108 74910 0 68.0 5.00 3.07 74295 0 195.0 4.21 2.27
R101 93729 0 3.0 0.00 0.00 93729 0 2.0 0.00 0.00
R102 90159 0 10.0 3.57 2.57 90042 0 14.0 3.45 2.45
R103 81305 0 12.9 2.22 0.80 81218 0 25.0 2.12 0.70
R104 63320 392 3168.3 4.86 n/a 62568 0 992.0 3.71 n/a
R105 83963 0 6.8 1.31 0.08 84139 0 4.0 1.41 0.29
R106 80821 0 21.6 2.63 1.09 81247 0 39.0 3.14 1.61
R107 74315 0 72.6 2.75 0.74 74106 0 93.0 2.48 0.46
R108 54137 0 507.1 2.78 0.69 53763 0 440.0 2.15 0.00
R109 83842 0 22.0 3.98 2.65 82483 0 21.0 2.40 1.05
R110 75448 0 39.8 4.73 3.32 75561 0 118.0 4.96 3.47
R111 81838 1350 3600.2 5.63 4.30 81242 0 65.0 4.94 3.60
R112 85910 n/a 3749.6 n/a n/a 66085 0 949.0 4.90 n/a

104



Table B.6. SP problem results obtained for 100-customer instances

Ins.
Pulse0 PulseAN

Bound #b t (s) ∆ (%) ∆BKS (%) Bound #b t (s) ∆ (%) ∆BKS (%)
C101 105706 0 640.2 0.00 0.00 105706 0 483.0 0.00 0.00
C105 103158 0 992.1 0.97 0.03 103131 0 1158.0 0.94 0.01
C106 177588 0 3602.6 n/a n/a 102831 0 2718.0 0.41 n/a
C107 103294 0 1770.1 1.95 0.25 103530 0 1970.6 2.16 0.48
RC101 173326 0 68.2 4.45 n/a 174222 0 43.0 4.94 n/a
RC102 157280 0 429.5 3.27 1.55 156778 0 925.0 2.96 1.23
RC106 140743 0 313.8 4.77 n/a 140022 0 363.1 4.14 n/a
R101 161576 0 28.4 1.40 0.79 161526 0 30.0 1.37 0.76
R102 146004 0 279.7 0.72 0.58 145996 0 588.0 0.72 0.58
R103 124354 0 1712.9 4.09 2.70 205734 0 3630.0 0.00 n/a
R105 139670 0 100.4 4.12 n/a 141197 562 3612.0 5.14 n/a
R106 126180 0 735.1 1.77 0.79 125517 0 1964.9 1.26 0.26
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