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Abstract 

Most structures are preferred to be light-weighted when they are used in industrial applications such as automotive, aerospace, 
and naval structures. Classical continuum mechanics (CCM) formulations are commonly adopted to solve the topology 
optimization problems. However, CCM brings about some restrictions to the modeling, analysis, and solution of complex 
structures with structural discontinuities, defects, and micro/macro damages. Unlike CCM, peridynamic theory provides a 
wider range of analysis options because of its nonlocal integration nature, which can eliminate the need for partial derivatives 
in the equation of motion, thereby being suitable for effective modeling of cracks, damages, etc. This paper presents an 
application of peridynamics based topology optimization (PD-TO) to study the effect of micro-damages for designing 
lightweight engineering structures. The PD-TO algorithm used herein is based on the coupling of bond-based method and 
Optimality Criteria (OC) topology optimization method. The structure is designed by locating various microcracks for 
investigating the microdamage effect on the optimal topologies. To this end, the PD-TO model is implemented using an in-house 
MATLAB code, and strain energy density distributions are compared between different topologies. As a result, the importance 
of including damage regions within the lightweight design optimization stage is revealed. 
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1. Introduction 
In contrast to traditional manufacturing processes, 
additive manufacturing (AM) is layer-by-layer 
production process that is is faster compared to other 
methods and can even have higher precision if 
structures are well designed. In the design process, 
some expectations are necessary to produce 
lightweight and stiff structures by reducing defects. 
These defects, which are commonly observed in the size 
of microlevel, occur during cooling, solidification and 
melting steps of AM application for engineering 
structures. Since coalescence of these micro-defects can 
easily create macrocracks, it is necessary to apply shape 
and topology optimization methods [1] for additively 
manufactured structures by considering the size, 
orientations and shape of possible microcracks during 
the optimization of engineering part. The topology 
optimization approach (TO) finds optimal material 
deposition/distribution on a predefined design domain. 
New TO algorithms overcome the problems of early TO 
methods (i.e., in-stability in results or occurrence of 
checkerboard pattern) by proposing new mathematical 
formulations. For instance, Bendsøe [2] proposed a 
homogenized TO method. Later, Solid Isotropic Material 
with Penalization technique (SIMP) [3] and 
Evolutionary Structural Optimization (ESO) [4] as well 
as bidirectional ESO (BESO) [5] were implemented for 

higher efficiency and accuracy. One of the most recent 
TO methods is the continuous density-based approach. 
The continuous methods can be categorized into two 
main approaches. First, the proportional approach (PO) 
[6], wherein the value of the objective function in the 
previous iteration determines the density of the 
elements. Next, the optimality criteria approach (OC) 
[7], this approach satisfies a set of analytically obtained 
criteria instead of directly optimizing the objective to 
solve TO problems. During TO, a proper numerical 
method is needed to perform accurate structural 
analysis. The most common numerical method is 
classical continuum mechanics (CCM) formulations in 
which particles interactions are considered between a 
particle and its nearest neighbor [8, 9]. Some of CCM 
assumptions pose a modeling/analysis limitation for 
structures including damage, discontinuity, internal 
feature, or defect. Various research efforts have been 
dedicated to overcoming the limitations of CCM such as 
Linear Elastic Fracture Mechanics (LFEM) [10] and 
eXtended Finite Element Method (XFEM) [11]. 
However, for a complex problem with multiple 
interacting defects, these methods still become 
complex, and solving them with traditional finite 
elements is very complicated or mostly inaccurate 
especially in the blending regions.   
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Another approach to perform structural analysis during 
TO is non-local continuum theories. One of the most 
common non-local theories that have been extensively 
studied in the last decade is the reformulation of 
continuum mechanics, referred to as Peridynamics 
[12]. In this approach, the material does not necessarily 
require remaining continuous during the simulations. 
Thus, it ideally becomes a robust approach for dealing 
with discontinuities such as cracks, damages, and 
defects. Overall, these features make PD a viable tool to 
nucleate damage in the domain of structure without 
adding any singularity. Silling [13] firstly used PD to 
simulate complex crack growth in plate structures. 
Then, the PD has been widely applied to fracture 
mechanics simulation of various material and structural 
systems[14, 15]. Few studies have applied PD directly 
to TO for designing cracked structures. The first study 
in the literature was conducted by Kefal et al. [16] who 
combined PD with BESO optimization schemes for 
structures with/without cracks. Later, the continuous 
density-based topology optimization method was 
extended to the gradient-based optimization algorithm 
[17] for complex engineering problems involving 
cracks. Recently, the PD-TO algorithm has also been 
used for multi-material topology optimization [18]. 
Moreover, a comparative study is performed by 
Motlagh and Kefal [19] to justify why TO algorithms 
should substitute peridynamics for the conventional 
FEM approach in the topology optimization of cracked 
structures. 

To the best of the authors’ knowledge, there is no 
research study on the integration of microcracks in the 
design of light-weighted structures using PD-TO. Thus, 
there is a need to justify whether many cracks can 
interfere with the final topology obtained from PD-TO 
algorithms (especially for brittle structures). The 
occurrence of microcracks is inevitable during the 
manufacturing process, therefore including predefined 
microcracks within design domain and investigating 
their orientation and size effect can help for a better 
design criterion using PD-TO. To this end, the main 
novelty of this study is to perform PD-TO simulations on 
a benchmark case including randomly oriented 
microcracks for minimizing compliance. Furthermore, 
the strain energy of the benchmark problem is 
compared for each microcracks inclusion sequence. 

2. Methods and materials 
In this section, we summarize the mathematical 
formulation of Peridynamics based topology 
optimization. In PD, each particle 𝑖 interact with all 
particles within its support region, named as Horizon 
with the size of 𝛿 as such: {𝐻 = x ∈ 𝛽: |x′ − x|  ≤
 𝛿, 𝑓𝑜𝑟 𝛿 >  0}. Fig. 1 shows a set of particles in a region 
β and horizon of particle 𝑖 with the size of δ. 

 

Fig 1. Horizon-Family of the material point 𝑖 for PD model. 

According to the bond-based theory, the interaction of 
particles is defined in a pairwise manner, so the bond 
forces acting on particles x and x′ have equal magnitude 

but with opposite sign f⃗=-f⃗ ′. The relative position 
vector of two material points in deformed configuration 
can be written as y′ − y = (u′ − u) − (x′ − x). Equation 
of motion for sets of particles is defined as (the reader 
can refer to [12] for further information): 

𝜌(x)ü(x, 𝑡) = ∫ f(u′ − u, x′ − x, 𝑡′ − 𝑡)d𝐻
𝐻

+ b(x, 𝑡) 

(1) 

where 𝜌(x), b(x, 𝑡) and ü(x, 𝑡) are density, body force, 
and acceleration of particle x. Moreover, the micro-
potential energy of each bond can be calculated using 
linear force and displacement relation of the bond as: 

𝑤 = 𝑤(ξ,η, 𝑡) =
1

2
𝑓𝑠|ξ| 

(2) 

where ξ, η and 𝑠 represent relative position vector 
(ξ = x′ − x), displacement vector (η=u′ − u) and 

stretch between two particles (𝑠 =
|y′−y|−|x′−x|

|x′−x|
).  

The force density vector 𝑓 can be expressed along the 
bond direction in the deformed configuration as: 

𝑓 = 𝑐𝑠
y′ − y

|y′ − y|
, 𝑤ℎ𝑒𝑟𝑒 𝑐 =

9𝐸

𝜋ℎ𝛿3
 

(3) 

where 𝐸 is the young modulus of isotropic material, ℎ is 
the thickness of the domain and 𝑐 is the bond constant 
[20]. Integrating this micro-potential for each bond in 
the horizon of particle x, the strain energy density of 
each particle can be obtained as: 

𝑊(x, 𝑡) =
1

2
∫𝑤(η, ξ, 𝑡)d𝐻
𝐻

 
(4) 

To be able to obtain total strain energy of domain β, one 
can integrate the strain energy density over the full field 
domain as: 

𝑈 = ∫𝑊(x, 𝑡)d𝛽
𝛽

 
(5) 

Here 𝑈 is the total strain energy that is used as 
compliance in the topology optimization process. By 
solving (1) numerically using a meshless method, and 
following the same methodology as [16], this equation 
can be modified to : 

KD = B (6) 
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To include local cracks into peridynamics simulation, 
the ratio of the number of eliminated interactions to the 
total number of initial interactions is defined as a 
weighted function 𝜙: 

𝜙(x, 𝑡) = 1 −
∫ 𝜇(x′ − x, 𝑡)d𝑉′
𝐻

∫ d𝑉′
𝐻

 
(7) 

where μ is damage initiation value which is a history-
dependent scalar-valued function. During the PD 

analysis, the stretch, 𝑠(𝑖)(𝑗)(x𝑗 − x𝑖, 𝑡), between pairs of 

material points x𝑖 and x𝑗 are monitored in each time 

iteration such that if it exceeds the critical value 𝑠𝑐 , then 
the bond is failed, i.e., 𝜇 = 0, and not reevaluated in the 
next time steps. On the other hand, it is set to unity for 
the intact bonds, 𝜇 = 1. For a given material point's 
horizon, the contributions of 𝜇 lead to the 𝜙 parameter 
take a value between 0 and 1. If the 𝜙 = 0, then all 
bonds are broken, otherwise at least there is an intact 
bond in the horizon. The reader can refer to [19, 20] for 
more information regarding calculation of 𝜙 and 𝜇 
functions. 

Compliance is an objective function generally used in 
TO with a target volume fraction. Compliance can be 
defined from (5), for the general optimization scheme, 
the constraints are as follows: 

min
ki
𝑈(𝑘𝑖) = ∑𝑊(x𝑖)𝑉𝑖   𝑠. 𝑡.  

𝑁

𝑖=1
{
 

 
𝐊𝐃 = 𝐁

∑ 𝑘𝑖𝑉𝑖
𝑁
𝑖=1

∑ 𝑉𝑖
𝑁
𝑖=1

= �̅�

𝑘𝑚𝑖𝑛 ≤ 𝑘𝑖 ≤ 1

 (8) 

where minimization method is subjected to the global 
displacement solution, updated strain field, and 
maximum allowable volume constraint �̅�, i.e., the ratio 
of the target volume to the total volume of the design 
space. At each iteration step, the convergence of OC is 
monitored, and the satisfaction of the target volume 
constraint is insured as well. Based on error tolerance 
τ̅, the convergence criteria are defined and compared at 
each step as: 

𝜏𝑘 =
∑ (𝐶𝑚+5 − 𝐶𝑚)𝑘−5
𝑚=𝑘−9

∑ 𝐶𝑚𝑘−5
𝑚=𝑘−9

≤ 𝜏̅, for  𝑘 ≥ 10 (9) 

where 𝐶𝑚 represent objective function at iteration 𝑚. 

3. Results and discussion 
In this section, three benchmark problems are studied 
to investigate the effect of microcracks on optimum 
topology. These benchmark problems can easily be 
manufactured utilizing additive manufacturing method, 
but some precautions are necessary during design stage 
to avoid microlevel defects.  

 

Fig 2. Schematic of microcrack in a design domain, black 
circles represent the particles in PD, the grid of 4 by 4 is 
located between dashed lines; red lines are microcracks with 
the size of 𝐿𝑐𝑟𝑎𝑐𝑘  and orientation of θ. 

To this end, for each benchmark scenario, microcracks 
are included in the design domain between a grid of 4 
by 4 of particles. Hence, at least a microcrack with an 
orientation of  θ and length of  𝐿𝑐𝑟𝑎𝑐𝑘  exists. A schematic 
of these microcracks in a partially selected domain can 
be seen from Fig. 2. 

3.1. A Simply supported beam with microcracks 
of size 𝑑𝑥/2 

First geometry is a simply supported beam with the 
length to the width ratio of is 2:1 where 𝐿 = 1m as 
depicted in Fig. 3. Embedded microcracks with length of 
𝑑𝑥

2
 are utilized in the first case study. A downward point 

load is applied with the magnitude of F = 200N from the 
middle of the top side of the structure. The beam is fixed 
from the left bottom corner and simply supported on 
the right. For PD discretization, the solution domain is 
uniformly divided into 80 by 40 particles and �̄� = 0.5 is 
the target volume ratio. By extracting the optimum 
topologies from each microcracks orientation sets, 
strain energy and final topology are compared in Fig. 4. 

 

Fig 3. Design domain of the simply supported beam. 
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Fig 4. A simply supported beam with microcracks (𝐿𝑐𝑟𝑎𝑐𝑘 =
𝑑𝑥/2), a) microcracks orientation for achieving minimum 
strain energy, b) optimum topology for minimum strain 
energy, c) microcracks orientation for achieving medium 
strain energy, d) optimum topology for medium strain energy, 
e) microcracks orientation for achieving maximum strain 
energy, f) optimum topology for maximum strain energy. 

In addition, as shown in Fig. 4, first two micro-crack sets 
have an extra support in the optimum topology, leading 
the design domain to have lower strain energy as 
compared to the third case. Furthermore, moderate 
level of strain energy is achieved when the ratios of -45°, 
45° and 0° inclined micro-cracks are nearly same and 
relatively higher than 90° cracks. Hence, it can be 
indicated that increasing the number of micro-cracks 
aligned parallel to the loading direction tends to reduce 
the stiffness of the brittle structures.  

3.2. A Cantilever beam with microcracks of size 
𝑑𝑥/2 

The second geometry studied here is a cantilever beam. 
Length of the randomly oriented microcracks is chosen 
to be dx/2 for this problem. The beam is fully restricted 
along the left side and a concentrated force 𝐹 = 200𝑁 is 
applied at the center of right edge as shown in Fig. 5.  
The structure is discretized into 80 and 40 particles 
along the x and y directions, respectively. Volume ratio 
is assigned as  �̄� = 0.5.  

After running 25 cases with randomly orientated 
microcracks, optimum topologies with minimum, 
medium and maximum strain energy are extracted. For 
micro-crack orientations of -45°/0°/45°/90°, the 
30.99%/22.81%/25.15%/21.05% ratio generates the 
lowest strain energy among all sets of microcracks 
orientations simulated in the analysis. However, the 
micro-crack percent distribution of 22.22%/28.07% 
/23.39%/26.32% has the highest value of strain energy. 
This comparison can be examined by the optimum 
topologies shown in Fig. 6.  Additionally, medium strain 
energy is achieved by setting the distribution ratio of 
45°/0°/45°/90° inclined micro-cracks to 22.81% 
/22.22%/28.65%/26.32%, respectively, as clearly 
illustrated in Fig. 6.  

 

Fig 5. Design domain of the cantilever beam. 

Despite two problems have different boundary 
condition, the results obtained for two different 
benchmark problems demonstrated that the strain 
energy values of the 25 micro-crack orientation 
scenarios are ranked similarly from the smallest to the 
largest. Strain energy varies from 1713.77 to 1777.71 
for this case study (Fig. 6). As it can be seen, even with 
a small variation of microcracks orientations 
(microcracks may occur during the manufacturing 
process with different size and orientations) optimum 
topologies varies case to case. In addition, it can be 
observed, like the previous case, when the strain energy 
is minimum, extra support appears in the design 
domain. This extra support makes the optimum 
topology have lower strain energy.  

 

Fig 6. Cantilever beam with microcracks (𝐿𝑐𝑟𝑎𝑐𝑘 = 𝑑𝑥/2), a) 
microcracks orientation for achieving minimum strain 
energy, b) optimum topology for minimum strain energy, c) 
microcracks orientation for achieving medium strain energy, 
d) optimum topology for medium strain energy, e) 
microcracks orientation for achieving maximum strain 
energy, f) optimum topology for maximum strain energy. 

3.3. A Simply supported beam with microcracks 
of size 𝑑𝑥 

The last case study includes the same simply supported 
beam used in the first case study with similar constraint 
boundary and loading conditions. However, to 
demonstrate the effect of microcracks size, the 
microcracks length is increased to two-times longer of 
the previous case (i.e., dx). Fig. 7 represents the cases 
which have minimum, medium and maximum strain 
energy from 25 various micro-crack orientation sets.  
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Fig 7. Simply supported beam with sets of microcracks 
(𝐿𝑐𝑟𝑎𝑐𝑘 = 𝑑𝑥), a) microcracks orientation for achieving 
minimum strain energy, b) optimum topology for minimum 
strain energy, c) microcracks orientation for achieving 
medium strain energy, d) optimum topology for medium 
strain energy, e) microcracks orientation for achieving 
maximum strain energy, f) optimum topology for maximum 
strain energy. 

These selected cases are again observed at the same 
micro-crack ratio rank. Therefore, it can be concluded 
that crack size does not affect the ranking of the cases 
with respect to the strain energy. On the other hand, 
after the strain energy values of all scenarios are 
examined, it is clearly seen that the strain energy 
increases in each scenario. Furthermore, including 
longer microcracks may predict further manufacturing 
defects which are inevitable. Lastly note that the 
optimum case with the lowest strain energy has an 
extra support element like previous cases, which is just 
shifted from right to left hand side. 

4. Conclusions 
During additive manufacturing process, various 
microlevel size defects may occur, and if they are not 
properly considered at the design stage, they are likely 
to cause macro-damages with the engineering part. 
Thus, necessary safety measures must be taken by 
considering predefined microcracks in TO process to 
prevent further development of crack propagation of 
additively manufactured structures. This paper 
investigates the inclusion of microcracks in designing 
lightweight structures utilizing continuous density-
based PD-TO. Generally, including defects in the design 
domain may cause computational complexity which 
cannot be easily solved via conventional finite elements. 
Here, on the other hand, it was shown PD-TO is generally 
a better tool for handling discontinuity such as cracks, 
defects, and damages. Three benchmark cases are 
investigated via 25 orientation case sets. Each sets 
includes microcracks’ orientation sets wherein each 
microcrack orientation has a random value between 
−45∘ to 90∘ (sub-step 45∘). After extracting optimum 
topology for each case sets, the strain energy is 
calculated, and it is shown a variation of microcrack 
orientation has a direct effect on optimum topology and 
obtained strain energy value. All in all, the PD-TO 
provides the better support for these structures without 

adding extra complexity, hence, it can be indicated that 
it is a robust methodology for analyzing the effect of 
microcracks in topology optimization. For future 
studies, this method can be extended to include 
randomly oriented crack with different size in 
stress/strain hotspots to reduce strain energy. 
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