
Remarks on the k-error linear complexity of
pn-periodic sequences

Wilfried Meidl1 and Ayineedi Venkateswarlu2

1Sabanci University, Orhanli, Tuzla, 34956 Istanbul, Turkey,
wmeidl@sabanciuniv.edu
2Temasek Laboratories, National University of Singapore, 5 Sports Drive 2,
Singapore 117508, Republic of Singapore, tslav@nus.edu.sg

Abstract

Recently the first author presented exact formulas for the number of
2n-periodic binary sequences with given 1-error linear complexity, and
an exact formula for the expected 1-error linear complexity and upper
and lower bounds for the expected k-error linear complexity, k ≥ 2,
of a random 2n-periodic binary sequence. A crucial role for the anal-
ysis played the Chan-Games algorithm. We use a more sophisticated
generalization of the Chan-Games algorithm by Ding et al. to obtain
exact formulas for the counting function and the expected value for the
1-error linear complexity for pn-periodic sequences over Fp, p prime.
Additionally we discuss the calculation of lower and upper bounds on
the k-error linear complexity of pn-periodic sequences over Fp.
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1 Introduction

Let S = s1, s2, . . . be a sequence with terms in the finite field Fq (or shortly
over Fq). If, for a nonnegative integer N , the terms of S satisfy si+N = si

for all i ≥ 1, then we say that S is N -periodic. The linear complexity of a
periodic sequence S over the finite field Fq, denoted by L(S), is the smallest
positive integer L for which there exist coefficients d0 = 1, d1, d2, . . . , dL in
Fq such that

d0si + d1si−1 + . . . + dLsi−L = 0 for all i ≥ L + 1.
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Trivially, the linear complexity of an N -periodic sequence can at most be
N . The concept of linear complexity is very useful in the study of the secu-
rity of stream ciphers (see [10, 11]). A necessary condition for the security
of a keystream generator is that it produces a sequence with large linear
complexity.

A cryptographically strong sequence should not only have a large linear
complexity, but also altering a few terms should not cause a significant
decrease of the linear complexity. According to this requirement, for an
integer k, 0 ≤ k ≤ N , in [12] Stamp and Martin defined the k-error linear
complexity Lk(S) of an N -periodic sequence S with period (s1, s2, . . . , sN )
to be the smallest linear complexity that can be obtained by altering k or
fewer of the terms si, 1 ≤ i ≤ N .
The concept of k-error linear complexity was built on the earlier concept
of sphere complexity SCk(S) introduced in the monograph [1]. The sphere
complexity SCk(S) of an N -periodic sequence over Fq can be defined by

SCk(S) = min
T

L(T ),

where the minimum is taken over all N -periodic sequences T 6= S over Fq

for which the period of T differs from the period of S at k or fewer positions.
Obviously, we have

Lk(S) = min(SCk(S), L(S)).

A lot of research has been done on the linear complexity and the k-
error linear complexity of keystream sequences (for a recent survey we refer
to [10]). However, for k > 0 we do not have formulas for the number of
sequences with given k-error linear complexity or exact formulas for the
expected k-error linear complexity of a random N -periodic sequence, not
even for small k such as k = 1. One exception is the rather simple case
where N is prime and q is a primitive root modulo N . In this case the linear
complexity can only attain the values N , N−1, 1 and 0. As a result, for this
particular period it is possible to obtain exact values on the k-error linear
complexity, k > 0 (cf. [8]).

In [8, 9] a technique to obtain lower bounds on the expected k-error
linear complexity Ek of a random N -periodic sequence over Fq has been
presented. The technique of [8, 9] does not support the calculation of an
upper bound for Ek. Solely for the rather simple case that N is prime and q
is a primitive root modulo N , the technique of [8, 9] yields an exact formula
for Ek (cf. [8]).
We will consider pn-periodic sequences over the finite field Fq, q = pm for
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a prime p. For this class of sequences the technique of [8, 9] provides the
lower bound

Ek ≥ pn − logq

(
k∑

t=0

(
pn

t

)
(q − 1)t

)
− q

q − 1
(1)

for the expected value Ek of the k-error linear complexity.
pn-periodic sequences over a finite field Fq with characteristic p have

been studied from several viewpoints. In [2] Games and Chan presented an
algorithm that efficiently determines the linear complexity of a given 2n-
periodic binary sequence. The Chan-Games algorithm has been generalized
in [12] respectively [6] to an algorithm computing the k-error linear com-
plexity of a 2n-periodic binary sequence for a fixed k respectively for all k
simultaneously. These algorithms have been generalized in [1], [3] and [4] to
more sophisticated algorithms applicable to pn-periodic sequences over the
finite field Fq with characteristic p.

In [7], elements of the algorithms in [2] and [12] have been used to obtain
exact formulas for the counting function and the expected value for the 1-
error linear complexity of 2n-periodic binary sequences. Moreover for k ≥
2 bounds for the expected k-error linear complexity of 2n-periodic binary
sequences have been discussed. The question to which extent the more
sophisticated algorithms in [1, 3] can be utilized to obtain related results
on pn-periodic sequences over Fq arises naturally. In Section 2, the main
part, we obtain exact formulas for the number of pn-periodic sequences over
the prime field Fp with given 1-error linear complexity and for the expected
1-error linear complexity. In Section 3 we concentrate on the calculation of
bounds on the k-error linear complexity of pn-periodic sequences over Fp.

2 Counting functions and expected values for k = 1

In [9] it has been shown that the number N (L) of pn-periodic sequences
over Fq, q = pm, p prime, with given linear complexity L, 0 ≤ L ≤ pn, is
given by

N (0) = 1 and N (L) = (q − 1)qL−1 for 1 ≤ L ≤ pn. (2)

In [5] Kurosawa et al. showed that the minimum value k for which the k-
error linear complexity of a pn-periodic sequence S over Fq is strictly less
than the linear complexity L(S) of S is exactly determined by

k = Prod(pn − L(S)), (3)
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where Prod(C) :=
∏m−1

j=0 (ij + 1) if C = i0 + i1p + · · · + im−1p
m−1. In

particular, the sequences with maximal possible linear complexity pn are the
only sequences for which the 1-error linear complexity is less than the linear
complexity. Hence it suffices to calculate the number of sequences with linear
complexity pn and given 1-error linear complexity L, 0 ≤ L < pn, in order to
obtain the complete counting function for the 1-error linear complexity. As it
is well known (see e.g. [5, Proposition 2.1]), the set of pn-periodic sequences
over Fq, q = pm, p prime, with maximal possible linear complexity pn is
exactly the set of sequences for which the sum of the elements of one period
is not zero.

We will utilize the generalized Chan-Games algorithm presented in [1].
The algorithm can be described as follows:
Let S be a pn-periodic sequence over Fq, q = pm, p prime, with period
(s1, s2, . . . , spn) and A = (ai,j) the (p−1)×p-matrix with ai,j =

(
p−j
i−1

)
, then

we define the matrix B to be the (p−1)×pn−1-matrix with lth column equal
to A(sl sl+pn−1 . . . sl+(p−1)pn−1)T , l = 1, 2, . . . , pn−1. The linear complexity
L(S) of the sequence S is then given by

(p− w)pn−1 + L(S1),

where w is the least integer such that the wth row of B is not the zero row,
or w = p if B is the zero matrix, and S1 is the pn−1-periodic sequence with
the wth row of B as period if B is not the zero matrix, or (s1, s2, . . . , spn−1)
as period if B is the zero matrix. The generalized Chan-Games algorithm
is obtained by applying this result recursively, which is possible since the
period length of S1 is again a power of p. In the final step we will have a
sequence with period p0 = 1, i.e., a constant sequence s1, s1, . . .. If s1 6= 0
we add 1 to the present value for the linear complexity of S.

The described algorithm motivates a mapping ϕn from Fpn

q into F(p−1)×pn−1

q ,
n ≥ 1, defined by

ϕn((s1, s2, . . . , spn)) = B,

where B is defined as above.
Let H(v) denote the Hamming weight of a vector v. Let s(n) be any

element of Fpn

q and let b(u), u = 0, . . . , p − 2, be the (u + 1)th row of the
matrix B. We collect some (obvious) properties of the matrix A and the
mapping ϕn respectively the matrix B = ϕn(s(n)).

P1 The matrix A has rank p− 1. Hence the linear system Ax = b has q
different solutions in Fp

q . In particular the vectors c(1, 1, . . . , 1), c ∈ Fq,
are the solutions of the homogenous system Ax = 0.
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P2 H(b(u)) ≤ H(s(n)) for 0 ≤ u ≤ p− 2.

P3 The sum of the elements of the first row b(0) of B equals the sum of
the elements of s(n).

P4 The set ϕ−1
t+1 := {v ∈ Fpt+1

q | ϕt+1(v) = B} for a given (p − 1) × pt-
matrix B over Fq has cardinality qpt

.

We restrict ourselves to the case of the prime field Fp. Then we can show
the following lemma.

Lemma 1 Let A be the matrix defined as above and suppose that for v ∈ Fp
p

we have Av = (u1 6= 0, u2, . . . , up−1). Then we have p vectors vi, 1 ≤ i ≤ p,
such that the first component of Avi is zero, i.e., Avi = (0, u′

2, . . . , u
′
p−1) for

some u′
2, . . . , u

′
p−1 ∈ Fp, and vi differs from v at exactly one position. More-

over for each given z ∈ Fp there exists exactly one vector viz , 1 ≤ iz ≤ p,
which differs from v at exactly one position and Aviz = (0, z, û3, . . . , ûp−1).

Proof. Evidently, for 1 ≤ i ≤ p, the vectors vi := v + ei, where ei is the
vector with ith entry −u1 and H(ei) = 1, satisfy Avi = (0, u′

2, . . . , u
′
p) for

some u′
2, . . . , u

′
p ∈ Fp. Since the second row of A consists of all elements of

the prime field Fp, we will have Aviz = (0, z, û3, . . . , ûp−1) for exactly one
1 ≤ iz ≤ p and for some û3, . . . , ûp−1 ∈ Fp. 2

Proposition 1 Let S be a pn-periodic sequence over Fp with maximal pos-
sible linear complexity L(S) = pn. Then the 1-error linear complexity of S
is 0 or of the form

Lr,w,C := pn − wpr + C, 0 ≤ r ≤ n− 1, (4)
2 ≤ w ≤ p− 1 and 0 ≤ C ≤ pr − 1, or
w = p, r 6= 0 and 1 ≤ C ≤ pr − 1.

Proof. Evidently the sequences S with maximal linear complexity pn and
1-error linear complexity L1(S) = 0 are exactly the sequences with one
term different from 0 per period. We now show that the 1-error linear
complexity of the remaining pn-periodic sequences S with period s(n) and
linear complexity pn is of the form (4). Since L(S) = pn, the sequence S does
not have the zero sum property. With the property P3 for all 1 ≤ m ≤ n the
first row of the matrix ϕmϕm+1 · · ·ϕn(s(n)) is not the zero vector. Suppose
that r, 0 ≤ r ≤ n−1, is the largest integer such that the first row b(0) of the
(p−1)×pr-matrix B = ϕr+1 · · ·ϕn(s(n)) has Hamming weight 1. We want to
change one term of the preimage of B so that the resulting linear complexity
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of the sequence is as small as possible. Since the linear complexity of the
sequence corresponding to b(1) is lower than pr if and only if b(1) has the
zero sum property, the optimal choice is to perform a term change such that
we obtain the zero vector for b(0) and additionally a vector with zero sum
property for b(1). According to Lemma 1 we have exactly one choice for the
term change with this property. In the case where r = 0, the matrix B is a
column matrix and hence b(0) 6= 0. By changing one term we can make b(1)
also zero. If after the term change b(w) is the first non zero entry in B then
the 1-error linear complexity of S is pn − w, 2 ≤ w ≤ p − 2. Observe that
after the term change, if the column matrix B becomes zero then the first
row of ϕ2 · · ·ϕn(s(n)) contains p identical nonzero entries. Thus the 1-error
linear complexity of S is pn − p + 1.

Now suppose 1 ≤ r ≤ n − 1 and b(1) is different from the zero vector
after the term change, then the 1-error linear complexity of S is pn−2pr +C,
1 ≤ C ≤ pr − 1. If after the term change b(1) is the zero vector but b(2) is
not, then the 1-error linear complexity of S is pn−2pr if the linear complexity
of the sequence with period b(2) is pr and pn − 3pr + C, 1 ≤ C ≤ pr − 1, if
the linear complexity of the sequence with period b(2) is 1 ≤ C ≤ pr − 1.
In general, if after the term change b(w), 3 ≤ w ≤ p − 2, is the first row
in B not equal to the zero vector, then the 1-error linear complexity of S is
pn−wpr if the linear complexity of the sequence with period b(w) is pr and
L1(S) = pn − (w + 1)pr + C, 1 ≤ C ≤ pr − 1, if the linear complexity of the
sequence with period b(w) is 1 ≤ C ≤ pr−1. Finally if after the term change
B is the zero matrix, then the 1-error linear complexity of S is pn−pr+1 +pr

if the linear complexity of the sequence S1 whose period consists of the first
pr terms of the (altered) preimage of B is pr and L(S) = pn − pr+1 + C,
1 ≤ C ≤ pr − 1, if the linear complexity of S1 is 1 ≤ C ≤ pr − 1. Note that
the 1-error linear complexity will never be pn − pr+1. 2

The next proposition presents the counting function for the 1-error linear
complexity for pn-periodic sequence over Fp with maximal possible linear
complexity L(S) = pn.

Proposition 2 Let N̄1(L) be the number of pn-periodic sequences S over
Fp with maximal possible linear complexity L(S) = pn and 1-error linear
complexity L1(S) = L, and let Lr,w,C be defined as in (4). Then

N̄1(Lr,w,C) = (p− 1)2ppn−wpr+r+C ,

N̄1(0) = (p− 1)pn, and N̄1(L) = 0 if L 6= 0 is not of the form (4).
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Proof. Evidently we have N̄1(0) = (p − 1)pn, which equals the number of
pn-periodic sequences S over Fp with one term different from 0 per period.
The identity N̄1(L) = 0 if L 6= 0 is not of the form (4) immediately follows
from Proposition 1.

The sequences with linear complexity pn and 1-error linear complexity
pn − 2pr + C, 1 ≤ C ≤ pr − 1, are exactly those sequences for which the
matrix B = ϕr+1 · · ·ϕn(s(n)) has a first row b(0) with H(b(0)) = 1, and
additionally after changing one term of the preimage of B in the unique way
such that b(0) becomes the zero vector and b(1) has the zero sum property,
the sequence with period b(1) (altered version) has linear complexity C. We
have (p − 1)pr possibilities to choose b(0) with H(b(0)) = 1, (p − 1)pC−1

possibilities to choose a sequence with linear complexity C for b(1), and
initially the term of b(1) in the same column as the nonzero entry in b(0)
can be chosen arbitrarily. The remaining rows of B are arbitrary. Hence
we have (p − 1)2pr+Cp(p−3)pr

different choices for B. According to P4 the
matrix B has ppr

preimages sr+1 ∈ Fpr+1

p , which will be the first row of a
certain (p − 1) × pr+1-matrix B′. Note that H(sr+1) > 1, else we would
obtain the zero matrix for B with one term change. For exactly p(p−1)pr+1

vectors sr+2 ∈ Fpr+2

p the matrix B′ = ϕr+2(sr+2) has s(r+1) as the first row.
Recursively we get ppn−pr+1+pr

for the numbers of vectors s(n) ∈ Fpn

p with
ϕr+1 · · ·ϕn(s(n)) = B, which leads to the desired formula for the number of
pn-periodic sequences over Fp with 1-error linear complexity pn − 2pr + C,
1 ≤ C ≤ pr − 1.

To determine the number of sequences with linear complexity pn and
1-error linear complexity Lr,w,C , 3 ≤ w ≤ p− 1, C ≥ 1, we have to consider
the (p − 1) × pr-matrices that can be transformed into a matrix for which
b(w − 1) is the first row different from the zero vector by changing exactly
one term in the preimage. The first w − 1 rows of B can have nonzero
elements in exclusively one column, say the column with index i. The ith
element of b(0) must of course be nonzero, the ith element of b(1) can be
chosen arbitrarily. These two elements uniquely determine the term change
that has to be performed in a preimage in order to obtain b(0) = b(1) = 0.
For 2 ≤ u ≤ w − 2, the ith element of b(u) is uniquely determined such
that b(u) is transformed into the zero vector after that uniquely determined
term change. For b(w − 1) we choose one of the (p − 1)pC−1 vectors with
corresponding pr-periodic sequence having linear complexity C. Note that
the ith entry of b(w − 1) is adapted according to the term change that has
to be performed in the preimage. The remaining entries of B are again
arbitrary. This yields (p − 1)2pC+rp(p−1−w)pr

different matrices with the
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desired properties. With the same argument as before we get the formula
for N̄1(Lr,w,C). Note that for C = pr we get the formula for N̄1(Lr,w−1,0). In
the case where r = 0 we always can make b(1) = 0 by a single term change
in the original sequence. Suppose b(w − 1) is the first nonzero entry in B
then we get C = 1, and so N̄1(L0,w,1) = N̄1(L0,w−1,0) for 3 ≤ w ≤ p− 1.

Finally according to P1, ϕr+1(sr+1) = B is the zero matrix if and only if
s(r+1) consists of p identical copies of a vector s(r) ∈ Fpr

p . Let M(r, C) be the
number of vectors which have Hamming distance 1 to a vector in Fpr+1

p that
consist of p identical copies of a vector s(r) ∈ Fpr

p such that the corresponding
pr-periodic sequence has linear complexity C. Then the number N̄1(Lr,p,C),
1 ≤ C ≤ pr − 1, is given by M(r, C)ppn−pr+1

. With simple combinatorial
arguments we get M(r, C) = (p−1)2pr+C , which yields the desired formula.
Again with C = pr we get the formula for N̄1(Lr,p−1,0). 2

The construction of the integers Lr,ω,C in (4) reflects the operation mode of
the Chan-Games algorithm. Evidently, the set of integers of the form (4)
can also be described as the set of integers L, 0 < L < pn, which are not of
the form pn−pt, t = 0, 1, . . . , n−1. We observe that r = blogp(pn−Lr,ω,C)c
and combine Proposition 2 and the identity (2) to the following theorem,
where we use the fact that L1(S) = L(S) if L(S) < pn.

Theorem 1 Let N1(L), 0 ≤ L ≤ pn, be the number of pn-periodic sequences
over Fp, p prime, with 1-error linear complexity equal to L. Then we have

N1(0) = 1 + (p− 1)pn

N1(L) = (p− 1)pL−1 if L = pn − pt, t = 0, 1, . . . , n− 1,

N1(L) = (p− 1)pL−1 + (p− 1)2pL+blogp(pn−L)c if L 6= pn and
L 6= pn − pt, t = 0, 1, . . . , n, and

N1(pn) = 0.

From Proposition 2 we can conclude that a large proportion of the pn-
periodic sequences with linear complexity pn still possesses a very high linear
complexity after changing one of its terms. We use Proposition 2 to obtain
an exact formula for the expected value of the 1-error linear complexity of
a random pn-periodic sequence over Fp with linear complexity pn.

Proposition 3 The expected value E1|L=pn of the 1-error linear complexity
of a random pn-periodic sequence S over Fp with linear complexity L(S) =
pn, n ≥ 2, is given by

E1|L=pn = pn − 1− p

p− 1
+

pn+1

(p− 1)ppn −
n−1∑
r=1

pr+1

ppr .
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Proof. From Proposition 2 we have

ppn−1(p− 1)E1|L=pn =
n−1∑
r=1

p∑
w=2

pr−1∑
C=1

N̄1(Lr,w,C) · Lr,w,C

+
n−1∑
r=0

p−1∑
w=2

N̄1(Lr,w,0) · Lr,w,0 (5)

=
n−1∑
r=1

p∑
w=2

pr−1∑
C=1

(p− 1)2ppn−wpr+r+C(pn − wpr + C)

+
n−1∑
r=0

p−1∑
w=2

(p− 1)2ppn−wpr+r(pn − wpr)

= (p− 1)2ppn+n
n−1∑
r=1

p∑
w=2

p−wpr+r
pr−1∑
C=1

pC

−(p− 1)2ppn
n−1∑
r=1

p∑
w=2

p−wpr+rwpr
pr−1∑
C=1

pC

+(p− 1)2ppn
n−1∑
r=1

p∑
w=2

p−wpr+r
pr−1∑
C=1

CpC

+(p− 1)2ppn+n
n−1∑
r=0

p−1∑
w=2

p−wpr+r

−(p− 1)2ppn
n−1∑
r=0

p−1∑
w=2

p−wpr+rwpr

= T1 − T2 + T3 + T4 − T5.

With a sequence of well known algebraic manipulations including expansion
of some series one can obtain

T1 = (p− 1)ppn+n−1 − (p− 1)p2n − T4,

T2 = T6 − ppn−p+1 + ppn−1(2p− 1)− (p− 1)p2n − T5, and

T3 = T6 + pn − (p− 1)ppn
n−1∑
r=1

p−pr+r − ppn−p+1.

Combining the results we get

T1 − T2 + T3 + T4 − T5 = (p− 1)ppn+n−1 − ppn−1(2p− 1)
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+pn − (p− 1)ppn
n−1∑
r=1

p−pr+r,

and hence

(p−1)ppn−1E1|L=pn = (p−1)ppn−1

(
pn − 1− p

p− 1
+

pn+1

(p− 1)ppn −
n−1∑
r=1

pr+1

ppr

)
,

which yields the desired formula. 2

Theorem 2 The expected value E1 of the 1-error linear complexity of a
random pn-periodic sequence over Fp, n ≥ 2, is given by

E1 = pn − 2− 1
p(p− 1)

+
1

ppn

(
pn +

1
p− 1

)
− (p− 1)

n−1∑
r=1

pr

ppr .

Proof. With (2) and (3) we get the sum ppn
E1 by adding

pn−1∑
L=0

(p− 1)pL−1L = ppn+n−1 − ppn

p− 1
+

1
p− 1

to (5), which will yield the result. 2

3 On the expected k-error linear complexity, k ≥ 2

We start with a proposition which rules out several values for the k-error
linear complexity. It is an analogue to [7, Proposition 1]

Proposition 4 Let S be any pn-periodic sequence over Fp. Then for k ≥ 2
the k-error linear complexity Lk(S) of S is different from pn − pt for every
integer t with 0 ≤ t < n.

Proof. If the Hamming weight of the period s(n) of S is at most k then we
have Lk(S) = 0. Else there is a largest integer t such that the first row b(0)
of B = ϕt+1 · · ·ϕn(s(n)) satisfies H(b(0)) ≤ k, and we can obtain b(0) = 0
by at most k term changes in s(n). Thus we have Lk(S) = pn − wpt + C,
2 ≤ w ≤ p. If w = 2, i.e., if we cannot obtain b(1) = 0 by at most k
term changes, then we have 1 ≤ C ≤ pt − 1, since by Lemma 1 we are at
least able to force b(1) to have the zero sum property. Consequently we have
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Lk(S) ≤ pn−pt−1. If w = p, i.e. with at most k term changes in s(n) the ma-
trix B can be transformed into the zero matrix, then Lk(S) = pn−pt+1 +C.
We can exclude that C = 0 since then the first row of B′ = ϕt+2 · · ·ϕn(s(n))
must have a smaller Hamming weight than k + 1, which is a contradiction
to the definition of t. 2

The following Proposition 5 and Corollary 1 are generalizations of [7, Propo-
sition 2, Corollary 2] and [7, Theorem 3, Corollary 3], respectively. The
proofs are similar to the proofs in [7], and therefore omitted.

Proposition 5 For k ≥ 2 and 0 ≤ t ≤ n, the number Mk(t) of pn-periodic
sequences S over Fp with k-error linear complexity Lk(S) > pn − pt is given
by

Mk(t) = ppn − ppn−pt
k∑

j=0

(
pt

j

)
(p− 1)j .

The number Mk(t + 1, t), 0 ≤ t ≤ n− 1, of pn-periodic sequences S over Fp

satisfying pn − pt+1 < Lk(S) < pn − pt is given by

Mk(t + 1, t) = ppn−pt
k∑

j=0

(
pt

j

)
(p− 1)j − ppn−pt+1

k∑
j=0

(
pt+1

j

)
(p− 1)j .

Observe that for pt ≤ k < pt+1 we have Mk(0) = · · · = Mk(t) = 0 and
Mk(t + 1) > 0. The partition [pn − pt+1, pn − pt), t = n− 1, n− 2, . . . , 0, of
the interval [0, pn− 1) along with the above proposition yields the following
bounds.

Corollary 1 For an integer k ≥ 2 the expected value Ek of the k-error
linear complexity of a random pn-periodic sequence over Fp satisfies

pn−pblogp kc+1+1− 1
ppn

k∑
j=0

(
pn

j

)
(p−1)j−

n−1∑
t=blogp kc+1

pt

ppt

k∑
j=0

(
pt

j

)
(p−1)j+1

≤ Ek ≤ pn − pblogp kc − 1− pn − pn−1 + 1
ppn

k∑
j=0

(
pn

j

)
(p− 1)j−

n−1∑
t=blogp kc+1

pt

ppt+1

k∑
j=0

(
pt

j

)
(p− 1)j+1.
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We emphasize that the technique used in [8, 9] yields only lower bounds.
Hence the main improvement is that our method also yields an upper bound.
We observe that if k is a small proportion of the period then the upper and
the lower bound given in Corollary 1 do not differ significantly.
As stated in [7], in the binary case the lower bound in Corollary 1 improves
the lower bound (1). As experimental results demonstrate, it needs a refined
analysis in order to obtain an appreciable improvement of (1). Though our
approach yields complex formulas and becomes infeasible if p is not very
small, we find it worth to be discussed. We restrict ourselves to the ternary
case.

We know that the k-error linear complexity of a ternary 3n-periodic
sequence S is less than 3n−3t if and only if the Hamming weight of the first
row bt(0) of the 2 × 3t-matrix B = ϕt+1 · · ·ϕn(s(n)) is at most k, i.e., we
can obtain the zero vector for bt(0) by changing just k or fewer terms in the
preimage of B. If we additionally can obtain the zero vector for the second
row of B by changing just k or fewer terms in the preimage of B, then the
k-error linear complexity of S is at most 3n−2 ·3t. Let c =

(
x
y

)
be a column

of B. If x 6= 0 then we can transform c into the zero column by one (unique)
term change in the preimage of B. If x = 0 but y 6= 0 then we need 2 term
changes in the preimage of B in order to obtain the zero column for c (we
will have 3 different options to change two terms).
These observations lead to the following generalization of the Hamming
weight.

Definition 1 The Chan-Games weight of a non zero column is 1 plus the
number of zeros that lie above the first nonzero element of the column. The
zero column has Chan-Games weight 0. The Chan-Games weight Wt(B) of
a matrix B is the sum of the Chan-Games weights of its columns.

According to the above observations the k-error linear complexity of a 3n-
periodic ternary sequence S is at most 3n − 2 · 3t if and only if Wt(B) ≤ k.
With combinatorial arguments we get the following Lemma.

Lemma 2 The number of ternary 2× 3t-matrices B satisfying Wt(B) ≤ k
is given by

k∑
j=0

(
3t

j

)
6j

b k−j
2

c∑
i=0

(
3t − j

i

)
2i.

Proof. For each choice of 0 ≤ j ≤ k columns with Chan-Games weight 1 we
can choose at most b(k− j)/2c further columns with Chan-Games weight 2

12



in order that Wt(B) does not exceed k. 2

Lemma 2 and Proposition 5 yield the following results.

Proposition 6 For k ≥ 2 and 0 ≤ t ≤ n − 1, the number of ternary 3n-
periodic sequences S with k-error linear complexity Lk(S) > 3n − 2 · 3t is
given by

33n − 33n−2·3t
k∑

j=0

(
3t

j

)
6j

b k−j
2

c∑
i=0

(
3t − j

i

)
2i.

The number of ternary 3n-periodic sequences S with k-error linear complex-
ity 3n − 2 · 3t < Lk(S) < 3n − 3t is given by

SII = 33n−3t
k∑

j=0

(
3t

j

)
2j − 33n−2·3t

k∑
j=0

(
3t

j

)
6j

b k−j
2

c∑
i=0

(
3t − j

i

)
2i,

and the number of ternary 3n-periodic sequences S with k-error linear com-
plexity 3n − 3t+1 < Lk(S) ≤ 3n − 2 · 3t is given by

SI = 33n−2·3t
k∑

j=0

(
3t

j

)
6j

b k−j
2

c∑
i=0

(
3t − j

i

)
2i − 33n−3t+1

k∑
j=0

(
3t+1

j

)
2j .

With Proposition 6 we can improve (1) in the ternary case.

Corollary 2 The expected k-error linear complexity Ek of a random 3n-
periodic ternary sequence satisfies

3n − 3blog3 kc − 1−
n−1∑

t=blog3 kc+1

3−3t
(3t−1 + 1)

k∑
j=0

(
3t

j

)
2j −

3n−1 + 2
33n

k∑
j=0

(
3n

j

)
2j −

n−1∑
t=blog3 kc

(3t − 1)3−2·3t
k∑

j=0

(
3t

j

)
6j

b(k−j)/2c∑
i=0

(
3t − j

i

)
2i ≥

En ≥ 3n − 2 · 3blog3 kc + 1−
n−1∑

t=blog3 kc+1

3−3t+t
k∑

j=0

(
3t

j

)
2j − 1

33n

k∑
j=0

(
3n

j

)
2j −

n−1∑
t=blog3 kc

3−2·3t+t
k∑

j=0

(
3t

j

)
6j

b(k−j)/2c∑
i=0

(
3t − j

i

)
2i. (6)
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Proof. We solely prove the lower bound. If we put blog3 kc = l, then

33n
Ek ≥

n−1∑
t=l

SI(3n − 3t+1 + 1) + SII(3n − 2 · 3t + 1) =

n−1∑
t=l

(3n − 3t+1 + 1)(SI + SII) +
n−1∑
t=l

3tSII := A1 + A2.

Since SI + SII = M(t + 1, t), the term A1 is exactly the term for the lower
bound obtained in Corollary 1 for q = 3. For A2 we get

A2 =
n−1∑
t=l

33n−3t+t
k∑

j=0

(
3t

j

)
2j−

n−1∑
t=l

33n−2·3t+t
k∑

j=0

(
3t

j

)
6j

b(k−j)/2c∑
i=0

(
3t − j

i

)
2i.

Combining the terms we obtain

33n
Ek ≥ 33n

(3n + 1)− 33n
3l+1 −

k∑
j=0

(
3n

j

)
2j + 33n

3−3l+l33l

−33n
n−1∑

t=l+1

3−3t+t
k∑

j=0

(
3t

j

)
2j

−33n
n−1∑
t=l

3−2·3t+t
k∑

j=0

(
3t

j

)
6j

b(k−j)/2c∑
i=0

(
3t − j

i

)
2i

= 33n
(3n + 1− 3l+1 + 3l)−

k∑
j=0

(
3n

j

)
2j − 33n

n−1∑
t=l+1

3−3t+t
k∑

j=0

(
3t

j

)
2j

−33n
n−1∑
t=l

3−2·3t+t
k∑

j=0

(
3t

j

)
6j

b(k−j)/2c∑
i=0

(
3t − j

i

)
2i,

which yields the desired formula. 2
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Table 1: Example to the ternary case, N = 243: k is given as absolute value
and percentage of N , the bounds are given relative to the period length N .
New Lower Bound (NLB) and New Upper Bound (NUB) refer to the bounds
(6), Old Lower Bound (OLB) refers to the bound (1).

k 2 3 6 10 15 20 25 30 40 50
k% 0.82 1.24 2.47 4.12 6.17 8.23 10.29 12.35 16.46 20.58

NLB 0.98 0.97 0.94 0.907 0.88 0.8 0.78 0.72 0.67 0.6
NUB 0.984 0.978 0.96 0.94 0.92 0.89 0.88 0.82 0.78 0.75
OLB 0.95 0.93 0.88 0.82 0.75 0.69 0.64 0.585 0.49 0.41

(Table, file plot.eps)

4 Conclusion

The linear complexity and the k-error linear complexity are important but
still not completely understood quality measures for sequences over finite
fields. Until now exact formulas for the number of N -periodic sequences
with given k-error linear complexity and for the expected k-error linear
complexity are basically just known for k = 0 (see [8, 9]). Specifically,
pn-periodic sequences over a finite field Fq with characteristic p have been
studied from several viewpoints (see [1]–[6], [12]). In this contribution we
provide the exact counting function and the expected value for the 1-error
linear complexity for the case that N = pn and q = p. The results are a gen-
eralization of the results on the binary case presented in [7]. We emphasize
that this generalization is not straightforward. Instead of the Chan-Games
algorithm which works for the binary case, the more sophisticated algorithm
by Ding et al., which generalized the Chan-Games algorithm to arbitrary
finite fields has to be analyzed.

It seems to be very difficult to obtain exact results for larger k. Our
method permits the calculation of lower and upper bounds for the k error
linear complexity of pn-periodic sequences over Fp, p prime. Until now, only
lower bounds have been known. Finally we indicate how a refined analysis
can provide an improvement of the bounds. The fact that the calculations
become infeasible if p is not very small, points out that it may be difficult
to obtain exact results for larger k.
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