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Vibration induced by active nematics
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Active elements in active nematics can impose forces on immersed bodies and move
them accordingly. We numerically investigate the vibrational motion of a cantilever
beam placed in active nematics. The continuous energy transfer from vortices to the
beam results in beam oscillation, whose direction and amplitude depend on the vortex
strength, size and position. Referring to the kinetic-energy spectrum, we indicate that
both the large- and small-scale vortices are the primary mechanism for the energy transfer
between the fluid and beam, leading to the beam oscillatory motion, with the contribution
from the large-scale vortices being higher. We investigate the effect of fluid properties
such as activity, viscosity and elastic constant on the oscillation frequency. We show
that the intensification of the activity increases peak frequency, and there is a linear
correlation between the peak frequency and activity. We further demonstrate the reciprocal
relationship between viscosity and peak frequency. Subsequently, we relate the increase
and decrease in the peak frequency to the energy injection/dissipation by activity/viscosity.
Moreover, we reveal the negligibly small dependency of beam peak frequency on the
elastic constant and discuss free energy’s role in accounting for this behaviour. The
findings clearly demonstrate that active fluids can impose an oscillatory motion on flexible
bodies, which might be used as a novel method for measuring the critical properties of
active nematics.

Key words: flow-structure interactions, active matter

1. Introduction

Active matter describes systems in which the elements extract energy from their
surroundings and convert it into mechanical work, leading to systems which are not
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in thermodynamic equilibrium. Active matter displays phenomena ubiquitous in a wide
range of physical and biological systems, including but not limited to animal herds and
suspensions of bacteria (Marchetti et al. 2013; Prost, Jülicher & Joanny 2015; Needleman
& Dogic 2017; Doostmohammadi et al. 2018).

Due to the continuous energy injection of the active constituent particles, the active
fluid’s chaotic nature emerges, known as active turbulence (Wensink et al. 2012; Bratanov,
Jenko & Frey 2015; Doostmohammadi et al. 2017; Urzay, Doostmohammadi & Yeomans
2017; Alert, Casademunt & Joanny 2022). In such a chaotic flow, the kinetic energy
of micro-scale elements is transferred to a passive body immersed in the active fluid
such that the body experiences a mechanical force on its boundaries. If the exerted
energy is sufficiently high, the body could undergoes deformation (Paoluzzi et al. 2016),
translation (Wu et al. 2018), rotation (Angelani, Di Leonardo & Ruocco 2009) or their
combination.

Considering the induced motion of passive immersed bodies, the question may arise
as to whether the active flow can also generate vibrational motion due to its chaotic and
turbulent nature. As such, it should be possible to induce a constructive oscillatory motion
on a flexible body, possibly made of a piezoelectric material that can be used as a sensor
to extract the physical properties of the active fluid.

Generally, the behaviour of active nematics is affected mainly by fluid activity and
elastic constant. Our recent study also showed that viscosity has a significant role
by introducing the inertia effect to the active nematics system (Saghatchi, Yildiz &
Doostmohammadi 2022b). The measurement of these parameters is experimentally
challenging (Frishman & Keren 2021), and the secondary properties are often used
to extract these main parameters. Currently, the most common method to assess the
activity is to measure the adenosine triphosphate (ATP), the motor cluster, microtubules
or polyethylene-glycol concentrations (Henkin et al. 2014; Doostmohammadi et al. 2018),
among others. Researchers have been working on numerical procedures such as machine
learning algorithms (Colen et al. 2021) to find an alternative approach to measure the
physical properties directly.

Considering the aforementioned issues, we placed a cantilever beam in active nematics
and numerically analysed the induced vibration. We used a continuum model for the active
nematics and combined it with a fluid-structure interaction (FSI) solver to calculate the
imposed force on the beam and, consequently, analyse its motion. We investigated the
effects of vorticity and velocity field on the beam oscillation. Then, we demonstrated the
impact of three critical parameters, that is, fluid activity, viscosity and its elastic constant,
on the beam peak frequency and proposed a mathematical relationship that makes direct
measurement feasible for future practical utilization.

2. Methods

2.1. Governing equations
In this study, a 2-D continuum approach is implemented for modelling the nematic phase
where the nematic tensor Q is used to describe the nematic orientation n and its order q as
Q = 2q(nn − (I/2)), where I denotes the identity tensor. The Beris–Edwards equation is
used to evolve Q in time as (Beris & Edwards 1994)

∂Q

∂t
+ (u · ∇)Q − S = Γ H, (2.1)
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where

S = λE − (𝞨 · Q − Q · 𝞨);𝞨 = 1
2

[(∇u)† − ∇u], E = 1
2

[∇u + (∇u)†], (2.2a)

H = −δF
δQ

+ I

2
Tr

(
δF
δQ

)
, F = 1

2
K(∇Q)2 + A

2

(
q2 − 1

2
Tr[Q2]

)2

. (2.2b)

In these equations, t, u, 𝞨 and E , respectively, represent time, velocity, vorticity tensor
and rate of strain tensor. Here S is the generalized nonlinear advection term which is
controlled by tumbling parameter (λ), and H stands for the molecular field, which relates
the relaxation of Q to the minimum of the free energy (F ) and it is controlled by
the rotational diffusivity (Γ ). Free energy, F , includes two parts, elastic and bulk free
energies, which are regulated by elastic constant (K) and the coefficient A, respectively
(Saghatchi, Kolukisa & Yildiz 2022a).

The velocity field is computed by the coupled solution of the conservation of mass and
linear momentum equations:

∇ · u = 0, (2.3a)

ρ

(
∂u
∂t

+ (u · ∇)u
)

= ∇ · 𝞟, (2.3b)

where ρ represents the density, and 𝞟 = −pI + 𝞟viscous + 𝞟active is the stress tensor which
includes the pressure (p), viscous term (𝞟viscous = 2μE) and active term (𝞟active = −ζQ).
Parameters μ and ζ denote the dynamic viscosity and the activity coefficient, respectively.

The solid part of the model is governed by the following equation:

ρ

(
∂v

∂t
+ (v · ∇)v

)
= ∇ · 𝞼s, (2.4)

where 𝞼s denotes the Cauchy stress tensor and v represents the displacement vector.
Assuming linear geometry and elastic material, Hookean tensor is defined as 𝞼s = 2G𝟄 +
(κ − 2

3 G)Tr[𝟄]I , where G and κ stand for the shear and bulk modulus, respectively, and
𝟄 = 1

2

[∇v + (∇v)†] is the displacement gradient tensor.

2.2. Numerical scheme
To solve (2.1) through (2.4) numerically, the OpenFOAM package (Weller et al. 1998) is
used along with the solids4foam toolbox (Cardiff et al. 2018) which is responsible for the
coupling of the fluid part with the solid part and performs the FSI analysis where both
packages employ the finite volume method (FVM).

Utilizing the partitioned approach, the whole computational domain is decomposed into
two regions (fluid and solid) using the Dirichlet–Neumann procedure. As such, fluid and
solid models are solved separately. The velocity at the fluid–solid interface is used as
a boundary condition in the solution of the fluid domain, while the solid part uses the
exerted force by the fluid on the interface. Consequently, these two solutions are coupled
by dynamic (continuity of force) and kinematic (continuity of displacement and velocity)
conditions on the fluid–solid interface by the Dirichlet–Neumann coupling scheme
and utilize the Aitken adaptive under-relaxation procedure (Tuković et al. 2018). The
discretization schemes for each separate term in the governing equations are summarized
in table 1. Pressure and velocity coupling throughout the fluid domain is carried out by the
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Term Scheme

Time integration Euler
∇() Least squares
∇ · () (advection term) Gauss linear (upwind)
∇2() Gauss linear

Table 1. The discretization schemes that are used in this study (Moukalled, Mangani & Darwish 2016).

n

Figure 1. Schematic representation of the problem which includes a cantilever beam inside active nematics.
Nematic particles and the orientation vector are represented in the inset.

pressure-implicit with splitting of operators (PISO) algorithm (Versteeg & Malalasekera
2007).

The solution domain consists of a square region with a cantilever beam located at
the middle point of the bottom boundary (see figure 1). A no-slip boundary condition
is applied on all boundaries including the fluid–solid interface, while the zero-gradient
condition is used for Q. The structured Cartesian grid with 256 × 256 is used to discretize
the domain and the Courant–Friedrichs–Lewy (CFL) condition is enforced to control
the solution time-step size. Initially, zero velocity field is applied with uniform nematic
orientation n in the horizontal direction with a slight perturbation, and the results are
evaluated at the time step at which steady state is statistically attained.

The main parameters used in this study are tabulated in table 2. In this table, E
and ν, respectively, represent the elastic modulus and Poisson’s ratio, and l/w is the
length-to-thickness ratio of the beam. Based on the values in table 2, we define natural
frequency of transverse vibration of a cantilever beam as ω∗ = (βl)2

√
EI/(ρsAl4), where

βl = 1.875104, I is the area moment of inertia, A represents the cross-sectional area,
and l is the beam length (Rao 2011). Consequently, dimensionless time and frequency
become tω∗ and ω/ω∗, respectively, where ω = 1/t. Since the activity and viscosity are
the important parameters in our study, we define dimensionless activity and viscosity as
ζ/A and μΓ , respectively.

3. Results

We begin with the qualitative representation of the beam motion and flow field in the
physical domain. We take ζ = 0.01 and K = 0.05, and the simulations are performed
for the beams with two different values of elastic modulus, i.e. E = 0.01 KPa and
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Fluid Solid

Parameter Value Parameter Value

ρ 1 (N s2 m−4) ρs 1 (N s2 m−4)

λ 0.7 E 0.1 × 106 (N m−2)

Γ 0.0136 (m2 N−1 s−1) ν 0.3
K 0.003 (N) l/w 0.05
A 1 (N m−2)

ζ 0.03 (N m−2)

Table 2. Values used in the numerical simulations, unless stated otherwise.

E = 1.0 KPa (figure 2). Beam with lower elastic modulus imitates soft material such
as biological tissue, which can easily bend under the effect of active stress. The beam
bending is related to the flow dynamics, as shown in figure 3(a). In this sub-figure, velocity
vectors are shown in vicinity of the beam. Clearly, magnitude of beam deformation and
its orientation are controlled by the dominant direction of velocity vectors. If two vortices
appear on different sides of the beam, the strongest one determines the bending direction
as shown in figure 3(a). To further elaborate, when the strongest vortex (or vortices) travels
inside the domain and moves towards the beam, it exerts forces on the beam and deforms
it in the same direction. From an energy perspective, fluid elements inside these vortices
posses a high amount of kinetic energy. If these kinetic energies that are transferred to the
beam elements are high enough to surpass the beam’s elastic potential energy and inertial
force, the beam deforms and deflects. Thus, as the exerted force is more concentrated
towards the beam tip, beam deflection is expected to be higher. Vortices are being moved in
the domain due to the interactions of defects and the change in the director field (figure 3b).
As a consequence of these periodic processes, a random excitation is imposed on the beam,
leading to random vibration. Specifically, the maximum or peak oscillation frequency
of the beam is associated with the frequency of instabilities due to the formation and
annihilation of topological defects in active nematics.

The kinetic-energy spectra can best represent quantitative features of the energy transfer
to the beam, which characterizes the associated kinetic energy Ek = 1

2 〈ûi(k)ûi(k)〉 at
different scales. Figure 3(c) illustrates the kinetic-energy spectrum for the wavenumber
k, considering either the presence or the absence of the beam. Characteristic length scale
la = √

K/ζ is used to normalize the wavenumber. As inferred from this figure, energy at
higher and lower ranges of wavenumbers is considerably lower for the test cases where
the beam is placed in the computational domain than the test case without beam. This
observation indicates that the fluid energy is transferred on the beam mainly at relatively
low and high wavenumbers, respectively corresponding to the large-scale and small-scale
vortices, and thereby leads to the oscillatory motion of the beam. It should be noted that
no significant difference in kinetic energy at high wavenumbers is observed for the beams
with small and high elastic modulus. However, at relatively low wavenumbers, the kinetic
energy for the beam with high elastic modulus lies below that with low elastic modulus,
showing that the former beam consumes a higher amount of large-scale vortices energy
for its oscillation. Additionally, the semi-log plot of the energy spectra given as the inset
I of figure 3(c) indicates an exponential decay rather than the algebraic one as a function
of the wavenumber for the cases with and without the beam. Furthermore, we calculate
the kinetic-energy difference between the cases with the beam and the case without the
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Figure 2. Vorticity and the beam horizontal displacement (DX) contours at different times (t∗ ≈ tω∗ × 10−2)
for a beam with high elastic modulus (a), and low elastic modulus (b), correspond with E = 0.01 KPa and
E = 1.0 KPa, respectively.

beam, which are presented in the inset II of figure 3(c). This figure shows a maximum
point at kla ≈ 0.5, denoting that the beam consumes the majority of the fluid energy for
its oscillation from the large-scale vortices.

As mentioned above, fluid physical properties such as activity and viscosity could affect
the beam vibration. As reported by Giomi (2015), the typical time scale for the creation and
annihilation of topological defects ta is predominantly dictated by the active circulation
ta ∼ 1/ωv . Moreover, topological defects move primarily along the edge of the vortices
at approximately constant angular velocity ωv ≈ ζ/μ. Consequently, the time scale for
the creation and annihilation of topological defects is proportional to the ratio of ζ/μ.
Recalling that maximum or peak oscillation frequency of the beam has been associated
with the frequency of defect creation and annihilation, we conjecture that the beam tends
to be stimulated accordingly, leading to the beam’s oscillatory motion with the frequency
proportional to ζ/μ. We first investigate the beam vibration under the different values
of activity parameters, ζ , to verify this claim. The value of E = 0.1 MPa is taken for
the beam elastic modulus to represent an actual piezoelectric transducer (Elvin, Elvin &
Senderos 2018). Beam tip displacement is monitored during the simulation and plotted as
a function of dimensionless time, as shown in figure 4(a). This figure also presents the
impact of activity on the vibrational motion of the beam. It is observed that a rise in the
activity parameter increases the displacement amplitude. Physically, enhancing the activity
is equivalent to injecting a higher amount of energy into the fluid elements. Consequently,
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Figure 3. Flow and nematics characteristics in the domain close to the beam at tω∗ ≈ 37 × 10−2 (left column)
and tω∗ ≈ 81 × 10−2 (right column). (a) Vorticity, beam displacement and the velocity vectors. (b) Nematics
director and their order of magnitude. (c) Effect of beam presence on the kinetic-energy spectrum. The beam
consumes the kinetic energy of very high- and very low-scale vortices for its bending and oscillatory motion.
Inset (I) represents the same plot in semi-log scale, and (II) is the kinetic-energy differences between flow with
and without beam.

when transferred to the beam, this energy could deflect the beam more and lead to a higher
amount of displacement.

To scrutinize the activity influence on the vibration frequency, we performed a fast
Fourier transform (FFT) analysis to convert the displacement from a time domain to the
frequency domain (Moin 2010). Due to the non-deterministic nature of the excitation,
multiple frequency peaks exist in the FFT curve. Since the maximum frequency peak is of
interest, a moving average filter (MAF) is used to smooth out the FFT curve and remove
the unnecessary noises (Smith 1997), and the resultant curves are given in figure 4(b).
As shown in this figure, the activity parameter alters the maximum or peak frequency
such that the peak frequency shifts towards a higher value with the increase in activity.
To obtain a possible correlation between the peak frequency and the activity parameter,
we performed the simulation for various values of activity parameters and presented the
results in figure 4(c). Interestingly, a linear correlation is observed for the peak-frequency
versus activity parameter. The dashed line in figure 4(c) is the linear regression resulting
from this correlation, showing an apparent linear relationship between peak frequency
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Figure 4. Results for a cantilever beam within the fluid with different activities: (a) time history of the beam’s
normalized deflection (the inset magnifies the small span of the vibration history); (b) Fourier spectrum; (c)
frequency vs activity (linear relation is seen and demonstrated with a dashed line representing the regression
analysis). Panel (d) represents the vorticity and beam deflection contours for ζ/A = 0.12, 0.06, 0.03 and 0.015
from top to bottom row.

and activity. Qualitatively, recalling that a higher value of activity parameter is equivalent
to a higher energy injection into the active nematic system. This increases the energy
of vortices thereby intensifying their angular velocity ωv , and also breaks large vortices
into smaller ones (figure 4d). Essentially, the higher the activity or energy injection, the
higher the angular velocity of vortices. Vortices with smaller sizes and higher velocities
can move quickly and with higher frequency in the domain. These small yet strong
vortices continuously collide with the beam and result in high beam-vibration frequency.
Experimentally, the slope of the peak-frequency versus activity curve (α in figure 4c) is
obtainable through calibrating the piezoelectric transducer whereby it becomes possible
to measure the fluid activity parameter.

It is also worthwhile to check the dependency of the peak frequency on the bulk
viscosity μ of the active fluid as well. Figure 5 demonstrates the variation of peak
frequency as a function of dimensionless viscosity. As shown in this figure, the viscosity
has an inverse and approximately reciprocal relationship with the peak frequency. A
log–log diagram is also presented as an inset of this figure to illustrate this behaviour
better, meaning that the peak frequency can be expressed by ≈ f (1/μ) function. This
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Figure 5. Effect of viscosity on the beam peak frequency. Inset shows the same data in the log–log scale,
indicating the reciprocal relationship between viscosity and the peak frequency. The effect of viscosity on the
size of vortices is also shown for two different viscosity values.

behaviour can physically be explained considering the energy dissipation mechanism.
Namely, the larger the viscosity, the higher the frictional force, which can dissipate the
energy of small-scale vortices. Remembering the role of small-scale vortices in the beam
oscillatory movement, an increase in the viscosity reduces peak frequency. Meanwhile,
active nematics with lower viscosity fail to provide a substantial frictional mechanism to
dissipate the energy of small-scale vortices, resulting in an increase in the imposed energy
to the beam.

It is worth noting that the numerical investigation is also performed to examine the
impact of the elastic constant K of active fluid on the beam frequency; however, no
significant effect is observed. Recalling the characteristic length scale in active nematics,
i.e. la = √

K/ζ , one may expect that the variation in elastic constant K should change
the length scale and vortices sizes. Referring to discussion provided to understand the
correlation between the activity/viscosity and peak frequency, this variation should also
lead to changes in the peak frequency. However, in the case of elastic constant, it should be
noted that K is also responsible for penalizing gradients in the nematic orientation, hence
for the free energy (F ). Consequently, the balance between F and vortex size determines
the resultant frequency, which undergoes insignificant change with the variation in K, as
our results show. In other words, the elastic constant does not participate in either injection
or dissipation of the energy to/from the vortices, whereas both of them are responsible for
determination of the system’s time scale, hence the beam frequency.

4. Conclusions

In this study, we present a numerical method to solve the continuum model of active
nematics which is combined with an FSI solver to simulate the vibration induced by active
turbulence. For this purpose, we place a cantilever beam inside the active nematics and
investigate the effect of important active fluid parameters such as activity, viscosity and
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elastic constant on the beam oscillatory motion. We provide qualitative data, including
vorticity field and nematic ordering to investigate the beam dynamics.

Our results show that vortex formation that initiates from the symmetry breaking in
the nematic ordering plays a dominant role in beam deflection. We also indicate that
the size, strength and position of vortices determine the direction and magnitude of
beam deflection. Using the kinetic-energy spectrum, we demonstrate that both large- and
small-scale vortices play a primary role in the beam oscillatory motion by transferring the
kinetic energy between active fluid and beam, with the contribution of former is higher.

We quantify the beam oscillation using FFT analysis on the beam tip displacement
data and calculate the beam peak frequency. Our results show that the activity and beam
peak frequency are linearly correlated. The physical phenomena behind this correlation is
explained through considering the nematic activity (which influences the energy injection
into the system) and its role on increasing the angular velocity and reducing the size
of vortices. Our results further reveal the reciprocal relationship between viscosity and
beam peak frequency, which stems from the fact that viscosity dissipates the energy
of small-scale vortices. Finally, we analyse the impact of the elastic constant of active
nematics on the beam peak frequency and show that its effect is insignificant.

The results presented in this study propose a potential novel method to measure the
critical parameters of active nematics that play a significant role in determining its flow
behaviour using the beam peak frequency concept. This method can be an alternative to
the current challenging measurement techniques that determine the activity, for example,
by measuring secondary parameters such as ATP, the motor cluster, microtubules or
polyethylene-glycol concentration (Henkin et al. 2014; Doostmohammadi et al. 2018).
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