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ABSTRACT

THE REBOUND EFFECT OF SOLAR PANEL ADOPTION:
EVIDENCE FROM DUTCH HOUSEHOLDS

AHMET ERGUN

ECONOMICS M.A. THESIS, JULY 2022

Thesis Supervisor: Asst. Prof. ERDAL AYDIN

Keywords: Rebound effect, solar panels, electricity consumption, renewable energy

Households adopt solar panels for different reasons, but always with a reduced elec-
tricity bill in mind. However, the access to solar power at near zero marginal costs
may well induce rebound effects which shift households’” demand curve and distort
the net effects of solar PV investments. By analyzing high frequency data on elec-
tricity consumption and production of the households, we estimate the rebound
effect of residential solar panel adoption. We document a rebound effect of 7.7 per-
cent, a result that is robust to different sample and model specifications. We also
find that households shift their consumption to the time periods when solar electric-
ity production is higher. The solar PV rebound effect shows heterogeneity across
time, production level and household characteristics, with higher rebound effects
during seasons characterized by higher solar irradiance and among energy illiterate
households with higher environmental awareness.
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OZET

GUNES PANELI KULLANIMININ GERI TEPME ETKISI:
HOLLANDALI HANELERDEN BULGULAR

AHMET ERGUN
EKONOMI YUKSEK LISANS TEZI, TEMMUZ 2022

Tez Damgmani: Dr. Ogretim Uyesi ERDAL AYDIN

Anahtar Kelimeler: Geri tepme etkisi, giines paneli, elektrik tiiketimi, yenilenebilir

enerji

Haneler, farkli nedenlerle giines paneli satin alsalar da, her zaman daha diigtik bir
elektrik faturasini goz 6niinde bulundururlar. Bununla birlikte, sifira yakin marjinal
maliyetle giinesg enerjisine erigim, hane halkinin talep egrisini degigtiren ve gilines
paneli yatirimlarinin beklenen sonuglarinin ortaya ¢ikmasini engelleyen geri tepme
etkilerine neden olabilir. Bu calismada, hanelerin elektrik tiiketimi ve iiretimine
iligkin yiiksek frekanshi bir veri setini analiz ederek, konutlarda gilines paneli kul-
laniminin geri tepme etkisini 6lgiimedik ve farkli 6rneklem ve model spesifikasyon-
larina dayaniklh bir sonug olan ytizde 7,7 civari bir geri tepme etkisi oldugunu bulduk.
Ayrica hanelerin, tiiketimlerini giines enerjisi iiretiminin daha yiiksek oldugu za-
man periyotlarina kaydirdigini da gozlemledik. Bunlara ek olarak, giines paneli geri
tepme etkisinin, daha yiiksek giines 1ginimu ile karakterize edilen mevsimlerde, daha
yiiksek ¢evre bilincine sahip hanelerde veya enerji tiiketim bilinci diigiik hanelerde
daha yiiksek oldugunu ve zaman, iiretim seviyesi ve hane karakteristikleri arasinda
heterojenlik gosterdigini de goriiyoruz.
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1. INTRODUCTION

The threat of global warming and climate change urges countries and communities to
take action. Within this context, the 2021 Glasgow Agreement ratified the ambition
to limit global warming to 1.5 degrees Celsius, invoking various measures to decrease
greenhouse gas emissions, and requires a shift away from fossil fuel consumption
towards renewable energy resources. Distributed photovoltaic energy technologies
are widely considered as an important means to foster renewable energy sourcing.
Thus, the widespread application of solar PVs by households is a desired outcome
in that regard, while implementation of smart grids along with the sharp decline of
solar panel and battery prices pave the way for solar panel adoption. To that end,
many administrations have been providing incentives to promote renewable energy
technologies, especially for distributed photovoltaic (PV) investments. Globally,
solar PV has received the largest share (48%) of renewable power generation support,
with $60.8 billion in 2017 (Gielen et al. 2019).!

However, the actual impact of solar PV systems in decreasing carbon emissions is
still unclear. Although the impact of solar PV investments on households’ grid-based
electricity consumption can be easily predicted based on engineering models, these
predictions might be wrong because of the potential behavioral changes associated
to solar PV use. It is clear that solar electricity generation would decrease house-
holds’ electricity consumption from the grid and consequently their utility bill. Still,
the consumption from the grid may not decrease as much as the electricity gener-
ated by solar panels. Generating solar power at near zero marginal cost decreases
the effective average price of electricity for the household, invoking a demand shift

upwards as a result of price elasticity. This phenomenon is referred to as the “re-

'n order to encourage solar PV investments, countries generally use investment subsidies that refunds part
of the installation cost and/or feed-in tariffs/net metering mechanism in which producer is paid under a
multiyear contract at a guaranteed rate . For instance, the Japanese government ran a successful subsidy
program from 1994 to 2003, and reached to an installed PV capacity with over 1.1 GW in 2004. In 2004,
the German government introduced the first large-scale feed-in tariff system, which resulted in huge growth
of PV installations. In October 2008, Spain, Italy, Greece and France introduced feed-in tariffs. In 2006
California approved the ’California Solar Initiative’, offering a choice of investment subsidies or FIT for
small and medium systems and a FIT for large systems. In 2006, the Ontario Power Authority (Canada)
began its Standard Offer Program, the first in North America for small renewable projects, guaranteeing
a fixed price of Canadian $0.42 per kWh for PV over a period of twenty years.

1



bound effect”, which needs to be taken into account while assessing the effectiveness
of solar PV incentives. This paper aims to provide evidence on the size of rebound

effect associated to solar PV use and its potential heterogeneity.

The rebound or "takeback' effect, is described as the loss in expected gains from
an efficiency-increasing technological change that is caused by a behavioral change
(Berkhout, Muskens, and W. Velthuijsen 2000). Rebound effect has been mostly
studied in the energy efficiency literature. Research has shown that technologi-
cal improvements may lead to lower energy savings than expected as a result of
the associated changes in consumer behavior (Jevons 1906; Khazzoom 1987; Wirl
1997). The mechanism underlying this behavioral change relates to neoclassical eco-
nomic theory: when the energy efficiency of a particular energy service is improved,
households realize a reduction in the effective price of that service. Consequently,
improved energy efficiency leads to an increase in the demand of energy service.
This implicit price mechanism generates a so-called rebound effect, as it partially

offsets the initial efficiency gains.

Although the existence of the rebound effect is widely acknowledged, the real debate
lies in the identification and the size of the effect (Gillingham et al. 2013; Greening,
Greene, and Difiglio 20000). The discussion on the extent of the rebound effect
has led to different views on the role of energy efficiency policies in addressing
climate change (Borenstein 2015). Thus far, due to the uncertainty regarding its
actual size, the rebound effect has been disregarded in ex-ante impact assessments
of energy conservation measures (e.g. building regulations and energy efficiency
subsidy programs), leading to perhaps misguided expectations about the role of
these measures in saving energy (Fowlie, Greenstone, and Wolfram 2018; Jacobsen
and Kotchen 2013). This is of importance, as realized savings ultimately determine
the success of energy policies in reducing energy consumption and carbon emissions.
Incorporating the rebound effect into policy evaluations can thus help to develop

cost-effective energy conservation policies.?

In the literature, the transport sector and the residential sector are the two main
areas where improvements in energy efficiency have previously been studied, as
energy consumption levels are high in both sectors, and there is significant potential

for technological innovations.®> However, due to limited availability of data, the

2Tt is important to note that, as the rebound effect is a re-optimization as a response to implicit price
changes, it can be regarded as welfare improving according to neoclassical economic theory. On the other
hand, its extent has important implications on the outcomes of energy conservation policies.

3See, for example, Aydin, Kok, and Brounen (2017) for the case of residential heating, Wheaton (1982) and
Small and Van Dender (2007) for the case of vehicle fuel economy, Hausman (1979) for the case of air
conditioners, Davis, Fuchs, and Gertler (2014) for the case of refrigerators, and Davis (2008) for the case
of clothes washers.
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empirical evidence on the rebound effect resulting from the use of solar PVs is
relatively scarce. To our knowledge, so far, there are only three studies that estimate
the rebound effect for the households using solar PV. Analyzing billing data for a
sample of households in Sydney, Deng and Newton (2017) document a rebound
effect of around 21 percent for the households who have solar PV installation. In
another study, using household level high frequency electricity consumption and
production data from a sample of houses in Arizona, Qiu, Kahn, and Xing (2019)
found that when solar electricity generation increases by 1 kWh, solar PV homes
increase their total electricity consumption by 0.18 kWh. Finally, in a recent study,
using monthly billing data before and after solar panel adoption from eastern US,
Beppler, Matisoff, and Oliver (2021) document a rebound effect of 28.5 percent.?
Although these studies are valuable as they provide the first empirical evidence on
the solar rebound effect, we aim to contribute to this literature by dealing with some
methodological concerns related to the correct identification of the rebound effect

and by analyzing the heterogeneity in the size of this effect.

In this paper, we exploit high-frequency data which enables us to control for a variety
of unobservable confounders, including time-variant and individual unobservables.
Measuring the solar rebound effect with high-frequency data has its merits, but
other factors should also be taken into consideration, such as consumption-shifting
behavior. Consumption-shifting occurs when an individual moves a planned con-
sumption, such as laundry, to a period with more electricity generation. While this
shifting behavior does not change the overall consumption of the household, it would
cause a bias on the estimated impact of electricity generation on the consumption
of the household. Thus, ignoring the shifts in consumption with high frequency
data may lead to an overestimation of the solar rebound effect. In this paper, we
explicitly control for the consumption-shifting behavior by including lagged effects

of electricity generation in a two-way fixed-effects model.”

Compared to the previous work on the solar rebound effect, the sample that we

4Rebound effect resulting from solar PV use might also be associated with the rebound effect resulting from
the increasing efficiency of the electricity using household services. The literature estimates a rebound
effect of 5-12 percent for lighting (Greening, Greene, and Difiglio 2000a), 6 percent for clothes washing
(Davis 2008), and around 8 percent for cooling (Mizobuchi and Takeuchi 2019).

5 Another factor that needs to be considered when evaluating the efficiency of distributed PVs is the change
in grid load. Inability to satisfy electricity demand at peak hours might cause blackouts that lead to
substantial financial and welfare losses (de Nooij, Lieshout, and Koopmans 2009; Vasconcelos and Carpio
2015). On the other hand, investing in electricity infrastructure constitutes a major expenditure for the
distribution and transmission firms, and increasing capacity to meet peak electricity demand that will stay
idle during off-peak hours is financially wasteful. Moreover, inefficiencies in distribution and transmission
infrastructure lead to energy waste, which increases proportionally to the distance between production and
consumption locations (Bouffard and Kirschen 2008; Bradley, Leach, and Torriti 2013; Joskow 2012; Peper-
mans et al. 2005). By decreasing the net electricity consumption from the grid, distributed PV systems
mitigate the losses associated with transmission and distribution, increasing economic and environmental
efficiency. Therefore, observing the shifts in net electricity consumption over time is of importance for
peak shaving purposes, and including lagged-independent variables allows us to measure the decrease in
load caused by PV electricity generation.
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exploit differs in various ways. Around 17.4% of the households in our sample are
yearly net producers, and the Dutch energy companies make a payment for the
excess production of households on a yearly basis. That is to say, PV electricity
generation constitutes an actual source of income for net producer households, thus,
the governing mechanisms for rebound effect for net producer households may be
different. As we can expect an increasing trend in share of net producers among solar
households in the future, our results can provide an important input for future policy
discussions.® Furthermore, the Netherlands experiences four seasons which would
suggest a greater variance in weather conditions and, in particular, solar irradiance
compared to the state of Arizona. Consequently, we can observe the heterogeneity
in rebound effect for different production levels, resulting from the variation in solar
irradiation. Finally, benefiting from a detailed household survey data, we are able
to check the potential heterogeneity in the rebound effect that might result from

differing household characteristics.

In the analysis, we first estimate the average size of the rebound effect on residential
PV electricity generation. We exploit a household level electricity consumption and
electricity generation data-set that includes 317 Dutch homes for the period 2014 to
2015, and we apply a two-way fixed effects model with lagged independent variables
to control for unobservable confounders. Our results suggest that 1 kWh increase
in PV electricity generation results in an increase of 0.07 kWh in total electricity
consumption, implying a rebound effect around 7 percent. The results are robust
to the use of different estimation approaches and sample specifications. We also
examine how the generated electricity influence net electricity consumption from
the grid in terms of timing and magnitude. We document that increased electricity
generation causes a significant amount of consumption shifting. We also document
that the size of the rebound effect increases by the increasing electricity generation.
Assessing household related heterogeneity, we observe a higher rebound effect for
the households with higher environmental awareness, lower energy literacy and lower

saving tendency. However, these differences are not statistically significant.

The remainder of the paper will first describe the data and discuss the summary
statistics. In section 3, we present a simplified theoretical model and our estima-
tion methodology. Section 4 discusses our results, including robustness checks and
heterogeneity analysis. The paper ends with a short concluding section in which we

discuss policy implications.

6While Deng and Newton estimate a rebound effect for gross-metered households, Qiu, Kahn, and Xing
estimate for net-metered households and argue that these households have different causal mechanisms
for solar rebound effects, claiming net-metered households see generated energy as "free” and perceive
electricity generation as a decrease in electricity prices.
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2. DATA

In this study, we examine the electricity consumption behaviour of households on
the Dutch island of Texel.! Conforming with its aim of becoming energy-neutral by
2020, the island has been subject to many sustainability related policies and projects.
In one of these projects, household-level electricity consumption and electricity pro-
duction data was collected by Liander, one of the largest energy grid managers in
Netherlands. The data was collected during a field experiment and the project was

designed to reduce energy consumption by providing consumption feedback.?

The data covers a sample of 317 households for the period between March 2014 and
March 2015. In this sample, 187 households have a solar panel and 126 households
do not. The data on electricity production of these households is available with
15 minute intervals, however, electricity consumption data is available on a daily
basis until September 2014 and with 15 minute intervals onwards. As part of the
project, several surveys were conducted among the households, which reveal their
motivations in terms of energy consumption, their attitudes towards the interven-
tions and the changes they experienced during the project. 165 households in our
sample responded to survey that covers 373 different questions, which can be used

to characterize participants in more detail.

ITexel is an island located in North Holland, Netherlands, inhabited by more than 13,000 people. The
island enjoys 1650 sun hours a year, the highest number in the Netherlands, and it experiences a relatively
mild climate. These circumstances make Texel an interesting case for solar energy research.

2Through the installed in-house displays (IHDs) called "KIEK", the households received feedback and in-
sights about their consumption. Another goal of the project was to initiate and foster the usage of smart
grids. The experiment started on March 15th 2014 and it consists of three phases. In the first phase,
which lasted until May 15th 2014, participants were observing their consumption levels through the in-
stalled IHDs. In the second phase of the experiment, the participants were supplied with smart plugs,
which allowed them to acquire a deeper understanding about their individual home appliances. Further-
more, participants received information about how they compare to their neighbors, and they were exposed
to suggestions and insights for saving energy. The third phase began in September 2014, which introduced
price incentives to the experiment, varying between €0,1522/kWh and €0,3071/kWh within the day. Al-
though it is not the main research question of this paper, we also check whether these treatments had any
influence on the size of the estimated rebound effect.
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2.1 Descriptive statistics

First, as a descriptive analysis, we present the summary statistics for solar and
non-solar houses separately (see Table 2.1). The statistics suggest that, on average,
the households with solar panels consume around 7.5 kWh more electricity on a
daily basis compared to the households without solar panel. This difference might
be related to potential differences in household characteristics that affect energy
consumption and/or potential rebound effects arising from solar panel electricity
production. We also compare these households based on characteristics that might
affect their energy consumption. For this purpose, we measure their environmen-
talism, energy saving and energy literacy scores based on the survey answers of a
sub-sample of households.? Survey statistics show that, on average, both types of
households are similar in these characteristics, except for age. The solar houses in
our sample are inhabited by slighlty older households. Overall, we observe that
households that adopt solar panels show similarities to non-adopting households in
observable characteristics such as cost-saving behavior and environmental aware-
ness. However, since there might still exist unobservable differences between these
households, as a robustness check, we take these potential variations into account

and limit our sample to only solar panel homes in our analysis.

3These scores are calculated as follows: Questions that are related for the respective characteristics are
identified. Then, the answers for these questions are normalized between 0 and 1. Finally, the average of
these normalized answers is taken to calculate respective final scores.
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Table 2.1 Descriptive Statistics

(1) 2) 3) 4)
All No Solar  With Solar t-Test

Daily Electricity Consumption (kWh) 9.32 8.88 9.63 -0.75%**
(5.63) (5.48) (5.72) (-17.89)

Daily Electricity Production (kWh) 6.72

(6.0)

Observations 75,097 30,896 44,201

Number of Households 317 126 187

Environmentalism Score 0.439 0.439 0.439 -0.000
(0.142)  (0.138) (0.146)  (-0.0110)

Savings Score 0.609 0.597 0.618 -0.022
(0.144)  (0.140) (0.149) (-0.939)

Energy Literacy Score 0.506 0.485 0.520 -0.035
(0.142)  (0.126) (0.151)  (-1.565)

Age 54.307 51.627 55.915 -4.288**
(10.66)  (12.09) (9.045) (-2.574)

Education

Higher than Bachelor’s 13.77%  10.29% 16.49%

Bachelor’s or Equivalent 30.54%  36.76% 25.77%

Some College 20.69%  23.53% 18.56%

Secondary Education 28.14%  23.53% 31.96%

Other 6.59% 5.88% 7.22%

Number of Survey Participants 165 68 97

Notes: Column (1) reports statistics for the whole sample. Column (2) reports the statistics for non-solar
households and column (3) reports the statistics for solar households. Column (4) presents the t-statistics
comparing solar and non-solar houses. Survey scores are calculated as follows: Questions that are related for
the respective characteristics are identified. Then, the answers for these questions are normalized between 0
and 1. Finally, average of those normalized answers is taken to calculate respective final score. Std. deviations
(t-statistics for the t-test) are given in the parentheses. For the t-test; * p <0.10, ok p <0.05, ok p<0.01

Next, we compare households electricity consumption across the four seasons of the
year. First of all, we observe in Figure 2.1 that average electricity consumption is
higher during winter compared to summer for both household types (e.g. with and
without solar PV). This time variation is a likely result from the energy needs arising
from weather conditions, as more lighting is needed during the darker months of the
year. When we focus on the differences between groups, we notice a consumption
gap that widens during spring and summer and reduces to near zero during the
autumn and winter. During these dark autumn and winter months solar electricity
production is low (see Figure 2.1), hence this seasonality in gap can be interpreted
as a first indication of a potential rebound effect arising from solar electricity pro-
duction. Solar house owners might be relatively generous in their energy use, at

times when they know their solar generation levels are high, and vice versa.



Figure 2.1 Electricity Consumption and Production Based on Seasons
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Next, we examine the distribution of electricity consumption for solar and non-

solar households. Figure 2 presents the distribution of average daily electricity

consumption of households for solar and non-solar homes, separately. While both

distributions are skewed to the right, we also find that electricity consumption of

households without solar panels is distributed more narrowly. This difference is

most pronounced during high radiation months, indicating again that electricity
consumption of solar house owners then shifts outward (see Figure 3). Between

September and February consumption curves are very similar across both groups.

Figure 2.2 Distribution of Daily Electricity Consumption
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Figure 2.3 Distribution of Average Daily Consumption by Months
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Finally, we plot the relationship between solar electricity generation and electricity
consumption for the homes that have solar panel. Figure 2.4 indicates a positive
relationship between the two variables. Electricity consumption spikes during the
days (or for households) that electricity generation is highest. This figure supports
the existence of a potential rebound effect in residential PV electricity generation.
Moreover, the magnitude of the correlation between electricity consumption and
generated electricity seems to increase as generated electricity increases. However,
this descriptive analysis neglects the fact that households might switch some part
of their required electricity consumption to the time periods when there is more
electricity generation. In that case, this observed positive relationship might appear
because of a change in timing of consumption instead of a change in the amount
of total consumption. Therefore, in the subsequent analysis, we formally take this

potential switching behavior into account.



Figure 2.4 Daily Electricity Consumption and Solar Electricity Generation
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to their daily electricity generation levels.
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3. METHODOLOGY

3.1 Theoretical Framework

Given that we analyze the electricity consumption of households, the rebound effect
that we estimate will be on the micro-economic level. In order to better grasp
the underlying economic mechanisms, we describe a theoretical framework similar
to Qiu, Kahn, and Xing (2019), where it is assumed that households respond to
average electricity prices instead of marginal electricity prices, as it is shown by Ito
(2014). In this framework, the average electricity price from the grid is denoted as

po, and the effective average price, denoted by p.yr, is determined as follows:

eP
(3.1) Pesr=po(l=—2)

where , e¢ and eP are electricity consumption before solar panel adoption and elec-
.. . . P . .

tricity produced by solar panels, respectively. Since £z is always non-negative, the

effective average price is smaller than the average electricity price. Now, consider

households’ price elasticity of electricity, &, as follows:

Ae Ae€ Ae€ Ae®
__ et __ e¢ _ e¢ _ _e° C__ _¢,.p
(32) 5_ Ap  Peff—Po po(l—icj)—p = — Aef = fe
T - e ec
p Po 70

Based on equation (2), we observe that the change in electricity consumption de-
pends on the elasticity () and the production by solar panels (e). Therefore, the
change in electricity consumption after solar panel adoption is caused by the amount
of electricity generated. In other words, the rebound effect of solar panel adoption

is equal to —¢. This relationship is illustrated in Figure 3.1.

11



Figure 3.1 Ilustration of Rebound Effect
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Notes: Panel (a) illustrates the relationship between the effective average price and the amount of electricity
generated by solar, where p.y; denotes the effective average price, po is the average electricity price from the
grid, ef is the electricity consumption prior to solar panel adoption and eP denotes the amount of electricity
generated by solar panels. Panel (b) shows the change in electricity demand after solar electricity generation,

where €€ is the electricity consumption after solar panel adoption. The rebound effect is illustrated in Panel (c).

3.2 Empirical Model

The rebound effect is defined as the reduction in expected gains from a more
resource-efficient technology as a result of behavioral or systemic change. In the con-
text of domestic solar panel adoption, this effect equals the change in a household’s
electricity consumption resulting from solar electricity production. To estimate the

rebound effect, we conduct a panel data analysis with the following empirical model:

(3.3) eiy = a+ el +Paely |+ Bae], o+ 0i ey

where ef, denotes the daily electricity consumption of household ¢ on day ¢ and

eﬁ ; denotes the daily solar energy production of household ¢ on day ¢, which is our

main variable of interest. Households equipped with solar panels may shift some

of their consumption to the days with high levels of solar electricity generation.
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For instance, a person may choose to postpone a routine task, like laundry, in
anticipation of high electricity production, increasing the electricity consumption
for that future day. This type of consumption shifting behavior does not increase
the overall household electricity consumption, and can therefore be easily missed
in standard estimation procedures. However, when not taken into account, these
shifts may lead to overestimation of the rebound effect. To address this issue, we
introduce lagged electricity production variables (e‘z +_1 and e£ +_9) into our model
with the depth of two periods.! Aggregation of the /3 coefficients gives us the rebound
effect. Individual and date fixed-effects (d; and -, respectively) are also included in
the model in order to control for household-variant and time-variant unobservables.

Finally, €; + denotes the error term.

'We limit the depth of our time lags to two periods because further lags did not show statistical significance,
as seen in Table 4.1, Column 6.
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4. RESULTS

We start our analysis with an Ordinary Least Squares (OLS) estimation, where
we regress daily electricity consumption on daily electricity generation. Then, we
introduce household fixed-effects and date fixed-effects to control for possible unob-
servable confounders that are fixed for a household or during a time period. Lastly,
we include lagged PV electiricity generation to control for consumption shifting,
which can inflate our estimation of rebound effect. Table 4.1 reports the OLS es-
timation results. When we introduce household and date fixed effects, we estimate
a rebound effect of around 29 percent (column 3). However, this result might also
capture potential shifting behavior. After adding lagged production as control vari-
ables, the estimated rebound effect decreases to 7.7 percent (column 5). It is worth
noting here that the coefficient for the lagged variable at period t — 3 is not statisti-
cally significant, as shown in column 6. Thus, we will focus on the model with two
periods of lagged production as our main specification. The estimated instantaneous
effect suggest that 1 Wh increase in generated electricity results in an instantaneous
increase of 0.58 Wh in consumption within that day. Because of the time shifting
behavior, this decreases the electricity consumption for the next day by 0.45 Wh
and by 0.05 Wh 2 days later. That is to say, the carbon emission gains of reduced
grid consumption that result from solar PV electricity generation are dispersed over

time.

14
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Observing within-day changes in electricity consumption is more relevant for esti-
mating the reductions in peak-hour electricity demand, while investigating the ex-
istence of within-day rebound effects is intriguing in itself. With the high-frequency
data available for September 2014 onwards, we conducted a series of analyses for
within-day electricity consumption, starting from 15-minute intervals and aggregat-
ing towards daily intervals. This approach also allows us to control for time-variant
unobservables in a more refined manner. Table 4.2 reports the results for this within-
day analysis and shows rebound effects varying between 5.3% to 9.4%, which is in
compliance with our daily data analysis. However, consumption shifting appears to
be milder than in the daily data analysis. This should mostly be explained by the
response time of the households to the generated electricity. Households should be
less likely to respond to electricity generation within the same 15 minutes, whereas

it is more likely that they will respond within the same day.

Table 4.2 Within Day Analysis

6 @ ® @ ®
Variables 15 min. Hourly Two hours  Four hours Half day
Total Effect  0.056%** 0.053*** 0.064*** 0.094%** 0.084***
(0.012) (0.013) (0.013) (0.015) (0.026)
at t 0.093*** 0.095%** 0.084*** 0.080*** 0.134%**
(0.013) (0.013) (0.012) (0.013) (0.017)
at t-1 -0.032%**  _0.050*** -0.043*** -0.015 -0.005
(0.005) (0.006) (0.007) (0.007) (0.016)
at t-2 -0.005 0.009** 0.023*** 0.029%*** -0.045%**
(0.005) (0.006) (0.008) (0.009) (0.012)
Household FE Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes
Constant 99.733%*F*  400.897*FF*  T98.407***  1,579.398*** 4 694.887***
(0.547) (2.196) (4.378) (8.820) (32.838)
Observations 3,293,218 836,299 418,702 209,139 68,915
R-squared 0.243 0.319 0.369 0.420 0.536

Notes: The dependent variable is electricity consumption(Wh) at time ¢. Time intervals for the analysis are
given on their respective columns. The analysis is based on a sample of 282 households on the Dutch island
of Texel for the period September, 2014 to February, 2015. The standard errors are clustered around season-
household pairs, controlling for autocorrelation, and are reported in parentheses. *** p<0.01, ** p<0.05, *
p<0.1
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4.1 Robustness Checks

We perform a series of analyses to check the robustness of our estimations. Table 4.3
reports the results of these analyses. First, we check comparability of solar and non-
solar households on observable variables, so that we can establish a credible estimate
of the counterfactual for the solar households. Thus, we conduct a propensity score
matching (PSM) analysis on the sample that participated in the household survey.
Based on the results of the survey, we generate scores for environmentalism, savings
and energy literacy as previously mentioned. We estimate propensity scores for
solar panel adoption, using a probit model with these scores, age, education level
and average electricity consumption of the month with lowest mean PV electricity
generation. Radius matching with 0.075 caliper is used to match these observations,
since this results in the smallest median bias. Yet, other matching algorithms have
been applied as well and yielded similar results'. Figure A.2 shows the common
support after the PSM. Then, we utilized these matches in a WLS model with two-
way fixed effects. As can be seen in Column 2-3 in Table 4.3, the estimated rebound
effect does not alter significantly, when comparing the OLS and PSM approaches

for the sample of survey participants.

1Gee Table A.1 in the Appendix for examples.
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Second, a small portion of our sample consists of holiday bungalows. To assess
whether energy behaviour differs between these holiday homes and the more con-
ventional standard homes, we re-estimate the rebound effect using a stratified sample
without holiday bungalows as reported in Column 4 in Table 4.3. These estimates
appear to be in accordance with our main results, with only minimal differences

compared to our main model estimation in Column 1.

Next, some might expect that solar households have different characteristics than
non-solar households that led them to adopt solar panels. For example, solar house-
holds may inherently consume more electricity than non-solar households prior to
solar panel adoption. Therefore, our estimations might be reflecting those inherent
differences rather than an actual increase in consumption after solar panel adop-
tion. To elucidate this matter, we run a regression solely on solar panel households,
which should constitute a more homogeneous sample. As reported in Column 5, the
estimated rebound effect is still statistically significant and larger than our main re-
sults (15 percent versus 7.7 percent). This difference might be explained by the fact
that the solar households constitute a sample with higher solar electricity produc-
tion. Recalling from Figure 2.4, the rebound effect seems to increase as electricity
production increases. We further verify this potential non-linearity in the rebound

effect in the next section.

One of the reasons that we use lagged independent variables is to control for con-
sumption shifting. To check the validity of this approach, we estimate the rebound
effect by using monthly average electricity consumption and generation, where the
effect of consumption shifting should be minimal. In Column 6 of Table 4.3, we
can see that this rebound effect is estimated to be around 11%, which is relatively
high compared to the estimated rebound effect using daily and high frequency data.
This difference can be due to other confounders that we are able to control with the
daily data. Nevertheless, this monthly estimate is still significantly lower in contrast
to the estimate in Column 3 of Table 4.1, which clearly indicates the necessity of

controlling for consumption shifting.

Lastly, some doubts may arise about our estimates since the data we use is collected
as a part of an experiment, and that experiment might have an effect on our rebound

effect estimates. In order to address this issue, we run the following regression:

p p

e e;
2t 2t
C
(4.1) eir=a+p eitfl +A eﬁtfl Di+ 6+ +e€iy
6?,75—2 6?,1&—2
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where D; is the experiment outcome dummy that becomes zero for households that
reported no savings associated with the experiment in the survey and vice versa. As
seen in Table 4.4, the interaction variable does not have a statistically significant
coefficient in neither of the time periods, whereas our estimation of the rebound
effect keeps its significance and it does not vary significantly from our estimate
reported in Table 4.3 Column 2. Thus, we fail to find any statistically significant

effect that can be attributed to the experiment.

Table 4.4 Rebound Effect by Experiment Outcome

Variables
Total Effect 0.041*
(0.021)
Total Effect*D 0.023
(0.034)
Daily electr. prod. at t 0.578%**
(0.027)
Daily electr. prod. at t-1 -0.466%**
(0.029)
Daily electr. prod. at t-2 -0.071FF*
(0.013)
Daily electr. prod. at t*D -0.009
(0.042)
Daily electr. prod. at t-1*D 0.007
(0.045)
Daily electr. prod. at t-2*D 0.024
(0.018)
Household FE Yes
Date FE Yes
Constant 9,931.121%**
(77.162)
Observations 34,360
R-squared 0.644

Notes: The dependent variable is daily electricity consumption(Wh). The analysis is based on a sample of 171
households on the Dutch island of Texel for the period March 2014 to February 2015 that participated in the
survey. "Experiment Outcome Dummy" variable takes the value zero if the household reported no savings related
to the experiment in the survey and vice versa. The standard errors are clustered around season-household pairs,
controlling for autocorrelation, and are reported in parentheses.*** p<0.01, ** p<0.05, * p<0.1

4.2 Heterogeneity Analysis

So far, we estimated the rebound effect of solar PV electricity generation in a sound
manner and demonstrated the robustness of our results. However, some questions
might arise regarding the external validity of our results, since our sample consists of
Dutch households. Thus, it might be helpful to test the heterogeneity in the rebound
effect under different circumstances or for differing household characteristics.
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First, there may be a heterogeneity in the rebound effect related to differences in
climate or in electricity generation levels. Therefore, we estimate the rebound effect
separately across the different seasons. Figure 4.1 illustrates these results. Interest-
ingly, we observe higher rebound effect during seasons with higher solar electricity
generation. The rebound effect in the summer is about 16% and statistically sig-
nificant, whereas, it is around 3% during winter and lacking statistical significance.
These results also indicate a non-linear relationship between consumption and elec-

tricity generation. Monthly estimates are also reported in Figure A.1 in Appendix.

Figure 4.1 Rebound Effect by Seasons

T T T T
Winter Spring Summer Autumn

Notes: The dependent variable is daily electricity consumption. The analysis is based on the sample of households
on the Dutch island of Texel for the period September 2014 to February 2015. The standard errors are clustered
around season-household pairs. Each marked point indicates the estimates for the corresponding season and

lines indicate the corresponding 95% confidence intervals.

To dig deeper into the matter of non-linear relationship between consumption and
electricity generation, we also estimated the rebound effect for solar households
by dividing them into sub-samples by quartiles according to the average electricity
generation of the households. As shown in Figure 4.2, households with less electricity
generation demonstrate a lower rebound effect compared to the households with
greater average electricity generation. More precisely, solar households in the first
quartile of the distribution according to their average electricity generation show
a rebound effect around 11% 2, whereas the households in the last quartile of the
distribution exhibit a rebound effect around 36%.

2This estimate is statistically significant at 10% level with a p-value of 0.063
21



Figure 4.2 Rebound Effect by Average Electricity Generation of Households

T T
First Quartile Last Quartile

Notes: The dependent variable is daily electricity consumption. The analysis is based on the sample of solar
households on the Dutch island of Texel for the period September 2014 to February 2015. Households are divided
into sub-samples delimited by quartiles according to their average electricity generation. The standard errors
are clustered around season-household pairs. Each marked point indicates the estimates for the corresponding

season and lines indicate the corresponding 95% confidence intervals.

Next, as there might be heterogeneities in the rebound effect associated with differing
household characteristics, we estimate the rebound effect for a series of solar house-
hold sub-samples based on the characteristics as shown in the Figure 4.3. These
estimates suggest that individuals with higher energy literacy and with a higher
savings score are associated with lower rebound effects. This might suggest that fi-
nancial and energy awareness reduces the rebound mechanism. On the other hand,
people that have more environmental awareness tend to experience higher rebound
effects. This result might look counter-intuitive at first sight, however, it needs to
be noted that overall electricity consumption is lower for households with above
average environmental awareness and they just respond relatively more generously
to PV electricity generation. Besides, these households might experience a stronger
rebound effect due to the decreasing environmental cost of their future electricity
consumption. In addition, the older households in our sample are associated with
a slightly higher rebound effect, whereas, differences in education levels appear to
have no effect at all on the rebound. Lastly, households that check their smart
meters more frequently experience a lower rebound effect, which can be interpreted
as an indication for the information feedback mechanism. However, we should note
that because sample size is relatively small in these subgroups, all these observed

differences are lacking statistical significance.

22



Figure 4.3 Rebound Effect by Different Household Characteristics

Notes: The dependent variable is daily electricity consumption. The analysis is based on the sample of solar
households on the Dutch island of Texel for the period September 2014 to February 2015. The standard errors
are clustered around season-household pairs. Each marked point indicates the estimate for the corresponding

sample, while lines indicate the corresponding 95% confidence intervals. Dashed line indicates the estimate for
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the full sample of solar households that participated in the household survey.
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5. CONCLUSION

By exploiting electricity consumption and solar PV electricity generation data of
Dutch households, we observed changes in consumer behavior related to solar panel
adoption. Our estimations suggest that a household increases its electricity con-
sumption by 0.07 kWh when generated solar PV electricity increases by 1 kWh,
indicating a rebound effect of around 7%. We also find that solar PV electricity
generation decreases the net electricity consumption from the grid, but these con-
sumption gains are dispersed over time. In addition, our heterogeneity analysis
also shed light on the circumstance that booster this rebound effect. For instance,
we observe a higher rebound effect during seasons that are associated with higher
solar irradiance, which might indicate that the rebound effect may be higher in ge-
ographical regions with higher solar irradiance and vice versa. When we look at
differences in socio-demographic characteristics, we find that households experience
lower rebound effects when they have more energy literacy or a stronger tendency
to save. On the other hand, people with higher environmental awareness experience
a higher rebound effect. These household differences in the rebound effect are not

statistically significant, but may offer some guidance for further research.

A proper estimation of the solar rebound effect is essential for policy evaluations.
When assessing the impact of distributed solar panel adoption, neglecting the re-
bound effect would result in improper and somewhat optimistic conclusions. The
benefits of solar panels to the consumer may be overstated if the rebound effect is
ignored, since the future value of such investment would co-depend on it. Further-
more, reductions in energy imports or carbon emissions may be overestimated, as
the rebound effect would result in a slight increase in electricity consumption. The
timing of those reductions is another matter to consider. One of the benefits of dis-
tributed solar panels is that they lead to a reduction in distribution infrastructure
load and peak-hour electricity demand from the grid. Our results show that reduc-
tions in demand from the grid are not fully instantaneous. Instead, grid electricity
demand is diffused more over time. This should be considered when planning for the

fulfillment of peak-hour demand or considering reductions in carbon emissions due
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to point-of-demand electricity production, since it leads to a decrease in distribution

infrastructure load that is intrinsically inefficient.
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APPENDIX A

Figure A.1 Rebound Effect by Months

T T T T T T T T T T T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Notes: The dependent variable is daily electricity consumption. The analysis is based on the sample of households
on the Dutch island of Texel for the period September 2014 to February 2015. The standard errors are clustered
around season-household pairs. Each marked point indicates the estimates for the corresponding month and
lines indicate the corresponding 95% confidence intervals.

Figure A.2 Common Support for PSM

T T T T
.6 .8

4
Common Support

I No Solar [ With Solar

Notes: This graph shows the common support between treated and untreated households after the PSM.
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Table A.1 Different Matching Algorithms for PSM

M @ ® @) ®
Algorithms Radius Radius Radius Nearest Neighbor Kernel
(0.075) (0.05) (0.1) (N=3)
Total Effect 0.049%* 0.053%** 0.048%* 0.051%* 0.053%**
(0.020) (0.020) (0.020) (0.020) (0.020)
at t 0.569*** 0.570%*** 0.569%*** 0.565%** 0.570%**
(0.024) (0.024) (0.024) (0.024) (0.024)
at t-1 -0.458%F* -0.457*k* -0.459%F* -0.454 %% -0.457*F*
(0.026) (0.026) (0.026) (0.026) (0.026)
at t-2 -0.062%** -0.060%*** -0.062%** -0.060*** -0.060***
(0.011) (0.011) (0.011) (0.011) (0.011)
Household FE Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes
Constant 10,056.964*%*  10,048.413***  10,090.672*** 9,902.443*** 10,068.704%**
(67.113) (66.695) (67.572) (70.241) (66.757)
Observations 33,928 33,644 34,574 33,928 33,644
R-squared 0.662 0.657 0.658 0.669 0.657

Notes: The dependent variable is daily electricity consumption. The analyses are based on the sample of
households on the Dutch island, of Texel during the period September 2014 to February 2015. The number of
households was 171 (survey participation). The standard errors are clustered around season-household pairs,
controlling for autocorrelation, and are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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