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Abstract
Let p be a prime and n be a positive integer. We consider rational functions 
fb(X) = X + 1∕(Xp − X + b) over �pn with Tr(b) ≠ 0 . In Hou and Sze (Finite Fields 
Appl 68, Paper No. 10175, 2020), it is shown that fb(X) is not a permutation for 
p > 3 and n ≥ 5 , while it is for p = 2, 3 and n ≥ 1 . It is conjectured that fb(X) is 
also not a permutation for p > 3 and n = 3, 4 , which was recently proved sufficiently 
large primes in Bartoli and Hou (Finite Fields Appl 76, Paper No. 101904, 2021). In 
this note, we give a new proof for the fact that fb(X) is not a permutation for p > 3 
and n ≥ 5 . With this proof, we also show the existence of many elements b ∈ �pn for 
which fb(X) is not a permutation for n = 3, 4.
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1  Introduction

Let p be a prime, and let �pn be the finite field with pn elements. A polynomial 
P(X) ∈ �pn[X] is called a permutation polynomial of �pn if the associated map from 
�pn to �pn defined by � ↦ P(�) is a bijection. For short we will say that P(X) is a per-
mutation of �pn . Permutation polynomials over finite fields have been studied widely 
in the last decades, especially due to their applications in combinatorics, coding the-
ory and symmetric cryptography, see [6, 7] and references therein.

The theory of algebraic curves is one of the main tools to show that P(X) is not a 
permutation of certain finite fields, for instance, see [2]. The well-known approach 
can be summarized as follows:

For a given P(X) ∈ �pn[X] , we define the bivariate polynomial
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Suppose that g(X,  Y) in Equation  (1.1) has an absolutely irreducible factor 
f (X, Y) ∈ �pn [X, Y] . Let X  be the absolutely irreducible curve defined by f(X,  Y). 
Then the Hasse-Weil bound [9, Theorem  5.2.3] together with Bezout’s theorem 
implies that there exists an affine point (x, y) ∈ �pn × �pn of X  with x ≠ y if pn is suf-
ficiently large compared to the degree of f(X, Y). This proves that P(x) = P(y) for 
some x, y ∈ �pn with x ≠ y , hence P is not a permutation of �pn . We remark that in 
this approach, we require P(X) to have a small degree to guarantee that the abso-
lutely irreducible factor f(X, Y) has a sufficiently small degree compared to pn.

Special interest is given to the polynomials of the form

for a linearized polynomial L(X) and a polynomial G(X) over �pn , see [1] and ref-
erences therein. Particularly, the case P(X) = X + (Xp − X + b)k , i.e., L(X) = X and 
G(X) = (Xp − X + b) with Tr(b) ≠ 0 , where Tr(z) = z + zp +⋯ + zp

n−1 the absolute 
trace from �pn to �p . There is a series of papers devoted to the classification of these 
permutation polynomials, see [5] and references therein. In the case k = pn − 2 
the degree of the polynomial is large compared to the size of the finite field, 
hence one can not directly apply the above method. As Tr(b) ≠ 0 , the polynomial 
Xp − X + b has no root in �pn . Hence, for any x ∈ �pn , we can denote the polynomial 
P(X) = X + (Xp − X + b)p

n−2 as a rational function

We also refer to [5] and references therein for the recent work on fb(X) given in 
Equation (1.2). It is shown in [10] that fb(X) is a permutation of �pn for p = 2, 3 
and any integer n ≥ 1 . Then Hou and Sze [5] have studied the polynomials fb(X) for 
p > 3 and arrived at the following result.

Theorem A: Let p > 3 and b ∈ �pn such that Tr(b) ≠ 0 . 

	 (i)	 fb(X) is not a permutation of �pn if n ≥ 5.
	 (ii)	 fb(X) is a permutation of �p2 if and only if Tr(b) = ±1.

Then according to MAGMA results, the authors conjectured that fb(X) is not a per-
mutation of �pn for n = 3, 4 . Recently, it is shown in [3] that the conjecture is true for 
large primes p, namely p ≥ 1, 734, 097 for n = 3 and p ≥ 100, 018, 663 for n = 4.

In this paper, we represent a new proof for the result of Theorem A/(i). The 
proof depends on the theory of curves, their function fields and the correspondence 
between the rational points of curves and the rational places of their function fields. 
We relate the permutation property of fb(X) to the splitting property of special 
rational places. With the method of the proof, we also show the existence of many 
elements b ∈ �pn for which fb(X) is not a permutation for n = 3, 4 . More precisely, 
we prove the following theorem.

(1.1)g(X, Y) =
P(X) − P(Y)

X − Y
∈ �pn [X, Y].

P(X) = L(X) + G(X)k

(1.2)fb(x) = x +
1

xp − x + b
.
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Theorem 1.1  Let p > 3 be a prime. 

	 (i)	 If n ≥ 5 then fb(X) is not a permutation of �pn for any b ∈ �pn with Tr(b) ≠ 0.
	 (ii)	 For n = 3 (respectively, n = 4 ), there are at least pn−1(

√
p − 3)∕2 (respec-

tively, pn∕3 ) elements b ∈ �pn for which fb(X) is not a permutation of �pn.

The paper is organized as follows: In Sect. 2, we investigate two curves X  and Ed 
and their function fields F and Ed . In Sect. 3, we relate splitting property of rational 
places of F in Ed with the permutation property of rational functions fb(X) . Then we 
give the Proof of Theorem 1.1 by showing the existence of such a rational place.

2 � Special curves and their function fields

In this section, we study function field extensions and their compositum. For the 
notations and well-known facts about function fields, as a general reference, we refer 
to [4, 9].

Let F be a function field over �pn . We denote by �̄  the algebraic closure of �pn . If 
F ∩ �̄ = �pn then �pn is called the full constant field of F. A place P of F is called 
rational if its residue field is �pn . For a function field F with full constant field �pn , 
the well-known Hasse-Weil bound [9, Theorem 5.2.3] states that the number N(F) of 
rational places satisfies

where g(F) is the genus of F.
Let E/F be a finite separable extension of function fields of degree [E ∶ F] = r . 

The extension E/F is called tame if there is no wild ramified place, i.e., the ramifica-
tion index is not divisible by p. A place P of F splits completely in E if there are r 
distinct places R1,… ,Rr of E lying over P. By the Fundamental Equality [9, Theo-
rem 3.1.11], if a rational place P splits completely in E then any place lying over P 
is rational.

From now on, we always suppose that p is a prime with p > 3.

2.1 � The curve X  and its function field F

Let X  be the curve defined by the equation g(Z,W) = Z(Z +W)(Wp−1 − 1) − 1 and 
F be the function field of X  . That is, F = �pn (w, z) with z(z + w)(wp−1 − 1) = 1 . We 

pn + 1 − 2g(F)pn∕2 ≤ N(F) ≤ pn + 1 + 2g(F)pn∕2,



	 N. Anbar 

1 3

continue with the analysis of the separability of some polynomials to calculate the 
genus of F.

Lemma 2.1  Let h𝛽(T) = T2 + 𝛽T − 1∕(𝛽p−1 − 1) ∈ �̄ [T] , where �p−1 ≠ 1 . Then 
there exist p + 1 elements 𝛽 ∈ �̄  for which h�(T) is not a separable polynomial.

Proof  We denote by h�
�
(T) the derivative of h�(T) , i.e., h�

�
(T) = 2T + � . The polyno-

mial h�(T) is not separable if and only if h�(T) and h�
�
(T) have a common root in �̄  , 

say T = � . Note that h�
�
(�) = 0 if and only if � = −�∕2 . Then

if and only if �2(�p−1 − 1) + 4 = �p+1 − �2 + 4 = 0 . That is, � is a root of the poly-
nomial f (T) = Tp+1 − T2 + 4 . We now observe that f(T) is separable, i.e., f(T) has 
exactly p + 1 distinct roots in �̄  . This implies the existence of p + 1 elements � for 
which h�(T) is not separable. Note that � is a multiple root f(T) if and only if � is 
also a root of the derivative f �(T) = Tp − 2T  , i.e., �p = 2� . Then we have

i.e., �2 = −4 . Then we have the following equalities:

Then Equation (2.1) implies that 4 ≡ 1 mod p , which is not possible as p > 3 . 
Also, any � satisfying f (�) = 0 can not satisfy �p−1 = 1 ; otherwise from �p+1 = �2 
we obtain

which gives a contradiction. 	�  ◻

Theorem 2.2  Let F = �pn (w, z) be the function field defined by z(z + w)(wp−1 − 1) = 1 . 
Then F satisfies the following properties. 

	 (i)	 F is a function field with the full constant field �pn.
	 (ii)	 g(F) = p − 1.

In particular, the number N(F) of rational places of F satisfies

Proof 

	 (i)	 We consider the function field extension F∕�pn (w) . Then the element z sat-
isfies the polynomial hw(T) = T2 + wT − 1∕(wp−1 − 1) over �pn(w) . That is, 

h�(�) = h�(−�∕2) = −
�2

4
−

1

�p−1 − 1
= 0

f (�) = �p+1 − �2 + 4 = �2 + 4 = 0,

(2.1)2 = �p−1 = (�2)(p−1)∕2 = (−4)(p−1)∕2 = (−1)(p−1)∕22p−1 = (−1)(p−1)∕2.

0 = f (�) = �p+1 − �2 + 4 = 4,

(2.2)pn + 1 − 2(p − 1)pn∕2 ≤ N(F) ≤ pn + 1 + 2(p − 1)pn∕2.
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[F ∶ �pn (w)] ≤ 2 < p . This implies that F∕�pn (w) is a tame extension, i.e., there 
is no wild ramification. Let (w = �) be the place of �pn(w) corresponding to 
the zero of w − � such that �p−1 = 1 . Denote by v� the corresponding valu-
ation of (w = �) . Note that v�(1∕(wp−1 − 1)) = −1 and v�(w) = 0 . Hence by 
the Eisenstein irreducibility criteria [9, Proposition 3.1.15], we conclude that 
(w = �) is totally ramified in F. This implies that �pn is the full constant field 
of F.

	 (ii)	 We consider the constant field extension to calculate the genus. Denote by 
F̄ = F�̄  the compositum of F and �̄  . Let P be a place of �pn(w) correspond-
ing to monic irreducible polynomial p(T) ∈ �pn [T] with p(T) ≠ T − � , where 
�p−1 = 1 . Let (w = �) be the place of �̄ (w) lying over P, i.e., 𝛽 ∈ �̄  is a root of 
p(T). Recall that P is ramified in F if and only if (w = �) is ramified in F̄ . Set 
h�(T) = T2 + �T − 1∕(�p−1 − 1) . Note that h�(T) is obtained from hw(T) by 
taking coefficients residue class field of (w = �) . The place (w = �) is rami-
fied if and only if h�(T) has a multiple root, i.e., h�(T) is not separable. By 
Lemma 2.1, we conclude that there exist exactly p + 1 places of �̄ (w) ramified 
in F̄∕�̄ (w).

Now we consider the place (w = ∞) of �̄ (w) corresponding the pole of w. For 
this, we consider the change of variable. Set y = z∕w . Then F̄ = �̄ (w, z) = �̄ (w, y) , 
where the minimal polynomial of y over �̄ (w) is g(T) = T2 + T − 1∕(w2(wp−1 − 1)) . 
Then g∞(T) = T2 + T = T(T + 1) , i.e., (w = ∞) splits in F̄ . That is, (w = ∞) is not 
ramified in F∕�pn (w).

We also have observed in (i) that for all � ∈ �pn with �p−1 = 1 , the place (w = �) 
is ramified. Therefore, there exist 2p ramified places. Since the constant field of F̄ 
is algebraically closed and F̄∕�̄pn (w) is of degree 2 extension, the degree of the dif-
ferent divisor is equal to the number of ramified places. Then by the Hurwitz genus 
formula [9, Theorem 3.4.13] we have

i.e., g(F) = p − 1.
Moreover, as �pn is the full constant field of F, we obtain the inequity given in 

(2.2) by the Hasse-Weil theorem. 	�  ◻

Corollary 2.3  As the full constant field of F is �pn , we conclude that 
g(Z,W) = Z(Z +W)(Wp−1 − 1) − 1 is an absolutely irreducible polynomial, see [9, 
Corollary 3.6.8].

We estimate the number Naff (X) of affine rational points of X  by using the 
number of rational places of its function field F. For this, we first investigate the 
singular affine points of X .

Lemma 2.4  Let X  be the curve defined by g(Z,W) = Z(Z +W)(Wp−1 − 1) − 1 . Then 
X  has no affine singular points.

2g(F) − 2 = 2(−2) + 2p,
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Proof  We recall that an affine point (�, �) ∈ X  is singular if and only if

where �g(Z,W)∕�Z and �g(Z,W)∕�W are partial derivatives of g with respect to Z 
and W, respectively. Note that

That is, if (�, �) is a singular point of X  then � and � have to satisfy the following 
equalities.

By Equation (2.3), we conclude that �p−1 − 1 ≠ 0 and � ≠ 0 , and hence we have 
� = −2� and ��p−2 = −1 by Equations (2.4) and (2.5), respectively. By setting 
� = −2� in ��p−2 = −1 , we obtain �p−1 = 2 . Then � = −2� implies that �p−1 = 2 . 
By Equation (2.3), we have

i.e., �2 = −1 . Then we have the following equalities.

However, Equation (2.6) is possible only for p = 3 , which gives a contradiction. 	� ◻

Theorem  2.5  The number Naff (X) of affine rational points of X  satisfies 
Naff (X) = N(F) − (p + 1) . In particular, we have

Proof  It is a well-known fact that each nonsingular rational point of a curve corre-
sponds to a unique rational place of its function field, see [8, Section 3.1].

The points of X  at infinity are the points (Z  :  W  :  T) for which 
g(Z ∶ W ∶ 0) = Z(Z +W)Wp−1 = 0 . That is, they are P1 = (0 ∶ 1 ∶ 0) , 
P2 = (1 ∶ −1 ∶ 0) and P3 = (1 ∶ 0 ∶ 0) with multiplicities mP1

= 1 , mP2
= 1 and 

mP3
= p − 1 , respectively. Hence, there exits unique rational places of F correspond-

ing to P1 and P2 . Moreover, there are p − 1 distinct tangent lines of X  at P3 , namely 
W − �T  with �p−1 = 1 , corresponding to p − 1 distinct rational places of F. Hence, 

g(�, �) =
�g(Z,W)

�Z
(�, �) =

�g(Z,W)

�W
(�, �) = 0,

�g(Z,W)

�Z
= (2Z +W)(Wp−1 − 1), and

�g(Z,W)

�W
= Z(Wp−1 − 1) − Z(Z +W)Wp−2 = −Z − Z2Wp−2.

(2.3)�(� + �)(�p−1 − 1) − 1 = 0

(2.4)(2� + �)(�p−1 − 1) = 0

(2.5)� + �2�p−2 = 0

�(� + �)(�p−1 − 1) − 1 = −�2 − 1 = 0,

(2.6)2 = �p−1 = (−2�)p−1 = (�2)(p−1)∕2 = (−1)(p−1)∕2 = ±1

pn − 2(p − 1)pn∕2 − p ≤ Naff (X) ≤ pn + 2(p − 1)pn∕2 − p.
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there are p + 1 rational places corresponding to points of X  at infinity. Moreover, 
each rational place of F which does not correspond to a point at infinity corresponds 
to a unique affine point of X  since X  has no affine singular points by Lemma 2.1. 
This proves the first assertion. Then by Eq. (2.2), we obtain the second assertion. 	
� ◻

2.2 � The function field Ed

Now we consider the curve Y defined by the equation f (Y , Z) = YZ(Y − Z)p−1

− YZ − 1 . Note that by setting W = Y − Z , we obtain g(Z,W) =
Z(Z +W)(Wp−1 − 1) − 1 . Therefore, the function field F of Y is the function field 
of X .

Lemma 2.6  Let S be the set of rational affine points of Y that do not lie on Y = 0 , 
Z = 0 and Y = Z , i.e.,

Then

Proof  As W = Y − Z , there exists one to one correspondence between the affine 
rational points of Y and the affine rational points of X  . Moreover, the points of Y 
lying on Y = 0 , Z = 0 and Y = Z correspond to the ones of X  lying on W + Z = 0 , 
Z = 0 and W = 0 , respectively.

From the defining equation g(Z,W) = Z(Z +W)(Wp−1 − 1) − 1 of X  , we con-
clude that X  can not have any affine points on W + Z = 0 and Z = 0 . If (�, 0) ∈ X  , 
then �2 = −1 . That is, there are at most 2 rational affine points of X  lying on the line 
W = 0 . Therefore, the cardinality of S satisfies |S| ≥ Naff (X) − 2 , which gives the 
desired result by Theorem 2.5. 	�  ◻

Theorem 2.7  Let Ed be the curve defined by

and Ed be its function field. Then Ed satisfies the following properties. 

	 (i)	 Ed is a function field with the full constant field �pn.
	 (ii)	 g(Ed) ≤ p(p − 1)

S = {(�, �) ∈ Y ∶ �, � ∈ �pn , �� ≠ 0, � ≠ �}.

(2.7)|S| ≥ Naff (X) − 2 ≥ pn − 2(p − 1)pn∕2 − p − 2.

Ed =

{
Cp − C = Yp − Y + 1∕Y − d

YZ(Y − Z)p−1 − YZ − 1 = 0
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In particular, the number N(Ed) of rational places of Ed satisfies

Proof  Let Fd be the function field of the curve Yd defined by 
Cp − C = Yp − Y + 1∕Y − d , i.e., Fd is �pn(c, y) with defining equation 
cp − c = yp − y + 1∕y − d . Note that Fd∕�pn (y) is an Artin-Schreier extension of 
degree p. We refer to [9, Proposition 3.7.8] for the properties of Artin-Schreier 
extensions. The zero (y = 0) of y is the only ramified place of �pn(y) with the ramifi-
cation index p and the different exponent 2(p − 1) . Then by the Hurwitz genus for-
mula the genus g(Fd) = 0 . That is, Fd is a rational function field with full constant 
field �pn . In fact, we observe that Fd = �pn (y − c).

Let F be the function field of the curve Y . Recall that F is the function field of X  
satisfying the properties in Theorem  2.2. That is, F is a function field of genus 
g(F) = p − 1 with the full constant field �pn . Note that the minimal polynomial of z 
over �pn(y) is M(T) = T(T − y)p−1 − T −

1

y
 . Hence by Kummer’s theorem, we also 

conclude that the place (y = 0) is totally ramified in F.
Note that the function field Ed of the curve Ed is the compositum of F and Fd over 

�pn(y) , see Fig. 1. Therefore, either Ed = F or Ed∕F is a Galois extension of degree p. 
We will observe that the case [Ed ∶ F] = 1 does not hold. Suppose that [Ed ∶ F] = 1 , 
equivalently F = Ed . Then we have �pn(y) ⊆ Fd ⊆ Ed = F , which implies that

Since [Fd ∶ �pn (y)] = p , we have F = Fd . Therefore, we have F = Ed = Fd . This 
gives a contradiction as g(Fd) = 0 while g(F) = p − 1 . Hence, we conclude that 
Ed∕F is a Galois extension of degree p. 

(i)	� Now we observe that �pn is the full constant field of Ed . Suppose that �pn is 
a proper subfield of the full constant field �  of Ed , i.e., [� ∶ �pn ] > 1 . Note 
that we have F ⊊ �F ⊆ Ed , where �F is the compositum of �  and F. Since 
[F ∶ Ed] = p , we have Ed = �F . In particular, Ed is a constant fields extension 
of F. Then by [9, Theorem 3.6.3], we have g(Ed) = g(F) ≥ 1 . Similarly, as �pn 
is the full constant field of Fd , we observe that Ed is a constant field extension 
of Fd . Therefore, g(Ed) = g(Fd) = 0 , which gives a contradiction.

(2.8)pn + 1 − 2(p − 1)pn∕2+1 ≤ N(Ed) ≤ pn + 1 + 2(p − 1)pn∕2+1.

p = [F ∶ �pn (y)] = [F ∶ Fd][Fd ∶ �pn (y)].

Fig. 1   Ed is the compositum of Fd and F over �pn (y)
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(ii)	� As (y = 0) is totally ramified in F and Fd , there are unique places of F and Fd 
lying over (y = 0) , say P and Q, respectively. If Ed∕F is a ramified extension, 
then the unique rational place P of Fd lying over (y = 0) is ramified with the 
ramification index e(R|P) = p and the different exponent d(R|P) = 2(p − 1) , 
see Fig. 1. This comes from the fact that the only ramified place in Fd∕�pn (y) is 
(y = 0) . Then by the Hurwitz genus formula, we have 

 Moreover, as �pn is the full constant field of Ed , we obtain the inequity given in 
Equation (2.8) by the Hasse-Weil theorem.

	�  ◻

3 � The proof of the main theorem

We recall our interest. We want to examine the permutation property of the rational 
functions

where b ∈ �pn with Tr(b) ≠ 0 . We set Z = {cp − c | c ∈ �pn} , i.e., the inverse image 
of 0 under the absolute trace map. We first observe that the values of b for which 
fb(X) is a permutation depend on the cosets of Z.

Remark 3.1  Let b1, b2 ∈ �pn such that Tr(b1) = Tr(b2) , equivalently b1 + Z = b2 + Z . 
That is, b1 = b2 + cp − c for some c ∈ �pn . Then

where Z = X + c . Hence, we conclude that fb1 is a permutation of �pn if and only if 
fb2(X) is a permutation of �pn for any b2 ∈ b1 + Z.

Proposition 3.2  Let b ∈ �pn with b ∉ Z , equivalently Tr(b) ≠ 0 . Then fb(X) is 
a permutation if and only if Yp − Y +

1

Y
= d has a unique solution in �pn for any 

d ∈ b + Z.

Proof  Note that fb(X) is a permutation if and only if

2g(Ed) − 2 ≤ p(2g(F) − 2) + 2(p − 1), i.e., g(Ed) ≤ p(p − 1).

fb(X) = X +
1

Xp − X + b
,

fb1(X) = X +
1

Xp − X + b2 + cp − c
= Z +

1

Zp − Z + b2
− c = fb2 (Z) − c,

(3.1)
1

Xp − X + b
= −X + c
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has a unique solution in �pn for each c ∈ �pn . Since xp − x + b ≠ 0 for all x ∈ �pn , 
Equation (3.1) has a unique solution in �pn if and only if Xp − X + b = −1∕(X − c) 
has a unique solution. By setting Y = X − c , we have the following equalities.

where −d = cp − c + b . Therefore, we conclude that if Equation (3.1) has a unique 
solution in �pn then Yp − Y +

1

Y
= d has a unique solution in �pn for d ∈ b + Z.

Conversely, suppose that Yp − Y +
1

Y
= d has a unique solution in �pn for any 

d ∈ b + Z . For c ∈ �pn , let d = cp − c + b . By our assumption, there exists a solution 
y of Yp − Y +

1

Y
= d . This implies that x = y + c is a solution of fb(X) = c . That is, 

fb(X) is onto, and hence it is a permutation. 	�  ◻

By Proposition 3.2, we consider the solutions of the following equation.

Equation (3.2) holds if and only if

Dividing by Y − Z and setting W = Y − Z , we obtain the following equation:

which is the defining equation of X  studied in Sect.  2. Recall that the func-
tion field F of X  is the same as the function field of Y given by �pn(y, z) with 
yz(y − z)p−1 − yz − 1 = 0 . Also, we recall that the set S consists of the affine rational 
points (�, �) of Y satisfying �� ≠ 0 and � ≠ � , see Lemma 2.6.

We now relate the permutation property of fb(X) with the existence of the 
rational place of the function field Ed , which is the compositum of F and Fd , see 
Theorem 2.7.

Proposition 3.3  Ed has a rational place Q lying over P�,� of F corresponding to 
(�, �) ∈ S if and only if fb(X) is not a permutation for b ∈ d + Z.

Proof  From the defining equation cp − c = yp − y + 1∕y − d of the function field Fd , 
we conclude that the poles of c are the ones lying over (y = 0) and (y = ∞) . In other 
words, the place Q is not a pole of c, which implies that c(Q) = c0 lies in �pn . As 
Ed is the compositum of F and Fd , we have y(Q) = � and z(Q) = � . Then from the 
defining equations of Fd and F we have

Xp − X +
1

X − c
+ b = (Y + c)p − (Y + c) +

1

Y
+ b

= Yp − Y +
1

Y
− d,

(3.2)Yp − Y +
1

Y
= Zp − Z +

1

Z

(Y − Z)p − (Y − Z) −
Y − Z

YZ
= 0.

Z(Z +W)(Wp−1 − 1) − 1 = 0,
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which shows that � and � are two distinct solutions of the equation 
Yp − Y + 1∕Y = c

p

0
− c0 + d . Since d + Z = c

p

0
− c0 + d + Z , by Proposition 3.2 we 

conclude that fb(X) is not a permutation for b ∈ d + Z.
Conversely, suppose that fb(X) is not a permutation for b ∈ d + Z . Then by Prop-

osition 3.2 there exist �, � ∈ �pn with � ≠ � such that

i.e., (�, �) ∈ Y . Note that � ≠ 0 , � ≠ 0 and � ≠ � , which implies that (�, �) ∈ S , see 
Lemma  2.6. Since Tr(�p − � + 1∕�) = Tr(d) , i.e., Tr(�p − � + 1∕� − d) = 0 , the 
place (y = �) of �pn(y) splits in Fd . Hence, the place P�,� of F lying over (y = �) splits 
in Ed . That is, any place Q of Ed lying over P�,� is rational. 	�  ◻

Now we give a Proof of Theorem 1.1. We first recall the statement of the theorem 
for the sake of the reader.

Theorem 1.1  Let p > 3 be a prime. 

	 (i)	 If n ≥ 5 then fb(X) is not a permutation of �pn for any b ∈ �pn with Tr(b) ≠ 0.
	 (ii)	 For n = 3 (respectively, n = 4 ), there are at least pn−1(

√
p − 3)∕2 (respec-

tively, pn∕3 ) elements b ∈ �pn for which fb(X) is not a permutation of �pn.

Proof of Theorem  1.1  (i) By Proposition  3.3, it is sufficient to show that Ed has a 
rational place lying over P�,� for some (�, �) ∈ S . By Theorem 2.5 and Lemma 2.6, 
we have |S| ≥ N(F) − (p + 3) , i.e., there are at most p + 3 rational places of F not 
corresponding a point in S. As there are at most p places of Ed lying over a place P 
of F, it is sufficient to show that N(Ed) − p(p + 3) > 0 . By Equation (2.8) we have 

 This implies that N(Ed) − p(p + 3) > 0 for all n ≥ 5.
(ii) Recall that the place P�,� corresponding to (�, �) ∈ S splits completely in Ed 

if and only if Tr(�p − � + 1∕�) = Tr(d) . Since Tr(d) = Tr(b) for any b ∈ d + Z , the 
place P�,� splits completely in Eb for any b ∈ d + Z . Hence, we only consider the 
representatives of the cosets of Z . Let R be the set of representatives of distinct 
cosets of Z . Then for any (�, �) ∈ S there exits unique d ∈ R such that P�,� splits 
completely in Ed . We set R̃ ⊆ R such that d ∈ R̃ if and only if there exists P�,� 
of F splits completely in Ed for some (�, �) ∈ S . We have observed that any place 
Q of Ed lying over P�,� is not a pole of c, i.e., c(Q) ∈ �pn . That is, a splitting place 
P�,� gives p distinct affine rational points on the curve Ed , namely (�, �, c(Q) + i) for 
i ∈ �p . Then by Eq. (2.7) we have 

�p − � + 1∕� = c
p

0
− c0 + d

�p − � + 1∕� = �p − � + 1∕�,

�p − � + 1∕� = �p − � + 1∕� = d,

N(Ed) − p(p + 3) ≥ pn + 1 − 2(p − 1)pn∕2+1 − p(p + 3).
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 Set k = |R̃| . Then by the Pigeonhole principle and Eqs. (2.8) and (3.3), there exists 
d ∈ R such that 

 i.e., 

 Hence, if n = 3 (respectively, n = 4 ) then we get a contradiction with 
k < (

√
p − 3)∕2 (respectively, k < p∕3 ) by Equation (3.4).	�  ◻

Remark 3.4  Note that Eq. (3.4) shows that k = p for n ≥ 5 . Hence, (ii) also proves 
the fact that fb(X) is not a permutation for any b ∈ �pn in the case n ≥ 5 and p > 3.
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(3.3)p(pn − 2(p − 1)pn∕2 − p − 2) ≤ p|S| ≤
∑

d∈R̃

N(Ed).

1

k
p(pn − 2(p − 1)pn∕2 − p − 2) ≤ N(Ed) ≤ pn + 1 + 2(p − 1)pn∕2+1,

(3.4)p(pn − 2(p − 1)pn∕2 − p − 2) ≤ k(pn + 1 + 2(p − 1)pn∕2+1).
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