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Abstract: An important engineering challenge is the design of a wind turbine’s pitch angle controller.
The dependability, safety, and power output maximization of a wind turbine are all impacted by
this controller. In this study, a 2 MW doubly fed induction generator wind turbine’s blade angle
controller design with a novel fuzzy logic controller is tested in a simulated environment. The
evolutionary algorithm technique is used to optimize the fuzzy logic controller with three inputs.
A genetic algorithm is used to optimize the specified pitch angle controller for a number of coefficients.
After the optimization process, the controller’s performance is assessed in terms of power output,
overshoot, and steady-state error characteristics.

Keywords: wind energy; wind turbine; pitch angle controller; genetic algorithm optimization; fuzzy
logic

1. Introduction

Traditional energy sources such as natural oil, gas, and coal have proven to be quite
successful economic drivers. They are, however, hazardous to the environment and public
health. Wind energy has grown in popularity in recent years due to its inherent features of
being reusable and clean, in contrast to the quick depletion and increasing environmental
risks of fossil fuels. Wind turbines are the primary equipment used in the energy industry
to convert wind energy into electric energy. They cannot produce constant power without
a proper regulation system, since wind speed fluctuates erratically. Therefore, researchers
focused on the stability and dependability of control systems. The pitch angle is the primary
control variable of the wind turbine control system. Its control is one of the dominant
factors that determines the conversion efficiency of wind energy.

Wind varies dramatically in nature. As a result, wind turbines exhibit rapid variations
in electric energy output [1]. Turbines are controlled in different ways defined by wind
speed. The wind speed at which the turbine starts to produce energy is defined as the cut-in
speed. Below cut-in wind speed, aeromechanical power cannot overcome the mechanical
inertia of the power train, and the turbine does not operate. Cut-out speed is the wind
speed at which a wind turbine ceases to operate. If the turbine reaches around cut-out wind
speed, the automation system protects the turbine from mechanical damage by braking
or shutting down the operation. Typically, there are three major operational regions for
wind turbines [2]. In the second region, wind speeds are more than the cut-in value but
less than the rated value, which is defined as the wind speed where the maximum turbine
power is reached. The turbine should work to maximize power in this region [3]. In the
third region, wind speeds are higher than the rated value but less than the cut-out value.
Wind turbine output power is be maintained at a nominal output value by using a blade
pitch angle controller [4].

Pitch angle control is required when the generator rotating speed is kept constant and
the wind speed exceeds the rated wind speed. Minor adjustments in pitch angle can have a
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significant impact on power output. In order to maintain wind turbine output power at a
desired nominal value, fuzzy logic approaches are widely employed in the literature. A
fuzzy logic pitch angle controller is used directly in a number of investigations [4–11]. In
addition to the direct fuzzy logic control (FLC), fuzzy logic proportional control [1,12–14],
hybrid Proportional Integral (PI) fuzzy logic control [15–17], hybrid Proportional Integral
Derivative (PID) fuzzy logic control [18–21], fuzzy predictive control [2,3], neuro-fuzzy
control [22–24], and hybrid fuzzy sliding mode control [25] are also used for regulation at a
nominal output power and to counteract fluctuations in power output.

Model predictive control, a predictive control that simulates future reactions, has
been presented to enhance the performance of the wind turbine in order to predict future
responses for the wind [26]. In addition, sliding mode control (SMC) is employed in the
control field for wind turbines because of its effective operation and straightforward design.
Additionally, it manages uncertainty brought on by unmodeled quantities, parametric
fluctuations, and modeling approximations [27].

Another approach applied to wind turbines is that of genetic algorithms (GA). This
methodology is used to search for optimum design or controller parameters. Research on
airfoils [28,29] and the creation of a framework for floating offshore wind turbine support
structures [30] are two examples of studies focusing on the best design parameters. The
controller design is another area in which GA is employed. Integral gains are tuned [31],
PI [32–34], and also PID controller parameters are optimized with the GA [35]. Feedback
control can be employed with the GA for wind turbines [36–38]. GA can be used to search
for a pitch variation law in order to optimize efficiency [39]. Wind speed estimator [40],
tip speed ratio and pitch angle optimization for the maximization of the total power of
wind farms [41] are other methods that use the GA to improve the performance of wind
turbine systems.

FLC parameters can also be tuned with the GA in order to enhance the effectiveness
of the controller. Wind turbine generators can be controlled with FLC and GA [42,43]. The
pitch angle control of the turbine can be achieved with this control technique. In [44,45], the
pitch angle control of a turbine is carried out with FLC and control parameters are tuned
with genetic tuning. These fuzzy controllers employ generator power as input of the fuzzy
controller. Likewise, in [46,47], pitch angle control is achieved with FLC and GA. In these
control schemes, power error and the power error rate of change are used as inputs of the
FLC system.

In this study, we use FLC with GA to control the pitch angle of a 2 MW wind turbine
model described in [48]. We constructed a novel control system to employ three inputs
for fuzzy logic control: error in generator power, power error rate, and generator speed.
A genetic algorithm tunes fuzzy logic control parameters. We present the performance of
the controller under fluctuating wind profile with simulation results. The organization of
this paper is as follows. Section 2 describes the methodology of the wind turbine model, the
fuzzy logic controller and the GA. Section 3 presents simulation results with discussions.
Lastly, in Section 4, conclusions are put together.

2. Methodology

Modeling of a wind turbine is a critical part of wind turbine engineering as it affects
many disciplines. There are several simulator options employed in research and devel-
opment. There are two major types of wind turbine models in the literature: a doubly
fed induction generator (DFIG) type with a gearbox, and a direct drive type without a
gearbox. In this study, the controller algorithm is designed and optimized for a 2 MW wind
turbine with a DFIG type generator. The system is modeled in order to build controllers
and observe the impacts of numerous engineering factors. The mathematical model is
generated in the MATLAB Simulink environment. The model can simulate thermal and
electrical grid aspects, power output, and controller effects.
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2.1. Modeling of a Turbine

The mathematical model of a wind turbine can be defined by the torque equation of
its rotor. (1) below expresses the main dynamics of a turbine rotor [4].

Tt =
1
2

ρπR3 Cp(λ, β)

λ
V2

w. (1)

Here ρ denotes the air density [kg/m3], R stands for the radius of the rotor (m), Vw is
the wind speed [m/s], β is the pitch angle, and λ is the tip speed ratio [4].

Power coefficient (Cp) is one of the most crucial parameters for wind turbines. The
function converts the parameters pitch angle and the tip speed ratio to a constant between
0 and 0.6. The constant that the function affects is the generated aeromechanical power of a
turbine. The power coefficient is calculated as,

Cp(λ, β) = C1(C2
1
Λ
−C3β− C4)e

−c5
λ + c6λ, (2)

where
1
Λ

=
1

λ + 0.08β
− 0.035

1 + β3 , (3)

and C1 = 0.5, C2 = 116, C3 = 0.4, C4 = 5, C5 = 21, c6 = 0.0068 [49].
Figure 1 shows the curves for the power coefficients for a modern horizontal axis wind

turbine. They are functions of pitch angle and tip speed ratio. As shown in power curve in
Figure 1, the pitch angle variable plays a crucial role in maximization of the turbine power.
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Figure 1. Power coefficient diagram of a modern wind turbine.

Figure 2 presents the block diagram of a conventional wind turbine. As can be seen
from the figure, the pitch angle reference is supplied for a nonlinear turbine plant where
the output is generally the rotational speed of the generator. In the following sections of
this study, the purpose of the proposed controller is to keep the rotational speed of the
generator stable.
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2.2. DFIG Type Wind Turbine Configuration and Modeling

Wind turbines consist of a number of subsystems named mechanical, electromechani-
cal and electrical submodules. The aerodynamic subsystem is also to be considered. All
subsystems and modules have their dedicated controllers. The controllers for pitch and
torque, however, have the most dominant roles.

As shown in Figure 3, wind turbines comprise a variety of subsystems from many
technical disciplines, and most of them require distinct controllers. Torque controllers
are often used to adjust the power of DFIG type generators, whereas pitch controllers are
utilized to control the rotor speed. The classification of operating regions is significant for
wind turbine technologies since wind regime graphs provide many critical descriptions
for the turbine, including operating speed, maximum power, and maximum attainable
aeromechanical power. The wind profile is separated into three regions based on wind
speed. Operational regions are referred to as (1) cut-in, (2) rated and (3) cut-off. Turbines
typically begin to generate power when the wind speed reaches a threshold speed (cut-
in speed). The wind turbine control system operates in the MPPT (Maximum Power
Point Tracking) state until the time when the rated wind speed is reached. As the wind
speed increases, the pitch mechanism maximizes the power generation from the accessible
aeromechanical power. In the rated speed region (between cut-in and rated wind speeds),
the pitch system regulates the pitch angle at zero degrees. In the cut-off region (between
rated and cut-off wind speeds), the pitch angle is controlled in order to keep the power at
its rated value. Beyond the cut-off speed, the automation system uses the pitch angle by
regulating or locking at a certain value with blades parallel to the incoming wind, with
the objective of halting the wind turbine [8]. The controller proposed in this paper can be
employed in all control roles mentioned above.
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Modeling aerodynamic, mechanical, electromechanical effects, and grid side convert-
ers in a simulation is significant in the performance comparison of controllers. The model of
a 2 MW DFIG type variable speed and variable pitch wind turbine in MATLAB/Simulink is
employed. A wind profile above the rated speed is employed. This particular wind profile
aims at studying how abrupt wind changes and pitch control affects power regulation.

2.3. Fuzzy Logic Controller

The advantage of a fuzzy controller is its remarkable inference capability based on
fuzzy information. Changes to the control rules and suitable membership functions,
reasoning processes, and choices can enhance the features of the controlled system. Fuzzy
control has been frequently utilized in variable pitch control to reduce the negative impacts
of nonlinear components and the challenge of changing system parameters. The design
of the control scheme is crucial, including the selection of input and output variables and
membership function parameters. Figure 4 shows the fuzzy control system block diagram.
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Power error, change in power error, and generator speed are chosen as controller
inputs. The purpose of the controller is to steadily keep power at its reference. Power error
and change in power error during one computational cycle are selected as inputs for power
regulation. These variables are defined as power error and change in power error.

eP[k] = Pref[k]− Pgen[k], (4)

∆eP[k] = e[k]− e[k− 1]. (5)

Here eP[k] is power error, Pre f [k] is generator power reference, k is discrete time
step, Pgen[k] is generator power, and ∆eP[k] is the change in power error. A third input
variable is also used, namely, the deviation of the generator speed from its nominal value,
dwg = wg−nominal − wg. Any modification on the pitch angle β will affect the generator
speed. The generator speed, on the other hand, determines the turbine power. The
inclusion of our third variable provides the controller with the freedom of tuning its action
with the instantaneous generator speed. When the power error requires an increase in
generator speed, and when this speed is already excessive, a moderate action on pitch
angle variation can be taken. If instantaneous generator speed is not considered in the
control output decision, however, a large pitch angle would be commanded. Triangle
membership functions with overlaps are utilized to build the fuzzy sets of inputs, as shown
in Figures 5–7. The membership functions of power error and change in power error can
be seen in Figures 5 and 6. The membership functions of generator speed deviation dwg are
presented in Figure 7. Negative Big (NB), Positive Big (PB), Negative Medium Big (NMB),
Positive Medium Big (PMB), Negative Medium (NM), Positive Medium (PM), Negative
Small (NS), Positive Small (PS), Zero (ZE) are the linguistic variables. Membership function
variables are unknown and calculated with the GA.
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Fuzzy logic rules are of the following structure:

Ri: If ewg(k) is Ai and eP(k) is Bi and ∆eP(k) is Ci then ∆β(k) is Di (6)

where Ai, Bi, Ci are fuzzy sets of input variables and Di is a fuzzy singleton corresponding to
a rule strength. The fuzzy system computes the necessary change ∆β(k) in the pitch angle
in the next computational step. The final value of this angle is obtained by cumulatively
adding the fuzzy system outputs each cycle.

The FLC rule base is presented as in Table 1. It reflects 75 rules (R1, . . . . . . R75) in the
structure described in (6). For instance, if generator power error value is NB, change in
generator power error is NS and deviation of generator speed from its nominal value is PB,
the FLC output is PS which means β[k] should be increased by 0.1 deg.

Table 1. Fuzzy Logic Control Rules.

eP NB NS ZE PS PB

dwg NM ZE PM NM ZE PM NM ZE PM NM ZE PM NM ZE PM

∆eP

NB NB NS PS NB NS PS NB NS PM NB PM PMB NMB PMB PB

NS NB NS PS NB NS PS NB ZE PMB NMB PM PMB NMB PMB PB

ZE NB NS PS NB ZE PM NMB ZE PMB NMB PM PB NM PMB PB

PS NB NS PM NMB ZE PM NMB ZE PB NM PMB PB NM PMB PB

PB NMB ZE PM NMB ZE PM NM PS PB NM PMB PBPB NM PMB PB

For each rule a truth value Ti is computed with the product inference technique:

Ti = µeP(eP(k))µ∆eP(∆eP(k)µdwg
(dwg(k)

)
(7)

The necessary change in the pitch angle β is computed by the center average defuzzifi-
cation rule:

∆β =
∑75

i=1 TiDi

∑75
i=1 Ti

(8)

The output of the fuzzy logic controller is multiplied by a tuning coefficient, Kp, to
obtain the pitch angle:

∆β[k] = Kp∆β[k], (9)

The main feature of the rule base in Table 1 is to increase β when the power is below
the reference value, and to lower it when there is excess power. This action is, however,
moderated by two factors: change of power and deviation of generator speed. If power
is to be increased and the change of power is positive, β is increased less when compared
with the case with zero or negative change of power. Also, if the generator speed is in
excess of the nominal value, power increase is targeted with a very small increase in β. The
overall rule base acts as a dual goal control mechanism, aiming to keep power in generator
speed at their reference and nominal values, respectively.

2.4. Genetic Algorithm Optimization of Fuzzy Logic Control

A population-based algorithm is employed in GA. Each population member has a
fitness value, representing the relative value of the objective function. The greater fitness
value of a member, the more likely it will become a next-generation parent. Various
methods, such as a roulette wheel, tournament and ranking, are utilized to choose the
proper individuals from the formed population. In this study, the tournament method is
employed as a selection method. Tournament selection has various advantages over other
options of selection methods for genetic algorithm. It is practical to code and works on
parallel architectures [50].
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The crossover technique creates new population members from two existing ones. The
crossover rate defines the number of population members who will be crossed. This ratio
varies depending on the design process and the task at hand. The crossover ratio used is
80% in this study. This is a quite commonly implemented value in the literature, and has
been selected for this reason [51].

The fitness function represents how close each member of the population is to the
solution. The function tolerance value is selected as 1×10−6 as convergence criteria for the
objective function, and the fitness function is selected as integral time absolute error (ITAE),
defined as follows.

ITAE =
k

∑
l=0
|e(l)|. (10)

Here, e[t] is power error and t is time. The GA optimization is utilized to compute
optimum membership function values for FLC. The optimized variables can be seen in
Figures 6–9. These variables are E1, E2, E3, E4 and E5 for membership functions of power
error, C1, C2, C3, C4 and C5 for membership functions of change in power error, S1, S2 and
S3 for membership functions of generator speed and the scaling factor Kp. Table 2 presents
optimization results for these parameters and allowed intervals. These intervals are found
with a trial-and-error method in order to find approximate regions in which the controller
performs adequately.

Energies 2022, 15, x FOR PEER REVIEW 8 of 15 
 

 

The crossover technique creates new population members from two existing ones. 

The crossover rate defines the number of population members who will be crossed. This 

ratio varies depending on the design process and the task at hand. The crossover ratio 

used is 80% in this study. This is a quite commonly implemented value in the literature, 

and has been selected for this reason [51]. 

The fitness function represents how close each member of the population is to the 

solution. The function tolerance value is selected as 1×10−6 as convergence criteria for the 

objective function, and the fitness function is selected as integral time absolute error 

(ITAE), defined as follows. 

𝐼𝑇𝐴𝐸 = ∑|𝑒(𝑙)|

𝑘

𝑙=0

. (10) 

Here, 𝑒[𝑡] is power error and 𝑡 is time. The GA optimization is utilized to compute 

optimum membership function values for FLC. The optimized variables can be seen in 

Figures 6–9. These variables are 𝐸1 , 𝐸2 , 𝐸3 , 𝐸4  and 𝐸5  for membership functions of 

power error, 𝐶1, 𝐶2, 𝐶3, 𝐶4 and 𝐶5 for membership functions of change in power error, 

𝑆1, 𝑆2 and 𝑆3 for membership functions of generator speed and the scaling factor 𝐾𝑝. Ta-

ble 2 presents optimization results for these parameters and allowed intervals. These in-

tervals are found with a trial-and-error method in order to find approximate regions in 

which the controller performs adequately. 

 

Figure 9. Wind speed. 

Table 2. Fuzzy logic control parameters optimized by GA. 

Variable Interval Value Variable Interval Value 

𝐸1 [−4.2, −1.3] −3.076 𝐶3 [0, 0] 0 
𝐸2 [−3.6, −1.15] −2.746 𝐶4 [0.00003, 0.00033] 0.00003 
𝐸3 [−3, −1] −2.416 𝐶5 [0.00006, 0.00066] 0.00006 
𝐸4 [−2.85, −0.4] −2.085 𝑆1 [−0.111, 0] −0.013 
𝐸5 [−2.7, 0.2] −1.755 𝑆2 [−0.088, 0.022] 0.002 
𝐶1 [−0.000066, −0.0006] −0.00006 𝑆3 [−0.066, 0.044] 0.018 

𝐶2 [−0.000033, −0.0003] −0.00003 𝐾𝑝 [19, 21] 19.997 

Figure 9. Wind speed.

Table 2. Fuzzy logic control parameters optimized by GA.

Variable Interval Value Variable Interval Value

E1 [−4.2,−1.3] −3.076 C3 [0, 0] 0

E2 [−3.6,−1.15] −2.746 C4 [0.00003, 0.00033] 0.00003

E3 [−3,−1] −2.416 C5 [0.00006, 0.00066] 0.00006

E4 [−2.85,−0.4] −2.085 S1 [−0.111, 0] −0.013

E5 [−2.7, 0.2] −1.755 S2 [−0.088, 0.022] 0.002

C1 [−0.000066,−0.0006] −0.00006 S3 [−0.066, 0.044] 0.018

C2 [−0.000033,−0.0003] −0.00003 Kp [19, 21] 19.997
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3. Implementation Results and Discussion

In this section, simulation results are presented with and without the tuning of the
fuzzy control parameters by a conventional (without optimization parameters update
between population iterations) GA system. Our motivation in using a straightforward
(conventional) GA parameter tuning approach in this paper is as follows. A number of
metaheuristic optimization techniques could be applied as alternatives to the conventional
GA approach employed in this paper. Examples of these approaches are MPA (Marine
Predator Algorithm) [52], PSO (Particle Swarm Optimization) [53], GSA (Gravitational
Search Algorithm) [54], CS (Cuckoo Search) [55], FA (Firefly Algorithm) [56], CMA-ES
(Covariance Matrix Adaptation Evolution Strategy), BO (Bonobo Optimization), BA (Bat
Algorithm), BSO (Brain Storming Optimization), and TLBO (Teaching Learning Based Opti-
mization). These approaches, as standard or with modifications, are capable of introducing
online (between optimization iterations) optimization parameter updates. These updates
can achieve superior convergence properties, for example, by increasing the reached fitness
or by reducing the number of necessary iterations, and hence the computation time. [57]
provides valuable comparison results. BO algorithm can be employed to regulate the yaw
angle in the context of horizontal axis wind turbines [58]. Ref. [52] presents a MPA imple-
mentation on power flow optimization in the field of power generation. The alternative
optimization technique and GA with online optimization parameter updates [59] do have
the potential of outperforming the conventional GA (GA without parameter updates).
However, there are a number of fuzzy control systems reported in the wind turbine control
literature, many of which are tuned by conventional GA systems. Our work aims at creating
another example in this category to be compared with such work. It is yet to be mentioned
that the genetic tuning of a three-dimensional fuzzy control rule base contrasts the literature
by adding one more complication level to the tuning task at hand. Reported in the wind
energy field previously are two-dimensional fuzzy control rule bases adjusted via GA. It
may also be argued that the straightforward implementation of the classical GA can be
considered as a merit when compared with more complicated optimization systems.

The controller is simulated with significantly fluctuating wind data obtained from a
wind field for 100 s. Table 3 shows various parameters of the turbine.

Table 3. Turbine parameters adapted from [60].

Parameter

Nominal Output Power 2 MW

Working Mode Grid Connected

Cut-in wind speed 3 m/s

Nominal wind speed 12 m/s

Cut out wind speed 25 m/s

Rotor Diameter 82.6 m

Rotor Swept Area 5359 m2

Nominal Rotor Speed 15.8 rpm

Gear Box Rate 1:94.7

Generator Pole Pair 2

Generator Type DFIG

Generator Synchronous Speed 1500 rpm

Generator Voltage 690 V

Nominal Generator Speed 220 rad/s
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As shown in Figure 9, region three wind speed 5 m/s over the nominal speed is
simulated and the controller response is observed. Another purpose of the controller is to
achieve the desired power output in the shortest time and for the most prolonged duration.

The controller performance is measured with criteria such as settling time, overshoot,
rise time, and steady-state error. As presented in Figure 10, the system reaches the steady
state at around 10th second with the maximum power output. The magnitude of the power
fluctuations without genetic tuning are 0. 015 MW. With genetic tuning, this magnitude
drops to 0.005 MW. Similar previous studies were not conducted in region three with wind
speeds over 50% above the nominal wind speed [1,4]. This, however, is the case in the
presented work. In this research, controller performs under highly fluctuating wind speed,
whereas previous similar studies [1,4] had more steady profiles.
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In Figure 10, the maximum power is achieved after the transient phase is completed,
and the change in power error is decreased approximately 50 percent with the genetic
algorithm. As presented in Figure 11, better performed overshoot in change of error in
power is achieved with genetic algorithm. In study [4] which employs fuzzy logic control
without genetic algorithm optimization, there are significant errors in power and power
error rate of change.

The response time of the controller is extended, and therefore after the generator
rotational speed reaches 220 rpm, the controller starts acting, and the pitch angle departs
from zero. After the initial step response of the pitch angle, the controller varies the pitch
angle smoothly to regulate the rotational speed of the generator at 220 rpm, since this speed
is the nominal speed of the 2 MW wind turbine as stated in Table 3. As the wind speed
severely changes, the pitch angles of the blades react accordingly. Figure 12 depicts the
controller’s output pitch angle regime with and without genetic tuning. Note that the
genetic tuned results in the curve, which exhibits a peak at about the 10th second. The
abrupt behavior indicates an increased control effort compared with the fuzzy controller
without genetic tuning. It should be kept in mind, however, that the speed of the blades and
aero-structural stability of the turbine are related. Therefore, speed limitation is applied to
safeguard the system from unstable behavior. The pitch angle speed limit in our simulations
is set to 5 degrees/s.
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Figure 13 presents the response of the generator under the mentioned wind regime.
Rotor speed fluctuations in the FLC with the GA optimization are about 0.3 rad/s, while
those in the FLC without the optimization are about 0.6 rad/s. This indicates that the
fluctuation problem is effectively solved by the genetic algorithm.
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Moreover, with the GA optimization over the proposed fuzzy logic controller, a
controller with a shorter settling time performance when compared with the previous
studies is obtained [4]. In addition, as has been indicated previously in Figures 10–13,
less fluctuation in generator speed, a smoother pitch angle curve and 30% less fluctuation
in power production is achieved. The decreased settling time will increase the annual
energy production.

However, the requirement of tuning with offline simulations can be considered as a
disadvantage of genetic tuning methodology. This wind turbine model is very detailed
and requires a moderate amount of computational power and time. Still, it is successful in
tuning the fuzzy system with the three-dimensional rule base.

4. Conclusions

This study employs a DFIG configuration 2 MW wind turbine model to perform
controller design with FLC techniques and genetic tuning. A novel control system is
developed that uses three inputs for fuzzy logic control. Generator power error, power
error rate and generator speed are used as inputs. A genetic algorithm adjusts fuzzy logic
control parameters. Multiple simulations conducted in MATLAB/SIMULINK demonstrate
optimized FLC performance.

Controller performance is crucial in maximizing the annual energy production. An
ideal set of FLC parameters is produced by GA adjustment. With a quicker settling time and
less power fluctuation, optimized FLC outperformed hand-tuned and existing conventional
FLC approaches.

It is possible to think of implementation on experimental setups as future work. Also,
comparisons with other optimization techniques can be carried out in simulation platforms.

Author Contributions: A.S.P. proposed the design concept, carried out simulations and genetic
algorithm optimization; K.E. worked on the validity of the approach; B.B. worked on supporting
simulations which aided in validating the performances after the simulation results; Authors col-
lectively prepared the manuscript. All authors have read and agreed to the published version of
the manuscript.
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