

Approximate Computing based Video Compression Hardware

by

Berke Ayrancıoğlu

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Sciences

Sabancı University

July 2022

II

© Berke Ayrancıoğlu 2022

All Rights Reserved

III

To the World peace and the brighter days to come…

IV

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor, Dr. İlker Hamzaoğlu for all his support,

honest and fair approach to every situation and his patience. I consider myself lucky for being

his student since his advices will accompany me in every aspect of life in addition to

academy and research. I think I wouldn’t be able to keep my motivation as high without him.

I want to thank past and present members of “System-on-Chip Design and Test Lab”;

Hasan Azgın, Hossein Mahdavi and Waqar Ahmad for their friendship and support. As the

youngest and the least experienced member of the SoC Lab, it would be much harder for me

to arrive where I am here today without their help. Working and publishing together with

Waqar Ahmad has been a remarkable experience for me. I would like to thank him

especially, for his modest support and mentorship.

My greatest thankfullness is to my dad, my mother and my sister. This thesis is

dedicated with gratitude to my family. I will always be thankful for their support.

Finally, I want to thank Sabanci University for supporting me with scholarship

throughout my studies. I also want to thank Scientific and Technological Research Council of

Turkey (TUBITAK) for supporting this thesis in part under contract number 118E134.

V

Approximate Computing based Video Compression Hardware

Berke Ayrancıoğlu

Electronics Engineering, MS Thesis, 2022

Thesis Supervisor: Assoc. Prof. İlker HAMZAOĞLU

Keywords: Video Compression, Affine Motion Estimation, Approximate Computing, Digital

Hardware, FPGA

1 ABSTRACT

Approximate computing trades off accuracy to improve area, power, speed of digital

hardware. Many computationally intensive applications such as video encoding and video

processing are error tolerant by nature due to the limitations of human visual perception.

Therefore, approximate computing can be used to improve area, power, speed of digital

hardware implementations of these error tolerant applications. In this thesis, a low error

approximate absolute difference hardware is proposed and impact of using approximate

circuits in H.264 motion estimation (ME) hardware is assessed.

There is a need for more video compression with less quality loss due to significant

increase in spatial and temporal video resolutions. Therefore, versatile video coding (VVC)

video compression standard is recently developed. It is more computationally complex than

previous video compression standards H.264 and high efficiency video coding (HEVC). ME

is the most computationally complex part of video compression standards. VVC standard

uses affine ME (AME) which is not used in previous video compression standards. AME

achieves higher video compression at the expense of much more computational complexity.

In this thesis, a novel VVC AME hardware is proposed.

VI

Yaklaşık Hesaplama Temelli Video Sıkıştırma Donanımları

Berke Ayrancıoğlu

Elektronik Mühendisliği, Yüksek Lisans Tezi, 2022

Tez Danışmanı: Doç. Dr. İlker HAMZAOĞLU

Anahtar Kelimeler: Video Sıkıştırma, Afin Hareket Tahmini, Yaklaşık Hesaplama, Sayısal

Donanım, FPGA

Özet

Yaklaşık hesaplama sayısal donanımın alanını ve tükettiği gücü azaltmak ve hızını

artırmak için işlem doğruluğunu feda eder. İnsan görüşünün sınırlı olması nedeniyle video

kodlama ve video işleme gibi hesaplama karmaşıklığı yüksek bazı uygulamalar hataya

toleranslıdır. Bu nedenle, bu tür uygulamalarda işlem doğruluğu alan, güç ve hız kazanımları

için feda edilebilir. Bu tezde bir düşük hatalı yaklaşık mutlak fark donanımı önerildi ve H.264

hareket tahmini (HT) donanımında yaklaşık devreleri kullanmanın etkileri belirlendi.

Uzamsal ve zamansal video çözünürlüğünün artması nedeniyle daha az kalite kaybıyla

daha çok video sıkıştırmaya ihtiyaç vardır. Bu nedenle, yakın zamanda Çok Yönlü Video

Kodlama (VVC) standardı geliştirildi. VVC’nin hesaplama karmaşıklığı önceki video

sıkıştırma standartları H.264 ve HEVC’nin hesaplama karmaşıklıklarından daha yüksektir.

HT video sıkıştırma standartlarının en yüksek hesaplama karmaşıklığı olan bölümüdür. VVC

standardında daha önceki video sıkıştırma standartlarında kullanılmamış olan afin hareket

tahmini (AHT) kullanılmaktadır. AHT daha çok video sıkıştırma yapmaktadır ama çok daha

fazla hesaplama karmaşıklığına sahiptir. Bu tezde bir özgün VVC AHT donanımı önerildi.

VII

2 TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... IV

1 ABSTRACT ... V

2 TABLE OF CONTENTS .. VII

3 LIST OF FIGURES ... VIII

4 LIST OF TABLES .. IX

5 LIST OF ABBREVIATIONS .. X

1 CHAPTER I INTRODUCTION .. 1

1.1 Thesis Contributions ... 4

1.2 Thesis Organization .. 5

2 CHAPTER II Low Error Approximate Absolute Difference Hardware 6

2.1 Proposed Approximate AD Hardware .. 6

2.2 Quality Results .. 9

2.3 Implementation Results .. 11

3 CHAPTER III Comparison of Approximate Circuits for H.264 Motion Estimation 14

3.1 Approximate Circuits .. 15

3.2 Motion Estimation Hardware .. 18

3.3 Assessment of Using Approximate Circuits in Motion Estimation Hardware 19

4 CHAPTER IV VVC AFFINE MOTION ESTIMATION HARDWARE 24

4.1 Proposed VVC Affine Motion Estimation Hardware ... 28

5 CHAPTER V CONCLUSIONS AND FUTURE WORK ... 35

6 BIBLIOGRAPHY ... 36

VIII

3 LIST OF FIGURES

Figure 1.1 Shear .. 3

Figure 1.2 Rotation .. 3

Figure 2.1 Proposed low error approximate absolute difference (LAD_2) hardware. 7

Figure 2.2 Proposed low error approximate absolute difference (LAD_4) hardware. 8

Figure 2.3 Accurate_AD_1 ... 8

Figure 2.4 Accurate_AD_2 ... 8

Figure 2.5 Accurate_AD_3 ... 9

Figure 3.1 (a) Proposed 1-bit Approximate Full Adder (b) m-bit LOA (c) IMPACT-1 (d)

IMPACT-2 (e) n-bit Approximate Subtractor ... 16

Figure 3.2 (a) GeAr Adder (N=8, R=2, P=4) (b) NAAD 0 (c) NAAD 2 16

Figure 3.3 (a) Baseline 1 AD Hardware (b) Baseline 2 AD Hardware 16

Figure 3.4 H.264 ME Processing Element .. 17

Figure 3.5 H.264 Motion Estimation Hardware .. 18

Figure 3.6 H.264 Power Reduction (%) .. 20

Figure 3.7 H.264 Slice Reduction (%) .. 21

Figure 3.8 H.264 LUT Reduction (%) .. 21

Figure 4.1 Pixel vs. 4x4 Sub-Block .. 25

Figure 4.2 Affine Motion Vectors for Sub-Blocks ... 26

Figure 4.3 Affine Motion Vectors ... 26

Figure 4.4 VVC Affine Motion Estimation Hardware .. 28

Figure 4.5 Pixel Storage in BRAMs ... 29

Figure 4.6 Pixel Storage in Registers .. 30

Figure 4.7 mv1 Locations ... 31

Figure 4.8 Number of Pixels Read for 8x8 Search Window ... 32

Figure 4.9 Number of Pixels Read for 16x16 Search Window ... 32

Figure 4.10 Left Shift Operation ... 32

Figure 4.11 Up Shift Operation ... 33

IX

4 LIST OF TABLES

Table 2.1 Quality Results of Absolute Difference Hardware ... 12

Table 2.2 Quality Results of H.264 Motion Estimation Hardware 12

Table 2.3 FPGA Implementation Results of Absolute Difference 13

Table 2.4 FPGA Implementation Results of H.264 Motion Estimation Hardware 13

Table 3.1 H.264 MSE Results ... 20

Table 3.2 H.264 Quality Results ... 22

Table 3.3 H.264 Implementation Results .. 23

Table 4.1 Number of Frames Processed per Second ... 34

X

5 LIST OF ABBREVIATIONS

AD Absolute Difference

AME Affine Motion Estimation

BRAM Block Ram

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

FPS Frame Per Second

HD High Definition

HEVC High Efficiency Video Coding

ME Motion Estimation

MV Motion Vector

PSNR Peak Signal to Noise Ratio

SAD Sum of Absolute Differences

VVC Versatile Video Coding

1

1 CHAPTER I

INTRODUCTION

Approximate computing trades-off accuracy with speed, area and power consumption

(Mert, Azgin, Kalali, & Hamzaoglu, 2019), (Azgin, Kalali, & Hamzaoglu, 2020). It is used

for error-tolerant applications such as video processing and compression which can tolerate

inaccurate results because of the limitations of human visual perception (Kalali &

Hamzaoglu, Approximate HEVC Fractional Interpolation Filters and Their Hardware

Implementations, 2018). Approximate hardware can achieve better performance, area and

power consumption than accurate hardware while providing acceptable quality for error

tolerant applications (Xu, Mytkowicz, & Kim, 2015), (Froehlich, Große, & Drechsler, 2018),

(Arifeen, Hassan, Moradian, & Lee, 2016).

A variety of approximate circuits, ranging from system level designs (Gillani, et al.,

2019), (Kalali & Hamzaoglu, An approximate HEVC intra angular prediction hardware,

2020), (Ayhan & Altun, 2019) (Ahmad & Hamzaoglu, An efficient approximate sum of

absolute differences hardware for FPGAs, 2021) to basic arithmetic circuits (Jiang H. , Liu,

Liu, Lombardi, & Han, 2017), have been proposed in the literature. Adders are used in most

digital hardware, not only for binary addition but also for other binary arithmetic operations

such as subtraction, multiplication, and division (Mert, Azgin, Kalali, & Hamzaoglu, 2019),

(Van Toan & Lee, 2020), (Chen, Han, Liu, Montuschi, & Lombardi, 2018).

Video coding is very computationally complex and the growing demand for higher

spatial and temporal video resolutions has led to development of more computationally

complex video coding standards. Motion estimation (ME) is the most computationally

complex module in the video encoder hardware. Block matching ME is used in H.264,

2

HEVC and VVC video coding standards to remove temporal redundancies in video

sequences. For each block in the current frame, block matching ME determines the best

matching reference block in a search window in the previous frame based on a distortion

metric.

Sum of absolute differences (SAD) is the most commonly used distortion metric for block

matching ME. SAD value between a current block and a reference block of size HxW pixels is

calculated as

𝑆𝐴𝐷 = ∑ ∑|𝐶𝑢𝑟(𝑥, 𝑦) − 𝑅𝑒𝑓(𝑥, 𝑦)|

𝑊

𝑦=1

𝐻

𝑥=1

(1.1)

where Cur(x,y) is the value of the pixel in (x,y) position of the current block and Ref(x,y) is

the value of the pixel in (x,y) position of the reference block. Number of search locations that

should be searched for each block in the current frame depends on ME algorithm and size of

the search window. For example, for full search ME algorithm with 16x16 search window,

256 search locations should be searched. For H.264, the largest coding block size is 16x16

and it has 41 sub-blocks. 256 absolute difference and 265 addition operations are required to

calculate 41 SAD values of a 16x16 block in the current frame for one search location.

133376 arithmetic operations are required to calculate SAD values for 256 search locations.

Affine transformation is a type of geometric transformation in which collinearity is

preserved. In other words, if a group of points abide on a line before the affine transform,

they stay on the same line after the affine transform. While retaining collinearity, affine

transform incorporates translation, rotation, zoom and shearing. Fig. 1.1 and 1.2 show the

shear and rotation around the origin and formulae 1.2 and 1.3 show the related matrices.

3

Figure 1.1 Shear

Figure 1.2 Rotation

𝑀𝑅 = 𝑅(𝜃) = [

cos (𝜃) −sin (𝜃)

sin (𝜃) cos (𝜃)
]

(1.3)

Two-dimensional transform is performed using formula 1.4. Therefore, rotation transform

is performed using formulae 1.5 and 1.6.

 𝑥′

𝑦′ = [
𝑎 𝑏
𝑐 𝑑

]
𝑥
𝑦

(1.4)

Y-
A

xi
s

X-Axis

Y-
A

xi
s

X-Axis

X

y

X

y

ɵ

 𝑀𝑆 = [
1 𝑏
0 1

]

(1.2)

4

 𝑥′ = 𝑥 cos(𝜃) − 𝑦sin (𝜃) (1.5)

 𝑦′ = 𝑥 sin(𝜃) + 𝑦𝑐𝑜𝑠 (𝜃) (1.6)

H.264 and HEVC video compression standards only use translational ME. VVC video

compression standard uses affine ME (AME) as well. AME takes rotation, zooming and

shearing of blocks into account during block matching ME. AME achieves higher video

compression than translational ME at the expense of much more computational complexity

(Seferidis & Ghanbari, 1993), (Choi & Kim, 2019), (Adhuran, Fernando, Kulupana, & Blasi,

2021).

1.1 Thesis Contributions

A low error approximate absolute difference (LAD_X) hardware is proposed. The

proposed hardware has lower maximum and average error values and higher accuracy than

the absolute difference hardware in the literature. It has similar performance with and smaller

area than them. H.264 ME hardware using LAD_X hardware performs higher quality ME

than H.264 ME hardware using the approximate absolute difference hardware in the

literature. It has similar performance with and smaller area than them.

Several approximate circuits from the literature are integrated to an H.264 ME hardware

and their impact is assessed. The approximate adder proposed by (Ahmad, 2021) achieved up

to 10% power reduction in ME hardware while providing better quality than the other

approximate circuits.

A novel VVC AME hardware is proposed. To the best of our knowledge, it is the first

VVC AME hardware in the literature. It implements 4-parameters affine transform and uses a

novel pixel storage method which decreases the number of memory accesses. Since AME has

very high computational complexity, to achieve real time performance, the proposed VVC

AME hardware should be used only for parts of the current frame containing affine motion.

5

1.2 Thesis Organization

The rest of the thesis is organized as follows.

Chapter II explains the proposed approximate absolute difference hardware, LAD_X. It

compares LAD_X and the approximate circuits in the literature. It presents the impact of

using them in H.264 ME hardware.

Chapter III explains the approximate adder proposed by (Ahmad, 2021). It presents the

impact of using this approximate adder and other approximate adders in the literature in

H.264 ME hardware.

Chapter V first explains VVC AME algorithm. It then explains the proposed VVC

AME hardware and the proposed novel pixel storage method. It finally presents the

experimental results.

Chapter VI presents the conclusions and the future work.

6

2 CHAPTER II

Low Error Approximate Absolute Difference Hardware

In this thesis, we propose low error approximate absolute difference (LAD_X)

hardware to increase speed and to decrease area and power consumption of absolute

difference (AD) hardware at the expense of a slight quality loss. LAD_X hardware is

compared with the following approximate AD hardware in the literature; novel approximate

absolute difference hardware (NAAD) (Mert, Azgin, Kalali, & Hamzaoglu, 2019) and the

approximate AD hardware built by using the following approximate adders for the

subtraction operation in three different accurate AD hardware; lower part OR adder (LOA)

(Porto R. , Agostini, Zatt, Roma, & Porto, 2019) almost correct adder (ACA1) (Verma, Brisk,

& Ienne, 2008), accuracy configurable adder (ACA2) (Kahng & Kang, 2012), and generic

accuracy configurable adder (GeAr) (Shafique, Ahmad, Hafiz, & Henkel, 2015). LAD_X

hardware has lower maximum and average error, and higher accuracy than these approximate

AD hardware in the literature. It has similar performance with and smaller area than them.

The H.264 ME hardware using LAD_X hardware performs higher quality ME than the H.264

ME hardware using these approximate AD hardware in the literature. It has similar

performance with and smaller area than them.

2.1 Proposed Approximate AD Hardware

LAD_2 and LAD_4 hardware are shown in Fig. 2.1 and Fig. 2.2, respectively. LAD_X

hardware is composed of a subtractor, XOR gates, an adder, and OR gates. It works as

follows. First, the inputs A and B are subtracted. Then, the sign bit of the subtraction result is

XOR’ed with the other 8 bits of the subtraction result. Then, the sign bit is added to the least

significant 𝑋 bits. Therefore, instead of calculating 2’s complement of the entire subtraction

result, 2’s complement of its least significant 𝑋 bits is calculated. This breaks the carry chain

in the addition operation.

Finally, the most significant bit (MSB) of the addition result is OR’ed with the other

bits of the addition result. Therefore, if the MSB of the addition result is 0, the output of

LAD_X hardware will be the same as the accurate AD result. If the MSB of the addition

7

result is 1, least significant 𝑋 bits of the output of LAD_X hardware will be 1. Since the MSB

of the addition result is not propagated to next bit position, the output of LAD_X hardware

will be 1 less than the accurate AD result, instead of being 2𝑋 less than the accurate AD

result.

The output of LAD_X hardware is the same as the accurate AD result when the

subtraction result is positive. When the subtraction result is negative, the output of LAD_X

hardware is the same as the accurate AD result for (2𝑋 − 1) of every 2𝑋 inputs, and it is 1

less than the accurate AD result for the remaining input. Therefore, the maximum error of

LAD_X hardware is 1. Its accuracy and average error can be calculated as shown in (2.1) and

(2.2), respectively.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100 × (1 −

1

2𝑋+1
)

(2.1)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 =

1

2𝑋+1

(2.2)

Figure 2.1 Proposed low error approximate absolute difference (LAD_2) hardware.

8

Figure 2.2 Proposed low error approximate absolute difference (LAD_4) hardware.

Figure 2.3 Accurate_AD_1

Figure 2.4 Accurate_AD_2

9

Figure 2.5 Accurate_AD_3

Accuracy is the percentage of inputs for which LAD_X hardware gives accurate AD

result. Average error is the average of errors LAD_X hardware gives for all inputs. As it can

be seen from (2.1) and (2.2), accuracy and average error of LAD_X hardware are

independent from its bit width. Its maximum error is also independent from its bit width. In

other words, the proposed N-bit LAD_X hardware has the same accuracy, average error, and

maximum error for all N. In addition, as the bit width increases, ratio of the maximum input

value to maximum and average error increases, and therefore, relative impact of the error

decreases. Therefore, LAD_X hardware is scalable.

2.2 Quality Results

LAD_X hardware is compared with 20 approximate AD hardware in the literature. 4

approximate AD hardware are 4 configurations of novel approximate absolute difference

hardware (NAAD) (Mert, Azgin, Kalali, & Hamzaoglu, 2019). 16 approximate AD hardware

are built by using the following approximate adders for the subtraction operation in the 3

accurate AD hardware shown in Fig. 2.3, Fig 2.4 and Fig. 2.5; lower part OR adder (LOA)

(Porto R. , Agostini, Zatt, Roma, & Porto, 2019), almost correct adder (ACA1) (Verma,

Brisk, & Ienne, 2008), accuracy configurable adder (ACA2) (Kahng & Kang, 2012), and

generic accuracy configurable adder (GeAr) (Shafique, Ahmad, Hafiz, & Henkel, 2015).

NAAD is configured for 0, 1, 2, and 3 approximate bits. LOA is configured for 1, 2, 3,

and 4 approximate bits. ACA1 and ACA2 are configured for 4 approximate bits. GeAr is

configured as GeAr_R1_P2 (𝑅 = 1, 𝑃 = 2) and GeAr_R2_P4 (𝑅 = 2, 𝑃 = 4). An

approximate adder is used as an approximate subtractor by taking 1’s complement of its

second data input and setting its carry-in input to 1.

Maximum error, average error and accuracy results for 8-bit and 16-bit approximate

AD hardware are shown in Table 2.I. In the table, A1_ACA1 approximate AD hardware is

10

built by using the ACA1 approximate adder for the subtraction operation in the

Accurate_AD_1 hardware. A2_ACA1 approximate AD hardware is built by using the ACA1

approximate adder for the subtraction operation in the Accurate_AD_2 hardware. A3_ACA1

approximate AD hardware is built by using the ACA1 approximate adder for the subtraction

operation in the Accurate_AD_3 hardware.

8-bit LAD_X hardware has lower maximum error and average error than the other 8-bit

approximate AD hardware. 8-bit approximate AD hardware which uses GeAr_R2_P4

approximate adder has the highest accuracy. 8-bit LAD_X hardware has higher accuracy than

the other 8-bit approximate AD hardware.

Since LAD_X, NAAD and approximate AD hardware which uses LOA approximate

adder are scalable, their quality results for 8-bit and 16-bit AD hardware are the same. Since

approximate AD hardware which use ACA1, ACA2 and GeAr approximate adders are not

scalable, their quality results for 16-bit AD hardware are much worse than 8-bit AD

hardware. Therefore, 16-bit LAD_X hardware has lower maximum error and average error,

and higher accuracy than the other 16-bit approximate AD hardware.

Impact of using LAD_X hardware and 8 approximate AD hardware in the literature in

H.264 full search motion estimation (FSME) hardware (Kalaycioglu, Ulusel, & Hamzaoglu,

2009) is analyzed. The FSME hardware proposed in (Kalaycioglu, Ulusel, & Hamzaoglu,

2009) works for 8-bit pixel values. It is modified to work with 16-bit pixel values. For every

approximate AD hardware, 256 accurate AD hardware in the Verilog RTL codes of 8-bit

FSME hardware and 16-bit FSME hardware are replaced with that approximate AD

hardware.

Quality results of 8-bit and 16-bit H.264 FSME hardware are shown in Table 2.2. Mean

square error (MSE) between the original frames and the frames reconstructed by 8-bit and 16-

bit FSME hardware are calculated. Peak signal to noise ratio (PSNR) values are calculated as

shown in (2.3). The maximum value of an 8-bit pixel is 255, whereas the maximum value of

a 16-bit pixel is 65535. Therefore, PSNR values of 16-bit FSME hardware are much higher

than PSNR values of 8-bit FSME hardware.

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10 (

(𝑀𝑎𝑥. 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒)2

𝑀𝑆𝐸
)

(2.3)

Since LAD_X hardware has very low maximum error and average error, and very high

accuracy, MSE and PSNR values of 8-bit and 16-bit H.264 FSME hardware which use

LAD_X hardware are the same as the MSE and PSNR values of accurate 8-bit and 16-bit

11

H.264 FSME hardware. This means that LAD_X hardware did not cause any quality loss for

H.264 FSME hardware.

PSNR values of 8-bit and 16-bit H.264 FSME hardware which use LAD_X hardware

are higher than the PSNR values of 8-bit and 16-bit H.264 FSME hardware which use the

other approximate adders. This means that LAD_X hardware gives higher quality results than

the other approximate adders when they are used in H.264 FSME hardware.

2.3 Implementation Results

LAD_X hardware, 20 approximate AD hardware in the literature, and 3 accurate AD

hardware are implemented using Verilog HDL. Verilog RTL codes are synthesized and

implemented on Xilinx XC6VLX130T FF1156 FPGA using Xilinx ISE 14.7. FPGA

implementations are verified by post-implementation timing simulations. Power

consumptions of the FPGA implementations are estimated using Xilinx XPower Analyzer.

Post-implementation timing simulations are performed at 100 MHz and signal activities are

stored into VCD files. Power consumptions of the FPGA implementations are estimated

using these VCD files.

FPGA implementation results of AD hardware are shown in Table 2.3. Number of

LUTs used by 8-bit LAD_X hardware is less than the number of LUTs used by the other 8-

bit AD hardware except 8-bit NAAD hardware. Frequency of 8-bit LAD_X hardware is

higher than the frequency of all the accurate AD hardware and most of the approximate AD

hardware. A2_GeAr_R1_P2 hardware has the highest frequency among all the 8-bit AD

hardware. Power consumption of 8-bit LAD_X hardware is lower than the power

consumptions of all the other 8-bit AD hardware.

As expected, as bit width increases, area and power consumptions of all AD hardware

increase, and their frequencies decrease. However, as bit width increases, frequency, area,

and power consumption of LAD_X hardware change less than the frequency, area, and power

consumptions of the other AD hardware.

FPGA implementation results of H.264 FSME hardware are shown in Table 2.4.

Numbers of LUTs used by 8-bit and 16-bit H.264 FSME hardware which use LAD_X

hardware are less than the numbers of LUTs used by the other 8-bit and 16-bit H.264 FSME

hardware, except the ones which use NAAD_3 hardware, respectively. Frequencies of 8-bit

H.264 FSME hardware are similar. Frequencies of 16-bit H.264 FSME hardware are similar.

12

This is because AD hardware is not in the critical path of H.264 FSME hardware. As

expected, as bit width increases, frequencies of H.264 FSME hardware slightly decrease.

Table 2.1 Quality Results of Absolute Difference Hardware

8-bit 16-bit

Maximum

Error

Average

Error

Accuracy

(%)

Maximum

Error

Average

Error

Accuracy

(%)

LAD_1 1 0.25 75 1 0.25 75

LAD_2 1 0.125 87.5 1 0.125 87.5

LAD_3 1 0.062

5

93.75 1 0.062

5

93.75

LAD_4 1 0.031

25

96.87

5

1 0.031

25

96.87

5 NAAD_0 1 0.5 50 1 0.5 50

NAAD_1 2 0.5 75 2 0.5 75

NAAD_2 4 1 62.5 4 1 62.5

NAAD_3 8 2 56.25 8 2 56.25

A3_LOA_1 2 0.74 50 2 0.74 50

A3_LOA_2 6 1.85 31.6 6 1.85 31.6

A3_LOA_3 14 4.1 17.6 14 4.1 17.6

A3_LOA_4 30 8.6 9.5 30 8.6 9.5

A1_ACA1_Q4 128 4.88 90.7 34944 1364.

8

68.4

A2_ACA1_Q4 128 7.22 87.8 34944 1962.

2

65.95

A3_ACA1_Q4 128 7.17 87.8 34944 1962.

1

65.95

A1_ACA2_Q4 64 5.906 84.17

9

17472 1637.

9

54.3

A2_ACA2_Q4 64 7.168 81.25 17472 1962.

2

52.2

A3_ACA2_Q4 64 7.17 81.25 17472 1962.

1

52.2

A1_GeAr_R1_P

2

144 10.17

2

75.48

8

37448 2730 41.4

A2_GeAr_R1_P

2

144 14.16

8

69.92

2

37448 3754 38.2

A3_GeAr_R1_P

2

144 14.17 69.92 37448 3754 38.2

A1_GeAr_R2_P

4

64 1.125 98.24

2

16640 409 89.1

A2_GeAr_R2_P

4

64 1.48 97.65

6

16640 506 88.4

A3_GeAr_R2_P

4

64 1.48 97.65 16640 506 88.4

Table 2.2 Quality Results of H.264 Motion Estimation Hardware

8-bit 16-bit

PSN

R

MS

E

PSNR MS

E Accurate_AD_

3

36.2

7

16.

33

84.47 16.3

LAD_2 36.2

7

16.

33

84.47 16.3

LAD_4 36.2

7

16.

33

84.47 16.3

NAAD_1 36.1

4

16.

6

68.26 16.6

NAAD_3 35.2 19.

3

83.46 19.3

A3_LOA_2 35.8 17.

6

84 17.6

A3_LOA_4 32.6 35.

66

80.8 35.6

A3_ACA1_Q4 29.8 71.

3

72.47 320.

6 A3_ACA2_Q4 31.1 50.

6

74 205.

3 A3_GeAr_R1_

P2

30.9

2

54.

00

75.93 122.

6 A3_GeAr_R2_

P4

32.2

3

42.

00

69.53 606

13

Table 2.3 FPGA Implementation Results of Absolute Difference

8-bit 16-bit

LUTs
Frequency

(MHz)

Power

(mW)
LUTs

Frequency

(MHz)

Power

(mW)

Accurate_AD_

1

2

8

461 0.39 64 384 0.44

Accurate_AD_

2

2

6

589 0.45 50 534 0.53

Accurate_AD_

3

2

2

572 0.4 34 458 0.37

LAD_1 1

8

653 0.28 34 577 0.33

LAD_2 1

8

654 0.3 38 591 0.37

LAD_3 1

8

638 0.31 34 588 0.39

LAD_4 1

8

645 0.37 34 581 0.44

NAAD_0 1

8

653 0.3 38 588 0.39

NAAD_1 1

8

657 0.3 36 588 0.35

NAAD_2 1

6

657 0.34 32 589 0.33

NAAD_3 1

5

662 0.22 35 591 0.33

A3_LOA_1 2

1

543 0.37 42 431 0.36

A3_LOA_2 2

1

536 0.3 37 445 0.32

A3_LOA_3 2

4

615 0.3 34 440 0.3

A3_LOA_4 2

1

620 0.25 34 443 0.27

A1_ACA1_Q4 3

3

432 0.43 71 400 0.49

A2_ACA1_Q4 3

5

641 0.5 74 574 0.58

A3_ACA1_Q4 2

5

604 0.57 46 515 0.43

A1_ACA2_Q4 3

2

449 0.45 70 396 0.48

A2_ACA2_Q4 3

0

666 0.52 62 560 0.57

A3_ACA2_Q4 2

4

649 0.5 49 485 0.47

A1_GeAr_R1_

P2

2

9

498 0.43 61 424 0.47

A2_GeAr_R1_

P2

2

6

771 0.46 50 722 0.51

A3_GeAr_R1_

P2

2

0

645 0.51 33 566 0.39

A1_GeAr_R2_

P4

3

3

448 0.37 81 400 0.5

A2_GeAr_R2_

P4

3

4

608 0.46 90 571 0.54

A3_GeAr_R2_

P4

2

4

558 0.42 55 479 0.38

Table 2.4 FPGA Implementation Results of H.264 Motion Estimation Hardware

8-bit 16-bit

LUTs
Frequency

(MHz)

LUTs
Frequency

(MHz)

Accurate_AD_

3

108

09

204 213

15

190

LAD_2 105

61

207 189

09

195

LAD_4 105

14

204 189

06

196

NAAD_1 106

12

205 189

72

187

NAAD_3 103

06

203 187

57

197

A3_LOA_2 110

89

200 207

23

185

A3_LOA_4 107

12

206 203

19

186

A3_ACA1_Q4 117

00

204 202

09

196

A3_ACA2_Q4 119

35

207 190

44

198

A3_GeAr_R1_

P2

122

05

205 200

45

194

A3_GeAr_R2_

P4

117

17

203 258

86

188

14

3 CHAPTER III

Comparison of Approximate Circuits for H.264 Motion Estimation

Approximate hardware can achieve better performance, area and power consumption

than accurate hardware while providing acceptable quality for error tolerant applications (Xu,

Mytkowicz, & Kim, 2015), (Froehlich, Große, & Drechsler, 2018), (Kalali & Hamzaoglu,

Approximate HEVC Fractional Interpolation Filters and Their Hardware Implementations,

2018). Video coding can tolerate small errors (Kalali & Hamzaoglu, Approximate HEVC

Fractional Interpolation Filters and Their Hardware Implementations, 2018). Therefore,

approximate computing can be used for block matching ME.

Approximate adders proposed in literature can be broadly classified into two categories.

(1) Approximation of 1-bit full adder (Gupta, Mohapatra, Park, Raghunathan, & Roy, 2011),

(Mahdiani, Ahmadi, Fakhraie, & Lucas, April, 2010). These adders simplify 1-bit full adder

logic. They divide n-bit addition into two parts, approximate part for least significant bits

(LSBs) and accurate part for most significant bits (MSBs). They use the approximate 1-bit

full adder in the approximate part. (2) Segmented adders (Jiang H. , Liu, Liu, Lombardi, &

Han, August 2017), (Shafique, Ahmad, Hafiz, & Henkel, 2015). These adders break the carry

chain by dividing n-bit addition into several smaller fixed size overlapping sub-adders

working in parallel. They have higher speed than accurate adders. However, they consume

more area and power than accurate adders.

In this thesis, we assessed the impact of using approximate circuits in H.264 ME

hardware. Approximate circuits are used in the absolute difference operation and adder tree in

H.264 ME hardware. The approximate adder proposed by (Ahmad, 2021) achieved up to

10% power reduction in ME hardware while providing better quality than the other

approximate circuits. Traditional bit truncation achieved the largest area and power

reductions in ME hardware at the expense of more quality loss than the proposed

approximate adder. Generic accuracy reconfigurable adder (GeAr) segmented approximate

adder (Shafique, Ahmad, Hafiz, & Henkel, 2015) had the worst quality, area and power

consumption results.

15

3.1 Approximate Circuits

The proposed 1-bit approximate full adder is shown in Fig. 3.1 (a) (Ahmad,

Ayrancioglu, & Hamzaoglu, Comparison of Approximate Circuits for H.264 and HEVC

Motion Estimation, 2020). It generates carry-out (Cout) output without considering the effect

of carry-in (Cin) input. Carry-out is 1 whenever one or both inputs A and B are 1. Error is

generated in the following two cases; (A = 0, B = 1 , Cin = 0 → S = 0, Cout = 1) and (A = 1, B

= 0 , Cin = 0 → S = 0, Cout = 1). An important property of the proposed approximate full

adder is that it generates accurate outputs when carry-in input is 1. Since carry-in for the

subtraction in absolute difference operation is always 1, this property is very useful for

absolute difference operation. Maximum error magnitude of the proposed approximate full

adder is 1.

Many approximate arithmetic circuits are proposed in the literature. The approximate

circuits used in this thesis are selected based on the analysis results reported in the literature.

In (El-Harouni, et al., 2017), two 1-bit approximate full adders from (Gupta, Mohapatra,

Park, Raghunathan, & Roy, 2011) are determined to give the best performance for ME. In

this thesis, these 1-bit full adders are referred to as IMPACT-1 and IMPACT-2. They are

shown in Fig. 3.1 (c) and Fig. 3.1 (d), respectively. An approximate n-bit subtractor can be

designed using IMPACT-1 or IMPACT-2 as shown in Fig. 3.1 (e). In the approximate m-bit

adder, m 1-bit IMPACT-1 or m 1-bit IMPACT-2 full adders are used. In (Porto R. , et al.,

2017) and (Paltrinieri, Peloso, Masera, Shafique, & Martina, 2018), it is shown that lower-

part-OR adder (LOA) (Mahdiani, Ahmadi, Fakhraie, & Lucas, April, 2010) performs better

than many segmented adders for ME. m-bit LOA is shown in Fig. 3.1 (b). An approximate n-

bit subtractor can be designed using LOA as shown in Fig. 3.1 (e). In this approximate n-bit

subtractor, m-bit LOA is used as the m-bit approximate adder.

16

Figure 3.1 (a) Proposed 1-bit Approximate Full Adder (b) m-bit LOA (c) IMPACT-1 (d)

IMPACT-2 (e) n-bit Approximate Subtractor

Figure 3.2 (a) GeAr Adder (N=8, R=2, P=4) (b) NAAD 0 (c) NAAD 2

Figure 3.3 (a) Baseline 1 AD Hardware (b) Baseline 2 AD Hardware

We selected GeAr among segmented adders for our analysis. GeAr is shown in Fig. 3.2

(a). The novel approximate absolute difference (NAAD) hardware proposed in (Mert, Azgin,

Kalali, & Hamzaoglu, 2019) is also included in our analysis. Two configurations of 8-bit

NAAD are shown in Fig. 3.2 (b) and Fig. 3.2 (c).

17

We used the two accurate absolute difference (AD) hardware shown in Fig. 3.3 (a) and

Fig. 3.3 (b) to provide baseline results for our analysis. We assessed impact of using the

approximate subtractor shown in Fig. 3.1 (e) based on the proposed, IMPACT-1, IMPACT-2

and LOA adders for the subtraction operation in baseline 2 AD hardware. We assessed

impact of using 1-bit, 2-bit, 3-bit and 4-bit approximate adder in this 8-bit approximate

subtractor. We assessed impact of using the following four configurations of GeAr for the

subtraction operation in baseline 2 AD hardware (a) N=8, R=1, P=6 (b) N=8, R=2, P=4 (c)

N=8, R=1, P=4 (d) N=8, R=2, P=2. These configurations correspond to 1-bit, 2-bit, 3-bit and

4-bit approximations, respectively.

We analyzed using four different configurations of NAAD with 8, 7, 6, 5 XOR gates for

the absolute difference operation. These configurations are referred to as NAAD 0, NAAD 1,

NAAD 2, and NAAD 3, respectively. They correspond to 1-bit, 2-bit, 3-bit and 4-bit

approximations, respectively. Finally, we analyzed applying traditional 1-bit, 2-bit, 3-bit, 4-bit

truncation to baseline 2 AD hardware.

Figure 3.4 H.264 ME Processing Element

18

3.2 Motion Estimation Hardware

Figure 3.5 H.264 Motion Estimation Hardware

We used the H.264 variable block size full search ME hardware proposed in (Kalaycioglu,

Ulusel, & Hamzaoglu, 2009) to assess impact of using approximate absolute difference

hardware in an H.264 ME hardware. Block diagram of this ME hardware is shown in Fig. 3.5.

256 processing elements (PE) are used in this ME hardware to calculate absolute differences

for a 16x16 block in parallel. As shown in Fig. 3.4, a PE is composed of a multiplexer to select

the reference pixel, a register to store it and an absolute difference hardware. Current block

pixels are stored in the current block registers. 32x32 search window pixels are stored in

seventeen 18K Block RAMs (BRAM) in FPGA. In every clock cycle, 16 reference pixels are

read from the search window BRAMs and stored in top or bottom PEs according to the search

direction. The other PEs receive reference pixels from one of their neighboring PEs according

to the search direction. It takes 16 clock cycles to fill the PE array with the first 16x16

reference block. After that, 41 SAD values for a search location are generated every clock

cycle. Therefore, it takes 1040 clock cycles to generate SAD values for all search locations in

a 32x32 search window.

19

3.3 Assessment of Using Approximate Circuits in Motion Estimation Hardware

We assessed impact of using the approximate absolute difference hardware in the H.264

ME hardware. For each approximate absolute difference hardware, we replaced the 256 exact

absolute difference hardware in Verilog RTL code of the H.264 ME hardware with the

approximate absolute difference hardware. In addition, we used the baseline 2 accurate

absolute difference hardware shown in Fig. 3.3 (b) to provide baseline results for our

analysis.

All Verilog RTL codes are synthesized and implemented using Xilinx Vivado Design

Edition 2017.4 on Xilinx Virtex 7 XC7VX485TFFG1157 FPGA with speed grade 3. For all

ME hardware, Vivado Synthesis Defaults and Performance Explore synthesis and

implementation strategies are used, respectively.

Switching activity interchange format (SAIF) files are generated for the hardware with

post-implementation timing simulations for Foreman video using Mentor Graphics

QuestaSim. Power consumptions of the H.264 ME hardware are estimated with Xilinx

Vivado using these SAIF files.

Table 3.1 presents average MSE results for all H.264 sub-block sizes for Foreman

video. The proposed approximate adder achieves the smallest MSE results in most cases.

GeAr performs the worst. It has the largest MSE results in all cases. Traditional bit truncation

also performs worse than the proposed approximate adder in all cases. The other approximate

circuits perform better than the proposed approximate adder in some cases.

In some cases, ME hardware using approximate absolute difference hardware has

smaller MSE value than ME hardware using accurate absolute difference hardware. This is

mainly because of the difference between SAD and MSE metrics. For example, for the

following two sets of absolute differences A={2,2,2,2} and B = {3,3,0,0}, SAD{A} = 8 and

SAD {B} = 6, whereas MSE {A}= 4 and MSE {B} = 4.5. A ME hardware using accurate

absolute difference hardware will select SAD {B} as the minimum SAD. However, a ME

hardware using an approximate absolute difference hardware may inaccurately select SAD

{A} as the minimum SAD. Therefore, an approximate ME hardware may have smaller MSE

value than accurate ME hardware.

20

Table 3.1 H.264 MSE Results

Approximate Circuit and its Configuration H.264 MSE

Baseline 16.79

Proposed

1 16.79

2 16.82

3 16.98

4 17.32

NAAD

0 16.80

1 16.94

2 17.43

3 19.75

LOA

1 16.94

2 17.12

3 17.14

4 18.81

IMPACT-1

1 16.56

2 16.87

3 17.87

4 20.63

IMPACT-2

1 16.56

2 16.87

3 17.96

4 21.55

GeAr

R1_P6 45.39

R2_P4 42.73

R1_P4 73.31

R2_P2 50.88

Bit Truncation

1 17.20

2 19.21

3 22.82

4 32.57

Figure 3.6 H.264 Power Reduction (%)

21

Figure 3.7 H.264 Slice Reduction (%)

Figure 3.8 H.264 LUT Reduction (%)

Area and power consumption results of the H.264 ME hardware are shown in Fig. 3.6,

Fig. 3.7 and Fig. 3.8. In the figures, percentage reductions achieved by approximate ME

hardware compared to the corresponding accurate ME hardware are shown. As expected,

traditional bit truncation achieves the largest area and power consumption reductions at the

expense of more quality loss than the proposed approximate adder. GeAr has the worst area

and power consumption results. For 1-bit approximation, the proposed approximate adder by

(Ahmad, 2021) achieves 5% power reduction in H.264 ME hardware without affecting

quality.

We assessed the impact of using approximate adders in the adder tree of the same

H.264 ME hardware. The adder tree of the H.264 ME hardware has adders with bit widths

from 8 to 15. The accurate adders in the adder tree are replaced with the previously

mentioned approximate adders in the literature. PSNR and MSE results of H.264 ME

hardware are shown in Table 3.2. GeAr gives the best result only for 1 approximate bit

confguration. For other configurations, the proposed approximate adder by (Ahmad, 2021)

gives the best results.

22

Table 3.2 H.264 Quality Results

Approximate Circuit and its Configuration PSNR MSE

Baseline 36.17 16.79

Proposed

1 36.16 16.80

2 36.12 16.91

3 36.03 17.14

4 35.82 17.77

5 35.61 18.49

LOA

1 36.13 16.89

2 36.02 17.20

3 35.91 17.56

4 35.57 18.69

5 34.91 21.53

Impact-1

1 36.17 16.78

2 36.11 16.91

3 35.85 17.42

4 34.40 23.65

5 31.16 51.21

Impact-2

1 36.15 16.85

2 36.00 17.20

3 35.62 18.40

4 34.51 23.10

5 31.77 43.58

GeAr

R1P6 19.05 813.27

R1P4 20.00 690.56

R2P2 19.83 696.40

R2P4 19.49 743.74

 R1P2 19.72 714.73

All Verilog RTL codes are synthesized and implemented using Xilinx Vivado Design

Edition 2020.1 on a Xilinx Virtex 7 XC7VX485TFFG1157 FPGA with speed grade 3. For all

ME hardware, Vivado Synthesis Defaults and Performance Explore synthesis and

implementation strategies are used, respectively. Switching activity interchange format

(SAIF) files are generated for the FPGA implementations with post-implementation timing

simulations for Foreman video using Mentor Graphics QuestaSim. Power consumptions of

the H.264 ME hardware are estimated with Xilinx Vivado using these SAIF files.

The implementation results for H.264 ME hardware using approximate adders in the adder

tree are shown in Table 3.3. H.264 ME hardware using the proposed approximate adder by

23

(Ahmad, 2021) has the smallest area whereas H.264 ME hardware using GeAr has the largest

area. Since the adder tree is not on the critical path of the H.264 ME hardware, maximum

frequency results are very close to each other. For 1 and 2 approximate bit configurations,

H.264 ME hardware using the proposed approximate adder by (Ahmad, 2021) consumes less

power than the ones in the literature. For configurations using 3, 4, and 5 approximate bits,

H.264 ME hardware using LOA consumes less power than the others. For configurations

using 3, 4 and 5 approximate bits, H.264 ME hardware using the proposed approximate adder

by (Ahmad, 2021) consumes more power than LOA but less power than others.

Table 3.3 H.264 Implementation Results

Approximate Circuit and its Configuration LUT
Max.

Freq. (MHz)
Power (W)

Baseline 10001 347.22 0.266

Proposed

1 9602 350.14 0.253

2 9407 365.50 0.240

3 9298 371.20 0.242

4 9516 363.64 0.242

5 9579 367.65 0.231

LOA

1 9840 370.37 0.259

2 9677 368.32 0.243

3 9445 353.36 0.236

4 9604 371.20 0.232

5 9360 371.06 0.220

Impact-1

1 9838 370.37 0.257

2 9898 364.30 0.256

3 9854 363.37 0.256

4 10110 342.70 0.261

5 9884 347.83 0.250

Impact-2

1 9752 364.30 0.253

2 9774 369.69 0.245

3 9568 353.11 0.260

4 10096 350.88 0.279

5 10046 347.83 0.284

GeAr

R1P6 13142 350.88 0.338

R1P4 11325 355.87 0.342

R2P2 10643 352.36 0.317

R2P4 11566 353.86 0.307

 R1P2 10334 355.24 0.280

24

4 CHAPTER IV

VVC AFFINE MOTION ESTIMATION HARDWARE

There are two modes of affine motion estimation (AME): 4-parameters AME which uses

two motion vectors and 6-parameters AME which uses three motion vectors. Although affine

transformation can be applied on various shapes, there are two important assumptions for the

AME formulae to work (US Patent No. WO 2017/200771 Al, 2017). First, blocks should be

squares. Second, upper left edge of the blocks (𝑚𝑣0’s location) should be considered as the

origin of the coordinate system. These two assumptions allow the 4-parameters AME

formulae to be written as shown in 4.1 and 4.2, and the 6-parameters AME formulae to be

written as shown in 4.3 and 4.4. 4-parameters AME takes zoom and rotation into account,

whereas 6-parameters AME takes shear into account as well.

𝑚𝑣𝑥 =

𝑚𝑣1𝑥
− 𝑚𝑣0𝑥

𝑤
𝑥 −

𝑚𝑣1𝑦
− 𝑚𝑣0𝑦

𝑤
𝑦 + 𝑚𝑣0𝑥

(4.1)

𝑚𝑣𝑦 =

𝑚𝑣1𝑦
− 𝑚𝑣0𝑦

𝑤
𝑥 −

𝑚𝑣1𝑥
− 𝑚𝑣0𝑥

𝑤
𝑦 + 𝑚𝑣0𝑦

(4.2)

 𝑚𝑣𝑥 =
𝑚𝑣1𝑥

− 𝑚𝑣0𝑥

𝑤
𝑥 −

𝑚𝑣2𝑥
− 𝑚𝑣0𝑥

𝑤
𝑦 + 𝑚𝑣0𝑥

(4.3)

𝑚𝑣𝑦 =

𝑚𝑣1𝑦
− 𝑚𝑣0𝑦

𝑤
𝑥 −

𝑚𝑣2𝑦
− 𝑚𝑣0𝑦

𝑤
𝑦 + 𝑚𝑣0𝑦

(4.4)

Translation motion estimation is the most computationally intensive operation of video

compression. AME has much higher computational complexity than translational motion

estimation. To reduce computational complexity, VVC standard applies AME on 4x4 sub-

blocks instead of pixels. As the spatial video resolutions increase, the ratio of the area

occupied by a sub-block to the whole frame decreases. Therefore, significance of each sub-

block decreases giving opportunity to make operations on sub-blocks instead of pixels. Fig.

4.1 shows the ratio of the area occupied by a single pixel and a 4x4 sub-block to the whole

frame in various video resolutions. For example, a single pixel in an HD frame has more

significance than a 4x4 sub-block in an 8K frame.

25

Figure 4.1 Pixel vs. 4x4 Sub-Block

For translational ME, a motion vector is calculated for each block and all the pixels in a

block is moved to the location pointed by that motion vector regardless of their positions in

the block. On the other hand, for AME, pixels’ new locations are calculated depending on

their locations in the block. For example, if AME is performed on pixels instead of 4x4 sub-

blocks, decoder needs to solve the AME formulae 256 times for a 16x16 block instead of 16

times. For AME, as shown in Fig. 4.2, encoder uses affine motion vectors to calculate

translational motion vectors for the center points of every sub-block.

In Fig. 4.2 and Fig. 4.3, black arrows are the affine motion vectors, and the colored

arrows are four of the sixteen calculated translational motion vectors for the sub-blocks. In

Fig. 4.3, only four translational motion vectors are shown to clearly point out the difference

between translational motion vectors at different locations. As shown in the figures,

translational motion vectors of the sub-blocks closer to the affine motion vectors are similar

to the affine motion vectors. On the other hand, translational motion vectors of the sub-blocks

far from the affine motion vectors are different from the affine motion vectors.

26

Figure 4.2 Affine Motion Vectors for Sub-Blocks

Figure 4.3 Affine Motion Vectors

Sub-block based AME introduces an approximation while decreasing the

computational complexity. For example, as shown in Fig. 4.2, if the processed block is

zoomed in, zoomed out or rotated, sub-blocks start to overlap and share pixels, or gaps appear

between sub-blocks. Sub-block based AME keeps much less motion vectors than traditional

translational motion estimation. For example, traditional translational motion estimation

needs to keep 1024 motion vectors to encode a 128x128 block by using 4x4 sub-blocks

whereas AME needs to keep only 2 or 3 affine motion vectors.

For 4-parameters AME for a 16x16 block with 4x4 sub-blocks, 𝑚𝑣0 is applied to upper

left corner and 𝑚𝑣1 is applied to upper right corner. For 6-parameters AME, in addition to

𝑚𝑣0 and 𝑚𝑣1, 𝑚𝑣2 is applied to bottom left corner. X and Y components of a motion vector

are shown as 𝑚𝑣
𝑥
and 𝑚𝑣

𝑦
. For a 16x16 block with 4x4 sub-blocks, X (𝑚𝑣𝑥) and Y (𝑚𝑣𝑦)

components of 16 translational motion vectors are calculated. In the formulae 4.1 - 4.4, W

stands for width and height, which are equal to 16 for a 16x16 block. x and y are the

27

coordinates of the location which the formula is being applied. For example, since the

formulae 4.1 - 4.4 are applied to the center points of the sub-blocks, (x, y) couples for a

16x16 block are:

o (1.5, 1.5), (5.5, 1.5), (9.5, 1.5), (13.5, 1.5)

o (1.5, 5.5), (5.5, 5.5), (9.5, 5.5), (13.5, 5.5)

o (1.5, 9.5), (5.5, 9.5), (9.5, 9.5), (13.5, 9.5)

o (1.5, 13.5), (5.5, 13.5), (9.5, 13.5), (13.5, 13.5)

In the formulae 4.1 - 4.4, +𝑚𝑣0𝑥
 and +𝑚𝑣0𝑦

 ensure the translational motion where the

rest is responsible for affine motion such as rotation, zoom and shear. Consider the 4-

parameter formula for 𝑚𝑣𝑥. (𝑚𝑣1𝑥
− 𝑚𝑣0𝑥

), i.e., difference of x components of two motion

vectors, controls the movement on the x axis and multiplication with the x coordinate

controls the distance between sub-blocks by moving the sub-blocks located on the right more

than the sub-blocks located on the left. Similarly, (𝑚𝑣1𝑦
− 𝑚𝑣0𝑦

), i.e., difference of y

components of two motion vectors, controls the movement on the x axis and multiplication

with the y coordinate controls the distance between sub-blocks by moving the sub-blocks

located on the bottom more than the sub-blocks located on the top. The same situation is

valid for 𝑚𝑣𝑦.

Block matching ME algorithms calculate a sum of absolute difference (SAD) value for

every search location. The number of search locations is determined by the ME algorithm.

ME algorithms searching more search locations are likely to find better matches. Therefore,

they achieve more video compression at the expense of higher computational complexity. For

example, traditional full search translational ME algorithm calculates SAD values for 256

search locations for a 16x16 search window and for 16384 search locations for a 128x128

search window (Ahmad, Efficient HEVC and VVC motion estimation hardware, 2021).

Since AME algorithms use two or three motion vectors for every block, AME increases

the number of search locations exponentially. For example, for a 128x128 search window,

there are 16384 𝑚𝑣0 search locations, 16384 𝑚𝑣1 search locations for every 𝑚𝑣0 search

location and 16384 𝑚𝑣2 search locations for every 𝑚𝑣1 search location. Therefore, if 6-

parameter full search AME algorithm is performed, approximately 4.3 × 1012 SAD values

should be calculated, which is practically impossible. Therefore, approximate AME

algorithms should be used such as performing full search for 𝑚𝑣0 and searching only pre-

28

determined search locations for 𝑚𝑣1 and 𝑚𝑣2 (Li, Li, Lv, & Yang, 2015) (Girotra, Johar,

Ghosh, & Chakrabarti, 2003).

4.1 Proposed VVC Affine Motion Estimation Hardware

In this thesis, we propose a VVC AME hardware which performs 4-parameters AME.

To the best of our knowledge, it is the first VVC AME hardware in the literature. We propose

a novel pixel storage method which significantly reduces the computational complexity and

the number of BRAM read operations.

The proposed hardware uses 128x128 fixed search window size. It can work for 16x16,

32x32 or 64x64 block sizes. It takes the block size as input. The user decides on the trade-off

between compression and speed by choosing the block size (Bross, Chen, Ohm, Sullivan, &

Wang, 2021). The number of search locations searched by the proposed hardware depends on

the block size. For 𝑚𝑣0, it searches all the search locations in the search window for which

the entire current block is in the search window. In other words, it searches 4096 search

locations for 64x64 block size, 9216 search locations for 32x32 block size and 12544 search

locations for 16x16 block size for 𝑚𝑣0. For 𝑚𝑣1, it searches only 8 pre-determined search

locations. Therefore, the proposed VVC AME hardware searches 32768, 73728 or 100352

search locations depending on the block size given by the user.

Figure 4.4 VVC Affine Motion Estimation Hardware

Control Module

Search Window
Registers

Current Block
Registers

64x64
Processing

Units
(Absolute

Difference)

4x4 Sub Blocks

Translational M
otion

V
ectors Adder Tree

Final SAD
Output

29

The proposed hardware has two copies of the VVC AME hardware shown in Fig. 4.4.

Each copy is composed of a translational motion vector calculation part in the control

module, multiplexers to choose pixels using the motion vectors, 64x64 processing units for

absolute difference calculation and an adder tree.

After the start signal, the proposed hardware reads the search window pixels from off-

chip memory and writes them to BRAMs. It uses 16 BRAMs as shown in Fig. 4.5. It reads 64

pixels in a clock cycle. The proposed hardware concatenates the 64 pixels and writes them to

a single location in BRAMs. Since the search window size is 128x128, 128 rows are stored to

each BRAM. Therefore, it takes 256 clock cycles to write the search window pixels to

BRAMs. Then, the proposed hardware reads the current block pixels which takes 64, 16 or 4

clock cycles depending on the block size. Then, the proposed hardware reads one row of

search window pixels (128 pixels) from BRAMs in one clock cycle and stores them to

registers as shown in Fig 4.6. Since the affine motion vectors can point upwards and

downwards, previous and next rows are needed for SAD calculations. Therefore, for

example, if the block size is 16x16, the proposed hardware reads 18 rows from the BRAMs

and stores them to registers. After the proposed hardware reads the necessary search window

pixels from BRAMs, it starts SAD calculation.

Figure 4.5 Pixel Storage in BRAMs

64 x 8 = 512 bits 64 x 8 = 512 bits

64 x 8 = 512 bits 64 x 8 = 512 bits

64 x 8 = 512 bits 64 x 8 = 512 bits

64 x 8 = 512 bits 64 x 8 = 512 bits

64 x 8 = 512 bits 64 x 8 = 512 bits

64 x 8 = 512 bits 64 x 8 = 512 bits

128 Rows

BRAMs 0-7 BRAMs 8-15

30

Figure 4.6 Pixel Storage in Registers

According to the translational motion vectors calculated by the control module,

appropriate pixels are sent to the 64x64 processing units for absolute difference calculation

and absolute difference results are added by the adder tree. The proposed hardware searches 8

𝑚𝑣1 search locations for each 𝑚𝑣0 search location. Seven search locations are shown by

arrows in Fig. 4.7, the remaining search location is the upper right edge of the block. As

mentioned earlier, two copies of the VVC AME hardware shown in Fig. 4.4 work in parallel.

Each copy performs motion vector and SAD calculations 4 times.

The smallest SAD value and the related motion vector information are stored in the

registers for comparison with the SAD values that will be calculated. After SAD calculations

for a 𝑚𝑣0 search location and 8 𝑚𝑣1 search locations finish, the proposed hardware left shifts

the search window pixels in the registers by one instead of incrementing 𝑚𝑣0𝑥
 value.

Similarly, after SAD calculations for a row finish, the search window pixels in the registers

are shifted up instead of incrementing 𝑚𝑣0𝑦
 value and a new row is read from the BRAMs.

After all SAD calculations finish, the proposed hardware sends the smallest SAD value and

the related motion vector information as the output. These steps are repeated for every block.

16/32/64
Rows

Previous
Row

Next Row

128 Pixels

31

Figure 4.7 𝐦𝐯𝟏 Locations

Since motion vector and SAD calculations are pipelined, calculations for each 𝑚𝑣0

search location take 4 clock cycles. Therefore, the latency is 16396, 36876 or 50188 clock

cycles for every block when 12 clock cycles latency of the adder tree is added.

As mentioned before, the proposed hardware uses a novel pixel storage method. The

proposed method uses large number of registers. However, it has three important advantages.

First, it significantly reduces the number of BRAM read operations. Second, it eliminates

complex address generation for BRAMs. Third, it significantly simplifies computation of

translational motion vectors from affine motion vectors.

As the search window size and block size increase, the proposed hardware would read

the same pixel from BRAMs repeatedly if the proposed method was not used. Fig. 4.8 and

Fig. 4.9 show the number of read operations needed for each pixel for 8x8 and 16x16 search

window sizes if the block size is 4x4. If the search window size is 8x8, 64 pixels are read 112

times, and if the search window size is 16x16, 256 pixels are read 688 times. If the search

window size is 128x128, for 32x32 block size, 96x98 pixels will be read 32 times which adds

up to 301056 pixel reads. If the search window size is 128x128, for 16x16 block size,

112x114 pixels will be read 16 times which adds up to 204288 pixel reads. Therefore, the

proposed method significantly reduces the number of BRAM read operations.

For traditional translational motion estimation, reading pixels from the search window for

SAD calculation is a simple task. BRAM addresses can be calculated by simply incrementing

the previous addresses. For AME, BRAM address calculation is very complex. By keeping

the search window pixels in registers, the proposed hardware eliminates complex address

generation for BRAMs.

32

Figure 4.8 Number of Pixels Read for 8x8 Search Window

Figure 4.9 Number of Pixels Read for 16x16 Search Window

Figure 4.10 Left Shift Operation

1

2 2 2 2

2 2 2 2

3 3 3 3

1 1 1 1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

2 2 2 2 3 3 3 3

2 2 2 2 2 2 2 2

1 1 1 1

1 1 1 1

2 2 2 2

1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2

3 3 3 3 4 4 4 4 4 4 4 4 2 2 2 2

2 2 2 2

3 3 3 3

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

3 3 3 3

2 2 2 2

2 2 2 2

3 3 3 3

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

3 3 3 3

2 2 2 2

2 2 2 2

3 3 3 3

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

3 3 3 3

2 2 2 2

2 2 2 2

3 3 3 3

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

3 3 3 3

2 2 2 2

2 2 2 2 4 4 4 4 4 4 4 4 3 3 3 3

2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

33

Figure 4.11 Up Shift Operation

As mentioned before, the proposed method performs left and up shifts which can be

considered as moving the search window instead of the current block. Fig. 4.10 and Fig. 4.11

show the left and up shift operations on a smaller scale. Therefore, 𝑚𝑣0 value does not

change for the vector calculation. Since the first 𝑚𝑣0 value is decided to be (0,0), AME

formulae become as shown below.

𝑚𝑣𝑥 =

𝑚𝑣1𝑥

𝑤
𝑥 −

𝑚𝑣1𝑦

𝑤
𝑦

(4.5)

𝑚𝑣𝑦 =

𝑚𝑣1𝑦

𝑤
𝑥 −

𝑚𝑣1𝑥

𝑤
𝑦

(4.6)

 𝑚𝑣𝑥 =
𝑚𝑣1𝑥

𝑤
𝑥 −

𝑚𝑣2𝑥

𝑤
𝑦

(4.7)

𝑚𝑣𝑦 =

𝑚𝑣1𝑦

𝑤
𝑥 −

𝑚𝑣2𝑦

𝑤
𝑦

(4.8)

128x128 search window requires each motion vector to be 7-bits. Since the proposed

hardware eliminates 𝑚𝑣0 from the formulae and it searches 8 𝑚𝑣1 search locations, 𝑚𝑣1

becomes 4-bits. Therefore, division and multiplication operations with 8-bit values are

transformed to division and multiplication operations with 4-bit values. Since two copies of

the VVC AME hardware shown in Fig. 4.4 work in parallel and 256 sub-blocks exist in a

64x64 block and each sub-block requires 4 division and 4 multiplication operations, 2048

divisions and 2048 multiplications are required. Therefore, reduction from 7-bits to 4-bits for

vector calculation significantly reduces the hardware area.

The proposed VVC AME hardware is implemented in Verilog HDL. The Verilog RTL

codes are synthesized and implemented by Vivado 2020.1 on a Xilinx Virtex UltraScale+

34

FPGA xcvu9p-flgb2104-3-e. Default strategy is used for synthesis and performance explore

strategy is used for implementation. The maximum clock frequency is determined as 125

MHz. The FPGA implementation uses 6555741 LUTs, 252982 FFs, 576 IO PADs, 16

BRAMs and 1920 DSPs.

Table 4.1 shows the number of frames that can be processed by the proposed VVC

AME hardware for various video resolutions. As mentioned before, AME for a block takes

16652, 37132 or 50444 clock cycles depending on the block size. In the table, hybrid is the

case when 40% of the frame is processed with 64x64 block size, 35% of the frame is

processed with 32x32 block size and 25% of the frame is processed by 16x16 block size.

Table 4.1 Number of Frames Processed per Second

Block Size HD Full HD

64x64 32.5 fps 15 fps

32x32 3.7 fps 1.6 fps

16x16 0.65 fps 0.29 fps

Hybrid 2 fps 0.91 fps

As shown in Table 4.1, when AME is performed for the entire video frame, the

proposed hardware does not achieve real-time performance in high resolution videos.

Although parallel processing can be used to increase performance, since AME hardware has

large area, it is not feasible to perform AME for the entire video frame. Since affine motion

does not exist in all the blocks in a video frame, the video frame should be analyzed and

AME should be performed only for the blocks which possibly have affine motion.

35

5 CHAPTER V

CONCLUSIONS AND FUTURE WORK

In this thesis, we proposed a low error approximate absolute difference (LAD_X)

hardware. It has lower maximum and average error, and higher accuracy than the

approximate AD hardware in the literature. It has similar performance with and smaller area

than them. The H.264 ME hardware using LAD_X hardware performs higher quality ME

than the H.264 ME hardware using the approximate AD hardware in the literature. It has

similar performance with and smaller area than them.

In this thesis, we assessed impact of using several approximate circuits from the

literature in H.264 ME hardware. The approximate adder proposed by (Ahmad, 2021)

achieved up to 10% power reduction in ME hardware while providing better quality than the

other approximate circuits. Traditional bit truncation achieved the largest area and power

reductions in ME hardware at the expense of more quality loss than the approximate adder

proposed by (Ahmad, 2021). GeAr segmented approximate adder had the worst quality, area

and power consumption results.

In this thesis, a novel VVC AME hardware is proposed. To the best of our knowledge,

it is the first VVC AME hardware in the literature. It implements 4-parameters affine

transform and uses a novel pixel storage method.

As future work, the proposed VVC AME hardware can be improved by using fast

search algorithms instead of full search algorithm. Approximate circuits can be used to

improve area, power, speed of the proposed VVC AME hardware. Since computational

complexity of VVC AME is much more than that of H.264 ME, using approximate circuits in

VVC AME hardware may have more impact than using them in H.264 ME hardware.

36

6 BIBLIOGRAPHY

Adhuran, J., Fernando, A., Kulupana, G., & Blasi, S. (2021). Affine Intra-prediction for

Versatile Video Coding. 2020 28th European Signal Processing Conference

(EUSIPCO), (s. 545-549). doi:10.23919/Eusipco47968.2020.9287579

Ahmad, W. (2021). Efficient HEVC and VVC motion estimation hardware. PhD Thesis.

Sabanci University. Istanbul, Turkey.

Ahmad, W., & Hamzaoglu, I. (2021). An efficient approximate sum of absolute differences

hardware for FPGAs. Proc. IEEE Int. Conf. Consum. Electron (ICCE). IEEE.

Ahmad, W., Ayrancioglu, B., & Hamzaoglu, I. (2020). Comparison of Approximate Circuits

for H.264 and HEVC Motion Estimation. 2020 23rd Euromicro Conference on

Digital System Design (DSD), (s. 167-173). doi:10.1109/DSD51259.2020.00036

Arifeen, T., Hassan, A. S., Moradian, H., & Lee, J. A. (2016). Probing Approximate TMR in

Error Resilient Applications for Better Design Tradeoffs. Euromicro Conference on

Digital System Design (DSD). Limassol: IEEE.

Ayhan, T., & Altun, M. (2019). Circuit aware approximate system design with case studies in

image processing and neural networks. IEEE Access, 4726-4734.

Azgin, H., Kalali, E., & Hamzaoglu, I. (2020). An Approximate Versatile Video Coding

Fractional Interpolation Hardware. IEEE International Conference on Consumer

Electronics. Las Vegas: IEEE.

Bross, B., Chen, J., Ohm, J.-R., Sullivan, G. J., & Wang, Y.-K. (2021). Developments in

International Video Coding Standardization After AVC, With an Overview of

Versatile Video Coding (VVC). Proceedings of the IEEE, 109, 1463-1493.

doi:10.1109/JPROC.2020.3043399

Chen, L., Han, J., Liu, W., Montuschi, P., & Lombardi, F. (2018, Jul.). Design evaluation and

application of approximate high-radix dividers. IEEE Access, vol. 4(no. 3), 299-312.

Choi, Y.-J., & Kim, B.-G. (2019). A review on motion estimation and compensation for

Versatile Video Coding technology (VVC). Journal of Korea Multimedia Society, 22,

770–779.

El-Harouni, W., Rehman, S., Prabakaran, B. S., Kumar, A., Hafiz, R., & Shafique, M. (2017).

Embracing approximate computing for energy-efficient motion estimation in high

efficiency video coding. Design, Automation & Test in Europe Conference &

Exhibition (DATE). Lausanne.

Froehlich, S., Große, D., & Drechsler, R. (2018). Towards Reversed Approximate Hardware

Design. Euromicro Conference on Digital System Design (DSD). Prague: IEEE.

Gillani, G. A., Hanif, M. A., Verstoep, B., Gerez, S. H., Shafique, M., & Kokkeler, A. J.

(2019). MACISH: Designing Approximate MAC Accelerators With Internal-Self-

Healing. IEEE Access, 77142 - 77160.

Girotra, A., Johar, S., Ghosh, D., & Chakrabarti, I. (2003). An architecture for affine motion

estimation in real-time video coding. 9th Asia-Pacific Conference on Communications

(IEEE Cat. No.03EX732), 1, s. 103-107 Vol.1. doi:10.1109/APCC.2003.1274321

Gupta, V., Mohapatra, D., Park, S. P., Raghunathan, A., & Roy, K. (2011). IMPACT:

IMPrecise adders for low-power approximate computing. IEEE/ACM International

Symposium on Low Power Electronics and Design. Fukuoka.

Jiang, H., Liu, C., Liu, L., Lombardi, F., & Han, J. (2017). A review classification and

comparative evaluation of approximate arithmetic circuits. ACM J. Emerg. Technol.

Comput. Syst., 1-34.

37

Jiang, H., Liu, C., Liu, L., Lombardi, F., & Han, J. (August 2017). A review, classification,

and comparative evaluation of approximate arithmetic circuits. ACM Journal on

Emerging Technologies in Computing Systems (JETC), 13(4).

Kahng, A. B., & Kang, S. (2012). Accuracy-configurable adder for approximate arithmetic

designs. DAC Design Automation Conference 2012, (s. 820-825).

doi:10.1145/2228360.2228509

Kalali, E., & Hamzaoglu, I. (2018). Approximate HEVC Fractional Interpolation Filters and

Their Hardware Implementations. IEEE Transactions on Consumer Electronics ,

64(3), 285 - 291.

Kalali, E., & Hamzaoglu, I. (2020). An approximate HEVC intra angular prediction

hardware. IEEE Access, 2599-2607.

Kalaycioglu, C., Ulusel, O. C., & Hamzaoglu, I. (2009). Low power techniques for Motion

Estimation hardware. International Conference on Field Programmable Logic and

Applications. Prague.

Li, L., Li, H., Lv, Z., & Yang, H. (2015). An affine motion compensation framework for high

efficiency video coding. 2015 IEEE International Symposium on Circuits and Systems

(ISCAS), (s. 525-528). doi:10.1109/ISCAS.2015.7168686

Mahdiani, H. R., Ahmadi, A., Fakhraie, S. M., & Lucas, C. (April, 2010). Bio-Inspired

Imprecise Computational Blocks for Efficient VLSI Implementation of Soft-

Computing Applications. IEEE Transactions on Circuits and Systems I: Regular

Papers, 57(4), 850-862.

Mert, A. C., Azgin, H., Kalali, E., & Hamzaoglu, I. (2019). Novel Approximate Absolute

Difference Hardware. 22nd Euromicro Conference on Digital System Design (DSD).

Kallithea.

Paltrinieri, A., Peloso, R., Masera, G., Shafique, M., & Martina, M. (2018). Approximate-

Computing Architectures for Motion Estimation in HEVC. New Generation of CAS

(NGCAS). Valletta.

Porto, R., Agostini, L., Zatt, B., Porto, M., Roma, N., & Sousa, L. (2017). Energy-efficient

motion estimation with approximate arithmetic. IEEE 19th International Workshop on

Multimedia Signal Processing (MMSP). Luton.

Porto, R., Agostini, L., Zatt, B., Roma, N., & Porto, M. (2019). Power-Efficient Approximate

SAD Architecture with LOA Imprecise Adders. 2019 IEEE 10th Latin American

Symposium on Circuits & Systems (LASCAS), (s. 65-68).

doi:10.1109/LASCAS.2019.8667554

Ren, W., He, W., & Cui, Y. (2020, July). An Improved Fast Affine Motion Estimation Based

on Edge Detection Algorithm for VVC. Symmetry, 12, 1143.

doi:10.3390/sym12071143

Seferidis, V. E., & Ghanbari, M. (1993). General approach to block-matching motion

estimation. Optical Engineering, 32, 1464–1474.

Shafique, M., Ahmad, W., Hafiz, R., & Henkel, J. (2015). A low latency generic accuracy

configurable adder. 52nd ACM/EDAC/IEEE Design Automation Conference (DAC).

San Francisco.

Van Toan, N., & Lee, J. G. (2020). FPGA-based multi-level approximate multipliers for

high-performance error-resilient applications. IEEE Access(vol.8), 25481-25497.

Verma, A. K., Brisk, P., & Ienne, P. (2008). Variable Latency Speculative Addition: A New

Paradigm for Arithmetic Circuit Design. 2008 Design, Automation and Test in

Europe, (s. 1250-1255). doi:10.1109/DATE.2008.4484850

Xu, Q., Mytkowicz, T., & Kim, N. S. (2015). Approximate Computing: A Survey. IEEE

Design & Test, vol. 33(no. 1), 8-22.

38

Zou, F., Chen, J., Karczewicz, M., Xiang, L., Chuang, H.-C., & Chien, W.-J. (2017, 11 23).

US Patent No. WO 2017/200771 Al.

