
 

 

 

 

 

Approximate Computing based Video Compression Hardware 

 

 

 

 

 

 

 

 
by 

Berke Ayrancıoğlu 

 

 

 

 

 

 

Submitted to the Graduate School of Engineering and Natural Sciences 

in partial fulfillment of 

the requirements for the degree of 

Master of Sciences 

 

 

Sabancı University 

July 2022 

 

 

 
 
  



II 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Berke Ayrancıoğlu 2022 

All Rights Reserved 

 



III 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

To the World peace and the brighter days to come… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IV 

 

 

ACKNOWLEDGEMENTS 

 

First of all, I would like to thank my supervisor, Dr. İlker Hamzaoğlu for all his support, 

honest and fair approach to every situation and his patience. I consider myself lucky for being 

his student since his advices will accompany me in every aspect of life in addition to 

academy and research. I think I wouldn’t be able to keep my motivation as high without him.  

I want to thank past and present members of “System-on-Chip Design and Test Lab”; 

Hasan Azgın, Hossein Mahdavi and Waqar Ahmad for their friendship and support. As the 

youngest and the least experienced member of the SoC Lab, it would be much harder for me 

to arrive where I am here today without their help. Working and publishing together with 

Waqar Ahmad has been a remarkable experience for me. I would like to thank him 

especially, for his modest support and mentorship. 

My greatest thankfullness is to my dad, my mother and my sister. This thesis is  

dedicated with gratitude to my family. I will always be thankful for their support. 

Finally, I want to thank Sabanci University for supporting me with scholarship 

throughout my studies. I also want to thank Scientific and Technological Research Council of 

Turkey (TUBITAK) for supporting this thesis in part under contract number 118E134. 

 

 

 

 

 

 

 

 

 

 

 



V 

 

Approximate Computing based Video Compression Hardware 

 

Berke Ayrancıoğlu 

Electronics Engineering, MS Thesis, 2022 

 

Thesis Supervisor: Assoc. Prof. İlker HAMZAOĞLU 

 

Keywords: Video Compression, Affine Motion Estimation, Approximate Computing, Digital 

Hardware, FPGA 

  

1 ABSTRACT 

Approximate computing trades off accuracy to improve area, power, speed of digital 

hardware. Many computationally intensive applications such as video encoding and video 

processing are error tolerant by nature due to the limitations of human visual perception. 

Therefore, approximate computing can be used to improve area, power, speed of digital 

hardware implementations of these error tolerant applications. In this thesis, a low error 

approximate absolute difference hardware is proposed and impact of using approximate 

circuits in H.264 motion estimation (ME) hardware is assessed. 

There is a need for more video compression with less quality loss due to significant 

increase in spatial and temporal video resolutions. Therefore, versatile video coding (VVC) 

video compression standard is recently developed. It is more computationally complex than 

previous video compression standards H.264 and high efficiency video coding (HEVC). ME 

is the most computationally complex part of video compression standards. VVC standard 

uses affine ME (AME) which is not used in previous video compression standards. AME 

achieves higher video compression at the expense of much more computational complexity. 

In this thesis, a novel VVC AME hardware is proposed. 
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Özet 
 

Yaklaşık hesaplama sayısal donanımın alanını ve tükettiği gücü azaltmak ve hızını 

artırmak için işlem doğruluğunu feda eder. İnsan görüşünün sınırlı olması nedeniyle video 

kodlama ve video işleme gibi hesaplama karmaşıklığı yüksek bazı uygulamalar hataya 

toleranslıdır. Bu nedenle, bu tür uygulamalarda işlem doğruluğu alan, güç ve hız kazanımları 

için feda edilebilir. Bu tezde bir düşük hatalı yaklaşık mutlak fark donanımı önerildi ve H.264 

hareket tahmini (HT) donanımında yaklaşık devreleri kullanmanın etkileri belirlendi. 

Uzamsal ve zamansal video çözünürlüğünün artması nedeniyle daha az kalite kaybıyla 

daha çok video sıkıştırmaya ihtiyaç vardır. Bu nedenle, yakın zamanda Çok Yönlü Video 

Kodlama (VVC) standardı geliştirildi. VVC’nin hesaplama karmaşıklığı önceki video 

sıkıştırma standartları H.264 ve HEVC’nin hesaplama karmaşıklıklarından daha yüksektir. 

HT video sıkıştırma standartlarının en yüksek hesaplama karmaşıklığı olan bölümüdür. VVC 

standardında daha önceki video sıkıştırma standartlarında kullanılmamış olan afin hareket 

tahmini (AHT) kullanılmaktadır. AHT daha çok video sıkıştırma yapmaktadır ama çok daha 

fazla hesaplama karmaşıklığına sahiptir. Bu tezde bir özgün VVC AHT donanımı önerildi. 
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1 CHAPTER I 

 

INTRODUCTION 

Approximate computing trades-off accuracy with speed, area and power consumption 

(Mert, Azgin, Kalali, & Hamzaoglu, 2019), (Azgin, Kalali, & Hamzaoglu, 2020). It is used 

for error-tolerant applications such as video processing and compression which can tolerate 

inaccurate results because of the limitations of human visual perception (Kalali & 

Hamzaoglu, Approximate HEVC Fractional Interpolation Filters and Their Hardware 

Implementations, 2018). Approximate hardware can achieve better performance, area and 

power consumption than accurate hardware while providing acceptable quality for error 

tolerant applications (Xu, Mytkowicz, & Kim, 2015), (Froehlich, Große, & Drechsler, 2018), 

(Arifeen, Hassan, Moradian, & Lee, 2016).  

A variety of approximate circuits, ranging from system level designs (Gillani, et al., 

2019), (Kalali & Hamzaoglu, An approximate HEVC intra angular prediction hardware, 

2020), (Ayhan & Altun, 2019) (Ahmad & Hamzaoglu, An efficient approximate sum of 

absolute differences hardware for FPGAs, 2021) to basic arithmetic circuits (Jiang H. , Liu, 

Liu, Lombardi, & Han, 2017), have been proposed in the literature. Adders are used in most 

digital hardware, not only for binary addition but also for other binary arithmetic operations 

such as subtraction, multiplication, and division (Mert, Azgin, Kalali, & Hamzaoglu, 2019), 

(Van Toan & Lee, 2020), (Chen, Han, Liu, Montuschi, & Lombardi, 2018).  

Video coding is very computationally complex and the growing demand for higher 

spatial and temporal video resolutions has led to development of more computationally 

complex video coding standards. Motion estimation (ME) is the most computationally 

complex module in the video encoder hardware. Block matching ME is used in H.264, 



2 

 

HEVC and VVC video coding standards to remove temporal redundancies in video 

sequences. For each block in the current frame, block matching ME determines the best 

matching reference block in a search window in the previous frame based on a distortion 

metric. 

Sum of absolute differences (SAD) is the most commonly used distortion metric for block 

matching ME. SAD value between a current block and a reference block of size HxW pixels is 

calculated as 

 

𝑆𝐴𝐷 =  ∑ ∑|𝐶𝑢𝑟(𝑥, 𝑦) − 𝑅𝑒𝑓(𝑥, 𝑦)|

𝑊

𝑦=1

𝐻

𝑥=1

 

(1.1) 

   

where Cur(x,y) is the value of the pixel in (x,y) position of the current block and Ref(x,y) is 

the value of the pixel in (x,y) position of the reference block. Number of search locations that 

should be searched for each block in the current frame depends on ME algorithm and size of 

the search window. For example, for full search ME algorithm with 16x16 search window, 

256 search locations should be searched. For H.264, the largest coding block size is 16x16 

and it has 41 sub-blocks. 256 absolute difference and 265 addition operations are required to 

calculate 41 SAD values of a 16x16 block in the current frame for one search location. 

133376 arithmetic operations are required to calculate SAD values for 256 search locations. 

Affine transformation is a type of geometric transformation in which collinearity is 

preserved. In other words, if a group of points abide on a line before the affine transform, 

they stay on the same line after the affine transform. While retaining collinearity, affine 

transform incorporates translation, rotation, zoom and shearing. Fig. 1.1 and 1.2 show the 

shear and rotation around the origin and formulae 1.2 and 1.3 show the related matrices. 
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Figure 1.1 Shear

 

Figure 1.2 Rotation 

 

 
𝑀𝑅 = 𝑅(𝜃) = [

cos (𝜃) −sin (𝜃)

sin (𝜃) cos (𝜃)
] 

 

(1.3) 

Two-dimensional transform is performed using formula 1.4. Therefore, rotation transform 

is performed using formulae 1.5 and 1.6. 

 

 𝑥′

𝑦′ = [
𝑎 𝑏
𝑐 𝑑

]
𝑥
𝑦   

(1.4) 
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 𝑥′ = 𝑥 cos(𝜃) − 𝑦sin (𝜃) (1.5) 

 𝑦′ = 𝑥 sin(𝜃) + 𝑦𝑐𝑜𝑠 (𝜃) (1.6) 

 

H.264 and HEVC video compression standards only use translational ME. VVC video 

compression standard uses affine ME (AME) as well. AME takes rotation, zooming and 

shearing of blocks into account during block matching ME. AME achieves higher video 

compression than translational ME at the expense of much more computational complexity 

(Seferidis & Ghanbari, 1993), (Choi & Kim, 2019), (Adhuran, Fernando, Kulupana, & Blasi, 

2021). 

 

1.1 Thesis Contributions 

A low error approximate absolute difference (LAD_X) hardware is proposed. The 

proposed hardware has lower maximum and average error values and higher accuracy than 

the absolute difference hardware in the literature. It has similar performance with and smaller 

area than them. H.264 ME hardware using LAD_X hardware performs higher quality ME 

than H.264 ME hardware using the approximate absolute difference hardware in the 

literature. It has similar performance with and smaller area than them. 

Several approximate circuits from the literature are integrated to an H.264 ME hardware 

and their impact is assessed. The approximate adder proposed by (Ahmad, 2021) achieved up 

to 10% power reduction in ME hardware while providing better quality than the other 

approximate circuits. 

A novel VVC AME hardware is proposed. To the best of our knowledge, it is the first 

VVC AME hardware in the literature. It implements 4-parameters affine transform and uses a 

novel pixel storage method which decreases the number of memory accesses. Since AME has 

very high computational complexity, to achieve real time performance, the proposed VVC 

AME hardware should be used only for parts of the current frame containing affine motion.  
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1.2 Thesis Organization 

The rest of the thesis is organized as follows. 

Chapter II explains the proposed approximate absolute difference hardware, LAD_X. It 

compares LAD_X and the approximate circuits in the literature. It presents the impact of 

using them in H.264 ME hardware.  

Chapter III explains the approximate adder proposed by (Ahmad, 2021). It presents the 

impact of using this approximate adder and other approximate adders in the literature in 

H.264 ME hardware.  

Chapter V first explains VVC AME algorithm. It then explains the proposed VVC 

AME hardware and the proposed novel pixel storage method. It finally presents the 

experimental results. 

Chapter VI presents the conclusions and the future work. 
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2 CHAPTER II 

 

Low Error Approximate Absolute Difference Hardware 

In this thesis, we propose low error approximate absolute difference (LAD_X) 

hardware to increase speed and to decrease area and power consumption of absolute 

difference (AD) hardware at the expense of a slight quality loss. LAD_X hardware is 

compared with the following approximate AD hardware in the literature; novel approximate 

absolute difference hardware (NAAD) (Mert, Azgin, Kalali, & Hamzaoglu, 2019) and the 

approximate AD hardware built by using the following approximate adders for the 

subtraction operation in three different accurate AD hardware; lower part OR adder (LOA) 

(Porto R. , Agostini, Zatt, Roma, & Porto, 2019) almost correct adder (ACA1) (Verma, Brisk, 

& Ienne, 2008), accuracy configurable adder (ACA2) (Kahng & Kang, 2012), and generic 

accuracy configurable adder (GeAr) (Shafique, Ahmad, Hafiz, & Henkel, 2015). LAD_X 

hardware has lower maximum and average error, and higher accuracy than these approximate 

AD hardware in the literature. It has similar performance with and smaller area than them. 

The H.264 ME hardware using LAD_X hardware performs higher quality ME than the H.264 

ME hardware using these approximate AD hardware in the literature. It has similar 

performance with and smaller area than them. 

2.1 Proposed Approximate AD Hardware 

LAD_2 and LAD_4 hardware are shown in Fig. 2.1 and Fig. 2.2, respectively. LAD_X 

hardware is composed of a subtractor, XOR gates, an adder, and OR gates. It works as 

follows. First, the inputs A and B are subtracted. Then, the sign bit of the subtraction result is 

XOR’ed with the other 8 bits of the subtraction result. Then, the sign bit is added to the least 

significant 𝑋 bits. Therefore, instead of calculating 2’s complement of the entire subtraction 

result, 2’s complement of its least significant 𝑋 bits is calculated. This breaks the carry chain 

in the addition operation. 

Finally, the most significant bit (MSB) of the addition result is OR’ed with the other 

bits of the addition result. Therefore, if the MSB of the addition result is 0, the output of 

LAD_X hardware will be the same as the accurate AD result. If the MSB of the addition 
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result is 1, least significant 𝑋 bits of the output of LAD_X hardware will be 1. Since the MSB 

of the addition result is not propagated to next bit position, the output of LAD_X hardware 

will be 1 less than the accurate AD result, instead of being 2𝑋 less than the accurate AD 

result.  

The output of LAD_X hardware is the same as the accurate AD result when the 

subtraction result is positive. When the subtraction result is negative, the output of LAD_X 

hardware is the same as the accurate AD result for (2𝑋 − 1) of every 2𝑋 inputs, and it is 1 

less than the accurate AD result for the remaining input. Therefore, the maximum error of 

LAD_X hardware is 1. Its accuracy and average error can be calculated as shown in (2.1) and 

(2.2), respectively. 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100 × (1 −

1

2𝑋+1
)     

(2.1) 

 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 =  

1

2𝑋+1
 

(2.2) 

 

 

Figure 2.1 Proposed low error approximate absolute difference (LAD_2) hardware. 
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Figure 2.2 Proposed low error approximate absolute difference (LAD_4) hardware. 

 

 

Figure 2.3 Accurate_AD_1 

 

Figure 2.4 Accurate_AD_2 
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Figure 2.5 Accurate_AD_3 

Accuracy is the percentage of inputs for which LAD_X hardware gives accurate AD 

result. Average error is the average of errors LAD_X hardware gives for all inputs. As it can 

be seen from (2.1) and (2.2), accuracy and average error of LAD_X hardware are 

independent from its bit width. Its maximum error is also independent from its bit width. In 

other words, the proposed N-bit LAD_X hardware has the same accuracy, average error, and 

maximum error for all N. In addition, as the bit width increases, ratio of the maximum input 

value to maximum and average error increases, and therefore, relative impact of the error 

decreases. Therefore, LAD_X hardware is scalable. 

2.2 Quality Results 

LAD_X hardware is compared with 20 approximate AD hardware in the literature. 4 

approximate AD hardware are 4 configurations of novel approximate absolute difference 

hardware (NAAD) (Mert, Azgin, Kalali, & Hamzaoglu, 2019). 16 approximate AD hardware 

are built by using the following approximate adders for the subtraction operation in the 3 

accurate AD hardware shown in Fig. 2.3, Fig 2.4 and Fig. 2.5; lower part OR adder (LOA) 

(Porto R. , Agostini, Zatt, Roma, & Porto, 2019), almost correct adder (ACA1) (Verma, 

Brisk, & Ienne, 2008), accuracy configurable adder (ACA2) (Kahng & Kang, 2012), and 

generic accuracy configurable adder (GeAr) (Shafique, Ahmad, Hafiz, & Henkel, 2015).  

NAAD is configured for 0, 1, 2, and 3 approximate bits. LOA is configured for 1, 2, 3, 

and 4 approximate bits. ACA1 and ACA2 are configured for 4 approximate bits. GeAr is 

configured as GeAr_R1_P2 (𝑅 = 1, 𝑃 = 2) and GeAr_R2_P4 (𝑅 = 2, 𝑃 = 4). An 

approximate adder is used as an approximate subtractor by taking 1’s complement of its 

second data input and setting its carry-in input to 1. 

Maximum error, average error and accuracy results for 8-bit and 16-bit approximate 

AD hardware are shown in Table 2.I. In the table, A1_ACA1 approximate AD hardware is 
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built by using the ACA1 approximate adder for the subtraction operation in the 

Accurate_AD_1 hardware. A2_ACA1 approximate AD hardware is built by using the ACA1 

approximate adder for the subtraction operation in the Accurate_AD_2 hardware. A3_ACA1 

approximate AD hardware is built by using the ACA1 approximate adder for the subtraction 

operation in the Accurate_AD_3 hardware. 

8-bit LAD_X hardware has lower maximum error and average error than the other 8-bit 

approximate AD hardware. 8-bit approximate AD hardware which uses GeAr_R2_P4 

approximate adder has the highest accuracy. 8-bit LAD_X hardware has higher accuracy than 

the other 8-bit approximate AD hardware. 

Since LAD_X, NAAD and approximate AD hardware which uses LOA approximate 

adder are scalable, their quality results for 8-bit and 16-bit AD hardware are the same. Since 

approximate AD hardware which use ACA1, ACA2 and GeAr approximate adders are not 

scalable, their quality results for 16-bit AD hardware are much worse than 8-bit AD 

hardware. Therefore, 16-bit LAD_X hardware has lower maximum error and average error, 

and higher accuracy than the other 16-bit approximate AD hardware.  

Impact of using LAD_X hardware and 8 approximate AD hardware in the literature in 

H.264 full search motion estimation (FSME) hardware (Kalaycioglu, Ulusel, & Hamzaoglu, 

2009) is analyzed. The FSME hardware proposed in (Kalaycioglu, Ulusel, & Hamzaoglu, 

2009) works for 8-bit pixel values. It is modified to work with 16-bit pixel values. For every 

approximate AD hardware, 256 accurate AD hardware in the Verilog RTL codes of 8-bit 

FSME hardware and 16-bit FSME hardware are replaced with that approximate AD 

hardware.  

Quality results of 8-bit and 16-bit H.264 FSME hardware are shown in Table 2.2. Mean 

square error (MSE) between the original frames and the frames reconstructed by 8-bit and 16-

bit FSME hardware are calculated. Peak signal to noise ratio (PSNR) values are calculated as 

shown in (2.3). The maximum value of an 8-bit pixel is 255, whereas the maximum value of 

a 16-bit pixel is 65535. Therefore, PSNR values of 16-bit FSME hardware are much higher 

than PSNR values of 8-bit FSME hardware. 

 
𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10 (

(𝑀𝑎𝑥. 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒)2

𝑀𝑆𝐸
) 

(2.3) 

 

Since LAD_X hardware has very low maximum error and average error, and very high 

accuracy, MSE and PSNR values of 8-bit and 16-bit H.264 FSME hardware which use 

LAD_X hardware are the same as the MSE and PSNR values of accurate 8-bit and 16-bit 
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H.264 FSME hardware. This means that LAD_X hardware did not cause any quality loss for 

H.264 FSME hardware. 

PSNR values of 8-bit and 16-bit H.264 FSME hardware which use LAD_X hardware 

are higher than the PSNR values of 8-bit and 16-bit H.264 FSME hardware which use the 

other approximate adders. This means that LAD_X hardware gives higher quality results than 

the other approximate adders when they are used in H.264 FSME hardware.  

2.3 Implementation Results 

LAD_X hardware, 20 approximate AD hardware in the literature, and 3 accurate AD 

hardware are implemented using Verilog HDL. Verilog RTL codes are synthesized and 

implemented on Xilinx XC6VLX130T FF1156 FPGA using Xilinx ISE 14.7. FPGA 

implementations are verified by post-implementation timing simulations. Power 

consumptions of the FPGA implementations are estimated using Xilinx XPower Analyzer. 

Post-implementation timing simulations are performed at 100 MHz and signal activities are 

stored into VCD files. Power consumptions of the FPGA implementations are estimated 

using these VCD files. 

FPGA implementation results of AD hardware are shown in Table 2.3. Number of 

LUTs used by 8-bit LAD_X hardware is less than the number of LUTs used by the other 8-

bit AD hardware except 8-bit NAAD hardware. Frequency of 8-bit LAD_X hardware is 

higher than the frequency of all the accurate AD hardware and most of the approximate AD 

hardware. A2_GeAr_R1_P2 hardware has the highest frequency among all the 8-bit AD 

hardware. Power consumption of 8-bit LAD_X hardware is lower than the power 

consumptions of all the other 8-bit AD hardware. 

As expected, as bit width increases, area and power consumptions of all AD hardware 

increase, and their frequencies decrease. However, as bit width increases, frequency, area, 

and power consumption of LAD_X hardware change less than the frequency, area, and power 

consumptions of the other AD hardware. 

FPGA implementation results of H.264 FSME hardware are shown in Table 2.4. 

Numbers of LUTs used by 8-bit and 16-bit H.264 FSME hardware which use LAD_X 

hardware are less than the numbers of LUTs used by the other 8-bit and 16-bit H.264 FSME 

hardware, except the ones which use NAAD_3 hardware, respectively. Frequencies of 8-bit 

H.264 FSME hardware are similar. Frequencies of 16-bit H.264 FSME hardware are similar. 
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This is because AD hardware is not in the critical path of H.264 FSME hardware. As 

expected, as bit width increases, frequencies of H.264 FSME hardware slightly decrease. 

Table 2.1 Quality Results of Absolute Difference Hardware 

 

8-bit 16-bit 

Maximum  

Error 

Average  

Error 

Accuracy  

(%) 

Maximum  

Error 

Average  

Error 

Accuracy  

(%) 

LAD_1 1 0.25 75 1 0.25 75 

LAD_2 1 0.125 87.5 1 0.125 87.5 

LAD_3 1 0.062

5 

93.75 1 0.062

5 

93.75 

LAD_4 1 0.031

25 

96.87

5 

1 0.031

25 

96.87

5 NAAD_0 1 0.5 50 1 0.5 50 

NAAD_1 2 0.5 75 2 0.5 75 

NAAD_2 4 1 62.5 4 1 62.5 

NAAD_3 8 2 56.25 8 2 56.25 

A3_LOA_1 2 0.74 50 2 0.74 50 

A3_LOA_2 6 1.85 31.6 6 1.85 31.6 

A3_LOA_3 14 4.1 17.6 14 4.1 17.6 

A3_LOA_4 30 8.6 9.5 30 8.6 9.5 

A1_ACA1_Q4 128 4.88 90.7 34944 1364.

8 

68.4 

A2_ACA1_Q4 128 7.22 87.8 34944 1962.

2 

65.95 

A3_ACA1_Q4 128 7.17 87.8 34944 1962.

1 

65.95 

A1_ACA2_Q4 64 5.906 84.17

9 

17472 1637.

9 

54.3 

A2_ACA2_Q4 64 7.168 81.25 17472 1962.

2 

52.2 

A3_ACA2_Q4 64 7.17 81.25 17472 1962.

1 

52.2 

A1_GeAr_R1_P

2 

144 10.17

2 

75.48

8 

37448 2730 41.4 

A2_GeAr_R1_P

2 

144 14.16

8 

69.92

2 

37448 3754 38.2 

A3_GeAr_R1_P

2 

144 14.17 69.92 37448 3754 38.2 

A1_GeAr_R2_P

4 

64 1.125 98.24

2 

16640 409 89.1 

A2_GeAr_R2_P

4 

64 1.48 97.65

6 

16640 506 88.4 

A3_GeAr_R2_P

4 

64 1.48 97.65 16640 506 88.4 

 

Table 2.2 Quality Results of H.264 Motion Estimation Hardware 

 
8-bit 16-bit 

PSN

R 

MS

E 

PSNR MS

E Accurate_AD_

3 

36.2

7 

16.

33 

84.47 16.3 

LAD_2 36.2

7 

16.

33 

84.47 16.3 

LAD_4 36.2

7 

16.

33 

84.47 16.3 

NAAD_1 36.1

4 

16.

6 

68.26 16.6 

NAAD_3 35.2 19.

3 

83.46 19.3 

A3_LOA_2 35.8 17.

6 

84 17.6 

A3_LOA_4 32.6 35.

66 

80.8 35.6 

A3_ACA1_Q4 29.8 71.

3 

72.47 320.

6 A3_ACA2_Q4 31.1 50.

6 

74 205.

3 A3_GeAr_R1_

P2 

30.9

2 

54.

00 

75.93 122.

6 A3_GeAr_R2_

P4 

32.2

3 

42.

00 

69.53 606 
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Table 2.3 FPGA Implementation Results of Absolute Difference  

 

8-bit 16-bit 

LUTs 
Frequency  

(MHz) 

Power  

(mW) 
LUTs 

Frequency 

(MHz) 

Power  

(mW) 

Accurate_AD_

1 

2

8 

461 0.39 64 384 0.44 

Accurate_AD_

2 

2

6 

589 0.45 50 534 0.53 

Accurate_AD_

3 

2

2 

572 0.4 34 458 0.37 

LAD_1 1

8 

653 0.28 34 577 0.33 

LAD_2 1

8 

654 0.3 38 591 0.37 

LAD_3 1

8 

638 0.31 34 588 0.39 

LAD_4 1

8 

645 0.37 34 581 0.44 

NAAD_0 1

8 

653 0.3 38 588 0.39 

NAAD_1 1

8 

657 0.3 36 588 0.35 

NAAD_2 1

6 

657 0.34 32 589 0.33 

NAAD_3 1

5 

662 0.22 35 591 0.33 

A3_LOA_1 2

1 

543 0.37 42 431 0.36 

A3_LOA_2 2

1 

536 0.3 37 445 0.32 

A3_LOA_3 2

4 

615 0.3 34 440 0.3 

A3_LOA_4 2

1 

620 0.25 34 443 0.27 

A1_ACA1_Q4 3

3 

432 0.43 71 400 0.49 

A2_ACA1_Q4 3

5 

641 0.5 74 574 0.58 

A3_ACA1_Q4 2

5 

604 0.57 46 515 0.43 

A1_ACA2_Q4 3

2 

449 0.45 70 396 0.48 

A2_ACA2_Q4 3

0 

666 0.52 62 560 0.57 

A3_ACA2_Q4 2

4 

649 0.5 49 485 0.47 

A1_GeAr_R1_

P2 

2

9 

498 0.43 61 424 0.47 

A2_GeAr_R1_

P2 

2

6 

771 0.46 50 722 0.51 

A3_GeAr_R1_

P2 

2

0 

645 0.51 33 566 0.39 

A1_GeAr_R2_

P4 

3

3 

448 0.37 81 400 0.5 

A2_GeAr_R2_

P4 

3

4 

608 0.46 90 571 0.54 

A3_GeAr_R2_

P4 

2

4 

558 0.42 55 479 0.38 

 

Table 2.4 FPGA Implementation Results of H.264 Motion Estimation Hardware 

 

8-bit 16-bit 

LUTs 
Frequency 

(MHz) 

LUTs 
Frequency 

(MHz) 

Accurate_AD_

3 

108

09 

204 213

15 

190 

LAD_2 105

61 

207 189

09 

195 

LAD_4 105

14 

204 189

06 

196 

NAAD_1 106

12 

205 189

72 

187 

NAAD_3 103

06 

203 187

57 

197 

A3_LOA_2 110

89 

200 207

23 

185 

A3_LOA_4 107

12 

206 203

19 

186 

A3_ACA1_Q4 117

00 

204 202

09 

196 

A3_ACA2_Q4 119

35 

207 190

44 

198 

A3_GeAr_R1_

P2 

122

05 

205 200

45 

194 

A3_GeAr_R2_

P4 

117

17 

203 258

86 

188 
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3 CHAPTER III 

 

Comparison of Approximate Circuits for H.264 Motion Estimation 

Approximate hardware can achieve better performance, area and power consumption 

than accurate hardware while providing acceptable quality for error tolerant applications (Xu, 

Mytkowicz, & Kim, 2015), (Froehlich, Große, & Drechsler, 2018), (Kalali & Hamzaoglu, 

Approximate HEVC Fractional Interpolation Filters and Their Hardware Implementations, 

2018). Video coding can tolerate small errors (Kalali & Hamzaoglu, Approximate HEVC 

Fractional Interpolation Filters and Their Hardware Implementations, 2018). Therefore, 

approximate computing can be used for block matching ME. 

Approximate adders proposed in literature can be broadly classified into two categories. 

(1) Approximation of 1-bit full adder (Gupta, Mohapatra, Park, Raghunathan, & Roy, 2011), 

(Mahdiani, Ahmadi, Fakhraie, & Lucas, April, 2010). These adders simplify 1-bit full adder 

logic. They divide n-bit addition into two parts, approximate part for least significant bits 

(LSBs) and accurate part for most significant bits (MSBs). They use the approximate 1-bit 

full adder in the approximate part. (2) Segmented adders (Jiang H. , Liu, Liu, Lombardi, & 

Han, August 2017), (Shafique, Ahmad, Hafiz, & Henkel, 2015). These adders break the carry 

chain by dividing n-bit addition into several smaller fixed size overlapping sub-adders 

working in parallel. They have higher speed than accurate adders. However, they consume 

more area and power than accurate adders. 

In this thesis, we assessed the impact of using approximate circuits in H.264 ME 

hardware. Approximate circuits are used in the absolute difference operation and adder tree in 

H.264 ME hardware. The approximate adder proposed by (Ahmad, 2021) achieved up to 

10% power reduction in ME hardware while providing better quality than the other 

approximate circuits. Traditional bit truncation achieved the largest area and power 

reductions in ME hardware at the expense of more quality loss than the proposed 

approximate adder. Generic accuracy reconfigurable adder (GeAr) segmented approximate 

adder (Shafique, Ahmad, Hafiz, & Henkel, 2015) had the worst quality, area and power 

consumption results. 
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3.1 Approximate Circuits 

The proposed 1-bit approximate full adder is shown in Fig. 3.1 (a) (Ahmad, 

Ayrancioglu, & Hamzaoglu, Comparison of Approximate Circuits for H.264 and HEVC 

Motion Estimation, 2020). It generates carry-out (Cout) output without considering the effect 

of carry-in (Cin) input. Carry-out is 1 whenever one or both inputs A and B are 1. Error is 

generated in the following two cases; (A = 0, B = 1 , Cin = 0  → S = 0, Cout = 1) and (A = 1, B 

= 0 , Cin = 0 → S = 0, Cout = 1). An important property of the proposed approximate full 

adder is that it generates accurate outputs when carry-in input is 1. Since carry-in for the 

subtraction in absolute difference operation is always 1, this property is very useful for 

absolute difference operation. Maximum error magnitude of the proposed approximate full 

adder is 1. 

Many approximate arithmetic circuits are proposed in the literature. The approximate 

circuits used in this thesis are selected based on the analysis results reported in the literature. 

In (El-Harouni, et al., 2017), two 1-bit approximate full adders from (Gupta, Mohapatra, 

Park, Raghunathan, & Roy, 2011) are determined to give the best performance for ME. In 

this thesis, these 1-bit full adders are referred to as IMPACT-1 and IMPACT-2. They are 

shown in Fig. 3.1 (c) and Fig. 3.1 (d), respectively. An approximate n-bit subtractor can be 

designed using IMPACT-1 or IMPACT-2 as shown in Fig. 3.1 (e). In the approximate m-bit 

adder, m 1-bit IMPACT-1 or m 1-bit IMPACT-2 full adders are used. In (Porto R. , et al., 

2017) and (Paltrinieri, Peloso, Masera, Shafique, & Martina, 2018), it is shown that lower-

part-OR adder (LOA) (Mahdiani, Ahmadi, Fakhraie, & Lucas, April, 2010) performs better 

than many segmented adders for ME. m-bit LOA is shown in Fig. 3.1 (b).  An approximate n-

bit subtractor can be designed using LOA as shown in Fig. 3.1 (e). In this approximate n-bit 

subtractor, m-bit LOA is used as the m-bit approximate adder. 
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Figure 3.1 (a) Proposed 1-bit Approximate Full Adder (b) m-bit LOA (c) IMPACT-1 (d) 

IMPACT-2 (e) n-bit Approximate Subtractor 

 

Figure 3.2 (a) GeAr Adder (N=8, R=2, P=4) (b) NAAD 0 (c) NAAD 2 

 

Figure 3.3 (a) Baseline 1 AD Hardware (b) Baseline 2 AD Hardware 

We selected GeAr among segmented adders for our analysis. GeAr is shown in Fig. 3.2 

(a). The novel approximate absolute difference (NAAD) hardware proposed in (Mert, Azgin, 

Kalali, & Hamzaoglu, 2019) is also included in our analysis. Two configurations of 8-bit 

NAAD are shown in Fig. 3.2 (b) and Fig. 3.2 (c). 
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We used the two accurate absolute difference (AD) hardware shown in Fig. 3.3 (a) and 

Fig. 3.3 (b) to provide baseline results for our analysis. We assessed impact of using the 

approximate subtractor shown in Fig. 3.1 (e) based on the proposed, IMPACT-1, IMPACT-2 

and LOA adders for the subtraction operation in baseline 2 AD hardware. We assessed 

impact of using 1-bit, 2-bit, 3-bit and 4-bit approximate adder in this 8-bit approximate 

subtractor. We assessed impact of using the following four configurations of GeAr for the 

subtraction operation in baseline 2 AD hardware (a) N=8, R=1, P=6 (b) N=8, R=2, P=4 (c) 

N=8, R=1, P=4 (d) N=8, R=2, P=2. These configurations correspond to 1-bit, 2-bit, 3-bit and 

4-bit approximations, respectively. 

We analyzed using four different configurations of NAAD with 8, 7, 6, 5 XOR gates for 

the absolute difference operation. These configurations are referred to as NAAD 0, NAAD 1, 

NAAD 2, and NAAD 3, respectively. They correspond to 1-bit, 2-bit, 3-bit and 4-bit 

approximations, respectively. Finally, we analyzed applying traditional 1-bit, 2-bit, 3-bit, 4-bit 

truncation to baseline 2 AD hardware. 

 

 

Figure 3.4 H.264 ME Processing Element 
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3.2 Motion Estimation Hardware 

 

Figure 3.5 H.264 Motion Estimation Hardware 

 

We used the H.264 variable block size full search ME hardware proposed in (Kalaycioglu, 

Ulusel, & Hamzaoglu, 2009) to assess impact of using approximate absolute difference 

hardware in an H.264 ME hardware. Block diagram of this ME hardware is shown in Fig. 3.5. 

256 processing elements (PE) are used in this ME hardware to calculate absolute differences 

for a 16x16 block in parallel. As shown in Fig. 3.4, a PE is composed of a multiplexer to select 

the reference pixel, a register to store it and an absolute difference hardware. Current block 

pixels are stored in the current block registers. 32x32 search window pixels are stored in 

seventeen 18K Block RAMs (BRAM) in FPGA. In every clock cycle, 16 reference pixels are 

read from the search window BRAMs and stored in top or bottom PEs according to the search 

direction. The other PEs receive reference pixels from one of their neighboring PEs according 

to the search direction. It takes 16 clock cycles to fill the PE array with the first 16x16 

reference block. After that, 41 SAD values for a search location are generated every clock 

cycle. Therefore, it takes 1040 clock cycles to generate SAD values for all search locations in 

a 32x32 search window.  
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3.3 Assessment of Using Approximate Circuits in Motion Estimation Hardware 

We assessed impact of using the approximate absolute difference hardware in the H.264 

ME hardware. For each approximate absolute difference hardware, we replaced the 256 exact 

absolute difference hardware in Verilog RTL code of the H.264 ME hardware with the 

approximate absolute difference hardware. In addition, we used the baseline 2 accurate 

absolute difference hardware shown in Fig. 3.3 (b) to provide baseline results for our 

analysis. 

All Verilog RTL codes are synthesized and implemented using Xilinx Vivado Design 

Edition 2017.4 on Xilinx Virtex 7 XC7VX485TFFG1157 FPGA with speed grade 3. For all 

ME hardware, Vivado Synthesis Defaults and Performance Explore synthesis and 

implementation strategies are used, respectively.  

Switching activity interchange format (SAIF) files are generated for the hardware with 

post-implementation timing simulations for Foreman video using Mentor Graphics 

QuestaSim. Power consumptions of the H.264 ME hardware are estimated with Xilinx 

Vivado using these SAIF files. 

Table 3.1 presents average MSE results for all H.264 sub-block sizes for Foreman 

video. The proposed approximate adder achieves the smallest MSE results in most cases. 

GeAr performs the worst. It has the largest MSE results in all cases. Traditional bit truncation 

also performs worse than the proposed approximate adder in all cases. The other approximate 

circuits perform better than the proposed approximate adder in some cases. 

In some cases, ME hardware using approximate absolute difference hardware has 

smaller MSE value than ME hardware using accurate absolute difference hardware. This is 

mainly because of the difference between SAD and MSE metrics. For example, for the 

following two sets of absolute differences A={2,2,2,2} and B = {3,3,0,0}, SAD{A} = 8 and 

SAD {B} = 6, whereas MSE {A}= 4 and MSE {B} = 4.5. A ME hardware using accurate 

absolute difference hardware will select SAD {B} as the minimum SAD. However, a ME 

hardware using an approximate absolute difference hardware may inaccurately select SAD 

{A} as the minimum SAD. Therefore, an approximate ME hardware may have smaller MSE 

value than accurate ME hardware. 
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Table 3.1 H.264 MSE Results 

Approximate Circuit and its Configuration H.264 MSE 

Baseline  16.79 

Proposed 

1 16.79 

2 16.82 

3 16.98 

4 17.32 

NAAD 

0 16.80 

1 16.94 

2 17.43 

3 19.75 

LOA 

1 16.94 

2 17.12 

3 17.14 

4 18.81 

IMPACT-1 

1 16.56 

2 16.87 

3 17.87 

4 20.63 

IMPACT-2 

1 16.56 

2 16.87 

3 17.96 

4 21.55 

GeAr 

R1_P6 45.39 

R2_P4 42.73 

R1_P4 73.31 

R2_P2 50.88 

Bit Truncation 

1 17.20 

2 19.21 

3 22.82 

4 32.57 

 

 

Figure 3.6 H.264 Power Reduction (%) 
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Figure 3.7 H.264 Slice Reduction (%) 

 

 

Figure 3.8 H.264 LUT Reduction (%) 

 

Area and power consumption results of the H.264 ME hardware are shown in Fig. 3.6, 

Fig. 3.7 and Fig. 3.8. In the figures, percentage reductions achieved by approximate ME 

hardware compared to the corresponding accurate ME hardware are shown. As expected, 

traditional bit truncation achieves the largest area and power consumption reductions at the 

expense of more quality loss than the proposed approximate adder. GeAr has the worst area 

and power consumption results. For 1-bit approximation, the proposed approximate adder by 

(Ahmad, 2021) achieves 5% power reduction in H.264 ME hardware without affecting 

quality. 

We assessed the impact of using approximate adders in the adder tree of the same 

H.264 ME hardware. The adder tree of the H.264 ME hardware has adders with bit widths 

from 8 to 15. The accurate adders in the adder tree are replaced with the previously 

mentioned approximate adders in the literature. PSNR and MSE results of H.264 ME 

hardware are shown in Table 3.2. GeAr gives the best result only for 1 approximate bit 

confguration. For other configurations, the proposed approximate adder by (Ahmad, 2021) 

gives the best results.  
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Table 3.2 H.264 Quality Results 

Approximate Circuit and its Configuration PSNR MSE 

Baseline  36.17 16.79 

Proposed 

1 36.16 16.80 

2 36.12 16.91 

3 36.03 17.14 

4 35.82 17.77 

5 35.61 18.49 

LOA 

1 36.13 16.89 

2 36.02 17.20 

3 35.91 17.56 

4 35.57 18.69 

5 34.91 21.53 

Impact-1 

1 36.17 16.78 

2 36.11 16.91 

3 35.85 17.42 

4 34.40 23.65 

5 31.16 51.21 

Impact-2 

1 36.15 16.85 

2 36.00 17.20 

3 35.62 18.40 

4 34.51 23.10 

5 31.77 43.58 

GeAr 

R1P6 19.05 813.27 

R1P4 20.00 690.56 

R2P2 19.83 696.40 

R2P4 19.49 743.74 

 R1P2 19.72 714.73 

 

All Verilog RTL codes are synthesized and implemented using Xilinx Vivado Design 

Edition 2020.1 on a Xilinx Virtex 7 XC7VX485TFFG1157 FPGA with speed grade 3. For all 

ME hardware, Vivado Synthesis Defaults and Performance Explore synthesis and 

implementation strategies are used, respectively. Switching activity interchange format 

(SAIF) files are generated for the FPGA implementations with post-implementation timing 

simulations for Foreman video using Mentor Graphics QuestaSim. Power consumptions of 

the H.264 ME hardware are estimated with Xilinx Vivado using these SAIF files. 

The implementation results for H.264 ME hardware using approximate adders in the adder 

tree are shown in Table 3.3. H.264 ME hardware using the proposed approximate adder by 
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(Ahmad, 2021) has the smallest area whereas H.264 ME hardware using GeAr has the largest 

area. Since the adder tree is not on the critical path of the H.264 ME hardware, maximum 

frequency results are very close to each other. For 1 and 2 approximate bit configurations, 

H.264 ME hardware using the proposed approximate adder by (Ahmad, 2021) consumes less 

power than the ones in the literature. For configurations using 3, 4, and 5 approximate bits, 

H.264 ME hardware using LOA consumes less power than the others. For configurations 

using 3, 4 and 5 approximate bits, H.264 ME hardware using the proposed approximate adder 

by (Ahmad, 2021) consumes more power than LOA but less power than others. 

 

Table 3.3 H.264 Implementation Results 

Approximate Circuit and its Configuration LUT 
Max. 

Freq. (MHz) 
Power (W) 

Baseline  10001 347.22 0.266 

Proposed 

1 9602 350.14 0.253 

2 9407 365.50 0.240 

3 9298 371.20 0.242 

4 9516 363.64 0.242 

5 9579 367.65 0.231 

LOA 

1 9840 370.37 0.259 

2 9677 368.32 0.243 

3 9445 353.36 0.236 

4 9604 371.20 0.232 

5 9360 371.06 0.220 

Impact-1 

1 9838 370.37 0.257 

2 9898 364.30 0.256 

3 9854 363.37 0.256 

4 10110 342.70 0.261 

5 9884 347.83 0.250 

Impact-2 

1 9752 364.30 0.253 

2 9774 369.69 0.245 

3 9568 353.11 0.260 

4 10096 350.88 0.279 

5 10046 347.83 0.284 

GeAr 

R1P6 13142 350.88 0.338 

R1P4 11325 355.87 0.342 

R2P2 10643 352.36 0.317 

R2P4 11566 353.86 0.307 

 R1P2 10334 355.24 0.280 
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4 CHAPTER IV 

 

VVC AFFINE MOTION ESTIMATION HARDWARE 

There are two modes of affine motion estimation (AME): 4-parameters AME which uses 

two motion vectors and 6-parameters AME which uses three motion vectors. Although affine 

transformation can be applied on various shapes, there are two important assumptions for the 

AME formulae to work (US Patent No. WO 2017/200771 Al, 2017). First, blocks should be 

squares. Second, upper left edge of the blocks (𝑚𝑣0’s location) should be considered as the 

origin of the coordinate system. These two assumptions allow the 4-parameters AME 

formulae to be written as shown in 4.1 and 4.2, and the 6-parameters AME formulae to be 

written as shown in 4.3 and 4.4. 4-parameters AME takes zoom and rotation into account, 

whereas 6-parameters AME takes shear into account as well.  

 

 
𝑚𝑣𝑥 =

𝑚𝑣1𝑥
− 𝑚𝑣0𝑥

𝑤
𝑥 −

𝑚𝑣1𝑦
− 𝑚𝑣0𝑦

𝑤
𝑦 + 𝑚𝑣0𝑥

 
(4.1) 

 
𝑚𝑣𝑦 =

𝑚𝑣1𝑦
− 𝑚𝑣0𝑦

𝑤
𝑥 −

𝑚𝑣1𝑥
− 𝑚𝑣0𝑥

𝑤
𝑦 + 𝑚𝑣0𝑦

 
(4.2) 

 

 𝑚𝑣𝑥 =
𝑚𝑣1𝑥

− 𝑚𝑣0𝑥

𝑤
𝑥 −

𝑚𝑣2𝑥
− 𝑚𝑣0𝑥

𝑤
𝑦 + 𝑚𝑣0𝑥

 
(4.3) 

 
𝑚𝑣𝑦 =

𝑚𝑣1𝑦
− 𝑚𝑣0𝑦

𝑤
𝑥 −

𝑚𝑣2𝑦
− 𝑚𝑣0𝑦

𝑤
𝑦 + 𝑚𝑣0𝑦

 
(4.4) 

 

Translation motion estimation is the most computationally intensive operation of video 

compression. AME has much higher computational complexity than translational motion 

estimation. To reduce computational complexity, VVC standard applies AME on 4x4 sub-

blocks instead of pixels. As the spatial video resolutions increase, the ratio of the area 

occupied by a sub-block to the whole frame decreases. Therefore, significance of each sub-

block decreases giving opportunity to make operations on sub-blocks instead of pixels. Fig. 

4.1 shows the ratio of the area occupied by a single pixel and a 4x4 sub-block to the whole 

frame in various video resolutions. For example, a single pixel in an HD frame has more 

significance than a 4x4 sub-block in an 8K frame. 
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Figure 4.1 Pixel vs. 4x4 Sub-Block 

  

For translational ME, a motion vector is calculated for each block and all the pixels in a 

block is moved to the location pointed by that motion vector regardless of their positions in 

the block. On the other hand, for AME, pixels’ new locations are calculated depending on 

their locations in the block. For example, if AME is performed on pixels instead of 4x4 sub-

blocks, decoder needs to solve the AME formulae 256 times for a 16x16 block instead of 16 

times. For AME, as shown in Fig. 4.2, encoder uses affine motion vectors to calculate 

translational motion vectors for the center points of every sub-block. 

In Fig. 4.2 and Fig. 4.3, black arrows are the affine motion vectors, and the colored 

arrows are four of the sixteen calculated translational motion vectors for the sub-blocks. In 

Fig. 4.3, only four translational motion vectors are shown to clearly point out the difference 

between translational motion vectors at different locations. As shown in the figures, 

translational motion vectors of the sub-blocks closer to the affine motion vectors are similar 

to the affine motion vectors. On the other hand, translational motion vectors of the sub-blocks 

far from the affine motion vectors are different from the affine motion vectors.  
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Figure 4.2 Affine Motion Vectors for Sub-Blocks 

 

Figure 4.3 Affine Motion Vectors 

 

Sub-block based AME introduces an approximation while decreasing the 

computational complexity. For example, as shown in Fig. 4.2, if the processed block is 

zoomed in, zoomed out or rotated, sub-blocks start to overlap and share pixels, or gaps appear 

between sub-blocks. Sub-block based AME keeps much less motion vectors than traditional 

translational motion estimation. For example, traditional translational motion estimation 

needs to keep 1024 motion vectors to encode a 128x128 block by using 4x4 sub-blocks 

whereas AME needs to keep only 2 or 3 affine motion vectors. 

For 4-parameters AME for a 16x16 block with 4x4 sub-blocks, 𝑚𝑣0 is applied to upper 

left corner and 𝑚𝑣1 is applied to upper right corner. For 6-parameters AME, in addition to 

𝑚𝑣0 and 𝑚𝑣1, 𝑚𝑣2 is applied to bottom left corner. X and Y components of a motion vector 

are shown as 𝑚𝑣
𝑥
and 𝑚𝑣

𝑦
. For a 16x16 block with 4x4 sub-blocks, X (𝑚𝑣𝑥) and Y (𝑚𝑣𝑦) 

components of 16 translational motion vectors are calculated. In the formulae 4.1 - 4.4, W 

stands for width and height, which are equal to 16 for a 16x16 block. x and y are the 
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coordinates of the location which the formula is being applied. For example, since the 

formulae 4.1 - 4.4 are applied to the center points of the sub-blocks, (x, y) couples for a 

16x16 block are: 

 

o (1.5, 1.5),  (5.5, 1.5),  (9.5, 1.5),  (13.5, 1.5) 

o (1.5, 5.5),  (5.5, 5.5),  (9.5, 5.5),  (13.5, 5.5) 

o (1.5, 9.5),  (5.5, 9.5),  (9.5, 9.5),  (13.5, 9.5) 

o (1.5, 13.5),  (5.5, 13.5),  (9.5, 13.5),  (13.5, 13.5) 

 

In the formulae 4.1 - 4.4, +𝑚𝑣0𝑥
 and +𝑚𝑣0𝑦

 ensure the translational motion where the 

rest is responsible for affine motion such as rotation, zoom and shear. Consider the 4-

parameter formula for 𝑚𝑣𝑥. (𝑚𝑣1𝑥
− 𝑚𝑣0𝑥

), i.e., difference of x components of two motion 

vectors, controls the movement on the x axis and multiplication with the x coordinate 

controls the distance between sub-blocks by moving the sub-blocks located on the right more 

than the sub-blocks located on the left. Similarly, (𝑚𝑣1𝑦
− 𝑚𝑣0𝑦

), i.e., difference of y 

components of two motion vectors, controls the movement on the x axis and multiplication 

with the y coordinate controls the distance between sub-blocks by moving the sub-blocks 

located on the bottom more than the sub-blocks located on the top. The same situation is 

valid for 𝑚𝑣𝑦.  

Block matching ME algorithms calculate a sum of absolute difference (SAD) value for 

every search location. The number of search locations is determined by the ME algorithm. 

ME algorithms searching more search locations are likely to find better matches. Therefore, 

they achieve more video compression at the expense of higher computational complexity. For 

example, traditional full search translational ME algorithm calculates SAD values for 256 

search locations for a 16x16 search window and for 16384 search locations for a 128x128 

search window (Ahmad, Efficient HEVC and VVC motion estimation hardware, 2021). 

Since AME algorithms use two or three motion vectors for every block, AME increases  

the number of search locations exponentially. For example, for a 128x128 search window, 

there are 16384 𝑚𝑣0 search locations, 16384 𝑚𝑣1 search locations for every 𝑚𝑣0 search 

location and 16384 𝑚𝑣2 search locations for every 𝑚𝑣1 search location. Therefore, if 6-

parameter full search AME algorithm is performed, approximately 4.3 × 1012 SAD values 

should be calculated, which is practically impossible. Therefore, approximate AME 

algorithms should be used such as performing full search for 𝑚𝑣0 and searching only pre-
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determined search locations for 𝑚𝑣1 and 𝑚𝑣2 (Li, Li, Lv, & Yang, 2015) (Girotra, Johar, 

Ghosh, & Chakrabarti, 2003). 

4.1 Proposed VVC Affine Motion Estimation Hardware  

In this thesis, we propose a VVC AME hardware which performs 4-parameters AME. 

To the best of our knowledge, it is the first VVC AME hardware in the literature. We propose 

a novel pixel storage method which significantly reduces the computational complexity and 

the number of BRAM read operations.  

The proposed hardware uses 128x128 fixed search window size. It can work for 16x16, 

32x32 or 64x64 block sizes. It takes the block size as input. The user decides on the trade-off 

between compression and speed by choosing the block size (Bross, Chen, Ohm, Sullivan, & 

Wang, 2021). The number of search locations searched by the proposed hardware depends on 

the block size. For 𝑚𝑣0, it searches all the search locations in the search window for which 

the entire current block is in the search window. In other words, it searches 4096 search 

locations for 64x64 block size, 9216 search locations for 32x32 block size and 12544 search 

locations for 16x16 block size for 𝑚𝑣0. For 𝑚𝑣1, it searches only 8 pre-determined search 

locations. Therefore, the proposed VVC AME hardware searches 32768, 73728 or 100352 

search locations depending on the block size given by the user. 

 

  

Figure 4.4 VVC Affine Motion Estimation Hardware 
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The proposed hardware has two copies of the VVC AME hardware shown in Fig. 4.4. 

Each copy is composed of a translational motion vector calculation part in the control 

module, multiplexers to choose pixels using the motion vectors, 64x64 processing units for 

absolute difference calculation and an adder tree.  

After the start signal, the proposed hardware reads the search window pixels from off-

chip memory and writes them to BRAMs. It uses 16 BRAMs as shown in Fig. 4.5. It reads 64 

pixels in a clock cycle. The proposed hardware concatenates the 64 pixels and writes them to 

a single location in BRAMs. Since the search window size is 128x128, 128 rows are stored to 

each BRAM. Therefore, it takes 256 clock cycles to write the search window pixels to 

BRAMs. Then, the proposed hardware reads the current block pixels which takes 64, 16 or 4 

clock cycles depending on the block size. Then, the proposed hardware reads one row of 

search window pixels (128 pixels) from BRAMs in one clock cycle and stores them to 

registers as shown in Fig 4.6. Since the affine motion vectors can point upwards and 

downwards, previous and next rows are needed for SAD calculations. Therefore, for 

example, if the block size is 16x16, the proposed hardware reads 18 rows from the BRAMs 

and stores them to registers. After the proposed hardware reads the necessary search window 

pixels from BRAMs, it starts SAD calculation.  

 

 

Figure 4.5 Pixel Storage in BRAMs 
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Figure 4.6 Pixel Storage in Registers 

According to the translational motion vectors calculated by the control module, 

appropriate pixels are sent to the 64x64 processing units for absolute difference calculation 

and absolute difference results are added by the adder tree. The proposed hardware searches 8 

𝑚𝑣1 search locations for each 𝑚𝑣0 search location. Seven search locations are shown by 

arrows in Fig. 4.7, the remaining search location is the upper right edge of the block. As 

mentioned earlier, two copies of the VVC AME hardware shown in Fig. 4.4 work in parallel. 

Each copy performs motion vector and SAD calculations 4 times. 

The smallest SAD value and the related motion vector information are stored in the 

registers for comparison with the SAD values that will be calculated. After SAD calculations 

for a 𝑚𝑣0 search location and 8 𝑚𝑣1 search locations finish, the proposed hardware left shifts 

the search window pixels in the registers by one instead of incrementing 𝑚𝑣0𝑥
 value. 

Similarly, after SAD calculations for a row finish, the search window pixels in the registers 

are shifted up instead of incrementing 𝑚𝑣0𝑦
 value and a new row is read from the BRAMs. 

After all SAD calculations finish, the proposed hardware sends the smallest SAD value and 

the related motion vector information as the output. These steps are repeated for every block. 
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Figure 4.7 𝐦𝐯𝟏 Locations 

 

Since motion vector and SAD calculations are pipelined, calculations for each 𝑚𝑣0 

search location take 4 clock cycles. Therefore, the latency is 16396, 36876 or 50188 clock 

cycles for every block when 12 clock cycles latency of the adder tree is added. 

As mentioned before, the proposed hardware uses a novel pixel storage method. The 

proposed method uses large number of registers. However, it has three important advantages. 

First, it significantly reduces the number of BRAM read operations. Second, it eliminates 

complex address generation for BRAMs. Third, it significantly simplifies computation of 

translational motion vectors from affine motion vectors.  

As the search window size and block size increase, the proposed hardware would read 

the same pixel from BRAMs repeatedly if the proposed method was not used. Fig. 4.8 and 

Fig. 4.9 show the number of read operations needed for each pixel for 8x8 and 16x16 search 

window sizes if the block size is 4x4. If the search window size is 8x8, 64 pixels are read 112 

times, and if the search window size is 16x16, 256 pixels are read 688 times. If the search 

window size is 128x128, for 32x32 block size, 96x98 pixels will be read 32 times which adds 

up to 301056 pixel reads. If the search window size is 128x128, for 16x16 block size, 

112x114 pixels will be read 16 times which adds up to 204288 pixel reads. Therefore, the 

proposed method significantly reduces the number of BRAM read operations. 

For traditional translational motion estimation, reading pixels from the search window for 

SAD calculation is a simple task. BRAM addresses can be calculated by simply incrementing 

the previous addresses. For AME, BRAM address calculation is very complex. By keeping 

the search window pixels in registers, the proposed hardware eliminates complex address 

generation for BRAMs.  
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Figure 4.8 Number of Pixels Read for 8x8 Search Window 

 

       

Figure 4.9 Number of Pixels Read for 16x16 Search Window 

 

 

Figure 4.10 Left Shift Operation 
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Figure 4.11 Up Shift Operation 

 

As mentioned before, the proposed method performs left and up shifts which can be 

considered as moving the search window instead of the current block. Fig. 4.10 and Fig. 4.11 

show the left and up shift operations on a smaller scale. Therefore, 𝑚𝑣0 value does not 

change for the vector calculation. Since the first 𝑚𝑣0 value is decided to be (0,0), AME 

formulae become as shown below.  

 

 
𝑚𝑣𝑥 =

𝑚𝑣1𝑥

𝑤
𝑥 −

𝑚𝑣1𝑦

𝑤
𝑦 

(4.5) 

 
𝑚𝑣𝑦 =

𝑚𝑣1𝑦

𝑤
𝑥 −

𝑚𝑣1𝑥

𝑤
𝑦 

(4.6) 

 

 𝑚𝑣𝑥 =
𝑚𝑣1𝑥

𝑤
𝑥 −

𝑚𝑣2𝑥

𝑤
𝑦 

(4.7) 

 
𝑚𝑣𝑦 =

𝑚𝑣1𝑦

𝑤
𝑥 −

𝑚𝑣2𝑦

𝑤
𝑦 

(4.8) 

 

128x128 search window requires each motion vector to be 7-bits. Since the proposed 

hardware eliminates 𝑚𝑣0 from the formulae and it searches 8 𝑚𝑣1 search locations, 𝑚𝑣1 

becomes 4-bits. Therefore, division and multiplication operations with 8-bit values are 

transformed to division and multiplication operations with 4-bit values. Since two copies of 

the VVC AME hardware shown in Fig. 4.4 work in parallel and 256 sub-blocks exist in a 

64x64 block and each sub-block requires 4 division and 4 multiplication operations, 2048 

divisions and 2048 multiplications are required. Therefore, reduction from 7-bits to 4-bits for 

vector calculation significantly reduces the hardware area. 

The proposed VVC AME hardware is implemented in Verilog HDL. The Verilog RTL 

codes are synthesized and implemented by Vivado 2020.1 on a Xilinx Virtex UltraScale+ 
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FPGA xcvu9p-flgb2104-3-e. Default strategy is used for synthesis and performance explore 

strategy is used for implementation. The maximum clock frequency is determined as 125 

MHz. The FPGA implementation uses 6555741 LUTs, 252982 FFs, 576 IO PADs, 16 

BRAMs and 1920 DSPs.  

Table 4.1 shows the number of frames that can be processed by the proposed VVC 

AME hardware for various video resolutions. As mentioned before, AME for a block takes 

16652, 37132 or 50444 clock cycles depending on the block size. In the table, hybrid is the 

case when 40% of the frame is processed with 64x64 block size, 35% of the frame is 

processed with 32x32 block size and 25% of the frame is processed by 16x16 block size.  

 

Table 4.1 Number of Frames Processed per Second 

Block Size HD Full HD 

64x64 32.5 fps 15 fps 

32x32 3.7 fps 1.6 fps 

16x16 0.65 fps 0.29 fps 

Hybrid 2 fps 0.91 fps 

 

  

As shown in Table 4.1, when AME is performed for the entire video frame, the 

proposed hardware does not achieve real-time performance in high resolution videos. 

Although parallel processing can be used to increase performance, since AME hardware has 

large area, it is not feasible to perform AME for the entire video frame. Since affine motion 

does not exist in all the blocks in a video frame, the video frame should be analyzed and 

AME should be performed only for the blocks which possibly have affine motion.  
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5 CHAPTER V 

 

CONCLUSIONS AND FUTURE WORK 

In this thesis, we proposed a low error approximate absolute difference (LAD_X) 

hardware. It has lower maximum and average error, and higher accuracy than the 

approximate AD hardware in the literature. It has similar performance with and smaller area 

than them. The H.264 ME hardware using LAD_X hardware performs higher quality ME 

than the H.264 ME hardware using the approximate AD hardware in the literature. It has 

similar performance with and smaller area than them. 

In this thesis, we assessed impact of using several approximate circuits from the 

literature in H.264 ME hardware. The approximate adder proposed by (Ahmad, 2021) 

achieved up to 10% power reduction in ME hardware while providing better quality than the 

other approximate circuits. Traditional bit truncation achieved the largest area and power 

reductions in ME hardware at the expense of more quality loss than the approximate adder 

proposed by (Ahmad, 2021). GeAr segmented approximate adder had the worst quality, area 

and power consumption results. 

In this thesis, a novel VVC AME hardware is proposed. To the best of our knowledge, 

it is the first VVC AME hardware in the literature. It implements 4-parameters affine 

transform and uses a novel pixel storage method.  

As future work, the proposed VVC AME hardware can be improved by using fast 

search algorithms instead of full search algorithm. Approximate circuits can be used to 

improve area, power, speed of the proposed VVC AME hardware. Since computational 

complexity of VVC AME is much more than that of H.264 ME, using approximate circuits in 

VVC AME hardware may have more impact than using them in H.264 ME hardware.  
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